
this print for content only—size & color not accurate spine = 0.8927" 384 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Michael Purvis

US $34.99

Shelve in
Web development

User level:
Beginner–Intermediate

Purvis,
Sam

bells,
Turner

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Michael Purvis, Jeffrey Sambells,
and Cameron Turner
Foreword by Mike Pegg,
Founder of the Google Maps Mania Blog

Beginning

Google Maps
Applications
with PHP and Ajax
From Novice to Professional

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-707-9

9 781590 597071

53499

6 89253 59707 1

Companion
eBook Available

Build awesome web-based mapping applications with this powerful API!

Covers
API Version 2, including

Google’s geocoder!

Covers
API Version 2, including

Google’s geocoder!

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

forums.apress.com
FOR PROFESSIONALS
BY PROFESSIONALS™

Join online discussions:

THE APRESS ROADMAP

Beginning JavaScript
with DOM and Ajax

Beginning CSS
Web Development

Pro CSS Techniques

Beginning Google Maps Application
Development with PHP and Ajax

Beginning PHP and MySQL 5,
Second Edition

Jeffrey Sambells, ZCE

Cameron Turner

Beginning Google Maps Applications with PHP and Ajax:
From Novice to Professional

Dear Reader,

Until recently, building interactive web-based mapping applications has been a
cumbersome affair. That changed when Google released its powerful Maps API.
We’ve written this book to help you take advantage of this technology in your
own endeavors—whether you’re an enthusiast playing for fun or a professional
building for profit.

We get rolling with examples that require hardly any code at all, but you’ll
quickly become acquainted with many facets of the Maps API. We demonstrate
powerful methods for simultaneously plotting large data sets, creating your
own map overlays, and harvesting and geocoding sets of addresses. You’ll see
how to set up alternative tile sets and where to access imagery to use for them.
We even show you how to build your own geocoder from scratch, for those
high-volume batch jobs.

We’ve had a blast researching and writing this book, and we really think it
has turned into a great, comprehensive resource. As well as providing hands-on
examples of real mapping projects, this book supplies a complete reference for
the API, along with the relevant aspects of JavaScript, CSS, PHP, and SQL.

If you enjoy this book or you’ve built something cool related to Google
Maps, we encourage you to drop by http://googlemapsbook.com and let us
know. We’re keeping a blog there that’s an ongoing stream of new pointers,
ideas, and resources to help out fellow mappers.

Now, go forth and map the world!

Mike Purvis, Jeffrey Sambells, and Cameron Turner

BeginningGoogle M
aps Applications

w
ithPHP

andAjax

Beginning Google Maps
Applications with
PHP and Ajax
From Novice to Professional

Michael Purvis
Jeffrey Sambells
and Cameron Turner

7079ch00FM.qxd 7/27/06 3:18 PM Page i

Beginning Google Maps Applications with PHP and Ajax: From Novice to Professional

Copyright © 2006 by Michael Purvis, Jeffrey Sambells, and Cameron Turner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-707-1

ISBN-10 (pbk): 1-59059-707-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewer: Terrill Dent
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Elizabeth Seymour
Copy Edit Manager: Nicole LeClerc
Copy Editor: Marilyn Smith
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Kinetic Publishing Services, LLC
Proofreader: Liz Welch
Indexer: Beth Palmer
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section
or at the official book site, http://googlemapsbook.com.

7079ch00FM.qxd 7/27/06 3:18 PM Page ii

To Anne and Jim, that with God’s grace,
I might one day be so loving a parent.

—Michael Purvis

Dedicated to my loving wife, Stephanie, always by my side as my navigator in life.
May we never lose our way in this crazy world.

And also to my parents, Frank and Linda,
who taught me to always look beyond the horizon.

—Jeffrey Sambells

I dedicate this book to my amazing wife, Tanya, and our son, Owen.
Tanya is the ultimate teammate and life partner—

always willing to dive into an adventure or opportunity regardless of the size.
I’d also like to thank my parents, Barry and Lorna, for supporting me

in all my ambitions and encouraging me to take risks and pursue dreams.
Without all of you, I would never have agreed to write my first book

about a moving-target topic such as Google Maps,
on a compressed timeline, with a newborn baby!

To everyone else who helped out in the last few months, thank you.
We couldn’t have completed this book without your help and patience.

—Cameron Turner

7079ch00FM.qxd 7/27/06 3:18 PM Page iii

7079ch00FM.qxd 7/27/06 3:18 PM Page iv

Contents at a Glance

Foreword . xv

About the Authors . xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

PART 1 ■ ■ ■ Your First Google Maps
■CHAPTER 1 Introducing Google Maps . 3

■CHAPTER 2 Getting Started . 13

■CHAPTER 3 Interacting with the User and the Server . 31

■CHAPTER 4 Geocoding Addresses . 63

PART 2 ■ ■ ■ Beyond the Basics
■CHAPTER 5 Manipulating Third-Party Data . 97

■CHAPTER 6 Improving the User Interface . 119

■CHAPTER 7 Optimizing and Scaling for Large Data Sets. 145

■CHAPTER 8 What’s Next for the Google Maps API? . 199

PART 3 ■ ■ ■ Advanced Map Features
and Methods

■CHAPTER 9 Advanced Tips and Tricks . 209

■CHAPTER 10 Lines, Lengths, and Areas . 261

■CHAPTER 11 Advanced Geocoding Topics. 285

PART 4 ■ ■ ■ Appendixes
■APPENDIX A Finding the Data You Want . 315

■APPENDIX B Google Maps API. 323

■INDEX . 351

v

7079ch00FM.qxd 7/27/06 3:18 PM Page v

7079ch00FM.qxd 7/27/06 3:18 PM Page vi

Contents

Foreword . xv

About the Authors . xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

PART 1 ■ ■ ■ Your First Google Maps

■CHAPTER 1 Introducing Google Maps . 3

KML: Your First Map . 3

Wayfaring: Your Second Map. 5

Adding the First Point . 6

Adding the Flight Route . 7

Adding the Destination Point . 8

Adding a Driving Route . 9

What’s Next? . 10

■CHAPTER 2 Getting Started . 13

The First Map . 13

Keying Up . 13

Examining the Sample Map . 15

Specifying a New Location. 16

Separating Code from Content . 18

Cleaning Up. 20

Basic Interaction . 21

Using Map Control Widgets . 21

Creating Markers . 21

Opening Info Windows . 23

A List of Points . 26

Using Arrays and Objects . 26

Iterating . 28

Summary . 29

vii

7079ch00FM.qxd 7/27/06 3:18 PM Page vii

■CHAPTER 3 Interacting with the User and the Server 31

Going on a Treasure Hunt. 32

Creating the Map and Marking Points . 33

Starting the Map . 33

Listening to User Events . 35

Asking for More Information with an Info Window. 37

Creating an Info Window on the Map . 38

Embedding a Form into the Info Window. 39

Avoiding an Ambiguous State . 44

Controlling the Info Window Size. 46

Using Google’s Ajax Object. 48

Saving Data with GXmlHttp . 49

Parsing the XML Document Using DOM Methods 54

Retrieving Markers from the Server . 57

Adding Some Flair . 59

Summary . 62

■CHAPTER 4 Geocoding Addresses. 63

Creating an XML File with the Address Data. 63

Using Geocoding Web Services. 65

Requirements for Consuming Geocoding Services 66

The Google Maps API Geocoder . 67

The Yahoo Geocoding API . 75

Geocoder.us . 80

Geocoder.ca . 83

Services for Geocoding Addresses Outside Google’s Coverage. . . . 85

Caching Lookups . 86

Building a Store Location Map . 90

Summary . 93

PART 2 ■ ■ ■ Beyond the Basics

■CHAPTER 5 Manipulating Third-Party Data . 97

Using Downloadable Text Files . 97

Downloading the Database . 98

Parsing CSV Data . 101

Optimizing the Import . 102

Using Your New Database Schema. 106

■CONTENTSviii

7079ch00FM.qxd 7/27/06 3:18 PM Page viii

Screen Scraping . 113

A Scraping Example . 114

Screen Scraping Considerations . 117

Summary . 118

■CHAPTER 6 Improving the User Interface . 119

CSS: A Touch of Style . 119

Maximizing Your Map . 120

Adding Hovering Toolbars. 121

Creating Collapsible Side Panels. 124

Scripted Style . 126

Switching Up the Body Classes . 126

Resizing with the Power of JavaScript. 129

Populating the Side Panel. 131

Getting Side Panel Feedback . 134

Warning, Now Loading . 136

Data Point Filtering . 139

Showing and Hiding Points . 140

Discovering Groupings . 140

Creating Filter Buttons . 141

Summary . 143

■CHAPTER 7 Optimizing and Scaling for Large Data Sets 145

Understanding the Limitations . 145

Streamlining Server-Client Communications . 146

Optimizing Server-Side Processing . 148

Server-Side Boundary Method . 149

Server-Side Common Point Method . 155

Server-Side Clustering . 161

Custom Detail Overlay Method . 167

Custom Tile Method. 176

Optimizing the Client-Side User Experience . 186

Client-Side Boundary Method . 187

Client-Side Closest to a Common Point Method. 188

Client-Side Clustering . 191

Further Optimizations . 196

Summary . 198

■CONTENTS ix

7079ch00FM.qxd 7/27/06 3:18 PM Page ix

■CHAPTER 8 What’s Next for the Google Maps API? 199

Driving Directions . 199

Integrated Google Services . 200

KML Data . 202

More Data Layers . 202

Beyond the Enterprise . 204

Interface Improvements . 204

Summary . 205

PART 3 ■ ■ ■ Advanced Map Features
and Methods

■CHAPTER 9 Advanced Tips and Tricks . 209

Debugging Maps . 209

Interacting with the Map from the API . 210

Helping You Find Your Place . 211

Force Triggering Events with GEvent . 212

Creating Your Own Events . 214

Creating Map Objects with GOverlay . 214

Choosing the Pane for the Overlay . 214

Creating a Quick Tool Tip Overlay . 216

Creating Custom Controls . 220

Creating the Control Object . 222

Creating the Container . 222

Positioning the Container . 222

Using the Control . 223

Adding Tabs to Info Windows. 223

Creating a Tabbed Info Window. 224

Gathering Info Window Information and Changing Tabs 226

Creating a Custom Info Window . 226

Creating the Overlay Object and Containers 232

Drawing a LittleInfoWindow . 232

Implementing Your Own Map Type, Tiles, and Projection 237

GMapType: Gluing It Together . 237

GProjection: Locating Where Things Are . 238

GTileLayer: Viewing Images . 244

The Blue Marble Map: Putting It All Together 247

Summary . 258

■CONTENTSx

7079ch00FM.qxd 7/27/06 3:18 PM Page x

■CHAPTER 10 Lines, Lengths, and Areas . 261

Starting Flat . 261

Lengths and Angles . 262

Areas . 263

Moving to Spheres . 266

The Great Circle . 266

Great-Circle Lengths . 268

Area on a Spherical Surface . 269

Working with Polylines . 274

Building the Polylines Demo . 274

Expanding the Polylines Demo . 280

What About UTM Coordinates? . 281

Running Afoul of the Date Line . 283

Summary . 284

■CHAPTER 11 Advanced Geocoding Topics . 285

Where Does the Data Come From? . 285

Sample Data from Government Sources . 286

Sources of Raw GIS Data . 289

Geocoding Based on Postal Codes . 290

Grabbing the TIGER/Line by the Tail . 294

Understanding and Defining the Data . 295

Parsing and Importing the Data. 299

Building a Geocoding Service . 305

Summary . 311

PART 4 ■ ■ ■ Appendixes

■APPENDIX A Finding the Data You Want . 315

Knowing What to Look For: Search Tips . 315

Finding the Information. 315

Specifying Search Terms . 316

Watching for Errors . 316

The Cat Came Back: Revisiting the TIGER/Line . 316

More on Airports . 318

The Government Standard: The Geonames Data . 319

Shake, Rattle, and Roll: The NOAA Goldmine . 319

■CONTENTS xi

7079ch00FM.qxd 7/27/06 3:18 PM Page xi

For the Space Aficionado in You . 321

Crater Impacts . 321

UFO/UAP Sightings . 322

■APPENDIX B Google Maps API . 323

class GMap2. 323

GMap2 Constructor . 323

GMap2 Methods. 324

class GMapOptions . 328

GMapOptions Properties. 328

enum GMapPane . 328

GMapPane Constants . 329

class GKeyboardHandler . 329

GKeyboardHandler Bindings . 329

GKeyboardHandler Constructor . 329

interface GOverlay . 329

GOverlay Constructor . 330

GOverlay Static Method . 330

GOverlay Abstract Methods . 330

class GInfoWindow . 330

GInfoWindow Methods . 330

GInfoWindow Event . 331

class GInfoWindowTab . 331

GInfoWindowTab Constructor. 331

class GInfoWindowOptions. 331

GInfoWindowOptions Properties . 331

class GMarker . 331

GMarker Constructor . 332

GMarker Methods . 332

GMarker Events . 332

class GMarkerOptions. 333

GMarkerOptions Properties . 333

class GPolyline . 333

GPolyline Constructor . 333

GPolyline Methods . 333

GPolyline Event. 334

class GIcon . 334

GIcon Constructor . 334

GIcon Constant . 334

GIcon Properties. 334

■CONTENTSxii

7079ch00FM.qxd 7/27/06 3:18 PM Page xii

class GPoint . 335

GPoint Constructor. 335

GPoint Properties . 335

GPoint Methods . 335

class GSize . 335

GSize Constructor . 336

GSize Properties. 336

GSize Methods . 336

class GBounds . 336

GBounds Constructor . 336

GBounds Properties. 336

GBounds Methods . 336

class GLatLng. 337

GLatLng Constructor . 337

GLatLng Methods. 337

GLatLng Properties . 338

class GLatLngBounds . 338

GLatLngBounds Constructor . 338

GLatLngBounds Methods . 338

interface GControl . 339

GControl Constructor . 339

GControl Methods . 339

class GControl . 339

GControl Constructors . 339

class GControlPosition . 339

GControlPosition Constructor . 340

enum GControlAnchor. 340

GControlAnchor Constants . 340

class GMapType. 340

GMapType Constructor . 340

GMapType Methods. 340

GMapType Constants . 341

GMapType Event . 341

class GMapTypeOptions . 341

GMapTypeOptions Properties. 342

interface GTileLayer . 342

GTileLayer Constructor . 342

GTileLayer Methods. 342

GTileLayer Event . 343

■CONTENTS xiii

7079ch00FM.qxd 7/27/06 3:18 PM Page xiii

class GCopyrightCollection. 343

GCopyrightCollection Constructor . 343

GCopyrightCollection Methods. 343

GCopyrightCollection Event . 343

class GCopyright . 343

GCopyright Constructor. 343

GCopyright Properties . 344

interface GProjection. 344

GProjection Methods . 344

class GMercatorProjection . 344

GMercatorProjection Constructor . 344

GMercatorProjection Methods . 345

namespace GEvent . 345

GEvent Static Methods . 345

GEvent Event. 346

class GEventListener. 346

namespace GXmlHttp . 346

GXmlHttp Static Method . 346

namespace GXml. 346

GXml Static Methods. 347

class GXslt . 347

GXslt Static Methods . 347

namespace GLog. 347

GLog Static Methods . 347

enum GGeoStatusCode. 347

GGeoStatusCode Constants . 348

class GClientGeocoder . 348

GClientGeocoder Constructor. 348

GClientGeocoder Methods . 348

class GGeocodeCache . 348

GGeocodeCache Constructor . 349

GGeocodeCache Methods . 349

class GFactualGeocodeCache . 349

GFactualGeocodeCache Constructor . 349

GFactualGeocodeCache Method . 349

Functions . 349

■INDEX . 351

■CONTENTSxiv

7079ch00FM.qxd 7/27/06 3:18 PM Page xiv

Foreword

In the Beginning. . .
In the history of the Internet, 2005–2006 will be remembered as the year when online mapping
finally came of age. Prior to 2005, MapQuest and other mapping services allowed you to look
up directions, search for locations, and map businesses, but these searches were limited, usu-
ally to the companies the services had partnered with, so you couldn’t search for any location.
On February 8, 2005, Google changed all that. As it does with many of its services, Google qui-
etly released the beta of Google Maps to its Labs incubator (http://labs.google.com) and let
word-of-mouth marketing promote the new service.

By all accounts, Google Maps was an instant hit. It was the first free mapping service to
provide satellite map views of any location on the earth, allowing anyone to look for familiar
places. This started the “I can see my house from here” trend, and set the blogosphere abuzz
with links to Google Maps locations around the world.

Like other mapping services, Google Maps offered directions, city and town mapping,
and local business searches. However, what the Google Maps engineers buried within its
code was something that quickly set it apart from the rest. Although unannounced and pos-
sibly unplanned, they provided the means to manipulate the code of Google Maps to plot
your own locations. Moreover, you could combine this base mapping technology with an
external data source to instantly map many location-based points of information. And all of
this could be done on privately owned domains, seemingly independent of Google itself.

At first, mapping “hackers” unlocked this functionality, just as video gamers hack into
games by entering simple cheat codes. They created their own mapping services using Google
Maps and other sources. One of the first these was Housingmaps.com, which combined the
craigslist.org housing listings with a searchable Google Maps interface. Next came Adrian
Holovaty’s chicagocrime.org, which offered a compelling way to view crime data logged by the
Chicago Police Department. These home-brewed mapping applications were dubbed “hacks,”
since Google had not sanctioned the use of its code in external domains on the Web.

The major change came in June 2005, when Google officially introduced the Google Maps
API, which is the foundation for this book. By releasing this API, Google allowed programmers
the opportunity to build an endless array of applications on top of Google Maps. Hundreds of
API keys were registered immediately after the announcement, and many sites integrating
Google Maps appeared within days. The map mashup was born.

The Birth of the Google Maps Mania Blog
The Google Maps labs beta site had been public for barely a month when I tried it for the first
time. I was fascinated. While combing through the blogosphere looking for more information,
I started to see a trend toward Google Maps hacks, how-to sites, Firefox extensions, and web-
sites indexing specific satellite images. I thought that others could benefit from an aggregation
of all of these ideas into one themed blog. Thus, my Google Maps Mania blog was born.

xv

7079ch00FM.qxd 7/27/06 3:18 PM Page xv

Google Maps Mania is more accurately described as a “meta-site,” as host Leo Laporte pointed
out when I was a guest on his NPR G4techTV radio show in November 2005.

April 13, 2005, saw these as my first posts:

Title: Google Maps Mania

If you’re like me you were absolutely floored when Google came out with the Google
Maps service. Sure, it’s just another mapping service. Until you realize it’s full potential.
The ability to toggle between regular street/road maps and a satellite view is unreal. I’ve
started to see a lot of buzz around the blogging community about Google Maps so I’ve
decided to help you keep up with the Google Maps related sites, blogs and tools that are
cropping up. Stay tuned.

Title: Google Sightseeing

The first Google Maps related site of note is Google Sightseeing. This blog tracks interest-
ing satellite shots as submitted by its visitors, then organizes them by interest area like
buildings, natural landmarks and stadiums. It’s a pretty nifty site. Google Sightseeing even
posted my suggestion of Toronto’s Rogers Centre (Skydome) and the CN Tower!

Title: Flickr Memory Maps

Here’s a Flickr group that took off fast. Memory Maps is a Flickr group that contains maps
with captions describing memories they have of those areas or specific notes about differ-
ent areas. Kind of cool.

Title: Make your own multimedia Google map

Google Blogoscoped tipped me off on this link. Seems Engadget has a page which gives
some pretty good directions on how to create your own annotated multimedia Google
map. There is some pretty serious direction here which includes inserting pictures and
movies from the annotations. I’d like to see an example of this.

Title: My GMaps

myGmaps enables you to create, save and host custom data files and display them with
Google Maps. Create push-pin spots on any map of your choice. Mark your house, where
an event will be held, or the route of a fun-run as a few examples. Then you can publish
the map that you’ve created to your own website.

These postings represented an interesting cross-section of the ideas, concepts, and web-
sites that I had come across in the two short months since Google Maps came to the Web. In
the year between the start of Google Maps Mania and the release of the second-generation API
(which this book is based on) in April 2006, I have made over 900 posts and attracted more than
6,000 daily readers to the blog, including the architects of the API itself. I’ve been Slashdotted,
Dug (at Digg), and linked to from the New York Times site, as well as the sites of hundreds of
other mainstream papers and magazines. In June 2006, Google arranged for my entire family to
travel across the country so I could speak at the Google Geo Developer Day in advance of the
Where 2.0 conference.

■FOREWORDxvi

7079ch00FM.qxd 7/27/06 3:18 PM Page xvi

So many interesting mashups have been created using the Google Maps API that it’s
becoming impossible to keep up with all of them. I liken this to the early days of the Web when
search directories began to manually catalog new web pages as they came online. The volume
of new sites quickly became too huge to handle manually, and Google itself was born.

You can see why the Google Maps API offers the key for the next killer apps on the Web. It
has been the missing link to take the Web to the next level.

This book will provide you the means to take part in this evolution of the Web. I hope to be
posting about the interesting and unique map creations that you build after reading this book.
Your creations will inspire others to do similar things, and together, we will continue to grow
the Internet, one mapping application at a time. Let me know if you build something cool!

Mike Pegg
Google Maps Mania (http://www.gmapsmania.com)

■FOREWORD xvii

7079ch00FM.qxd 7/27/06 3:18 PM Page xvii

7079ch00FM.qxd 7/27/06 3:18 PM Page xviii

About the Authors

■MICHAEL PURVIS is a Mechatronics Engineering student at the
University of Waterloo, in Ontario. He is a mostly self-taught pro-
grammer. Prior to discovering PHP, he was busy making a LEGO®
Mindstorms kit play Connect 4. Currently, he maintains an active
community site for classmates, built mostly from home-brewed
extensions to PunBB and MediaWiki.

He has written about CSS for Position Is Everything, and occa-
sionally participates in the css-discuss mailing list. He particularly
enjoys those clever layouts that mix negative margins, relative posi-
tioning, and bizarre float tricks to create fiendish, cross-browser,
flexible-width concoctions. These and other nontechnical topics

are discussed on his weblog at uwmike.com.
Offline, he enjoys cooking, cycling, and social dancing. He has worked with We-Create, Inc.

on a number of PHP-based projects, and has a strong interest in independent web standards.

■JEFFREY SAMBELLS is a graphic designer and self-taught web appli-
cations developer best known for his unique ability to merge the
visual world of graphics with the mental realm of code. With a
Bachelor of Technology degree in Graphic Communications Man-
agement along with a minor in Multimedia, Jeffrey was originally
trained for the traditional paper-and-ink printing industry, but he
soon realized the world of pixels and code was where his ideas
would prosper. In late 1999, he cofounded We-Create, Inc., an Inter-
net software company based in Waterloo, Ontario, which began
many long nights of challenging and creative innovation. Currently,
as Director of Research and Development for We-Create, Jeffrey is

responsible for investigating new and emerging Internet technologies and integrating them using
web standards-compliant methods. In late 2005, he also became a Zend Certified Engineer.

When not playing at the office, Jeffrey enjoys a variety of hobbies from photography to
woodworking. When the opportunity arises, he also enjoys floating in a canoe on the lakes of
Algonquin Provincial Park or going on an adventurous, map-free, drive with his wife. Jeffrey
also maintains a personal website at JeffreySambells.com, where he shares thoughts, ideas,
and opinions about web technologies, photography, design, and more. He lives in Ontario,
Canada, eh, with his wife, Stephanie, and their little dog, Milo.

xix

7079ch00FM.qxd 7/27/06 3:18 PM Page xix

■CAMERON TURNER has been programming computers since his first
VIC 20 at age 7. He has been developing interactive websites since
1994. In 1999, he cofounded We-Create, Inc., which specializes in
Internet software development. He is now the company’s Chief
Technology Officer. Cam obtained his Honors degree in Computer
Science from the University of Waterloo with specialization in
applied cryptography, database design, and computer security.

Cam lives in Canada’s technology capital of Waterloo, Ontario,
with his wife, Tanya, son Owen, and dog Katie. His hobbies include
biking, hiking, water skiing, and painting. He maintains a personal
blog at CamTurner.com, discussing nontechnical topics, thoughts,
theories, and family life.

■ABOUT THE AUTHORSxx

7079ch00FM.qxd 7/27/06 3:18 PM Page xx

About the Technical Reviewer

■TERRILL DENT is enrolled in Honors Mathematics at the University of
Waterloo. His major interests center around Internet culture, twentieth
century history, and economic theory. Terrill.ca is home to his weblog,
and MapLet.ca is the front for his web application ventures, where he
lets his acute attention to detail show through. Apart from work, he busies
himself with fine arts, cycling, and an occasional novel.

xxi

7079ch00FM.qxd 7/27/06 3:18 PM Page xxi

7079ch00FM.qxd 7/27/06 3:18 PM Page xxii

Acknowledgments

The authors would like to thank Mike Pegg of Google Maps Mania for giving Apress our names
when contacted about doing a book on Google Maps. This book would not have been possible
without his encouragement, support, generosity, and friendship.

Thanks to Terrill for finding the errors of our bleary-eyed coding sessions and helping make
this book what it is today.

Thanks to Jason, Elizabeth, Marilyn, Katie, Julie, and the rest of the team at Apress. We hope
that working with us has been as much fun for you as working with you was for us.

xxiii

7079ch00FM.qxd 7/27/06 3:18 PM Page xxiii

7079ch00FM.qxd 7/27/06 3:18 PM Page xxiv

Your First
Google Maps

P A R T 1

■ ■ ■

7079ch01.qxd 7/25/06 1:24 PM Page 1

7079ch01.qxd 7/25/06 1:24 PM Page 2

Introducing Google Maps

It’s hard to argue that Google Maps hasn’t had a fundamental effect on the mapping world.
While everyone else was still doing grainy static images, Google developers quietly developed
the slickest interface since Gmail. Then they took terabytes of satellite imagery and road data,
and just gave it all away for free.

We’re big fans of Google Maps and excited to get started here. We’ve learned a lot about
the Google Maps API since it was launched, and even more during the time spent writing and
researching for this book. Over the course of the coming chapters, you’re going to move from
simple tasks involving markers and geocoding to more advanced topics, such as how to acquire
data, present many data points, and provide a useful and attractive user interface.

A lot of important web technologies and patterns have emerged in parallel with the Google
Maps API. But whether you call it Ajax or Web 2.0 is less important than what it means: that
the little guy is back.

You don’t need an expensive development kit to use the Google Maps API. You don’t need
a computer science degree, or even a lot of experience. You just need a feel for what’s important
data and an idea of what you can do to present it in a visually persuasive way.

We know you’re eager to get started on a map project, but before we actually bust out the
JavaScript, we wanted to show you two simple ways of creating ultra-quickie maps: using KML
files and through the Wayfaring map site.

Using either of these approaches severely limits your ability to create a truly interactive
experience, but no other method will give you results as quickly.

KML: Your First Map
The map we’re working on here is actually Google Maps itself. In June 2006, Google announced
that the official maps site would support the plotting of KML files. You can now simply plug
a URL into the search box, and Google Maps will show whatever locations are contained in the
file specified by the URL. We aren’t going to go in depth on this, but we’ve made a quick exam-
ple to show you how powerful the KML method is, even if it is simple.

■Note KML stands for Keyhole Markup Language, which is a nod to both its XML structure and Google
Earth’s heritage as an application called Keyhole. Keyhole was acquired by Google late in 2004.

3

C H A P T E R 1

■ ■ ■

7079ch01.qxd 7/25/06 1:24 PM Page 3

We created a file called toronto.kml and placed the contents of Listing 1-1 in it. The paragraph
blurbs were borrowed from Wikipedia, and the coordinates were discovered by manually find-
ing the locations on Google Maps.

Listing 1-1. A Sample KML File

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://www.google.com/earth/kml/2">

<Document>

<name>toronto.kml</name>

<Placemark>

<name>CN Tower</name>

<description>The CN Tower (Canada's National Tower, Canadian National Tower),

at 553.33 metres (1,815 ft., 5 inches) is the tallest freestanding structure on land.

It is located in the city of Toronto, Ontario, Canada, and is considered the

signature icon of the city. The CN Tower attracts close to two million visitors

annually.

http://en.wikipedia.org/wiki/CN_Tower</description>

<Point>

<coordinates>-79.386864,43.642426</coordinates>

</Point>

</Placemark>

</Document>

</kml>

In the actual file (located at http://googlemapsbook.com/chapter1/kml/toronto.kml),
we included two more Placemark elements, which point to other well-known buildings in
Toronto. To view this on Google Maps, paste that URL into the Google Maps search field. Alter-
natively, you can just visit this link:

http://maps.google.com/maps?f=q&hl=en&q=http://googlemapsbook.com/chapter1/kml/

toronto.kml

You can see the results of this in Figure 1-1.

CHAPTER 1 ■ INTRODUCING GOOGLE MAPS4

7079ch01.qxd 7/25/06 1:24 PM Page 4

Figure 1-1. A custom KML data file being displayed at maps.google.com

Now, is that a quick result or what? Indeed, if all you need to do is show a bunch of locations,
it’s possible that a KML file will serve your purpose. If you’re trying to link to your favorite fish-
ing spots, you could make up a KML file, host it somewhere for free, and be finished.

But that wouldn’t be any fun, would it? After all, as cool as the KML mapping is, it doesn’t
actually offer any interactivity to the user. In fact, most of the examples you’ll work through in
Chapter 2 are just replicating the functionality that Google provides here out of the box. But
once you get to Chapter 3, you’ll start to see things that you can do only when you harness the
full power of the Google Maps API.

Before moving on, though, we’ll take a look at one other way of getting a map online
quickly.

Wayfaring: Your Second Map
A number of services out there let you publish free maps of quick, plotted-by-hand data. One
of these, which we’ll demonstrate here, is Wayfaring.com (Figure 1-2). Wayfaring has received
attention and praise for its classy design, community features (such as commenting and shared
locations), and the fact that it’s built using the popular Ruby on Rails framework.

CHAPTER 1 ■ INTRODUCING GOOGLE MAPS 5

7079ch01.qxd 7/25/06 1:24 PM Page 5

Figure 1-2. Wayfaring.com home page

Wayfaring is a mapping service that uses the Google Maps API and allows users to quickly
create maps of anything they would like. For example, some people have made maps of their
vacations; others have identified interesting aspects of their hometown or city. As an example,
we’ll walk you through making a quick map of an imaginary trip to the Googleplex, in Moun-
tain View, California.

Point your browser at http://www.wayfaring.com and follow the links to sign up for an
account. Once you’ve created and activated your account, you can begin building your map.
Click the Create link.

Adding the First Point
We’ll start by adding the home airport for our imaginary journey. In our case, that would be
Pearson International Airport in Toronto, Ontario, Canada, but you could use the one closest
to you. Since Pearson is an international location (outside the United States), we need to drag
and zoom the map view until we find it. If you’re in the United States, you could use instead
the nifty Jump To feature to search by text string. Figure 1-3 shows Pearson nicely centered
and zoomed.

CHAPTER 1 ■ INTRODUCING GOOGLE MAPS6

7079ch01.qxd 7/25/06 1:24 PM Page 6

Figure 1-3. Lester B. Pearson International Airport, Toronto, Ontario

Once you’ve found your airport, you can click Next and name the map. After clicking
ahead, you should be back at the main Map Editor screen.

Select Add a Waypoint from the list of options on the right. You’ll be prompted to name
the waypoint. We’ll call ours “Lester B Pearson International Airport.” However, as we type, we
find that Wayfaring is suggesting this exact name. This means that someone else on some other
map has already used this waypoint, and the system is giving us a choice of using their point
or making one of our own. It’s a safe bet that most of the airports you could fly from are already
in Wayfaring, so feel free to use the suggested one if you would like. For the sake of complete-
ness, we’ll quickly make our own. Click Next to continue.

The next two screens ask you to tag and describe this point in order to make your map
more searchable for other members. We’ll add the tags “airport Toronto Ontario Canada” and
give it a simple description. Finally, click Done to commit the point to the map, which returns
you to the Map Editor screen.

Adding the Flight Route
The next element we’re going to add to our map is a route. A route is a line made up of as
many points as you would like. We’ll use two routes in this example. The first will be a straight
line between the two airports to get a rough idea of the distance the plane will have to travel to
get us to Google’s headquarters. The second will be used to plot the driving path we intend to
take between the San Francisco airport and the Googleplex.

To begin, click Add a Route, name the route (something like “airplane trip”), and then
click your airport. A small, white dot appears on the place you clicked. This is the first point on
your line. Now zoom out, scroll over to California, and zoom in on San Francisco. The airport

CHAPTER 1 ■ INTRODUCING GOOGLE MAPS 7

7079ch01.qxd 7/25/06 1:24 PM Page 7

we’ll be landing at is on the west side of the bay. Click the airport here, too. As you can see in
Figure 1-4, a second white dot appears on the airport and a blue line connects the two points.
You can see how far your flight was on the right side of the screen, underneath the route label.
Wow, our flight seems to have been over 2000 miles! If you made a mistake and accidentally
clicked a few extra times in the process of getting to San Francisco, you can use the Undo Last
option. Otherwise, click Save.

Figure 1-4. Our flight landing at San Francisco International Airport

Adding the Destination Point
Now that you’re in San Francisco, let’s figure out how to get to the Googleplex directly. Click
Add a Waypoint. Our destination is Google, so we’ve called the new point “The Googleplex”
and used the address box feature to jump directly to 1600 Amphitheatre Pky, Mountain View,
CA 94043. Wayfaring is able to determine latitude and longitude from an address via a process
called geocoding, which you’ll be seeing a lot more of in Chapter 4.

To confirm you’re in the right place, click the Sat button on the top-right corner of the
map to switch it over to satellite mode. You should see something close to Figure 1-5.

CHAPTER 1 ■ INTRODUCING GOOGLE MAPS8

7079ch01.qxd 7/25/06 1:24 PM Page 8

Figure 1-5. The Googleplex

Excellent! Save that waypoint.

Adding a Driving Route
Next, let’s figure out how far of a drive we have ahead of us. Routes don’t really have a starting
and ending point in Wayfaring from a visual point of view, so we can start our route from the
Googleplex and work our way backwards. Switch back into map (or hybrid) mode so you can
see the roads more clearly. From the Map Editor screen, select Add a Route and click the point
you just added. Use 10 to 20 dots to carefully trace the trip from Mountain View back up the
Bayshore Freeway (US Highway 101) to the airport. By our tracing, we end up with about 23
miles of fun driving on this California highway, as shown in Figure 1-6.

CHAPTER 1 ■ INTRODUCING GOOGLE MAPS 9

7079ch01.qxd 7/25/06 1:24 PM Page 9

Figure 1-6. The drive down the Bayshore Freeway to the Googleplex

That’s it. You can use the same principles to make an annotated map of your vacation or
calculate how far you’re going to travel, and best of all, it’s a snap to share it. To see our map
live, visit http://www.wayfaring.com/maps/show/17131.

Of course, since this is a programming book, you’re probably eager to dig into the code
and make something really unique. Wayfaring may be nice, but the whole point of a mashup is
to automate the process of getting a lot of data combined together.

■Tip Mashup is a term that originates from DJs and other musicians who create new compositions by
“mashing” together samples from existing songs. A classic example of this is The Grey Album, which joins
the a capella versions of tracks from Jay-Z’s The Black Album with unauthorized clips from The White
Album, by The Beatles. In the context of this book, mashup refers to the mashing of data from one source
with maps from Google.

What’s Next?
Now that these examples are out of the way, we hope you’re eager to learn how to build your
own mashups from the ground up. By the end of Part 1 of this book, you’ll have the skills to do
everything you’ve just done on Wayfaring (except the route lines and distances, which are cov-
ered in Chapter 10) using JavaScript and XHTML. By the book’s conclusion, you’ll have learned
most of the concepts needed to build your own Wayfaring clone!

CHAPTER 1 ■ INTRODUCING GOOGLE MAPS10

7079ch01.qxd 7/25/06 1:24 PM Page 10

So what exactly is to come? We’ve divided the book into three parts and two appendixes.
Part 1 goes through Chapter 4 and deals with the basics that a hobbyist would need to get started.
You’ll make a map, add some custom pins, and geocode a set of data using freely available
services. Part 2 (Chapters 5 through 8) gets into more map development topics, like building
a usable interface, dealing with extremely large groups of points, and finding sources of raw
information you may need to make your professional map ideas a reality. Part 3 (Chapters 9
through 11) dives into advanced topics: building custom map overlays such as your own info
window and tooltip, creating your own map tiles and projections, using the spherical equations
necessary to calculate surface areas on the earth, and building your own geocoder from scratch.
Finally, one appendix provides a reference guide to the Google Maps version 2 API, and another
points to a few places where you can find neat data for extending the examples here, and to
inspire your own projects.

We hope you enjoy!

CHAPTER 1 ■ INTRODUCING GOOGLE MAPS 11

7079ch01.qxd 7/25/06 1:24 PM Page 11

7079ch01.qxd 7/25/06 1:24 PM Page 12

Getting Started

In this chapter, you’ll learn how to create your first Google map project, plot some markers,
and add a bit of interactivity. Because JavaScript plays such a central role in controlling the
maps, you’ll also start to pick up a few essentials about that language along the way.

In this chapter, you’ll see how to do the following:

• Get off the ground with a basic map and a Google Maps API key.

• Separate the map application’s JavaScript functions, data, and XHTML.

• Unload finished maps to help browsers free their memory.

• Create map markers and respond to clicks on them with an information pop-up.

The First Map
In this section, you’ll obtain a Google Maps API key, and then begin experimenting with it by
retrieving Google’s starter map.

Keying Up
Before you start a Google Maps web application, you need sign up for a Google Maps API key.
To obtain your key, you must accept the Google Maps API Terms of Use, which stipulate, among
other things, that you must not steal Google’s imagery, obscure the Google logo, or hold Google
responsible for its software. Additionally, you’re prevented from creating maps that invade pri-
vacy or facilitate illegal activities.

Google issues as many keys as you need, but separate domains must apply for a separate
key, as each one is valid for only a specific domain and subdirectory within that domain. For
your first key, you’ll want to give Google the root directory of your domain or the space in which
you’re working. This will allow you to create your project in any subdirectory within your domain.
Visit http://www.google.com/apis/maps/signup.html (Figure 2-1) and submit the form to get
your key. Throughout this book, nearly all of the examples will require you to include this key
in the JavaScript <script> element for the Google Maps API, as we’re about to demonstrate in
Listing 2-1.

13

C H A P T E R 2

■ ■ ■

7079ch02.qxd 7/25/06 1:26 PM Page 13

Figure 2-1. Signing up for an API key. Check the box, and then enter the URL of your webspace.

■Note Why a key? Google has its reasons, which may or may not include seeing what projects are where,
which are the most popular, and which may be violating the terms of service. Google is not the only one that
makes you authenticate to use an API. Del.icio.us, Amazon, and others all provide services with APIs that
require you to first obtain a key.

When you sign up to receive your key, Google will also provide you with a very basic
“starter map” to help familiarize you with the fundamental concepts required to integrate
a map into your website. We’ll begin by dissecting and working with this starter code so you
can gain a basic understanding of what’s happening.

If you start off using Google’s sample, your key is already embedded in the JavaScript.
Alternatively, you can—as with all listings—grab the source code from the book’s website at
http://googlemapsbook.com and insert your own key by hand.

Either way, save the code to a file called index.php. Your key is that long string of characters fol-
lowing key=. (Our key, in the case of this book’s website, is ABQIAAAA33EjxkLYsh9SEveh_MphphQP1y➥

R2bHJW2Brl_bW_l0KXsyt8cxTKO5Zz-UKoJ6IepTlZRxN8nfTRgw).

CHAPTER 2 ■ GETTING STARTED14

7079ch02.qxd 7/25/06 1:26 PM Page 14

Examining the Sample Map
Once you have the file in Listing 2-1 uploaded to your webspace, check it out in a browser.
And ta-da, a map in action!

Listing 2-1. The Google Maps API Starter Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8"/>

<title>Google Maps JavaScript API Example</title>

<script src="http://maps.google.com/maps?file=api&v=2&key=ABQIAAAA➥

33EjxkLYsh9SEveh_MphphQP1yR2bHJW2Brl_bW_l0KXsyt8cxTKO5Zz-UKoJ6Ie➥

pTlZRxN8nfTRgw" type="text/javascript"></script>

<script type="text/javascript">

//<![CDATA[

function load() {

if (GBrowserIsCompatible()) {

var map = new GMap2(document.getElementById("map"));

map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}

}

//]]>

</script>

</head>

<body onload="load()" onunload="GUnload()">

<div id="map" style="width: 500px; height: 300px"></div>

</body>

</html>

In Listing 2-1, the container holding the map is a standard XHTML web page. A lot of the
listing here is just boilerplate—standard initialization instructions for the browser. However,
there are three important elements to consider.

First, the head of the document contains a critical script element. Its src attribute points
to the location of the API on Google’s server, and your key is passed as a parameter:

<script src="http://maps.google.com/maps?file=api&v=2&key=YOUR_KEY_HERE"➥

type="text/javascript"></script>

Second, the body section of the document contains a div called map:

<div id="map" style="width: 500px; height: 300px"></div>

CHAPTER 2 ■ GETTING STARTED 15

7079ch02.qxd 7/25/06 1:26 PM Page 15

Although it appears empty, this is the element in which the map will sit. Currently, a style

attribute gives it a fixed size; however, it could just as easily be set it to a dynamic size, such as
width: 50%.

Finally, back in the head, there’s a script element containing a short JavaScript, which is
triggered by the document body’s onload event. It’s this code that communicates with Google’s
API and actually sets up the map.

function load() {

if (GBrowserIsCompatible()) {

var map = new GMap2(document.getElementById("map"));

map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}

}

The first line is an if statement, which checks that the user’s browser is supported by
Google Maps. Following that is a statement that creates a GMap2 object, which is one of several
important objects provided by the API. The GMap2 object is told to hook onto the map div, and
then it gets assigned to a variable called map.

■Note Keen readers will note that we’ve already encountered another of Google’s special API objects:
GLatLng. GLatLng, as you can probably imagine, is a pretty important class, that we’re going to see a lot
more of.

After you have your GMap2 object in a map variable, you can use it to call any of the GMap2
methods. The very next line, for example, calls the setCenter() method to center and zoom
the map on Palo Alto, California. Throughout the book, we’ll be introducing various methods
of each of the API objects, but if you need a quick reference while developing your web appli-
cations, you can use Appendix B of this book or view the Google Maps API reference (http://
www.google.com/apis/maps/documentation/) directly online.

Specifying a New Location
A map centered on Palo Alto is interesting, but it’s not exactly groundbreaking. As a first attempt
to customize this map, you’re going to specify a new location for it to center on.

For this example, we’ve chosen the Golden Gate Bridge in San Francisco, California
(Figure 2-2). It’s a large landmark and is visible in the satellite imagery provided on Google
Maps (http://maps.google.com). You can choose any starting point you like, but if you search
for “Golden Gate Bridge” in Google Maps, move the view slightly, and then click Link to This
Page, you’ll get a URL in your location bar that looks something like this:

http://maps.google.com/maps?f=q&ll=37.818361,-122.478032&spn=0.029969,0.05579

CHAPTER 2 ■ GETTING STARTED16

7079ch02.qxd 7/25/06 1:26 PM Page 16

Figure 2-2. The Golden Gate Bridge satellite imagery from Google Maps

■Caution If you use Google Maps to search for landmarks, the Link to This Page URL won’t immediately
contain the latitude and longitude variable but instead have a parameter containing the search terms. To also
include the latitude and longitude, you need to adjust the zoom level or move the map so that the link is no
longer to the default search position.

It’s clear that the URL contains three parameters, separated by ampersands:

f = q

ll = 37.818361, -122.478032

spn = 0.029969, 0.05579

The ll parameter is the important one you’ll use to center your map. Its value contains
the latitude and longitude of the center of the map in question. For the Golden Gate Bridge,
the coordinates are 37.82N and 122.48W.

CHAPTER 2 ■ GETTING STARTED 17

7079ch02.qxd 7/25/06 1:26 PM Page 17

■Note Latitude is the number of degrees north or south of the equator, and ranges from –90 (South Pole)
to 90 (North Pole). Longitude is the number of degrees east or west of the prime meridian at Greenwich, in
England, and ranges from –180 (westward) to 180 (eastward). There are several different ways you can
record latitude and longitude information. Google uses decimal notation, where a positive or negative num-
ber indicates the compass direction. The process of turning a street address into a latitude and longitude is
called geocoding, and is covered in more detail in Chapter 4.

You can now take the latitude and longitude values from the URL and use them to recen-
ter your own map to the new location. Fortunately, it’s a simple matter of plugging the values
directly into the GLatLng constructor.

Separating Code from Content
To further improve the cleanliness and readability of your code, you may want to consider
separating the JavaScript into a different file. Just as Cascading Style Sheets (CSS) should not
be mixed in with HTML, it’s best practice to also keep JavaScript separated.

The advantages of this approach become clear as your project increases in size. With large
and complicated Google Maps web applications, you could end up with hundreds of lines of
JavaScript mixed in with your XHTML. Separating these out not only increases loading speeds,
as the browser can cache the JavaScript independently of the XHTML, but their removal also
helps prevent the messy and unreadable code that results from mixing XHTML with other
programming languages. Your eyes and your text editor will love you if they don’t have to deal
with mixed XHTML and JavaScript at the same time.

In this case, you’ll actually take it one step further and also separate the marker data file
from the map functions file. This will allow you to easily convert the static data file to a dynami-
cally generated file in later chapters, without the need to touch any of the processing JavaScript.

To accommodate these changes, we’ve separated the web application’s JavaScript functions,
data, and XHTML, putting them in separate files called index.php for the XHTML portion of
the page, map_functions.js for the behavioral JavaScript code, and map_data.php for the data
to plot on the map. Listing 2-2 shows the revised version of the index.php file.

Listing 2-2. Extrapolated index.php File

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="http://maps.google.com/maps?file=api&v=2&key=➥

ABQIAAAAfAb2RNhzPaf0W1mtifapBRI9caN7296ZHDcvjSpGbL7PxwkwBS➥

ZidcfOwy4q2EZpjEJx3rc4Lt5Kg" type="text/javascript"></script>

<script src="map_data.php" type="text/javascript"></script>

<script src="map_functions.js" type="text/javascript"></script>

</head>

CHAPTER 2 ■ GETTING STARTED18

7079ch02.qxd 7/25/06 1:26 PM Page 18

<body>

<div id="map" style="width: 500px; height: 300px"></div>

</body>

</html>

Listing 2-2 is the same basic HTML document as before, except that now there are two
extra script elements inside the head. Rather than referencing the external API, these refer-
ence local—on the server—JavaScript files called map_data.php and map_functions.js. For
now, you’ll leave the map_data.php file empty, but it will be used later in the chapter when we
demonstrate how to map an existing list of markers. The important thing to note here is that it
must be referenced first, before the map_functions.js file, so that the data is “available” to the
code in the map_functions.js file. Listing 2-3 shows the revised map_functions.js file.

Listing 2-3. Extrapolated map_functions.js File

var centerLatitude = 37.818361;

var centerLongitude = -122.478032;

var startZoom = 13;

var map;

function init()

{

if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));

var location = new GLatLng(centerLatitude, centerLongitude);

map.setCenter(location, startZoom);

}

}

window.onload = init;

Although the behavior is almost identical, the JavaScript code in Listing 2-3 has two
important changes:

• The starting center point for latitude, longitude, and start zoom level of the map are
stored in var variables at the top of the script, so it will be more straightforward to change
the initial center point the next time. You won’t need to hunt down a setCenter() call
that’s buried somewhere within the code.

• The initialization JavaScript has been moved out of the body of the XHTML and into the
map_functions.js file. Rather than embedding the JavaScript in the body of the XHTML,
you can attach a function to the window.onload event. Once the page has loaded, this
function will be called and the map will be initialized.

For the rest of the examples in this chapter, the index.php file will remain exactly as it is in
Listing 2-2, and you will need to add code only to the map_functions.js and map_data.php files
to introduce the new features to your map.

CHAPTER 2 ■ GETTING STARTED 19

7079ch02.qxd 7/25/06 1:26 PM Page 19

■Caution It’s important to see the difference between init and init(). When you add the parentheses
after the function name, it means “execute it.” Without the parentheses, it means “give me a reference to it.”
When you assign a function to an event handler such as document.onload, you want to be very careful that
you don’t include the parentheses. Otherwise, all you’ve assigned to the handler is the function’s return
value, probably a null.

Cleaning Up
One more important thing to do with your map is to be sure to correctly unload it. The extremely
dynamic nature of JavaScript’s variables means that correctly reclaiming memory (called garbage
collection) can be a tricky process. As a result, some browsers do it better than others.

Firefox and Safari both seem to struggle with this, but the worst culprit is Internet
Explorer. Even up to version 6, simply closing a web page is not enough to free all the memory
associated with its JavaScript objects. An extended period of surfing JavaScript-heavy sites such
as Google Maps could slowly consume all system memory until Internet Explorer is manually
closed and restarted.

Fortunately, JavaScript objects can be manually destroyed by setting them equal to null.
The Google Maps API now has a special function that will destroy most of the API’s objects,
which helps keep browsers happy. The function is GUnload(), and to take advantage of it is
a simple matter of hooking it onto the body.onunload event, as in Listing 2-4.

Listing 2-4. Calling GUnload() in map_functions.js

var centerLatitude = 37.818361;

var centerLongitude = -122.478032;

var startZoom = 13;

var map;

function init() {

if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));

var location = new GLatLng(centerLatitude, centerLongitude);

map.setCenter(location, startZoom);

}

}

window.onload = init;

window.onunload = GUnload;

There’s no obvious reward for doing this, but it’s an excellent practice to follow. As your
projects become more and more complex, they will eat up available memory at an increasing
rate. On the day that browsers are perfect, this approach will become a hack of yesterday. But
for now, it’s a quiet way to improve the experience for all your visitors.

CHAPTER 2 ■ GETTING STARTED20

7079ch02.qxd 7/25/06 1:26 PM Page 20

Basic Interaction
Centering the map is all well and good, but what else can you do to make this map more excit-
ing? You can add some user interaction.

Using Map Control Widgets
The Google Maps API provides five standard controls that you can easily add to any map:

• GLargeMapControl, the large pan and zoom control, which is used on maps.google.com

• GSmallMapControl, the mini pan and zoom control, which is appropriate for smaller maps

• GScaleControl, the control that shows the metric and imperial scale of the map’s current
center

• GSmallZoomControl, the two-button zoom control used in driving-direction pop-ups

• GMapTypeControl, which lets the visitor toggle between Map, Satellite, and Hybrid types

■Tip If you’re interested in making your own custom controls, you can do so by extending the GControl
class and implementing its various functions. We may discuss this on the googlemapsbook.com blog, so be
sure to check it out.

In all cases, it’s a matter of instantiating the control object, and then adding it to the map with
the GMap2 object’s addControl() method. For example, here’s how to add the small map control,
which you can see as part of the next example in Listing 2-5:

map.addControl(new GSmallMapControl());

You use an identical process to add all the controls: simply pass in a new instance of the
control’s class.

■Note What does instantiating mean? In object-oriented programming, a class is like a blueprint for a type
of entity that can be created in memory. When you put new in front of a class name, JavaScript takes the
blueprint and actually creates a usable copy (an instance) of the object. There’s only one GLatLng class, but
you can instantiate as many GLatLng objects as you need.

Creating Markers
The Google Maps API makes an important distinction between creating a marker, or pin, and
adding the marker to a map. In fact, the map object has a general addOverlay() method, used
for both the markers and the white information bubbles.

In order to plot a marker (Figure 2-3), you need the following series of objects:

CHAPTER 2 ■ GETTING STARTED 21

7079ch02.qxd 7/25/06 1:26 PM Page 21

• A GLatLng object stores the latitude and longitude of the location of the marker.

• An optional GIcon object stores the image that visually represents the marker on the map.

• A GMarker object is the marker itself.

• A GMap2 object has the marker plotted on it, using the addOverlay() method.

Figure 2-3. Marker plotted in the middle of the Golden Gate Bridge map

Does it seem like overkill? It’s less scary than it sounds. An updated map_functions.js is
presented in Listing 2-5, with the new lines marked in bold.

Listing 2-5. Plotting a Marker

var centerLatitude = 37.818361;

var centerLongitude = -122.478032;

var startZoom = 13;

var map;

function init()

{

if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

var location = new GLatLng(centerLatitude, centerLongitude);

map.setCenter(location, startZoom);

CHAPTER 2 ■ GETTING STARTED22

7079ch02.qxd 7/25/06 1:26 PM Page 22

var marker = new GMarker(location)

map.addOverlay(marker);

}

}

window.onload = init;

window.onunload = GUnload;

■Caution If you try to add overlays to a map before setting the center, it will cause the API to give unpre-
dictable results. Be careful to setCenter() your GMap2 object before adding any overlays to it, even if it’s
just to a hard-coded dummy location that you intend to change again right away.

See what happened? We assigned the new GLatLng object to a variable, and then we were
able to use it twice: first to center the map, and then a second time to create the marker.

The exciting part isn’t creating one marker; it’s creating many markers. But before we come
to that, we must quickly look at the Google Maps facility for showing information bubbles.

WHITHER THOU, GICON?

You can see that we didn’t actually use a GIcon object anywhere in Listing 2-5. If we had one defined, it
would be possible to make the marker take on a different appearance, like so:

var marker = new GMarker(my_GLatLng, my_GIcon);

However, when the icon isn’t specified, the API assumes the red inverted teardrop as a default. There is
a more detailed discussion of how to use the GIcon object in Chapter 3.

Opening Info Windows
It’s time to make your map respond to the user! For instance, clicking a marker could reveal
additional information about its location (Figure 2-4). The API provides an excellent method
for achieving this result: the info window. To know when to open the info window, however,
you’ll need to listen for a click event on the marker you plotted.

CHAPTER 2 ■ GETTING STARTED 23

7079ch02.qxd 7/25/06 1:26 PM Page 23

Figure 2-4. An info window open over the Golden Gate Bridge

Detecting Marker Clicks
JavaScript is primarily an event-driven language. The init() function that you’ve been using
since Listing 2-3 is hooked onto the window.onload event. Although the browser provides many
events such as these, the API gives you a convenient way of hooking up code to various events
related to user interaction with the map.

For example, if you had a GMarker object on the map called marker, you could detect marker
clicks like so:

function handleMarkerClick() {

alert("You clicked the marker!");

}

GEvent.addListener(marker, 'click', handleMarkerClick);

It’s workable, but it will be a major problem once you have a lot of markers. Fortunately,
the dynamic nature of JavaScript yields a terrific shortcut here. You can actually just pass the
function itself directly to addListener() as a parameter:

GEvent.addListener(marker, 'click',

function() {

alert("You clicked the marker!");

}

);

Opening the Info Window
Chapter 3 will discuss the info window in more detail. The method we’ll demonstrate here is
openInfoWindowHtml(). Although you can open info windows over arbitrary locations on the

CHAPTER 2 ■ GETTING STARTED24

7079ch02.qxd 7/25/06 1:26 PM Page 24

map, here you’ll open them above markers only, so the code can take advantage of a shortcut
method built into the GMarker object:

marker.openInfoWindowHtml(description);

Of course, the whole point is to open the info window only when the marker is clicked, so
you’ll need to combine this code with the addListener() function:

GEvent.addListener(marker, 'click',

function() {

marker.openInfoWindowHtml(description);

}

);

Finally, you’ll wrap up all the code for generating a pin, an event, and an info window into
a single function, called addMarker(), in Listing 2-6.

Listing 2-6. Creating a Marker with an Info Window

var centerLatitude = 37.818361;

var centerLongitude = -122.478032;

var description = 'Golden Gate Bridge';

var startZoom = 13;

var map;

function addMarker(latitude, longitude, description) {

var marker = new GMarker(new GLatLng(latitude, longitude));

GEvent.addListener(marker, 'click',

function() {

marker.openInfoWindowHtml(description);

}

);

map.addOverlay(marker);

}

function init() {

if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

addMarker(centerLatitude, centerLongitude, description);

}

}

window.onload = init;

window.onunload = GUnload;

CHAPTER 2 ■ GETTING STARTED 25

7079ch02.qxd 7/25/06 1:26 PM Page 25

This is a nice clean function that does everything you need for plotting a pin with a click-
able information bubble. Now you’re perfectly set up for plotting a whole bunch of markers on
your map.

A List of Points
In Listing 2-3, we introduced the variables centerLongitude and centerLatitude. Global vari-
ables like these are fine for a single centering point, but what you probably want to do is store
a whole series of values and map a bunch of markers all at once. Specifically, you want a list of
latitude and longitude pairs representing the points of the markers you’ll plot.

Using Arrays and Objects
To store the list of points, you can combine the power of JavaScript’s array and object constructs.
An array stores a list of numbered entities. An object stores a list of keyed entities, similar to
how a dictionary matches words to definitions. Compare these two lines:

var myArray = ['John', 'Sue', 'James', 'Edward'];

var myObject = {'John': 19, 'Sue': 21, 'James': 24, 'Edward': 18};

To access elements of the array, you must use their numeric indices. So, myArray[0] is
equal to 'John', and myArray[3] is equal to 'Edward'.

The object, however, is slightly more interesting. In the object, the names themselves are
the indices, and the numbers are the values. To look up how old Sue is, all you do is check the
value of myObject['Sue'].

■Note For accessing members of an object, JavaScript allows both myObject['Sue'] and the alternative
notation myObject.Sue. The second is usually more convenient, but the first is important if the value of the
index you want to access is stored in another variable, for example, myObject[someName].

For each marker you plot, you want an object that looks like this:

var myMarker = {

'latitude': 37.818361,

'longitude': -122.478032,

'name': 'Golden Gate Bridge'

};

Having the data organized this way is useful because the related information is grouped as
“children” of a common parent object. The variables are no longer just latitude and longitude—
now they are myMarker.latitude and myMarker.longitude.

Most likely, for your application you’ll want more than one marker on the map. To proceed
from one to many, it’s just a matter of having an array of these objects:

var myMarkers = [Marker1, Marker2, Marker3, Marker4];

CHAPTER 2 ■ GETTING STARTED26

7079ch02.qxd 7/25/06 1:26 PM Page 26

Then you can cycle through the array, accessing the members of each object and plotting
a marker for each entity.

When the nesting is combined into one step (Figure 2-5), it becomes a surprisingly elegant
data structure, as in Listing 2-7.

Listing 2-7. A JavaScript Data Structure for a List of Locations

var markers = [

{

'latitude': 37.818361,

'longitude': -122.478032,

'name': 'Golden Gate Bridge'

},

{

'latitude': 40.6897,

'longitude': -74.0446,

'name': 'Statue of Liberty'

},

{

'latitude': 38.889166,

'longitude': -77.035307,

'name': 'Washington Monument'

}

];

Figure 2-5. A series of objects stored inside an array

As you’ll see in the next section, JavaScript provides some terrific methods for working
with data in this type of format.

■Note In this book, you’ll see primarily MySQL used for storing data permanently. Some people however,
have proposed the exact format in Figure 2-5 as an alternative to XML, calling it JSON, for JavaScript Object
Notation. While there are some advantages, JSON’s plethora of punctuation can be intimidating to a less
technical person. You can find more information on JSON at http://json.org. We’ll still be using a lot of
JSON-like structures for communicating data from the server to the browser.

CHAPTER 2 ■ GETTING STARTED 27

7079ch02.qxd 7/25/06 1:26 PM Page 27

Iterating
JavaScript, like many languages, provides a for loop—a way of repeating a block of code for
so many iterations, using a counter. One way of cycling through your list of points would be
a loop such as this:

for (id = 0; id < markers.length; id++) {

// create a marker at markers[id].latitude, markers[id].longitude

}

However, JavaScript also provides a much classier way of setting this up. It’s called a for in

loop. Watch for the difference:

for (id in markers) {

// create a marker at markers[id].latitude, markers[id].longitude

}

Wow. It automatically gives you back every index that exists in an array or object, without
needing to increment anything manually, or ever test boundaries. Clearly, you’ll want to use
a for in loop to cycle over the array of points.

Until now, the map_data.php file has been empty and you’ve been dealing mainly with the
map_functions.js file. To show a list of markers, you need to include the list, so this is where
map_data.php comes in. For this chapter, you’re not going to actually use any PHP, but the
intention is that you can populate that file from database queries or some other data store.
We’ve named the file with the PHP extension so you can reuse the same base code in later
chapters without the need to edit everything and start over. For now, pretend the PHP file is
like any other normal JavaScript file and create your list of markers there. As an example, pop-
ulate your map_data.php file with the structure from Listing 2-7.

To get that structure plotted, it’s just a matter of wrapping the marker-creation code in
a for in loop, as shown in Listing 2-8.

Listing 2-8. map_functions.js Modified to Use the Markers from map_data.php

var map;

var centerLatitude = -95.0446;

var centerLongitude = 40.6897;

var startZoom = 3;

function addMarker(longitude, latitude, description) {

var marker = new GMarker(new GLatLng(latitude, longitude));

GEvent.addListener(marker, 'click',

function() {

marker.openInfoWindowHtml(description);

}

);

map.addOverlay(marker);

}

CHAPTER 2 ■ GETTING STARTED28

7079ch02.qxd 7/25/06 1:26 PM Page 28

function init() {

if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

for(id in markers) {

addMarker(markers[id].latitude, markers[id].longitude, markers[id].name);

}

}

}

window.onload = init;

window.onunload = GUnload;

Nothing here should be much of a surprise. You can see that the addMarker() function is
called for each of the markers, so you have three markers and three different info windows.

Summary
With this chapter complete, you’ve made an incredible amount of progress! You’ve looked at
several good programming practices, seen how to plot multiple markers, and popped up the
info window. And all of this is in a tidy, reusable package.

So what will you do with it? Plot your favorite restaurants? Mark where you parked the
car? Show the locations of your business? Maybe mark your band’s upcoming gigs?

The possibilities are endless, but it’s really just the beginning. In the next chapter, you’ll be
expanding on what you learned here by creating your map data dynamically and learning the
key to building a real community: accepting user-submitted information. After that, the weird
and wonderful science of geocoding—turning street addresses into latitudes and longitudes—
will follow, along with a variety of tips and tricks you can use to add flavor to your web
applications.

CHAPTER 2 ■ GETTING STARTED 29

7079ch02.qxd 7/25/06 1:26 PM Page 29

7079ch02.qxd 7/25/06 1:26 PM Page 30

Interacting with the User
and the Server

Now that you’ve created your first map (in Chapter 2) and had a chance to perform some ini-
tial experiments using the Google Maps API, it’s time to make your map a little more useful
and dynamic. Most, if not all, of the best Google Maps mashups rely on interaction with the
user in order to customize the information displayed on the map. As you’ve already learned,
it’s relatively easy to create a map and display a fixed set of points using static HTML and a bit
of JavaScript. Anyone with a few minutes of spare time and some programming knowledge
could create a simple map that would, for example, display the markers of all the places he
visited on his vacation last year. A static map such as this is nice to look at, but once you’ve
seen it, what would make you return to the page to look at it again? To keep people coming
back and to hold their attention for longer than a few seconds, you need a map with added
interactivity and a bit of flair.

You can add interactivity to your map mashups in a number of ways. For instance, you
might offer some additional detail for each marker using the info window bubbles introduced
in Chapter 2, or use something more elaborate such as filtering the markers based on search
criteria. Google Maps, Google’s public mapping site (http://maps.google.com/) is a mashup of
business addresses and a map to visually display where the businesses are located. It provides
the required interactivity by allowing you to search for specific businesses, and listing other
relevant businesses nearby, but then goes even further to offer driving directions to the marked
locations. Allowing you to see the location of a business you’re looking for is great, but telling
you how to get there in your car, now that’s interactivity! Without the directions, the map would
be an image with a bunch of pretty dots, and you would be left trying to figure out how to get
to each dot. Regardless of how it’s done, the point is that interacting with the map is always
important, but don’t go overboard and overwhelm your users with too many options.

In this chapter, we’ll explore a few examples of how to provide interactivity in your map using
the Google Maps API, and you’ll see how you can use the API to save and retrieve information
from your server. While building a small web application, you’ll learn how to do the following:

• Trigger events on your map and markers to add either new markers or info windows.

• Modify the content of info windows attached to a map or to individual markers.

• Use Google’s GXmlHttp object to communicate with your server.

• Improve your web application by changing the appearance of the markers.

31

C H A P T E R 3

■ ■ ■

7079ch03.qxd 7/26/06 4:56 PM Page 31

Going on a Treasure Hunt
To help you learn about some of the interactive features of the Google Maps API, you’re going
to go on a treasure hunt and create a map of all the treasures you find. The treasures in this
case are geocaches, those little plastic boxes of goodies that are hidden all over the earth.

For those of you who are not familiar with geocaches (not to be confused with geocoding,
which we will discuss in the next chapter), or geocaching as the activity is commonly referred
to, it is a global “hide-and-seek” game that can be played by anyone with a Global Positioning
System (GPS) device (Figure 3-1) and some treasure to hide and seek. People worldwide place
small caches of trinkets in plastic containers, and then distribute their GPS locations using the
Internet. Other people then follow the latitude and longitude coordinates and attempt to locate
the hidden treasures within the cache. Upon finding a cache, they exchange an item in the
cache for something of their own.

Figure 3-1. A common handheld GPS device used by geocachers to locate hidden geocaches

■Note For more information about geocaching, check out the official Geocaching website (http://www.
geocaching.com) or pick up Geocaching: Hike and Seek with Your GPS, by Erik Sherman (http://www.apress.
com/book/bookDisplay.html?bID=194).

As you create your interactive geocache treasure map, you’ll learn how to do the following:

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER32

7079ch03.qxd 7/26/06 4:56 PM Page 32

• Create a map and add a JavaScript event trigger using the GEvent.addListener()
method to react to clicks by the users, so that people who visit the map can mark their
finds on the map.

• Ask users for additional information about their finds using an info window and an
embedded HTML form.

• Save the latitude, longitude, and additional information in the form to your server
using the GXmlHttp Asynchronous JavaScript and XML (Ajax) object on the client side
and PHP on the server.

• Retrieve the existing markers and their additional information from the server using
Ajax and PHP.

• Re-create the map upon loading by inserting new markers from a server-side list, each
with an info window to display its information.

For this chapter, we’re not going to discuss any CSS styling of the map and its contents;
we’ll leave all that up to you.

Creating the Map and Marking Points
You’ll begin the map for this chapter from the same set of files introduced in Chapter 2, which
include the following:

• index.php to hold the XHTML of the page

• map_functions.js to hold the JavaScript functionality

• map_data.php to create a JavaScript array and objects representing each location on the map

Additionally, you’ll create a file called storeMarker.php to save information back to the
server and another file called retrieveMarkers.php to retrieve XML using Ajax, but we’ll get to
those later.

Starting the Map
To start, copy the index.php file from Listing 2-2 and the map_functions.js file from Listing 2-3
into a new directory for this chapter. Also, create an empty map_data.php file and empty
storeMarker.php and retrieveMarkers.php files.

While building the map for this chapter and other projects, you’ll be adding auxiliary
functions to the map_functions.js file. You may have noticed in Chapter 2 that you declared
the map variable outside the init() function in Listing 2-2. Declaring map outside the init()
function allows you to reference map at any time and from any auxiliary functions you add to
the map_functions.js file. It will also ensure you’re targeting the same map object. Also, you
may want to add some of the control objects introduced in Chapter 2, such as GMapTypeControl.
Listing 3-1 highlights the map variable and additional controls.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 33

7079ch03.qxd 7/26/06 4:56 PM Page 33

Listing 3-1. Highlights for map_functions.js

var centerLatitude = 37.4419;

var centerLongitude = -122.1419;

var startZoom = 12;

var map;

function init() {

if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.addControl(new GMap2TypeControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

}

}

window.onload = init;

window.onunload = GUnload;

Now you have a solid starting point for your web application. When viewed in your web
browser, the page will have a simple map with controls centered on Palo Alto, California
(Figure 3-2). For this example, the starting GLatLng is not important, so feel free to change it to
some other location if you wish.

Figure 3-2. Starting map with controls centered on Palo Alto, California

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER34

7079ch03.qxd 7/26/06 4:56 PM Page 34

Listening to User Events
The purpose of your map is to allow visitors to add markers wherever they click. To capture
the clicks on the map, you’ll need to trigger a JavaScript function to execute whenever the map
area is clicked. As you saw in Chapter 2, Google’s API allows you to attach these triggers, called
event listeners, to your map objects through the use of the GEvent.addListener() method. You
can add event listeners for a variety of events, including move and click, but in this case, you
are interested only in users clicking the map, not moving it or dragging it around.

■Tip If you refer to the Google Maps API documentation in Appendix B, you’ll notice a wide variety of events
for both the GMap2 and the GMarker objects, as well as a few others. Each of these different events can be
used to add varying amounts of interactivity to your map. For example, you could use the moveend event for
the GMap2 to trigger an Ajax call and retrieve points for the new area of the map. For the geocaching map
example, you could also use the GMarker’s infowindowclose event to check to see if the information in
the form has been saved and if not, ask the user what to do. You can also attach events to Document
Object Model (DOM) elements using GEvent.addDomListener() and trigger an event using JavaScript
with the GEvent.trigger() method.

The GEvent.addListener() method handles all the necessary code required to watch for
and trigger each of the events. All you need to do is tell it which object to watch, which event
to listen for, and which function to execute when it’s triggered.

GEvent.addListener(map, "click", function(overlay, latlng) {

//your code

});

Given the source map and the event click, this example will trigger the function to run any
code you wish to implement.

Take a look at the modification to the init() function in Listing 3-2 to see how easy it is to
add this event listener to your existing code and use it to create markers the same way you did
in Chapter 2. The difference is that in Chapter 2, you used new GLatLng() to create the latitude
and longitude location for the markers, whereas here, instead of creating a new GLatLng, you can
use the latlng variable passed into the event listener’s handler function. The latlng variable is
a GLatLng representation of the latitude and longitude where you clicked on the map. The overlay
variable is the overlay where the clicked location resides if you clicked on a marker or another
overlay object.

Listing 3-2. Using the addListener() Method to Create a Marker at the Click Location

function init() {

if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.addControl(new GMap2TypeControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 35

7079ch03.qxd 7/26/06 4:56 PM Page 35

//allow the user to click the map to create a marker

GEvent.addListener(map, "click", function(overlay, latlng) {

var marker = new GMarker(latlng)

map.addOverlay(marker);

});

}

}

Ta-da! Now, with a slight code addition and one simple click, anyone worldwide could
visit your map page and add as many markers as they want (Figure 3-3). However, all the
markers will disappear as soon as the user leaves the page, never to be seen again. To keep the
markers around, you need to collect some information and send it back to the server for stor-
age using the GXmlHttp object or the GDownloadUrl object, which we’ll discuss in the “Using
Google’s Ajax Object” section later in this chapter.

Figure 3-3. New markers created by clicking on the map

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER36

7079ch03.qxd 7/26/06 4:56 PM Page 36

RETRIEVING THE LATITUDE AND LONGITUDE FROM A MAP CLICK

When you click on a Google map, the latlng variable passed into the event listener’s handler function is
a GLatLng object with lat() and lng() methods. Using the lat() and lng() methods makes it relatively
easy for you to retrieve the latitude and longitude of any point on earth simply by zooming in and clicking on
the map. This is particularly useful when you are trying to find the latitude and longitude of places that do not
have readily accessible latitude/longitude information for addresses.

In countries where there is excellent latitude and longitude information, such as the United States, Canada,
and more recently, France, Italy, Spain and Germany, you can often use an address lookup service to retrieve
the latitude and longitude of a street address. But in other locations, such as the United Kingdom, the data is
limited or inaccurate. In the case where data can’t be readily retrieved by computer, manual human entry of
points may be required. For more information about geocoding and using addresses to find latitude and longi-
tude, see Chapter 4.

Additionally, If you want to retrieve the X and Y coordinates of a position on the map in pixels on the
screen, you can use the fromLatLngToDivPixel() method of the GMap2 object. By passing in a GLatLng
object, GMap2.fromLatLngToDivPixel(latlng) will return a GPoint representation of the X and Y off-
set relative to the DOM element containing the map.

Asking for More Information with an Info Window
You could simply collect the latitude and longitude of each marker on your map, but just the
location of the markers would provide only limited information to the people browsing your
map. Remember interactivity is key, so you want to provide a little more than just a marker.
For the geocaching map, visitors really want to know what was found at each location. To pro-
vide this extra information, let’s create a little HTML form. When asking for input of any type
in a web browser, you need to use HTML form elements. In this case, let’s put the form in an
info window indicating where the visitor clicked.

As introduced in Chapter 2, the info window is the cartoon-like bubble that often appears
when you click map markers (Figure 3-4). It is used by Google Maps to allow you to enter the
To Here or From Here information for driving directions, or to show you a zoomed view of the
map at each point in the directions. Info windows do not need to be linked to markers on the
map. They can also be created on the map itself to indicate locations where no marker is present.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 37

7079ch03.qxd 7/26/06 4:56 PM Page 37

Figure 3-4. An empty info window

You’re going to use the info window for two purposes:

• It will display the information about each existing marker when the marker is clicked.

• It will hold a little HTML form so that your geocachers can tell you what they’ve found.

■Note When we introduce the GXmlHttp object in the “Using Google’s Ajax Object” section later in this
chapter, we’ll explain how to save the content of the info window to your server.

Creating an Info Window on the Map
In Listing 3-2, you used the event listener to create a marker on your map where it was clicked.
Rather than creating markers when you click the map, you’ll modify your existing code to create
an info window. To create an info window directly on the map object, call the openInfoWindow()
method of the map:

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER38

7079ch03.qxd 7/26/06 4:56 PM Page 38

GMap2.openInfoWindow(GLatLng, htmlDomElem, GInfoWindowOptions);

openInfoWindow() takes a GLatLng as the first parameter and an HTML DOM document
element as the second parameter. The last parameter, GInfoWindowOptions, is optional unless
you want to modify the default settings of the window.

For a quick demonstration, modify Listing 3-2 to use the following event listener, which
opens an info window when the map is clicked, rather than creating a new marker:

GEvent.addListener(map, "click", function(overlay, latlng) {

map.openInfoWindow (latlng,document.createTextNode("You clicked here!"));

});

Now when you click the map, you’ll see an info window pop up with its base pointing at
the position you just clicked with the content “You clicked here!” (Figure 3-5).

Figure 3-5. An info window created when clicking the map

Embedding a Form into the Info Window
When geocachers want to create a new marker, you’ll first prompt them to enter some informa-
tion about their treasure. You’ll want to know the geocache’s location (this will be determined
using the point where they clicked the map), what they found at the location, and what they
left behind. To accomplish this in your form, you’ll need the following:

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 39

7079ch03.qxd 7/26/06 4:56 PM Page 39

• A text field for entering information about what they found

• A text field for entering information about what they left behind

• A hidden field for the longitude

• A hidden field for the latitude

• A submit button

The HTML form used for the example is shown in Listing 3-3, but as you can see in Listing 3-4,
you are going to use the JavaScript Document Object Model (DOM) object and methods to create
the form element. You need to use DOM because the GMarker.openInfoWindow()method expects an
HTML DOM element as the second parameter, not simply a string of HTML.

■Tip If you want to make the form a little more presentable, you could easily add ids and/or classes to the
form elements and use CSS styles to format them accordingly.

Listing 3-3. HTML Version of the Form for the Info Window

<form action="" onsubmit="storeMarker(); return false;">

<fieldset style="width:150px;">

<legend>New Marker</legend>

<label for="found">Found</label>

<input type="text" id="found" style="width:100%;"/>

<label for="left">Left</label>

<input type="text" id="left" style="width:100%;"/>

<input type="submit" value="Save"/>

<input type="hidden" id="longitude"/>

<input type="hidden" id="latitude"/>

</fieldset>

</form>

■Note You may notice the form in Listing 3-3 has an onsubmit event attribute that calls a storeMarker()

JavaScript function. The storeMarker() function does not yet exist in your script, and if you try to click the
Save button, you’ll get a JavaScript error. Ignore this for now, as you’ll create the storeMarker() function
in the “Saving Data with GXmlHttp” section later in the chapter, when you save the form contents to the server.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER40

7079ch03.qxd 7/26/06 4:56 PM Page 40

Listing 3-4. Adding the DOM HTML Form to the Info Window

GEvent.addListener(map, "click", function(overlay, latlng) {

//create an HTML DOM form element

var inputForm = document.createElement("form");

inputForm.setAttribute("action","");

inputForm.onsubmit = function() {storeMarker(); return false;};

//retrieve the longitude and lattitude of the click point

var lng = latlng.lng();

var lat = latlng.lat();

inputForm.innerHTML = '<fieldset style="width:150px;">'

+ '<legend>New Marker</legend>'

+ '<label for="found">Found</label>'

+ '<input type="text" id="found" style="width:100%;"/>'

+ '<label for="left">Left</label>'

+ '<input type="text" id="left" style="width:100%;"/>'

+ '<input type="submit" value="Save"/>'

+ '<input type="hidden" id="longitude" value="' + lng + '"/>'

+ '<input type="hidden" id="latitude" value="' + lat + '"/>'

+ '</fieldset>';

map.openInfoWindow (latlng,inputForm);

});

■Caution When creating the DOM form element, you need to use the setAttribute() method to define
things like name, action, target, and method, but once you venture beyond these basic four, you may begin
to notice inconsistencies. For example, using setAttribute() to define onsubmit works fine in Mozilla-based
browsers but not in Microsoft Internet Explorer browsers. For cross-browser compatibility, you need to define
onsubmit using a function, as you did in Listing 3-4. For more detailed information regarding DOM and how
to use it, check out the DOM section of the W3Schools website at http://www.w3schools.com/dom/.

After you’ve changed the GEvent.addListener() call in Listing 3-2 to the one in Listing 3-4,
when you click your map, you’ll see an info window containing your form (Figure 3-6).

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 41

7079ch03.qxd 7/26/06 4:56 PM Page 41

Figure 3-6. The info window with an embedded form

In Listing 3-4, the latitude and longitude elements of the form have been pre-populated
with the latlng.lat() and latlng.lng() values from the GLatLng object passed in to the event
listener. This allows you to later save the latitude and longitude coordinates and re-create the
marker in the exact position when you retrieve the data from the server. Also, once the informa-
tion has been saved for the new location, you can use this latitude and longitude to instantly
create a marker at the new location, bypassing the need to refresh the web browser to show
the newly saved point.

If you click again elsewhere on the map, you’ll also notice your info window disappears
and reappears at the location of the new click. As a restriction of the Google Maps API, you can
have only one instance of the info window open at any time. When you click elsewhere on the
map, the original info window is destroyed and a brand-new one is created. Be aware that it is
not simply moved from place to place.

You can demonstrate the destructive effect of creating a new info window yourself by fill-
ing in the form (Figure 3-7), and then clicking elsewhere on the map without clicking the Save
button. You’ll notice that the information you entered in the form disappears (Figure 3-8)
because the original info window is destroyed and a new one is created.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER42

7079ch03.qxd 7/26/06 4:56 PM Page 42

Figure 3-7. Info window with populated form information

Figure 3-8. New info window that has lost the previously supplied information

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 43

7079ch03.qxd 7/26/06 4:56 PM Page 43

Earlier, when you created the info window containing “You clicked here!” the same thing
happened. Each marker had the same content (“You clicked here!”), so it just appeared as
though the info window was simply moving around.

■Tip If you’ve taken some time to review the Google Maps API in Appendix B, you might be wondering why
you couldn’t use the GMap2.openInfoWindowHtml() method to add the form to the info window. After
all, it lets you use an HTML string rather than an HTML DOM element. The short answer is you can. In version 1 of
the API, openInfoWindowHtml() required a marker to exist on the map first, whereas openInfoWindow() allowed
you to open an info window at a specified point without a marker. We chose to use the openInfoWindow()
method here so that you would be able to see how the DOM structure and click actions interact with the info
window.

Avoiding an Ambiguous State
When creating your web applications, be sure not to create the marker until after you’ve veri-
fied the information and saved it to the server. If you create the marker first and the user then
closes the info window using the window’s close button (Figure 3-9), there would be a marker
on the map that wasn’t recorded on the server (Figure 3-10).

Figure 3-9. Using the close (X) button to close the info window

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER44

7079ch03.qxd 7/26/06 4:56 PM Page 44

Figure 3-10. Marker left behind by closing the window

By creating the marker only after the data has been saved, you ensure the integrity of the
map and keep the visible markers in sync with the stored markers on the server.

If you want, you can save the marker information in two steps: first send just the latitude
and longitude to save the marker’s location, and then send a second request to save the additional
information, if any. Storing the latitude and longitude immediately may seem like a logical
idea, until you realize that users may click the map in the wrong location and inadvertently
add a bunch of points that don’t really mean anything. For the geocaching map, you want to
be sure there is information associated with each point, so you need to save all the informa-
tion in one request.

■Caution Don’t confuse the GMap2.openInfoWindow() method with the GMarker.openInfoWindow()
method. The map and marker objects have similar properties and methods; however, their parameters differ.
You need to use the GMap2 methods when creating info windows attached to the map itself, but if you have
an existing marker, you could then use the GMarker methods to attach an info window to the marker. The GMarker
methods can’t be used to create an info window without a marker.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 45

7079ch03.qxd 7/26/06 4:56 PM Page 45

INFO WINDOWS THAT ZOOM

GMap2.showMapBlowup() and GMarker.showMapBlowup() are two other methods in the Google Maps
API that will let you create info windows. These info windows are special and contain a zoomed-in view of the
map. For example, map.showMapBlowup(new GLatLng(37.4419, -122.1419), 3, G_SATELLITE_
TYPE) will display a small satellite map at zoom level 3 centered on Palo Alto, California. If you create the map
blowup in an event listener, you can zoom in on any point you click on your map.

Controlling the Info Window Size
When you add content to the info window, it will automatically expand to encompass the
content you’ve placed in it. The content container will expand in the same way a <div> tag
expands to its internal content. To provide a bit of control over how it expands, you can add
CSS styles to the content of the info window in the same way you would in a regular HTML
page.

In Listings 3-3 and 3-4, the <fieldset> element was assigned a width of 150px, forcing the
info window’s content container to 150 pixels wide (Figure 3-11). Also, the text <input> ele-
ments were set to a width of 100% to display a simple clean form. (For more tips and tricks
regarding info windows, see Chapter 9.)

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER46

7079ch03.qxd 7/26/06 4:56 PM Page 46

Figure 3-11. Info window with an inner width of 150 pixels

HOW TO CHANGE THE STYLE OF THE INFO WINDOW

Getting tired of the cartoon bubble and want to create something fancier with the info window API? Sorry,
you’re out of luck—well, sort of.

Currently, the Google Maps API doesn’t allow you to change the style of the info window, but you could
create your own using the GOverlay class. If you’re interested, check out Chapter 9, where you’ll learn how
to create your own info window, as in the following example.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 47

7079ch03.qxd 7/26/06 4:56 PM Page 47

Using Google’s Ajax Object
To save the markers entered by your geocaching visitors, you’re going to upgrade to “Web 2.0”
and use only Ajax to communicate with your server. Ajax relies completely on JavaScript run-
ning in your visitor’s web browser; without JavaScript running, Ajax simply won’t work. You
can argue that using a strictly JavaScript-based Ajax interface might not be a good idea. You read
everywhere that in order to be good coders and offer compliant services, you should always
have an alternative solution to JavaScript-based user interfaces, and that’s completely true,
but the Google Maps API itself doesn’t offer an alternative for JavaScript-disabled browsers.
Therefore, if geocachers are visiting your page without the ability to use JavaScript, they’re not
going to see the map! Feel free to build alternative solutions for all your other web tools, and
we strongly suggest that you do, but when dealing strictly with the Google Maps API, there
isn’t really much point in a non-JavaScript solution, since without JavaScript, the map itself is
useless.

To communicate with your server, Google has provided you access to its integrated Ajax
object called GXmlHttp. If you want to spend the time, you could roll your own Ajax code. If
you’re a fan of one of the many free libraries such as Prototype (http://prototype.conio.net),
you could also use one of those. For this example, we’ll stick to the Google Maps API and the
GXmlHttp object, as it’s already loaded for you and doesn’t require you to include anything else.

■Caution The Google GXmlHttp object, and any other Ajax script based on the XmlHttpRequest object,
allows you to query only within the domain where the map is served. For example, if your map were at
http://example.com/webapp/, then the GXmlHttp.request() method can retrieve data only from
scripts located in the http://example.com domain. You can’t retrieve data from another domain such as
http://jeffreysambells.com, as the request would break the web browser’s “Same Origin” security
policy (http://www.mozilla.org/projects/security/components/same-origin.html). Using a little
JavaScript trickery to dynamically add <script> tags to the page does allow you to get around this policy but
requires you to do special things on the server side as well. For an example of how to do this, check out the
XssHttpRequest object at http://jeffreysambells.com/posts/2006/03/06/centralized_ajax_
services/.

To implement the GXmlHttp object, a few things need to happen when users click the Save
button:

• The information in your form needs to be sent to the server and verified for integrity.

• The information needs to be stored as necessary.

• Your server-side script needs to respond back to the client-side JavaScript to let the
client know that everything was successful and send back any necessary information.

• The client-side JavaScript needs to indicate to the user that there was either an error or
a successful response.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER48

7079ch03.qxd 7/26/06 4:56 PM Page 48

To accomplish this, let’s send the information back to the server and store it in a flat XML
file. Then, when responding that everything is okay, let’s create a new marker on the map with
the new information to confirm to the user that the data was successfully saved.

Saving Data with GXmlHttp
To send information to the server using the GXmlHttp object, first you need to retrieve the infor-
mation from the form in the info window you created. Referring back to Listings 3-3 and 3-4,
you’ll notice that each of the form elements has a unique id associated with it. Since you’re
using the Ajax method to send data, the form will not actually submit to the server using the
traditional POST method. To submit the data, you retrieve the values of the form by using the
JavaScript document.getElementById() method and concatenate each of the values onto the GET
string of the GXmlHttp request object. Then using the onreadystatechange() method of the
GXmlHttp object, you can process the request when it is complete.

Listing 3-5 shows the storeMarker() and createMarker() functions to add to your map_
functions.js file. Also, if you haven’t already done so, create the storeMarker.php file in the
same directory as your HTML document and create an empty data.xml file to store your marker
data. Be sure to give the data.xml file the appropriate write permissions for your server
environment.

■Tip For more information about the XmlHttpRequest object and using it to send data via the POST method,
see the W3Schools page at http://www.w3schools.com/xml/xml_http.asp.

Listing 3-5. Sending Data to the Server Using GXmlHttp

function storeMarker(){

var lng = document.getElementById("longitude").value;

var lat = document.getElementById("latitude").value;

var getVars = "?found=" + document.getElementById("found").value

+ "&left=" + document.getElementById("left").value

+ "&lng=" + lng

+ "&lat=" + lat ;

var request = GXmlHttp.create();

//open the request to storeMarker.php on your server

request.open('GET', 'storeMarker.php' + getVars, true);

request.onreadystatechange = function() {

if (request.readyState == 4) {

//the request is complete

var xmlDoc = request.responseXML;

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 49

7079ch03.qxd 7/26/06 4:56 PM Page 49

//retrieve the root document element (response)

var responseNode = xmlDoc.documentElement;

//retrieve the type attribute of the node

var type = responseNode.getAttribute("type");

//retrieve the content of the responseNode

var content = responseNode.firstChild.nodeValue;

//check to see if it was an error or success

if(type!='success') {

alert(content);

} else {

//create a new marker and add its info window

var latlng = new GLatLng(parseFloat(lat),parseFloat(lng));

var marker = createMarker(latlng, content);

map.addOverlay(marker);

map.closeInfoWindow();

}

}

}

request.send(null);

return false;

}

function createMarker(latlng, html) {

var marker = new GMarker(latlng);

GEvent.addListener(marker, 'click', function() {

var markerHTML = html;

marker.openInfoWindowHtml(markerHTML);

});

return marker;

}

The storeMarker() function you just added is responsible for sending the marker infor-
mation to the server through Ajax. It retrieves the information from the form and sends it to
the storeMarker.php script in Listing 3-6 using the GXmlHttp object. You can also see that the
createMarker() function is used to create the GMarker object and populate the info window. By
creating the GMarker in another function, you can reuse the same function later when retriev-
ing markers from the server (in Listing 3-8, later in the chapter).

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER50

7079ch03.qxd 7/26/06 4:56 PM Page 50

Listing 3-6. storeMarker.php Server-Side Script Used to Store the Marker Information in XML
Format

<?php

header('Content-Type: text/xml');

$lat = (float)$_GET['lat'];

$lng = (float)$_GET['lng'];

$found = $_GET['found'];

$left = $_GET['left'];

//create an XML node

$marker = <<<MARKER

<marker lat="$lat" lng="$lng" found="$found" left="$left"/>\n

MARKER;

//open the data.xml file for appending

$f=@fopen('data.xml', 'a+');

if(!$f) die('<?xml version="1.0"?>

<response type="error"><![CDATA[Could not open data.xml file]]></response>

');

//add the node

$w=@fwrite($f, $marker);

if(!$w) die('<?xml version="1.0"?>

<response type="error"><![CDATA[Could not write to data.xml file]]></response>');

@fclose($f);

//return a response

$newMarkerContent = "<div>found $found</div><div>left $left</div>";

echo <<<XML

<?xml version="1.0"?>

<response type="success" icon="$icon"><![CDATA[$newMarkerContent]]></response>

XML;

?>

For simplicity in the example, we use a flat file on the server in Listing 3-6 to store the
data. This file (called data.xml) is simply a list of all the points saved to the server and resem-
bles the following:

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 51

7079ch03.qxd 7/26/06 4:56 PM Page 51

<marker lat="37.441" lng="-122.141" found="Keychain" left="Book"/>

<marker lat="37.322" lng="-121.213" found="Water Bottle" left="Necklace"/>

Note there is no surrounding root node, so the file is not actually valid XML. When you
retrieve the XML later in the chapter, you’ll be retrieving all the XML at once and wrapping it
in a parent <markers> node, so you’ll end up with a valid XML result:

<?xml version="1.0"?>

<markers>

<marker lat="37.441" lng="-122.141" found="Keychain" left="Book"/>

<marker lat="37.322" lng="-121.213" found="Water Bottle" left="Necklace"/>

</markers>

Since you’re going to retrieve all the XML without any matching or searching to determine
which bits to retrieve, it makes sense to store the data in one file in the format you want. In
a real-world web application, you would probably want to store the information in a SQL
database and retrieve only a smaller subset of points based on some search criteria. Once
you’ve mastered sending and retrieving data, you could easily extend this example with
a searchable SQL database, and then retrieve only the points in the latitude and longitude
bounds of the viewable map area.

Checking When the Request Is Completed
When you click the Save button on the info window, the information in the form is sent back
to the server using the GXmlHttp object in Listing 3-5 and awaits a response back in XML for-
mat from the PHP script in Listing 3-6. During the request, the readyState property of the
request object will contain one of five possible incrementing values:

• 0, for uninitialized

• 1, for loading

• 2, for loaded

• 3, for interactive

• 4, for completed

The changes to the readyState property are monitored using the GXmlHttp.
onreadystatechange() event listener (Figure 3-12). At each increment, the function you’ve
defined for the onreadystatechange() method will be triggered to allow you to execute any
additional JavaScript code you would like. For the example, you need to deal with only the
completed state of the request, so your function checks to see when readyState==4, and then
parses the XML document as necessary.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER52

7079ch03.qxd 7/26/06 4:56 PM Page 52

Figure 3-12. GXmlHttp request response diagram

■Tip This Ajax implementation is not actually checking to see if the request completed in a valid state. For
example, if the page you requested was not found, the readyState will still be 4 at the end of the request,
but no XML would have been returned. To check the state of the GXmlHttp request, you need to check the
GXmlHttp.status property. If status is equal to 200, then the page was successfully loaded. A status of
404 indicates the page was not found. GXmlHttp.status could contain any valid HTTP request codes
returned by the server.

Testing the Asynchronous State
Don’t forget that the GXmlHttp request is asynchronous, meaning that the JavaScript continues
to run while your GXmlHttp request is awaiting a response. While the PHP script is busy saving
the file to the server, any code you’ve added after request.send(null); may execute before the
response is returned from the server.

You can observe the asynchronous state of the request and response by adding a JavaScript
alert() call right after you send the request:

request.send(null);

alert('Continue');

return false;

And another alert in the onreadystatechange() method of the request:

request.onreadystatechange = function() {

if (request.readyState == 4) {

GXmlHttp

Request

Response

onreadystatechange()

readyState

Your
Server

1

2

3

4

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 53

7079ch03.qxd 7/26/06 4:56 PM Page 53

alert('Process Response');

}

}

If you run the script over and over, sometimes the alert boxes will appear in the order
Process Response then Continue, but more likely, you’ll get Continue then Process Request.
Just remember that if you want something to occur after the response, you must use the
onreadystatechange() method when the readyState is 4.

■Tip To further enhance your web application, you could use the various states of the request object to add
loading, completed, and error states. For example, when initiating a request, you could show an animated
loading image to indicate to the user that the information is loading. Providing feedback at each stage of the
request makes it easier for the user to know what’s happening and how to react. If no loading state is dis-
played, users may assume they have not actually clicked the button or will become frustrated and think
nothing is happening.

Using GDownloadUrl for Simple Ajax Requests
If your web application doesn’t require a high level of control over the Ajax request, you can
use an alternative object called GDownloadUrl. You can use GDownloadUrl to send and retrieve
content the same way you do with GXmlHttp; however the API is much simpler. Rather than
checking response states and all that other stuff, you just supply a URL with any appropriate
GET variables and a function to execute when the response in returned. This simplifies the
request to the following:

GDownloadUrl('storeMarker.php' + getVars, function(data,responseCode)) {

//Do something with the data

});

But note that this approach doesn’t give you as much control over the different states of
the request.

Parsing the XML Document Using DOM Methods
When the readyState reaches 4 and your onreadystatechange() function is triggered, you need to
parse the response from the server to determine if the PHP script replied with an execution error
or a successful save. Referring back to Listing 3-6, the storeMarker.php source, you can see that in
the event of a successful save, the type attribute of the XML response node is success:

<?xml version="1.0"?>

<response type="success">

<![CDATA[<div>Found foo</div><div>Left bar </div>]]>

</response>

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER54

7079ch03.qxd 7/26/06 4:56 PM Page 54

In the event of an error, such as the script not having permission to write to the file, the
value of type is error:

<?xml version="1.0"?>

<response type="error">

<![CDATA[Could not open data.xml file.]]>

</response>

When the web browser receives the XML from your request object, it is contained in the
responseXML property. You can now search the XML using the JavaScript DOM methods and
properties, such as xmlDoc.documentElement to give you the root node (in this case, the <response>
node) and the getAttribute() method to retrieve the value of the type attribute of the
<response> node.

In the event of an error in Listing 3-5, you simply need to call a JavaScript alert() with the
content of the <response> tag to alert the user (Figure 3-13).

Figure 3-13. An error in the response

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 55

7079ch03.qxd 7/26/06 4:56 PM Page 55

With a successful execution, you create a new marker at the latitude and longitude of the
click and attach an event listener to the marker itself in order to create a new info window with
the content of the response. The new marker now indicates the newly created location on the
map, and when clicked, displays the information about the marker (Figure 3-14).

Figure 3-14. A successful request and response

You’ve probably noticed that in Listing 3-5, you’ve used the marker.openInfoWindowHTML()
method rather than the map.openInfoWindow() method. Since you now have your marker on
the map, you can apply the info window directly to it and pass in an HTML string rather than
an HTML DOM element.

■Caution When accepting input from the users of your website, it is always good practice to assume the data
is evil and the user is trying to take advantage of your system. Always filter input to ensure it’s in the format
you are expecting. Numbers should be numbers, strings should be strings, and unless desired, nothing should
contain HTML or JavaScript code. Listing 3-6 could easily be compromised through cross-site scripting (XSS)
if you don’t filter out JavaScript in the user-submitted data. For more information see http://owasp.org.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER56

7079ch03.qxd 7/26/06 4:56 PM Page 56

Retrieving Markers from the Server
Your geocaching map is almost finished. So far, you’ve used event listeners to add marks on
the map, displayed info windows to ask for more input, and saved the input back to the server
using Ajax. You now want to take all the markers you’ve been collecting and show them on the
page when users first visit.

The information to display the markers resides on the server in the data.xml file created
by the storeMarkers.php script in Listing 3-5. In Chapter 2, you loaded the map data from
map_data.php into the head of the index.php document using a <script> tag. You could easily
do the same thing here, but for this chapter, we’re going to mix things up a bit and show you
a more controlled way. To gain more interactive control, you’ll retrieve the data from the server
using the GXmlHttp object. Using the GXmlHttp object will allow you to retrieve points at any
time, not just when the page loads. For example, when you’ve finished this example, you could
extend it further by tracking the movements of the map and retrieve the points based on the
map’s viewable area, as you’ll see later in Chapter 7.

To start, remove the reference to map_data.php from the head of your index.php file and
create the retrieveMarkers.php file in Listing 3-7 on your server in the same directory as your
HTML document.

Listing 3-7. retrieveMarkers.php Script Used to Format and Retrieve the data.xml File

<?php

header('Content-Type:text/xml');

$markers = file_get_contents('data.xml');

echo <<<XML

<markers>

$markers

</markers>

XML;

?>

Also, copy the retrieveMarkers() function from Listing 3-8 into the map_functions.js file.
In Listing 3-8, notice the marker is created by the same createMarker() function you used in
Listing 3-5. This allows you to maintain the proper scope of the data passed into the info win-
dow. If you create each marker in the retrieveMarkers() function, each marker’s info window
will have the html value of the last marker created in the loop. The value of html will be identi-
cal for each marker because the info window is not actually created until you click the marker
and html is retrieved from the scope of the JavaScript at that time. By moving the creation into
another function, you’ve given each instance of the function its own namespace.

Listing 3-8. Ajax retrieveMarkers() Function

function retrieveMarkers() {

var request = GXmlHttp.create();

//tell the request where to retrieve data from.

request.open('GET', 'retrieveMarkers.php', true);

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 57

7079ch03.qxd 7/26/06 4:56 PM Page 57

//tell the request what to do when the state changes.

request.onreadystatechange = function() {

if (request.readyState == 4) {

var xmlDoc = request.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName("marker");

for (var i = 0; i < markers.length; i++) {

var lng = markers[i].getAttribute("lng");

var lat = markers[i].getAttribute("lat");

//check for lng and lat so MSIE does not error

//on parseFloat of a null value

if(lng && lat) {

var latlng = new GLatLng(parseFloat(lat),parseFloat(lng));

var html = '<div>Found '

+ markers[i].getAttribute("found")

+ '</div><div>Left '

+ markers[i].getAttribute("left")

+ '</div>';

var marker = createMarker(latlng, html);

map.addOverlay(marker);

}

} //for

} //if

} //function

request.send(null);

}

Once you’ve created the retrieveMarkers.php file and copied the retrieveMarkers()
function into the map_functions.js file, you can load the markers into your map by calling the
retrieveMarkers() function. For example, to load the markers when the page loads, you’ll
need to call the retrieveMarkers() function from the init() function after you create the map.

function init() {

... cut ...

map = new GMap2(document.getElementById("map"));

retrieveMarkers();

... cut ...

}

When the retrieveMarkers()function is executed, the server-side PHP script,
retrieveMarkers.php (Listing 3-7), will return an XML file containing the latitude and longitude
for each marker you previously saved.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER58

7079ch03.qxd 7/26/06 4:56 PM Page 58

<markers>

<marker lat="37.441" lng="-122.141" found="Keychain" left="Book"/>

<marker lat="37.322" lng="-121.213" found="Water Bottle" left="Necklace"/>

... etc ...

</markers>

The XML also contains the additional information you requested for each marker so that
you’ll be able to include it in the info window. You can search this file using the JavaScript DOM
methods in the same way you did for the storeMarker() function in Listing 3-5, but because you
have a list of markers, you’ll need to loop through the object list from xmlDoc.documentElement.
getElementsByTagName("marker") and create each marker individually.

You don’t necessarily have to return XML to the GXmlHttp object. You can also return
HTML, text, or the same JSON format introduced in Chapter 2. If you return something other
than XML, you need to use the response.responseText property and parse it accordingly.

■Tip For more information about using Ajax, read Beginning Ajax with PHP: From Novice to Professional,
by Lee Babin (http://www.apress.com/book/bookDisplay.html?bID=10117).

Adding Some Flair
You now have a fun little interactive web application that anyone with Internet access can use.
Geocachers can come and see what kinds of things have been found and let others know what
they’ve found. You could be finished with the map, but let’s use the Google Maps API to add
just a bit more flair.

All the red markers on the map don’t really mean anything when you look at them as a whole.
Without clicking on each marker to reveal the info window, there’s no way to tell anything about
what’s there other than the location.

One of the keys to a successful web application is to provide your users the information
they want both easily and quickly. For instance, if you come back to the map frequently, you
would prefer to quickly pick out the points you haven’t seen before, rather than hunt and
examine each marker to see the information. To give the map more visual information, let’s let
the geocachers add a custom icon for their finds. This will make the map more visually inter-
esting and provide quick and easy information to the viewers.

By default, Google uses an inverted teardrop pin for marking points on a map, and up until
now, this is what you’ve been using as well. Now, using Google’s GIcon object, you can rid your
map of the little red dots and customize them to use whatever image you like. Rather than
looking at a red marker, you can add a small icon of the find (Figure 3-15).

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 59

7079ch03.qxd 7/26/06 4:56 PM Page 59

Figure 3-15. Different marker icons on a map

To use the GIcon object, you are required to set a minimum of three properties:

• GIcon.image: URL of the image

• GIcon.iconSize: Size of the image in pixels

• GIcon.iconAnchor: Location of the anchor point

Also, because you’re currently making use of the info window for each of your markers,
you must specify the infoWindowAnchor property of the icon.

To get the URL for the GIcon.image property, you’ll need to ask the geocaching users
where their icon is by adding another element to the info window’s form, and then pass it
through the GET parameters of your GXmlHttp.request. First, in the click event for the map
from Listing 3-4, add the following two highlighted lines:

inputForm.innerHTML = '<fieldset style="width:150px;">'

+ '<legend>New Marker</legend>'

+ '<label for="found">Found</label>'

+ '<input type="text" id="found" style="width:100%"/>'

+ '<label for="left">Left</label>'

+ '<input type="text" id="left" style="width:100%"/>'

+ '<label for="left">Icon URL</label>'

+ '<input type="text" id="icon" style="width:100%"/>'

+ '<input type="submit" value="Save"/>'

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER60

7079ch03.qxd 7/26/06 4:56 PM Page 60

+ '<input type="hidden" id="longitude" value="' + lng + '"/>'

+ '<input type="hidden" id="latitude" value="' + lat + '"/>'

+ '</fieldset>';

■Tip For a complete working example of the following changes, see the final example for Chapter 3 in the
book’s accompanying code or online at http://googlemapsbook.com/chapter3/final.

Second, in the storeMarker() function from Listing 3-5, add the following highlighted
parameter to the request:

var getVars = "?found=" + document.getElementById("found").value

+ "&left=" + document.getElementById("left").value

+ "&icon=" + document.getElementById("icon").value

+ "&lng=" + lng

+ "&lat=" + lat ;

Now the icon’s URL can be entered and passed to the server. In order to save the information
in the data.xml file, add the following highlighted lines to the storeMarkers.php file in Listing 3-6:

$icon = $_GET['icon'];

$marker = <<<MARKER

<marker lat="$lat" lng="$lng" found="$found" left="$left" icon="$icon"/>

MARKER;

When the XML is retrieved from the server, it will automatically include the new icon
information, so you do not need to modify the retrieveMarkers.php file in Listing 3-7. To show
the new icons, you’ll need to create a new GIcon object with the appropriate properties when you
retrieve the markers from the server and when you create the new marker upon a successful save.

The GIcon objects are created as independent objects and passed in as the second param-
eter when creating a new GMarker object. The GIcon objects are reusable, so you do not need to
create a new GIcon object for each new GMarker object, unless you are using a different icon for
each marker, as you are doing in this example. To use the icons while retrieving the saved pins
in Listing 3-8, add the icon URL as a third parameter to the createMarker() call:

var marker = createMarker(latlng, html, markers[i].getAttribute("icon"));

Then create your GIcon object in the createMarker() function and assign it to the marker
with the following changes:

function createMarker(latlng, html, iconImage) {

if(iconImage!='') {

var icon = new GIcon();

icon.image = iconImage;

icon.iconSize = new GSize(25, 25);

icon.iconAnchor = new GPoint(14, 25);

icon.infoWindowAnchor = new GPoint(14, 14);

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER 61

7079ch03.qxd 7/26/06 4:56 PM Page 61

var marker = new GMarker(latlng,icon);

} else {

var marker = new GMarker(latlng);

}

GEvent.addListener(marker, 'click', function() {

var markerHTML = html;

marker.openInfoWindowHtml(markerHTML);

});

return marker;

}

Additionally, when you create the new GIcon object in the storeMarker() and
retrieveMarkers() functions, you’ll need to retrieve the icon from the XML and pass the icon
image into the createMarker call. In storeMarker(), add the following:

var iconImage = responseNode.getAttribute("icon");

var marker = createMarker(latlng, content, iconImage);

In retrieveMarkers(), add this:

var iconImage = markers[i].getAttribute("icon");

var marker = createMarker(latlng, html, iconImage);

Now when you regenerate the map and create new points, the icon from the URL will be
used rather than the default red marker. The size you pick for your GIcon objects is based on
a width and height in pixels. The preceding changes use an arbitrary GSize of 25 by 25 pixels
for all of the icons. If the image in the URL is larger than 25 by 25 pixels, it will be squished
down to fit.

Summary
Now that you have your first interactive Google Maps web application, grab a GPS and start
looking for geocaches to add to your map! Get your friends involved, too, and show off what
you’ve learned.

The ideas and techniques covered in this chapter can be applied to many different web
applications, and the same basic interface can be used to mark any geographical information
on a map. Want to chart the world’s volcanoes? Just click away on the map and mark them down.

You may also want to build on the example here and incorporate some of the other fea-
tures of the Google Maps API. For example, try retrieving only a specified list of markers, or
maybe markers within a certain distance of a selected point. You could also improve the inter-
face by adding listener events to trigger when you open and close an info window, or improve
the server-side script by downloading and automatically resizing the desired icons. Later in
the book, we’ll discuss a variety of other ways to improve your maps.

In the next chapter, we’ll show you how you can use publicly available services to automatically
plot markers on your map based not just on clicks, but also on postal and street addresses.

CHAPTER 3 ■ INTERACTING WITH THE USER AND THE SERVER62

7079ch03.qxd 7/26/06 4:56 PM Page 62

Geocoding Addresses

As you’ve probably already guessed, the heart of any mashup is correlating your information
with latitudes and longitudes for plotting on your map. Fortunately, geocoding services are
available to help you convert postal addresses to precise latitude and longitude coordinates. For
locations in the United States and Canada, these services make geocoding addresses relatively
easy and quite accurate most of the time. In other parts of the world, the job can become
much harder.

In this chapter, while building a store locator map, you’ll learn how to do the following:

• Create an XML file describing a set of locations and details.

• Request information from geocoding web services and process their responses.

• Learn the pros and cons of Google’s new JavaScript-based geocoder, as well as suggestions
on when to use it.

• Precompute and cache the latitude and longitude for the points you intend to plot.

Creating an XML File with the Address Data
In this chapter, you’re going to create a simple store location map using the postal address of each
location in the chain to map the markers. The important aspect about this kind of data is that it
changes slowly over time. A few points are added every now and then as the chain of stores
expands, but rarely are points removed. In general, it makes sense to precompute and cache
information like latitude and longitude for this type of data, as you’ll see in the “Caching Lookups”
section later in this chapter.

For this example, we’ll use the chain of stores and attractions known as Ron Jon Surf Shop,
since its story appeals to our own entrepreneurial style:

It was 1959 and on the New Jersey shore a bright young man named Ron DiMenna was just

discovering the sport of surfing with fiberglass surfboards. The pastime soon became

a passion and homemade surfboards would no longer do. When his father heard that

Ron wanted his own custom surfboard from California, he suggested, “Buy three, sell

two at a profit, then yours will be free.” His Dad was right and Ron Jon Surf Shop was born.

http://www.ronjons.com

63

C H A P T E R 4

■ ■ ■

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 63

With permission, we’ve taken the addresses of all of the Ron Jon properties from the
website and converted them into the sample XML data file for this chapter. Listing 4-1 shows
the ronjons.xml file that you’ll use while following the examples in this chapter. By the end of
the chapter, you’ll be able to create your own XML file and use the same techniques to map your
own list of related addresses.

Listing 4-1. Ron Jon Properties (from www.ronjons.com as of July 2006)

<?xml version="1.0" encoding="UTF-8"?>

<stores>

<store>

<name>"The Original" Ron Jon Surf Shop</name>

<address>901 Central Avenue</address>

<city>Long Beach Island</city>

<state>NJ</state>

<zip>08008</zip>

<phone>(609) 494-8844</phone>

<pin>store</pin>

</store>

<store>

<name>"One of a Kind" Ron Jon Surf Shop</name>

<address>4151 North Atlantic Avenue</address>

<city>Cocoa Beach</city>

<state>FL</state>

<zip>32931</zip>

<phone>(321) 799-8888</phone>

<pin>store</pin>

</store>

<store>

<name>Ron Jon Surf Shop - Sunrise </name>

<address>2610 Sawgrass Mills Circle</address>

<address2>Suite 1415</address2>

<city>Sunrise</city>

<state>FL</state>

<zip>33323</zip>

<phone>(954) 846-1880</phone>

<pin>store</pin>

</store>

<store>

<name>Ron Jon Surf Shop - Orlando</name>

<address>5160 International Drive</address>

<city>Orlando</city>

<state>FL</state>

<zip>32819</zip>

<phone>(407) 481-2555</phone>

<pin>store</pin>

</store>

<store>

CHAPTER 4 ■ GEOCODING ADDRESSES64

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 64

<name>Ron Jon Surf Shop - Key West</name>

<address>503 Front Street</address>

<city>Key West</city>

<state>FL</state>

<zip>33040</zip>

<phone>(305) 293-8880</phone>

<pin>store</pin>

</store>

<store>

<name>Ron Jon Surf Shop - California</name>

<address>20 City Blvd.</address>

<address2>West Building C Suite 1</address2>

<city>Orange</city>

<state>CA</state>

<zip>92868</zip>

<phone>(714) 939-9822</phone>

<pin>store</pin>

</store>

<store>

<name>Ron Jon Cape Caribe Resort</name>

<address>1000 Shorewood Drive</address>

<city>Cape Canaveral</city>

<state>FL</state>

<zip>32920</zip>

<phone>(321) 328-2830</phone>

<pin>resort</pin>

</store>

</stores>

■Caution We’ve left out declaring a namespace for this XML document to keep the example simple for XML
novices. For these simple examples, a namespace is not needed. However, using namespaces is generally
a good idea. For more information, check out the excellent primer on namespaces, “XML Namespaces by
Example,” at http://www.xml.com/pub/a/1999/01/namespaces.html.

Using Geocoding Web Services
Converting postal addresses to precise latitude and longitude coordinates is made simple by
a few good geocoding services. In this section, we’re going to cover some of the most popular
geocoding services we’ve found to date. (For an updated list of the geocoders we know about,
check out our website at http://googlemapsbook.com/geocoders.)

However, before you dive into the available web services, there are a few server-side
requirements you’ll need to consider.

CHAPTER 4 ■ GEOCODING ADDRESSES 65

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 65

■Note There are also sources of raw information that you can use to make your own geocoding solutions.
So, if you can’t find a service that fits your needs, and you have a place to get some raw street data, see
Chapter 11 for the basics of creating your own geocoding service.

Requirements for Consuming Geocoding Services
To consume the services, you need a web server permanently connected to the Internet, and it
will need to be able to connect to the appropriate services. For the examples in this chapter, you’ll
be using the PHP CURL extension to retrieve the XML information from the available services,
and you’ll be using PHP 5’s SimpleXML feature to parse the XML you retrieve.

CURL
Many of these services require you to send a carefully crafted URL request to retrieve your
information. For this purpose, you’ll use the CURL extension in PHP. This extension is not bundled
by default with PHP; however, it is one of the most commonly installed extensions, so you should
have no trouble finding a host with it available.

Basically, the PHP CURL functions are available through the use of libcurl, a library created
by Daniel Stenberg, and allow you to connect and communicate with web servers using many
different types of protocols. You’ll be using a very small subset of functions here, though we
encourage you to look deeper into this very useful feature by visiting http://www.php.net/curl.

SimpleXML
Most of the geocoding solutions we’re about to investigate return an XML document as their result.
To process these responses, you’ll use PHP 5’s SimpleXML features, which are perfectly suited
to the level of complexity of the answers you’ll receive. SimpleXML brings a unique perspective
to XML parsing in that element names are automatically (recursively) converted into properties
of an object, and attributes are accessed as if they were items in a named array. From your point
of view, all of this happens when the simplexml_load_string($string) constructor is called;
however, from a memory usage point of view, it happens on demand.

If you’ve never used SimpleXML, or need a refresher, we encourage you to check out a great arti-
cle by Zend Technologies available at http://www.zend.com/php5/articles/php5-simplexml.php.
This article also presents an example for PHP 4’s DOM processing, in case you don’t have access
to PHP 5 on your server (you should really consider upgrading!).

■Note If you have PHP 4 and still want something like SimpleXML you might want to try MiniXML from
http://minixml.psychogenic.com. It gets rave reviews on many forums and news groups, though we
have never needed to use it ourselves. The description from their site states that: “MiniXML provides
a simple, API to generating and parsing XML. Its advantages are ease-of-use and the fact that no additional
libraries are required. It comes with two independent implementations, 100% PHP and 100% PERL, which
you can use separately.”

CHAPTER 4 ■ GEOCODING ADDRESSES66

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 66

The Google Maps API Geocoder
We’ll begin our investigation of geocoding solutions with the Google Maps API geocoder
(http://www.google.com/apis/maps/documentation/#Geocoding_Examples). Google claims that
this solution should give street-level accuracy for the United States, Canada, France, Italy,
Germany, and Spain. The Google developers hope to roll out support for more countries in the
near future, so before you rule them out for a particular country, you might want to check either
our website (http://googlemapsbook.com) or the official API documentation.

Before June 2006, there was no official geocoder from Google. Many hacks used the
maps.google.com site’s built-in geocoder and screen-scraped the answer. This was an explicitly
unauthorized use of the service, and while we never heard of a crackdown on people doing this,
Google did frown upon it. As a result, a number of alternative services popped up to fill the void,
which we'll cover later in the chapter. Despite being late to the game, Google’s geocoder has
a number of really interesting features that none of the others have yet, and we’ll highlight
them throughout the discussion.

First, we’ll look at the most basic method for accessing the geocoder: the HTTP-based lookup
methods. You can also access the geocoder within JavaScript, as discussed later in this section
and in Chapter 10's polyline example.

Like most of the other services we’ll investigate, the Google method uses Representational
State Transfer (REST) requests for accessing the service. REST is basically a simple HTTP request
that passes GET parameters by appending things like key=value&key2=value2 to the end of the
request URL. Generally, a REST service returns some form of text-based data structure like XML.
Google’s geocoder is (so far) unique in that it can also return Keyhole Markup Language, or KML
(for use in Google Earth), and JSON directly.

THE ORIGIN OF REST

Representational State Transfer (REST) is a concept used to connect services in distributed systems like the
World Wide Web. The term originated in a 2000 doctoral dissertation about the Web written by Roy Fielding, one of
the principal authors of the HTTP specification, and has quickly passed into widespread use in the networking
community.

Fielding’s vision of REST described a strict abstraction of architectural principles. However, people now often
loosely use the term to describe any simple web-based interface that uses XML and HTTP without the extra
abstraction layers of approaches like the SOAP protocol. As a result, these two different uses of REST cause some
confusion in technical discussions. Throughout this book, we refer to it in the looser, more common, meaning
of REST.

Google has outdone many of the other geocoders on the market in that its geocoder returns
an excellent answer given fairly poor input. It does not require you to separate out the street
number, street name, direction (N, S, E, W, and so on), city, state, or even ZIP code. It simply
takes what you give it, uses Google’s extensive experience with understanding your search terms,
and returns a best guess. Moreover, the service formats the input you give it into a nice, clean,
consistent representation when it gives you the latitude and longitude answer. The geocoder
even goes so far as to look past poor punctuation and strange abbreviations, which is great if
you’re taking the input from a visitor to your site.

CHAPTER 4 ■ GEOCODING ADDRESSES 67

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 67

Like most of the geocoders available on the market, Google limits the number of geocoding
requests that you can make before it cuts you off. The Google limit is a generous 50,000 lookups
per API key per day, provided you space them out at a rate of one every 1.75 seconds (as of the time
of publishing). To maximize this limit and your bandwidth, we suggest you use the server-side
caching approach discussed in the “Caching Lookups” section later in this chapter.

Google Geocoder Responses
Let’s look at the Google geocoder’s response for a sample query adapted from the official
documentation:

http://maps.google.com/maps/geo?q=1600+AmPhItHEaTRe+PKway+Mtn+View+CA&output=➥

xml&key=your_api_key

This query returns the XML in Listing 4-2.

Listing 4-2. Sample Response from Google’s REST Geocoder

<kml>

<Response>

<name>1600 AmPhItHEaTRe PKway Mtn View CA</name>

<Status>

<code>200</code>

<request>geocode</request>

</Status>

<Placemark>

<address>

1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA

</address>

<AddressDetails>

<Country>

<CountryNameCode>US</CountryNameCode>

<AdministrativeArea>

<AdministrativeAreaName>CA</AdministrativeAreaName>

<SubAdministrativeArea>

<SubAdministrativeAreaName>Santa Clara</SubAdministrativeAreaName>

<Locality>

<LocalityName>Mountain View</LocalityName>

<Thoroughfare>

<ThoroughfareName>1600 Amphitheatre Pkwy</ThoroughfareName>

</Thoroughfare>

<PostalCode>

<PostalCodeNumber>94043</PostalCodeNumber>

</PostalCode>

</Locality>

CHAPTER 4 ■ GEOCODING ADDRESSES68

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 68

</SubAdministrativeArea>

</AdministrativeArea>

</Country>

</AddressDetails>

<Point>

<coordinates>-122.083739,37.423021,0</coordinates>

</Point>

</Placemark>

<Response>

</kml>

The response has three major components:

• name: The name is exactly what you fed into the geocoder, so you know if it interpreted
your URL encoding properly.

• Status: This is the response code, which indicates whether the lookup was successful or
if it failed. Table 4-1 lists the possible response codes and their meanings.

• Placemark: This is available only if the geocoding was successful and contains the
information you’re seeking. The placemark itself contains three important components:

• address: The address is the full, nicely formatted string that Google actually used after
it cleaned up the input you gave it. This is useful for a number of reasons, including
storing something clean in your database and debugging when the answers seem to
come back incorrectly.

• Point: The point is a coordinate in 3D space and represents longitude, latitude, and
elevation. Elevation data may or may not be available for a given answer, so take
a 0 with a grain of salt, as it is the default and is also returned if no data is available.

• AddressDetails: This is a block of more complicated XML that uses a standard format
called eXtensible Address Language (xAL). Unless you’re interested in extracting
the individual pieces of the address for storage in your database or formatting on
your screen, you could safely ignore this chunk of XML and get away with using
only the status, address, and point information.

■Note Upon launch of their geocoder, Google developers stated that all elevations would return 0 and that
they were unsure when they would be able to supply elevation data. Before you use any of the elevation data,
check the official API documentation online or the official Google Maps API blog (http://googlemapsapi.
blogspot.com/) to see which regions now have elevation data available.

CHAPTER 4 ■ GEOCODING ADDRESSES 69

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 69

Table 4-1. Google Geocoder Response Codes

Code Constant Name Description

200 G_GEO_SUCCESS No errors occurred; the address was successfully
parsed and its geocode has been returned.

500 G_GEO_SERVER_ERROR A geocoding request could not be successfully
processed, yet the exact reason for the failure
is not known.

601 G_GEO_MISSING_ADDRESS The HTTP q parameter was either missing
or had no value.

602 G_GEO_UNKNOWN_ADDRESS No corresponding geographic location could
be found for the specified address. This may be
due to the fact that the address is relatively
new, or it may be incorrect.

603 G_UNAVAILABLE_ADDRESS The geocode for the given address cannot
be returned due to legal or contractual reasons.

610 G_GEO_BAD_KEY The given key is either invalid or does not
match the domain for which it was given.

620 G_TOO_MANY_QUERIES You have accessed the service too frequently
and are either temporarily or permanently
blocked from further use.

xAL

Defining a uniform way to describe addresses across 200 countries is no easy task. Some countries use street
names; others don’t. Some place higher importance on the postal code; others insist that the street number is
most important. Some divide their “administrative” zones into a two-tier system of province/city; others use more
tiers like state/county/city/locality. Whatever format is chosen must take all of these situations into account. OASIS
has defined a format called xAL, which stands for eXtensible Address Language (in this case). Google has adopted
it as a component of the XML response that its geocoder returns.

xAL uses a hierarchical data model (XML) since it seems like such a natural fit for addresses. For example,
a country has states, a state has counties, a county has cities, a city has streets, and a street has individual plots
of land. Some countries omit one or more of these levels, of course, but in general, that’s not a problem.

However, you should realize that the xAL specification is designed to describe the address elements, not
to be specific about the formatting and presentation of the address. There is no guarantee that the use of
whitespace in the different elements will be consistent or even predictable, only that each type of data will
be separated in a defined way. Using an XML-based format ensures that the data can be compared, sorted,
and understood using simple programmatic methods.

For more information on xAL, visit the official site at http://www.oasis-open.org/committees/ciq/
ciq.html#6 or Google for the term “xAL address.”

Google Geocoder Requests
Now let’s look at a simple snippet of code that uses CURL to query the HTTP-based geocoding
API and SimpleXML to parse the answer. Listing 4-3 shows this code.

CHAPTER 4 ■ GEOCODING ADDRESSES70

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 70

Listing 4-3. Using the Google Maps API Geocoder to Locate the Stores

<?php

$api_key = "yourkey";

// Create a CURL object for later use

$ch = curl_init();

curl_setopt($ch, CURLOPT_HEADER, 0);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

// Open the ronjons.xml file

$datafile = simplexml_load_file("ronjons.xml");

if (!$datafile) die("Unable to open input file!");

foreach ($datafile->store as $store) {

// Construct the geocoder request string (URL)

$url = "http://maps.google.com/maps/geo?output=xml&key=$api_key&q=";

$q = $store->address.", ".$store->city.", ".$store->state.", ".$store->zip;

$url .= urlencode($q);

echo "\nStore: {$store->name}\n";

echo "Source Address: $q\n";

// Query Google for this store's longitude and latitude

curl_setopt($ch, CURLOPT_URL, $url);

$response = curl_exec($ch);

// Use SimpleXML to parse our answer into something we can use

$googleresult = simplexml_load_string($response);

echo "Status: ".$googleresult->Response->Status->code."\n";

if ($googleresult->Response->Status->code != 200)

echo "Unable to parse Google response for {$store->name}!\n";

else foreach ($googleresult->Response as $response) {

foreach ($response->Placemark as $place) {

list($longitude,$latitude) = split(",",$place->Point->coordinates);

echo "Result Address: ".$place->address."\n";

echo " Latitude: $latitude\n";

echo " Longitude: $longitude\n";

} // for each placemark

} // for each Google result

} // for each store

// Close the CURL file and destroy the object

curl_close($ch);

?>

CHAPTER 4 ■ GEOCODING ADDRESSES 71

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 71

In this example, first we use curl_setopt() to define CURL’s behavior while talking with
Google. This includes telling CURL that we don’t care about HTTP headers in $googleresult
with the option CURLOPT_HEADER = 0, and instructing CURL to buffer the response (instead of
sending it directly to the output buffer) with CURLOPT_RETURNTRANSFER = 1.

Next, we open your data file and parse it using SimpleXML. The resultant object is then
used in the loop, which in turn creates a REST request URL for each store. Also note that you
must use PHP’s urlencode() function on the query portion of the string to ensure that the
information is transmitted cleanly to the service.

■Caution Remember that SimpleXML and XML in general are case-sensitive. The fact that our input XML is all
lowercase means that we loop using $datafile->store (lowercase s), while the Google response uses title
case, and therefore our inner loop uses $googleresult->Response (capital R). We’ve done this deliberately to
remind you of this fact. Capitalization conventions are a matter of personal style.

Lastly, we give CURL our REST request and return the response into the variable
$googleresult using the curl_exec() function. This returns the KML-style XML response
that contains the meat of what we’re interested in—the latitude and longitude, which we
simply extract and echo to the screen for now. SimpleXML’s node selectors make the job of
accessing the data extremely trivial.

Listing 4-4 contains the output you should see when you execute this script. For convenience,
you might prefer to output HTML
 tags instead of newline characters (\n), so that you
can see the results (without viewing the source) if you are using a browser to run the code, or
you could prepend header('content-type:text/plain;') to the PHP file to convert the output
to plaintext mode.

Listing 4-4. Output from the Google Geocoding Script

Store: "The Original" Ron Jon Surf Shop

Source Address: 901 Central Avenue, Long Beach Island , NJ, 08008

Status: 200

Result Address: 901 Central Ave, Barnegat Light, NJ 08008, USA

Latitude: 39.748586

Longitude: -74.111764

Result Address: 901 Central Ave, Surf City, NJ 08008, USA

Latitude: 39.661016

Longitude: -74.168010

Result Address: 901 Central Ave, Ship Bottom, NJ 08008, USA

Latitude: 39.649667

Longitude: -74.177253

Store: "One of a Kind" Ron Jon Surf Shop

Source Address: 4151 North Atlantic Avenue, Cocoa Beach, FL, 32931

Status: 200

Result Address: 4151 N Atlantic Ave, Cocoa Beach, FL 32931, USA

CHAPTER 4 ■ GEOCODING ADDRESSES72

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 72

Latitude: 28.356453

Longitude: -80.608170

Store: Ron Jon Surf Shop - Sunrise

Source Address: 2610 Sawgrass Mills Circle, Sunrise, FL, 33323

Status: 200

Result Address: 2610 Sawgrass Mills Cir, Sunrise, FL 33323, USA

Latitude: 26.150899

Longitude: -80.316233

Store: Ron Jon Surf Shop - Orlando

Source Address: 5160 International Drive, Orlando, FL, 32819

Status: 200

Result Address: 5160 International Dr, Orlando, FL 32819, USA

Latitude: 28.469873

Longitude: -81.450311

Store: Ron Jon Surf Shop - Key West

Source Address: 503 Front Street, Key West, FL, 33040

Status: 200

Result Address: 503 Front St, Key West, FL 33040, USA

Latitude: 24.560287

Longitude: -81.805817

Store: Ron Jon Surf Shop - California

Source Address: 20 City Blvd., Orange, CA, 92868

Status: 200

Result Address: 100 City Blvd E, Orange, CA 92868, USA

Latitude: 33.782107

Longitude: -117.889878

Result Address: 2 City Blvd W, Orange, CA 92868, USA

Latitude: 33.779838

Longitude: -117.893568

Store: Ron Jon Cape Caribe Resort

Source Address: 1000 Shorewood Drive, Cape Canaveral, FL, 32920

Status: 200

Result Address: 699 Shorewood Dr, Cape Canaveral, FL 32920, USA

Latitude: 28.402944

Longitude: -80.604093

There are several interesting things to discuss in this result:

"The Original" Ron Jon Surf Shop: “The Original” store listed Long Beach Island as
the city. Google doesn’t recognize this as a valid city and has instead used the ZIP
code to determine which cities might be more appropriate. More important, each of the
answers differs by at least a few tenths of a degree, and this is a significant difference

CHAPTER 4 ■ GEOCODING ADDRESSES 73

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 73

(about 10 kilometers). It’s up to you to decide how to handle this situation. A few suggestions
might be to always use the first answer and assume that this is the one Google thinks is best.
Another option would be to average the answers. Lastly, you could treat multiple Placemark
nodes as a geocoding failure and ignore all of the data.

Ron Jon Surf Shop - California: For the store in California, the website lists the address
as 20 City Boulevard but fails to give a direction. Google’s two closest matches are 100 City
Blvd E. and 2 City Blvd W. Both closest matches are returned in a separate Placemark node,
and this is where the xAL data becomes very useful. Since each Placemark node is broken
down in a consistent way, you can determine in which component the answer differs from
your input. Doing so will allow you to write code that will make educated decisions about
what to do with the answers. In this case, you probably want to assume that City Blvd is
a straight line and employ some of the math in Chapters 10 and 11 to use a point approxi-
mately 20% of the way along the line between the two answers (20/(100-2) = ~20%).

Ron Jon Cape Caribe Resort: The Cape Caribe Resort doesn’t geocode perfectly. This is
probably because the resort is extremely new and the address hasn’t yet been officially
marked in the data that Google received. What you do in this case is again your decision,
but our suggestion would be to assume that when you receive a single answer, it’s the best
you’re going to get.

The Google JavaScript Geocoding API
Google also provides a means to geocode user input without the intervention of your server.
This is a first in the realm of geocoders and enables a few things that can be cumbersome with
server-side geocoding. This geocoder is built directly into the JavaScript API itself and makes Ajax
calls directly to Google’s servers from your visitor’s computer.

The benefit is that it’s quick and convenient because the API abstracts out all of the Ajax
stuff, leaving you with a simple client-side JavaScript call. In addition to this, the latitude and
longitude data can come back in such a way that it is trivial to use to place a point on your map
using the API.

However, you need to keep in mind that while you don’t have to contact your own server,
you are talking to a server—Google’s. So, you still need to carefully design your application to
minimize the wait times your visitor sees while using your application.

Good and Bad Reasons to Use the JavaScript Geocoder

Here are some cases where it might be appropriate to use the JavaScript geocoder:

• When the visitor is inputting an address that you then plot on a map, but would never
otherwise store for future use or display to another visitor. For example, this might be the
case for a store locator that suggests locations based on proximity to a particular address.

• You are unable to create files on your web server that can be written to by your PHP
scripts. This should almost never be the case, as a text file could (at the very worst) be
set to world-writable (see the “Caching Lookups” section later in this chapter).

• Once Google exposes its route calculation capabilities, it may become useful for computing
one endpoint of the path on the fly, but this is pure speculation.

CHAPTER 4 ■ GEOCODING ADDRESSES74

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 74

A good reason to use this geocoder is to get a point from the user that is used solely for math
calculations. We’ll walk through an example of using the JavaScript geocoder in Chapter 10, where
we show you how to add a corner to a polygon by either clicking on the map or entering an address
into a text field.

It is not appropriate to geocode a list of points (such as the Ron Jon stores) on the fly
client-side simply because it’s easy. Overall, this would be a waste of bandwidth. This in turn
means a longer download time for your visitor and a less-responsive map. Also, you definitely don’t
want to use this approach if the user is likely to be looking up the same thing over and over again.

Basically, while useful for quick-and-dirty mapping, the JavaScript geocoder isn’t really
useful for many professional map applications since you’ll almost always have a server-side
component. Thus, accessing the REST-based geocoder from your own Ajax service will allow
you to integrate and consolidate the geocoding calls with the rest of your application (say,
combining geocoding with looking up store hours). Another benefit of using your own server
follows from Chapter 3’s geocaching discussion about ensuring consistency by guaranteeing
that your points are saved back to the server before showing them on a map. The same principle
applies here. If you need to record any information at all back to your own server, you might as
well use the REST-based geocoder to do the lookups and save yourself one Ajax call.

Client-Side Caching

Google has made a significant effort to limit the impact of lazy mappers (not you!) who will
use the JavaScript geocoder just because it’s easy. Aside from pleading with developers to
“please cache your lookups” when it announced the geocoder, Google has integrated a client-side
geocoding cache into the API. It is on by default and merely uses your visitors’ RAM to store things
they’ve previously looked up in case they look the same thing up again. You don’t need to do
anything special to use this cache, but there is something special you can do with it: you can seed it
with information you already have. This means that you could precompute all of the addresses for
your stores server-side, and then seed the client-side cache with the data. In certain applications,
this could provide a huge speed boost for your map.

As of the time of publishing, the jury is still out on the best way to use some of these shiny
new features. The official Google Maps API newsgroup is gushing with discussion about the
best ways to do things and when to use the client-side cache and JavaScript geocoder to the best
effect. We suggest that you check our website (http://googlemapsbook.com) and the official doc-
umentation to see what the current best practices are when you read this.

The Yahoo Geocoding API
Currently, the Yahoo Geocoding API (http://developer.yahoo.net/maps/rest/V1/geocode.html)
is really useful only for geocoding addresses in the United States, though with competition from
Google, we’re sure this will change. Before Google’s geocoder came along, this was the geocoder
of choice for many people doing US-centric mashups using both the Google Maps API and the
Yahoo Maps API. The only real limitation is that you can make only 5,000 lookup requests per
day (per IP address).

CHAPTER 4 ■ GEOCODING ADDRESSES 75

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 75

■Caution The rate limit for Yahoo is based on a 24-hour window, not a calendar day. This window begins
when you first send a request to the service and is reset 24 hours later. Also the window does not “slide” (as it
does with other services), meaning that it’s not a count of the requests made in the last 24-hours, but rather
a fixed time frame. For a more thorough explanation of the rate limiting in the Yahoo Geocoding Web Service,
please visit http://developer.yahoo.net/search/rate.html.

To use the API, you must register for a Yahoo application ID (like the Google API key you
received in Chapter 2). To obtain your application ID, visit http://api.search.yahoo.com/
webservices/register_application after logging in to your Yahoo account. If you do not have
a Yahoo account, you’ll need to create one before proceeding. Once you have your application
ID, you’ll need to include it in the requests to the service.

Like the Google geocoder, the Yahoo service is REST-based and requires you to append
URL-encoded parameters onto the end of the request URL, as listed in Table 4-2.

Table 4-2. Request Parameters to the Yahoo Geocoding API

Parameter Value Description

appid String (required) The application ID you obtained from Yahoo.

street String The name and number of the street address. The number is
optional but can improve accuracy.

city String The name of the city or town.

state String The name of the state, either spelled-out in full or as the
two-letter abbreviation, which is more accurate.

zip Integer The five-digit ZIP code. This could also be a string of five
digits, a dash, and the four-digit extension.

location String A free-form string representing an address.*

output String The format for the output. Possible values are xml (the
default) or php. If php is requested, the results will be
returned in serialized PHP format.

*The location parameter overrides the street, city, state, and zip parameters, and allows you to
enter many different common formats for addresses. Thus, you are relying on Yahoo to parse the string
accurately and as you intended, much like the Google service does.Yahoo’s geocoder is quite good at doing
this parsing (for the same reasons as Google’s geocoder), so unless you already have the data broken out
into components, your best bet might be to use the single location parameter instead of the individual
parameters.

Yahoo Geocoder Responses
The following is an example of a request for geocoding the Apress headquarters:

http://api.local.yahoo.com/MapsService/V1/geocode?appid=YOUR_APPLICATION_ID&street=➥

2560+Ninth+Street&city=Berkeley&state=CA&zip=94710

This returns the XML shown in Listing 4-5.

CHAPTER 4 ■ GEOCODING ADDRESSES76

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 76

Listing 4-5. Sample Response from the Yahoo Geocoding API

<?xml version="1.0" encoding="UTF-8"?>

<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:yahoo:maps" xsi:schemaLocation="urn:yahoo:maps

http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd">

<Result precision="address" warning="The exact location could not be found,➥

here is the closest match: 2560 9th St, Berkeley, CA 94710">

<Latitude>37.859569</Latitude>

<Longitude>-122.291673</Longitude>

<Address>2560 9TH ST</Address>

<City>BERKELEY</City>

<State>CA</State>

<Zip>94710-2500</Zip>

<Country>US</Country>

</Result>

</ResultSet>

For the purposes of this discussion, we will ignore the xmlns: and xsi: namespaces. What
we care about is the Result node and the elements inside it.

■Caution As with the Google service, it is possible to get a ResultSet with multiple Result values. If you
would like to see this, try geocoding The White House (1600 Pennsylvania Avenue, Washington DC) while
leaving out the ZIP code.

The Result node has two attributes in this case:

precision: This is a string indicating how accurate Yahoo thinks the answer is. This can be one
of eight values at the moment: address, street, zip+4, zip+2, zip, city, state, or country.
Changes to this list and additional information can be found in Yahoo’s API developer
documentation (http://developer.yahoo.net/maps/rest/V1/geocode.html).

warning: In our experience, nearly all requests had an “exact location could not be found”
warning. This seems to occur for valid addresses whenever the capitalization of the street
name, abbreviation of the street type, or spelling in the address don’t exactly match the form
in the database. In the example in Listing 4-5, it happens because the word “Ninth” is spelled
out in full, and the Yahoo database has it listed as “9th.” Using the warning node to determine
if Yahoo’s answer is a good match can be tricky, so for now, let’s assume that the first answer
in the result set is always the best answer (but not necessarily the right answer).

Next, we have the actual result fields corresponding to latitude, longitude, address, city,
state, ZIP code, and country. Most of this data probably corresponds to the information you used
to make the request; however, getting back all of this information is useful in picking the “right”
answer in the event of Yahoo returning multiple matches. For now, the latitude and longitude
fields are the ones we’re most interested in, as those will be used to plot the Ron Jon store locations
on our map.

CHAPTER 4 ■ GEOCODING ADDRESSES 77

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 77

Yahoo Geocoder Requests
So now that you have a handle on what you should be expecting out of the Yahoo API, let’s create
some PHP code to automate this process. Listing 4-6 shows the script.

Listing 4-6. Using the Yahoo Geocoding API to Locate the Stores

<?php

// Your Yahoo! Application id

$appid = "YOUR_YAHOO_APPLICATION_ID";

// Create a CURL object for later use

$ch = curl_init();

curl_setopt($ch, CURLOPT_HEADER, 0);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

// Open the ronjons.xml file

$datafile = simplexml_load_file("ronjons.xml");

if (!$datafile) die("Unable to open input file!");

foreach ($datafile->store as $store) {

// Construct the request string

$url = "http://api.local.yahoo.com/MapsService/V1/geocode?appid=$appid";

if ($store->address) $url .= "&street=".urlencode($store->address);

if ($store->city) $url .= "&city=".urlencode($store->city);

if ($store->state) $url .= "&state=".urlencode($store->state);

if ($store->zip) $url .= "&zip=".$store->zip;

echo "Store: {$store->name}\n";

// Query Yahoo for this store's lat/long

curl_setopt($ch, CURLOPT_URL, $url);

$response = curl_exec($ch);

// Use SimpleXML to parse our answer into something we can use

$yahooresult = simplexml_load_string($response);

if (!$yahooresult) echo "Unable to parse Yahoo response for {$store->name}!\n";

else foreach ($yahooresult->Result as $result) {

echo "Result Precision: {$result['precision']}\n";

if ($result['precision'] != "address") {

echo "Warning: {$result['warning']}\n";

echo "Address: {$result->Address}\n";

}

echo "Latitude: {$result->Latitude}\n";

echo "Longitude: {$result->Longitude}\n\n";

} // for each Yahoo result

} // for each store

CHAPTER 4 ■ GEOCODING ADDRESSES78

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 78

// Close the CURL file and destroy the object

curl_close($ch);

?>

The code in Listing 4-6 is similar to the one for the Google geocoder (Listing 4-3). In fact, this
is a template we will use a few more times in this chapter, and one that will serve you well for
most REST-based services that return XML. The only real difference in the Yahoo example is
that we’ve chosen to use the individual parameters since our data file already has them split up.
This means that we need to use PHP’s urlencode() on any parameter that might need it (those
with spaces or special characters, for example), instead of on a single mammoth string. If you used
the location parameter, this example could probably be 95% identical to the one in Listing 4-3.

We also check for the presence of each option before appending it to the URL of the REST
request, despite the fact that Yahoo will silently ignore blank inputs. After all, defensive
programming is always good practice, no matter how trivial the task—especially for experimental
code that will probably grow into production code.

Listing 4-7 gives the resulting output from Listing 4-6.

Listing 4-7. Output from the Yahoo Geocoding Script

Store: "The Original" Ron Jon Surf Shop

Result Precision: address

Latitude: 39.6351

Longitude: -74.1883

Store: "One of a Kind" Ron Jon Surf Shop

Result Precision: address

Latitude: 28.356577

Longitude: -80.608069

Store: Ron Jon Surf Shop - Sunrise

Result Precision: address

Latitude: 26.156292

Longitude: -80.316945

Store: Ron Jon Surf Shop - Orlando

Result Precision: address

Latitude: 28.469972

Longitude: -81.450143

Store: Ron Jon Surf Shop - Key West

Result Precision: address

Latitude: 24.560448

Longitude: -81.805998

Store: Ron Jon Surf Shop - California

Result Precision: address

Latitude: 33.783329

Longitude: -117.890562

CHAPTER 4 ■ GEOCODING ADDRESSES 79

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 79

Store: Ron Jon Cape Caribe Resort

Result Precision: street

Warning:

Address: [600-699] SHOREWOOD DR

Latitude: 28.40232

Longitude: -80.59554

Result Precision: street

Warning:

Address: SHOREWOOD DR

Latitude: 28.40168

Longitude: -80.59774

■Note You may need to view the source to see formatted output from Listing 4-7.

The only real surprise here is the last entry, Cape Caribe Resort, failed to geocode any more
accurately than the general location of the street. This seems to corroborate Google’s answer
quite nicely (remember that it gave us 699 Shorewood instead of 1000 Shorewood). For now,
simply remember that you’ll always need to do some sort of error checking on the results or you
might end up sending your customers to the wrong place. This entry also shows an example of
multiple results being returned, as discussed earlier.

A possible solution to the ambiguous answer problem is to cross-reference (and average)
the answers you get from one service (Google) with another (Yahoo). This is an onerous task if
done for all of the data, but might be an excellent solution for your particular application if applied
only to data that gives you grief.

Geocoder.us
Let’s adapt our code for another US-centric geocoding service. Geocoder.us is a very popular
service and was introduced well before Yahoo’s and Google’s services hit the market. For a long
while, it was the measuring stick against which all other services were compared. The service was
developed by two enterprising programmers, who took the freely available 2004 US Census
Bureau’s data and converted it into a web service.

■Note The developers of Geocoder.us have made the Perl code that they wrote for their service available
under an open source license and a module called Geo::Coder::US. If this interests you, then Chapter 11
may also interest you. In Chapter 11, we dig deep into the US Census data to build our own geocoder from
scratch using PHP instead of Perl.

Just as with the Google and Yahoo services, there are limitations to the Geocoder.us service.
The free service cannot be used for commercial purposes, and is rate-limited to prevent abuse,

CHAPTER 4 ■ GEOCODING ADDRESSES80

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 80

though the developers haven’t published exactly what the limit is. You can purchase a high-volume
or commercial account that will get you four lookups per penny (20,000 lookups for $50) with
no rate limiting whatsoever.

Geocoder.us offers four different ways to access its web services: an XML-RPC interface,
a SOAP interface, a REST interface that returns an RDF/XML document, and a REST interface that
returns a plaintext CSV result. The accuracy, methods, and return values are equivalent across
all of these interfaces. It’s merely a matter of taste as to which one you’ll use. For our example,
we’ll use the REST-based service and the CSV result (for some variety).

The following is an example of a Geocoder.us request for geocoding the Apress headquarters:

http://geocoder.us/service/csv/geocode?address=2560+Ninth+Street,+Berkeley+CA+94710

This returns the CSV string 37.859524,-122.291713,2560 9th St,Albany,CA,94710. You can
see that it has mistaken Berkeley for Albany, despite the fact that the ZIP codes match. The
latitude and longitude are nearly identical to the results Yahoo gave.

Let’s again reuse the code from Listing 4-3 and adapt it to suit this new service. As with the
Google geocoder, only one parameter is passed into this REST service, and it is called address.
At minimum, either a city and state or a ZIP code must be contained in the address parameter.
Listing 4-8 shows the adapted code.

■Caution The code in Listing 4-8 takes a while to run. We’ll discuss why in a moment, but for now be patient.

Listing 4-8. Using the Geocoder.us Service to Locate the Stores

<?php

// Create a CURL object for later use

$ch = curl_init();

curl_setopt($ch, CURLOPT_HEADER, 0);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

// Open the ronjons.xml file

$datafile = simplexml_load_file("ronjons.xml");

if (!$datafile) die("Unable to open input file!");

foreach ($datafile->store as $store) {

// Construct the request string

$url = "http://geocoder.us/service/csv/geocode?address=";

$address = "";

if ($store->address) $address .= $store->address.", ";

if ($store->city) $address .= $store->city." ";

if ($store->state) $address .= $store->state." ";

if ($store->zip) $address .= $store->zip;

$url .= urlencode($address);

echo "Store: {$store->name}\n";

CHAPTER 4 ■ GEOCODING ADDRESSES 81

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 81

// Query Geocoder.us for this store's lat/long

curl_setopt($ch, CURLOPT_URL, $url);

$response = curl_exec($ch);

// Split up the CSV result into components

list($lat,$long,$address,$city,$state,$zip) = split(",",$response);

echo "Latitude: $lat\n";

echo "Longitude: $long\n\n";

} // for each store

// Close the CURL file and destroy the object

curl_close($ch);

?>

The only real difference here is with the CSV-style response. We’ve used a convention for
splitting here that is common to the code snippets found on http://www.php.net, namely, using
list() to get named strings instead of an array when calling the split() function. Listing 4-9
shows the output of the code in Listing 4-8.

Listing 4-9. Output from the Geocoder.us Script

Store: "The Original" Ron Jon Surf Shop

Latitude: 39.649509

Longitude: -74.177136

Store: "One of a Kind" Ron Jon Surf Shop

Latitude: 28.356433

Longitude: -80.608227

Store: Ron Jon Surf Shop - Sunrise

Latitude: 26.150513

Longitude: -80.316476

Store: Ron Jon Surf Shop - Orlando

Latitude: 28.466795

Longitude: -81.449860

Store: Ron Jon Surf Shop - Key West

Latitude: 24.560083

Longitude: -81.806069

Store: Ron Jon Surf Shop - California

Latitude: 33.781086

Longitude: -117.892520

Store: Ron Jon Cape Caribe Resort

Latitude: 2: couldn't find this address! sorry

Longitude:

CHAPTER 4 ■ GEOCODING ADDRESSES82

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 82

When executing the code, the first thing you’ll probably notice is that this request takes
a long time to run. We believe this is a result of Geocoder.us rate limiting being based on requests
per minute instead of requests per day. When testing, it took well over a minute to geocode just
the seven points in the ronjons.xml data file.

The next thing you’ll see if you look carefully is that the latitude and longitude results are the
same as those from Yahoo only to three decimal places (on average). This is not a large difference
and is the result of using different interpolation optimizations on the same data set, which we’ll
discuss in Chapter 11.

Notice that “The Original” store has given us a single answer this time, instead of multiple
answers, and that the resort has given us grief yet again, except in this case, we didn’t even get
a best guess.

■Note To determine just how large a distance difference the various geocoders give you for each of the results,
you’ll need to use the spherical distance equations (such as the Haversine method) we provide in Chapter 10.

Geocoder.ca
Geocoder.ca is similar to the service provided by Geocoder.us, but it is specifically targeted at
providing information about Canada. (This service is in no way affiliated with Geocoder.us, and
it uses a completely different data set, provided by Statistics Canada.)

The people behind Geocoder.ca built it specifically for their own experiments with the
Google Maps API when they had trouble finding a timely, accurate, and cost-effective solution
for geocoding Canadian addresses. They obtained numerous sources of data (postal, census,
and commercial) and cross-referenced everything to weed out the inevitable errors in each set.
This means that the Geocoder.ca service is quite possibly the most accurate information for
Canada so far. (However, now that Google’s solution covers Canada with relatively good accuracy,
we’re afraid that this extremely comprehensive service will become marginalized.)

Geocoder.ca provides a lot of neat features like intersection geocoding, reverse geocoding,
and a suggestion system for correcting mistyped (or renamed) street names—none of which
are provided by Google’s geocoder, or any other for that matter. We don’t cover any of these
alternative features in this chapter, but you can find more information about them at their
website if you’re interested.

Remember that there is still no free lunch, so as with the other services, there are also
limitations on the Geocoder.ca service. The free service is limited to between 500 and 2000
lookups per day per source IP address, depending on server load (light days you get more;
heavy days less). The developers are willing to extend the limits for nonprofit organizations,
but everyone else will need to purchase an account for commercial uses. The cost is currently
the same as Geocoder.us: 20,000 lookups for $50. Purchasing a commercial account might be an
excellent way to cross-reference Google’s multiple-result answers quickly, cheaply, and effectively.

An example of a query for geocoding the CN Tower in Toronto, Ontario is as follows:

http://geocoder.ca/?&stno=301&addresst=Front%2BStreet%2BWest&city=Toronto&prov=➥

ON&postal=M5V2T6&geoit=XML.

This yields the exceedingly simple XML result in Listing 4-10.

CHAPTER 4 ■ GEOCODING ADDRESSES 83

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 83

Listing 4-10. Sample Response from Geocoder.ca

<?xml version="1.0" encoding="UTF-8" ?>

<geodata>

<latt>43.643865000</latt>

<longt>-79.388545000</longt>

</geodata>

Notice that the XML response uses latt and longt. The trailing t is easy to miss when
reading the raw XML.

For an example, the Ron Jon Surf Shop data will not work, since the chain has yet to open
a store in Canada. Instead, we’ll again use the CN Tower in Toronto, Ontario. The address for
the CN Tower is 301 Front Street West, Toronto, Ontario M5V 2T6 Canada. Listing 4-11 shows
a small PHP snippet for geocoding this single address, which could easily be looped and
abstracted as in previous examples to do multiple addresses. Feel free to substitute your own
address if you live in the Great White North or know someone who does.

Listing 4-11. Using Geocoder.ca to Locate the CN Tower in Toronto

<?php

// Address to geocode (the CN Tower)

$street_no = "301";

$street = "Front Street West";

$city = "Toronto";

$prov = "ON";

$postal = "M5V2T6";

// Create a CURL object for later use

$ch = curl_init();

curl_setopt($ch, CURLOPT_HEADER, 0);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

// Construct the request string

$url = "http://geocoder.ca/?";

$url .= "&stno=".urlencode($street_no);

$url .= "&addresst=".urlencode($street);

$url .= "&city=".urlencode($city);

$url .= "&prov=".$prov;

$url .= "&postal=".$postal;

$url .= "&geoit=XML";

// Query Geocoder.ca for the lat/long

curl_setopt($ch, CURLOPT_URL, $url);

$response = curl_exec($ch);

// Use SimpleXML to parse our answer into something we can use

$resultset = simplexml_load_string($response);

if (!$resultset) die("Unable to parse the response!");

CHAPTER 4 ■ GEOCODING ADDRESSES84

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 84

echo "The CN tower is located here:\n";

echo "Latitude: {$resultset->latt}\n";

echo "Longitude: {$resultset->longt}\n";

// Close the CURL file and destroy the object

curl_close($ch);

?>

The most important lines in Listing 4-11 are highlighted in bold. The first is that the
Geocoder.ca service prefers you to split out the street number from the street name. This isn’t
strictly necessary, but it does imply that greater accuracy can be achieved by doing so. The second
is that the geoit parameter must be included. At this point, there is no alternative value for this
parameter, but there probably will be in the future. Lastly, when parsing the results, again,
remember that the XML response uses latt and longt.

Listing 4-12 shows the output from Listing 4-11.

Listing 4-12. Output from our Geocoder.ca Script

The CN tower is located here:

Latitude: 43.643865000

Longitude: -79.388545000

When you compare this answer with the one Google gives you (43.642411,-79.386649) by
clicking on a map, as in Chapter 3, you see that Geocoder.ca has done an excellent job of finding
the correct coordinates for the CN Tower given its street address.

Services for Geocoding Addresses Outside Google’s Coverage
For addresses outside the set provided by Google’s geocoder, the job becomes much more difficult
due to the lack of good, freely available data. In Chapter 11, you’ll see how to create your own
service from some sources of free data for the UK and the US. Maybe some of you will be inspired
to find data for your country and create a service for the rest of us.

For now, however, we’re simply going to share a few of the geocoding services we’ve found
to date for areas outside Google’s coverage area. We can’t guarantee the accuracy or completeness
of data from these services, since we don’t have any real addresses to test with or enough
knowledge of the local geography to wing it. We’ll try to keep an updated list of services as we
hear about them on our website at http://googlemapsbook.com/geocoders. Please let us know if
you find or make more!

Geonames.org
Geonames.org has quite a few web services that might fit your needs. There is a full-text search of
its database of place names, landmarks, and other geopositional data at http://www.geonames.
org/export/geonames-search.html. However, you can also find (partial) postal code lookups for
many countries (currently over 50), as well as reverse geocoding solutions for finding the name
of the country or closest named feature for a given latitude and longitude (reverse geocoding).
In Appendix A, we discuss the use of complete database dumps as a possible means to acquire
the data you need to build your application without using external geocoding services.

CHAPTER 4 ■ GEOCODING ADDRESSES 85

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 85

ViaMichelin.com
One interesting solution for geocoding addresses in western Europe is http://www.viamichelin.
com. The company that runs this service is part of the same company that makes Michelin tires
(remember the Michelin Man?). The service offers route calculation, geocoding, and even an
alternative source of map data. ViaMichelin is in competition with Google when it comes to
maps, but for European locations where Google does not yet have geocoding services, the
ViaMichelin solution could mean the difference between a successful project and a failure.

Bulk Geocoders
Many bulk geocoding services out there will accept a CSV or Excel file from you, determine
latitude and longitude to the best of their ability, and give you the results a few hours to a few
days later. These services typically charge a per-point fee when they are successful and nothing
when they are not. Many of them use the Microsoft MapPoint Web Service to do the work.
The quality of the data varies (with provider, price, and country), so we suggest that you do
your research before hiring one of them to geocode your points.

Caching Lookups
As programmers, we hate wasting resources, and as service providers, we hate having our
resources wasted. Therefore, for many of the examples in the rest of this book, you’ll be
precomputing the latitude and longitude programmatically and storing that information
along with the point data you want to use in your mashup. This saves your bandwidth by not
requiring unnecessary CURL/API requests, and saves the bandwidth of the services you’ll be
using for geocoding. Best of all, it provides a much faster user experience for your map visitors,
which is almost always the single largest factor in determining the success of a website or service.

■Caution Caching is not always the right answer. In some of the more novel mashups we’ve seen, the data
is so dynamic that caching the latitude and longitude of the plotted point is actually more of a waste than not
caching it. These examples are typically mashups where a single given point is plotted for only one or two visitors
before it’s never seen again, such as plotting the current position of a GPS device.

To cache the data for your store locator map, you’ll modify the code in Listing 4-6 to create
a script (Listing 4-13) that does a bulk geocoding of all of the stores and adds the latitude and
longitude to the data file in Listing 4-14. In the next section, you’ll use this data file to make your
map, and assume that the stores already have latitude and longitude values associated with them.

Listing 4-13. Modified Code Showing Write-Back of Cached Data

<?php

// Your Yahoo! Application Code

$appid = YOUR_YAHOO_APPLICATION_ID;

CHAPTER 4 ■ GEOCODING ADDRESSES86

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 86

// Create a CURL object for later use

$ch = curl_init();

curl_setopt($ch, CURLOPT_HEADER, 0);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

// Open the ronjons.xml file

$datafile = simplexml_load_file("ronjons.xml");

// Open a file to store our consolidated information in

$newfile = fopen("ronjons_cache.xml", "w+");

fputs($newfile,'<?xml version="1.0" encoding="UTF-8"?>'."\n");

fputs($newfile,'<stores>'."\n");

foreach ($datafile->store as $store) {

// Construct the request string

$url = "http://api.local.yahoo.com/MapsService/V1/geocode?appid=$appid";

if ($store->address) $url .= "&street=".urlencode($store->address);

if ($store->city) $url .= "&city=".urlencode($store->city);

if ($store->state) $url .= "&state=".urlencode($store->state);

if ($store->zip) $url .= "&zip=".trim($store->zip);

// Query Yahoo for this store's lat/long

curl_setopt($ch, CURLOPT_URL, $url);

$response = curl_exec($ch);

// Use SimpleXML to parse our answer into something we can use

$yahooresult = simplexml_load_string($response);

foreach ($yahooresult->Result as $result) {

$latitude = $result->Latitude;

$longitude = $result->Longitude;

} // for each Yahoo Result

// Lastly output the XML to our file

fputs($newfile,' <store>'."\n");

fputs($newfile,' <name>'.trim($store->name).'</name>'."\n");

fputs($newfile,' <address>'.trim($store->address).'</address>'."\n");

if ($store->address2)

fputs($newfile,' <address2>'.trim($store->address2).'</address2>'."\n");

fputs($newfile,' <city>'.trim($store->city).'</city>'."\n");

fputs($newfile,' <state>'.trim($store->state).'</state>'."\n");

fputs($newfile,' <zip>'.trim($store->zip).'</zip>'."\n");

fputs($newfile,' <phone>'.trim($store->phone).'</phone>'."\n");

fputs($newfile,' <pin>'.trim($store->pin).'</pin>'."\n");

fputs($newfile,' <latitude>'.trim($latitude).'</latitude>'."\n");

fputs($newfile,' <longitude>'.trim($longitude).'</longitude>'."\n");

fputs($newfile,' </store>'."\n");

} // for each store

CHAPTER 4 ■ GEOCODING ADDRESSES 87

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 87

// Close the CURL file and destroy the object

curl_close($ch);

// Close the new file freeing the memory

fputs($newfile,'</stores>'."\n");

fclose($newfile);

?>

As you can see from the code, in our example we’ve elected to use the standard fopen(),
fwrite(), and fclose() PHP commands to create the new file. SimpleXML doesn’t provide
a facility to add elements to an open XML document, and getting into a full-blown DOM example
would be counterproductive.

Your modified script now creates a new file on the file system, as shown in Listing 4-14.
You could have just as easily written the file on top of the existing ronjons.xml file, but if the
conversion failed, you could lose all your existing data. The only trick is that you’ll need to grant
the web server user access to make new files in the folder you’re working in, or you’ll need to
create a blank file and make it world-writable before executing this code.

Listing 4-14. The New ronjons_cache.xml File with Caching (ronjons_cache.xml)

<?xml version="1.0" encoding="UTF-8"?>

<stores>

<store>

<name>"The Original" Ron Jon Surf Shop</name>

<address>901 Central Avenue</address>

<city>Long Beach Island</city>

<state>NJ</state>

<zip>08008</zip>

<phone>(609) 494-8844</phone>

<pin>store</pin>

<latitude>39.649652</latitude>

<longitude>-74.177547</longitude>

</store>

<store>

<name>"One of a Kind" Ron Jon Surf Shop</name>

<address>4151 North Atlantic Avenue</address>

<city>Cocoa Beach</city>

<state>FL</state>

<zip>32931</zip>

<phone>(321) 799-8888</phone>

<pin>store</pin>

<latitude>28.356577</latitude>

<longitude>-80.608069</longitude>

</store>

<store>

<name>Ron Jon Surf Shop - Sunrise</name>

<address>2610 Sawgrass Mills Circle</address>

<address2>Suite 1415</address2>

CHAPTER 4 ■ GEOCODING ADDRESSES88

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 88

<city>Sunrise</city>

<state>FL</state>

<zip>33323</zip>

<phone>(954) 846-1880</phone>

<pin>store</pin>

<latitude>26.156292</latitude>

<longitude>-80.316945</longitude>

</store>

<store>

<name>Ron Jon Surf Shop - Orlando</name>

<address>5160 International Drive</address>

<city>Orlando</city>

<state>FL</state>

<zip>32819</zip>

<phone>(407) 481-2555</phone>

<pin>store</pin>

<latitude>28.469972</latitude>

<longitude>-81.450143</longitude>

</store>

<store>

<name>Ron Jon Surf Shop - Key West</name>

<address>503 Front Street</address>

<city>Key West</city>

<state>FL</state>

<zip>33040</zip>

<phone>(305) 293-8880</phone>

<pin>store</pin>

<latitude>24.560448</latitude>

<longitude>-81.805998</longitude>

</store>

<store>

<name>Ron Jon Surf Shop - California</name>

<address>20 City Blvd.</address>

<address2>West Building C Suite 1</address2>

<city>Orange</city>

<state>CA</state>

<zip>92868</zip>

<phone>(714) 939-9822</phone>

<pin>store</pin>

<latitude>33.783329</latitude>

<longitude>-117.890562</longitude>

</store>

<store>

<name>Ron Jon Cape Caribe Resort</name>

<address>1000 Shorewood Drive</address>

<city>Cape Canaveral</city>

<state>FL</state>

CHAPTER 4 ■ GEOCODING ADDRESSES 89

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 89

<zip>32920</zip>

<phone>(321) 328-2830</phone>

<pin>resort</pin>

<latitude>28.40168</latitude>

<longitude>-80.59774</longitude>

</store>

</stores>

■Note Ideally, you would be using some sort of relational database rather than a flat file on your file system
for storing the points for your map. This would allow you to check each point at mapping time and look up (and
cache) only those that don’t have geocoded data yet. We’ll begin using SQL databases in the next chapter.

The performance gain for caching just seven points is probably not noticeable on your
high-speed connection. However, as your code scales to hundreds or thousands of data points,
it will become critical. Also, if you are paying for each lookup, even at hundreds of lookups per
dollar, the costs can add up quickly if a popular blog links to your map.

Note that the one place to avoid using caching is when your visitors are required to enter
their current location so that the map can tailor itself to their situation and surroundings. This
is often used in a store finder application where visitors enter their address and how far they are
willing to drive to buy your product from a brick-and-mortar store.

Building a Store Location Map
Now that you have your stores and their latitude and longitude coordinates, you’re ready to make
your map. This will be a very basic map, but it serves our demonstration nicely. You’ll customize
the marker GIcon using the Ron Jon Surf Shop logo, and use the info window to display the store’s
address and phone number to visitors when they click the marker.

To make things a little easier, you can begin by taking the map you created in Chapter 2,
with the addition of the icon creation from Chapter 3, and use the map_data.php file to
convert your XML file of cached locations into the data structure from the map_data.php file
in Listing 2-6. Listings 4-15, 4-16, and 4-17 show the modified map_data.php file, its output,
and the map_functions.js file, respectively.

Listing 4-15. PHP Generation of the JavaScript (JSON) Data File in map_data.php

<?php

// Open the ronjons_cache.xml file and load the data for the pins

$datafile = simplexml_load_file("ronjons_cache.xml");

echo "var markers = [\n";

foreach ($datafile->store as $store) {

$description = "{$store->address}
";

if ($store->address2) $description .= "{$store->address2}
";

$description .= "{$store->city}, {$store->state}
";

$description .= "{$store->zip}
";

$description .= "Phone: {$store->phone}
";

CHAPTER 4 ■ GEOCODING ADDRESSES90

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 90

echo "{

'latitude': {$store->latitude},

'longitude': {$store->longitude},

'name': '{$store->name}',

'description': '$description'

},\n";

}

echo "];\n";

?>

Listing 4-16. Generated JSON Data Structure in map_data.php

var markers = [

{

'latitude': 39.649652,

'longitude': -74.177547,

'name': '"The Original" Ron Jon Surf Shop',

'description': '901 Central Avenue
Long Beach Island,➥

NJ
08008
Phone: (609) 494-8844
'

}, {

'latitude': 28.356577,

'longitude': -80.608069,

'name': '"One of a Kind" Ron Jon Surf Shop',

'description': '4151 North Atlantic Avenue
Cocoa Beach,➥

FL
32931
Phone: (321) 799-8888
'

}, {

'latitude': 26.156292,

'longitude': -80.316945,

'name': 'Ron Jon Surf Shop - Sunrise',

'description': '2610 Sawgrass Mills Circle
Suite 1415
Sunrise,➥

FL
33323
Phone: (954) 846-1880
'

}, {

'latitude': 28.469972,

'longitude': -81.450143,

'name': 'Ron Jon Surf Shop - Orlando',

'description': '5160 International Drive
Orlando,➥

FL
32819
Phone: (407) 481-2555
'

}, {

'latitude': 24.560448,

'longitude': -81.805998,

'name': 'Ron Jon Surf Shop - Key West',

'description': '503 Front Street
Key West,➥

FL
33040
Phone: (305) 293-8880
'

}, {

'latitude': 33.783329,

'longitude': -117.890562,

'name': 'Ron Jon Surf Shop - California',

CHAPTER 4 ■ GEOCODING ADDRESSES 91

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 91

'description': '20 City Blvd.
West Building C Suite 1
Orange,➥

CA
92868
Phone: (714) 939-9822
'

}, {

'latitude': 28.40168,

'longitude': -80.59774,

'name': 'Ron Jon Cape Caribe Resort',

'description': '1000 Shorewood Drive
Cape Canaveral,➥

FL
32920
Phone: (321) 328-2830
'

},

];

Listing 4-17. map_functions.js from Chapter 2 Modified to Add Customized Icons and Info Windows

var centerLatitude = 40.6897;

var centerLongitude = -95.0446;

var startZoom = 3;

var map;

var RonJonLogo = new GIcon();

RonJonLogo.image = 'ronjonsurfshoplogo.png';

RonJonLogo.iconSize = new GSize(48, 24);

RonJonLogo.iconAnchor = new GPoint(24, 14);

RonJonLogo.infoWindowAnchor = new GPoint(24, 24);

function addMarker(latitude , longitude, description) {

var marker = new GMarker(new GLatLng(latitude, longitude), RonJonLogo);

GEvent.addListener(marker, 'click',

function() {

marker.openInfoWindowHtml(description);

}

);

map.addOverlay(marker);

}

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

for(id in markers) {

addMarker(markers[id].latitude , markers[id].longitude,

markers[id].description);

}

}

window.onload = init;

CHAPTER 4 ■ GEOCODING ADDRESSES92

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 92

Figure 4-1 shows the completed map.

Figure 4-1. The completed map of the Ron Jon Surf Shop US locations

There you have it. The best bits of all of our examples so far combined into a map application.
Data is geocoded, automatically cached for speed, and plotted quickly based on a JSON
representation of our XML data file.

Summary
This chapter covered using geocoding services with your maps. It’s safe to assume that you’ll be
able to adapt the general ideas and examples here to use almost any web-based geocoding service that
comes along in the future. From here on, we’ll assume that you know how to use these services
(or ones like them) to geocode and cache your information efficiently.

This ends the first part of the book. In the next part, we’ll move on to working with third-party
data sets that have hundreds of thousands of points. Our examples will use the FCC’s antenna
structures database that currently numbers well over a hundred thousand points.

CHAPTER 4 ■ GEOCODING ADDRESSES 93

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 93

7079ch04FINAL.qxd 7/28/06 12:48 PM Page 94

Beyond the Basics

P A R T 2

■ ■ ■

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 95

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 96

Manipulating Third-Party Data

In this chapter, we’re going to cover two of the most popular ways of obtaining third-party
data for use on your map: downloadable character-delimited text files and screen scraping. To
demonstrate manipulating data, we’ll use a single example in this and the next two chapters
(the FCC Antenna Structures Database). In the end, you’ll have an understanding of the data
that will be used for the sample maps, as well as how the examples might be generalized to fit
your own sources of raw information.

In Appendix A, you’ll find a list of other sources of free information that you could harvest
and combine to make maps. You might want to thumb to this appendix to see some other neat
things you could do in your own experiments and try applying the tips and tricks presented in
this chapter to some other source of data. The scripts in this chapter should give you a great
toolbox for harvesting nearly any data source, and the ideas in the next two chapters will help
you make an awesome map, no matter how much data there is.

In this chapter, you’ll learn how to do the following:

• Split up and store the information from character-delimited text files in a convenient
way for later use.

• Use SQL as a server-side information storage system instead of the file-system-based
text files (XML, CSV, and so on) you’ve been using so far.

• Optimize your SQL queries to extract the information you want quickly and easily.

• Parse the visible HTML from a website and extract the parts that you care about—a
process called screen scraping.

Using Downloadable Text Files
For the next three chapters, we’re going to be working with the US Federal Communications
Commission (FCC) Antenna Structure Registration (ASR) database. This database will help us
highlight many of the more challenging aspects of building a professional map mashup.

So why the FCC ASR database? There are several reasons:

97

C H A P T E R 5

■ ■ ■

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 97

• The data is free to use, easy to obtain, and well documented. This avoids copyright and
licensing issues for you while you play with the data.

• There is a lot of data, allowing us to discuss issues of memory consumption and inter-
face speed. At the time of publication, there were more than 120,000 records.

• The latitudes and longitudes are already recorded in the database, removing the need
to cover something we’ve already discussed in depth.

• None of the preceding items are likely to have changed since this book was published,
serving as a future-proof example that should still be relevant as you read this.

• The maps you can make with this data look extremely cool (Figure 5-1)!

Figure 5-1. Example of a map built with FCC ASR data (which you will build in Chapter 7)

Downloading the Database
The first thing you need to do is obtain the FCC ASR database. It’s available from http://
wireless.fcc.gov/uls/data/complete/r_tower.zip. This file is approximately 65MB to 70MB
when compressed.

After you’ve downloaded the file, unpack it and transfer RA.dat, EN.dat, and CO.dat into
your working folder. You won’t need the rest of the files for this experiment, although they do
contain interesting data. If you’re interested in the official documentation, feel free to visit
http://wireless.fcc.gov/cgi-bin/wtb-datadump.pl.

Tables 5-1 through 5-3 outline the contents of the RA.dat, EN.dat, and CO.dat files. RA.dat
(Table 5-1) is the key file, and the one you will use to bind the three together. It lists the unique
identification numbers for each structure, as well as the physical properties, like size and street
address. EN.dat (Table 5-2) outlines the ownership of each structure, and CO.dat (Table 5-3)
outlines the coordinates for the structure in latitude and longitude notation. The Used in Our
Example? column in each table indicates the data you will be using.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA98

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 98

Table 5-1. RA.dat: Registrations and Applications

Column Data Element Content Definition Used in Our Example?

0 Record Type char(2)

1 Content Indicator char(3)

2 File Number char(8)

3 Registration Number char(7) Yes

4 Unique System Identifier numeric(9) Yes

5 Application Purpose char(2)

6 Previous Purpose char(2)

7 Input Source Code char(1)

8 Status Code char(1)

9 Date Entered mm/dd/yyyy

10 Date Received mm/dd/yyyy

11 Date Issued mm/dd/yyyy

12 Date Constructed mm/dd/yyyy Yes

13 Date Dismantled mm/dd/yyyy Yes

14 Date Action mm/dd/yyyy

15 Archive Flag Code char(1)

16 Version integer

17 Signature First Name varchar(20)

18 Signature Middle Initial char(1)

19 Signature Last Name varchar(20)

20 Signature Suffix varchar(3)

21 Signature Title varchar(40)

22 Invalid Signature char(1)

23 Structure_Street Address varchar(80) Yes

24 Structure_City varchar(20) Yes

25 Structure_State Code char(2) Yes

26 Height of Structure numeric(5,1) Yes

27 Ground Elevation numeric(6,1) Yes

28 Overall Height Above Ground numeric(6,1) Yes

29 Overall Height AMSL numeric(6,1) Yes

30 Structure Type char(6) Yes

31 Date FAA Determination Issued mm/dd/yyyy

32 FAA Study Number varchar(20)

33 FAA Circular Number varchar(10)

34 Specification Option Integer

35 Painting and Lighting varchar(100)

36 FAA EMI Flag char(1)

37 NEPA Flag char(1)

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA 99

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 99

Table 5-2. EN.dat: Ownership Entity

Column Data Element Content Definition Used in Our Example?

0 Record Type char(2)

1 Content Indicator char(3)

2 File Number char(8)

3 Registration Number char(7) Yes

4 Unique System Identifier numeric(9,0) Yes

5 Entity Type char(1)

6 Licensee ID char(9)

7 Entity Name varchar(200) Yes

8 First Name varchar(20)

9 MI char(1)

10 Last Name varchar(20)

11 Suffix char(3)

12 Phone char(10)

13 Internet Address varchar(50)

14 Street Address varchar(35) Yes

15 PO Box varchar(20)

16 City varchar(20) Yes

17 State char(2) Yes

18 Zip Code char(9) Yes

19 Attention varchar(35)

■Note In the Entity Name column of the EN.dat file, there is often an equal sign (=). If you are going to
build a map that has ownership search features (say for cellular carriers), you might want to import only the
part after the equal sign, so that you can more accurately display results to your users.

Table 5-3. CO.dat: Physical Location Coordinates

Column Data Element Content Definition Used in Our Example?

0 Record Type char(2)

1 Content Indicator char(3)

2 File Number char(8)

3 Registration Number char(7) Yes

4 Unique System Identifier numeric(9) Yes

5 Coordinate Type char(1)

6 Latitude Degrees integer Yes

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA100

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 100

Column Data Element Content Definition Used in Our Example?

7 Latitude Minutes integer Yes

8 Latitude Seconds numeric(4,1) Yes

9 Latitude Direction char(1) Yes

10 Latitude_Total_Seconds numeric(8,1)

11 Longitude Degrees integer Yes

12 Longitude Minutes integer Yes

13 Longitude Seconds numeric(4,1) Yes

14 Longitude Direction char(1) Yes

15 Longitude_Total_Seconds numeric(8,1)

As you can see, we’re not concerned with most of the data that is available in this data-
base. Our main interest is the location and physical properties of each structure.

Parsing CSV Data
Now that you know what you want to use from the massive amount of data provided by the FCC,
you need to break out those bits into something useful. For this task, you’re going to use some
simple PHP. We’ll start with the standard fopen()/fgets() example from http://www.php.net/
fgets and add in the code to convert each line into an array. The code in Listing 5-1 shows this
process.

Listing 5-1. Parsing a Pipe (|) Delimited File

<?php

// Open the Registrations and Applications Data file

$handle = @fopen("RA.dat","r");

// Parse and output the first 50 USI numbers.

$i = 0;

if ($handle) {

while (!feof($handle)) {

$buffer = fgets($handle, 1024);

$row = explode("|",$buffer);

echo "USI#: ".$row[4]."
\n";

if ($i == 50) break; else $i++;

}

fclose($handle);

}

?>

The code in Listing 5-1 doesn’t do much other than fill your screen with useless information.
We’ve separated it from the data import into SQL data structures (shown later in Listing 5-3 in
the next section) because it’s a recipe that you’ll use repeatedly if you’re working with most
third-party data, and thus we felt it warranted its own section.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA 101

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 101

■Note In Listing 5-1, we’ve limited our script to output only the first 50 lines to prevent abuse and save
you time. However, it also serves as a good lesson: you should protect your own (long-running) import/
parsing scripts from being unintentionally (or intentionally) executed by general web surfers, or you may find
yourself the victim of a denial-of-service (DoS) attack.

Optimizing the Import
Leaving all of this data in the flat files won’t be very efficient for creating a map from the data,
since it will take minutes each time to parse the files and will likely flood all the memory buffers
on your server and your visitors’ machines. Therefore, you’ll import the data points into a SQL
data structure so that you can selectively plot the information based on your visitors’ interests
(as described in the next two chapters).

■Caution We assume you are already familiar with MySQL and have an administration tool for your
database that you are skilled at using. If you’re not familiar with MySQL, we recommend Beginning PHP and
MySQL 5: From Novice to Professional, Second Edition, by W. Jason Gilmore (http://www.apress.com/
book/bookDisplay.html?bID=10017).

You’ll be storing the information from each of your data files in its own table. While the
data you are interested in has a 1:1:1 relationship among the three files, the reason for doing
this is threefold:

• Reading in the contents of each file into a gigantic array and then inserting the data
into a single unified table one record at a time would consume hundreds of megabytes
of memory. Since the default PHP per-script memory limit is 8MB, and most web hosts
don’t increase this limit, this isn’t a workable solution in general. We also assume you do
not have sufficient permissions at your web host to increase your own memory limits. If
you do control your own server, feel free to use this method if you prefer, as there are no
real drawbacks other than the one-time memory consumption issue.

• Opening the three files simultaneously and sequentially reassembling the corresponding
records would require that the files be sorted first. (The FCC explicitly states that it will
never sort the files before you download them.) Doing this in PHP would again exceed
the memory limits, and using the Unix sort file system utility requires the use of PHP’s
exec(), which is also a protected function on many web hosts.

• Using a SQL INSERT statement for the data in the RA.dat file, then using an UPDATE state-
ment to fill in the blanks when you later read in EN.dat and CO.dat. would require heavy
use of the MySQL UPDATE feature, which is an order of magnitude (ten times) slower than
using INSERT. We tried this method, and it took more than eight hours to import all of
the data. Listing 5-3 only takes a few minutes.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA102

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 102

The structure we’ve chosen for the three-table design is in Listing 5-2. Copy these statements
into your administration tool and execute them.

Listing 5-2. The MySQL Table Creation Statements for the Example

CREATE TABLE fcc_location (

loc_id int(10) unsigned NOT NULL auto_increment,

unique_si_loc bigint(20) NOT NULL default '0',

lat_deg int(11) default '0',

lat_min int(11) default '0',

lat_sec float default '0',

lat_dir char(1) default NULL,

latitude double default '0',

long_deg int(11) default '0',

long_min int(11) default '0',

long_sec float default '0',

long_dir char(1) default NULL,

longitude double default '0',

PRIMARY KEY (loc_id),

KEY unique_si (unique_si_loc)

) ENGINE=MyISAM ;

CREATE TABLE fcc_owner (

owner_id int(10) unsigned NOT NULL auto_increment,

unique_si_own bigint(20) NOT NULL default '0',

owner_name varchar(200) default NULL,

owner_address varchar(35) default NULL,

owner_city varchar(20) default NULL,

owner_state char(2) default NULL,

owner_zip varchar(10) default NULL,

PRIMARY KEY (owner_id),

KEY unique_si (unique_si_own)

) ENGINE=MyISAM ;

CREATE TABLE fcc_structure (

struc_id int(10) unsigned NOT NULL auto_increment,

unique_si bigint(20) NOT NULL default '0',

date_constr date default '0000-00-00',

date_removed date default '0000-00-00',

struc_address varchar(80) default NULL,

struc_city varchar(20) default NULL,

struc_state char(2) default NULL,

struc_height double default '0',

struc_elevation double NOT NULL default '0',

struc_ohag double NOT NULL default '0',

struc_ohamsl double default '0',

struc_type varchar(6) default NULL,

PRIMARY KEY (struc_id),

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA 103

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 103

KEY unique_si (unique_si),

KEY struc_state (struc_state)

) ENGINE=MyISAM;

After you create the tables, run Listing 5-3 from either a browser or the command line to
import the data. Importing the data could take up to ten minutes, so be patient.

Listing 5-3. FCC ASR Conversion to SQL Data Structures

<?php

set_time_limit(0); // this could take a while

// Connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

// Open the Physical Location Coordinates file

$handle = @fopen("RA.dat","r");

if ($handle) {

while (!feof($handle)) {

$buffer = fgets($handle, 4096);

$row = explode("|",$buffer);

if ($row[3] > 0) {

// Modify things before we insert them

$row[12] = date("Y-m-d",strtotime($row[12]));

$row[13] = date("Y-m-d",strtotime($row[13]));

$row[23] = addslashes($row[23]);

$row[24] = addslashes($row[24]);

$row[30] = addslashes($row[30]);

// Formulate our query

$query = "INSERT INTO fcc_structure (unique_si, date_constr,

date_removed, struc_address, struc_city, struc_state, struc_height,

struc_elevation, struc_ohag, struc_ohamsl, struc_type)

VALUES ({$row[4]}, '{$row[12]}', '{$row[13]}', '{$row[23]}',

'{$row[24]}', '{$row[25]}', '{$row[26]}', '{$row[27]}', '{$row[28]}',

'{$row[29]}', '{$row[30]}')";

// Execute our query

$result = @mysql_query($query);

if (!$result) echo("ERROR: Duplicate structure info #{$row[4]}
\n");

}

}

fclose($handle);

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA104

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 104

}

echo "Done Structures.
\n";

// Open the Ownership Data file

$handle = @fopen("EN.dat","r");

if ($handle) {

while (!feof($handle)) {

$buffer = fgets($handle, 4096);

$row = explode("|",$buffer);

if ($row[3] > 0) {

$row[7] = addslashes($row[7]);

$row[14] = addslashes($row[14]);

$row[16] = addslashes($row[16]);

$query = "INSERT INTO fcc_owner (unique_si_own, owner_name,

owner_address, owner_city, owner_state, owner_zip) VALUES ({$row[4]},

'{$row[7]}', '{$row[14]}','{$row[16]}', '{$row[17]}', '{$row[18]}')";

$result = @mysql_query($query);

if (!$result) {

// Newer information later in the file: UPDATE instead

$query = "UPDATE fcc_owner SET owner_name='{$row[7]}',

owner_address='{$row[14]}', owner_city='{$row[16]}',

owner_state='{$row[17]}', owner_zip='{$row[18]}'

WHERE unique_si_own={$row[4]}";

$result = @mysql_query($query);

if (!$result)

echo "Failure to import ownership for struc. #{$row[4]}
\n";

else

echo "Updated ownership for struc. #{$row[4]}
\n";

}

}

}

fclose($handle);

}

echo "Done Ownership.
\n";

// Open the Physical Locations file

$handle = @fopen("CO.dat","r");

if ($handle) {

while (!feof($handle)) {

$buffer = fgets($handle, 4096);

$row = explode("|",$buffer);

if ($row[3] > 0) {

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA 105

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 105

if ($row[9] == "S") $sign = -1; else $sign = 1;

$dec_lat = $sign*($row[6]+$row[7]/60+$row[8]/3600);

if ($row[14] == "W") $sign = -1; else $sign = 1;

$dec_long = $sign*($row[11]+$row[12]/60+$row[13]/3600);

$query = "INSERT INTO fcc_location (unique_si_loc, lat_deg, lat_min,

lat_sec, lat_dir, latitude, long_deg, long_min, long_sec,

long_dir, longitude) VALUES ({$row[4]},'{$row[6]}', '{$row[7]}',

'{$row[8]}', '{$row[9]}', '$dec_lat','{$row[11]}', '{$row[12]}',

'{$row[13]}', '{$row[14]}', '$dec_long')";

$result = @mysql_query($query);

if (!$result) {

// Newer information later in the file: UPDATE instead

$query = "UPDATE fcc_location SET lat_deg='{$row[6]}',

lat_min='{$row[7]}', lat_deg='{$row[8]}', lat_dir='{$row[9]}',

latitude='$dec_lat', long_deg='{$row[11]}', long_min='{$row[12]}',

long_sec='{$row[13]}', long_dir='{$row[14]}', longitude='$dec_long'

WHERE unique_si_loc='{$row[4]}'";

$result = @mysql_query($query);

if (!$result)

echo "Failure to import location for struc. #{$row[4]}
\n";

else

echo "Updated location for struc. #{$row[4]}
\n";

}

}

}

fclose($handle);

}

echo "Done Locations.
\n";

?>

Using Your New Database Schema
You could retrieve and combine data from this database in three ways:

• Use PHP to query each table and reassemble it into an array by joining the results based
on the Unique Structure Id field.

• Use a multitable SELECT query and have SQL do the recombination for you.

• If your version of SQL supports views, create a view (a virtual table) and use PHP to
select directly from that instead.

Each method has various drawbacks and benefits, as explained in the following sections.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA106

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 106

Reconstruction Using PHP’s Memory Space
Using PHP to put the data back together isn’t really practical in a production environment. It’s
an obvious method if your SQL skills are still new; however, it only works if you’re going to be
using a very small set of information. We cover it here to show you how it would work in case
you find a valid use for it, but we do so with hesitation. This is neither a sane nor scalable method,
and the SQL-based solutions presented in a moment are much more robust. The code in List-
ing 5-4 locates all of the towers in Hawaii and consumes a huge amount of memory to do so.

Listing 5-4. Using PHP to Determine the List of Structures in Hawaii

<?php

// Connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

// Create our temporary holding arrays

$hawaiian_towers = array();

$usi_list = array();

// Get a list of the structures in Hawaii

$structures = mysql_query("SELECT * FROM fcc_structure WHERE struc_state='HI'");

for($i=0; $i<mysql_num_rows($structures); $i++) {

$row = mysql_fetch_array($structures, MYSQL_ASSOC);

$hawaiian_towers[$row['unique_si']] = $row;

$usi_list[] = $row['unique_si'];

}

unset($structures);

// Get all of the owners for the above structures

$owners = mysql_query("SELECT * FROM fcc_owner

WHERE unique_si_own IN (".implode(",",$usi_list).")");

for($i=0; $i<mysql_num_rows($owners); $i++) {

$row = mysql_fetch_array($owners, MYSQL_ASSOC);

$hawaiian_towers[$row['unique_si_own']] =

array_merge($hawaiian_towers[$row['unique_si_own']],$row);

}

unset($owners);

// Figure out the location of each of the above structures

$locations = mysql_query("SELECT * FROM fcc_location

WHERE unique_si_loc IN (".implode(",",$usi_list).")");

for($i=0; $i<mysql_num_rows($locations); $i++) {

$row = mysql_fetch_array($locations,MYSQL_ASSOC);

$hawaiian_towers[$row['unique_si_loc']] =

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA 107

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 107

array_merge($hawaiian_towers[$row['unique_si_loc']],$row);

}

unset($locations);

echo memory_get_usage();

?>

You can see that the only thing this script outputs to the screen is the total memory usage
in bytes. For our data set, this is approximately 780KB. This illustrates the fact that this method
is very memory-intensive, consuming one-eighth of the average allotment simply for data
retrieval. As a result, this method is probably one of the worst ways you could go about
reassembling your data. However, this code does introduce the use of the SQL IN clause. IN
simply takes a list of things (in this case integers) and selects all of the rows where one of the
values in the list is in the column unique_si. It’s still better to use joins to take advantage of the
SQL engine’s internal optimizations, but IN can be quite handy at times. You can use PHP’s
implode() function and a temporary array to create the list to pass to IN quickly and easily. For
more information about the array_merge() function, check out http://ca.php.net/manual/en/
function.array-merge.php.

The Multitable SELECT Query
Next, you’ll formulate a single query to the database that allows you to retrieve all the data for
a single structure as a single row. This means that you could iterate over the entire database
doing something with each record as you go, without having a single point in time where you’re
consuming a lot of memory for temporary storage. Working from the example we had at the
end of Chapter 2, we’re going to replace the static data file with one that is generated with PHP
and uses our SQL database of the FCC structures. Due to the volume of data we’ll be limiting
the points plotted to only those that are owned and operated in Hawaii. For more data man-
agement techniques see Chapter 7. Listing 5-5 shows the new map_data.php file. You will either
need to zoom in on Hawaii or change your centering in the map_functions.js file, too. In
Chapter 6, you will work on the user interface for the map, so right now, you will just plot all of
the points.

■Note In reality, this approach is primarily shifting the location where you consume the vast amounts of
memory. We're pushing the problem off the web server and onto the database server. However, in general,
the database server is more capable of handling the load and is optimized explicitly for this purpose.

Listing 5-5. map_data.php: Using a Single SQL Query to Determine the List of Structures

<?php

// Connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA108

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 108

$query = "SELECT * FROM fcc_structure, fcc_owner, fcc_location

WHERE struc_state='HI' AND owner_state='HI'

AND unique_si=unique_si_own AND unique_si=unique_si_loc";

$result = mysql_query($query, $conn);

$joiner = '';

$count = 0;

?>

var markers = [

<?php while($row = mysql_fetch_assoc($result)): ?>

<?= $joiner ?>

{

'latitude': <?= $row['latitude'] ?>,

'longitude': <?= $row['longitude'] ?>,

'name': '<?= addslashes($row['struc_address']) ?>'

}

<?

$joiner = ',';

$count++;

?>

<?php endwhile; ?>

];

/* Memory used at the end of the script: <? echo memory_get_usage(); ?> */

/* Output <?= $count ?> points */

You can see that this approach uses a much more compact and easily maintained query,
as well as much less memory. In fact, the memory consumption reported by memory_get_usage()
this time is merely the memory used by the last fetch operation, instead of all of the fetch
operations combined.

The tricky part is the order of the WHERE clauses themselves. The basic idea is to list the
WHERE clauses in such an order that the largest amounts of information are eliminated from
consideration first. Therefore, having the struc_state='HI' be the first clause removes more
than 99.8% of all the data in the fcc_structure table from consideration. The remaining clauses
simply tack on the information from the other two tables that correlates with the 0.2% of
remaining information.

Using this map_data.php script in the general map template from Chapter 2 gives you
a map like the one shown in Figure 5-2. Chapter 6 will expand on this example and help you
design and build a good user interface for your map.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA 109

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 109

Figure 5-2. The FCC structures in Hawaii

■Note Most database engines are smart enough to reorder the WHERE clauses to minimize their workload
if they can, and in this case, MySQL would probably do a pretty good job. However, in general, it’s good prac-
tice to help the database optimization engine and use a human brain to think about a sane order for the
WHERE clauses whenever possible.

A SQL View
The other approach you could take is to create a SQL view on the data and use PHP to select
directly from that. A view is a temporary table that is primarily (in our case, exclusively) used
for retrieving data from a SQL database. A view is basically the cached result of a query like the
one in Listing 5-5, without the state-specific data limitation. You can select from a view in the
same way that you can select from an ordinary table, but the actual data is stored across many
different tables. Updating is done on the underlying tables instead of the view itself.

■Note Using a SQL view in this way is possible only with MySQL 5.0.1 and later, PostgreSQL 7.1.x and
later, and some commercial SQL databases. If you’re using MySQL 3.x or 4.x and would like to use the new
view feature, consider upgrading.

Listing 5-6 shows the MySQL 5.x statements needed to create the view.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA110

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 110

Listing 5-6. MySQL Statement to Create a View on the Three Tables

CREATE VIEW fcc_towers

AS SELECT * FROM fcc_structure, fcc_owner, fcc_location

WHERE unique_si=unique_si_own AND unique_si=unique_si_loc

ORDER BY struc_state, struc_type

After the view is created, you can replace the query in Listing 5-5 with the insanely simple
$query = "SELECT * FROM fcc_towers WHERE struc_state='HI' AND owner_state='HI'"; and
you’re finished.

So why is a view better than the multitable SELECT? Basically, it precomputes all of the cor-
relations between the various tables and stores the answer for later use by multiple future
queries. Therefore, when you need to select some chunk of information for use in your script,
the correlation work has already been done, and the query executes much faster. However,
please realize that creating a view for a single-run script doesn’t make much sense, since the
value is realized in a time/computation savings over time.

For the next two chapters, we’ll assume that you were successful in creating the fcc_towers
view. If your web host doesn’t have a view-compatible SQL installation for you to use, then
simply replace our queries in the next two chapters with the larger one from Listing 5-5 and
make any necessary adjustments, or find a different way to create a single combined table
from all of the data.

■Tip For more information on the creation of views in MySQL, visit http://dev.mysql.com/doc/refman/
5.0/en/create-view.html. To see the limitations on using views, visit http://dev.mysql.com/doc/
refman/5.0/en/view-restrictions.html. For more information on views in PostgreSQL, visit http://
www.postgresql.org/docs/8.1/static/sql-createview.html.

KEEPING YOUR DATABASE CURRENT

So now that you have this database full of data, how do you keep it up-to-date? The FCC adds or changes
the data for more than a dozen structures each day, so it doesn’t take long for your information to become
outdated.

To keep current, you can use the daily transaction files that the FCC has made available for this specific
purpose, which are located at http://wireless.fcc.gov/cgi-bin/wtb-transactions.pl#tow.
These are available each night and represent all of the structures added to the system in the previous day.

To automate this task, you need access to three things on your web-host account:

• The ability to schedule your update program to run periodically

• A shell-scripting language in which to write your update tool

• A program for retrieving the transaction files using your shiny new tool

In our example here, we’re going to use the Unix cron daemon to schedule our program to run each
night, the command-line version of PHP (known as PHP-CGI or PHP-CLI in most Linux distributions), and

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA 111

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 111

wget to retrieve the transaction files from the FCC. If you have a different combination, the general idea pre-
sented here should be adaptable to most combinations.

The basic idea is that you’ll write a script that runs each night after midnight and retrieves the zipped
file for the previous day into a temporary folder. You’ll unpack the file, and then extract and insert the infor-
mation into your database exactly as you did in Listing 5-3. In fact, the following code is simply a wrapper
around the code from Listing 5-3.

You’ll be making extensive use of PHP’s exec() function, which simply runs an external program. This
is sometimes a banned function on shared-server web hosts, and in that case, this function call will cause an
error, so you’ll need to find another way to do the same thing. If you have access to Perl from the command
line, you could easily write this in Perl and call your code from Listing 5-3 as an external program instead of
a code include.

<?php

// Remove any temporary files (left over from last night).

exec("rm r_tow_$day.zip CO.dat EN.dat RA.dat");

// Decide which day it is we're interested in

$day = strtolower(date("D",strtotime("yesterday")));

// Formulate the URL we want wget to retrieve

$url = "http://wireless.fcc.gov/uls/data/daily/r_tow_$day.zip";

// Get the zipped file

exec("/usr/bin/wget -q $url");

// Unpack the parts of the zipped file we care about

exec("/usr/bin/unzip -qq r_tow_$day.zip CO.dat EN.dat RA.dat");

// Import data into our database using Listing 5-3. You may need to change paths.

require_once("../03/index.php");

// Remove our temporary files (prepare for tomorrow night).

exec("rm r_tow_$day.zip CO.dat EN.dat RA.dat");

?>

As you can see, the wrapper code around Listing 5-3 is fairly simple. The tricky part (if you’ve never
done this before) comes in setting up the cron job itself, which you’ll do now.

The first thing you need to do is open your personal cron schedule. In your shell, you can do this by run-
ning the command crontab -e. Your default command-line text editor should open to your current list of
scheduled jobs (quite likely an empty file).

You’ll need to enter the following two lines into the file that opens when you type crontab -e.

MAILTO = youremailaddress

0 2 * * * cd $HOME/public_html/path_to_your_script/; php fcc_update.php

The first line simply tells cron where to send all of the output. If there is no output, it won’t send an
e-mail message, but if you want to output diagnostics using echo (as we have), then you’ll get an e-mail
message showing you the details of the update each night.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA112

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 112

The second line is a single instruction telling cron what to do. The first number tells cron which minute
of the hour to run (0 through 59). In this case, it will run on the hour at zero minutes. The second number is
which hour(s) to run on (0 through 23), which is 2 a.m. in this example. The three asterisk symbols are wild-
cards telling cron to run each day of the month (1 through 31), each month of the year (1 through 12), on each
day of the week (0 through 6, where Sunday is 0). Therefore, our script will update the database at 2 a.m.
365 days a year. The second half of the line merely tells cron what you would like it to do on your behalf.

Save the file, and you’re finished. Your database should now stay in sync. If you want to debug your
crontab, simply change the hours and minutes to be a few minutes in the future and wait for your e-mail.

Screen Scraping
Sometimes the data you want to use just isn’t available in a nice, neat little package or service.
In these cases, you can try searching the Web for the data you want, and you might find part or
all of it on someone else’s website. If it’s not available for download, as a web service, or for
purchase, you might consider parsing the visible HTML and extracting the parts that you care
about. This process is called screen scraping, because you are writing a program that pretends
to be a normal, legitimate visitor but is really harvesting the data and usually storing it in your
own database.

Accomplishing this is different for every single source of data, but we’ll try to give you the
basic tools you’ll need to be successful. The basic idea is to download the pages (maybe using
CURL or wget) in sequence, then using loops and regular expressions or string mangling to find
and extract the interesting bits. Most scrapers also store the data they find in a local data store
to avoid going back to the source of the information each time it’s needed.

COPYRIGHT AND LEGAL ISSUES

There are legal and ethical concerns to consider when scraping, and neither the authors of this book nor
Apress condone information or intellectual property theft or copyright infringement in any form. Please
always ask for permission from site owners before scraping their sites. Sometimes owners would prefer to
provide you with the data in a less bandwidth-intensive (and more convenient for you) way, or have other
terms and conditions for using their data (like reciprocal links or copyright attributions).

There are many legitimate reasons to use screen scraping to obtain data. Among other reasons, site
owners may not have the resources or the skills to create a web service or an API for their data. Therefore,
they might say you’re welcome to take any data you want, but they can’t help you get it into a more convenient
format.

Regardless of the reason for scraping, you should always get written permission. Simply because the
data is available without fee on a website does not mean that you are free to take it and republish it at your
whim, even if you do not charge any sort of fee. Consult a lawyer if you can’t get permission; otherwise, you
might find that your hobby map turns into a crushing lawsuit against you.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA 113

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 113

A Scraping Example
As an example, you’ll be taking a list of latitudes and longitudes for the capital cities of many
countries in the world. The page that you’ll scrape is located at http://googlemapsbook.com/
chapter5/scrape_me.html. It’s not the most challenging scraping example, but it will serve our
purposes.

The first thing you need to do is use wget to retrieve a local copy of the page. From the
shell, run the following command while in your working directory for this example:

wget http://googlemapsbook.com/chapter5/scrape_me.html

■Tip If you would prefer to snag this page live from the Web directly from within your code, then grab
a snippet of the CURL code from Chapter 4’s geocoding web services examples. The only trick should be
splitting up the result on the newlines to form an array of lines, instead of using fgets() to read each line in
sequence.

Next, you need to do some analysis of the HTML of this page to decide what you can do
with it. Listing 5-7 shows the important bits for our discussion.

Listing 5-7. Snippets of HTML from the Sample Scraping Page

(After about 10 lines of header HTML you'll find this...)

<!-- Content Body -->

<table border="1" width="100%">

<tr>

<td >Country</td>

<td >Capital City</td>

<td >Latitude</td>

<td >Longitude</td></tr>

<tr><td class="latlongtable">Afghanistan</td>

<td class="latlongtable">Kabul</td>

<td class="latlongtable">34.28N</td>

<td class="latlongtable">69.11E</td></tr>

<tr><td class="latlongtable">Albania</td>

<td class="latlongtable">Tirane</td>

<td class="latlongtable">41.18N</td>

<td class="latlongtable">19.49E</td></tr>

<tr><td class="latlongtable">Algeria</td>

<td class="latlongtable">Algiers</td>

<td class="latlongtable">36.42N</td>

<td class="latlongtable">03.08E</td></tr>

(and 190 countries later...)

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA114

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 114

<tr><td class="latlongtable">Zambia</td>

<td class="latlongtable">Lusaka</td>

<td class="latlongtable">15.28S</td>

<td class="latlongtable">28.16E</td></tr>

<tr><td class="latlongtable">Zimbabwe</td>

<td class="latlongtable">Harare</td>

<td class="latlongtable">17.43S</td>

<td class="latlongtable">31.02E</td>

</tr>

</table>

<!-- Content Body End -->

So how do you extract the information that you care about? The first thing is to find
the patterns that you can exploit. In our case, we’re going to ignore all of the data that
comes before the HTML comment <!-- Content Body --> and after the closing comment
<!-- Content Body End -->. In between, we’ll care about only the lines where class=
"latlongtable" appears. We’re lucky that the data we care about is surrounded entirely by
HTML and that PHP has a handy function to remove it: strip_tags(). The largest string man-
gling we need to do is determining the sign of the latitude and longitude measurements based
on the N/S E/W labels. You can see the required code in Listing 5-8.

Listing 5-8. Screen Scraping Example

<?php

// Open the file and the database

$handle = @fopen("scrape_me.html","r");

$conn = mysql_connect("localhost","username","password");

mysql_select_db("geocoding_experiment",$conn);

// Status flags and temporary variables

$in_main_table = false;

$count = 0;

if ($handle) {

while (!feof($handle)) {

$buffer = fgets($handle, 4096);

// Look for "<!-- Content Body -->"

if (trim($buffer) == "<!-- Content Body -->") {

$in_main_table = true;

continue;

}

// For each line that has "latlongtable" in it trim

if ($in_main_table && strstr($buffer,'class="latlongtable"') !== false) {

// Dig out the part we care about

$interesting_data = trim(strip_tags($buffer));

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA 115

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 115

switch($count % 4) {

case 0:

// Country Info

$city = array(); // reset

$city[0] = addslashes($interesting_data);

break;

case 1:

// Capital City Info

$city[1] = addslashes($interesting_data);

break;

case 2:

// Latitude Information (determine sign)

$latitude = substr($interesting_data,0,strlen($interesting_data)-1);

if (substr($interesting_data,-1,1) == 'S') $sign = "-";

else $sign = "";

$city[2] = $sign.$latitude;

break;

case 3:

//Longitude Information (determine sign)

$longitude = substr($interesting_data,0,strlen($interesting_data)-1);

if (substr($interesting_data,-1,1) == 'W') $sign = "-";

else $sign = "";

$city[3] = $sign.$longitude;

echo implode(" ",$city)."
";

// Write to the database

$result = mysql_query("INSERT INTO capital_cities

(country,capital,lat,lng) VALUES ('".implode("','",$city)."')");

break;

} // switch

// Increment our counter

$count++;

// Stop when we find "<!-- Content Body End -->"

if ($buffer == "<!-- Content Body End -->") break;

} // if

} // while

} // if

fclose($handle);

?>

You can store this information using a database table like the one in Listing 5-9.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA116

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 116

Listing 5-9. SQL Database Structure for the Screen Scraping Example

CREATE TABLE capital_cities (

uid int(11) NOT NULL auto_increment,

country text NOT NULL,

capital text NOT NULL,

lat float NOT NULL default '0',

lng float NOT NULL default '0',

PRIMARY KEY (uid),

KEY lat (lat,lng)

) ENGINE=MyISAM;

■Note We hereby explicitly grant permission to any person who has purchased this book to use the infor-
mation contained in the body table of scrape_me.html for any purpose (commercial or otherwise), provided
it is in conjunction with a map built on the Google Maps API and conforms to Google’s terms of service. We
make no warranties about the accuracy of the information (in fact, there is one deliberate error) or its suit-
ability for any purpose.

Screen Scraping Considerations
You need to consider a few things when doing screen scraping:

• If you intend to scrape a dynamic source on a schedule or repeatedly over the course of
time, you’ll need to build in a lot of error checking. For example, our code would com-
pletely break if we made a change as simple as the name of the CSS class or the words
in the HTML comments.

• Rarely will the data be this cleanly laid out. If the problem is at all challenging, you
should look into using the PHP regular expression extensions. Many tutorials and
books are available that can help you with regular expressions. Some simple searching
will do the trick. Regular expressions are very, very powerful. Used properly with some
status flags, they can extract just about anything from an HTML page.

• Not all sources of data are going to be 100% accurate. For example, we’ve deliberately
made a mistake for Ottawa, Canada, changing the sign from N to S, thereby flipping it
below the equator. This causes our import script to treat the latitude as negative instead
of positive. These kinds of mistakes are likely to happen with any data source you use,
and in most cases, they will need to be corrected manually after the import.

• Sometimes the data is static or from a single source, and writing a program to do the
work doesn’t make sense. If the problem looks simple, you might try using your code
editor’s built-in search and replace functions. They certainly would have worked well as
an alternative for our example in Listing 5-9.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA 117

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 117

Summary
As you can see, there are a lot of ways to get the information you need to create a successful
map. We encourage you to look at Appendix A, where we’ve collected a wide variety of differ-
ent sources of information for common (and not so common) mapping applications. You’ll
find things like political boundaries and the locations of airports, schools, and churches, as
well as data on lakes and rivers.

In the next chapter, we’ll continue with the example from Listing 5-5 and build a proper
user interface. We’ll show you how to do some fancy things with CSS and DOM manipulation.
In Chapter 7, we’ll round out this example with a thorough discussion of ways to handle such
vast amounts of data on a map simultaneously and reminisce about the days when Google
Maps API version 1 gave us a practical limit of 50 to 75 pins and a crash-the-browser limit of
just a couple hundred. Progress is wonderful.

CHAPTER 5 ■ MANIPULATING THIRD-PARTY DATA118

7079ch05FINAL.qxd 7/25/06 1:41 PM Page 118

Improving the User Interface

In this chapter, you’ll use the FCC ASR data you collected in Chapter 5 and create a mashup
that really shines. What kind of interface surrounds a helpful map? What tricks can you do
with a little more CSS and JavaScript? What kinds of things besides markers can you put on
a map to increase its usefulness? You’ll find some suggestions in this chapter.

This chapter begins where the middle of Chapter 5 left off, but if you’re starting here, it’s
easy to catch up. As a basis, we’re using the code from Chapter 2, which plots points listed in
a file called map_data.php. We’ve replaced that flat data file, however, with a PHP script that
queries the database and dynamically serves up a list of points corresponding to FCC broad-
cast structures in Hawaii.

In this chapter, you’ll learn how to use CSS and JavaScript to enhance your maps as follows:

• Have your map adjust its size to fill any browser.

• Add a toolbar that hovers over the map.

• Create side panels for your map.

• Display a loading message to alert users when the map is processing or initializing.

• Allow users to selectively view or hide groups of data points.

CSS: A Touch of Style
CSS is the modern method of choice for controlling the visual appearance of an XML docu-
ment. Just as we’ve kept the HTML structure separate from JavaScript behavior and JavaScript
data, we’re also going to keep the CSS separate.

In your index.php file, you’ll need to add a reference to an external style sheet, as shown
in Listing 6-1. Since its appearance will momentarily be controlled by this CSS file, it’s also
possible to remove the explicit size from the map div.

Listing 6-1. Index.php with External Style Sheet Reference

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

119

C H A P T E R 6

■ ■ ■

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 119

<script src="http://maps.google.com/maps?file=api&v=2&key=API_KEY"➥

type="text/javascript"></script>

<script src="map_data.php" type="text/javascript"></script>

<script src="map_functions.js" type="text/javascript"></script>

<link href="style.css" rel="stylesheet" type="text/css" />

</head>

<body>

<div id="map"></div>

</body>

</html>

Without the style attribute, the map div collapses to nothing, and thus, no map appears.
Clearly, you need to actually create the style sheet and reapply the size declarations that were
removed. Listing 6-2 shows the style.css file that you should create and save in the same
directory as everything else.

Listing 6-2. Style.css to Give the Map Dimensions

#map {

width: 500px;

height: 400px;

}

With the style sheet from Listing 6-2 in place, all should be as it was when we set out at
the beginning of the chapter. Now that you have a central styling mechanism, read on for
some of the interesting things you can put there.

Maximizing Your Map
A surprising number of Google Maps projects seem to use fixed-size maps. But why lock the
users into particular dimensions when their screen may be significantly smaller or larger than
yours? It’s time to meet the map that fills up your browser, regardless of its screen size. Try
swapping out your style.css file for Listing 6-3.

Listing 6-3. Style.css for a Maximized Map

html, body {

margin: 0;

padding: 0;

height: 100%;

}

#map {

position: absolute;

top: 0;

left: 0;

width: 100%;

height: 100%;

}

CHAPTER 6 ■ IMPROVING THE USER INTERFACE120

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 120

As you can see in Figure 6-1, the map is now completely flexible and fills any size of
browser screen.

Figure 6-1. Our map fills up the browser at 800×600.

This method is particularly ideal for situations where a map is being used as part of a slide
show or on a kiosk. However, it also works in the web-page context, especially when combined
with the trick described in the next section.

■Tip Once you have the map maximized, you might notice how Internet Explorer 6 likes to show
a disabled vertical scrollbar on our perfectly fitted page. Under most circumstances, this is actually desired
behavior, since it means that centered sites are consistent with both short and long content. In our case,
however, you really don’t want it there. Fortunately, banishment is achieved with a pretty straightforward
rule: html { overflow: hidden; }.

Adding Hovering Toolbars
The introduction of CSS brought the concept of layering to web page layout. Prior to CSS, the
only way to stack up any content was by nesting table tags, and then placing different images
in the backgrounds of the successive table cells. However, using the CSS declaration for position,

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 121

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 121

it’s possible to pile up anything you like, including text, images, and even things like Flash
movies and scrolling div elements.

For the map, this means you can make content of various kinds hover on top of the map
that the API generates. For comparison, Windows Live Local uses a full-screen map with
translucent control widgets; check it out at http://local.live.com/.

Continuing the example from Listing 6-3, change the index.php file to include some
markup for a toolbar, as shown in Listing 6-4.

Listing 6-4. Index.php with Added Markup for a Toolbar

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="http://maps.google.com/maps?file=api&v=2&key=API_KEY"➥

type="text/javascript"></script>

<script src="map_data.php" type="text/javascript"></script>

<script src="map_functions.js" type="text/javascript"></script>

<link href="style.css" rel="stylesheet" type="text/css" />

</head>

<body>

<div id="map"></div>

<div id="toolbar">

<h1>Cell-Tower Locations</h1>

<ul id="options">

Towers

Poles

Masts

Other

</div>

</body>

</html>

And now, some CSS magic to take that markup and pull the toolbar up on top of the map.
Add the styles in Listing 6-5 to your style.css file.

Listing 6-5. Styles for a Floating Toolbar

#toolbar {

position: absolute;

top: 20px;

left: 60px;

width: 400px;

padding: 5px;

background: white;

border: 1px solid black;

}

CHAPTER 6 ■ IMPROVING THE USER INTERFACE122

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 122

You can see in Figure 6-2 that we’ve added a few more styles to make the toolbar’s menu
and titles prettier, but they’re not critical to the layout example here. The important thing to
note is the position: absolute bit. A block-level element such as a div naturally expands to
fill all of the width it has available, but once you position it as absolute or float it, it no longer
exhibits that behavior. So, unless you want it shrink-wrapping its longest line of text, you’ll
need to specify a width as either a fixed amount or some percentage of the window width.

Figure 6-2. Some styles for the toolbar

■Note If you’re curious how to make a floating toolbar actually draggable, a number of resources and
libraries out there can help you achieve this. Unfortunately, several seem to exhibit frustrating bad practices
or are simply way overengineered. This one is a good starting point, though: http://tool-man.org/
examples/dragging.html.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 123

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 123

WHAT ABOUT A FULL-WIDTH TOOLBAR?

Shouldn’t it be possible to create a bar that’s some fixed amount less than 100% of the available width?
What about a floating toolbar that starts exactly 60 pixels from the left edge and then goes to exactly 40 pixels
from the right edge?

It’s possible, in two different ways. In a few pages, you’ll see how to accomplish sizing maneuvers like
this using JavaScript. However, you can also create a full-width toolbar using just CSS. It’s a little hairy, but
there’s certainly convenience (and possibly some pride, too) in keeping the solution all CSS.

The gist of the approach is that you need to “push in” the width of the absolutely positioned toolbar, so
that when it has a declared width of 100%, the 100% is 100% of the exact width you want it to have, rather
than 100% of the browser’s entire client area.

The toolbar div will need an extra wrapper around it, to do the “pushing-in.” So start by changing your
markup:

<div id="toolbar-wrapper">

<div id="toolbar">

...

</div>

</div>

Now add the following styles to the style.css file:

#toolbar-wrapper {

margin-right: 100px;

position: relative;

}

#toolbar {

width: 100%;

...

}

The right margin on the toolbar wrapper causes the toolbar itself to lose that horizontal space, even
though the toolbar is ultimately being sucked out of the main document flow with position: absolute.

Creating Collapsible Side Panels
A common feature on many Google Maps mashups is some kind of side panel that provides
supplementary information, such as a list of the pins being displayed. You can implement this
simple feature in a number of ways. Here, we’ll show you one that uses a little CSS and JavaScript
to make a simple, collapsible panel.

First, the new side panel will need some markup. Modify the body section of Listing 6-4 to
look like Listing 6-6.

Listing 6-6. Index Body with Added Markup for a Side Panel

<body class="sidebar-right">

<div id="map-wrapper">

CHAPTER 6 ■ IMPROVING THE USER INTERFACE124

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 124

<div id="map"></div>

</div>

<div id="toolbar">

...

</div>

<div id="sidebar">

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin

accumsan condimentum dolor. Vestibulum ante fabicum...</p>

</div>

</body>

And now, to style this, you use almost the same trick as you used for the floating toolbar.
This time, that wrapper has a margin that pushes the map div out of the way, so the elements
appear beside each other, rather than overlapping. Listing 6-7 shows the CSS to add to style.css.

Listing 6-7. New Styles for the Side Panel

#map-wrapper {

position: relative;

height: 100%;

}

#sidebar {

position: absolute;

top: 0;

width: 300px;

height: 100%;

overflow: auto;

}

body.sidebar-right #map-wrapper { margin-right: 300px; }

body.sidebar-right #sidebar { right: 0; }

body.sidebar-off #map-wrapper { margin: 0; }

body.sidebar-off #sidebar { display: none; }

If you fill up the side panel with some more content, you can see how the overflow decla-
ration causes it to scroll. It behaves just like a 1997-era frame, but without all the hassle of
broken back buttons and negative frame stigma.

■Note Listing 6-7 provides only the simplest styles for this side panel. You’ll find when you try to apply
a right-side padding to #sidebar that it pushes in not just the content, but the scrollbar, too, an undesirable
effect. Fortunately, it’s an easy fix: just nest a sidebar contents div inside the main sidebar, and then put
your styles on that. Alternatively, you can use the CSS selector #sidebar p to give special margins to all
paragraphs residing inside.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 125

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 125

So, what about those classes on the body element? In Figure 6-3, we used the Firefox DOM
Inspector to change the body element’s class attribute, and suddenly the side panel vanished.
It may seem insignificant now, since there are just the two styles that change, but picture a future
where you’re making more significant user interface changes dependent on the presence or
absence of the side panel. The technique of hooking major layout rules to a body class is well
worth adopting for its flexibility and scalability.

Figure 6-3. The side panel obeys the body’s class.

Scripted Style
With the examples of the previous section in mind, we’ll now examine a few ways to augment
those CSS tricks with a little JavaScript.

Switching Up the Body Classes
The class attribute of a markup tag is not limited to a single value. You can actually have as
many classes as you like, separated by spaces. For example, on the popular mezzoblue.com
site, Dave Shea uses the following body element:

<body class="nosidebarplease articles entry">

In a single location, he is stating several important characteristics of the page in question.
The ability to mix and match the various designations (article, blog entry, and so on) offers an

CHAPTER 6 ■ IMPROVING THE USER INTERFACE126

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 126

extraordinary amount of control and precision in styling the various pages. This flexibility is
what makes controlling page layout with the body class so appealing.

However, when it comes to accessing it via JavaScript, this means that you can’t just get
and set, as you can with most other attributes. You need to use find and replace operations on
the whole className text string. Add the general-purpose function shown in Listing 6-8 to your
map_functions.js file.

Listing 6-8. Function to Swap a Class in the Document’s Body Element

function changeBodyClass(from, to) {

document.body.className = document.body.className.replace(from, to);

return false;

}

All that remains now is to call that function from a link somewhere. How you do that may
be partially dependent on your level of JavaScript snobbery, with respect to separating markup
from script. Some would consider the following markup perfectly adequate:

<a href="#" onclick="changeBodyClass('sidebar-right', 'sidebar-off');➥

return false;">Hide

<a href="#" onclick="changeBodyClass('sidebar-off', 'sidebar-right');➥

return false;">Show

A JavaScript purist, however, might advocate a more elaborate solution, such as the one in
Listing 6-9.

Listing 6-9. Markup for the Side Panel Toggle Buttons

<div id="toolbar">

...

<ul id="sidebar-controls">

Hide

Show

</div>

■Note We joke about JavaScript purists, but it’s only because we like the methods they advocate. See
http://www.digital-web.com/articles/separating_behavior_and_structure_2/ for Peter-Paul
Koch’s article, “Separating behavior and structure.”

Accompanying that markup, you’ll need to hook on the event handlers in the map_
functions.js initialization function:

document.getElementById('button-sidebar-hide').onclick = function() {➥

return changeBodyClass('sidebar-right', 'sidebar-off'); };

document.getElementById('button-sidebar-show').onclick = function() {➥

return changeBodyClass('sidebar-off', 'sidebar-right'); };

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 127

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 127

Finally, you can add some styles to spruce up the buttons a little. Using CSS, it’s trivial to
hide (or otherwise restyle) whichever button corresponds to the mode you’re already in:

body.sidebar-right a#button-sidebar-show { display: none; }

body.sidebar-off a#button-sidebar-hide { display: none; }

Using these style makes the two buttons appear to be the same one, as you can see in
Figure 6-4.

Figure 6-4. The show/hide buttons behave as one, toggling the visibility of each other and of the
side panel.

We like the second method with the cleaner markup, but bear in mind that its normal
advantages of fallback capabilities mean absolutely nothing here. The application centers
around a JavaScript-powered map created with the Google Maps API. Without JavaScript
turned on in their browser, users won’t care whether or not they can hide the side panel.

■Tip If you’re ever facing a situation involving a lot of complex event handlers being hooked onto various
markup elements, you could consider taking advantage of the brilliant Behaviour library, which allows you to
specify event handlers using the same selectors you already use to specify CSS rules. Check it out here:
http://bennolan.com/behaviour/.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE128

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 128

Resizing with the Power of JavaScript
As you saw earlier, CSS gives you a significant amount of control over a page’s horizontal layout.
However, control over the vertical spacing is very much lacking. With only a style sheet, you can
make a map the entire height of the window, or some percentage of that height, but you
cannot make it be “from here to the bottom,” or “100% minus 90 pixels.” With JavaScript, however,
this is very much possible.

JavaScript is an event-driven programming language. You don’t need to be checking for
things to have happened all the time; you simply “hook” functionality onto various events
triggered by the web browser.

With that in mind, all of the examples so far have already made use of the event window.
onload to initialize the API and plot points on its map. What you’re going to do next is hook
some resizing functionality onto the event window.onresize. This code will execute when the
window changes shape and resize the map to fit it.

Unfortunately, as is very obvious in the windowHeight() function of Listing 6-10, it has
taken browser makers a long time to agree on how to expose the height of the client area to
JavaScript. The method we’ve used here is the product of some exceptional research by Peter-
Paul Koch (see http://www.quirksmode.org/viewport/compatibility.html). Incidentally, it’s
almost identical to the one Google itself uses to control the height of the Google Maps site’s
main map and side panel.

Pull up your map_functions.js file and add the code shown in Listing 6-10 to it.

Listing 6-10. Filling Vertical Space with the onresize Event

function windowHeight() {

// Standard browsers (Mozilla, Safari, etc.)

if (self.innerHeight)

return self.innerHeight;

// IE 6

if (document.documentElement && document.documentElement.clientHeight)

return y = document.documentElement.clientHeight;

// IE 5

if (document.body)

return document.body.clientHeight;

// Just in case.

return 0;

}

function handleResize() {

var height = windowHeight();

height -= document.getElementById('toolbar').offsetHeight - 30;

document.getElementById('map').style.height = height + 'px';

document.getElementById('sidebar').style.height = height + 'px';

}

function init() {

...

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 129

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 129

handleResize();

}

window.onresize = handleResize;

The handleResize()function itself is actually pretty straightforward. The offsetHeight and
offsetWidth properties are provided by the browser, and return—in pixels—the dimensions of
their element, including any padding. Finding the correct height for the map and side panel is
simply a matter of subtracting that from the overall client window height, and then also removing
the 30 pixels of padding that appear in three 10-pixel gaps between the top, the toolbar, the content
area, and the bottom.

■Note It’s awkward to be individually assigning heights to the map and side panel. It would be cleaner if
we could just assign the calculated height to a single wrapper, and then set the children to each be perma-
nently height: 100%. Indeed, such an approach works splendidly with Firefox. Unfortunately, Internet
Explorer isn’t able to get it quite right, so we’re forced to use the slightly less optimal method of Listing 6-10.

Back in Listing 6-4, we placed the toolbar markup after the map div itself. This was partly
arbitrary and partly because it’s a convention to put the layers that are closer to the user later
in the document. Now, however, the layering is to be removed in favor of a tiled approach,
closer to what the Google Maps site itself uses. It’s natural, then, to move the toolbar markup
to before the map.

Also, we’ve added that content wrapper around the map and side panel. This is technically
superfluous, but having a bit of extra markup to work with really helps to keep the style sheet
sane. It’s nearly always better to add wrappers to your template than to fill your CSS with ugly
browser-specific hacks. (Some might disagree with us on this, but remember that wrappers
are future-proof, while hacks can break with each new browser release.)

You can view the complete CSS changes that accompany Listing 6-11 on this book’s website,
but it’s not a dramatic departure from the styles of Listing 6-7. The changes are mostly aesthetic,
now that the handleResize() method lets us do things like put a nice 10-pixel margin between
the key elements.

Listing 6-11. Index Body with Markup Changes for Paneled Layout

<body class="sidebar-right">

<div id="toolbar">

...

</div>

<div id="content">

<div id="map-wrapper">

<div id="map"></div>

</div>

<div id="sidebar">

...

</div>

</div>

</body>

CHAPTER 6 ■ IMPROVING THE USER INTERFACE130

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 130

You can see how this example looks in Figure 6-5.

Figure 6-5. The map area is divided into three elegant panels, one of which is collapsible.

Populating the Side Panel
With our fancy side panel up and running, it would be good to get some actual content in
there. A typical side panel use would be to present a list of all the markers plotted. This is
particularly helpful when the markers are distributed in clusters. For example, a user could
be zoomed in on an urban area to view a number of points bunched together, but she would
be made aware that points exist elsewhere because that additional display has them listed.

For the markup in this case, you just need to edit the sidebar section of the main HTML
file, as shown in Listing 6-12.

Listing 6-12. Adding Markup for a Sidebar List

<div id="content">

...

<div id="sidebar">

<ul id="sidebar-list">

</div>

</div>

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 131

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 131

■Note It’s incorrect HTML to have a ul element that doesn’t contain any children. In our case, however, we
know that as soon as the map loads, there will be elements added to this list, so it’s another standards gray
area. If having it empty troubles you, you could put in a dummy li node, and then start your JavaScript out
by removing this node. But, of course, there would still be a moment in time where the ul is empty, which is
why doing anything more than what we’ve got here feels a little silly.

Obviously, the current iteration of map_data.php provides only latitude, longitude, and
a text label. The side panel will be much more useful if it can display supplementary informa-
tion, rather than just the same thing with different formatting. Let’s arbitrarily pick a handful
more fields from the fcc_towers view and add them to the output, as shown in Listing 6-13.

Listing 6-13. An Updated map_data.php Output Section

var markers = [

<?php while($row = mysql_fetch_assoc($result)): ?>

<?= $joiner ?>

{

'latitude': <?= $row['latitude'] ?>,

'longitude': <?= $row['longitude'] ?>,

'address': '<?= addslashes($row['struc_address']) ?>',

'city': '<?= addslashes($row['struc_city']) ?>',

'state': '<?= addslashes($row['struc_state']) ?>',

'height': '<?= addslashes($row['struc_height']) ?>',

'elevation': '<?= addslashes($row['struc_elevation']) ?>',

'type': '<?= addslashes($row['struc_type']) ?>',

'owner': '<?= addslashes($row['owner_name']) ?>'

}

<?

$joiner = ',';

$count++;

?>

<?php endwhile; ?>

];

Now we’re ready to step back in JavaScript.
Regarding how to actually add these items to the side panel list, there are a number of dif-

ferent schools of thought. The strictest camps would argue for using only XML DOM methods.
This would mean creating each tag—ahem, element—with createElement, putting text inside
it using createTextNode, and then adding it to the list with appendChild. To use this method is
to respect the sanctity of the HTML document tree as an abstract XML data structure in memory.
In contrast, using the innerHTML property lets us inject blobs of already marked-up content—
unvalidated content, which may or may not keep the document correct.

Our method, shown in Listing 6-14, is a hybrid approach. We create and attach the list
items using DOM methods, but each list item’s content is created as a text string and assigned
using innerHTML.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE132

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 132

Listing 6-14. The createMarker Function Reimagined As initializePoint

function initializePoint(pointData) {

var point = new GPoint(pointData.longitude, pointData.latitude);

var marker = new GMarker(point);

var listItem = document.createElement('li');

var listItemLink = listItem.appendChild(document.createElement('a'));

listItemLink.href = "#";

listItemLink.innerHTML = '' + pointData.address + ' ' +➥

pointData.city + ', ' + pointData.state + ' (' + pointData.height + 'm)';

var focusPoint = function() {

marker.openInfoWindowHtml(pointData.address);

map.panTo(point);

return false;

}

GEvent.addListener(marker, 'click', focusPoint);

listItemLink.onclick = focusPoint;

document.getElementById('sidebar-list').appendChild(listItem);

map.addOverlay(marker);

}

...

function init() {

...

for(id in markers) {

initializePoint(markers[id]);

}

handleResize();

}

Here, we greatly expanded the role of the function that used to just create a marker. Now,
it creates a marker and a sidebar list item, as well as a common event-handler function that
fires when either of them is clicked. We added some styles to it, and you can see the results in
Figure 6-6.

■Note There might be a case here for isolating the generate-sidebar code from the generate-marker code,
but the lure of a common focusPoint function is simply too great. Indeed, keeping the two tightly knit
offers us more opportunities for crossover functionality, as you’ll see shortly.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 133

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 133

Figure 6-6. The side panel populated with marker details

Getting Side Panel Feedback
In the code as of Listing 6-14, the users can interact with both the side panel item and the marker
itself. However, they’re receiving feedback through only the map marker—its info window
pops up. It would be ideal if we could enhance this behavior by also highlighting the current
point in the side panel list.

Up until now, we’ve managed to avoid manipulating the classes of elements other than body.
Indeed, with a static navigation system, using body classes is a highly robust way to respond to
feedback. However, the side panel is full of dynamic content, generated within the browser; as
possible as it is, it would be absurd to be dynamically modifying the style rules to accommo-
date an unknown number of items.

The real key to this problem, though, is that the first click means “highlight me,” but every
subsequent click means “highlight me and unhighlight the previous selection.” Previously, the
API handled this transparently, by providing only a single info window. Now, you need to do it
yourself.

The method will be a global variable, called deselectCurrent, which always stores a func-
tion for unselecting the current selection. Whenever something new is selected, the handler
can simply run the current function, select itself, and then reassign the variable to a new func-
tion that will unselect itself. Perhaps it will make more sense in code, as shown in Listing 6-15.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE134

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 134

Listing 6-15. A Function to Deselect the Current List Item

var deselectCurrent = function() {}; // Empty function

function initializePoint(pointData) {

var point = new GPoint(pointData.longitude, pointData.latitude);

var marker = new GMarker(point);

var listItem = document.createElement('li');

var listItemLink = listItem.appendChild(document.createElement('a'));

listItemLink.href = "#";

listItemLink.innerHTML = '' + pointData.address + ' ' +➥

pointData.city + ', ' + pointData.state + ' (' + pointData.height + 'm)';

var focusPoint = function() {

deselectCurrent();

listItem.className = 'current';

deselectCurrent = function() { listItem.className = ''; }

marker.openInfoWindowHtml(pointData.address);

map.panTo(point);

return false;

}

GEvent.addListener(marker, 'click', focusPoint);

listItemLink.onclick = focusPoint;

document.getElementById('sidebar-list').appendChild(listItem);

map.addOverlay(marker);

}

And once again, with a few styles thrown in, you can see the results in Figure 6-7. Although
other sections have done so already, this code is one of the most explicit examples we’ve had
so far of using a closure. In the code in Listing 6-15, every time a new copy of focusPoint is cre-
ated (one per pin, right?), the JavaScript interpreter makes a copy of the environment in which
it was created. So even though the initializePoint() function has long finished by the time
focusPoint runs, each instance of focusPoint has access to the particular listItem object that
was in existence at the time.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 135

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 135

Figure 6-7. The selected item in the side panel is highlighted.

This, of course, applies to the deselectCurrent() function as well. Although there’s only
one of them at any particular time, whatever one is in existence is maintaining access to the
listItem object that the focusPoint function that spawned it was carrying.

Doesn’t make sense? Don’t worry too much. Closures are just one of those computer science
topics that will become clearer after you encounter them a few times.

Warning, Now Loading
As you create map projects of increasing complexity, users will begin to experience a notice-
able lag while the browser gets everything set up. One courtesy that can be added is a message
to alert your users when the map is processing or initializing.

You’re going to use almost the exact same trick as was used for the hovering toolbar,
except this time, you’re hovering a temporary message rather than a persistent user control.
Modify the body of your markup file to add some structure for a loading message as shown in
Listing 6-16.

Listing 6-16. Markup to Add a Loading Message to the Map

<body class="sidebar-right loading">

<div id="toolbar">

...

CHAPTER 6 ■ IMPROVING THE USER INTERFACE136

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 136

</div>

<div id="content">

<div id="map-wrapper">

<div id="map"></div>

</div>

<div id="sidebar">

...

</div>

<div id="alert">

<p>Loading data ...</p>

</div>

</div>

</body>

If you wanted, you could add a fancy spinning GIF animation, but this is adequate for
a start. You’ll need some similar additions to the CSS to pull this message in front of the map
and center it, as shown in Listing 6-17.

Listing 6-17. Styles to Position the Loading Message in Front of the Map

#alert {

position: absolute;

top: 50%;

left: 0;

width: 100%;

text-align: center;

display: none;

}

#alert p {

width: 150px;

margin: 0 auto 0 auto;

padding: 10px;

background: white;

border: 1px solid #aaa;

}

body.loading #alert { display: block; }

This uses the same strategy as we used in Listing 6-7 to show and hide the side panel. By
hooking the visibility of the alert on the body’s class, you can centralize control of it on that
one spot, and yet still be free later on to move it around and not need to change any JavaScript.
Moreover, you avoid the hassle of having to keep track of specific elements to hide and unhide,
as in Listing 6-15. Figure 6-8 shows the new loading notice.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 137

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 137

Figure 6-8. A loading notice on the map

Here’s how to banish the loading message after the map is set up. Tack the line shown in
Listing 6-18 to the end of the init()function.

Listing 6-18. JavaScript to Hide the Loading Notice After Map Loading Is Completed

function init() {

...

changeBodyClass('loading', 'standby');

}

■Tip It may seem weird to replace “loading” with “standby,” rather than just deleting it outright. This way,
however, makes it more straightforward to revert back to loading status again at a later point. For example,
if the user interacts with the map in such a way that it needs to download another big block of data, it
becomes trivial to pop up that message again and let the user know you’re working on it.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE138

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 138

Data Point Filtering
Just one more area of the application still shows dummy content. With the data just begging to
be broken down by category, why not use that menu bar as a mechanism for selectively displaying
groups of points?

In this final example of the chapter, we’ll show you how to filter points into rudimentary
groups.

■Note Typically, when you want to display a bunch of things, and then display a bunch of different things,
you think of dashing back to the server to grab the next block of information. While this is important to be
able to do, we’re not actually making an Ajax call here. We’re just selectively limiting what is displayed. When
the entire data set for Hawaii is less than 40KB, what would be the point of breaking it up into multiple server
calls? When you grab it in one big lump, it makes for a more seamless user interface, since there’s no wait-
ing around for network latency on a 5KB file.

Flipping through the database view, it seems there are a handful of different structures
shown in the type field. Most of the Hawaii data seems to fall under either “Tower” or “Pole,”
but there are a few maverick types. Why bother hard-coding in the types of structures, when
the program could just figure them out at runtime?

Let’s go with pretty much the same starting markup for the toolbar list as we did for the
side panel list, as shown in Listing 6-19.

Listing 6-19. Markup for a Dynamic Filter Bar

<div id="toolbar">

<h1>Cell-Tower Locations</h1>

<ul id="filters">

<ul id="sidebar-controls">

hide

show

</div>

From here, you have three main tasks:

• Use an efficient mechanism for showing and hiding particular points.

• Figure out which groups exist in the given data.

• Create a function that can cycle through and hide all points not belonging to a particular
group.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 139

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 139

Showing and Hiding Points
The current implementation of initializePoint() (as of Listing 6-15) doesn’t provide any
obvious mechanism for toggling the points on and off—it’s a one-way operation. This isn’t
hard to fix, though. All you need to do is create a pair of functions for each point: one to show
and the other to hide. As for where to store these functions, what better place than inside the
original markers array itself? Listing 6-20 shows how we added the new functions.

Listing 6-20. Adding Methods to the markers Array Members

function initializePoint(pointData) {

var visible = false;

...

GEvent.addListener(marker, 'click', focusPoint);

listItemLink.onclick = focusPoint;

pointData.show = function() {

if (!visible) {

document.getElementById('sidebar-list').appendChild(listItem);

map.addOverlay(marker);

visible = true;

}

}

pointData.hide = function() {

if (visible) {

document.getElementById('sidebar-list').removeChild(listItem);

map.removeOverlay(marker);

visible = false;

}

}

pointData.show();

}

Isn’t that clever? Now along with latitude and longitude data members, each of those
markers array items has a pair of on-board functions for controlling their visibility.

Discovering Groupings
Figuring out all the unique values appearing in the type field is just a matter of iterating over
all the markers. Inside the init() function, we’ve added a single line to the existing loop that
runs over each record already, to call initializePoint() on it. This is shown in Listing 6-21.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE140

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 140

Listing 6-21. Augmented Initialization Function to Check for Different Structure Types

function init() {

var type;

var allTypes = { 'All':[] };

...

for(id in markers) {

initializePoint(markers[id]);

allTypes[markers[id].type] = true;

}

for(type in allTypes)

{

initializeSortTab(type);

}

handleResize();

changeBodyClass('loading', 'standby');

}

For each element of the markers array, initializePoint() is called, and then the point’s
type value is assigned as a key to the allTypes object. The nature of an object is that the keys
are unique, so by the end, allTypes has as its keys the different marker types. From there, you
can simply loop through that object and create a button and handler for each of the discov-
ered types.

Creating Filter Buttons
The last section, shown in Listing 6-22, is just implementing the initializeSortTab() function
called in Listing 6-21. Creating the button is identical to how you created sidebar links in
initializePoint(). The primary “gotcha” to pay attention to here is the special case for the All
button. And, of course, you’ll want to use the spiffy loading message.

Listing 6-22. Adding Filter Buttons to Show and Hide Groups of Markers

function initializeSortTab(type) {

var listItem = document.createElement('li');

var listItemLink = listItem.appendChild(document.createElement('a'));

listItemLink.href = "#";

listItemLink.innerHTML = type;

listItemLink.onclick = function() {

changeBodyClass('standby', 'loading');

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 141

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 141

for(id in markers) {

if (markers[id].type == type || 'All' == type) {

markers[id].show();

} else {

markers[id].hide();

}

}

changeBodyClass('loading', 'standby');

return false;

}

document.getElementById('filters').appendChild(listItem);

}

And there it is. It’s simple code, but there’s a lot of really classy functionality here. Given
almost any set of points, these techniques can be applied to create a useful, high-quality
presentation. The final result is shown in Figure 6-9.

Figure 6-9. Marker filters in action

CHAPTER 6 ■ IMPROVING THE USER INTERFACE142

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 142

Summary
In this chapter, we took a look at a number of cross-browser layout tricks involving JavaScript
and CSS, as well as a handful of other methods to make your maps more visually and func-
tionally interesting. Together, we can stop the proliferation of boring, fixed-size, single-pane
mashups!

In Chapter 7, you’ll continue to develop this code, focusing on how to deal with the vastness
of the full US-wide database.

CHAPTER 6 ■ IMPROVING THE USER INTERFACE 143

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 143

7079ch06FINAL.qxd 7/25/06 1:42 PM Page 144

Optimizing and Scaling for
Large Data Sets

So far in the book, we’ve looked at the basics of the Google Maps API and shown how it’s
possible to retrieve and store data for your map. You’ve probably come up with some great
ideas for your own map applications and started to assemble the information for your markers.
And you may have found that your data set is overwhelmingly large—far larger than the simple
examples you’ve been experimenting with so far.

In the previous chapters, you’ve been experimenting with the US FCC data in the
Antenna Structure Registration (ASR) database. As you’ve probably noticed, the FCC tower
information is a rather large data set, containing more than 115,000 points across the United
States. If you tried to map the towers using one GMarker per point, the map, or even the user’s
computer, would simply crawl to a halt.

When your data grows from a dozen to a few thousand points, or even hundreds of thou-
sands of points, you need to select the best way to present your information without confusing
or frustrating your users. This chapter presents a variety of methods for working with larger
data sets such as the FCC tower data. The methods you’ll learn will provide your users with an
interactive experience while maintaining a sensible overhead in your web application.

When dealing with large data sets, you need to focus on three areas of your application:
the communication between the server and browser, the server side, and the client side. In
this chapter, you’ll learn techniques for each of these areas as follows:

• Streamline the data flowing between your server and client’s web browser.

• Optimize your server-side script and data storage.

• Improve the users’ experience with the client-side JavaScript and web browser.

Understanding the Limitations
Before we discuss how to overcome any limitations that arise from dealing with large data
sets, you should probably familiarize yourself with what those limitations are. When we refer
to the “limits of the API,” we don’t mean to imply that Google is somehow disabling features of
the map and preventing you from doing something. What we’re referring to are the ambiguous
limits that apply to any web-based software, such as the software’s ability to run in the client’s
web browser.

145

C H A P T E R 7

■ ■ ■

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 145

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS146

If you’re developing your map application on a cluster of supercomputers, the limitations of
your computer are going to be different than those of someone who is browsing on an old 486
laptop with just a few megabytes of RAM. You’ll never know for sure what type of computer
your users are going to have, so remember that not everyone is going to experience a map in the
same way. For this chapter, we’ll focus on the limitations related to plotting larger than normal
data sets on an average home computer. These issues are mainly performance-related and
occur when there are too many GOverlay objects on the map at one time.

Overlays are objects that build on the API’s GOverlay class and include any items added to
the map using the GMap2.addOverlay() method. In the Google Maps API, Google uses overlays for
GMarker objects, GPolyline objects, and info windows, all of which you’ve probably been play-
ing with a lot as you’ve progressed through this book. In each case, the overlay is built into the
JavaScript class, and in some cases, may include shadows or translucent images. Along with
the API overlays, the map may also contain custom overlays that you’ve built yourself. You can
implement your own overlays, using the API’s GOverlay object, to display all sorts of informa-
tion. In fact, one of the methods you’ll explore in this chapter uses a custom overlay to display
detailed information using a transparent GIF.

Here is a summary of the relevant limits:

GMarker limits: If you’re going to display only markers on your map, the maximum number
to try for the average user is around 100; however, performance will be slow on anything
but the latest computer hardware. Loading markers and moving them around with
JavaScript is an expensive operation, so for better performance and reliability, try to keep
the number to around 50 to 75 GMarker objects on the map at one time—even fewer if
you’re combining them with GPolyline objects.

GPolyline limits: Too many GPolyline objects will slow the map in the same way as do too
many markers. The difference with polylines is in the number of points in the lines, not
the number of lines. One really long line with a bunch of points will slow the map down
just as much as a few little lines. Load a maximum of 100 to 150 points, but keep in mind
that using around 50 to 75 will make your application run a lot smoother. If your applica-
tion requires a large, complicated set of polygons with hundreds of points, check out the
server-side overlay and tile solutions described in this chapter. The examples demonstrate
generating your own overlays and tiles, but the embedded images don’t need to be limited
to just markers—you could draw complicated images, lines, and shapes as well.

Info window limits: As you saw in Chapter 3, there’s only one instance of an info window
on the map at any given time, so there are no direct limits on the info window with regard to per-
formance. However, remember that the info window adds more complexity to the map,
so if you try to slide the map around while the window is open, the map may begin to
slow down.

Streamlining Server-Client Communications
Throughout the book, we’ve mentioned that providing an interactive experience to your users
is a key characteristic of your mapping application’s success. Adding interactivity often means
creating more requests back and forth between the client’s web browser and the server. More
requests means more traffic and accordingly, a slower response, unless you invest in addi-
tional resources such as hardware to handle the load. To avoid making these investments yet

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 146

still improve response time, you should always streamline any process or data that you’ll be
using to communicate with the client.

As you’ve probably figured out by now, Ajax doesn’t really need to talk in XML. You can
send and receive any information you want, including both HTML and JavaScript code. Ini-
tially, many web developers make the mistake of bloating their server responses with full,
and often verbose, JavaScript. Bloating the response with JavaScript is easy on you as a devel-
oper, but becomes a burden on both the server and the client. For example, the response from
the server could add ten markers to your map by sending:

map.addOverlay(new GMarker(new GLatLng(39.49,-75.07)));

map.addOverlay(new GMarker(new GLatLng(39.49,-76.24)));

map.addOverlay(new GMarker(new GLatLng(39.64,-74.29)));

map.addOverlay(new GMarker(new GLatLng(40.76,-73.00)));

map.addOverlay(new GMarker(new GLatLng(40.83,-74.47)));

map.addOverlay(new GMarker(new GLatLng(40.83,-74.05)));

map.addOverlay(new GMarker(new GLatLng(40.83,-72.60)));

map.addOverlay(new GMarker(new GLatLng(40.83,-76.64)));

map.addOverlay(new GMarker(new GLatLng(41.17,-71.56)));

map.addOverlay(new GMarker(new GLatLng(41.26,-70.06)));

The problem with sending all this code in your response becomes apparent as your data set
scales to larger and larger requests. The only unique information for each point is the latitude
and longitude, so that’s all you really need to send. The response would be better trimmed and
rewritten using the JSON objects introduced in Chapter 2, such as the following:

var points = {

{lat:39.49,lng:-75.07},

{lat:39.49,lng:-76.24},

{lat:39.64,lng:-74.29},

{lat:40.76,lng:-73.00},

{lat:40.83,lng:-74.47},

{lat:40.83,lng:-74.05},

{lat:40.83,lng:-72.60},

{lat:40.83,lng:-76.64},

{lat:41.17,lng:-71.56},

{lat:41.26,lng:-70.06},

}

By sending only what’s necessary, you decrease every line from about 55 characters to just 23,
an overall reduction of 32 characters per line and a savings of about 9KB for a single request
with 300 locations! Trimming your response and generating the markers from the data in the
response will also give your client-side JavaScript much more control over what to do with
the response. If you’re sending a larger data set of 1000 points, you can easily see how you
could save megabytes in bandwidth and download time, plus, considering the number of
requests your application could receive, that will add up to a big savings over time.

Reducing data bloat is a fairly easy concept and requires little, if any, extra work. Though
you may shrug it off as obvious, remember to think about it the next time you build your web
application. Less bloat will make your application run faster! Plus, it will also make your code
much easier to maintain, as JavaScript operations will be contained in one place rather than
spread around in the server response.

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 147

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 147

Optimizing Server-Side Processing
When building a map with a large and complex set of data, you’ll most likely be interacting
with the server to retrieve only a small subset of the available information. The trick, as you will
soon see, is in how you request the information combined with how it’s processed and displayed.
You could retrieve everything from the server and then display everything in your client’s
web browser but, as we mentioned earlier in the chapter, the client will slow to a crawl, and in
many cases, just quit. To avoid slowing the map and annoying your users, it’s important to
optimize the method of your requests.

How you store your information on your server is up to you, but whichever way you choose,
you’ll need to ensure the data is easily accessible and searchable. Processing a large flat file for
each request will just slow down the server and waste valuable resources, while at the same
time searching multiple XML files can get a bit tricky. For optimum speed and efficiency, you’ll
probably want to use a database to store your information. We’ve already discussed databases
and how to create them throughout the book, so in this chapter we’ll just focus on targeting
the information you need from your database for each request.

To easily search, filter, and categorize the information displayed on the map, make sure
your database has the appropriate data types for each of the fields in your database table. For
example, if you have a lat and a lng column, make sure they’re floats with the appropriate
precision for your data. Using the proper data types will allow the database to better optimize
the storage and retrieval of your information, making it a lot quicker to process each request.
Additionally, if your database supports it, be sure to use indexing on frequently requested
columns or other database-specific optimizations on your data.

Once your database is flush with information, your requests and queries will most likely
be retrieving information about points within a particular latitude and longitude boundary.
You’ll also need to consider how much information you want to display versus how much
information it is actually possible to display. After you’ve decided on an appropriate balance of
wants versus needs, you’ll need to pick the solution that best fits your data. Here, we’ll explore
five possible solutions:

• Server-side boundary method

• Server-side common point method

• Server-side clustering

• Custom detail overlay method

• Custom tile method

These approaches have varying degrees of effectiveness, depending on your database of
information and the context of the map. We’ll describe each method and then point out its
advantages and disadvantages.

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS148

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 148

Server-Side Boundary Method
The boundary method involves requesting only the points within a specific boundary, defined
using some relevant reference such as the viewport of the visible map. The success of the boundary
method relies on highly dispersed data at a given zoom level.

If you have a large data set and the information is relatively dispersed over the globe, you
can use the GLatLngBounds of the GMap2 object as a boundary for your query. This essentially
restricts the data in your response to those points that are within the on-screen viewable
area of the map. For globally dispersed data at zoom level 1, where the map covers the entire
globe, you’ll see the whole world at once, so plotting the data set using markers is still is going
to go beyond the suggested 100 marker limit and cause problems, as shown in Figure 7-1. At
closer zoom levels, say 5 or higher, you’ll have a smaller portion of the markers on the map at
one time, and this method will work great, as shown in Figure 7-2. The same would apply for
localized data dispersed across a smaller area or large, less dispersed data, but you’ll need to
zoom in much closer to have success.

Figure 7-1. Server-side boundary method with the entire world at zoom level 1

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 149

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 149

Figure 7-2. Server-side boundary method at a closer zoom level

To experiment with a smaller, globally dispersed data set, suppose you want to create
a map of capital cities around the world. There are 192 countries, so that would mean 192
markers to display. Capital cities are an appropriate data set for the boundary method because
there are relatively few points and they are dispersed throughout the globe. If you adjust the
zoom of the map to something around 5, you’ll have only a small portion of those points on
the map at the same time.

■Tip The boundary method is usually used in combination with one of the other solutions. You’ll notice that
in many of the server-based methods, the first SQL query still uses the boundary method to initially limit the
data set to a particular area, and then additional optimizations are performed.

Listings 7-1 and 7-2 contain a working example of the server-side boundary method
(http://googlemapsbook.com/chapter7/ServerBounds/) using the SQL database of capital city
locations you created in Chapter 5 (in the screen scraping example). If you haven’t created the
database from Chapter 5, you can quickly do so using the Chapter 7 capital_cities_seed.sql file
in the supplemental code for the book.

Listing 7-1. Client-Side JavaScript for the Server-Side Boundary Method

var map;

var centerLatitude = 49.224773;

var centerLongitude = -122.991943;

var startZoom = 4;

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS150

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 150

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {

updateMarkers();

});

GEvent.addListener(map,'moveend',function() {

updateMarkers();

});

}

function updateMarkers() {

//remove the existing points

map.clearOverlays();

//create the boundary for the data

var bounds = map.getBounds();

var southWest = bounds.getSouthWest();

var northEast = bounds.getNorthEast();

var getVars = 'ne=' + northEast.toUrlValue()

+ '&sw=' + southWest.toUrlValue()

//log the URL for testing

GLog.writeUrl('server.php?'+getVars);

//retrieve the points using Ajax

var request = GXmlHttp.create();

request.open('GET', 'server.php?'+getVars, true);

request.onreadystatechange = function() {

if (request.readyState == 4) {

var jscript = request.responseText;

var points;

eval(jscript);

//create each point from the list

for (i in points) {

var point = new GLatLng(points[i].lat,points[i].lng);

var marker = createMarker(point,points[i].city);

map.addOverlay(marker);

}

}

}

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 151

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 151

request.send(null);

}

function createMarker(point, html) {

var marker = new GMarker(point);

GEvent.addListener(marker, 'click', function() {

var markerHTML = html;

marker.openInfoWindowHtml(markerHTML);

});

return marker;

}

window.onload = init;

Listing 7-2. PHP Server-Side Script for the Server-Side Boundary Method

<?php

//retrieve the variables from the GET vars

list($nelat,$nelng) = explode(',',$_GET['ne']);

list($swlat,$swlng) = explode(',',$_GET['sw']);

//clean the data

$nelng=(float)$nelng;

$swlng=(float)$swlng;

$nelat=(float)$nelat;

$swlat=(float)$swlat;

//connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

if($nelng > $swlng) {

//retrieve all points in the southwest/northeast boundary

$result = mysql_query(

"SELECT

lat,lng,capital,country

FROM

capital_cities

WHERE

(lng > $swlng AND lng < $nelng)

AND (lat <= $nelat AND lat >= $swlat)

ORDER BY

lat"

, $conn);

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS152

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 152

} else {

//retrieve all points in the southwest/northeast boundary

//split over the meridian

$result = mysql_query(

"SELECT

lat,lng,capital,country

FROM

capital_cities

WHERE

(lng >= $swlng OR lng <= $nelng)

AND (lat <= $nelat AND lat >= $swlat)

ORDER BY

lat"

, $conn);

}

$list = array();

$i=0;

$row = mysql_fetch_assoc($result);

while($row)

{

$i++;

extract($row);

$city = addcslashes($capital.', '.$country,"'");

$list[] = "p{$i}:{lat:{$lat},lng:{$lng},city:'{$city}'}";

$row = mysql_fetch_assoc($result);

}

//echo back the JavaScript object nicely formatted

header('content-type:text/plain;');

echo "var points = {\n\t".join(",\n\t",$list)."\n}";

?>

This method has two key parts. The first is the request to the server in Listing 7-1, which
includes the bounds of the map by sending the southwest and northeast corners:

//create the boundary for the data

var bounds = map.getBounds();

var southWest = bounds.getSouthWest();

var northEast = bounds.getNorthEast();

var getVars = 'ne=' + northEast.toUrlValue()

+ '&sw=' + southWest.toUrlValue()

The second is the SQL query to the database in Listing 7-2, which limits the points to the
boundary defined by the southwest and northeast corners:

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 153

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 153

if($nelng > $swlng) {

//retrieve all points in the southwest/northeast boundary

$result = mysql_query(

"SELECT

lat,lng,capital,country

FROM

capital_cities

WHERE

(lng > $swlng AND lng < $nelng)

AND (lat <= $nelat AND lat >= $swlat)

ORDER BY

lat"

, $conn);

} else {

//retrieve all points in the southwest/northeast boundary

//split over the meridian

$result = mysql_query(

"SELECT

lat,lng,capital,country

FROM

capital_cities

WHERE

(lng >= $swlng OR lng <= $nelng)

AND (lat <= $nelat AND lat >= $swlat)

ORDER BY

lat"

, $conn);

}

■Caution You may have noticed the SQL is wrapped in an if statement and two different queries are per-
formed depending on the relationship of the longitudes. This is due to the meridian in the Mercator projection
of the map. The map is displayed using a Mercator projection where the meridian of the earth is at the left
and right edges. When you slide to the left or right, the map will wrap as you move past the meridian at
+/– 180 degrees. In that case, the bounds are partially split across the left and right edges of the map and
the northeast corner is actually positioned at a point that is greater than 180 degrees. The Google Maps API
(and probably your data) automatically adjusts the longitude values to fit between –180 and + 180 degrees,
so you need to request two portions of the map from your database covering the left and right sides.

When you move the map around or change the zoom level, a new request is created by
the moveend and zoomend events in Listing 7-1. The request to the server retrieves a new JSON
object, which is then processed by the JavaScript to create the necessary markers.

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS154

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 154

As you would expect, there are both pros and cons to using the boundary method. The
advantages are as follows:

• This technique uses the standard existing Google Maps API methods to create the
markers on the map.

• It doesn’t drastically change your code from the simple examples presented earlier in the
book.

• The PHP requires little server-side processing and little overhead.

The following are the boundary method’s disadvantages:

• It works for only dispersed data or higher zoom levels.

• It may not work for lower zoom levels, as too many markers will be shown at once.

• The client’s web browser makes a new request for markers after each map movement,
which could increase server traffic.

Server-Side Common Point Method
Unlike the server-side boundary method, the server-side common point method relies on
a known point, one around which you can centralize your data, and retrieves the maximum
number of points relative to that known point. This method is useful for location-based appli-
cations where you are asking your users to search for things relative to other things, or possibly
even relative to themselves. It works for any zoom level and any data set, whether it’s a few
hundred points or thousands of points, but larger data sets may require more time to process
the relative distance to each point.

For example, suppose you want to create a map of all the FCC towers relative to someone’s
position so he can determine which towers are within range of his location. Simply browsing
the map using the server-side boundary method won’t be useful because the data is fairly dense
and you would need to maintain a very close zoom. What you really want is to find towers rel-
ative to the person’s street address or geographic location. You could have him enter an address
on your map, and then you could create the central point by geocoding the address using the
methods you learned in Chapter 4.

The difficulty with the common point method is calculating the distance between the
central point and all the other points. The calculation itself is fairly simple and can be done
using kilometers, miles, or nautical miles, as shown in the PHP surfaceDistance() function in
Listing 7-3.

Listing 7-3. Surface Distance Calculation Function in PHP

<?php

function surfaceDistance($lat1,$lng1,$lat2,$lng2,$type='km'){

$a1 = deg2rad($lat1); //lat 1 in radians

$a2 = deg2rad($lat2); //lat 2 in radians

$b1 = deg2rad($lng1); //lng 1 in radians

$b2 = deg2rad($lng2); //lng 2 in radians

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 155

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 155

//earth radius = 6378.8 kilometers or 3963 miles

switch(strtolower($type)) {

case 'km': $r = 6378.8; break; //kilometers

case 'm': $r = 3963; break; //miles

case 'n': $r = 3443.9; break; //nautical

}

return acos(cos($a1)*cos($b1)*cos($a2)*cos($b2) +

cos($a1)*sin($b1)*cos($a2)*sin($b2) +

sin($a1)*sin($a2)) * $r;

}

?>

The problem arises when you need to calculate the distance to every point in your data-
base. Looping through each point is fine for a relatively small database, but when you are dealing
with hundreds of thousands of points, you should first reduce your data set using other meth-
ods. For example, you could limit the search to a certain range from the central point and
construct a latitude/longitude boundary, as you did with the server-side boundary method
in Listing 7-2. This would limit the surface distance calculation to each point in the bound-
ary rather than the entire database. You could also look up the city or state when you geocode
the address and filter your SQL query to points only in that city or state. Either way, it’s best
to provide some level of additional search criteria so you don’t waste resources by calculat-
ing distances to points on the other side of the world.

If you choose to use this method, also be aware that user interface problems may arise if
you don’t design your interface correctly. The problem may not be obvious at first, but what hap-
pens when you slide the map away from the common central point? Using strictly this method
means no additional markers are shown outside those closest to the common point. Your users
could be dragging the map around looking for the other markers that they know are there, but
aren’t shown due to the restrictions of the central point location, as shown in Figure 7-3.

Figure 7-3. A map missing the available data outside the viewable area

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS156

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 156

Some maps we’ve seen use “closest to the center” of the map to filter points. This imposes
the same ambiguity, as the map actually contains much more information but it’s simply ignored.
When using the server-side common point method, be sure to indicate to the users that the
information on the map is filtered relative to the known point. That way, they are aware they
must perform an additional search to retrieve more information.

Listings 7-4 and 7-5 show a working example of the common point method (http://
googlemapsbook.com/chapter7/ServerClosest/). To provide a simpler example, we’ve made
the map clickable. The latitude and longitude of the clicked point is sent back to the server as
the known point. Then, using the FCC tower database, the map will plot the closest 20 towers
to the click. You could easily modify the example to send an address in the request and use
a server-side geocoding application to encode the address into latitude and longitude coordi-
nates, or you could use the API’s GClientGeocoder object to geocode an address.

Listing 7-4. Client-Side JavaScript for the Closest to Common Point Method

var map;

var centerLatitude = 42;

var centerLongitude = -72;

var startZoom = 10;

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

//pass in an initial point for the center

updateMarkers(new GLatLng(centerLatitude, centerLongitude));

GEvent.addListener(map,'click',function(overlay,point) {

//pass in the point for the center

updateMarkers(point);

});

}

function updateMarkers(point) {

//remove the existing points

map.clearOverlays();

//create the boundary for the data to provide

//initial filtering

var bounds = map.getBounds();

var southWest = bounds.getSouthWest();

var northEast = bounds.getNorthEast();

var getVars = 'ne=' + northEast.toUrlValue()

+ '&sw=' + southWest.toUrlValue()

+ '&known=' + point.toUrlValue();

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 157

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 157

//log the URL for testing

GLog.writeUrl('server.php?'+getVars);

//retrieve the points

var request = GXmlHttp.create();

request.open('GET', 'server.php?'+getVars, true);

request.onreadystatechange = function() {

if (request.readyState == 4) {

var jscript = request.responseText;

var points;

GLog.write(jscript);

eval(jscript);

//create each point from the list

for (i in points) {

var point = new GLatLng(points[i].lat,points[i].lng);

var marker = createMarker(point);

map.addOverlay(marker);

}

}

}

request.send(null);

}

function createMarker(point) {

var marker = new GMarker(point);

return marker;

}

window.onload = init;

Listing 7-5. Server-Side PHP for the Closest to Common Point Method

<?php

//surface distance calculation from Listing 7-3

function surfaceDistance($lat1,$lng1,$lat2,$lng2,$type='km'){

$a1 = deg2rad($lat1); //lat 1 in radians

$a2 = deg2rad($lat2); //lat 2 in radians

$b1 = deg2rad($lng1); //lng 1 in radians

$b2 = deg2rad($lng2); //lng 2 in radians

//earth radius = 6378.8 kilometers or 3963 miles

switch(strtolower($type)) {

case 'km': $r = 6378.8; break; //kilometers

case 'm': $r = 3963; break; //miles

case 'n': $r = 3443.9; break; //nautical

}

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS158

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 158

return acos(cos($a1)*cos($b1)*cos($a2)*cos($b2)

+ cos($a1)*sin($b1)*cos($a2)*sin($b2)

+ sin($a1)*sin($a2)) * $r;

}

//retrieve the variables from the GET vars

list($knownLat,$knownLng) = explode(',',$_GET['known']);

list($nelat,$nelng) = explode(',',$_GET['ne']);

list($swlat,$swlng) = explode(',',$_GET['sw']);

//clean the data

$knownLat=(float)$knownLat;

$knownLng=(float)$knownLng;

$nelng=(float)$nelng;

$swlng=(float)$swlng;

$nelat=(float)$nelat;

$swlat=(float)$swlat;

//connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

/*

* Retrieve the points within the boundary of the map.

* For the FCC data, all the points are within the US so we

* don't need to worry about the meridian problem.

*/

$result = mysql_query(

"SELECT

longitude as lng,latitude as lat

FROM

fcc_towers

WHERE

(longitude > $swlng AND longitude < $nelng)

AND (latitude <= $nelat AND latitude >= $swlat)

ORDER BY

lat");

$list = $distanceList = array();

$i=0;

$row = mysql_fetch_assoc($result);

while($row)

{

$i++;

extract($row);

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 159

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 159

$list[$i] = "p{$i}:{lat:{$lat},lng:{$lng}}";

$distanceList[$i] = surfaceDistance($lat,$lng,$knownLat,$knownLng,'km');

$row = mysql_fetch_assoc($result);

}

//sort the arrays by distance

array_multisort($distanceList,$list);

//free the distance list

unset($distanceList);

//slice the array to the desired number of points

//20 in this case

$list = array_slice($list,0,20);

//echo back the JavaScript object

header('content-type:text/plain;');

echo "var points = {\n\t".join(",\n\t",$list)."\n}";

?>

You may notice the GET variables for the request in Listing 7-4 contain the bounds of the
viewable area along with the clicked point:

var getVars = 'ne=' + northEast.toUrlValue()

+ '&sw=' + southWest.toUrlValue()

+ '&known=' + point.toUrlValue();

As mentioned earlier, sending the bounds allows you to filter the points to the viewable
area first, reducing the number of distance calculations. In Listing 7-5, the script simply records
all the distances into the distanceList array, and then sorts and slices the array by distance to
the known point before returning the request.

The closest to common point method offers the following advantages:

• It works at any zoom level.

• It works for any sized data provided you add additional filtering.

• This method is great for relative location-based searches.

Its disadvantages are as follows:

• Each request must be calculated and can’t be easily cached.

• Not all available data points appear on the map.

• It requires a relative location.

• It may require server resources for larger/dense data sets.

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS160

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 160

Server-Side Clustering
The server-side clustering solution involves using the server to further analyze your requests,
and it works well for high-density data sets. In this case, the server analyzes the locations you’ve
requested along with their proximity, and then clusters markers to provide the maximum amount
of information from the fewest number of markers. A cluster is just a normal GMarker, but it
represents more than one marker within a close distance and therefore usually has a different
icon.

If your data has a very high density and markers are often overlapping, you can reduce
the number of markers on the map simply by combining near markers into one single cluster
marker. When you zoom the map for a closer look, the cluster marker will expand into several
individual markers, or more cluster markers, until the zoom is close enough that no clusters are
needed. For data sets of around 1000 points, clustering can be accomplished through JavaScript
on the client side, which we’ll discuss in the “Client-Side Clustering” section later in the chapter.
Here, you’ll see how to cluster data on the server side when you have hundreds of thousands
of points.

To initially filter your data for the request, you can use either the server-side boundary
method or the server-side closest to common point method. For this example, we’ve chosen to
request all the points within the viewable area of the map (the boundary method), and then
we’ve applied clustering to the remaining points, as shown in Figure 7-4.

Figure 7-4. A map with clustered and single points

Combining clustering with either of the previous two methods can overcome some of
their limitations. The drawback of the server-side boundary method was its limitation to
a “closer to earth” zoom level. Zooming out meant that there would be too many points to dis-
play at one time on the map. By clustering the points, you can zoom out and still view the map
within the marker limit, but some markers will be combined until you zoom in closer.

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 161

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 161

To cluster data into common groups, you need to determine which points lay relatively
close to each other, and then figure out how much clustering to apply to achieve the correct
number of points. There are a variety of ways you can go about this, some simple and others
much more complex. For the example here, we’ve chosen a simple method that we like to call
the “grid” method.

To cluster using a grid, you take the outer boundary of the data set (for example the view-
port), divide the area into equally sized grid cells, and then allocate each of your points to
a cell. The size of the grid cells will determine how detailed the map data is. If you use a grid
cell that is 100 pixels wide, then all markers within the 100-by-100 block will be combined into
one marker. Listing 7-6 uses an incremental grid size starting with one-thirtieth of the longi-
tude resolution:

$gridSize+=($nelng-$swlng)/30;

which increases if the total is still too large at the end of the loop:

if(count($clustered)>$limit) continue;

By incrementing the size of the cell, you can achieve the best resolution of data for the
number of points available. Figure 7-5 shows an example map with grid cells and map areas
outlined.

Figure 7-5. A map showing the marked grid cells used for clustering

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS162

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 162

Listings 7-6 and 7-7 (http://googlemapsbook.com/chapter7/ServerCluster/) are modified
versions of the server-side boundary method.

Listing 7-6. Cluster Icon Additions to Improve the Server-Side Boundary Method JavaScript

var map;

var centerLatitude = 42;

var centerLongitude = -72;

var startZoom = 10;

//create an icon for the clusters

var iconCluster = new GIcon();

iconCluster.image = "http://googlemapsbook.com/chapter7/icons/cluster.png";

iconCluster.shadow = "http://googlemapsbook.com/chapter7/icons/cluster_shadow.png";

iconCluster.iconSize = new GSize(26, 25);

iconCluster.shadowSize = new GSize(22, 20);

iconCluster.iconAnchor = new GPoint(13, 25);

iconCluster.infoWindowAnchor = new GPoint(13, 1);

iconCluster.infoShadowAnchor = new GPoint(26, 13);

//create an icon for the pins

var iconSingle = new GIcon();

iconSingle.image = "http://googlemapsbook.com/chapter7/icons/single.png";

iconSingle.shadow = "http://googlemapsbook.com/chapter7/icons/single_shadow.png";

iconSingle.iconSize = new GSize(12, 20);

iconSingle.shadowSize = new GSize(22, 20);

iconSingle.iconAnchor = new GPoint(6, 20);

iconSingle.infoWindowAnchor = new GPoint(6, 1);

iconSingle.infoShadowAnchor = new GPoint(13, 13);

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {

updateMarkers();

});

GEvent.addListener(map,'moveend',function() {

updateMarkers();

});

}

function updateMarkers() {

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 163

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 163

//remove the existing points

map.clearOverlays();

//create the boundary for the data to provide

//initial filtering

var bounds = map.getBounds();

var southWest = bounds.getSouthWest();

var northEast = bounds.getNorthEast();

var getVars = 'ne=' + northEast.toUrlValue()

+ '&sw=' + southWest.toUrlValue()

//log the URL for testing

GLog.writeUrl('server.php?'+getVars);

//retrieve the points

var request = GXmlHttp.create();

request.open('GET', 'server.php?'+getVars, true);

request.onreadystatechange = function() {

if (request.readyState == 4) {

var jscript = request.responseText;

var points;

eval(jscript);

//create each point from the list

for (i in points) {

var point = new GLatLng(points[i].lat,points[i].lng);

var marker = createMarker(point,points[i].type);

map.addOverlay(marker);

}

}

}

request.send(null);

}

function createMarker(point, type) {

//create the marker with the appropriate icon

if(type=='c') {

var marker = new GMarker(point,iconCluster,true);

} else {

var marker = new GMarker(point,iconSingle,true);

}

return marker;

}

window.onload = init;

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS164

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 164

Listing 7-7. Cluster Additions to Improve the Server-Side Boundary Method PHP Script

<?php

//This script may require additional memory

ini_set('memory_limit',8388608 * 10);

//retrieve the variables from the GET vars

list($nelat,$nelng) = explode(',',$_GET['ne']);

list($swlat,$swlng) = explode(',',$_GET['sw']);

//clean the data

$nelng = (float)$nelng;

$swlng = (float)$swlng;

$nelat = (float)$nelat;

$swlat = (float)$swlat;

//connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

/*

* Retrieve the points within the boundary of the map.

* For the FCC data, all the points are within the US so we

* don't need to worry about the meridian problem.

*/

$result = mysql_query(

"SELECT

longitude as lng,latitude as lat,struc_height,struc_elevation

FROM

fcc_towers

WHERE

(longitude > $swlng AND longitude < $nelng)

AND (latitude <= $nelat AND latitude >= $swlat)

ORDER BY

lat");

//extract all the points from the result into an array

$list = array();

$row = mysql_fetch_assoc($result);

while($row)

{

//use 'm' to indicate this is a regular (m)arker

$list[] = array($row['lat'],$row['lng'],'m');

$row = mysql_fetch_assoc($result);

}

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 165

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 165

//close the SQL connection

mysql_close($conn);

//limit to 30 markers

$limit = 30;

$gridSize = 0;

$listRemove = array();

while(count($list)>$limit) {

//grid size in pixels. if the first pass fails to reduce the

//number of markers below the limit, the grid will increase

//again and redo the loop.

$gridSize += ($nelng-$swlng)/30;

$clustered = array();

reset($list);

//loop through the $list and put each one in a grid square

while(list($k,$v) = each($list)) {

//calculate the y position based on the latitude: $v[0]

$y = floor(($v[0]-$swlat)/$gridSize);

//calculate the x position based on the longitude: $v[1]

$x = floor(($v[1]-$swlng)/$gridSize);

//use the x and y values as the key for the array and append

//the points key to the clustered array

$clustered["{$x},{$y}"][] = $k;

}

//check if we're below the limit and if not loop again

if(count($clustered)>$limit) continue;

//reformat the list array

$listRemove = array();

while(list($k,$v) = each($clustered)) {

//only merge if there is more than one marker in a cell

if(count($v)>1) {

//create a list of the merged markers

$listRemove = array_merge($listRemove,$v);

//add a cluster marker to the list

$clusterLat = $list[$v[0]][0];

$clusterLng = $list[$v[0]][1];

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS166

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 166

//use 'c' to indicate this is a (c)luster marker

$list[] = array($clusterLat,$clusterLng,'c');

}

}

//unset all the merged pins

//reverse to start with highest key

rsort($listRemove);

while(list($k,$v) = each($listRemove)) {

unset($list[$v]);

}

//we're done!

break;

}

reset($list);

$json = array();

while(list($key,$values) = each($list)) {

$i++;

$json[] = "p{$i}:{lat:{$values[0]},lng:{$values[1]},type:'{$values[2]}'}";

}

//echo back the JavaScript object

header('content-type:text/plain;');

echo "var points = {\n\t".join(",\n\t",$json)."\n}";

?>

These are good starting points for your clustering script. To make it even better, you could
make some improvements. For example, you could calculate an average position of the mark-
ers within one grid cell so that the cluster marker better represents the actual location of the
points in that cell. You could also develop an algorithm that would allow you to cluster based
on relative positions, so only dense groups would cluster rather than the entire page.

The advantages of the cluster method are that it isn’t restricted to zoom levels and it works
for any sized data set. Its disadvantage is that the data is clustered over possibly large areas, so
you will still need to zoom in for more detail.

Custom Detail Overlay Method
So far, all the solutions we’ve presented use the GMarker to represent the data points on the map.
With the release of Google Maps API version 2, Google has exposed additional classes in the API
for building your own custom overlays.

An overlay, as we mentioned earlier, is anything that you add to the map, such as
a GMarker, GPolyline, or an info window. In version 1 of the API, you were limited to the Google-
provided overlays. Now you can implement your own overlays using the GOverlay class. This

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 167

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 167

opens up a realm of possibilities for creating overlays such as simple shapes or even your own
info window object. Here, we present the possibility of including a detail overlay for a speci-
fied area of the map.

The custom overlay you create can contain any information you want. For example,
the Google Maps API documentation gives the example of a Rectangle overlay, as listed in
Listing 7-8 (from http://www.google.com/apis/maps/documentation/#Custom_Overlays).

Listing 7-8. Google’s Example Rectangle Overlay

// A Rectangle is a simple overlay that outlines a lat/lng bounds on the

// map. It has a border of the given weight and color and can optionally

// have a semi-transparent background color.

function Rectangle(bounds, opt_weight, opt_color) {

this.bounds_ = bounds;

this.weight_ = opt_weight || 2;

this.color_ = opt_color || "#888888";

}

Rectangle.prototype = new GOverlay();

// Creates the DIV representing this rectangle.

Rectangle.prototype.initialize = function(map) {

// Create the DIV representing our rectangle

var div = document.createElement("div");

div.style.border = this.weight_ + "px solid " + this.color_;

div.style.position = "absolute";

// Our rectangle is flat against the map, so we add our selves to the

// MAP_PANE pane, which is at the same z-index as the map itself (i.e.,

// below the marker shadows)

map.getPane(G_MAP_MAP_PANE).appendChild(div);

this.map_ = map;

this.div_ = div;

}

// Remove the main DIV from the map pane

Rectangle.prototype.remove = function() {

this.div_.parentNode.removeChild(this.div_);

}

// Copy our data to a new Rectangle

Rectangle.prototype.copy = function() {

return new Rectangle(this.bounds_, this.weight_, this.color_,

this.backgroundColor_, this.opacity_);

}

// Redraw the rectangle based on the current projection and zoom level

Rectangle.prototype.redraw = function(force) {

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS168

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 168

// We only need to redraw if the coordinate system has changed

if (!force) return;

// Calculate the DIV coordinates of two opposite corners of our bounds to

// get the size and position of our rectangle

var c1 = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());

var c2 = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());

// Now position our DIV based on the DIV coordinates of our bounds

this.div_.style.width = Math.abs(c2.x - c1.x) + "px";

this.div_.style.height = Math.abs(c2.y - c1.y) + "px";

this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight_) + "px";

this.div_.style.top = (Math.min(c2.y, c1.y) - this.weight_) + "px";

}

function load() {

if (GBrowserIsCompatible()) {

var map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(37.4419, -122.1419), 13);

// Display a rectangle in the center of the map at about a quarter of

// the size of the main map

var bounds = map.getBounds();

var southWest = bounds.getSouthWest();

var northEast = bounds.getNorthEast();

var lngDelta = (northEast.lng() - southWest.lng()) / 4;

var latDelta = (northEast.lat() - southWest.lat()) / 4;

var rectBounds = new GLatLngBounds(

new GLatLng(southWest.lat() + latDelta,

southWest.lng() + lngDelta),

new GLatLng(northEast.lat() - latDelta,

northEast.lng() - lngDelta));

map.addOverlay(new Rectangle(rectBounds));

}

}

window.onload = load;

The Rectangle overlay simply creates a div object on the map and applies a border to it. To
create a detail overlay, you can use the Rectangle object in Listing 7-8, but add one additional
property to the div: a background image. The background image can contain any information
you want, from pictures and icons to lines and shapes, and can be created on the fly using
a server-side script. The new custom detail overlay can then be placed on the map in the
appropriate area on top of the existing Google Maps tiles.

Using an overlay is best for data sets that are high density but cover a relatively small portion
of the map. If your data set contains hundreds of millions of points, creating the overlay is going

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 169

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 169

to take some time, and your application will still feel sluggish. If you have massive data sets
spread across the world, you’ll need to use custom tiles, which we’ll discuss in the next section.

For the custom detail overlay example, suppose you want to mark all the FCC tower loca-
tions in Hawaii, as you did in Chapter 6. There are about 286 towers—too many for one map
using just the GMarker object. Using a custom overlay, you can simply create a transparent GIF
or PNG that covers all of Hawaii and mark each of the locations in whatever way you like. You
can even add text, shapes, or photos. What you include in your image is up to you.

Listing 7-9 shows the client-side JavaScript for the custom overlay method.

Listing 7-9. Client-Side JavaScript for the Custom Overlay Method

var map;

var centerLatitude = 19.9;

var centerLongitude = -156;

var startZoom = 7;

//create the Detail overlay object

function Detail(bounds, opt_weight, opt_color) {

this.bounds_ = bounds;

this.weight_ = opt_weight || 2;

this.color_ = opt_color || "#000";

}

Detail.prototype = new GOverlay();

Detail.prototype.initialize = function(map) {

//create the div representing the Detail

var div = document.createElement("div");

div.style.border = this.weight_ + "px dotted " + this.color_;

div.style.position = "absolute";

//the Detail is flat against the map, so we add it to the

//MAP_PANE pane, which is at the same z-index as the map itself (i.e.,

//below the marker shadows)

map.getPane(G_MAP_MAP_PANE).appendChild(div);

this.map_ = map;

this.div_ = div;

//load the background image

this.loadBackground();

}

Detail.prototype.remove = function() {

this.div_.parentNode.removeChild(this.div_);

}

Detail.prototype.copy = function() {

return new Detail(this.bounds_, this.weight_, this.color_,

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS170

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 170

this.backgroundColor_, this.opacity_);

}

Detail.prototype.redraw = function(force) {

if (!force) return;

this.bounds_ = this.map_.getBounds();

var c1 = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());

var c2 = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());

this.div_.style.width = Math.abs(c2.x - c1.x) + "px";

this.div_.style.height = Math.abs(c2.y - c1.y) + "px";

this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight_) + "px";

this.div_.style.top = (Math.min(c2.y, c1.y) - this.weight_) + "px";

//the position or zoom has changed so reload the background image

this.loadBackground();

}

Detail.prototype.loadBackground = function() {

//retrieve the bounds of the detail area

var southWest = this.bounds_.getSouthWest();

var northEast = this.bounds_.getNorthEast();

//determine the pixel position of the corners

var swPixels = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());

var nePixels = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());

//send the lat/lng as well as x/y and zoom to the server

var getVars = 'ne=' + northEast.toUrlValue()

+ '&sw=' + southWest.toUrlValue()

+ '&nePixels=' + nePixels.x + ',' + nePixels.y

+ '&swPixels=' + swPixels.x + ',' + swPixels.y

+ '&z=' + this.map_.getZoom()

+ '';

//log the URL for testing

GLog.writeUrl('server.php?'+getVars);

//set the background image of the div

this.div_.style.background='transparent url(server.php?'+getVars+')';

}

function init() {

map = new GMap2(document.getElementById("map"));

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 171

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 171

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

var bounds = map.getBounds();

map.addOverlay(new Detail(bounds));

}

window.onload = init;

■Tip For examples of the mathematical formulas for different maps such as the Mercator projection
maps, visit MathWorld at http://mathworld.wolfram.com/MercatorProjection.html.

Looking at Listing 7-9, you can see the Rectangle object renamed to Detail and the addi-
tion of a loadBackground method, which modifies the background style property of the Detail
object:

Detail.prototype.loadBackground = function() {

//retrieve the bounds of the detail area

var southWest = this.bounds_.getSouthWest();

var northEast = this.bounds_.getNorthEast();

//determine the pixel position of the corners

var swPixels = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());

var nePixels = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());

var getVars = 'ne=' + northEast.toUrlValue()

+ '&sw=' + southWest.toUrlValue()

+ '&nePixels=' + nePixels.x + ',' + nePixels.y

+ '&swPixels=' + swPixels.x + ',' + swPixels.y

+ '&z=' + this.map_.getZoom()

+ '';

this.div_.style.background='transparent url(server.php?'+getVars+')';

}

When loading your background image, you’ll need to include several variables for your
server-side script, including the northeast and southwest corners in latitude and longi-
tude, as well as the northeast and southwest corners in pixel values. You also need to pass
the current zoom level for the map. This will allow you to perform the necessary calculations
on the server side and also allow you to modify your image, depending on how far your users
have zoomed in on the map. You can then use the server-side script in Listing 7-10 to create
the appropriately sized image with the appropriate information for the boundary. For the
example in Listing 7-10 (http://googlemapsbook.com/chapter7/ServerCustomOverlay/), we’ve

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS172

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 172

chosen to create a GIF with a small circle marking each tower location within the northeast and
southwest boundary.

Listing 7-10. Server-Side PHP for the Custom Overlay Method

<?php

//retrieve the variables from the GET vars

list($nelat,$nelng) = explode(',',$_GET['ne']);

list($swlat,$swlng) = explode(',',$_GET['sw']);

list($neX,$neY) = explode(',',$_GET['nePixels']);

list($swX,$swY) = explode(',',$_GET['swPixels']);

//clean the data

$nelng = (float)$nelng;

$swlng = (float)$swlng;

$nelat = (float)$nelat;

$swlat = (float)$swlat;

$w = (int)abs($neX - $swX);

$h = (int)abs($neY - $swY);

$z = (int)$_GET['z'];

//connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

/*

* Retrieve the points within the boundary of the map.

* For the FCC data, all the points are within the US so we

* don't need to worry about the meridian.

*/

$result = mysql_query(

"SELECT

longitude as lng,latitude as lat,struc_height,struc_elevation

FROM

fcc_towers

WHERE

(longitude > $swlng AND longitude < $nelng)

AND (latitude <= $nelat AND latitude >= $swlat)

ORDER BY

lat");

$count = mysql_num_rows($result);

//calculate the Mercator coordinate position of the top

//latitude and normalize from 0-1

$mercTop = 0.5-(asinh(tan(deg2rad($nelat))) / M_PI / 2);

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 173

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 173

//calculate the scale and y position on the Google Map

$scale = (1 << ($z)) * 256;

$yTop = $mercTop * $scale;

//calculate the pixels per degree of longitude

$lngSpan = $nelng-$swlng;

$pixelsPerDegLng = abs($w/$lngSpan);

//create the image

$im = imagecreate($w,$h);

$trans = imagecolorallocate($im,0,0,255);

$black = imagecolorallocate($im,0,0,0);

$white = imagecolorallocate($im,255,255,255);

imagefill($im,0,0,$trans);

imagecolortransparent($im, $trans);

//label the number of points for testing

imagestring($im,1,0,0,$count.' points in this area:',$black);

$row = mysql_fetch_assoc($result);

while($row)

{

extract($row);

$lng = $row['lng'];

$lat = $row['lat'];

$x = ceil(abs($lng-$swlng)*$pixelsPerDegLng);

//calculate the mercator cordinate position of this point

//latitude and normalize from 0-1

$yMerc = 0.5-(asinh(tan(deg2rad($lat))) / M_PI / 2);

//calculate the y position on the Google Map

$yMap = $yMerc * $scale;

//calculate the y position in the overlay

$y = $yMap-$yTop;

//draw the marker, a dot in this case

imagefilledellipse($im, $x, $y, $z+1, $z+1, $black);

imageellipse($im, $x, $y, $z+1, $z+1, $white);

$row = mysql_fetch_assoc($result);

}

//echo a GIF

header('content-type:image/gif;');

imagegif($im);

?>

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS174

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 174

Looking at Listing 7-9 again, you’ll notice that your background image for the overlay is
based on the viewable area of the map. You can imagine, when you zoom in very close, the
image covering all of Hawaii would be exponentially larger at each zoom increment.
Limiting the image to cover only the viewable area decreases the number of points that
need to be drawn and decreases the size of the image.

■Tip Another advantage of the custom overlay method as well as the custom tile method, described next,
is the ability to circumvent the same origin security policy built into most browsers. The policy doesn’t apply
to images, so your map can be hosted on one domain and you can request your background images or tiles
from a different domain without any problems.

Once the overlay is loaded onto the map, you should have the towers for Hawaii marked some-
thing like Figure 7-6. Again, you could use any image for the markers simply by copying it onto
the image in PHP using the appropriate PHP GD functions.

Figure 7-6. A map showing the custom detail overlay for FCC towers in Hawaii

The pros of using the custom overlay method are as follows:

• It overcomes API limitations on the number of markers and polylines.

• You can use the same method to display objects, shapes, photos, and more.

• It works for any sized data set and at any zoom level.

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 175

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 175

The following are its disadvantages:

• It creates a new image after each map movement or zoom change.

• Extremely large data sets could be slow to render.

Custom Tile Method
The custom tile method is the most elegant solution to display the maximum amount of infor-
mation on the map with the least overhead. You could use custom tiles to display a single
point or millions of points.

To add your own custom tiles to the map, version 2 of the Google Maps API exposes the
GTile and GProjection objects. This means you can now use the API to show your own tiles on
the map. What’s even better is that you can also layer transparent or translucent tiles on top of
each other to create a multilayered map. By layering tiles on top of one another, you have no limit
to what information you can display. For example, you could create tiles with your own driving
directions, outline buildings and environmental features, or even display your information
using an old antique map rather than Google’s default or satellite map types.

To demonstrate this method, let’s create a map of all the available FCC towers in the
United States. That’s an excessively large amount of dense data (about 115,000 points as men-
tioned earlier), and it covers a fairly large area of the earth. You could use the custom overlay
method discussed in the previous section, but the map would be very sluggish as it continually
redrew the image when looking at anything larger than a single city in a dense area. Your
best option would be to create transparent tiles containing all your information, and match
them to Google’s tiles so you can overlay them on top of each of the different map types. By
slicing your data into smaller tiles, each image is relatively small (256 by 256 pixels) and both
the client web browser and the server can cache them to reduce redundant processing.
Figure 7-7 shows each of the tiles outlined on the sample Google map.

Figure 7-7. Tiles outlined on a Google map

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS176

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 176

To layer your data using the same tile structure as the Google Maps API, you’ll need to cre-
ate each of your tiles to match the existing Google tiles. Along with the sample code for the
book, we’ve included a PHP GoogleMapsUtility class in Listing 7-11, which has a variety of
useful methods to help you create your tiles. The tile script for the custom tile method (shown
later in Listing 7-13) uses the methods of the GoogleMapsUtility class to calculate the various
locations of each point on the tile. The calculations in the utility class are based on the
Mercator projection, which we’ll discuss further in Chapter 9, when we talk about types of
map projections.

Listing 7-11. The GoogleMapUtility Class Methods for Tile Construction

<?php

class GoogleMapUtility {

//The Google Maps all use tiles 256x256

const TILE_SIZE = 256;

/**

* Convert from a pixel location to a geographical location.

**/

public static function fromXYToLatLng($point,$zoom) {

$mapWidth = (1 << ($zoom)) * GoogleMapUtility::TILE_SIZE;

return new Point(

(int)($normalised->x * $mapWidth),

(int)($normalised->y * $mapWidth)

);

}

/**

* Calculate the pixel offset within a specific tile

* for the given latitude and longitude.

**/

public static function getPixelOffsetInTile($lat,$lng,$zoom) {

$pixelCoords = GoogleMapUtility::toZoomedPixelCoords(

$lat, $lng, $zoom

);

return new Point(

$pixelCoords->x % GoogleMapUtility::TILE_SIZE,

$pixelCoords->y % GoogleMapUtility::TILE_SIZE

);

}

/**

* Determine the geographical bounding box for the specified tile index

* and zoom level.

**/

public static function getTileRect($x,$y,$zoom) {

$tilesAtThisZoom = 1 << $zoom;

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 177

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 177

$lngWidth = 360.0 / $tilesAtThisZoom;

$lng = -180 + ($x * $lngWidth);

$latHeightMerc = 1.0 / $tilesAtThisZoom;

$topLatMerc = $y * $latHeightMerc;

$bottomLatMerc = $topLatMerc + $latHeightMerc;

$bottomLat = (180 / M_PI) * ((2 * atan(exp(M_PI *

(1 - (2 * $bottomLatMerc))))) - (M_PI / 2));

$topLat = (180 / M_PI) * ((2 * atan(exp(M_PI *

(1 - (2 * $topLatMerc))))) - (M_PI / 2));

$latHeight = $topLat - $bottomLat;

return new Boundary($lng, $bottomLat, $lngWidth, $latHeight);

}

/**

* Convert from latitude and longitude to Mercator coordinates.

**/

public static function toMercatorCoords($lat, $lng) {

if ($lng > 180) {

$lng -= 360;

}

$lng /= 360;

$lat = asinh(tan(deg2rad($lat)))/M_PI/2;

return new Point($lng, $lat);

}

/**

* Normalize the Mercator coordinates.

**/

public static function toNormalisedMercatorCoords($point) {

$point->x += 0.5;

$point->y = abs($point->y-0.5);

return $point;

}

/**

* Calculate the pixel location of a latitude and longitude point

* on the overall map at a specified zoom level.

**/

public static function toZoomedPixelCoords($lat, $lng, $zoom) {

$normalised = GoogleMapUtility::toNormalisedMercatorCoords(

GoogleMapUtility::toMercatorCoords($lat, $lng)

);

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS178

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 178

$scale = (1 << ($zoom)) * GoogleMapUtility::TILE_SIZE;

return new Point(

(int) ($normalised->x * $scale),

(int)($normalised->y * $scale)

);

}

}

/**

* Object to represent a coordinate point (x,y).

**/

class Point {

public $x,$y;

function __construct($x,$y) {

$this->x = $x;

$this->y = $y;

}

function __toString() {

return "({$this->x},{$this->y})";

}

}

/**

* Object to represent a boundary point (x,y) and (width,height)

**/

class Boundary {

public $x,$y,$width,$height;

function __construct($x,$y,$width,$height) {

$this->x = $x;

$this->y = $y;

$this->width = $width;

$this->height = $height;

}

function __toString() {

return "({$this->x},{$this->y},{$this->width},{$this->height})";

}

}

?>

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 179

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 179

Using the GoogleMapsUtility class, you can determine what information you need to
include in each tile. For example, in the client-side JavaScript for the custom tile method in
Listing 7-12 (which you’ll see soon), each tile request:

var tileURL = "server.php?x="+tile.x+"&y="+tile.y+"&zoom="+zoom;

contains three bits of information: an X position, a Y position, and the zoom level. These three
bits of information can be used to calculate the latitude and longitude boundary of a specific
Google tile using the GoogleMapsUtility::getTileRect method, as demonstrated in the
server-side PHP script for the custom tiles in Listing 7-13 (also coming up soon). The X and Y
positions represent the tile number of the map relative to the top-left corner, where positive X
and Y are east and south, respectively, starting at 1 and increasing as illustrated in Figure 7-8.
You can also see that the first column in Figure 7-8 contains tile (7,1) because the map has
wrapped beyond the meridian, so the first column is actually the rightmost edge of the map
and the second column is the leftmost edge.

Figure 7-8. Google tile numbering scheme

The zoom level is also required so that the calculations can determine the latitude
and longitude resolution of the current map. For now, play with the example in Listings 7-12
and 7-13 (http://googlemapsbook.com/chapter7/ServerCustomTiles/). In Chapter 9, you’ll get
into the math required to calculate the proper position of latitude and longitude on the Mer-
cator projection, as well as a few other projections.

For the sample tiles, we’ve drawn a colored circle outlined in white with each color repre-
senting the height of the tower, as shown in Figure 7-9.

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS180

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 180

Figure 7-9. The finalized custom tile map in satellite mode

For testing purposes, each tile is also labeled with the date/time tile number and the
number of points in that tile. If you look at the online example, you’ll notice that the tiles ren-
der very quickly. Once drawn, the tiles are cached on the server side so when requested again, the
tiles are automatically served up by the server. Originally, when the tiles were created for zoom
level 1, some took up to 15 seconds to render, as there were almost 50,000 points per tiles in the
United States. If the data on your map is continually changing, you may want to consider
running a script to create all the tiles before publishing your map to the Web so your first
visitors don’t experience a lag when the tiles are first created.

Listing 7-12. Client-Side JavaScript for the Custom Tile Method

var map;

var centerLatitude = 49.224773;

var centerLongitude = -122.991943;

var startZoom = 6;

//create the tile layer object

var detailLayer = new GTileLayer(new GCopyrightCollection(''));

//method to retrieve the URL of the tile

detailLayer.getTileUrl = function(tile, zoom){

//pass the x and y position as well as the zoom

var tileURL = "server.php?x="+tile.x+"&y="+tile.y+"&zoom="+zoom;

return tileURL;

};

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 181

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 181

detailLayer.isPng = function() {

//the example uses GIFs

return false;

}

//add your tiles to the normal map projection

detailMapLayers = G_NORMAL_MAP.getTileLayers();

detailMapLayers.push(detailLayer);

//add your tiles to the satellite map projection

detailMapLayers = G_SATELLITE_MAP.getTileLayers();

detailMapLayers.push(detailLayer);

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

}

window.onload = init;

Listing 7-13. Server-Side PHP for the Custom Tile Method

<?php

//include the helper calculations

require('GoogleMapUtility.php');

//this script may require additional memory and time

set_time_limit(0);

ini_set('memory_limit',8388608*10);

//create an array of the size for each marker at each zoom level

$markerSizes = array(1,1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12);

//get the lat/lng bounds of this tile from the utility function

//return a bounds object with width,height,x,y

$rect = GoogleMapUtility::getTileRect(

(int)$_GET['x'],

(int)$_GET['y'],

(int)$_GET['zoom']

);

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS182

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 182

//create a unique file name for this tile

$file = 'tiles/c'.md5(

serialize($markerSizes).

serialize($rect).'|'.

$_GET['x'].'|'.

$_GET['y'].'|'.

$_GET['zoom']).

'.gif';

//check if the file already exists

if(!file_exists($file)) {

//create a new image

$im = imagecreate(GoogleMapUtility::TILE_SIZE,GoogleMapUtility::TILE_SIZE);

$trans = imagecolorallocate($im,0,0,255);

imagefill($im,0,0,$trans);

imagecolortransparent($im, $trans);

$black = imagecolorallocate($im,0,0,0);

$white = imagecolorallocate($im,255,255,255);

//set up some colors for the markers.

//each marker will have a color based on the height of the tower

$darkRed = imagecolorallocate($im,150,0,0);

$red = imagecolorallocate($im,250,0,0);

$darkGreen = imagecolorallocate($im,0,150,0);

$green = imagecolorallocate($im,0,250,0);

$darkBlue = imagecolorallocate($im,0,0,150);

$blue = imagecolorallocate($im,0,0,250);

$orange = imagecolorallocate($im,250,150,0);

//init some vars

$extend = 0;

$z = (int)$_GET['zoom'];

$swlat=$rect->y + $extend;

$swlng=$rect->x+ $extend;

$nelat=$swlat+$rect->height + $extend;

$nelng=$swlng+$rect->width + $extend;

//connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

/*

* Retrieve the points within the boundary of the map.

* For the FCC data, all the points are within the US so we

* don't need to worry about the meridian problem.

*/

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 183

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 183

$result = mysql_query(

"SELECT

longitude as lng,latitude as lat,struc_height,struc_elevation

FROM

fcc_towers

WHERE

(longitude > $swlng AND longitude < $nelng)

AND (latitude <= $nelat AND latitude >= $swlat)

ORDER BY

lat"

, $conn);

//get the number of points in this tile

$count = mysql_num_rows($result);

$filled=array();

$row = mysql_fetch_assoc($result);

while($row)

{

//get the x,y coordinate of the marker in the tile

$point = GoogleMapUtility::getPixelOffsetInTile($row['lat'],$row['lng'],$z);

//check if the marker was already drawn there

if($filled["{$point->x},{$point->y}"]<2) {

//pick a color based on the structure's height

if($row['struc_height']<=20) $c = $darkRed;

elseif($row['struc_height']<=40) $c = $red;

elseif($row['struc_height']<=80) $c = $darkGreen;

elseif($row['struc_height']<=120) $c = $green;

elseif($row['struc_height']<=200) $c = $darkBlue;

else $c = $blue;

//if there is aready a point there, make it orange

if($filled["{$point->x},{$point->y}"]==1) $c=$orange;

//get the size

$size = $markerSizes[$z];

//draw the marker

if($z<2) imagesetpixel($im, $point->x, $point->y, $c);

elseif($z<12) {

imagefilledellipse($im, $point->x, $point->y, $size, $size, $c);

imageellipse($im, $point->x, $point->y, $size, $size, $white);

} else {

imageellipse($im, $point->x, $point->y, $size-1, $size-1, $c);

imageellipse($im, $point->x, $point->y, $size-2, $size-2, $c);

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS184

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 184

imageellipse($im, $point->x, $point->y, $size+1, $size+1, $black);

imageellipse($im, $point->x, $point->y, $size, $size, $white);

}

//record that we drew the marker

$filled["{$point->x},{$point->y}"]++;

}

$row = mysql_fetch_assoc($result);

}

//write some info about the tile to the image for testing

imagestring($im,1,-1,0,

"$count points in tile ({$_GET['x']},{$_GET['y']}) @ zoom $z ",$white);

imagestring($im,1,0,1,

"$count points in tile ({$_GET['x']},{$_GET['y']}) @ zoom $z ",$white);

imagestring($im,1,0,-1,

"$count points in tile ({$_GET['x']},{$_GET['y']}) @ zoom $z ",$white);

imagestring($im,1,1,0,

"$count points in tile ({$_GET['x']},{$_GET['y']}) @ zoom $z ",$white);

imagestring($im,1,0,0,

"$count points in tile ({$_GET['x']},{$_GET['y']}) @ zoom $z ",$black);

imagestring($im,1,0,9,date('r'),$black);

//output the new image to the file system and then send it to the browser

header('content-type:image/gif;');

imagegif($im,$file);

echo file_get_contents($file);

} else {

//output the existing image to the browser

header('content-type:image/gif;');

echo file_get_contents($file);

}

?>

■Tip Another benefit of using the tile layer is that it bypasses the cross-domain scripting restrictions on the
browser. Each tile is actually an image and nothing more. The GET parameters specify which tile the browser
is requesting, and the browser can load any image from any site, as it is not considered malicious—it’s just
an image.

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 185

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 185

BUT WHAT ABOUT INFO WINDOWS?

Using tiles to display your “markers” is relatively easy, and you can simulate most of the features of the GMarker
object, with the exception of info windows. You can’t attach an info window to the pretend markers in your tile,
but you can fake it.

Back in Chapter 3, you created an info window when you clicked on the map by using
GMap2.openInfoWindow. You could do the same here, and then use an Ajax request to ask for the content of
the info window using something like this:

GEvent.addListener(map, "click", function(marker, point) {

GDownloadUrl(

"your_server_side_script.php?"

+ "lat=" + point.lat()

+ "&lng=" + point.lng()

+ "&z=" + map.getZoom(),

function(data, responseCode) {

map.openInfoWindow(point,document.createTextNode(data));

});

});

The trick is figuring out what was actually clicked. When your users click your map, you’ll need to send
the location’s latitude and longitude back to the server and have it determine what information is relative to that
point. If something was clicked, you can then send the appropriate information back across the Ajax request and
create an info window directly on the map. From the client’s point of view, it will look identical to an info window
attached to a marker, except that it will be slightly slower to appear, as your server needs to process the
request to see what was clicked.

Optimizing the Client-Side User Experience
If your data set is just a little too big for the map—somewhere between 100 to 300 points—
you don’t necessarily need to make new requests to retrieve your information. You can achieve
good results using solutions similar to those we’ve outlined for the server side, but store the
data set in the browser’s memory using a JavaScript object. This way, you can achieve the same
effect but not require an excessive number of requests to the server.

The three methods we’ll discuss are pretty much the same as the corresponding server-side
methods, except that the processing is all done on the client side using the methods of the API
rather than calculating everything on the server side:

• Client-side boundary method

• Client-side closest to a common point method

• Client-side clustering

After we look at these solutions using client-side JavaScript and data objects, we’ll recom-
mend a couple other optimizations to improve your users’ experience.

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS186

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 186

Client-Side Boundary Method
With the server-side boundary method, you used the server to check if a point was inside the
boundary of the map. Doing so on the server side required that you write the calculation man-
ually into your script. Using the Google Maps API provides a much simpler solution, as you
can use the contains() method of the GLatLngBounds object to ask the API if your GLatLng point
is within the specified boundary. The contains() methods returns true if the supplied point is
within the geographical coordinates defined by the rectangular boundary.

Listing 7-14 (http://googlemapsbook.com/chapter7/ClientBounds/) shows the working
example of the boundary method implemented in JavaScript.

Listing 7-14. JavaScript for the Client-Side Boundary Method

var map;

var centerLatitude = 49.224773;

var centerLongitude = -122.991943;

var startZoom = 4;

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {

updateMarkers();

});

GEvent.addListener(map,'moveend',function() {

updateMarkers();

});

}

function updateMarkers() {

map.clearOverlays();

var mapBounds = map.getBounds();

//loop through each of the points from the global points object

for (k in points) {

var latlng = new GLatLng(points[k].lat,points[k].lng);

if(!mapBounds.contains(latlng)) continue;

var marker = createMarker(latlng);

map.addOverlay(marker);

}

}

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 187

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 187

function createMarker(point) {

var marker = new GMarker(point);

return marker;

}

window.onload = init;

When you move or zoom the map, the updateMarkers() function loops through
a points object to create the necessary markers for the boundary of the viewable area. The
points JSON object resembles the object discussed earlier in the chapter:

var points = {

p1:{lat:-53,lng:-74},

p2:{lat:-51.4,lng:59.51},

p3:{lat:-45.2,lng:-168.43},

p4:{lat:-41.19,lng:-174.46},

p5:{lat:-36.3,lng:60},

p6:{lat:-35.15,lng:-149.08},

p7:{lat:-34.5,lng:56.11},

... etc ...

p300:{lat:-33.24,lng:70.4},

}

This object was loaded into the browser using another script tag, in the same way you
loaded the data into the map in Chapter 2. Now, rather than creating a new request to the
server, the points object contains all the points, so you only need to loop through points
and determine if the current point is within the current boundary. Listing 7-14 uses the cur-
rent boundary of the map from map.getBounds().

Client-Side Closest to a Common Point Method
As with the boundary method, the client-side closest to a common point method is similar
to the server-side closest to common point method, but you can use the Google Maps API to
accomplish the same goal on the client side if you don’t have too many points. With a known
latitude and longitude point, you can calculate the distance from the known point to any other
point using the distanceFrom() method of the GLatLng class as follows:

var here = new GLatLng(lat,lng);

var distanceFromThereToHere = here.distanceFrom(there);

The distanceFrom() method returns the distance between the two points in meters, but
remember that the Google Maps API assumes the earth is a sphere, even though the earth is
slightly elliptical, so the accuracy of the distance may be off by as much as 0.3%, depending
where the two points are on the globe.

In Listing 7-15 (http://googlemapsbook.com/chapter7/ClientClosest/), you can see the
client-side JavaScript is very similar to the server-side PHP in Listing 7-5. The main difference
(besides not sending a request to the server) is the use of point.distanceFrom() rather than

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS188

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 188

the surfaceDistance() PHP function. Also for the example, the boundary of the data is out-
lined using the Rectangle object, similar to the one discussed earlier.

Listing 7-15. JavaScript for the Client-Side Closest to Common Point Method

var map;

var centerLatitude = 41.8;

var centerLongitude = -72.3;

var startZoom = 8;

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

//pass in an initial point for the center

updateMarkers(new GLatLng(centerLatitude, centerLongitude));

GEvent.addListener(map,'click',function(overlay,point) {

//pass in the point for the center

updateMarkers(point);

});

}

function updateMarkers(relativeTo) {

//remove the existing points

map.clearOverlays();

//mark the outer boundary of the data from the points object

var allsw = new GLatLng(41.57025176609894, -73.39965820312499);

var allne = new GLatLng(42.589488572714245, -71.751708984375);

var allmapBounds = new GLatLngBounds(allsw,allne);

map.addOverlay(new Rectangle(allmapBounds,4,"#F00"));

var distanceList = [];

var p = 0;

//loop through points and get the distance to each point

for (k in points) {

distanceList[p] = {};

distanceList[p].glatlng = new GLatLng(points[k].lat,points[k].lng);

distanceList[p].distance = distanceList[p].glatlng.distanceFrom(relativeTo);

p++;

}

//sort based on the distance

distanceList.sort(function (a,b) {

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 189

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 189

if(a.distance > b.distance) return 1

if(a.distance < b.distance) return -1

return 0

});

//create the first 50 markers

for (i=0 ; i<50 ; i++) {

var marker = createMarker(distanceList[i].glatlng);

map.addOverlay(marker);

if(++i > 50) break;

}

}

function createMarker(point) {

var marker = new GMarker(point);

return marker;

}

window.onload = init;

/*

* Rectangle overlay for testing to mark boundaries

*/

function Rectangle(bounds, opt_weight, opt_color) {

this.bounds_ = bounds; this.weight_ = opt_weight || 1;

this.color_ = opt_color || "#888888";

}

Rectangle.prototype = new GOverlay();

Rectangle.prototype.initialize = function(map) {

var div = document.createElement("div");

div.innerHTML = 'Click inside area';

div.style.border = this.weight_ + "px solid " + this.color_;

div.style.position = "absolute";

map.getPane(G_MAP_MAP_PANE).appendChild(div);

this.map_ = map;

this.div_ = div;

}

Rectangle.prototype.remove = function() {

this.div_.parentNode.removeChild(this.div_);

}

Rectangle.prototype.copy = function() {

return new Rectangle(

this.bounds_,

this.weight_,

this.color_,

this.backgroundColor_,

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS190

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 190

this.opacity_

);

}

Rectangle.prototype.redraw = function(force) {

if (!force) return;

var c1 = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());

var c2 = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());

this.div_.style.width = Math.abs(c2.x - c1.x) + "px";

this.div_.style.height = Math.abs(c2.y - c1.y) + "px";

this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight_) + "px";

this.div_.style.top = (Math.min(c2.y, c1.y) - this.weight_) + "px";

}

Client-Side Clustering
If your data is dense, you may still want to cluster points when there are overlapping points in
proximity. As with the server-side clustering method, there are a variety of ways you can calculate
which points to group. In Listing 7-16 (http://googlemapsbook.com/chapter7/ClientCluster/), we
use a grid method similar to the one we used with the server-side clustering example. The biggest dif-
ference here is your grid cells will be larger and not as fine-grained, so you don’t slow down the
JavaScript on slower computers. If you modify the grid cells over several loops, the browser
may assume that the script is taking too long and display a warning, as shown in Figure 7-10.

Figure 7-10. A JavaScript warning in Firefox indicating the script is taking too long to execute

Listing 7-16. JavaScript for Client-Side Clustering

var map;

var centerLatitude = 42;

var centerLongitude = -72;

var startZoom = 8;

//create an icon for the clusters

var iconCluster = new GIcon();

iconCluster.image = "http://googlemapsbook.com/chapter7/icons/cluster.png";

iconCluster.shadow = "http://googlemapsbook.com/chapter7/icons/cluster_shadow.png";

iconCluster.iconSize = new GSize(26, 25);

iconCluster.shadowSize = new GSize(22, 20);

iconCluster.iconAnchor = new GPoint(13, 25);

iconCluster.infoWindowAnchor = new GPoint(13, 1);

iconCluster.infoShadowAnchor = new GPoint(26, 13);

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 191

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 191

//create an icon for the pins

var iconSingle = new GIcon();

iconSingle.image = "http://googlemapsbook.com/chapter7/icons/single.png";

iconSingle.shadow = "http://googlemapsbook.com/chapter7/icons/single_shadow.png";

iconSingle.iconSize = new GSize(12, 20);

iconSingle.shadowSize = new GSize(22, 20);

iconSingle.iconAnchor = new GPoint(6, 20);

iconSingle.infoWindowAnchor = new GPoint(6, 1);

iconSingle.infoShadowAnchor = new GPoint(13, 13);

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {

updateMarkers();

});

GEvent.addListener(map,'moveend',function() {

updateMarkers();

});

}

function updateMarkers() {

//remove the existing points

map.clearOverlays();

//mark the boundary of the data

var allsw = new GLatLng(41.57025176609894, -73.39965820312499);

var allne = new GLatLng(42.589488572714245, -71.751708984375);

var allmapBounds = new GLatLngBounds(allsw,allne);

map.addOverlay(

new Rectangle(

allmapBounds,

4,

'#F00',

'Data Bounds, Zoom in for detail.'

)

);

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 192

//get the bounds of the viewable area

var mapBounds = map.getBounds();

var sw = mapBounds.getSouthWest();

var ne = mapBounds.getNorthEast();

var size = mapBounds.toSpan(); //returns GLatLng

//make a grid that's 10x10 in the viewable area

var gridSize = 10;

var gridCellSizeLat = size.lat()/gridSize;

var gridCellSizeLng = size.lng()/gridSize;

var gridCells = [];

//loop through the points and assign each one to a grid cell

for (k in points) {

var latlng = new GLatLng(points[k].lat,points[k].lng);

//check if it is in the viewable area,

//it may not be when zoomed in close

if(!mapBounds.contains(latlng)) continue;

//find grid cell it is in:

var testBounds = new GLatLngBounds(sw,latlng);

var testSize = testBounds.toSpan();

var i = Math.ceil(testSize.lat()/gridCellSizeLat);

var j = Math.ceil(testSize.lng()/gridCellSizeLng);

var cell = i+j;

if(typeof gridCells[cell] == 'undefined') {

//add it to the grid cell array

var cellSW = new GLatLng(

sw.lat()+((i-1)*gridCellSizeLat),

sw.lng()+((j-1)*gridCellSizeLng)

);

var cellNE = new GLatLng(

cellSW.lat()+gridCellSizeLat,

cellSW.lng()+gridCellSizeLng

);

gridCells[cell] = {

GLatLngBounds : new GLatLngBounds(cellSW,cellNE),

cluster : false,

markers:[],

length:0

};

//mark cell for testing

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 193

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 193

map.addOverlay(

new Rectangle(

gridCells[cell].GLatLngBounds,

1,

'#00F',

'Grid Cell'

)

);

}

gridCells[cell].length++;

//already in cluster mode

if(gridCells[cell].cluster) continue;

//only cluster if it has more than 2 points

if(gridCells[cell].markers.length==3) {

gridCells[cell].markers=null;

gridCells[cell].cluster=true;

} else {

gridCells[cell].markers.push(latlng);

}

}

for (k in gridCells) {

if(gridCells[k].cluster == true) {

//create a cluster marker in the center of the grid cell

var span = gridCells[k].GLatLngBounds.toSpan();

var sw = gridCells[k].GLatLngBounds.getSouthWest();

var marker = createMarker(

new GLatLng(sw.lat()+(span.lat()/2),

sw.lng()+(span.lng()/2))

,'c'

);

map.addOverlay(marker);

} else {

//create the single markers

for(i in gridCells[k].markers) {

var marker = createMarker(gridCells[k].markers[i],'p');

map.addOverlay(marker);

}

}

}

}

function createMarker(point, type) {

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS194

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 194

//create the marker with the appropriate icon

if(type=='c') {

var marker = new GMarker(point,iconCluster,true);

} else {

var marker = new GMarker(point,iconSingle,true);

}

return marker;

}

window.onload = init;

/*

* Rectangle overlay for development only to mark boundaries for testing...

*/

function Rectangle(bounds, opt_weight, opt_color, opt_html) {

this.bounds_ = bounds; this.weight_ = opt_weight || 1;

this.html_ = opt_html || ""; this.color_ = opt_color || "#888888";

}

Rectangle.prototype = new GOverlay();

Rectangle.prototype.initialize = function(map) {

var div = document.createElement("div");

div.innerHTML = this.html_;

div.style.border = this.weight_ + "px solid " + this.color_;

div.style.position = "absolute";

map.getPane(G_MAP_MAP_PANE).appendChild(div);

this.map_ = map;

this.div_ = div;

}

Rectangle.prototype.remove = function() {

this.div_.parentNode.removeChild(this.div_);

}

Rectangle.prototype.copy = function() {

return new Rectangle(

this.bounds_,

this.weight_,

this.color_,

this.backgroundColor_,

this.opacity_

);

}

Rectangle.prototype.redraw = function(force) {

if (!force) return;

var c1 = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());

var c2 = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());

this.div_.style.width = Math.abs(c2.x - c1.x) + "px";

this.div_.style.height = Math.abs(c2.y - c1.y) + "px";

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 195

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 195

this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight_) + "px";

this.div_.style.top = (Math.min(c2.y, c1.y) - this.weight_) + "px";

}

Further Optimizations
Once you have your server and JavaScript optimized for your data set, you may also want to
consider some additional niceties.

Removing Load Flashing
With the examples we’ve presented so far, you may have noticed that your maps “flash”
between redraws and requests. This occurs because the JavaScript removes all the points and
then draws them all again. If you don’t move the map a considerable distance, some points
that are removed are then immediately replaced again. To avoid this, you can create a second-
ary JavaScript object to “remember” which points are currently on the map and remove only
those that aren’t in the new list. Using the same object, you can also add only those that aren’t
in the old list. Listing 7-17 (http://googlemapsbook.com/chapter7/TrackingPoints/) shows
the client-side boundary method from Listing 7-14 modified to keep track of points to remove
the flashing between redraws.

Listing 7-17. Modified Client-Side Boundary JavaScript That Remembers Which Markers Are on
the Map

var map;

var centerLatitude = 49.224773;

var centerLongitude = -122.991943;

var startZoom = 4;

var existingMarkers = {};

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {

updateMarkers();

});

GEvent.addListener(map,'moveend',function() {

updateMarkers();

});

}

function updateMarkers() {

//don't remove all the overlays!

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS196

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 196

//map.clearOverlays();

var mapBounds = map.getBounds();

//loop through each of the points in memory and remove those that

//aren't going to be shown

for(k in existingMarkers) {

if(!mapBounds.contains(existingMarkers[k].getPoint())) {

map.removeOverlay(existingMarkers[k]);

delete existingMarkers[k];

}

}

//loop through each of the points from the global points object

//and create markers that don't exist

for (k in points) {

var latlng = new GLatLng(points[k].lat,points[k].lng);

//skip it if the marker already exists

//or is not in the viewable area

if(!existingMarkers[k] && mapBounds.contains(latlng)) {

existingMarkers[k] = createMarker(latlng);

map.addOverlay(existingMarkers[k]);

}

}

}

function createMarker(point) {

var marker = new GMarker(point);

return marker;

}

window.onload = init;

You can apply the same fix for both server-side and client-side optimizations where the
JavaScript is responsible for creating the markers.

Planning for the Next Move
If you want to be really nice and provide the ultimate user experience, you can put a little
intelligence into your map and have it anticipate what the users are going to do next. From
watching map users in test groups, it’s our experience that most users “drag” the map in very
small increments as they move around. The dragging movement of the map generally reveals
only another 25% to 50% of that map in the direction opposite the drag.

Though you may assume your users will grab the map and drag around in large sweeping
motions (which they still could), smaller motions offer you an advantage. You can keep track of
each movement and anticipate that the next movement will take the map in generally the same
direction. If you know where the users are going to go, you can request the new points for that
direction and have them already waiting before they get there.

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS 197

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 197

Additionally, you could also extend the requested bounds beyond the edge of the viewport to
include what’s just outside the edge. By extending the boundary a bit outside the viewport, your
users would think the map is loading faster, as markers are appearing quickly around the edge.

Summary
In this chapter, we’ve presented a few optimization methods, for both your server and the
browser, that allow your web application to run smoothly. By combining methods such as
clustering and closest to point searches, you can further improve and create new optimization
methods that will present your data in easy-to-understand and creative ways.

While working on your projects, be sure to choose the best method for the task at hand
and don’t base your decision on coolness alone. Creating your own tiles, as in the custom tile
method described in this chapter, is pretty neat, but doesn’t serve well for data that is gener-
ated from filtered searches, since each tile will always be different. Also, when using a feature
like clustering, make sure that your icons and user interface indicate this to the user.

Once you have your web application working, be sure to go over it again and look for places
that could benefit from further optimization. Check again for areas where you could reduce
the amount of data transferred between the client and the server, or check places where you’re
looping through large amounts of data and see if you can reduce it further. Just because your web
application works doesn’t mean it’s working as well as it could. The better optimized your map,
the happier your users will be and the better experience they’ll have.

At the same time you’re improving your web application and optimizing it to the best of
your ability, Google will continue to develop its Maps API, adding improvements and new
features. In the next chapter, you’ll see some of the possible things Google may add, but no
guarantees!

CHAPTER 7 ■ OPTIMIZING AND SCALING FOR LARGE DATA SETS198

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 198

What’s Next for the Google
Maps API?

As this book goes to press, the Google Maps API is still very much in development; its feature
set continues to change and improve. As the API increases in popularity and new methods are
added, it’s often necessary to alter the way things work to enable new capabilities or provide
more consistency throughout the API as a whole. Version 2, for example, split the GPoint class
into separate GPoint and GLatLng classes, each with enhanced capabilities corresponding to
their respective roles in handling pixel coordinates and geographical locations. In reversing
the zoom levels, which may have been an annoyance to developers, Google allowed the maps
to support as many detail levels as the satellite photography (or your custom overlay) warrants.

So far, we’ve shown you a lot of really neat techniques and tricks for getting data into your
application and onto a map. In the following chapters, we’ll expand on that and show you
some powerful tools for making complex projects. But before we dive deeper into the API,
we want to mention a few things you may want to keep a lookout for as the API continues to
mature. None of these things are guarantees, but they’re likely possibilities, given the demand
and interest in them. As developers like yourself push the API further, the demand for new
capabilities—such as the free geocoder—becomes louder, and when Google consents, we get
more toys and more fun.

Driving Directions
If you follow the Google Maps discussion group at http://groups.google.com/group/
Google-Maps-API, which we highly recommend you do, you’ll notice a growing interest in the
routing system built into http://maps.google.com, as shown in Figure 8-1.

199

C H A P T E R 8

■ ■ ■

7079ch08a.qxd 7/25/06 4:40 PM Page 199

Figure 8-1. Google Maps with a route from Toronto to New York

Similar to the recently released geocoding service, Google could add an additional class
that would allow you to retrieve the route information between arbitrary points on your map.
This seems even more likely now that Google is also offering an Enterprise edition of the Maps
API (http://www.google.com/enterprise/maps/) for use in closed, corporate environments.
Franchises and large chains of stores or restaurants could benefit from the inclusion of routing
features to service their customers and delivery personnel.

Routing is an interesting can of worms, since it begins to expose more of Google’s internal
road database. But road information is not a secret, of course; if you want it, you can get it
from freely available sources such as the US Census Bureau’s TIGER/Line files, as you will see
in Chapter 11. The concern would be more with the immense computational power necessary
to serve up complicated road queries in high volume, particularly to amateur API developers,
who may not understand throttling or caching.

Integrated Google Services
As you’ve seen in Chapter 4, searching manually for data to plot and geocoding all the infor-
mation yourself can be time-consuming and costly. However, vast stores of information are
already available, hidden away in Google’s search and service databases.

CHAPTER 8 ■ WHAT’S NEXT FOR THE GOOGLE MAPS API?200

7079ch08a.qxd 7/25/06 4:40 PM Page 200

Google already offers its own business listing map web application at http://maps.
google.com, where you can search for businesses based on their geographical location, as
shown in Figure 8-2.

Figure 8-2. Google Maps search for “New York Book Stores”

If Google chose to integrate its search database into the Google Maps API, Google’s
servers could provide you with ready-to-use mapping information based on search terms.
This would relieve you of some parsing and geocoding tasks, and eliminate the burden of col-
lecting the information for your web application.

Imagine creating a map of bookstores in New York by asking the API for “bookstores in
New York.” The possibility of supplementing your map’s proprietary data with Google’s public
data is certainly an intriguing one. As the owner of a chain of bookstores, you could not only
help your customers locate your stores, but you could also offer added value by throwing up
the results of a “Coffee shops within one mile of StoreLatLng” query.

■Tip Though not built into the Google Maps API, using Google’s search database is actually possible now
by combining some additional Google APIs such as the Google AJAX Search API and maps. For an example,
check out the My Favorite Places page at http://www.google.com/uds/samples/places.html, where
you can type in a request such as “New York Bookstores” and get mapping information.

CHAPTER 8 ■ WHAT’S NEXT FOR THE GOOGLE MAPS API? 201

7079ch08a.qxd 7/25/06 4:40 PM Page 201

KML Data
As you saw in Chapter 1, the http://maps.google.com site lets you plot any arbitrary KML data
directly on your map. In that chapter, we showed you a quick sample file that marked three
popular destinations in downtown Toronto. Figure 8-3 shows a similar file, which drops an
arbitrary point onto southeastern Ontario.

Figure 8-3. Sample KML file in a map

At the moment, using KML data is possible only with Google Maps itself, not directly from
the API. But it certainly appears that Google has reason to expand interest in the KML data
format. We expect future versions of the API to provide shortcut functions for loading and
parsing this kind of information. You can do it yourself, of course, but to automate it would
help bridge the gap between users of Google Maps and users of the Maps API.

More Data Layers
The satellite imagery included in the API has opened the whole world to people who may
never even travel out of their hometown. With a simple click and drag of the mouse, sites such
as http://googlesightseeing.com (Figure 8-4) can take you anywhere on the planet, and in
many cases, give you a close enough look to make out cars and people.

CHAPTER 8 ■ WHAT’S NEXT FOR THE GOOGLE MAPS API?202

7079ch08a.qxd 7/25/06 4:40 PM Page 202

Figure 8-4. The Google Sightseeing home page

So if Google can offer two layers of data (satellite and map), then why shouldn’t we expect
that it will begin to offer other complementary layers? The data for things like elevation,
weather trends, and population density are all available, and would make excellent layers in
the system. While this may tread on some of the maps we are building, it could also open up
new opportunities, just as the satellite imagery did for sightseeing.

Also, Google Earth, Google’s desktop mapping software, already allows you to incorporate
Google SketchUp objects, so why not make these objects available to the Google Maps API, too?

CHAPTER 8 ■ WHAT’S NEXT FOR THE GOOGLE MAPS API? 203

7079ch08a.qxd 7/25/06 4:40 PM Page 203

Beyond the Enterprise
In building new relationships with enterprise providers, Google is edging into the corporate
mapping space previously dominated by desktop products such as Microsoft MapPoint. When
enterprise clients begin to require even greater performance and feature diversity, Google may
provide a Google Maps Mini appliance similar to the Google Mini search appliance offered
today (http://www.google.com/enterprise/mini/). A Mini appliance would provide the corpo-
rate world with a “map-in-a-box” solution that could be highly customized and branded to
offer features that support the needs of specific companies and markets.

Those of us using the free mapping API may also one day see integrated advertisements
in our maps. The terms of service have always provided for the eventuality of Google adding
things to make money from your map. Paying enterprise customers would certainly be exempt
from any integrated advertising, which would offer the rest of us a compelling reason to upgrade
to the enterprise subscription.

■Note The API key signup page explicitly states that Google will give developers 90 days notice via the
official Google Maps API blog (http://googlemapsapi.blogspot.com) before introducing advertising into
third-party sites such as those you’re building. If the prospect of advertising bothers you, we suggest that
you follow this blog closely.

Interface Improvements
The current Google Maps interface is built entirely using XHTML, CSS, and JavaScript. It works
extremely well, but is limited by the browser’s ability to quickly scale images or move around
large numbers of on-screen objects. Other mapping tools such as the Yahoo Mapping API
offer alternative Flash clients that can benefit from the performance optimizations of that sys-
tem. Though Google doesn’t offer a Flash-based API, others have attempted to incorporate the
Google Maps API with Flash and created unique, highly interactive, and rich web applications.
Figure 8-5 shows one example: the X-Men map at http://xplanet.net.

CHAPTER 8 ■ WHAT’S NEXT FOR THE GOOGLE MAPS API?204

7079ch08a.qxd 7/25/06 4:40 PM Page 204

Figure 8-5. The X-Men Flash-based Google map1

With the growing competition from Yahoo! Maps and Windows Live Local, Google may
come to offer additional options such as a Flash API, or even a next-generation one based on
Scalable Vector Graphics (SVG) or some other technology that can bring the browser experi-
ence closer to that of Google Earth.

Summary
In this chapter, we speculated about what might be coming up in the Google API. Along with
the new services, we can expect better tools. As with any web application, Google will be con-
tinually improving on the existing components of the Maps API. Tools like the newly released
geocoder will eventually expand to cover more countries and improve accuracy as more
detailed information becomes available. Satellite imagery will increase in detail and will be
updated continually with more and more recent images.

Now we are ready to move on to some more advancing mapping techniques. In the next
part of the book, we’ll cover a wide variety of complementary concepts for your mapping proj-
ects. Chapter 9 demonstrates how to make your own info windows and tool tips, as well as
other overlay-related tricks. In Chapter 10, we’ll cover some mathematics you may need in
a professional map. Finally, in Chapter 11, we’ll show you how to build your own geocoder
from scratch, using a raw data set.

CHAPTER 8 ■ WHAT’S NEXT FOR THE GOOGLE MAPS API? 205

1. X-Men and XPlanet.net copyright Marvel, Fox and their related entities.

7079ch08a.qxd 7/25/06 4:40 PM Page 205

7079ch08a.qxd 7/25/06 4:40 PM Page 206

Advanced Map Features
and Methods

P A R T 3

■ ■ ■

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 207

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 208

Advanced Tips and Tricks

Beyond what you’ve seen so far, the Google Maps API has a number of features that are often
overlooked. Here, you’ll go through a variety of examples to learn how to use some of the more
advanced features of the API, such as the ability to change map tiles and the possibility of creating
your own overlay objects.

In this chapter, the examples demonstrate how to do the following:

• Create an overlay for markers that acts as a tool tip.

• Promote yourself with a custom icon control.

• Add tabs to info windows.

• Construct your own info window.

• Create your own map tiles using the NASA Blue Marble images.

Debugging Maps
Before diving into the examples, let’s take a quick look at debugging within the Google Maps API.
With the Google Maps API version 1, the debugger’s best friend was alert(). But as they say, “Only
a Lert uses alert to debug,” and if you’ve ever accidentally “alerted” something in a loop, you know
what they mean! With Google Maps API version 2, you now have access to the wonderfully simple,
yet wonderfully useful, GLog class. Now GLog.write() is the “new” alert(), but it creates a floating
log window, as shown in Figure 9-1, to hold all your debugging messages.

Figure 9-1. Empty GLog window

209

C H A P T E R 9

■ ■ ■

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 209

For example, if you’re curious about what methods and properties a JavaScript object has,
such as the GMap2 object, try this:

var map = new GMap2(document.getElementById("map"));

for(i in map) { GLog.write(i); }

Voilà! The GLog window in Figure 9-2 now contains a scrolling list of all the methods and
properties belonging to your GMap2 object, and you didn’t need to click OK in dozens of alert
windows to get to it.

Figure 9-2. GLog window listing methods and properties of the GMap2 object

The GLog.write() method escapes any HTML and logs it to the window as source code. If
you want to output formatted HTML, you can use the GLog.writeHtml() method. Similarly, to out-
put a clickable link, just pass a URL into the GLog.writeUrl()method. The writeUrl() method
is especially useful when creating your own map tiles, as you’ll see in the “Implementing Your
Own Map Type, Tiles, and Projection” section later in the chapter, where you can simply log the
URL and click the link to go directly to an image for testing.

■Tip GLog isn’t bound to just map objects; it can be used throughout your web application to debug any
JavaScript code you want. As long as the Google Maps API is included in your page, you can use GLog to help
debug anything from Ajax requests to mouse events.

Interacting with the Map from the API
When building your web applications using Google Maps, you’ll probably have more in your
application than just the map. What’s outside the map will vary depending on the purpose of
your project and could include anything from graphical eye candy to interactive form elements.
When these external elements interact with the map, especially when using the mouse, you may
often find yourself struggling to locate the pixel position of the various map objects on your screen.
You may also run into situations where you need to trigger events, even mouse-related events,
without the cursor ever touching the element. In these situations, a few classes and methods
may come in handy.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS210

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 210

Helping You Find Your Place
More and more, your web applications will be interacting with users in detailed and intricate ways.
Gone are the days of simple requests and responses, where the cursor was merely used to navigate
from box to box on a single form. Today, your web application may rely on drag-and-drop, sliders,
and other mouse movements to create a more desktop-like environment. To help you keep track
of the position of objects on the map and on the screen, Google has provided coordinate
transformation methods that allow you to convert a longitude and latitude into X and Y screen
coordinates and vice versa.

To find the pixel coordinates of a location on the map relative to the map’s div container,
you can use the GMap2.fromLatLngToDivPixel() method. By converting the latitude and longitude
into a pixel location, you can then use the pixel location to help position other elements of your
web application relative to the map objects. Take a quick look at Listing 9-1, where the mousemove
event is used to log the pixel location of the cursor on the map.

Listing 9-1. Tracking the Mouse on the Map

var map;

var centerLatitude = 43.49462;

var centerLongitude = -80.548239;

var startZoom = 3;

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

GEvent.addListener(map,'mousemove',function(latlng) {

var pixelLocation = map.fromLatLngToDivPixel(latlng);

GLog.write('ll:' + latlng + ' at:' + pixelLocation);

});

}

window.onload = init;

Moving around the map, the GLog window reveals the latitude and longitude location of the
cursor, along with the pixel location relative to the top-left corner of the map div, as shown in
Figure 9-3.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 211

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 211

Figure 9-3. Tracking the mouse movement relative to the map container

Once you have the pixel location from GMap2.fromLatLngToDivPixel(), you can turn it into
a location relative to the screen or window by applying additional calculations appropriate to
the design and layout of your web application.

■Tip For more information about JavaScript and using it to interact with your web page, pick up DOM Scripting:
Web Design with JavaScript and the Document Object Model , by Jeremy Keith (http://www.friendsofed.com/
book.html?isbn=1590595335). It covers everything you need to know when using JavaScript to add
dynamic enhancements to web pages and program Ajax-style applications.

Force Triggering Events with GEvent
The GEvent object, introduced in Chapter 3, lets you run code when specific events are triggered
on particular objects. You can attach events to markers, the map, DOM objects, info windows,
overlays, and any other object on your map. In earlier chapters, you’ve used the click event to
create markers and the zoomend event to load data from the server. These work great if your users
are interacting with the map, but what happens if they’re interacting with some other part of the
web application and you want those objects to trigger these events? In those cases, you can use
the trigger() method of the GEvent class to force the event to run.

For example, suppose you create an event that runs when the zoom level is changed on
your map using the zoomend event, and it’s logged to the GLog window:

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS212

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 212

GEvent.addListener(map,'zoomend',function(oldLevel, newLevel) {

//some other code

GLog.write('Zoom changed from ' + oldLevel + ' to ' + newLevel);

});

If you adjust the zoom level of your map, you’ll get a log entry that looks something like
Figure 9-4.

Figure 9-4. GLog entry after changing zoom levels using the zoom control

Notice in Figure 9-4 how the old and new zoom levels are specified. From elsewhere in your
web application, you can force the zoomend event to execute by calling

GEvent.trigger(map,'zoomend');

Executing this method will cause the zoomend event to run as normal. The problem is that
you’ll get undefined values for both oldLevel and newLevel, as shown in Figure 9-5.

Figure 9-5. GLog entries after triggering zoomend using GEvent.trigger(map,'zoomend')

The same applies for any event that passes arguments into its trigger function. If the API
can’t determine what to pass, you’ll get an undefined value.

To overcome this problem, you can pass additional arguments after the trigger() event
argument, and they’ll be passed as the arguments to the event handler function. For example,
calling

GEvent.trigger(map,'zoomend',3,5);

would pass 3 as the oldLevel and 5 as the newLevel. But unless you changed the zoom level of the
map some other way, the zoom level wouldn’t actually change, since you’ve manually forced
the zoomend event without calling any of the zoom-related methods of the map.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 213

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 213

Creating Your Own Events
Along with triggering the existing events from the API, GEvent.trigger() can also be used to
trigger your own events. For example, you could create an updateMessage event to trigger a script
to execute when a message box is updated, as follows:

var message = document.getElementById('messageBox');

GEvent.addDomListener(message,'updateMessage',function() {

//whatever code you want

if(message.innerHtml != '') alert('The system reported messages.');

});

Then, elsewhere in your application, you can update the message and trigger the
updateMessage event using the GEvent.trigger()method:

var message = document.getElementById('messageBox');

if (error) {

message.innerHtml = 'There was an error with the script.';

} else {

message.innerHtml = '';

}

GEvent.trigger(message,'updateMessage');

Creating Map Objects with GOverlay
In Chapter 7, you saw how to use GOverlay to create an image that could hover over a location on
a map to show more detail. In that instance, the overlay consisted of a simple HTML div element
with a background image, similar to the Rectangle example in the Google Maps API documentation
(http://www.google.com/apis/maps/documentation/#Custom_Overlays). Beyond just a simple div,
the overlay can contain any HTML you want and therefore can include anything you could create
in a web page. Even Google’s info window is really just a fancy overlay, so you could create your
own overlay with whatever features you want.

■Caution Adding your own overlays will influence the limitations of the map the same way the markers did in
Chapter 7. In fact, your overlays will probably be much more influential, as they will be more complicated and
weighty than the simpler marker overlay.

Choosing the Pane for the Overlay
Before you create your overlay, you should familiarize yourself with the GMapPane constants.
GMapPane is a group of constants that define the various layers of the Google map, as represented
in Figure 9-6.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS214

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 214

Figure 9-6. GMapPane constants layering

At the lowest level, flat against the map tiles, lies the G_MAP_MAP_PANE. This pane is used to hold
objects that are directly on top of the map, such as polylines. Next up are the G_MAP_MARKER_
SHADOW_PANE and G_MAP_MARKER_PANE. As the names suggest, they hold the shadows and icons for
each of the GMarker objects on the map. The shadow and icon layers are separated, so the shadows
don’t fall on top of the icons when markers are clustered tightly together.

The next layer above that is the G_MAP_FLOAT_SHADOW_PANE, which is where the shadow of the
info window will reside. This pane is above the markers so the shadow of the info window will be
cast over the markers on the map.

The next layer, G_MAP_MARKER_MOUSE_TARGET_PANE, is an ingenious trick. The mouse events
for markers are not actually attached to the markers on the marker pane. An invisible object,
hovering in the mouse target pane, captures the events, allowing clicks to be registered on the
markers hidden in the shadow of the info window. Without this separate mouse target pane, clicks
on the covered markers wouldn’t register, as the info window’s shadow would cover the markers,
and in most browsers, only the top object can be clicked.

Finally, on top of everything else, is the G_MAP_FLOAT_PANE. The float pane is the topmost pane
and is used to hold things like the info window or any other overlays you want to appear on top.

When you create your overlay object, you need to decide which of the six panes is best suited.
If your overlay has a shadow, like the custom info window presented later in Listing 9-5, you’ll need
to target two panes.

To retrieve and target the DOM object for each pane, you can use the GMap2.getPane()
method. For example, to add a div tag to the float pane, you would do something similar to this:

div = document.createElement('div');

pane = map.getPane(G_MAP_FLOAT_PANE);

pane.appendChild(div);

Obviously, your code surrounding this would be a little more involved, but you get the idea.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 215

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 215

Creating a Quick Tool Tip Overlay
For an easy GOverlay example, let’s create an overlay for markers that acts as a tool tip, containing
just a single line of text in a colored box, as shown in Figure 9-7.

Figure 9-7. Tool tip overlay

Listing 9-2 shows the code for the tool tip overlay.

Listing 9-2. ToolTip Overlay Object

//create the ToolTip overlay object

function ToolTip(marker,html,width) {

this.html_ = html;

this.width_ = (width ? width + 'px' : 'auto');

this.marker_ = marker;

}

ToolTip.prototype = new GOverlay();

ToolTip.prototype.initialize = function(map) {

var div = document.createElement("div");

div.style.display = 'none';

map.getPane(G_MAP_FLOAT_PANE).appendChild(div);

this.map_ = map;

this.container_ = div;

}

ToolTip.prototype.remove = function() {

this.container_.parentNode.removeChild(this.container_);

}

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS216

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 216

ToolTip.prototype.copy = function() {

return new ToolTip(this.html_);

}

ToolTip.prototype.redraw = function(force) {

if (!force) return;

var pixelLocation = this.map_.fromLatLngToDivPixel(this.marker_.getPoint());

this.container_.innerHTML = this.html_;

this.container_.style.position = 'absolute';

this.container_.style.left = pixelLocation.x + "px";

this.container_.style.top = pixelLocation.y + "px";

this.container_.style.width = this.width_;

this.container_.style.font = 'bold 10px/10px verdana, arial, sans';

this.container_.style.border = '1px solid black';

this.container_.style.background = 'yellow';

this.container_.style.padding = '4px';

//one line to desired width

this.container_.style.whiteSpace = 'nowrap';

if(this.width_ != 'auto') this.container_.style.overflow = 'hidden';

this.container_.style.display = 'block';

}

GMarker.prototype.ToolTipInstance = null;

GMarker.prototype.openToolTip = function(content) {

//don't show the tool tip if there is a custom info window

if(this.ToolTipInstance == null) {

this.ToolTipInstance = new ToolTip(this,content)

map.addOverlay(this.ToolTipInstance);

}

}

GMarker.prototype.closeToolTip = function() {

if(this.ToolTipInstance != null) {

map.removeOverlay(this.ToolTipInstance);

this.ToolTipInstance = null;

}

}

Now let’s see how it works.

Creating the GOverlay Object
To create the tool tip GOverlay, as listed in Listing 9-2, start by writing a function with the name
you would like to use for your overlay and pass in any parameters you would like to include. For
example, the arguments for the ToolTip overlay constructor in Listing 9-2 are the marker to attach
the tool tip to and the HTML to display in the tool tip. For more control, there’s also an optional
width to force the tool tip to a certain size:

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 217

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 217

function ToolTip(marker,html,width) {

this.html_ = html;

this.width_ = (width ? width + 'px' : 'auto');

this.marker_ = marker;

}

This function, ToolTip, will act as the constructor for your ToolTip class. Once finished, you
would instantiate the object by creating a new instance of the ToolTip class:

var tip = new ToolTip(marker,'This is a marker');

When assigning properties to the class, such as html, it’s always good to distinguish the
internal properties using something like an underscore, such as this.html_. This makes it easy
to recognize internal properties, and also ensure that you don’t accidentally overwrite a property
of the GOverlay class, if Google has used html as a property for the GOverlay class.

Next, instantiate the GOverlay as the prototype for your new ToolTip function:

ToolTip.prototype = new GOverlay();

Creating and Positioning the Container
For the guts of your ToolTip class, you need to prototype the four required methods listed in
Table 9-1.

Table 9-1. Abstract Methods of the GOverlay Object

Method Description

initialize() Called by GMap2.addOverlay() when the overlay is added to the map

redraw(force) Executed once when the object is initially created and then again whenever
the map display changes; force will be true in the event the API recalculates
the coordinates of the map

remove() Called when removeOverlay() methods are used

copy() Should return an uninitialized copy of the same object

First, start by prototyping the initialize() function:

ToolTip.prototype.initialize = function(map) {

var div = document.createElement("div");

div.style.display='none';

map.getPane(G_MAP_FLOAT_PANE).appendChild(div);

this.map_ = map;

this.container_ = div;

}

The initialize() method is called by GMap2.addOverlay() when the overlay is initially
added to the map. Use it to create the initial div, or other element, and to attach the div to the
appropriate pane using map.getPane(). Also, you probably want to assign the map variable to an
internal variable so you’ll still have access to it from inside the other methods of the ToolTip object.

Next, prototype the redraw() method:

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS218

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 218

ToolTip.prototype.redraw = function(force) {

if (!force) return;

var pixelLocation = this.map_.fromLatLngToDivPixel(this.marker_.getPoint());

this.container_.innerHTML = this.html_;

this.container_.style.position='absolute';

this.container_.style.left = pixelLocation.x + "px";

this.container_.style.top = pixelLocation.y + "px";

- cut -

this.container_.style.display = 'block';

}

The redraw() method is executed once when the object is initially created and then again
whenever the map display changes. The force flag will be true only in the event the API needs
to recalculate the coordinates of the map, such as when the zoom level changes or the pixel offset
of the map has changed. It’s also true when the overlay is initially created so the object can be
drawn. For your ToolTip object, the redraw() method should stylize the container_ div element
and position it relative to the location of the marker. In the event that a width was provided, the
div should also be defined accordingly, as it is in Listing 9-2.

Lastly, you should prototype the copy() and remove() methods:

ToolTip.prototype.remove = function() {

this.container_.parentNode.removeChild(this.container_);

}

ToolTip.prototype.copy = function() {

return new ToolTip(this.marker_,this.html_,this.width_);

}

The copy() method should return an uninitialized copy of the same object to the map. The
remove() method should remove the existing object from the pane.

Using Your New Tool Tip Control
At the bottom of Listing 9-2 you’ll also notice the addition of a few prototype methods on
the GMarker class. These give you a nice API for your new ToolTip object by allowing you to call
GMarker.openToolTip('This is a marker') to instantiate the tool tip; GMarker.closeToolTip()
will close the tool tip.

Now you can create a marker and add a few event listeners, and you’ll have a tool tip that
shows on mouseover, similar to the one shown earlier in Figure 9-7:

var marker = new GMarker(new GLatLng(43, -80));

GEvent.addListener(marker,'mouseover',function() {

marker.openToolTip('This is a GMarker!');

});

GEvent.addListener(marker,'mouseout',function() {

marker.closeToolTip();

});

map.addOverlay(marker);

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 219

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 219

The ToolTip overlay is relatively simple but very useful. Later in the chapter, you’ll revisit
the GOverlay object when you create an overlay that’s a little more complicated, to serve as your
own customized info window (Listing 9-5).

Creating Custom Controls
Overlays are useful, but they generally apply to something on the map fixed to a latitude and
longitude. When you drag the map, the overlays go with it. If you want to create a control or other
object on the map that’s fixed to a relative location within the map container, similar to the zoom
control or the map type buttons, you’ll need to implement a GControl interface.

Six controls are built into the Google Maps API, as you’ve seen throughout the book. Along
with version 1’s GSmallMapControl, GLargeMapControl, GSmallZoomControl, and GMapTypeControl,
the controls GScaleControl and GOverviewMapControl (which shows a little overview window in
the corner of the screen) were introduced in version 2 of the API. Depending on your application
and features, you can enable or disable the controls so your users can have varying degrees of
control over the map.

If these controls don’t suit your needs, you can implement a custom control that replicates
the functionality of one of Google’s existing controls, or create something completely different.
For example, the Google Maps API documentation at http://www.google.ca/apis/maps/
documentation/#Custom_Controls provides an example of a textual zoom control. The Google
TextualZoomControl creates the text-based Zoom In and Zoom Out buttons shown in Figure 9-8
and is an alternative to the GSmallMapControl.

Figure 9-8. The Google textual zoom control adds Zoom In and Zoom Out buttons.

As an example, we’ll show you how to create a custom icon control. After all the hard work
you’ve poured into your web application, it might be nice to promote yourself a little and put your
company logo down in the corner next to Google’s. After all, a little promotion never hurt anyone.
Implementing the icon control in Figure 9-9 is relatively simple, as you can see in Listing 9-3,
and it’s a great example you can further expand on.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS220

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 220

Figure 9-9. A promotional map control, clickable to a supplied link

Listing 9-3. Promotional Icon PromoControl

var PromoControl = function(url) {

this.url_ = url;

};

PromoControl.prototype = new GControl(true);

PromoControl.prototype.initialize = function(map) {

var container = document.createElement("div");

container.innerHTML = '<img style="cursor:pointer"➥

src="http://googlemapsbook.com/PromoApress.png" border="0">';

container.style.width='120px';

container.style.height='32px';

url = this.url_;

GEvent.addDomListener(container, "click", function() {

document.location = url;

});

map.getContainer().appendChild(container);

return container;

};

PromoControl.prototype.getDefaultPosition = function() {

return new GControlPosition(G_ANCHOR_BOTTOM_LEFT, new GSize(70, 0));

};

The following sections describe how Listing 9-3 works.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 221

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 221

Creating the Control Object
To create your promo GControl object, start the same way you did with the GOverlay in the
previous example. Create a function with the appropriate name, but use the prototype object
to instantiate the GControl class.

var PromoControl = function(url) {

this.url_ = url;

};

PromoControl.prototype = new GControl(true);

By passing in a url parameter, your PromoControl can be clickable to the supplied url and you
can reuse the PromoControl for different URLs, depending on your various mapping applications.

Creating the Container
Next, there are only two methods you need to prototype. First is the initialize() method, which
is similar to the initialize() method from the GOverlay example:

PromoControl.prototype.initialize = function(map) {

var container = document.createElement("div");

container.innerHTML = '<img src="http://googlemapsbook.com/PromoApress.png"➥

border="0">';

container.style.width='120px';

container.style.height='32px';

url = this.url_;

GEvent.addDomListener(container, "click", function() {

document.location = url;

});

map.getContainer().appendChild(container);

return container;

};

The difference is the GOverlay.initialize() method will be called by the GMap2.addControl()
method when you add the control to your map. In the case of GControl, the container div for the
control is attached to the map’s container DOM object returned from the GMap2.getContainer()
method. Also, you can add events such as the click event to the container using the GEvent.
addDomListener() method. For more advanced controls, you can include any HTML you want
and apply multiple events to the various parts of the control. For the PromoControl, you’re simply
including an image that links to the supplied URL, so one click event can be attached to the
entire container.

Positioning the Container
Last, you need to position the PromoControl within the map container by returning a new instance
of the GControlPostion class from the getDefaultPosition prototype:

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS222

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 222

PromoControl.prototype.getDefaultPosition = function() {

return new GControlPosition(G_ANCHOR_BOTTOM_LEFT, new GSize(70, 0));

};

The GControlPosition represents the anchor point and offset where the control should reside.
To anchor the control to the map container, you can use one of four constants:

• G_ANCHOR_TOP_RIGHT to anchor to the top-right corner

• G_ANCHOR_TOP_LEFT to anchor to the top-left corner

• G_ANCHOR_BOTTOM_RIGHT to anchor to the bottom-right corner

• G_ANCHOR_BOTTOM_LEFT to anchor to the bottom-left corner

Once anchored, you can then offset the control by the desired distance. For the PromoControl,
anchoring to just G_ANCHOR_BOTTOM_LEFT would interfere with the Google logo, thus going against
the Terms and Conditions of the API. To fix this, you offset your control using a new GSize object
with an X offset of 70 pixels, the width of the Google logo.

■Caution If you plan on using the GScaleControl as well, remember that it too will occupy the space next
to the Google logo, so you’ll need to adjust your PromoControl accordingly.

Using the Control
With your PromoControl finished, you can add it to your map using the same GMap2.addControl()
method and a new instance of your PromoControl:

map.addControl(new PromoControl('http://googlemapsbook.com'));

You’ll end up with your logo positioned neatly next to the Google logo, linked to wherever
you like, as shown earlier in Figure 9-9.

Adding Tabs to Info Windows
If you’re happy with the look of the Google info window, or you don’t have the time or budget
to create your own info window overlay, there are a few new features of the Google Maps API
version 2 info window that you may find useful. With version 1 of the Google Maps API, the info
window was just the stylized bubble with a close box, as shown in Figure 9-10. You could add
tabs, but the limit was two tabs and doing so required hacks and methods that were not “official”
parts of the API.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 223

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 223

Figure 9-10. The version 1 info window

Creating a Tabbed Info Window
With version 2 of the API, Google has added many tab-related features to its info windows. You
can have multiple tabs on each info window, as shown in Figure 9-11, and you can change the tabs
from within the API using various GInfoWindow methods, as shown in Listing 9-4.

Figure 9-11. A tabbed info window

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS224

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 224

Listing 9-4. Info Window with Three Tabs

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

marker = new GMarker(new GLatLng(centerLatitude, centerLongitude));

map.addOverlay(marker);

var infoTabs = [

new GInfoWindowTab("Tab A", "This is tab A content"),

new GInfoWindowTab("Tab B", "This is tab B content"),

new GInfoWindowTab("Tab C", "This is tab C content")

];

marker.openInfoWindowTabsHtml(infoTabs,{

selectedTab:1,

maxWidth:300

});

GEvent.addListener(marker,'click',function() {

marker.openInfoWindowTabsHtml(infoTabs);

});

To create the info window with three tabs in Figure 9-11, you simply create an array of
GInfoWindowTab objects:

var infoTabs = [

new GInfoWindowTab("Tab A", "This is tab A content"),

new GInfoWindowTab("Tab B", "This is tab B content"),

new GInfoWindowTab("Tab C", "This is tab C content")

];

Then use GMarker.openInfoWindowTabsHtml() to create the window in right away:

marker.openInfoWindowTabsHtml(infoTabs,{

selectedTab:1,

maxWidth:300

});

or in an event:

GEvent.addListener(marker,'click',function() {

marker.openInfoWindowTabsHtml(infoTabs);

});

Additionally, you can define optional parameters for the tabbed info window the same way
you can define options using the GMarker.openInfoWindow methods.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 225

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 225

Gathering Info Window Information and Changing Tabs
If other parts of your web application need to interact with the various tabs on your info window,
things get a little trickier. When the tabbed info window is created, the API instantiates the object
for you, so you don’t actually have direct access to the info window object yet. As you saw in
Chapter 3, there is only one instance of an info window on a map at a time, so you can use the
GMap2.getInfoWindow() method to retrieve a handle for the current info window:

var windowHandle = map.getInfoWindow();

With the handle, you can then use any of the GInfoWindow methods to retrieve information
or perform various operations, such as the following:

• Retrieve the latitude and longitude of the window anchor:

windowHandle.getPoint();

• Hide the window:

windowHandle.hide();

• Switch to another tab:

windowHandle.selectTab(2);

For a full list of the GInfoWindow methods, see the API in Appendix B.

Creating a Custom Info Window
If you follow the Google Maps discussion group (http://groups.google.com/group/
Google-Maps-API), you’ll notice daily posts regarding feature requests for the info window. Feature
requests are great, but most people don’t realize the info window isn’t really anything special. It’s
just another GOverlay with a lot of extra features. With a little JavaScript and GOverlay, you can
create your very own info window with whatever features you want to integrate. To get you started,
we’ll show you how to create the new info window in Figure 9-12, which occupies a little less
screen real estate, but offers you a starting point to add on your own features.

Figure 9-12. A custom info window

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS226

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 226

To begin, you’ll need to open up your favorite graphics program and create the frame for the
window. If you just need a box, then it’s not much more difficult then the ToolTip object you
created earlier. For this example, we used the Adobe Photoshop PSD file you’ll find with the code
accompanying this book, as illustrated in Figure 9-13. Once you have your info window working,
feel free to modify it any way you want. You can edit the PSD file or create one of your own. For
now, create a folder called littleWindow in your working directory and copy the accompanying
presliced PNG files from the littleWindow folder in the Chapter 9 source code.

Figure 9-13. The info window art file

The finalized framework for the LittleInfoWindow overlay in Listing 9-5 is almost identical to
the ToolTip overlay you created earlier in Listing 9-3, but the internals of each function are
quite different.

Listing 9-5. The LittleInfoWindow Object

//create the LittleInfoWindow overlay onject

function LittleInfoWindow(marker,html,width) {

this.html_ = html;

this.width_ = (width ? width + 'px' : 'auto');

this.marker_ = marker;

}

//use the GOverlay class

LittleInfoWindow.prototype = new GOverlay();

//initialize the container and shadowContainer

LittleInfoWindow.prototype.initialize = function(map) {

this.map_ = map;

var container = document.createElement("div");

container.style.display='none';

map.getPane(G_MAP_FLOAT_PANE).appendChild(container);

this.container_ = container;

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 227

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 227

var shadowContainer = document.createElement("div");

shadowContainer.style.display='none';

map.getPane(G_MAP_FLOAT_SHADOW_PANE).appendChild(shadowContainer);

this.shadowContainer_ = shadowContainer;

}

LittleInfoWindow.prototype.remove = function() {

this.container_.parentNode.removeChild(this.container_);

//don't forget to remove the shadow as well

this.shadowContainer_.parentNode.removeChild(this.shadowContainer_);

}

LittleInfoWindow.prototype.copy = function() {

return new LittleInfoWindow(this.marker_,this.html_,this.width_);

}

LittleInfoWindow.prototype.redraw = function(force) {

if (!force) return;

//get the content div

var content = document.createElement("span");

content.innerHTML = this.html_;

content.style.font='10px verdana';

content.style.margin='0';

content.style.padding='0';

content.style.border='0';

content.style.display='inline';

if(!this.width_ || this.width_=='auto' || this.width_ <= 0) {

//the width is unknown so set a rough maximum and minimum

content.style.minWidth = '10px';

content.style.maxWidth = '500px';

content.style.width = 'auto';

} else {

//the width was set when creating the window

content.style.width= width + 'px';

}

//make it invisible for now

content.style.visibility='hidden';

//temporarily append the content to the map container

this.map_.getContainer().appendChild(content);

//retrieve the rendered width and height

var contentWidth = content.offsetWidth;

var contentHeight = content.offsetHeight;

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS228

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 228

//remove the content from the map

content.parentNode.removeChild(content);

content.style.visibility='visible';

//set the width and height to ensure they

//stay that size when drawn again

content.style.width=contentWidth+'px';

content.style.height=contentHeight+'px';

//set up the actual position relative to your images

content.style.position='absolute';

content.style.left='5px';

content.style.top='7px';

content.style.background='white';

//create the wrapper for the window

var wrapper = document.createElement("div");

//first append the content so the wrapper is above

wrapper.appendChild(content);

//create an object to reference each image

var wrapperParts = {

tl:{l:0, t:0, w:5, h:7},

t:{l:5, t:0, w:(contentWidth-6), h:7},

tr:{l:(contentWidth-1), t:0, w:11, h:9},

l:{l:0, t:7, w:5, h:contentHeight},

r:{l:(contentWidth+5), t:9, w:5, h:(contentHeight-2)},

bl:{l:0, t:(contentHeight+7), w:5, h:5},

p:{l:5, t:(contentHeight+7), w:17, h:18},

b:{l:22, t:(contentHeight+7), w:(contentWidth-17), h:5},

br:{l:(contentWidth+5), t:(contentHeight+7), w:5, h:5}

}

//create the image DOM objects

for (i in wrapperParts) {

var img = document.createElement('img');

//load the image from your local image directory

//based on the property name of the wrapperParts object

img.src = 'littleWindow/' + i + '.png';

//set the appropriate positioning attributes

img.style.position='absolute';

img.style.top=wrapperParts[i].t+'px';

img.style.left=wrapperParts[i].l+'px';

img.style.width=wrapperParts[i].w+'px';

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 229

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 229

img.style.height=wrapperParts[i].h+'px';

wrapper.appendChild(img);

wrapperParts[i].img = img;

}

//add any event handlers like the close box

var marker = this.marker_;

GEvent.addDomListener(wrapperParts.tr.img, "click", function() {

marker.closeLittleInfoWindow();

});

//get the X,Y pixel location of the marker

var pixelLocation = this.map_.fromLatLngToDivPixel(

this.marker_.getPoint()

);

//position the container div for the window

this.container_.style.position='absolute';

this.container_.style.left = (pixelLocation.x-3) + "px";

this.container_.style.top = (pixelLocation.y

- contentHeight

- 25

- this.marker_.getIcon().iconSize.height

) + "px";

this.container_.style.border = '0';

this.container_.style.margin = '0';

this.container_.style.padding = '0';

this.container_.style.display = 'block';

//append the styled info window to the container

this.container_.appendChild(wrapper);

//add a shadow

this.shadowContainer_.style.position='absolute';

this.shadowContainer_.style.left = (pixelLocation.x+15) + "px";

this.shadowContainer_.style.top = (pixelLocation.y

- 10

- this.marker_.getIcon().iconSize.height

) + "px";

this.shadowContainer_.style.border = '1px solid black';

this.shadowContainer_.style.margin = '0';

this.shadowContainer_.style.padding = '0';

this.shadowContainer_.style.display = 'block';

var shadowParts = {

sl:{l:0, t:0, w:35, h:26},

s:{l:35, t:0, w:(contentWidth-40), h:26},

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS230

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 230

sr:{l:(contentWidth-5), t:0, w:35, h:26}

}

for (i in shadowParts) {

var img = document.createElement('img');

img.src = 'littleWindow/' + i + '.png';

img.style.position='absolute';

img.style.top=shadowParts[i].t+'px';

img.style.left=shadowParts[i].l+'px';

img.style.width=shadowParts[i].w+'px';

img.style.height=shadowParts[i].h+'px';

this.shadowContainer_.appendChild(img);

}

//pan if necessary so it shows on the screen

var mapNE = this.map_.fromLatLngToDivPixel(

this.map_.getBounds().getNorthEast()

);

var panX=0;

var panY=0;

if(this.container_.offsetTop < mapNE.y) {

//top of window is above the top edge of the map container

panY = mapNE.y - this.container_.offsetTop;

}

if(this.container_.offsetLeft+contentWidth+10 > mapNE.x) {

//right edge of window is outside the right edge of the map container

panX = (this.container_.offsetLeft+contentWidth+10) - mapNE.x;

}

if(panX!=0 || panY!=0) {

//pan the map

this.map_.panBy(new GSize(-panX-10,panY+30));

}

}

//add a new method to GMarker so you

//can use a similar API to the existing info window.

GMarker.prototype.LittleInfoWindowInstance = null;

GMarker.prototype.openLittleInfoWindow = function(content,width) {

if(this.LittleInfoWindowInstance == null) {

this.LittleInfoWindowInstance = new LittleInfoWindow(

this,

content,

width

);

map.addOverlay(this.LittleInfoWindowInstance);

}

}

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 231

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 231

GMarker.prototype.closeLittleInfoWindow = function() {

if(this.LittleInfoWindowInstance != null) {

map.removeOverlay(this.LittleInfoWindowInstance);

this.LittleInfoWindowInstance = null;

}

}

The following sections describe how this code works.

Creating the Overlay Object and Containers
Similar to the Google info window, your info window will require three inputs: a marker on which
to anchor the window, the HTML content to display, and an optional width. When you extend
this example for use in your own web application, you’ll probably add more input parameters
or additional methods. You could also add the various methods and properties of the existing
GInfoWindow class so that your class provides the same API as Google’s info window, with tabs and
an assortment of options. To keep things simple in the example, we stick to the essentials.

Like the ToolTip object you created earlier, the LittleInfoWindow object in Listing 9-5 starts
off the same way. The LittleInfoWindow function provides a construction using the marker, html,
and width arguments, while the GOverlay is instantiated as the prototype object. The first big
difference comes in the initialize() method where you create two containers. The first
container, for the info window, is attached to the G_MAP_FLOAT_PANE pane:

var container = document.createElement("div");

container.style.display='none';

map.getPane(G_MAP_FLOAT_PANE).appendChild(container);

this.container_ = container;

And the second container, for the info window’s shadow, is attached to the G_MAP_FLOAT_
SHADOW_PANE pane:

var shadowContainer = document.createElement("div");

shadowContainer.style.display='none';

map.getPane(G_MAP_FLOAT_SHADOW_PANE).appendChild(shadowContainer);

this.shadowContainer_ = shadowContainer;

■Tip A shadow isn’t required for overlays, but it provides a nice finishing touch to the final map and makes
your web application look much more polished and complete.

Next, the remove() and copy() methods are again identical in functionality to the ToolTip
overlay, except the remove() method also removes the second shadowContainer along with the
info window container.

Drawing a LittleInfoWindow
The most complicated part of creating an info window is properly positioning it on the screen
with the redraw() method, and the problem occurs only when you want to position it above the
existing marker or point.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS232

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 232

When rendering HTML, the page is drawn on the screen top down and left to right. You can
assign sizes and positions to html elements using CSS attributes, but in general, if there are no sizes
or positions, things will start at the top and flow down. When you create the info window in the
redraw() method, you’ll take the HTML passed into the constructor, put it in a content div, and
wrap it with the appropriate style. On an empty HTML page, you know the top-left corner of the
content div is at (0,0), but where is the bottom-right corner? The bottom-right corner is dependent
on the content of the div and the general style of the div itself.

The ambiguity in the size of the div is compounded when you want to position the div on
the map. The Google Maps API requires you to position the overlay using absolute positioning.
To properly position the info window, so the arrow is pointing at the marker, you need to know
the height of the info window, but as we said, the height varies based on the content. Luckily for
you, browsers have a little-known feature that allows you to access the rendered position and
size of elements on a web page.

Determining the Size of the Container
When creating the redraw() function, the first thing you’ll do is put the HTML into a content div
and apply the appropriate base styles to the div:

var content = document.createElement("div");

content.innerHTML = this.html_;

content.style.font='10px verdana';

content.style.margin='0';

content.style.padding='0';

content.style.border='0';

content.style.display='inline';

if(!this.width_ || this.width_=='auto' || this.width_ <= 0) {

//the width is unknown so set a rough maximum and minimum

content.style.minWidth = '10px';

content.style.maxWidth = '500px';

content.style.width = 'auto';

} else {

//the width was set when creating the window

content.style.width= width + 'px';

}

//make it invisible for now.

content.style.visibility='hidden';

The display='inline' and the last style attribute, visibility='hidden', are important for
the next step. To determine the div’s rendered position and size properties, you need to access
hidden properties of the div elements. When rendered on the page, browsers attach offsetXXX
properties. where the XXX is Left, Right, Width, or Height. These give you the position and size, in
pixels, of the DOM element after it’s rendered. For your info window, you’re concerned with the
offsetWidth and offsetHeight, as you’ll need them to calculate the overall size of the window.

To access the offset variables, you’ll first need to render the content div on the page. At this
point in the overlay, the content DOM element exists only in the browser’s memory and hasn’t

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 233

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 233

been “drawn” yet. To do so, append the content to the map container and retrieve the width and
height before removing it again from the map container:

this.map_.getContainer().appendChild(content);

var contentWidth = content.offsetWidth;

var contentHeight = content.offsetHeight;

content.parentNode.removeChild(content);

content.style.visibility='visible';

//set the width and height to ensure they stay that size when drawn again.

content.style.width=contentWidth+'px';

content.style.height=contentHeight+'px'

The brief existence of the content div inside the map container allowed the browser to set
the offset properties so you could retrieve the offsetWidth and offsetHeight. As we mentioned,
the inline display and the hidden visibility are important to retrieving the correct size. When the
display is inline, the bounding div collapses to the size of the actual content, rather than
expanding to a width of 100%, giving you an accurate width. Setting the visibility to hidden
prevents the content from possibly flashing on the screen for a moment, but at the same time,
preserves the size and shape of the div.

Building the Wrapper
Now that you have the size of the content box, the rest is pretty straightforward. First, style the
content accordingly and create another div, the wrapper, to contain the content and the additional
images for the eye candy bubble wrapper from Figure 9-13.

content.style.position='absolute';

content.style.left='5px';

content.style.top='7px';

content.style.background='white';

var wrapper = document.createElement("div");

wrapper.appendChild(content);

To minimize the HTML required for the LittleInfoWindow, the images in the wrapper can
be positioned using absolute positioning. The sample wrapper consists of nine separate images:
four corners, four sides, and an additional protruding arm, as outlined in Figure 9-14 (along with
the shadow and marker images). To give the new info window a similar feel to Google’s info window,
the upper-right corner has also been styled with an X in the graphic to act as the close box.

Figure 9-14. Outlined images for the LittleInfoWindow wrapper

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS234

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 234

To create the wrapper object in Listing 9-5, you could use the innerHTML property to add
the images using regular HTML, but that wouldn’t allow you to easily attach event listeners to the
images. By creating each image as a DOM object:

var wrapperParts = {

tl:{l:0, t:0, w:5, h:7},

t:{l:5, t:0, w:(contentWidth-6), h:7},

- cut -

}

//create the images

for (i in wrapperParts) {

var img = document.createElement('img');

- cut -

wrapper.appendChild(img);

wrapperParts[i].img = img;

}

and using the wrapper.appendChild() method, you can then attach event listeners directly to
image DOM elements, as when you want to add a click event to the close box:

var marker = this.marker_;

GEvent.addDomListener(wrapperParts.tr.img, "click", function() {

marker.closeLittleInfoWindow();

});

Now all that’s left to do with the LittleInfoWindow container is position it on the map and
append the wrapper. The design of the LittleInfoWindow has the arm protruding in the lower-left
corner, so you’ll want to position the top of the container so that the arm rests just above the
marker. You can get the marker’s position using the GMap2.fromLatLngToDivPixel() method you
saw earlier in the chapter, and then use the calculated height of the LittleInfoWindow plus the
height of the marker icon to determine the final resting position:

var pixelLocation = this.map_.fromLatLngToDivPixel(this.marker_.getPoint());

this.container_.style.position='absolute';

this.container_.style.left = (pixelLocation.x-3) + "px";

this.container_.style.top = (pixelLocation.y

- contentHeight

- 25

- this.marker_.getIcon().iconSize.height

) + "px";

this.container_.style.display = 'block';

this.container_.appendChild(wrapper);

Adding a Few Shades of Finesse
Your LittleInfoWindow should now be working, but a few tasks remain before we can call it
complete. First, let’s add a shadow to the window similar to the one on Google’s info window. The
shadow images are also supplied in the PSD files accompanying the book. The process for adding

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 235

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 235

the shadow is similar to the wrapper you just created. We won’t go through it again here, but you
can take a look at the complete code in Listing 9-5 and see the example there. The shadow, in this
case, expands only horizontally with the size of the wrapper, but you could easily add vertical
expansion as well.

Listing 9-5 also includes some pan adjustments when your window initially opens. The nice
thing about the Google’s info window is when it opens off-screen, the map pans until the window
is visible on-screen. You can easily add this same functionality by comparing the upper-right
corner of your LittleInfoWindow with the top and right edges of the map container:

var mapNE = this.map_.fromLatLngToDivPixel(this.map_.getBounds().getNorthEast());

var panX=0;

var panY=0;

if(this.container_.offsetTop < mapNE.y) {

panY = mapNE.y - this.container_.offsetTop;

}

if(this.container_.offsetLeft+contentWidth+10 > mapNE.x) {

panX = (this.container_.offsetLeft+contentWidth+10) - mapNE.x;

}

if(panX!=0 || panY!=0) {this.map_.panBy(new GSize(-panX-10,panY+30)); }

Then, if necessary, you can pan the map, just as Google does, to show the open window. If you
check out the online example at http://googlemapsbook.com/chapter9/CustomInfoWindow/,
you can see the pan in action by moving the marker to the top or right edge and then clicking it to
open the LittleInfoWindow.

Using the LittleInfoWindow
The last and final addition for your LittleInfoWindow should be the creation of the appropriate
methods on the GMarker class, in the same way you created methods for the ToolTip earlier. Again,
by adding open and close methods to the GMarker class:

GMarker.prototype.LittleInfoWindowInstance = null;

GMarker.prototype.openLittleInfoWindow = function(content,width) {

if(this.LittleInfoWindowInstance == null) {

this.LittleInfoWindowInstance = new LittleInfoWindow(this,content,width)

map.addOverlay(this.LittleInfoWindowInstance);

}

}

GMarker.prototype.closeLittleInfoWindow = function() {

if(this.LittleInfoWindowInstance != null) {

map.removeOverlay(this.LittleInfoWindowInstance);

this.LittleInfoWindowInstance = null;

}

}

you can access your custom info window with an API similar to the Google info window using
something like this:

GEvent.addListener(marker,'click',function() {

if(marker.LittleInfoWindowInstance) {

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS236

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 236

marker.closeLittleInfoWindow();

} else {

marker.openLittleInfoWindow('Hello World!➥

This is my info window!');

}

});

The difference from Google’s info window is that the LittleInfoWindowInstance is attached
to the GMarker, not the map, so you have the added advantage of opening more than one window
at the same time. If you want to force only one window open at a time, you’ll need to track the
instance using the map object, rather than the marker.

Implementing Your Own Map Type, Tiles, and
Projection
By default, three types of maps are built into the Google Maps API:

• Map (often referred to as Normal), which shows the earth using outlines and colored
objects, similar to a printed map you might purchase for driving directions

• Satellite, which shows the map using satellite photos of the earth taken from space

• Hybrid, which is a mixture of the satellite images overlaid with information from the
normal map type

Each map is an instance of the GMapType class, and each has its own constant G_NORMAL_MAP,
G_SATELLITE_MAP, and G_HYBRID_MAP, respectively. To quickly refer to all three, there is also the
G_DEFAULT_MAP_TYPES constant, which is an array of the previous three constants combined.

In the example in this section, you’ll create your own map using a new projection and the
NASA Visible Earth images (http://visibleearth.nasa.gov). But first, you need to understand
how the map type, projection, and tiles work together.

GMapType: Gluing It Together
Understanding the GMapType is key to understanding how the different classes interact to create
a single map. Each instance of the GMapType class defines the draggable map you see on the screen.
The map type tells the API what the upper and lower zoom levels are, which GTileLayer objects
to include in the map, and which GProjection to use for latitude and longitude calculations.
A typical GMapType object would look similar to this:

var MyMapType = new GMapType(

[MyTileLayer1, MyTileLayer2],

MyProjection,

'My Map Type',{

shortName:'Mine',

tileSize:256,

maxResolution:5,

minResolution:0

});

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 237

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 237

MyTileLayer1 and MyTileLayer2 would be instances of the GTileLayer class, and MyProjection
would be an instance of the GProjection class. The third parameter for GMapType is the label to
show on the map type button in the upper-right corner of the Google map. You’ll also notice the
fourth parameter is a JavaScript object implementing the properties of the GMapTypeOptions
class, listed in Table 9-2. In this case, the short name is Mine, the tile size is 256×256 pixels, and
the zoom levels are restricted to 0 through 5.

■Caution In your map type, all the tiles in each of the GTileLayer objects must be of equal size. You can’t
mix and match tile sizes within the same map type.

Table 9-2. GMapTypeOptions Properties

Property Description

shortName The short name is returned from GMapType.getName(true) and is used in
the GOverviewMapControl. The default is the same as the name supplied in the
GMapType arguments.

urlArg Optional parameters for the URL of the map type; can be retrieved using
GMapType.getUrlArg().

maxResolution The maximum zoom level of this map type.

minResolution The minimum zoom level of this map type.

tileSize The tile size. The default is 256.

textColor The text color returned by GMapType.getTextColor(). The default is black.

linkColor Text link color returned by GMapType.getLinkColor(). The default is #7777cc.

errorMessage An optional message returned by GMapType.getErrorMessage().

The GMapType object directs tasks to various other classes in the API. For instance, when you
need to know where a longitude or latitude point falls on the map, the map type asks the
GProjection where the point should go. When you drag the map around, the GTileLayer receives
requests from the map type to get more images for the new map tiles.

In the case where you don’t really need a brand-new map type, and just want to add a tile layer
to an existing map (as with the custom tile method described in Chapter 7), you can simply reuse
Google’s existing projection and tiles, layering your own on top. Using Google’s projection and tiles
is easy. Creating your own GProjection and GTileLayer is where things get a bit tricky.

GProjection: Locating Where Things Are
The GProjection interface handles the math required to convert latitude and longitude into
relative screen pixels and back again. It tells the map where GLatLng(-80,43) really is, and it tells
your web application what latitude and longitude is at position GPoint(64,34). Besides that, it’s
also responsible for the biggest untruth in the map.

You may not realize it, but when you look at a map—any map—it’s stretching the truth. A map
printed on a piece of paper or displayed on a screen is a two-dimensional representation of
a three-dimensional object. People have long understood the earth is round, but a round object
can’t be represented accurately in a flat image without losing or skewing some of the information.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS238

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 238

To create the flat map, the round earth is projected onto the flat surface using some mathematical
or statistical process, but as we said, projections do sometimes stretch the truth.

For example, take a look at Figure 9-15, where we’ve outlined the United States and Greenland.
Greenland, on a round globe, covers about 836,000 square miles (2,166,000 square kilometers),
and the United States covers about 3,539,000 square miles (9,166,000 square kilometers). That
means Greenland is really about 20% the area of the United States, but on the Google map (and
many other maps), it looks as though you could fit two of the United States inside Greenland! It
also looks as though Alaska is about half the area of the United States. This is because the Google
API uses the Mercator projection.

Figure 9-15. Comparing the United States and Greenland on a Mercator projection

Understanding Projection Types
Without going deep into mathematical theories and discussions, map projections can generally
be divided into three categories—planar, conic, and cylindrical—but some projections, such as
the Mollweide homolographic and the sinusoidal projection, are hybrids. Each category has dozens
of different variations depending on the desired use and accuracy.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 239

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 239

Planar: A planer map projection, often referred to as an Azimuthal projection, is created by
placing a flat plane tangent to the globe at one point and projecting the surface onto the plane
from a single point source within the globe, as represented in Figure 9-16. Imagine an image
on a wall, created by placing a light inside a glass globe. The resulting circular image would
be a planar map representing the round glass globe. The positions of the latitude and
longitude lines will vary depending on the position of the plane relative to the globe,
and planar projections also vary depending on where the common point is within the
globe. These projections are often used for maps of the polar regions.

Figure 9-16. Creating a planar projection

Conic: Unlike the planer projection, the conic projection uses a cone, placed on the globe
like an ice cream cone, tangent to some parallel, as shown in Figure 9-17. Then like the planar
projection, the globe is projected into the cone using the center of the globe as the common
point. The cone can then be cut along one of the meridians and placed flat. Latitude lines
are represented by straight lines converging at the center; longitude lines are represented by
arcs with the apex of the cone at their center. Conic projections vary depending on the
position of the cone and the size of the cone.

Figure 9-17. Creating a conic projection

Cylindrical: Cylindrical projections are similar to both the other two types of projections;
however, the plane is wrapped around the globe like a cylinder, tangent to the equator, as
illustrated in Figure 9-18. The globe is then projected on to the cylinder from a central point
within the globe, or along a central line running from pole to pole. The resulting map has
equidistant parallel longitude lines and parallel latitude lines that increase in distance as
you move farther from the equator. The difficulty with cylindrical projections is that the poles
of the earth can’t be represented accurately.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS240

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 240

Figure 9-18. Creating a cylindrical projection

The Mercator projection used by the Google Maps API is a cylindrical projection; however,
the latitude lines are mathematically adjusted using one of the following equations where ∆
represents the longitude and Φ represents the latitude:

The equations preserve more realistic shapes, as shown in Figure 9-19.

Figure 9-19. Latitude and longitude lines of the Google Maps API’s Mercator projection

x

y

= −

= +
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= +

λ λ

π φ

φ

0

1

4

1

2

1

2

1

ln tan

ln
sin

11

1

1

−
⎛
⎝⎜

⎞
⎠⎟

=
=
=

−

−

sin

sinh (tan)

tanh (sin)

ln(

φ

φ
φ

ttan sec)φ φ+

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 241

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 241

The downside with Mercator projections, as you saw in Figure 9-15, is that areas farther away
from the equator are greatly exaggerated and the poles themselves can’t be shown.

Using a Different Projection
By default, all of the maps in the API use the built-in GMercatorProjection class. The
GMercatorProjection is an implementation of the GProjection interface using the Mercator
projection. If your custom map image is using the Mercator projection, you don’t have to
worry about implementing your own GProjection interface, and you can just reference the
GMercatorProjection class. If you would like to use a projection other than the Mercator
projection, you need to create a new class for your projection and implement the methods
listed in Table 9-3.

Table 9-3. Methods Required to Implement a GProjection Class

Method Return Value Description

fromLatLngToPixel GPoint Given the latitude, longitude from the GLatLng
(latlng,zoom) object, and zoom level,returns the X and Y pixel

coordinates of the location relative to the bounding
div of the map.

fromPixelToLatLng GLatLng Reverse of fromLatLngToPixel. Given the pixel
(pixel,zoom,unbounded) coordinates and zoom, returns the geographical

latitude and longitude on the location. If the
unbounded flag is true, the geographical longitude
should not wrap when beyond -180 or 180 degrees.

tileCheckRange Boolean Returns true if the tile index is within a valid range
(tile,zoom,tilesize) for the known map type. If false is returned, the map

will display an empty tile. In the case where you
want the map to wrap horizontally, you may need
to modify the tile index to point to the index of an
existing tile.

getWrapWidth(zoom) Integer Given the zoom level, returns the pixel width of the
entire map at the given zoom. The API uses this value
to indicate when the map should repeat itself. By
default, getWrapWidth() returns Infinity, and the
map does not wrap.

Listing 9-6 shows a generic implementation of an equidistant cylindrical projection, which
you’ll use in the “The Blue Marble Map: Putting it All Together” section later in the chapter to
create a map using the NASA Visible Earth images as tiles. The equidistant cylindrical projection
is created by plotting the latitude and longitude values from the globe in a 1:1 ratio on a plane,
as shown in Figure 9-20. This creates a map whose width, unlike Google’s Mercator projection,
is always twice its height while latitude and longitude lines are all at equal distances. If you
compare your final map with the Google map, your equidistant cylindrical map will actually
be half the height and thus half the number of overall tiles per zoom level.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS242

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 242

Figure 9-20. Equidistant cylindrical projection

You’ll also notice the projection in Listing 9-6 has an additional property,
EquidistantCylindricalProjection.mapResolutions, to hold the overall width of the map at
each zoom level.

■Caution Your implementation of the GProjection interface is dependent on the resolution of the map image
you plan to use. If you want to reuse the GMercatorProjection, your map images must match the sizes
discussed in the next section.

Listing 9-6. Equidistant Cylindrical GProjection

EquidistantCylindricalProjection = new GProjection();

EquidistantCylindricalProjection.mapResolutions = [256,512,1024]

EquidistantCylindricalProjection.fromLatLngToPixel = function(latlng,zoom) {

var lng = parseInt(Math.floor((this.mapResolutions[zoom] / 360) *➥

(latlng.lng() + 180)));

var lat = parseInt(Math.floor(Math.abs((this.mapResolutions[zoom] / 2 / 180) *➥

(latlng.lat()-90))));

var point = new GPoint(lng,lat);

return point;

}

EquidistantCylindricalProjection.fromPixelToLatLng =➥

function(pixel,zoom,unbounded) {

var lat = 90-(pixel.y / (this.mapResolutions[zoom] / 2 / 180));

var lng = (pixel.x / (this.mapResolutions[zoom] / 360)) - 180;

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 243

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 243

var latlng = new GLatLng(lat,lng);

return latlng;

}

EquidistantCylindricalProjection.tileCheckRange = function(tile,zoom,tileSize){

var rez = this.mapResolutions[zoom];

//check if it is outside the latitude range

//the height for the Blue Marble maps are always 1/2 the width

if(tile.y < 0 || tile.y * tileSize >= rez / 2){ return false; }

//check if it is outside the longitude range and if so, wrap the map

//by adjusting tile x

if(tile.x < 0 || tile.x * tileSize >= rez){

var e = Math.floor(rez / tileSize);

tile.x = tile.x % e;

if(tile.x < 0){ tile.x += e; }

}

return true;

}

EquidistantCylindricalProjection.getWrapWidth = function(zoom){

return this.mapResolutions[zoom];

}

GTileLayer: Viewing Images
By now, you’ve probably already figured out that the map image, regardless of the type, is actually
composed of smaller, square images referred to as tiles. In the Google Maps API, each of these
tiles is 256×256 pixels, and at the lowest zoom level (0), the entire earth is represented in one
256×256 tile, as shown in Figure 9-21. Some maps, such as the Hybrid map in the API, use more
than one layer of tiles at a time. In Chapter 7, you saw how you could use a tile layer to map large
data sets, and in that instance, you added a tile layer to an existing Google map.

Figure 9-21. The entire earth at zoom level 0 using one 256×256 tile

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS244

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 244

Understanding Tiles
When creating your map with custom tiles, it’s important to consider resources and the storage
requirements required for the tiles. The number of tiles on a map is directly related to the zoom
level of the map by:

Number of tiles = (2 ^ zoom) ^ 2

This means at zoom level 0, there is one tile, and at zoom level 17, there are 17,179,869,184
billion tiles, not to mention the accumulated total for all the zoom levels combined! Table 9-4
shows the breakdown of number of tiles, map size, and rough storage requirements for each of
the zoom levels 0 through 17.

Table 9-4. Tile Size and Storage Requirements for Each Zoom Level of the Google Mercator Projection

Zoom Tile Dimensions Pixel Dimensions Number of Tiles Disk Space Required*

0 1×1 256×256 1 10.209KB

1 2×2 512×512 4 40.839KB

2 4×4 1024×1024 16 163.359KB

3 8×8 2048×2048 64 653.437KB

4 16×16 4096×4096 256 2.552MB

5 32×32 8192×8192 1024 10.209MB

6 64×64 16384×16384 4096 40.839MB

7 128×128 32768×32768 16384 163.359MB

8 256×256 65536×65536 65536 653.437MB

9 512×512 131072×131072 262144 2.552GB

10 1024×1024 262144×262144 1048576 10.209GB

11 2048×2048 524288×524288 4194304 40.839GB

12 4096×4096 1048576×1048576 16777216 163.359GB

13 8192×8192 2097152×2097152 67108864 653.437GB

14 16384×16384 4194304×4194304 268435456 2.552TB

15 32768×32768 8388608×8388608 1073741824 10.209TB

16 65536×65536 16777216×16777216 4294967296 40.839TB

17 131072×131072 33554432×33554432 17179869184 163.359TB

Total 22906492245 217.812TB

*Based on an average file size of 10,455 bytes per tile.

Looking at Table 9-4, you quickly realize that it may not be feasible to create a large map at
very high resolutions unless you have a fairly large storage facility and a lot of bandwidth to spare.
Also, remember that Table 9-4 represents one map type and one tile layer. If you have a smaller
map with multiple tile layers or various map images, you may also run into storage problems.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 245

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 245

Creating Your GTileLayer
To create a tile layer for your map, you can follow the same process outlined in Chapter 7 and
create a new GTileLayer object with the methods listed in Table 9-5.

Table 9-5. Methods Required for a GTileLayer

Method Return Value Description

getTileUrl String Returns the URL for the tile image. The URL can point to any
(tile,zoom) domain, as the source of an image file is not bound by the

“Same Origin” security policy.

isPng() Boolean Returns true if the tiles are in PNG format and could be
transparent. You can still use transparent GIFs if this returns
false, but if you use transparent PNGs this should be true so the
API knows to fix cross-browser issues with transparent or
translucent PNG files.

getOpacity() Float Returns the opacity to apply to the tiles: 1 is opaque and 0 is
transparent. Remember that when dealing with translucent
layers, performance may be degraded.

■Caution Two additional methods for the GTileLayer class are minResolution() and maxResolution().
These return the minimum and maximum zoom levels for the tile layer. At the time of publishing, if you try to
override them, the map behaves erratically. So, you should leave them out of your custom tile layer and use the
second and third arguments for the GTileLayer class to assign the maximum and minimum zoom levels.

The URL in the getTileUrl() method can point to a server-side script that generates tiles on
the fly, as in the method described in Chapter 7, or you may want to preslice your image and save
each tile with an appropriate name. Regardless of which method you choose, a GTileLayer simply
requests the tile at the appropriate index and doesn’t care how you create the image.

■Note In the next section of this chapter, when you build a map using the NASA Visible Earth images, you’ll
be preslicing the map images from the command line using ImageMagick.

As shown in Listing 9-7, there is very little code required for a tile layer. You simply define the
URL for each tile and pass in the appropriate zoom level restrictions. If you want, when adding
multiple layers of tiles, you can adjust the opacity of each layer as well by using the getOpacity()
method.

Listing 9-7. Creating a GTileLayer

var myTiles = new GTileLayer(new GCopyrightCollection(),0,10);

myTiles.getTileUrl = function(tile,zoom){

return 'http://example.com/tiles/' + zoom + '.' + tile.x + '.'➥

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS246

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 246

+ tile.y + '.png';

};

myTiles.isPng = function() { return true; }

myTiles.getOpacity = function() { return 1.0; }

The Blue Marble Map: Putting It All Together
Now that you have an idea of all the interrelating parts of the map type, projection, and tiles, you
can put it all together to create your own map.

If you don’t have any readily available satellites photos lying around, you’ll probably need to
turn to other sources for map imagery. Luckily, NASA can provide you with just what you’re looking
for. The Visible Earth project at http://visibleearth.nasa.gov, shown in Figure 9-22, has a variety
of public domain images you can download and use in your projects. Some, like the monthly
Blue Marble: Next Generation images at http://earthobservatory.nasa.gov/Newsroom/
BlueMarble/BlueMarble_monthlies.html, are provided at a resolution of 500 meters per pixel,
enough to make a Google map to zoom level 9. The images are provided free of charge. According
to the Terms of Use at http://visibleearth.nasa.gov/useterms.php, the only thing you need to
do in return is provide credits for the imagery to NASA and Visible Earth team, with a link back
to http://visibleearth.nasa.gov/.

Figure 9-22. The NASA Visible Earth website

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 247

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 247

Conveniently, the Blue Marble monthly images and various others are created using the
equidistant cylindrical projection you saw earlier (in Listing 9-6). There are other projections and
image types, such as one “side” of the earth as a circle, but for this example, you’ll be working with
the equidistant cylindrical images. If you would like to see working examples of other projections,
check out the website for this book at http://googlemapsbook.com.

The Images
For the final map, you’ll need to create tiles for three maps, each with about five zoom levels. You’ll
be using these three images:

• Earth’s City Lights (http://veimages.gsfc.nasa.gov/1438/land_ocean_ice_lights_
2048.tif)

• The Blue Marble: Land Surface, Ocean Color, and Sea Ice (http://veimages.gsfc.nasa.gov/
2430/land_ocean_ice_8192.tif)

• The Blue Marble: Land Surface, Ocean Color, and Sea Ice and Clouds (http://veimages.
gsfc.nasa.gov/2431/land_ocean_ice_cloud_8192.tif)

The first image, Earth’s City Lights, is only 2048×1024 pixels. The other images are 8192×4096
pixels. By referencing Table 9-4 earlier in the chapter, you can see the two images at 8192 pixels fit
nicely into zoom level 5, whereas the City Lights image at 2048 pixels will only go to a maximum
of zoom level 3. You could probably increase the dimension by one zoom level using an image-
editing program, but these three images will suffice for the example.

The Blue Marble Cylindrical Projection
As we mentioned, the three Blue Marble images you’re using for the example have been created
using the equidistant cylindrical projection you saw earlier in Listing 9-6. The only modifications
you need to make are to add the appropriate map resolutions to account for zoom levels
0 through 5, and rename the projection to BlueMarbleProjection so you can easily distinguish
it from other projections you might make. Listing 9-8 shows the projection for this example.

■Tip If you decide to integrate these, or other images, into your own maps, you could create a generic projection
with a setZoomResolution() method that could add the various map resolutions appropriate for the given
application. That way, you could easily reuse your projection without restricting it to specific zoom levels or
map resolutions.

Listing 9-8. BlueMarbleProjection for Your Custom Map Images

BlueMarbleProjection = new GProjection();

BlueMarbleProjection.mapResolutions = [256,512,1024,2048,4096,8192]

BlueMarbleProjection.fromLatLngToPixel = function(latlng,zoom) {

var lng = parseInt(Math.floor((this.mapResolutions[zoom] / 360) *➥

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS248

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 248

(latlng.lng() + 180)));

var lat = parseInt(Math.floor(Math.abs((this.mapResolutions[zoom] / 2 / 180) *➥

(latlng.lat() - 90))));

var point = new GPoint(lng,lat);

return point;

}

BlueMarbleProjection.fromPixelToLatLng = function(pixel,zoom,unbounded) {

var lat = 90 - (pixel.y / (this.mapResolutions[zoom] / 2 / 180));

var lng = (pixel.x / (this.mapResolutions[zoom] / 360)) - 180;

var latlng = new GLatLng(lat,lng);

return latlng;

}

BlueMarbleProjection.tileCheckRange = function(tile,zoom,tileSize){

var rez = this.mapResolutions[zoom];

if(tile.y < 0 || tile.y * tileSize >= rez / 2){ return false; }

if(tile.x < 0 || tile.x * tileSize >= rez){

var e = Math.floor(rez / tileSize);

tile.x = tile.x % e;

if(tile.x < 0){ tile.x += e; }

}

return true;

}

BlueMarbleProjection.getWrapWidth = function(zoom){

return this.mapResolutions[zoom];

}

The Blue Marble Tiles
The Google Maps API assumes a tile size of 256×256 pixels. Although you can change the tile size
by using the GMapType tileSize option, the Blue Marble images divide nicely by 256, so there’s no
reason to change the default size for this example. Keeping the same tile size will also allow you
to continue reusing most of the other examples in the book, without the need to modify code to
accommodate a different tile size.

Slicing and Dicing

To serve up the tiled images for the three maps, you have a few options, including dynamically
creating each tile on the fly, preslicing the images and storing them all appropriately on the server,
or a combination. Taking into consideration the storage requirements discussed earlier, and the
processing power you’ll need to continually slice the images on the fly, you’ll probably opt to
spend a little money on a hard drive, if necessary, and preslice your images. The three maps,
sliced for each zoom level, will occupy only about 40MB of disk space, whereas slicing the images
at each request will create a huge drain on resources and slow down the server.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 249

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 249

To slice your images, you could use Adobe Photoshop’s scripting capabilities and follow the
instructions at http://www.mapki.com/index.php?title=Automatic_Tile_Cutter, or you could
install some open source image-editing utilities, such as the ImageMagick convert utility.

■Tip To install ImageMagick, visit http://www.imagemagick.org/script/index.php. You’ll find
installation instructions and binaries for both Unix and Windows systems. If you’ve never used ImageMagick
before, we highly recommend you browse the manual to see all the great tools it offers. Also, check out the
book The Definitive Guide to ImageMagick, by Michael Still (https://www.apress.com/book/bookDisplay.
html?bID=10052). If you’re looking for some quick examples, check out http://www.cit.gu.edu.au/
~anthony/graphics/imagick6/, where you’ll find illustrated examples of how to use each of ImageMagick’s
commands. If you deal with dynamically generating images on a daily basis, you’ll find ImageMagick an
essential tool to add to your collection.

To tile your images with ImageMagick, first, if you haven’t already done so, download the three
images into a tiles directory, and then create subdirectories for each image’s tiles. Your directory
structure should look like this:

tiles/

land_ocean_ice

land_ocean_ice_8192.tif

land_ocean_ice_cloud

land_ocean_ice_cloud_8192.tif

land_ocean_ice_lights

land_ocean_ice_lights_2048.tif

Then it’s as simple as running the following command to create each of the tiles for each of
the images at each zoom level:

convert filename.tif -resize widthxheight -crop 256x256➥

directory/tile.zoomlevel.%d.png

For the resize width and height, refer back to Table 9-4.
For example, to create the tiles for the land_ocean_ice_lights image, you would execute the

following four commands:

convert land_ocean_ice_lights_2048.tif -crop 256x256➥

land_ocean_ice_lights/tile.3.%d.png

convert land_ocean_ice_lights_2048.tif -resize 1024x512 -crop 256x256➥

land_ocean_ice_lights/tile.2.%d.png

convert land_ocean_ice_lights_2048.tif -resize 512x256 -crop 256x256➥

land_ocean_ice_lights/tile.1.%d.png

convert land_ocean_ice_lights_2048.tif -resize 256x256➥

land_ocean_ice_lights/tile.0.%d.png

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS250

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 250

Executing these four commands will create the tiles for each zoom level between 0 and 3.
One tile for zoom level 0 will be created and named tile.0.0.png, while 32 tiles for zoom level 3
will be created and named tile.3.0.png through tile.3.31.png. The tiles you create with
ImageMagick will be numbered 0 through X, starting with the top-left corner and reading left
to right, as illustrated in Figure 9-23. It’s important that you remember this pattern when you
create the getUrl method for the GTileLayer.

Figure 9-23. Tile placement produced by ImageMagick

For the other two images, land_ocean_ice_8192.tif and land_ocean_ice_cloud_8192.tif,
you can follow the same process but start a zoom level 5 and to go to 0.

■Caution If you are using an image that’s excessively large, you may run into memory problems while running
ImageMagick to create your tiles. ImageMagick tries to get as much main memory as possible when converting
images so the conversion can run as fast as possible. To limit memory consumption, and leave some for other
processes, you can add -limit memory 32 -limit map 32 to the command. This will force ImageMagick
to use the disk cache, rather than hog memory, but the processing time may be much slower.

Creating the GTileLayer Objects

For your Blue Marble map, you need to create three different GTileLayer objects, similar to
the earlier generic object from Listing 9-7. For the Blue Marble tile layers, you’ll need to change
the generic getUrl method to account for the numbering scheme you used when you created the
tiles, and you’ll need to modify the URL to point to the actual location of your tiles for each of
the three images:

myTiles.getTileUrl = function(tile,zoom){

return 'http://example.com/tiles/' + zoom + '.' + tile.x + '.'➥

+ tile.y + '.png';

};

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 251

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 251

Each request to getTileUrl contains two arguments: the tile and the zoom. As shown in
Figure 9-23, your images are numbered starting with 0 in the upper-left corner and, at zoom
level 3, 31 in the lower-right corner. The corresponding tile argument for these two requests
would have tile.x=0 and tile.y=0 for your tile number 0 and tile.x=8 and tile.y=4 for your
tile number 31, as shown in Figure 9-24.

Figure 9-24. Your tile numbering vs. Google’s tile requests

To convert the tile x and y values into your corresponding number scheme, you need to apply
the simple formula:

x + y(2^zoom) = z

So, the URL you return from getTileUrl should resemble this:

return 'tiles/image/tile.' + zoom + '.' + (tile.x + tile.y*Math.pow(2,zoom))➥

+ '.png';

where image is replaced by the name of each of the directories you created when making your tiles.
Along with your tiles, you may want to create one extra tile that shows when the map is at

a zoom level that’s too close for your tiles. For example, your three images don’t all have the same
resolution, so if you’re looking at one map at zoom level 5 and then switch map types to the
land_ocean_ice_lights image, it only goes up to zoom level 3, and the map will have nothing to
display. Depending on your application, you could just display an image with a message indicating
to the user “There are no tiles at this zoom level; zoom out for a broader look,” or you could be
a little more creative, like the creators of the moon map at http://moon.google.com. That map
displays tiles of cheese when you zoom in too close, as shown in Figure 9-25.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS252

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 252

Figure 9-25. Cheese on the moon when zoomed in too close at http://moon.google.com

To incorporate the “too close” image, simply check the zoom level before requesting the tiles
for the land_ocean_ice_lights image and request the appropriate alternate tile:

if(zoom > 3) return 'tiles/no_tiles_at_zoom_level.png';

else return 'tiles/land_ocean_ice_lights/tile.' + zoom + '.' +

(tile.x + tile.y *Math.pow(2,zoom)) + '.png';

Don’t Forget the Copyright Credits

Remember that to use the images from Visible Earth site, you must abide by the Terms of Use and
give credit for the imagery to NASA and the Visible Earth team. To do so, you can easily add the
appropriate copyright information to the tile layer using the GCopyright and GCopyrightCollection
classes. If you use other images from different sources, you can add different or multiple
copyrights to each tile layer. To do so, simply create a new GCopyrightCollection with an
appropriate optional prefix:

copyrights = new GCopyrightCollection('Map Imagery:');

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 253

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 253

Then create a new GCopyright object, as per the arguments in Table 9-6, for the NASA Visible
Earth team and add it to the copyright collection:

var visibleEarth = new GCopyright(

'nasabluemarble',

new GLatLngBounds(new GLatLng(-90,-180),new GLatLng(90,180)),

0,

'NASA Visible Earth'

copyrights.addCopyright(visibleEarth);

);

Table 9-6. GCopyright Input Arguments

Argument Type Description

id Number A unique identifier for this copyright information

minZoom Number The lowest zoom level at which the copyright information applies

bounds GLatLngBounds The boundary of the map to which the copyright applies

text String The copyright message

Then when creating your GTileLayer objects for each image, pass copyrights into the tile layer
as the first parameter to the GTileLayer class:

var BlueMarbleCloudyTiles = new GTileLayer(copyrights,0,5);

When your map loads, you should be able to see the credit in the copyright information in the
lower-right corner of the map, as shown in Figure 9-26.

Figure 9-26. Copyright information on the map (image courtesy of NASA Visible Earth)

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS254

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 254

Listing 9-9 includes the copyright credits plus the three completed tiles layers, one
for each image. The tile layers are named BlueMarbleTiles, BlueMarbleNightTiles, and
BlueMarbleCloudyTiles, each representing one of the land_ocean_ice, land_ocean_ice_
lights, and land_ocean_ice_cloud images, respectively. Also, when creating the tile layers,
be sure to indicate the expected zoom levels using the second and third parameters to the
GTileLayer class, so the API knows what zoom levels to expect.

Listing 9-9. Blue Marble Copyright Credits and Tile Layers

copyrights = new GCopyrightCollection('Map Imagery:');

var visibleEarth = new GCopyright(

'nasabluemarble',

new GLatLngBounds(new GLatLng(-90,-180),new GLatLng(90,180)),

0,

'NASA Visible Earth'

copyrights.addCopyright(visibleEarth);

);

//tile layer for land_ocean_ice

var BlueMarbleTiles = new GTileLayer(copyrights,0,5);

BlueMarbleTiles.getTileUrl = function(tile,zoom){

if(zoom > 5) return 'tiles/no_tiles_at_zoom_level.png';

else return 'tiles/land_ocean_ice/tile.' + zoom + '.' +

(tile.x + tile.y * Math.pow(2,zoom)) + '.png';

};

BlueMarbleTiles.isPng = function() { return true; }

BlueMarbleTiles.getOpacity = function() { return 1.0; }

//tile layer for land_ocean_ice_lights

var BlueMarbleNightTiles = new GTileLayer(copyrights,0,3);

BlueMarbleNightTiles.getTileUrl = function(tile,zoom){

if(zoom > 3) return 'tiles/no_tiles_at_zoom_level.png';

else return 'tiles/land_ocean_ice_lights/tile.' + zoom + '.' +

(tile.x + tile.y * Math.pow(2,zoom)) + '.png';

};

BlueMarbleNightTiles.isPng = function() { return true; }

BlueMarbleNightTiles.getOpacity = function() { return 1.0; }

//tile layer for land_ocean_ice_cloud

var BlueMarbleCloudyTiles = new GTileLayer(copyrights,0,5);

BlueMarbleCloudyTiles.getTileUrl = function(tile,zoom){

if(zoom > 5) return 'tiles/no_tiles_at_zoom_level.png';

else return 'tiles/land_ocean_ice_cloud/tile.' + zoom + '.' +

(tile.x + tile.y * Math.pow(2,zoom)) + '.png';

};

BlueMarbleCloudyTiles.isPng = function() { return true; }

BlueMarbleCloudyTiles.getOpacity = function() { return 1.0; }

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 255

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 255

The Blue Marble GMapType
Your last step is to assemble the BlueMarbleProjection and the three tile layers into their own map
types. This is relatively straightforward, and you can follow the exact same process you used earlier
in the chapter. Listing 9-10 contains the three map types named BlueMarble for the normal map,
BlueMarbleNight for the city lights map, and BlueMarbleCloudy for the cloudy map.

Listing 9-10. Blue Marble Map Types

var BlueMarble = new GMapType(

[BlueMarbleTiles],

BlueMarbleProjection,

'Blue Marble',

{

shortName:'BM',

tileSize:256,

maxResolution:5,

minResolution:0

}

);

var BlueMarbleNight = new GMapType(

[BlueMarbleNightTiles],

BlueMarbleProjection,

'Blue Marble Night',

{

shortName:'BMN',

tileSize:256,

maxResolution:3,

minResolution:0

}

);

var BlueMarbleCloudy = new GMapType(

[BlueMarbleCloudyTiles],

BlueMarbleProjection,

'Blue Marble Cloudy',

{

shortName:'BMC',

tileSize:256,

maxResolution:5,

minResolution:0

}

);

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS256

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 256

Using the New Blue Marble Maps
To use the new Blue Marble maps, you need to add them to your GMap2 object using the
addMapType() method:

map = new GMap2(document.getElementById("map"));

map.addMapType(BlueMarble);

map.addMapType(BlueMarbleNight);

map.addMapType(BlueMarbleCloudy);

After you add the new map type to the GMap2 object, you’ll see the new map type along
with Google’s map types, as shown in Figure 9-27.

Figure 9-27. The new map types on the map (image courtesy of NASA Visible Earth)

If you want to show only the Blue Marble map types, just specify which map types to use when
instantiating the GMap2 object:

map = new GMap2(

document.getElementById("map"),{

mapTypes:[BlueMarble,BlueMarbleNight,BlueMarbleCloudy]

});

Now flipping back and forth between map types, you’ll see the three different maps using the
tiles you created. If you plot a point on the map, it will still appear in the correct location due to
your new BlueMarbleProjection, as shown in Figure 9-28.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 257

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 257

Figure 9-28. Location plotted on a Google map (above) vs. the NASA Blue Marble map (below).
Notice the difference in the map images.

Summary
In this chapter, you’ve been introduced to some of the newer and more advanced features of
the Google Maps API. Extending these examples further, you can create a wide variety of maps
and controls that could do just about anything you wanted. For example, you could add a zoom
control that works by clicking and dragging on an area, or create fancy info windows incorporating
QuickTime streams, Flash, or any other plug-ins. What you put into your own overlay objects is
really up to you.

Using custom tiles, you could easily create your own map using an antique hand-drawn map
from the early days of exploration, or you could use the API as a high-resolution image viewer
by replacing the map tiles with tiles from your high-resolution images. You could even let people
comment on parts of the image using the same techniques you saw in Chapter 3.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS258

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 258

Whatever interesting things you decide to create, it’s important to keep up-to-date with the
API by checking the online reference at http://www.google.com/apis/maps/documentation/
reference.html. Google is always updating, improving, and adding new features to the Google
Maps API, so be sure to check back often. We also suggest that you join the Google Maps group
at http://groups.google.com/group/Google-Maps-API and contribute any ideas you have to the
Google Maps development team. Contributing back to the community will help it prosper, and
keeping up with the current topics and discussion will make you aware of all the latest additions. The
group discussions also provide examples and neat ideas you might be able to use in your projects.

In the next chapter, you’ll play with some other features of the API, such as polylines, finding
lengths, and calculating areas on the map.

CHAPTER 9 ■ ADVANCED TIPS AND TRICKS 259

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 259

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 260

Lines, Lengths, and Areas

A ll of the projects we’ve presented have dealt with map markers as either individual entities
or as related clusters. In this chapter, we’ll demonstrate some of the other ways that groups of
points may be interpreted and presented.

A group of points is just that: a group of points. But a string of points in sequence may
represent a line or path, which has the calculable property of length. Once the points form a
closed loop, they may be treated as the outline of a region having area. Using the appropriate
formulas, you can compute these distance and area values for your map projects.

The Google Maps 2.0 API includes some of this functionality, but remember that you
may need to perform these kinds of calculations in your server-side scripts as well! With these
mathematical tricks, as with any tools, it’s good to at least have a vague understanding of their
underlying principles, so you have the confidence to apply them correctly and trust their output.

In this chapter, you’ll learn how to do the following:

• Compute the area and perimeter of an arbitrary region.

• Calculate angles on the earth’s surface.

• Plot polygons in response to mouse clicks and allow draggable markers.

Starting Flat
When you measure quantities such as length and area on a planet’s surface, what you’re really
measuring are properties of three-dimensional figures. A region of any significant size plotted
on the surface of the earth is not flat—it contains a bulge corresponding to the earth’s curva-
ture. This bulge increases the amount of area over what you might measure if you plotted a region
of similar perimeter on a flat (planar) surface.

An important thing to realize, though, is that you can’t just generalize that plotting it on a
sphere makes it bigger, because the results actually depend on which method you use to trans-
late the flat object to its spherical representation.

As an example, picture a gigantic circle drawn on the earth, big enough to encompass all
of Australia. This circle has two key dimensions: radius and circumference. If you plotted a flat
circle with the same circumference, you would find that its area was smaller than the one around
Australia, since it doesn’t have the bonus area from the earth’s bulge. But if you plotted a circle
using the same radius, you would find quite the opposite: the flat one has a larger surface area.
Why? Because forming the bulged circle is like taking a flat doily and rolling it into a cone.

261

C H A P T E R 1 0

■ ■ ■

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 261

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS262

Even though the “surface” radius is the same, the cone has less surface area (since some of the
doily folds over on itself).

Before we discuss how to compute these distance and area values, let’s quickly review the
classical Euclidean stuff that applies to flat shapes on a plane.

Lengths and Angles
A cornerstone of high-school geometry is the Pythagorean theorem. In a flat system, it allows
us to quickly and accurately calculate the length of the diagonal on a right-angle triangle. In
practical terms, this means that given any straight line drawn on a Cartesian (X and Y) coordi-
nate system, we can independently measure the X and Y displacements from the start to the
end of the line, and then use the theorem to get the length of the line itself. You can see in
Figure 10-1 how this is applied.

Figure 10-1. The Pythagorean theorem for length (a), arctangent for angle (b)

Finding the length of a line is only half the story, though. To be able to fully describe a line,
we need its length and its angle. And again, high-school math has us covered. The arctangent
(also atan or inverse-tangent) function takes the ratio of the Y and X displacements (the slope),
and gives back an angle from horizontal (also shown in Figure 10-1).

Most programming languages, however, go a step beyond providing just basic arctangent
and also provide an additional function, typically called atan2(). With atan2(), you pass in the
Y and X displacements separately, and it will correctly compute the angle, in the range –π to π.
Plus, it will properly handle the vertical case. (Remember that a vertical line has undefined slope
because its horizontal displacement is zero; anything divided by zero is undefined.)

In JavaScript, this function takes the form of Math.atan2().

RADIAN REFRESHER

You may be confused by some of the values that you get back from functions like Math.atan2(). Keep in
mind that JavaScript, like most programming languages, does all of its trigonometric operations using radians.
Switching between radians and degrees is a straightforward operation. But radians are the favored unit for
working with circles and other curves.

A radian is defined as one radius length around a circle’s perimeter. Since the radius and circumference
of a circle are directly proportional to each other, an angle measured in radians doesn’t vary with the size of
the circle.

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 262

Given a circle with radius r, we know from basic principles that its circumference is π times its diameter.
So the circumference of that circle is 2πr. If we want to know what percentage of the perimeter a single
radian represents, we can just divide one radian’s distance (r) by the total distance (2πr). And from that, it’s
possible to see that a radian is a little less than one-sixth of a circle. Indeed, 180 degrees is equal to exactly
π radians.

Radians represent a ratio, and ratios have no units. When you write an angle in degrees, you must
denote it with the small circle that represents degrees. After all, degrees are an arbitrary unit; the value 360
happens to work well for a circle simply because it divides cleanly in so many ways.

Of course, sometimes it will be important to make it perfectly clear that radians are the method of
measurement. In that case, you can append “rad” to the value. But this is not a unit; it’s simply an indication
of what the number represents.

Here’s a summary of the conversion calculations:

• To convert from radians to degrees, divide by π and multiply by 180.

• To convert from degrees to radians, multiply by π and divide by 180.

Areas
In computing the area of an arbitrary region, the human method would be to break it down
into simple components, such as triangles, and then sum up the individual areas of these
smaller pieces. A triangle’s area is just half the base times the height, and solving for the height
is possible given enough of the angles and side lengths.

Breaking down a complex shape can be a tricky task, however, even for a human. In order
for a computer to be able to solve for the area of an arbitrary region, a systematic approach must
be developed—one that a simpleminded JavaScript function can reliably apply in all situations.
To derive such a method, we’ll begin by representing each point around a figure’s perimeter as
a coordinate pair labeled x1 and y1, x2 and y2, and so on.

The initial step is to extend each vertex of the shape to the X-axis, and then picture each
line segment as being part of a quadrilateral involving two of the extension lines and a piece of
the X-axis. You can see this developing in Figure 10-2.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 263

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 263

Figure 10-2. Arbitrary concave polygon formula, showing the component quadrilaterals

■Note Concave and convex—which is which? Convex describes a shape where a straight line from any
point inside the shape to any other point inside the shape will never leave the shape. Concave, on the other
hand, means that there are areas where something has been “cut out” of the shape. These definitions apply
equally to three-dimensional figures. A concave lens is one that narrows toward the middle, leaving a “cave”
on either side of it.

From here, it’s clear that if you take the areas of all the quadrilaterals on the far side of the
shape, and subtract the areas of those quadrilaterals on the near side, the area remaining is
that of the shape itself.

To express this mathematically, we must use the summation operator Σ to add up the
areas of the trapezoids, which are simply the average of their top and bottom lines (left and
right, in our case), multiplied by the height:

The business about adding the far-side area and subtracting the near-side area is actually
one we get for free. Working under the assumption that the points are provided in clockwise
order, subtracting the x values for the height ensures that the near and far regions have the
opposite sign. The formula as given here assumes points provided in clockwise order. If you
wish to accept them in either order, you can take the absolute value of the result.

This can be simplified if we bring the constant outside the summation, and expand the
multiplication on the inside:

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS264

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 264

The observant will notice that once this summation is applied across a cyclical list of
points, every –xi+1yi+1 term will subtract out the xi yi term in the following iteration of the sum.
After this final simplification, we’re left with a straightforward formula:

To implement this in JavaScript is a simple matter of a loop, as shown in Listing 10-1.

Listing 10-1. Function for an Arbitrary Shape’s Area, Given by a List of Coordinate Pairs

var points = [

{'x': 1, 'y': 4 }, {'x': 4, 'y': 6 }, {'x': 6, 'y': 5 },

{'x': 5, 'y': 1 }, {'x': 3, 'y': 3 }, {'x': 2, 'y': 2 }

];

function calculateArea(points) {

var count = points.length;

var tally = 0;

var i;

// add the first point to the end of the array

points[points.length] = points[0];

for(i = 0; i < count; i++) {

tally += points[i + 1].x * points[i].y

tally -= points[i].x * points[i + 1].y

}

return tally * 0.5;

}

■Caution The code in Listing 10-1 contains a “gotcha” that PHP users might not have been expecting.
JavaScript passes all nonprimitives by reference, which means the caller’s copy of the points array will get
back the duplicated version with the extra element tacked on the end. If this is important, you could call the
Array’s pop() method to remove the final element.

You can see the Listing 10-1 code in action in Figure 10-3. Although it would work for
highly localized regions, where the earth can be assumed flat, it’s unsuitable as a general,
global solution. You can see in the demo that we’ve used points plotted in pixel increments
on your flat screen, and then calculated the area inside those.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 265

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 265

Figure 10-3. Calculating with JavaScript the area encompassed by six flat points

However, the formula is still important. For areas small enough to be approximated as
flat, such a method is straightforward to apply and not difficult conceptually. It’s helpful to see
it in comparison to the spherical methods we’ll develop in the next section.

Moving to Spheres
The study of spherical geometry is a field dominated by fascinating shortcuts and unusual
ways of conceptualizing problems. Nothing from flat geometry can be simply applied verba-
tim, but there are interesting ways that aspects of spherical problems can be reduced down
to planar ones.

The Great Circle
The shortest way to connect any two points on the surface of a sphere is by going through the
sphere itself. In terms of surface routes, however, the shortest is called a great-circle path. It
has this name because the connecting arc is part of a circle that has the same center point as
the sphere itself, perfectly bisecting it. It’s the largest possible circle that may be traced on the
surface of any sphere.

All longitude lines are great circles, but of the lines of latitude, only the equator qualifies.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS266

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 266

This can be counterintuitive at first, especially looking at maps like the New York to Paris
route in Figure 10-4. When trans-Atlantic flights fly great-circle routes through the northern
hemisphere, it appears—from a flat map—as though they’ve taken a bizarre arctic detour. But,
as we explained in Chapter 7, the farther away from the equator you look on a Mercator map,
the more zoomed-in your scale is. A line through the northern Atlantic is actually traveling less
distance, since the scale in that location is larger. A great-circle path, when looking at a globe,
makes perfect sense.

Figure 10-4. A great-circle route from New York to Paris, similar to what Lindbergh followed on
his famous 1927 hop across the Atlantic

■Note Modern New York to Paris flights likely wouldn’t follow the exact path shown in Figure 10-4, but
their reason for diverging from it would be to take advantage of the jet stream on eastbound flights.

In Figure 10-5, we work forward from that original shortest line—the one that joins two
points by passing through the earth itself. If we imagine that we can’t travel it directly, but
must trace arc routes over the earth’s surface, it becomes clear that the largest possible radius
is what yields the shortest path between the points.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 267

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 267

Figure 10-5. The shortest path has the largest radius.

Great-Circle Lengths
There are multiple possibilities for how to accurately calculate a great-circle distance between
two points. We’ll show two methods: the Cartesian method and the Haversine method. Both
are considered very reliable. The Cartesian method is simpler to conceptualize. The Haversine
method is easier to compute.

■Note An article from the US Census Bureau suggests that the Haversine method is the superior
one in most cases. The piece has disappeared from its original location, but it has been mirrored at
http://www.movable-type.co.uk/scripts/GIS-FAQ-5.1.html.

The Cartesian Method
Taking the great-circle idea and applying Euclidean geometry techniques, we can actually
arrive at a perfectly valid formula for calculating the length of a great-circle path. The steps to
this solution are as follows:

1. Using trigonometry and the radius of earth, transform each latitude/longitude pair
into three-dimensional Cartesian coordinates.

2. Determine the distance between the two points, by calculating x, y, and z displacements,
and then applying the Pythagorean theorem. (In three dimensions, it’s exactly the same;
just add the square of the Z-dimension under the root sign.)

3. Picture that distance as a chord on a “great circle” around the earth, and then using
basic two-dimensional geometry, calculate the arc-length bracketed by the known
straight-line length.

Although this method is accurate, unfortunately even in its simplified form, it’s frighteningly
complex:

For this reason, we turn to the Haversine formula, a non-Euclidean solution to the problem.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS268

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 268

The Haversine Method
As with many of the mathematical tools we’ve used with the Google Maps API, the Haversine
formula has a history with marine navigation. Although both work perfectly well, the Haver-
sine formula has an elegant simplicity that makes it appealing. Indeed, as of version 2.0, the
functionality you see here is provided in the Google Maps API, by the GLatLng::distanceFrom()
method. Here is the Haversine formula:

You get surface distance by plugging in the two points’ latitudes and longitudes into φ1, λ1

and φ2, λ2, respectively, and then multiplying d by the radius of the earth, 6,378,137 meters.
JavaScript exposes all of the mathematical functions required to implement an expression

such as this, in the Math object.

■Tip An excellent resource for the Math object can be found at W3Schools: http://www.w3schools.com/
jsref/jsref_obj_math.asp.

IS THE EARTH FLAT AFTER ALL?

It comes as a surprise to some that the earth is not perfectly spherical. It’s flattened slightly, a shape known
to mathematicians as an oblate spheroid.

At the equator, the earth has a radius of 6378 kilometers. Measuring from the center to the poles, how-
ever, the distance is slightly less—about 6357 kilometers. For some types of calculations, it’s appropriate to
use 6371 kilometers, which is the radius of a theoretical sphere having the same volume as the earth.

All of the formulas presented in this chapter, however, operate under the assumption that the earth is a
sphere, having a radius of exactly 6,378,137 meters. This is, in fact, the same assumption made by the func-
tions in version 2.0 of the Google Maps API, so any slight errors will be in good company.

Area on a Spherical Surface
Our formula from Listing 10-1 operates given a method for computing trapezoidal areas. In
order to adapt this method to spherical geometry, we would need to establish a way of com-
puting the area of a trapezoid that is now drawn on the surface of a sphere. But first, let’s look
at a slightly simpler problem: how to compute the area of a spherical triangle.

A Spherical Triangle
Given three points on the surface of a sphere, it’s possible to join them by great-circle arcs,
and then determine the surface area contained within the area. The process for doing this is
an intriguing one, as it’s based not around three-sided figures, but two-sided ones.

On a flat piece of paper, there is no such thing as a two-sided figure. From lines, we make
the jump directly to triangles. But on a curved surface, there is a two-sided shape, as you can

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 269

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 269

see in Figure 10-6. It’s called a lune, and it’s the orange-slice carved out when two noncoincident
great circles exist in the same sphere together.

Figure 10-6. A spherical triangle abc, with the lune formed by angle a highlighted

Since both curves involved are great circles, determining the surface area of a lune is
almost trivial:

It’s simply the percentage of the sphere’s total surface area that the angle a is of a full circle
(2π, in radians).

Although Figure 10-6 has only one lune highlighted, if you look closely, you can see that
there are actually six of them. Each of the points a, b, and c is the endpoint of two opposite
lunes: one that encompasses the abc triangle, and a second one that includes not the abc tri-
angle, but the “shadow” abc. The key to finding the area of the triangle abc is to realize that the
surface areas of the six lunes can be summed to get an area that is the sphere’s total surface
area, plus the abc area four extra times:

Remember that the triangle is there twice, and there are six lunes, each of which includes
the triangle’s area once. The area must be subtracted four times in order to get back to just the
plain old surface area. After substituting the lune surface area formula, and rearranging, we
end up with the following formula:

A final factoring leaves us with this simpler formula:

Of course, this is not a formula that works from latitudes and longitudes. This still assumes
we have the angles between the triangle lines.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS270

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 270

Given how simple this formula is, it might be disappointing to discover just how complex
a process it is to find the interior angles of the triangle—the a, b, and c values. We must express
each of the three points as a vector, so that the surface point a becomes a Cartesian vector A,
pointing from the center of the sphere to the location of a. Having these three vectors, the
angle at a in the original triangle can be determined by the following expression of cross prod-
ucts and dot products (see the next section for a refresher on these vector operations):

■Tip For an explanation of the derivation of the expression of cross products and dot products, see
http://www.ral.ucar.edu/research/verification/randy/writeups/earthareas.pdf.

This is giving us the angle we need, but it’s still not starting from latitudes and longitudes.
Converting latitudes and longitudes to Cartesian coordinates is not difficult given a pen and a
few minutes to mull it over, and we’ve included the shortcut here. If the latitude and longitude
of a point are known, and in φ and λ, then the three components of its vector are as follows:

Listing 10-2 shows a JavaScript function that can perform this conversion directly from a
GLatLng object. Notice how it uses radians, since these are the units of the JavaScript trigonom-
etry functions. We don’t have a designated class for storing three-dimensional vectors, so we’ll
simply return it as an array of the three elements. (Creating such a class would be a worthwhile
endeavor if you were to venture too much further into this territory.)

Listing 10-2. Cartesian Coordinates from Latitude and Longitude

function cartesianCoordinates(latlng) {

var x = Math.cos(latlng.latRadians()) * Math.sin(latlng.lngRadians());

var y = Math.cos(latlng.latRadians()) * Math.cos(latlng.lngRadians());

var z = Math.sin(latlng.latRadians());

return [x, y, z];

}

Given these coordinates for each of the three points involved, it’s just a matter of a quick
refresher on how to do vector cross products and dot products, and then we’ll have everything
we need to cleanly implement the angle formula. And having the angles, we can find our area.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 271

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 271

Vector Operations: Dot Products and Cross Products
When dealing with the “multiplication” of three-dimensional vectors, there are actually two
separate operations that can be performed. The first of these yields a scalar (nonvector) value,
and is called the dot product. To compute the dot product, you multiply the x of the first vector
by the x of the second one, and then add that to the product of the two y values and the prod-
uct of the two z values.

To see how this works, we’ll simply show you our JavaScript implementation in Listing 10-3,
which takes two arguments, each of which is assumed to be a three-element array represent-
ing a vector.

Listing 10-3. Function for Calculating a Dot Product

function dotProduct(a, b) {

return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);

}

The other type of vector multiplication returns another vector as its result. This is called
the cross product, and the resulting vector has the geometric property of being perpendicular
to the two initial vectors. Our function for calculating the cross product is shown in Listing 10-4.

Listing 10-4. Function for Calculating the Cross Product

function crossProduct(a, b) {

return [(a[1] * b[2]) - (a[2] * b[1]), (a[2] * b[0]) - (a[0] * b[2]),➥

(a[0] * b[1]) - (a[1] * b[0])];

}

Now we can assemble a final solver for a given angle, as in Listing 10-5.

Listing 10-5. Function for the Angle Between Three Points on a Sphere

function spherePointAngle(A, B, C) { // returns angle at B

return Math.atan2(dotProduct(crossProduct(C, B), A),➥

dotProduct(crossProduct(B, A), crossProduct(B, C)));

}

And now we have all the pieces to solve for the area of a spherical triangle. Before we get
to work on that, though, there’s an important thing you should know.

An Extension to Arbitrary Polygons
As it turns out, the triangle formula that we showed at the beginning of this is actually just the
n=3 case of a general formula for shapes traced on spheres:

The a terms represent the angles at the vertices involved in the shape, and n represents
the number of vertices.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS272

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 272

From a planar geometry perspective, it seems absurd that you would be able to calculate
a surface area having only angles and no lengths. But a simple thought experiment can help
you persuade yourself that this works. Try to picture the smallest triangle you could draw on
a sphere, and then picture the largest.

The smallest triangle is so small that the area it covers is considered flat. As a triangle on
a plane, its angles must sum to 180 degrees. But the largest triangle—well, the largest possible
joining of three line segments on a sphere—is going to have them all going end to end in a cir-
cle around it. That is, the “triangle” is simply tracing out a great circle, with its area being half
the sphere’s surface, and the three angles totaling 3 * 180° = 540°.

Clearly, there’s a relationship between the total of the angles and the percentage of the
sphere covered. And the general formula, derived from the Gauss-Bonnet theorem, expresses
this relation.

In Listing 10-6, we’ve built a general function for determining the area inside a list of
points, given as a list of GLatLng objects.

Listing 10-6. General-Purpose Function for Determining Area Inside a List of Points

var earthRadius = 6378137; // in meters

function polylineArea(latlngs) {

var id, sum = 0, pointCount = latlngs.length, cartesians = [];

if (pointCount < 3) return 0;

for (id in latlngs) {

cartesians[id] = cartesianCoordinates(latlngs[id]);

}

// pad out with the first two elements

cartesians.push(cartesians[0]);

cartesians.push(cartesians[1]);

for(id = 0; id < pointCount; id++) {

var A = cartesians[id];

var B = cartesians[id + 1];

var C = cartesians[id + 2];

sum += spherePointAngle(A, B, C);

}

var alpha = Math.abs(sum - (pointCount - 2) * Math.PI);

alpha -= 2 * Math.PI * Math.floor(alpha / (2 * Math.PI));

alpha = Math.min(alpha, 4 * Math.PI - alpha);

return Math.round(alpha * Math.pow(earthRadius, 2));

}

To test whether this is working properly, you could pick your favorite rectangular state,
plug its corner coordinates into the function, and check if the returned value corresponds to
the established measurements.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 273

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 273

Working with Polylines
You’ve seen a bunch of nifty geometric qualities that we can calculate given groups of points.
But it’s time we took this code on the road and got it integrated with some working maps. This
section’s project, shown in Figure 10-7, lets the user input polygon corners, then displays the
perimeter and area of the region.

Figure 10-7. The outline of Wyoming

Building the Polylines Demo
Our starting setup will be pretty familiar from prior chapters. For markup and styles, establish
a basic screen involving a header and flanking sidebar, as shown in Listing 10-7.

Listing 10-7. index.php for Polylines Example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml">

<head>

<script src="http://maps.google.com/maps?file=api&v=2&key=<?= $api_key ?>"➥

type="text/javascript"></script>

<script src="map_functions.js" type="text/javascript"></script>

<link href="style.css" rel="stylesheet" type="text/css" />

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS274

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 274

<!--[if IE]>

<style type="text/css"> v\:* { behavior:url(#default#VML); } </style>

<![endif]-->

</head>

<body class="sidebar-right">

<div id="toolbar">

<h1>Lengths and Areas</h1>

<ul id="sidebar-controls">

hide

show

</div>

<div id="content">

<div id="map-wrapper">

<div id="map"></div>

</div>

<div id="sidebar">

<div id="line-info">

<p>Length

0 km</p>

<p>Area: 0 km²</p>

</div>

<ul id="sidebar-list">

</div>

</div>

</body>

</html>

You can see we’ve dropped the link element that included the map_points.php data. To
“prove” that the calculations in this chapter are working properly, it will be more fun to feed
them new data on each run. Additionally, we’ve added an extra XML namespace, plus a bizarre
proprietary style rule contained inside a conditional comment. This is a special Microsoft HTML
comment that reliably hides the rule from all non-Internet Explorer browsers (see http://msdn.
microsoft.com/workshop/author/dhtml/overview/ccomment_ovw.asp). Including this rule is
a prerequisite to using the GPolyline class, if we want our polylines to work in Internet Explorer.

Why such requirements? To render polylines on Internet Explorer, Google Maps uses
Vector Markup Language (VML), an XML vector language that was ahead of its time, and sadly
never got included in browsers other than Internet Explorer. For nonsupporting user agents,
the API simply has Google’s servers render a PNG image, which gets draped over the map. In
some cases, it will try to render the polyline using Scalable Vector Graphics (SVG), a contem-
porary standard that occupies the same space VML once did.

We could always stick the VML rule in with all the other rules in our main style.css file,
but because it’s not standard, we should keep it separate and away from browsers that might
choke on it. (Generally, it’s considered good CSS practice to keep any filters or “hack” style rules
separated from the main flow of the style sheet.)

The styles used in this demo are lifted verbatim from the demos in prior chapters.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 275

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 275

And, as for the JavaScript, well, a lot of it is similar to what you’ve seen before, but we’ve made
some changes, too, which are highlighted in the next few listings, starting with Listing 10-8.

Listing 10-8. Initialization Function in map_functions.js, Containing a GEvent Call

var map;

var centerLatitude = 40.6897;

var centerLongitude = -95.0446;

var startZoom = 5;

var deselectCurrent = function() {};

var removePolyline = function() {};

var earthRadius = 6378137; // in metres

var latlngs = [];

function init() { document.getElementById('button-sidebar-hide').onclick =➥

function() { return changeBodyClass('sidebar-right', 'nosidebar'); };

document.getElementById('button-sidebar-show').onclick =➥

function() { return changeBodyClass('nosidebar', 'sidebar-right'); };

handleResize();

map = new GMap2(document.getElementById("map"));

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

map.addControl(new GSmallMapControl());

GEvent.addListener(map, 'click', handleMapClick);

}

Most of this should be familiar to you from earlier chapters, including the one line that
attaches a click handler to the map object. But, of course, we can’t just reference a map click
handler function and not show it to you.

The handleMapClick() function is designed to build up a list of a GLatLng objects in an array,
and on each new one added, redraw a polyline that connects the lot. Check it out in Listing 10-9.

Listing 10-9. Handler for Map Clicks, in map_functions.js

function handleMapClick(marker, latlng) {

if (!marker) {

latlngs.push(latlng);

initializePoint(latlngs.length - 1);

redrawPolyline();

}

}

This function is not a tricky one. It just adds the new GLatLng to the accumulating array,
initializes the new point, and then has a second function redraw the polyline that connects all
the points. So what are the functions initializePoint() and redrawPolyline()?

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS276

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 276

The venerable initializePoint() function has undergone some slight renovations from
previous versions, but large chunks of it will remain familiar in Listing 10-10. The biggest change
is that a new draggable parameter has been enabled, so that we can move our markers around
once they’re down on the map.

Listing 10-10. Function for Initializing Individual Points from a Global Array

function initializePoint(id) {

var marker = new GMarker(latlngs[id], { draggable:true });

var listItem = document.createElement('li');

var listItemLink = listItem.appendChild(document.createElement('a'));

listItemLink.href = "#";

listItemLink.innerHTML = '' + latlngs[id].lat() +➥

'
' + latlngs[id].lng() + '';

var focusPoint = function() {

deselectCurrent();

listItem.className = 'current';

deselectCurrent = function() { listItem.className = ''; }

map.panTo(latlngs[id]);

return false;

}

GEvent.addListener(marker, 'click', focusPoint);

listItemLink.onclick = focusPoint;

document.getElementById('sidebar-list').appendChild(listItem);

map.addOverlay(marker);

marker.enableDragging();

GEvent.addListener(marker, 'dragend', function() {

listItemLink.innerHTML = '' + latlngs[id].lat() +➥

'
' + latlngs[id].lng() + '';

latlngs[id] = marker.getPoint();

redrawPolyline();

});

}

You can see now why it was important to keep initializePoint() and redrawPolyline()
as separate entities—so that a dragged marker could also trigger a redrawing of the polyline.
Speaking of redrawn polylines, let’s take a peek at the redrawPolyline() function in Listing 10-11.

Listing 10-11. Function to Redraw a Polyline from a Global Array

function redrawPolyline() {

var pointCount = latlngs.length;

var id;

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 277

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 277

map.removeOverlay(polyline)

// Plot polyline, adding the first element to the end, to close the loop.

latlngs.push(latlngs[0]);

var polyline = new GPolyline(latlngs, 'FF6633', 4, 0.8);

map.addOverlay(polyline);

// Check total length of polyline (length for 2 points, perimeter > 2 points)

if (pointCount >= 2) {

var length = 0;

for(id = 0; id < pointCount; id += 1) {

length += latlngs[id].distanceFrom(latlngs[id + 1]);

}

if (pointCount > 2) {

document.getElementById('length-title').innerHTML = 'Perimeter';

document.getElementById('length-data').innerHTML =➥

Math.round(length) / 1000;

} else {

document.getElementById('length-title').innerHTML = 'Length';

document.getElementById('length-data').innerHTML =➥

Math.round(length) / 2000;

}

}

latlngs.pop(); // restore the array to how it was

// Show value of area in square km.

if (pointCount >= 3) {

document.getElementById('area-data').innerHTML =➥

polylineArea(latlngs) / 1000000;

}

}

This function may be long, but it’s mostly just a sequence of mundane tasks: pad the list
of points, remove the old polyline, draw the new polyline, iterate through to check length, and
call our previous function to check area.

PUTTING THE GOOGLE GEOCODER TO WORK

Back in Chapter 4, we mentioned that the Google geocoder is accessible not just through a REST web ser-
vice, but also directly from the JavaScript API. The polylines project in this chapter is a perfect example of
a good use of this tool.

Rather than forcing users to enter points by clicking, we can provide a friendly text box that allows them
to search for locations instead. The code required for this feature is not hard. The more important thing to
understand is the two different mechanisms you could use to implement this feature:

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS278

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 278

• The user would submit the search box back to your server, and you would send out the REST request
to Google, cache the response, and send out the result to your user. If the user decided to save or
bookmark that point for later retrieval, you would already have it geocoded, from the first request.

• Using the JavaScript geocoder, the user’s address query is submitted directly to Google, and the
geocoded point is sent straight to the user’s browser, without your own server as the broker between
them. This means better response time for the user, but also that when the user saves that point, you
need to send back the coordinates so the point doesn’t need to be re-geocoded on each future request.

To add this to the polyline application of the chapter, you would need to slide in some markup for the
search box, which could go anywhere, but we put ours at the top of the sidebar:

<div id="sidebar">

<div id="line-info">

<p>Length: 0➥

 km</p>

<p>Area: 0 km²</p>

</div>

<form id="address-search" method="get">

<input type="text" id="s" name="s" />

<input type="submit" id="submit" value="Add" />

<p id="working">Working ...</p>

</form>

<ul id="sidebar-list">

</div>

To prevent form submissions from reloading the page, we need to hook a function to the form’s onsubmit
event, and return a false value, which tells the browser that the event doesn’t require any further action.

function init() {

...

document.getElementById('address-search').onsubmit = handleSearch;

}

And finally, the handleSearch() function contains the meat of calling the Google GClientGeocoder
object. The GClientGeocoder object needs to be instantiated before the first use, but apart from that, it
really couldn’t be simpler: call its getLatLng() method, pass in the address string, and pass it a function to
execute upon receiving the response. We’ve bolded the response function in the following listing, so you can
see more clearly how it gets passed in.

function handleSearch() {

var searchText = document.getElementById('s').value;

if (searchText == '') {

alert('Please enter a location to search for.');

return false;

}

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 279

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 279

if (!geocoder) geocoder = new GClientGeocoder(); // initialize geocoder

changeBodyClass('geocoder-idle', 'geocoder-busy'); // CSS hook

geocoder.getLatLng(searchText,

function (response) {

changeBodyClass('geocoder-busy', 'geocoder-idle'); // clear CSS hook

if (!response) {

alert('Error geocoding address');

} else {

latlngs.push(response);

initializePoint(latlngs.length - 1);

redrawPolyline();

document.getElementById('s').value = ''; // clear the search box

}

}

);

return false;

}

This example was a great opportunity to show you how the GClientGeocoder object works, since it’s
a case where the application is directly geocoding an address input by the user. It’s important to realize that
in any case where addresses are being sent from your server, you should geocode them on the server. But if
you’re receiving an address from the user, it’s great to code it in JavaScript and then cache the location from
there.

To see the modified version of this in action, check it out at http://googlemapsbook.com/chapter10/
clientGeocoder/.

Expanding the Polylines Demo
We wanted to leave you with an example that really brims with possibilities. What could you
do to expand this? Well, we’ve already implemented a search box where users can type in
addresses to be geocoded and added to the sequence. Besides cleaning that up and clarifying
its function for the user, here are a few other ideas to get you started:

• Add a way to remove points from the list.

• Find an elegant way to insert points into the list, rather than just assuming the user
wants them at the end of it.

• Try setting up the right sidebar so that the points can be dragged up and down to reorder
the list. (Sam Stephenson’s Prototype library could help you out with this; see http://
prototype.conio.net/.)

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS280

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 280

Plus, of course, what good is it as a tech demo? What kind of use could this be put to in the
wild? Property markings, perhaps? For a realtor, it would be valuable to plot out lots on a map,
particularly those spacious ones where it’s important that buyers see just how deep the back-
yard is. In fact, it’s applicable for boundaries of all kinds. When the Blue Team gets from the
lake to the dining hall, and the Red Team gets from the path up to the service road, who defends
more territory, and who has farther to search for the flag? When the phone company moves
the rural area codes around, which zones are the largest?

What About UTM Coordinates?
Readers who own or have used GPS devices will know that a latitude/longitude pair is not the
only way to describe a global position. Typical handheld units will also provide UTM coordi-
nates, an easting and a northing, both in units of meters. What is UTM, and how come Google
instead chose latitude and longitude for its mapping system?

UTM stands for Universal Transverse Mercator. It’s a projection system designed by the
US Army shortly before World War II. The primary purposes of UTM were to be highly accurate
in close detail and to be a good enough flat approximation that accurate distance readings
could be taken off a map, using nothing more than the Pythagorean theorem.

So how does is work? The UTM system begins by dividing the earth into narrow slices,
each just 6 degrees wide. Each of these slices is then divided into 60 vertical zones, between
80° S and 84° N. As you can see in Figure 10-8, UTM has coverage of all land masses (except for
inland Antarctica). Then—and here’s the genius of it—each of these trapezoidal zones is presented
in a transverse Mercator projection—it’s Mercator, except rotated 90 degrees. So, instead of
seeing distortion as you move farther north and south, you see it as you move east and west. Yet,
because the slices are so thin, the distortion is never more than 0.1% anywhere within a zone.

If you’ve ever seen a government topographic map, you’ve seen the UTM military grid-
lines on it. Depending on the zoom level, each box might represent a single square meter or
some multiple of meters. But they are perfectly square boxes, and that makes standard planar
trigonometry (as described in the first section of this chapter) “work” using UTM.

You can see from this explanation how ill suited UTM would be for a global system like
Google Maps. Although calculations within a particular zone are made very straightforward by
the system, it isn’t at all appropriate for performing larger-scale calculations that would span
multiple zones.

Indeed, there are special cases of UTM that illustrate very clearly the work-arounds
caused by this limitation. Zone 32V, which covers southwest Norway, is arbitrarily extended
west to a total width of 9 degrees. This is so that it can contain the entire tip of the country and
not leave a sliver alone in the otherwise empty zone 31V.

Latitude/longitude is an extremely general system. With no special cases or strange
exceptions, it simply and predictably identifies any spot on the globe, and only the most basic
knowledge of a protractor is required in order to “get it.” UTM is a highly specialized system,
designed for taking pinpoint measurements on detailed topographic maps.

It’s the general system that’s appropriate for the global Google Maps. But the next time
you’re camping with your GPS and want to plot out a trail, try switching it to UTM mode. You
may find that at that level of detail, having simple readings in meters makes the system much
more accessible for basic, planar geometric calculations.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 281

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 281

Figure 10-8. The zones of the UTM projection system

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS282

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 282

Running Afoul of the Date Line
In Around the World in Eighty Days, protagonist Phileas Fogg accounts for one extra day than
his associates back home in London. In making his journey, each 15 degrees traveled east moved
him one time zone earlier; for each zone crossed, the particular day counted was being short-
ened by an hour. Throughout the 80-day journey, he had logged days not as 24-hour periods,
but as a sunset following a sunrise. In crossing the Pacific Ocean—and the International Date
Line—he “gained” an extra day.

We aren’t traveling around the world, but the International Date Line has a few implica-
tions on map-making with the Google API.

When you speak of degrees in a circle, you nearly always think in terms of all 360. A bear-
ing of due south is expressed as 270 degrees, not as –90 degrees. Within circles, we think of angles
as having a range from 0 to 360.

Well, with degrees of longitude, it’s not from 0 to 360. It’s –180 to 180. Measuring from the
Prime Meridian at Greenwich, degrees eastward are positive and degrees westward are nega-
tive. So if Greenwich, England is where the zeroth degree is, that means there’s a point opposite,
where the 180th and –180th degrees meet. That line is the International Date Line.

Curiously enough, the International Date Line has no official path that it takes in its
deviations from exactly 180 degrees. The countries through which it might pass simply
declare themselves to be on the east or the west of it, and it becomes the responsibility of
individual cartographers to weave the line between them accordingly. Generally, however,
the line divides the Bering Strait (separating Russia from Alaska), and goes down through
Oceania with Hawaii and French Polynesia on the eastern side, and nearly everything else
on the western side, including New Zealand, Fiji, and the Marshall Islands.

How does this affect Google Maps? The 2.0 API is surprisingly well equipped to handle
International Date Line oddities. Google uses imagery, creating an infinite equator and cor-
rectly simulating the continuous nature of a sphere. In Figure 10-9, the two maps were set to
be in identical positions, each with a marker in Toronto. The one in front was then panned
right until the marker jumped from one Toronto to the next.

The system isn’t foolproof (it moves markers correctly, but it doesn’t, at the moment,
move the info window), but it’s just another one of those trade-offs you deal with for being
able to view our round globe through such a conveniently flat medium. And it’s pretty elegant,
even for a trade-off.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS 283

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 283

Figure 10-9. Multiple copies of the earth’s land masses, but only one marker

Summary
This chapter provided an analysis of map regions, including area and perimeter, and described
how to plot and handle GPolyline objects.

We hope this material was useful to you. Perhaps it has even given you some ideas of what’s
possible in and beyond the API. When that mashup opportunity comes along—the one with
the voting regions, or the school districts, or the shorelines affected by an oil spill—you’ll be
armed with tools to get a clear and helpful visual look at the matter.

In the next, and last, chapter, we’ll be discussing how a geocoder is built from scratch
from two different sources of information. This will help you understand the limitations of
precision in geocoding, as well as teach you the fundamentals of how to use a very rich data
source: the US Census Bureau’s TIGER/Line files.

CHAPTER 10 ■ LINES, LENGTHS, AND AREAS284

7079ch10FINAL.qxd 7/25/06 1:51 PM Page 284

Advanced Geocoding Topics

In this chapter, you’ll learn the basics of creating your own geocoding service. There are
geocoding services already available for all sorts of data, and we covered many of them in
Chapter 4. This chapter is intended for professionals and serious hobbyists who are building
web applications where using third-party geocoding tools is not feasible due to cost, rate lim-
iting, or terms of service. In these cases, developers often have no choice but to resort to getting
dirty and becoming familiar with the original sources of data to do it themselves. If this describes
you, then grab a pencil and paper, put on your thinking cap, and read on. We’re about to get
messy.

In this chapter, you’ll learn how to do the following:

• Find sources of information used to create geocoding services.

• Construct a postal-code-based geocoding service for the United Kingdom. This exam-
ple can be easily applied to the United States, Canada, and other countries, assuming
you have access to the raw data.

• Build a more complicated and sophisticated geocoding web service for the United States,
using the data from the US Census Bureau.

Where Does the Data Come From?
So where do services like Google and Yahoo get their data? How do they convert it into some-
thing that we can use to plot things on our maps? For graphical information systems (GIS)
enthusiasts, this is a question with a really interesting answer, and the topic of most of this
chapter.

Almost exclusively, this data comes from various government departments and agencies.
Most often, some central authority (like the US Census Bureau) mandates that each municipal-
ity or county must provide data that is accurate to some specified degree. For many counties,
meeting this requirement is not a matter of obtaining the data, but merely repurposing it.
They already keep geographic information about land surveys, plot locations, and ownerships
for taxation and legal purposes; converting it into maps and other GIS-related information is
only a matter of time, resources, and incentive.

285

C H A P T E R 1 1

■ ■ ■

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 285

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS286

■Note This discussion applies primarily to Canada and the United States. For other areas of the world,
similar kinds of information are slowly becoming available, and we are seeing more and more elaborate and
complete geocoders each day, including the one introduced by Google. We hope that as the Google develop-
ers expand their road network data, they keep it’s geocoder in sync; however, this chapter should help you
understand how to fill in the gaps that they miss.

Sample Data from Government Sources
Figure 11-1 shows an example (a single block) of the kind of data that a typical urban planning
department might have created. It shows each plot of land, the intersections, and the points
where the road bends. This is a simplified example that we’ll build up and use throughout the
chapter, so you’ll want to refer back to this page.

Figure 11-1. Simplified example of a block of land in an urban planning department database

You can see from the illustration that each plot of land is individually identified and that the
roads are broken up into segments defined by intersections. Table 11-1 shows a representation
of the data for each plot of land. Table 11-2 describes the sections of road. Table 11-3 holds
the latitude and longitude data for each interior bend in the road, if there are any, and is asso-
ciated by ID number.

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 286

Table 11-1. A Portion of the Data for the Precise Location of Each Section of Land in Figure 11-1

Street Name Street No. ZIP Code Latitude Longitude

Upper Ave 750 90210 43.1000 -80.1001

Upper Ave 756 90210 43.1000 -80.1003

Upper Ave 762 90210 43.1000 -80.1005

Upper Ave 768 90210 43.1000 -80.1007

Upper Ave 774 90210 43.1000 -80.1009

Upper Ave 780 90210 43.1000 -80.1011

Upper Ave 786 90210 43.1000 -80.1013

Upper Ave 792 90210 43.1000 -80.1015

Upper Ave 798 90210 43.1000 -80.1017

Middle Ave 501 90211 43.1005 -80.1001

Middle Ave 503 90211 43.1005 -80.1003

Middle Ave 505 90211 43.1005 -80.1005

Middle Ave 507 90211 43.1005 -80.1007

Table 11-2. Road Complete Chain Endpoints

ID No Street Name Start Latitude Start Longitude End Latitude End Longitude

1000 Upper Ave 43.1000 -80.1000 43.1000 -80.1020

1001 Lower Ave 43.1010 -80.1000 43.1010 -80.1020

1002 Middle Ave 43.1005 -80.1000 43.1007 -80.1020

1003 West Street 43.1000 -80.1000 43.1005 -80.1000

1004 West Street 43.1005 -80.1000 43.1010 -80.1000

1005 East Street 43.1000 -80.1020 43.1007 -80.1020

1006 East Street 43.1007 -80.1020 43.1010 -80.1020

Table 11-3. Road Complete Chain Interior Points

ID No SEQ Latitude Longitude

1001 1 43.1005 -80.1007

1001 2 43.1007 -80.1013

Of course, the Table 11-1 data is ideal for geocoding an address. It’s simply a matter of
looking up the street name and number, and then reading off the latitude and longitude.
This data is also known as “street truth” or “ground truth” data, since it is roughly the same
data you would get if you visited each address personally and used a handheld GPS device
to read off the coordinates. Unfortunately, this level of data is rarely available for free, and when
it is, it’s only on a county-by-county basis.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 287

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 287

The data in Tables 11-2 and 11-3, when combined, gives a very accurate picture of the
streets’ locations and how they intersect, and yet there is no information about the addresses
of the buildings along those streets.

In reality, a combined set of data is what you’re likely to get from a census bureau. Table 11-4
gives an amalgamated view of the records from Tables 11-1 and 11-2. This is roughly the same
format that the US Census Bureau provides in its TIGER/Line data set, which we’ll introduce
in the next section.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS288

Table 11-4. Road Network Chain Endpoints

Street Start Start End End Left Left Right Right
ID No Name Latitude Longitude Latitude Longitude Addr. Start Addr. End Addr. Start Addr. End

1000 Upper 43.1000 80.1000 43.1000 80.1020 750 798
Ave

1001 Lower 43.1010 80.1000 43.1010 80.1020 100 400
Ave

1002 Middle 43.1005 80.1000 43.1007 80.1020 501 517 500 512
Ave

1003 West 43.1000 80.1000 43.1005 80.1000
Street

1004 West 43.1005 80.1000 43.1010 80.1000
Street

1005 East 43.1000 80.1020 43.1007 80.1020
Street

1006 East 43.1007 80.1020 43.1010 80.1020
Street

You might be curious what left and right address start and end mean. Presume that you’re
standing on the intersection defined by a “start” latitude and longitude pair facing the “end”
latitude longitude pair. From this reference point, you can tell that the addresses on one side
are “left” and the other side are “right.” This is how most GIS data sets pertaining to roads
define left versus right. They cannot be correlated to east or west and merely reflect the order
in which the points were surveyed by the municipalities.

By using the start and end addresses on a street segment in conjunction with the start and
end latitude and longitude, you can guess the location of addresses in between. This is called
interpolation and allows the providers of a data source to condense the data without a signifi-
cant loss in resolution. The biggest problem arises when the size of the land divisions is not
proportional to the numbering scheme. In our example (Figure 11-1), this occurs on the south
side of Middle Avenue and also on Lower Avenue. This can affect the accuracy of your service,
because you are forced to assume that all address numbers between your two endpoints exist
and that they are equally spaced. We’ll discuss this further in the “Building a Geocoding Service”
section later in this chapter.

In cases where you cannot obtain any data based on streets, you can try to use the infor-
mation used to deliver the mail. The postal services of most countries maintain a list of postal
codes (ZIP codes in the United States) that are assigned to a rough geographic area. Often,
a list of these codes (or at least the first portion of them) with the corresponding latitude and

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 288

longitude of the center of the area is available for free or for minimal charge. Figure 11-2
shows a map with the postal codes for our sample block. Each postal code is defined by the
shaded area and a letter, A through E. The small black x represents the latitude and longitude
point recorded for each postal code.

Figure 11-2. Sample map showing only postal/ZIP codes

In urban areas, where a small segment of a single street is represented by a unique postal
code, this might be enough to geocode your data with sufficient accuracy for your project.
However, problems arise when you leave the urban areas and start dealing with the rural and
country spaces where mail may not be delivered directly to the houses. In these places, a sin-
gle unique postal code could represent a post office (for PO boxes) or a geographical area as
large as 30 square miles or more.

■Note In addition to the freely available data from the governments, in some cases, a private company
has taken multiple sources of data and condensed them into a commercial product. Often, these commercial
products also cross-reference sources of data in an attempt to filter out errors in the original sources. An
example of one such product is the Geocoder.ca service discussed in Chapter 4.

Sources of Raw GIS Data
In the United States, a primary source of GIS data is the TIGER/Line (for Topologically Inte-
grated Geographic Encoding and Referencing system) information, which is currently being
revised by the US Census Bureau. This data set is huge and very well documented. As of this

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 289

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 289

writing, the most current version of this data is the 2005 Second Edition data set (released in
June 2006), which is available from the official website at http://www.census.gov/geo/www/
tiger/index.html. The online geocoding service Geocoder.us relies on the TIGER/Line data,
and we suspect that this data is also used (at least in part) by all of the other US-centric geocod-
ing services, such as Google and Yahoo.

For Canada, the Road Network File (RNF) provided by the Canadian Census Department’s
Statistics Canada is excellent. You can find it at http://geodepot.statcan.ca/Diss/Data/
Data_e.cfm. The current version as of this writing is the 2005 RNF. This data is available in
a number of formats for various purposes. For the sake of programmatically creating
a geocoder, you’ll probably want the Geographic Markup Language (GML) version, since it
can be processed with standard XML tools. The people who built Geocoder.ca used the RNF,
combined with the Canadian Postal Code Conversion File (http://www.statcan.ca/bsolc/
english/bsolc?catno=92F0153X) and some other commercial sources of data to create a uni-
fied data set. They attempted to remove any errors in an individual data set by cross-referencing
all the sources of data.

For the United Kingdom, you can find a freely redistributable mapping between UK
postal codes and crude latitude and longitude floating around the Internet. We’ve mirrored
the information on our site at http://googlemapsbook.com/chapter11/uk-postcodes.csv. This
information was reportedly created with the help of many volunteers and was considered rea-
sonably accurate as of 2004. If you want to use the information for more than experimenting,
you might consider obtaining the official data from the UK postal service.

For the rest of the world, you can obtain geonames data provided by the US National
Geospatial Intelligence Agency (US-NGA). This data should be useful in geocoding the approxi-
mate center of most populated areas on the planet. The structure of the data provides for
alternative names and permanent identifiers. For more information about this data set, see
the section about geographic names (geonames) data in Appendix A.

The parsing and lookup methods used in the “Grabbing the TIGER/Line by the Tail” section
later in this chapter also generally apply to the Canadian RNF and the geonames data sets, so
we won’t cover them with examples directly.

■Note In Japan, at least in some places, the addressing scheme is determined by the order in which the
buildings were constructed, rather than their relative positions on the street. For example 1 Honda Street is
not necessarily next to, or even across the street from 2 Honda Street. Colleagues who have visited Japan
report that navigation using handheld GPS and landmarks is much more common than using street num-
ber addresses, and that many businesses don’t even list their street number on the side of the building or in
any marketing material.

Geocoding Based on Postal Codes
Let’s start to put some of this theory into practice. We’ll begin with a geocoding solution based
on the freely available UK postal code data mentioned in the previous section.

First, you’ll need to get the raw CSV data from http://googlemapsbook.com/chapter11/
uk-postcodes.csv and unpack it into a working directory on your server. This should be about
90KB uncompressed. Listing 11-1 shows a small sample of the contents of this file.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS290

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 290

Listing 11-1. Sample of the UK Postal Code Database for This Example

postcode,x,y,latitude,longitude

AB10,392900,804900,57.135,-2.117

AB11,394500,805300,57.138,-2.092

AB12,393300,801100,57.101,-2.111

AB13,385600,801900,57.108,-2.237

AB14,383600,801100,57.101,-2.27

AB15,390000,805300,57.138,-2.164

AB16,390600,807800,57.161,-2.156

AB21,387900,813200,57.21,-2.2

AB22,392800,810700,57.187,-2.119

AB23,394700,813500,57.212,-2.088

AB25,393200,806900,57.153,-2.112

AB30,370900,772900,56.847,-2.477

AB31,368100,798300,57.074,-2.527

AB32,380800,807200,57.156,-2.317

The postcode field in this case simply denotes the forward sorting area, or outcode. The
outcodes are used to get mail to the correct postal office for delivery by mail carriers. A full
postal code would have a second component that identifies the street and address range of
the destination and would look something like AB37 A5G. Unfortunately, we were unable to
find a free list of full postal codes. The x and y fields represent meters relative to a predefined
point inside the borders of the United Kingdom. The equation for converting these to latitude
and longitude is long, involved, and not widely applicable, so we won’t cover it here. Last are
the fields we’re interested in: latitude and longitude. They contain the latitude and longitude
in decimal notation—ready and waiting for mapping on your Google map mashup.

■Note For most countries, you can find sources of data that have full postal codes mapped to latitude and lon-
gitude. However, this data is often very pricey. If you’re interested in obtaining data for a specific country, be
sure to check out the Geonames.org data and try searching online, but you may need to directly contact the
postal service of the country you’re interested in, and pay its licensing fees.

Next, you need to create a MySQL table in your experimental database. Listing 11-2 shows
the table-creation statement we’ll be using for this example. If you want to define a different
table, you’ll need to alter the code for the rest of the example accordingly.

Listing 11-2. MySQL Table Structure for the UK Postal Code Geocoder

CREATE TABLE uk_postcodes (

outcode varchar(4) NOT NULL default '',

latitude double NOT NULL default '0',

longitude double NOT NULL default '0',

PRIMARY KEY (outcode)

) ENGINE=MyISAM;

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 291

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 291

Now you need to import the CSV data into this database. For this, you can use the snippet
of code in Listing 11-3 and the db_credentials.php file you’ve built up throughout this book.

Listing 11-3. PHP to Import the UK Postal Code CSV Data into SQL

<?php

// Connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

// Open the CSV file

$handle = @fopen("uk-postcodes.csv","r");

fgets($handle,1024); // Strip off the header line

if ($handle) {

while (!feof($handle)) {

$buffer = fgets($handle, 4096);

$line = explode(",",$buffer);

if (count($line) == 5) {

$result = mysql_query("INSERT INTO uk_postcodes

(outcode,latitude,longitude)➥

VALUES ('$line[0]','$line[3]','$line[4]')");

If (!$result) die ('Error, insert postcode failed: '.mysql_error());

}

}

fclose($handle);

}

?>

This is a fairly simple example and uses techniques we’ve explored in previous chapters.
Basically, we connect to the database, open the CSV file, read and convert each line into a five-
element array, and then insert the three parts we’re interested in into the database. (If you need
a longer refresher, see Chapter 5.)

Lastly, for a public-facing geocoder, we’ll need some code to expose a simple web service,
allowing users to query our database from their application. Listing 11-4 outlines the basics of
our UK postal code REST-based geocoder. For professional applications, you’ll probably want
to beef it up a bit in terms of options and error reporting, but this is a good foundation to build
on later in the chapter.

Listing 11-4. Gecoding REST Service for UK Outcodes

<?php

// Start our response

header('Content-type: text/xml');

echo '<?xml version="1.0" encoding="UTF-8"?><ResultSet>';

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS292

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 292

// Clean up the request and make sure it's not longer than four characters

$code = trim($_REQUEST['code']);

$code = preg_replace("/[^a-z0-9]/i","",$code);

$code = strtoupper($code);

$code = substr($code,0,4);

// Connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

// Look up the provided code

$result = mysql_query("SELECT * FROM uk_postcodes WHERE outcode = '$code'");

if (!$result || mysql_num_rows($result) == 0)

die("<Error>No Matches</Error></ResultSet>");

// Output the match that was found

$row = mysql_fetch_array($result,MYSQL_ASSOC);

echo "<Result>

<Latitude>{$row['latitude']}</Latitude>

<Longitude>{$row['longitude']}</Longitude>

<OutCode>{$row['outcode']}</OutCode>

</Result>";

// Close our response

echo "</ResultSet>";

?>

The comments are fairly complete, so we’ll elaborate on only the parts that need a bit
more explanation.

For security, safety, and sanity, the four $code = lines simply take off any whitespace
around the edges, strip out characters that are not necessary (like dashes and interior spaces),
convert the string to uppercase, and then reduce the length to four characters (the largest out-
code in our data set), so we’re not making more SQL queries than are needed.

Next, we simply query the database looking for an exact match and output the answer if
we find one. That’s it. After importing the data into a SQL table, it takes a mere 20 lines of code
to give you a fairly robust and reliable, XML-returning REST service. A good example of how
this sort of data can be used in a mapping application is the Virgin Radio VIP club members
map found at http://www.virginradio.co.uk/vip/map.html. It shows circles of varying sizes
based on the number of members in a given outcode. Other uses might include calculating
rough distances between two people or grouping people, places, or things by region.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 293

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 293

FUZZY PATTERN MATCHING

If you would prefer to allow people to match on partial strings, you’ll need to be a bit more creative. Some-
thing like the following code snippet could replace your single lookup in Listing 11-4 and allow you to be
more flexible with your user’s query.

// Look up the provided code

$result = mysql_query("SELECT * FROM uk_postcodes WHERE outcode LIKE '$code%'");

while (strlen($code) > 0 && mysql_num_rows($result) == 0) {

// That code was not found. Trim one character off the end and try again

$modified_request = true;

$code = substr($code,0,strlen($code)-1);

$result = mysql_query("SELECT * FROM uk_postcodes WHERE outcode = '$code'");

}

// If the $code has been completely eaten, then there are no matches at all

if (strlen($code) == 0)

die("<Error>No Matches</Error></ResultSet>");

// Output the match(es) found

while($row = mysql_fetch_array($result,MYSQL_ASSOC)) {

echo "<Result>

<Latitude>{$row['latitude']}</Latitude>

<Longitude>{$row['longitude']}</Longitude>

<OutCode>{$row['outcode']}</OutCode>

</Result>";

}

Basically, you query the database table with a wildcard at the end of the requested code. This will allow
you to return all results that match the prefix given. For example, if someone requests $code=AB1, there are
seven matches in the database, but if their exact request yields no results, then our sample code strips one
character off the end and tries again. Only if the length of the request code is zero do we give up and return
an error. To return multiple results, you would simply wrap a loop around the output block.

You should be aware that with this modification to the code, it is possible for someone to harvest your
entire database in a maximum of 36 requests (A,B,C,. . .,X,Y,Z,0,1,2,. . .,8,9). If this concerns you, or if you
have purchased a more complete data set that you don’t want to share, you might want to implement a fea-
ture to limit the maximum number of results, some rate limiting to make it impractical, or both.

Grabbing the TIGER/Line by the Tail
So what about street address geocoding? In this section, we’ll discuss the US Census Bureau
TIGER/Line data in detail. You can approach this data for use in a homegrown, self-hosted
geocoder in two ways:

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS294

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 294

• Use the Perl programming language and take advantage of the Geo::Coder::US module
that powers http://www.geocoder.us. It’s free, fairly easy to use if you already know Perl
(or someone who does), and open source, so it should continue to live for as long as
someone finds it useful.

• Learn the structure of the data and how to parse it using PHP. This is indeed much more
involved. However, it has the benefit of opening up the entire data set to you. There is
much more information in the TIGER/Line data set than road and street numbers (see
Appendix A). Knowing how to use this data will open a wide variety of possible mapping
applications to you, and therefore we feel it is worthwhile to show you how it works.

■Tip If you’re in a hurry, already know Perl shell scripting, and just need something quick and accurate,
visit our website for an article on using GEO::Coder::US. We won’t explicitly cover this method here, since
it uses Perl and we’ve assumed you only have access to PHP on your server.

We’ll begin by giving you a bit of a primer on the structure of the data files, then get into
parsing them with PHP, and finish off by building a basic geocoder.

As we mentioned earlier in the chapter, the US TIGER/Line data is currently being revised
and updated. The goal of this project is to consolidate information from many of the various
sources into a widely applicable file for private and public endeavors. Among other things, the
US Census Bureau is integrating the Master Address File originally used to complete the 2000
US Census, which should increase the accuracy of the address range data. The update project
is scheduled to be complete in 2008, so anything you build based on these files will likely need
to be kept up-to-date manually for a few years.

Understanding and Defining the Data
Before you can begin, you’ll need to select a county. For this example, we selected San Fran-
cisco in California. Looking up the FIPS code for the county and state in the documentation
(http://www.census.gov/geo/www/tiger/tiger2005se/TGR05SE.pdf), we find on page A-3 that
they are 075 and 06, respectively. You can use any county and state you prefer; simply change the
parameters in the examples that follow.

■Note FIPS stands for Federal Information Processing Standards. In our case, a unique code has been
assigned to each state and county, allowing us to identify with numbers the various different entities quickly.
There has been much discussion lately about replacing FIPS with something that gives a more permanent
number (FIPS codes can change), and also at the same time allows you to infer proximity based on the code.
We encourage you to Google “FIPS55 changes” for the latest information.

Next, you need to download the corresponding TIGER/Line data file so that you can play
with it and convert it into a set of database tables for geocoding. In our case, the file is located at

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 295

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 295

http://www2.census.gov/geo/tiger/tiger2005se/CA/tgr06075.zip. Place this file in your
working directory for this example and unzip the raw data files.

■Note The second edition of the 2005 TIGER/Line data files was released on June 27, 2006. Data sets are
released approximately every six months. We suggest grabbing the most recent set of data, with the under-
standing that minor things in these examples may change if you do.

Inside the zip file, you’ll find a set of text files, all with an .rt* extension. We’ve spent many
days reading through the documentation to determine which of these files are really neces-
sary for our geocoder. You’re welcome to read the documentation for yourself, but to save you
time and a whopping headache, we’ll be working with the RT1, RT2, RT4, RT5, RT6, and RTC
files in this example. We’ll describe each one in turn here. You can delete the rest of them if
you wish to save space on your hosting account.

The RT1 file contains the endpoints of each complete chain. A complete chain defines
a segment of something linear like a road, highway, stream, or train tracks. A segment exists
between intersections with other lines (usually of the same type). A network chain is composed of
a series of complete chains (connected in order) to define the entire length of a single line.

■Note In our case, we’ll be ignoring all of the complete chains that do not represent streets with
addresses. Therefore, we will refer to them as road segments.

The RT1 file ties everything else together by defining a field called TLID (for TIGER/Line
ID) and stores the start and endpoints of the road segments along with the primary address
ranges, ZIP codes, and street names. The RT2 file can be linked with the RT1 file via the TLID
field and gives the internal line points that define bends in the road segment.

The RT4 file provides a link between the TLID values in the RT1 file and another ID number
in the RT5 file: the FEAT (for feature) identifier. FEAT identifiers are used to link multiple names
to a single road segment record. This is handy because many streets that are lined with residen-
tial housing also double as highways and major routes. If this is the case, then a single road
might be referred to by multiple names (highway number, city-defined name, and so on). If
someone is looking up an address and uses the less common name, you should probably still
give the user an accurate answer.

The RT6 file provides additional address ranges (if available) for records in RT1. Lastly, the
RTC file contains the names of the populated places (towns, cities, and so on) referenced in
the PLACE fields in RT1.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS296

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 296

■Caution Both RT4 and RT6 have a field called RTSQ. This represents the order in which the elements
should be applied, but cannot be used to link RT4 and RT6 together. This means that a corresponding value
of RTSQ does not imply that certain address ranges link with specific internal road segments for a higher level
of positional accuracy. As tantalizing as this would be, we’ve confirmed this lack of correlation directly with the
staff at the US Census Bureau.

We won’t get into too much detail about the contents of each record type until we start
talking about the importing routines themselves. What we will talk about now is the relational
structure used to hold the data. Unlike with the previous postal code example, it doesn’t make
sense to store the street geocoder a single, spreadsheet-like table. Instead, we’ll break it up into
four distinct SQL tables:

• The places table stores the FIPS codes for the state, county, and place (city, town, and
so on), as well as the actual name of the place. We’ve also formulated a place_id that
will be stored in other tables for cross-linking purposes. The place_id is the concatenation
of the state, county, and place FIPS codes and is nine or ten digits long (a BIGINT).
This data is acquired from various FIPS files that we’ll talk about shortly and the
TIGER/Line RC file.

• The street_names table is primarily derived from the RT1 and RT5 records. Its purpose
is to store the names, directions, prefixes, and suffixes of the streets and attach them to
place_id values. It also stores the official TLID from the TIGER/Line data set, so that you
can easily update your data in the future.

• The complete_chains table is where you’ll store the latitude and longitude pairs that
define the path of each road segment. It also stores a sequence number that can be
used to sort the chain into the order that it would be plotted on a map. This data comes
from the RT1 and RT2 records.

• The address_ranges table, as the name implies, holds various address ranges attached to
each road segment. Most of this data will come from the RT1 records, though any appli-
cable RT6 records will also be placed here.

The SQL CREATE statements are shown in Listing 11-5. As you’ll notice, we’ve deliberately
mixed the capitalization of the field names. Any field name appearing in all uppercase corre-
sponds directly to the data of the same name in the original data set. Any place where we’re
modified the data, invented data, or inferred relationships that did not exist explicitly in the
original data, we’ve followed the same convention as the rest of the book and used lowercase
with underscores separating the English words. The biggest reason for this is to highlight at
a glance the origin of the two distinct kinds of data. Assuming that you’ll be importing new
sets of data into your new geocoder once it’s done, preserving the field names and the ID
numbers of the original data set will allow for simpler updating without needing to erase and
restart each time.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 297

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 297

Listing 11-5. SQL CREATE Statements for the TIGER-Based US Geocoder

CREATE TABLE places (

place_id bigint(20) NOT NULL default '0',

state_fips char(2) NOT NULL default '',

county_fips char(3) NOT NULL default '',

place_fips varchar(5) NOT NULL default '',

state_name varchar(60) NOT NULL default '',

county_name varchar(30) NOT NULL default '',

place_name varchar(60) NOT NULL default '',

PRIMARY KEY (place_id),

KEY state_fips (state_fips,county_fips,place_fips)

) ENGINE=MyISAM;

CREATE TABLE street_names (

uid int(11) NOT NULL auto_increment,

TLID int(11) NOT NULL default '0',

place_id bigint(20) NOT NULL default '0',

CFCC char(3) NOT NULL default '',

DIR_PREFIX char(2) NOT NULL default '',

NAME varchar(30) NOT NULL default '',

TYPE varchar(4) NOT NULL default '',

DIR_SUFFIX char(2) NOT NULL default '',

PRIMARY KEY (uid),

KEY TLID (TLID,NAME)

) ENGINE=MyISAM;

CREATE TABLE address_ranges (

uid int(11) NOT NULL auto_increment,

TLID int(11) NOT NULL default '0',

RANGE_ID int(11) NOT NULL default '0',

FIRST varchar(11) NOT NULL default '',

LAST varchar(11) NOT NULL default '',

PRIMARY KEY (uid),

KEY TLID (TLID,FIRST,LAST)

) ENGINE=MyISAM;

CREATE TABLE complete_chains (

uid int(11) NOT NULL auto_increment,

TLID int(11) NOT NULL default '0',

SEQ int(11) NOT NULL default '0',

LATITUDE double NOT NULL default '0',

LONGITUDE double NOT NULL default '0',

PRIMARY KEY (uid),

KEY SEQ (SEQ,LATITUDE,LONGITUDE)

) ENGINE=MyISAM;

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS298

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 298

Parsing and Importing the Data
Next, we need to determine how we are going to parse the data. The US Census Bureau has com-
plicated our parsing a bit in order to save the nation’s bandwidth. There is no need to include
billions of commas or tabs in the data when you can simply define a parsing structure and con-
catenate the data into one long string. Chapter 6 of the official TIGER/Line documentation
defines this structure for each type of record in the data set. Table 11-5 shows the simplified ver-
sion we’ve created to aid in our automated parsing of the raw data.

■Caution Our dictionaries are not complete representations of each record type. We’ve omitted the
record fields that we are not interested in to speed up the parsing when importing. Basically, we don’t really
care about anything more than the field name, starting character, and field width. We’ve left the human-
readable names in for your convenience. We’ve also omitted many field definitions for information we’re not
interested in (like census tracts or school districts). You can download this set of dictionaries (as tab-delimited
text) from http://googlemapsbook.com/chapter11/tiger_dicts.zip.

Table 11-5. Data Dictionary for RT1

Field Name Start Char Length Description

TLID 6 10 TIGER/Line ID, Permanent 1-Cell Number

FEDIRP 18 2 Feature Direction, Prefix

FENAME 20 30 Feature Name

FETYPE 50 4 Feature Type

FEDIRS 54 2 Feature Direction, Suffix

CFCC 56 3 Census Feature Class Code

FRADDL 59 11 Start Address, Left

TOADDL 70 11 End Address, Left

FRADDR 81 11 Start Address, Right

TOADDR 92 11 End Address, Right

PLACEL 161 5 FIPS 55 Code (Place/CDP), 2000 Left

PLACER 166 5 FIPS 55 Code (Place/CDP), 2000 Right

FRLONG 191 10 Start Longitude

FRLAT 201 9 Start Latitude

TOLONG 210 10 End Longitude

TOLAT 220 9 End Latitude

Note that all of the following scripts are intended to be run in batch mode from the com-
mand line instead of via the browser. Importing and manipulation of the data will require
considerable amounts of time and processing resources. If you are serious enough to need
a national, street-level geocoder, then we expect that you at least have a shell account and
access to the PHP command-line interface on your web server. We’ve optimized the follow-
ing scripts to stay within the 8MB memory consumption limits of most hosts, but the trade-off

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 299

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 299

is an increase in the time required to import the data. For example, importing the data for
a single county (and there are hundreds per state) will take at least a few minutes. If you’re just
experimenting with these techniques, we suggest that you pick a single county (preferably
your own, so the results are familiar), instead of working with a whole state or more.

With all of this in mind, let’s get started. To parse these dictionaries as well as the raw
data, we’ll need a pair of helper functions, and you’ll find them in Listing 11-6.

Listing 11-6. Dictionary Helper Functions for Importing TIGER/Line Data

function open_dict($type) {

$handle = @fopen("$type.dict", "r");

if ($handle) {

$i = 0;

$fields = array();

while (!feof($handle)) {

$buffer = fgets($handle, 1024);

$line = explode("\t",$buffer);

$fields[$i]['name'] = array_shift($line);

$fields[$i]['beg'] = array_shift($line);

$fields[$i]['length'] = array_shift($line);

$fields[$i]['description'] = array_shift($line);

$i++;

} //while

fclose($handle);

return $fields;

} else return false;

}

function parse_line($line_string,&$dict) {

$line = array();

if (is_array($dict))

foreach ($dict AS $params)

$line[$params['name']] = substr($line_string,➥

$params['beg']-1,$params['length']);

return $line;

}

The first function, open_dict(), implements the process of opening the tab-delineated
description of an arbitrary record type and creates a structure in memory used to parse indi-
vidual records of that type. The second function, parse_line(), takes a dictionary structure
and parses a single line of raw data into an associative array. If you need a refresher on either
array_shift() or substr(), check out the official PHP documentation at http://www.php.net.

Now that we know where we are going (our SQL structure) and how to get there (our pars-
ing helper functions), let’s actually begin mining some data! Because of the design of our
structure, there is no need to hold more than one type of record in memory at a time, and as
such, we’ll break the importer out into a separate listing for each record type. In reality, all of
these listings form a single script (with the helpers in Listing 11-6 included at some point), but
for the purposes of describing each stage of the process, it makes sense to break it into segments.
Listing 11-7 covers the importing of the RT1 data file.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS300

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 300

Listing 11-7. Importing RT1 Records

<?php

// This will take a considerable amount of time. 5-10 minutes PER county.

set_time_limit(0);

// Connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

// Select the state and county we're interested in

$state = "06";

$county = "075";

// Open the RT1 Dictionary file

$rt1_dict = open_dict("rt1");

// Open the RT1 Data file

$handle = @fopen("./data/TGR$state$county.RT1", "r");

$tlids = array();

if ($handle) {

while (!feof($handle)) {

// Grab a line from the text file and parse it into an associative array.

$buffer = fgets($handle, 4096);

$line = parse_line($buffer,$rt1_dict);

// Trim up the information, while making global variables

while(list($key, $value) = each($line)) { ${$key} = trim($value); }

// We're not interested in the line of data in the following cases:

// 1. Its CFCC type is not part of group A

if (substr($CFCC,0,1) !== 'A') continue;

// 2. There are no addresses for either side of the street

if ($FRADDL == '' && $FRADDR == '') continue;

// 3. If no city is associated with the road, it'll be hard to identify

if ($PLACEL == '' && $PLACER == '') continue;

// The latitude and longitudes are all to 6 decimal places

$FRLAT = substr($FRLAT,0,strlen($FRLAT)-6).'.'.substr($FRLAT,➥

strlen($FRLAT)-6,6);

$FRLONG = substr($FRLONG,0,strlen($FRLONG)-6).'.'.substr($FRLONG,➥

strlen($FRLONG)-6,6);

$TOLAT = substr($TOLAT,0,strlen($TOLAT)-6).'.'.substr($TOLAT,➥

strlen($TOLAT)-6,6);

$TOLONG = substr($TOLONG,0,strlen($TOLONG)-6).'.'.substr($TOLONG,➥

strlen($TOLONG)-6,6);

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 301

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 301

// Decide if this is a boundary of a place

$places = array();

if ($PLACEL != $PLACER) {

if ($PLACEL != "") $places[] = $PLACEL;

if ($PLACER != "") $places[] = $PLACER;

} else {

$places[] = $PLACEL;

}

// Build the queries for this TIGER/Line Item (TLID)

$queries = array();

foreach ($places AS $place_fips)

$queries[] = "INSERT INTO street_names➥

(TLID,place_id,CFCC,DIR_PREFIX,NAME,TYPE,DIR_SUFFIX)➥

VALUES ('$TLID','$state$county$place_fips','$CFCC',➥

'$FEDIRP','$FENAME','$FETYPE','$FEDIRS')";

if ($FRADDR != '') $queries[] = "INSERT INTO address_ranges➥

(TLID,RANGE_ID,FIRST,LAST) VALUES ('$TLID',-1,'$FRADDR','$TOADDR')";

if ($FRADDL != '') $queries[] = "INSERT INTO address_ranges➥

(TLID,RANGE_ID,FIRST,LAST) VALUES ('$TLID',-2,'$FRADDL','$TOADDL')";

$queries[] = "INSERT INTO complete_chains (TLID,SEQ,LATITUDE,LONGITUDE)➥

VALUES ('$TLID',0,'$FRLAT','$FRLONG')";

$queries[] = "INSERT INTO complete_chains (TLID,SEQ,LATITUDE,LONGITUDE)➥

VALUES ('$TLID',5000,'$TOLAT','$TOLONG')";

foreach($queries AS $query)

if (!mysql_query($query))

echo "Query Failed: $query (".mysql_error().")\n";

// Hold on to the TLID for processing other record types

$tlids[] = $TLID;

}

}

fclose($handle);

unset($rt1_dict);

?>

Aside from opening files and the database, calling our helper functions, and creating
named temporary variables, three key things are happening here:

• We’re selectively ignoring lines that are irrelevant to geocoding. Structures like bridges,
rivers, and train tracks, plus items like parks, bodies of water, and landmarks, are all
listed in the RT1 file along with the roads. We can identify the kind of thing by looking at
the CFCC field and using only items that start with an A. In addition to using only roads,
we don’t care about roads that have no address ranges (how would you identify a single
point on the line?) or that are not part of a populated area like a city or a town.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS302

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 302

• The latitude and longitude need to have their decimal symbols reinserted (they were
also stripped to save bandwidth). The documentation states that all coordinates are listed
to six decimal places, hence the math used in the substr() gymnastics in the middle of
Listing 11-7.

• We’re splitting up the data as we described for our schema. For simplicity, we remove
the left and right side awareness for the address ranges and list the same segment twice
if it is a boundary between two populated places. We also place the starting latitude and
longitude pair into the complete_chains table with a sequence number of 1 and the end
pair with a sequence number of 5000. We do this because the documentation states
that no chain will have more than 4999 latitude and longitude pairs, and we haven’t yet
parsed the RT2 records to determine how many other points there may be.

■Caution The TIGER/Line documentation is very careful to state that just because the latitude and
longitude data is listed to six decimal places does not mean that it is accurate to six decimal places. In
some cases, it may be, but in others it may also be third- or fourth-generation interpolated data.

This brings us nicely to parsing of the RT2 records. Listing 11-8 shows the code that fol-
lows the parsing of RT1 inline in our script.

Listing 11-8. Parsing for RT2 Records

// Open the RT2 Dictionary file

$rt2_dict = open_dict("rt2");

// Open the RT2 Data file

$handle = @fopen("./data/TGR$state$county.RT2", "r");

if ($handle) {

while (!feof($handle)) {

// Grab a line from the text file and parse it into an associative array.

$buffer = fgets($handle, 4096);

$line = parse_line($buffer,$rt2_dict);

// Trim up the information, while making global variables

while(list($key, $value) = each($line)) { ${$key} = trim($value); }

// Did we import this TLID for record type 1?

if (!in_array($TLID,$tlids)) continue;

// Loop through the ten points, looking for one that is 0,0

$i=1;

$query = "INSERT INTO complete_chains (TLID,SEQ,LATITUDE,LONGITUDE)➥

VALUES ";

$values = array();

while(${"LONG$i"} != 0 && ${"LAT$i"} != 0 && $i<11) {

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 303

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 303

$LAT = ${"LAT$i"}; $LONG = ${"LONG$i"}; // convenience

$LAT = substr($LAT,0,strlen($LAT)-6).'.'.substr($LAT,strlen($LAT)-6,6);

$LONG = substr($LONG,0,strlen($LONG)-6).'.'.substr($LONG,➥

strlen($LONG)-6,6);

$SEQ = $RTSQ.str_pad($i,2,"0",STR_PAD_LEFT);

$values[] = "('$TLID','$SEQ','$LAT','$LONG')";

$i++;

}

// Use a multi-row insert to save time and server resources.

$query = $query.implode(", ",$values).";";

if (!mysql_query($query))

echo "Query Failed: $query (".mysql_error().")\n";

}

}

fclose($handle);

unset($rt2_dict);

Basically, we’re just adding records to the complete_chains table for any TLID that we
deemed important while we were parsing the RT1 records. Each RT2 record has up to ten
additional interior points, and we simply keep going until we get to a pair that is listed as all
zeros. Technically, the point corresponding to this special case is a valid point on the surface of
the earth, but it’s outside the borders of the United States, so we’ll ignore this technicality.

Lastly, we need to determine the city and town names where these streets reside. For this,
we’ll parse the RTC file, as shown in Listing 11-9.

Listing 11-9. Converting the RTC Records into Place Names

// Open the RTC Dictionary file

$rtc_dict = open_dict("rtc");

// Open the RTC Data file

$handle = @fopen("./data/TGR$state$county.RTC", "r");

$place_ids = array();

if ($handle) {

while (!feof($handle)) {

// Grab a line from the text file and parse it into an associative array.

$buffer = fgets($handle, 4096);

$line = parse_line($buffer,$rtc_dict);

// Trim up the information, while making global variables

while(list($key, $value) = each($line)) { ${$key} = trim($value); }

$place_id = "$state$county$FIPS";

// If the FIPS 55 Code is blank or the FIPS Type

if ($FIPS == "") continue;

if ($FIPSTYPE != "C") continue;

if (in_array($place_id,$place_ids)) continue;

$place_ids[] = $place_id;

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS304

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 304

// All looks good. Insert into places

$query = "INSERT INTO places (place_id,state_fips,county_fips,➥

place_fips,state_name,county_name,place_name) VALUES➥

('$place_id','$state','$county','$FIPS','California','San Francisco','$NAME')";

if (!mysql_query($query))

echo "Query Failed: $query (".mysql_error().")\n";

}

}

unset($rtc_dict);

fclose($handle);

Here, we’re looking for two very simple things: the FIPS 55 code must be present, and the
FIPS type must begin with C. If these two things are true, then the name at the end of the line
should be imported into the places database table.

For the sake of brevity, we’ve omitted the sample code for importing alternative spellings
and names for the streets, as well as importing additional address ranges. We’ve accounted
for them in our data structures, as well as the REST service we’re about to design, and we’ll give
you a couple hints about how you could add this easily into your own geocoder.

• For the alternative names, the basic idea is to simply keep doing more of the same pars-
ing techniques while using the RT4 and RT5 records. For each entry in RT4 with a TLID for
a record we have kept, look up the corresponding FEAT records in RT5. When inserting,
simply copy the place_id from the existing record with the same TLID and replace the
street name details with the new information.

• Alternative address ranges are even easier. Simply parse the RT6 file looking for matching
TLID values and insert those address ranges into the address_ranges table.

Building a Geocoding Service
Now we finally get to the fun stuff: the geocoder itself. The basic idea of our geocoder will be
that we are given a state, a city, a street name, and an address number for which we try to return
a corresponding latitude and longitude. As a REST service, our script will expect a format like
this:

http://googlemapsbook.com/chapter11/tiger_lookup.php?state=California&city=

San+Francisco&street=Dolores&number=140

When we’re finished, our service for this address should return something like this:

<?xml version="1.0" encoding="UTF-8"?>

<ResultSet>

<Result>

<Latitude>37.767869</Latitude>

<Longitude>-122.426693</Longitude>

</Result>

</ResultSet>

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 305

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 305

■Note We’ve chosen this particular address because we have “street truth” data for it. For testing, we
selected an address at random and had a friend of ours use his GPS device to get us a precise latitude and
longitude reading. The most accurate information we have for this address is N 37.767367, W 122.426067. As
you will see, the geocoder we’re about to build has reasonable accuracy (to three decimal places in this
example).

To achieve this, we’ll start by looking up the correct place_id from the places table, and
use that to limit the scope of our search. We’ll then search for the street name in the street_names
table. This should give us a TLID that we can use to get all of the corresponding address ranges
for that street. Once we pick the correct range, we’ll have a single, precise TLID to use to look
up in the complete_chains table. We’ll grab all of the latitude and longitude points for the seg-
ment and interpolate a single point on the line that represents the address requested. Seems
simple, eh? As you’ll see in Listing 11-10, the devil is in the details.

Listing 11-10. Preliminary USA Geocoder Based on TIGER/Line Data

<?php

// Start our response

header('Content-type: text/xml');

echo '<?xml version="1.0" encoding="UTF-8"?><ResultSet>';

// Clean up the input

foreach ($_REQUEST AS $key=>$value) {

$key = strtolower($key);

if (in_array($key,array("state","city","street","number"))) {

$value = trim($value);

$value = preg_replace("/[^a-z0-9\s\.]/i","",$value);

$value = ucwords($value);

${$key} = $value; // make it into a named global variable.

}

}

// Connect to the database

require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');

$conn = mysql_connect("localhost", $db_name, $db_pass);

mysql_select_db("googlemapsbook", $conn);

// Try for an exact match on the city and state names

$query = "SELECT * FROM places WHERE state_name='$state' AND place_name='$city'";

$result = mysql_query($query);

if (mysql_num_rows($result) == 0) {

// Oh well, look up the state and fuzzy match the city name

$result = mysql_query("SELECT * FROM places WHERE state_name = '$state'");

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS306

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 306

if (!$result || mysql_num_rows($result) == 0)

die("<error>That state is not yet supported.</error></ResultSet>");

$cities = array();

for ($i=0; $i<mysql_num_rows($result); $i++) {

$row = mysql_fetch_array($result,MYSQL_ASSOC);

$cities['place_id'][$i] = $row['place_id'];

$cities['accuracy'][$i] = levenshtein($row['place_name'],$city);

}

// Sort them by "closeness" to the requested city name and take the top one

array_multisort($cities['accuracy'],SORT_ASC,$cities['place_id']);

$place_id = $cities['place_id'][0];

} else {

// We found it. Grab the place_id and continue on to phase two!

$row = mysql_fetch_array($result,MYSQL_ASSOC);

$place_id = $row['place_id'];

}

// Search for the street name and address

$number = (int)$number;

$query = "SELECT sn.TLID, FIRST, LAST, ($number-FIRST) AS diff

FROM street_names AS sn, address_ranges AS ar

WHERE ar.TLID = sn.TLID

AND sn.place_id = $place_id

AND sn.NAME = '$street'

AND '$number' BETWEEN ar.FIRST AND ar.LAST

ORDER BY diff

LIMIT 0,1";

$result = mysql_query($query);

if (mysql_num_rows($result) == 1) $row = mysql_fetch_array($result,MYSQL_ASSOC);

else die("<Error>No Matches</Error></ResultSet>");

// We should now have a single TLID, grab all of the points in the chain

$tlid = $row['TLID'];

$first_address = $row['FIRST'];

$last_address = $row['LAST'];

$query = "SELECT LATITUDE,LONGITUDE

FROM complete_chains

WHERE TLID='$tlid' ORDER BY SEQ";

$result = mysql_query($query);

$points = array();

for ($i=0; $i<mysql_num_rows($result); $i++) {

$points[] = mysql_fetch_array($result,MYSQL_ASSOC);

}

// Compute the lengths of all of the segments in the chain

$segment_lengths = array();

$num_segments = count($points)-1;

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 307

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 307

for($i=0; $i<$num_segments; $i++) {

$segment_lengths[] = line_length($points[$i],$points[$i+1]);

}

$total_length = array_sum($segment_lengths);

// Avoid divide by zero problems

if ($total_length == 0) {

// The distances are too small to compute, return the start of the street.

die("<Result>

<Latitude>{$points[0]['LATITUDE']}</Latitude>

<Longitude>{$points[0]['LONGITUDE']}</Longitude>

</Result></ResultSet>");

}

// Compute how far along the chain our address is

$address_position = abs($number - $last_address);

$num_addresses = abs($first_address - $last_address);

$distance_along_line = $address_position/$num_addresses*$total_length;

// Figure out which segment our address is in, and where it is

$travel_distance = 0;

for($i=0; $i<$num_segments; $i++) {

$bottom_address = $first_address + ($travel_distance / $total_length *➥

$num_addresses);

$travel_distance += $segment_lengths[$i];

if ($travel_distance > $distance_along_line) {

// We've found our segment, do the final computations

$top_address = $first_address + ($travel_distance / $total_length *➥

$num_addresses);

// Determine how far along this segment our address is

$seg_addr_total = abs($top_address - $bottom_address);

$addr_position = abs($number - $bottom_address)/$seg_addr_total;

$segment_delta = $segment_lengths[$i]*$addr_position;

// Determine the angle of the segment

$delta_x = abs($points[$i]['LATITUDE'] - $points[$i+1]['LATITUDE']);

$delta_y = abs($points[$i]['LONGITUDE'] - $points[$i+1]['LONGITUDE']);

$angle = atan($delta_y/$delta_x);

// And you thought you'd never use trig again!

$x = $segment_delta*cos($angle);

$y = $segment_delta*sin($angle);

}

}

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS308

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 308

echo("<Result>

<Latitude>$x</Latitude>

<Longitude>$y</Longitude>

</Result>");

// Close our response

echo "</ResultSet>";

function line_length($point1,$point2) {

$delta_x = abs($point1['LATITUDE'] - $point2['LATITUDE']);

$delta_y = abs($point1['LONGITUDE'] - $point2['LONGITUDE']);

$segment_length = sqrt($delta_x^2 + $delta_y^2);

return $segment_length;

}

?>

We begin by trying to get an exact string match on the state and place name to determine
the place_id. In the event that this fails, we try to get an exact match on the state name and
a fuzzy match on the place name. For the fuzzy match, we grab all of the places in a given
state, and then compute the Levenshtein distance between our input string and the name of
the place. Once we have that, we merely sort the results and take the smallest difference as the
correct place. You could also avoid sorting with a few helper variables to track the smallest dis-
tance found so far.

■Note The Levenshtein distance is the number of characters that need to be added, subtracted, or changed
to get from one string to another; for example, Levenshtein("cat","car") = 1 and Levenshtein
("cat","dog") = 3. You could also use the soundex() or metaphone() functions in PHP instead of (or in
conjunction with) Levenshtein() if you want to account for misspellings in a less rigid way.

Next, we use a fun little feature of MySQL: the BETWEEN clause in a query. We ask MySQL to
find all of the road segments with our given street name and an address range that bounds our
input address. We could make use of the fuzzy search on street names here, too; however, that
would require precomputing the metaphone() or soundex(), storing it in the database, and
comparing against that in the query.

At this point, we should have a single TLID. Using this information, we can get the latitude
and longitude coordinates of all points on the segment from the complete_chains table.

Now that we know exactly what we’re dealing with, we can start calculating the information
we want. We start by using Pythagoras’ theorem to compute the length of each line segment in
the network chain. This simple equation is implemented in the helper function at the end of
Listing 11-10, and represented by l1, l2, and l3 in Figure 11-3.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 309

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 309

Figure 11-3. Example of road segment calculations

However, we immediately run into a problem: very short line segments return a length of
zero due to precision problems. To avoid this, and thus increase the accuracy, you might try
converting the latitude and longitudes into feet or meters before making your computations,
but that conversion process also has its problems. Therefore, if we compute the total length of
the chain to be zero, then we don’t have much choice other than to return one of the endpoints
of the line as our answer. Doing so is probably at least as accurate as geocoding based on ZIP
codes, but doesn’t require the users to know the ZIP code of the point they are interested in, and
works for places where street numbers exist, but there is no postal service.

If we can, we next compute the approximate location of our address (150 in Figure 11-3)
along the overall segment. To do this, we assume the addresses are evenly distributed, and
calculate our address as a percentage of the total number of addresses and multiply by the
total line length.

■Caution For the sake of simplicity, we’re making the incorrect assumption that the last address is
always larger than the first address. In practice, you’ll need to account for this.

So in which segment of the line is our address located? To find out, we walk the line starting
from our first endpoint, using the lengths of line segments we calculated earlier, and keep
going until we pass our address. This gives us the top endpoint, and we simply take the one
before it for our bottom endpoint.

Once we know which two complete_chains points we need to use for our calculations, we
again determine (as a percentage) how far along the segment our address is. Using this new
length (l4 in Figure 11-3) and the trigonometric equations we discussed in the previous chap-
ter, we compute the angle of the segment and the position of our address. The rest is merely
outputting the proper XML for our REST service’s response.

And there you have a geocoding web service. Now we need to point out some limitations
you’ll want to overcome before using this code in production. We’ve talked about things like
misspellings in the street, state, and place names, as well as division by zero when the segments
are very short. Here are a few more issues that we’ve encountered.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS310

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 310

Address ranges that are not integers (contain alphabet characters): The TIGER/Line docu-
mentation suggests that this is a possibility that will break our SQL BETWEEN optimization.
You could replace the numeric comparison in the SQL with a string-based one. This will
mean that an address like 1100 will match ranges like 10–20 and 10000–50000. This is due
to the natural language comparison used in string comparison. BETWEEN will still help you
get a small subset of the database, but you’ll need to do more work in PHP to determine
which result is the best match for your query.

Street type or direction separation: We are doing no work to separate out the street type
(road, avenue, boulevard, and so on) or the direction (NE, SW, and so on) in our users’
input. The street type and direction are stored separately in the database and would help
in narrowing down the possible address ranges considerably if we used them. The TIGER/
Line documentation enumerates each possible value for these fields, so using them is
a matter of finding them in your user’s input. You could ask for each part separately, as we
have done with the number and street name, or you could use regular expressions, heuris-
tics, and brute force to split a user’s string into components. Google’s geocoder goes to
this effort to great success. It’s not trivial, but might be well worth the effort.

Address spacing: We’ve assumed that all addresses are evenly spaced along our line segment.
Since we have the addresses for only the endpoints, we have no idea which addresses actu-
ally exist. There might be as few as two actual addresses on the line, where for a range like
100–150, we are assuming there are 50. This means that simply because we are able to com-
pute where an address would be, we have no idea if it is actually there.

Summary
Creating a robust geocoder is a daunting task, and could be the topic of an entire book. Offer-
ing it as a service to the general public involves significant bandwidth requirements, severe
uptime expectations, and some pretty well-established competition (including Google!). How-
ever, if you’re simply looking for an alternative to paying per lookup, or you’ve found some source
of data that no one has turned into a service yet, then it’s probably worth your time to build
one. The techniques used for interpolating an address based on a range and a multipoint line,
as well as finding the closest matching postal code can be widely reused. Even some of the
basic ideas for parsing will apply to a wide variety of sources. However, keep in mind that the
TIGER/Line data is organized in a rare and strange way and is in no way a worldwide standard.
That said, the TIGER/Line data is probably also the most complete single source of free infor-
mation for the purposes of geocoding. The GML version of the Canadian Road Network File is
a distant second.

If you’ve made it this far, then congratulate yourself. There was some fairly involved men-
tal lifting in this chapter, and in the many chapters that came before it. We hope that you put
this information to great use and build some excellent new services for the rest of us map
builders. If you do, please be sure to let us know, so that we can visit, and possibly promote it
to other readers via our website.

CHAPTER 11 ■ ADVANCED GEOCODING TOPICS 311

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 311

7079ch11FINAL.qxd 7/25/06 1:53 PM Page 312

Appendixes

P A R T 4

■ ■ ■

7079chAppAFINAL.qxd 7/25/06 1:55 PM Page 313

7079chAppAFINAL.qxd 7/25/06 1:55 PM Page 314

Finding the Data You Want

In order to keep our book a reasonable length, we couldn’t possibly use every neat idea or
data source we found as an example. In Chapter 4, we used information from the Ron Jon Surf
Shop chain of stores. We used the US Federal Communications Commission (FCC) Antenna
Structure Registration (ASR) database in Chapters 5, 6, and 7. Also, in Chapter 5, we retrieved
information on the locations of all of the capital cities in the world (through screen scraping)
and used that data in our examples in Chapter 7. In Chapter 11, we used a wide range of street
and address data from the US Census Bureau’s TIGER/Line data set. There is much more
interesting information contained in the TIGER/Line data than roads and geocoding, and
we’ll touch on that in this appendix.

This appendix contains some of the other interesting sources of data we found while
researching this book, as well as some lessons we learned while hunting them down. We hope
that this compilation will inspire you to take your new (or at least newly refined) skills and
build something exciting and unique. At the very least, these links will give you more interest-
ing data to experiment with while you wait for that killer idea to arrive.

You might consider this the exercises section of a textbook, or a problem set for you aca-
demics out there. Regardless, please drop us a line if you use this information in a map, as we
would love to see what you’ve come up with.

Knowing What to Look For: Search Tips
We covered screen scraping at the end of Chapter 5, but we didn’t discuss how to actually find
the data you want to scrape or otherwise acquire. Your Googling skills are probably excellent,
so we’ll cover just a few tips we learned during our own research here.

Finding the Information
The data you’re typically most interested in is a precompiled list of addresses or latitude/lon-
gitude points for some topic. Finding these types of lists can be tricky, and you have to ask
yourself, “Besides my idea, does it make sense for anyone to have ever compiled a list like
this?” If the answer is no, then don’t spend too long looking for a single list, and instead focus
on finding the precursor information that will help you build the list yourself.

An example would be a list of all of the veterinary clinics in Canada. You probably won’t
find such a list precompiled from a single source. However, you could use the address data in
a phone book to geocode this kind of information, giving you the list you need. Another prob-
lem is that you probably won’t find a single phone book for all of the regions in Canada, and

315

A P P E N D I X A

■ ■ ■

7079chAppAFINAL.qxd 7/25/06 1:55 PM Page 315

will instead need to assemble the data from various online and CD resources. It’s an involved
job, but certainly not an impossible one.

Additionally, if you can find whole catalogs of data, they can be both a great source of
information for an idea you have, as well as a source of inspiration for expanding on your idea.
One such catalog is available from the National Center for Atmospheric Research (NCAR). The
wealth of data that is available from http://dss.ucar.edu/datasets/ is huge, though some of
it will be hard to manipulate for amateurs, and other parts are not free. We present the link
here as an example of yet another kind of resource you might be able to find.

Specifying Search Terms
Using the term “latitude” in your Google search terms isn’t nearly as effective as using “longi-
tude” or both. Why? Many things (such as temperature, rainfall, vegetation, and population)
naturally change with your distance north or south of the equator, and people use the term
latitude in their discussions of such phenomena.

Using “longitude” is much more likely to find you a list or a database of discrete points
that you can use in a mapping application. This is, of course, an anecdotal assessment, but it
turned out to be very consistent in our research. Another term we found useful was “locations
database.” Your mileage may vary.

Also, you’ll probably need to keep your search fairly vague to find the information you
want. This means a lot of results. We found that government or research-related sites were
usually the best sources of information. This is typically because they are publicly funded and
the raw data they collect is required to be released to support other research programs. This is
definitely a Western point of view, and possibly a North American one, so again, your mileage
may vary.

Watching for Errors
Lastly, as you no doubt have learned, you can’t trust everything you find on the Internet. Most
of the data you find will contain at least a few errors, even if they are just from the transcrip-
tion process.

Sometimes, the data you find has been scraped from another source, and you’ll get a much
more accurate and complete set of information if you keep looking and find the original.

If accuracy is a concern, try to corroborate two sources of the same information. An example
would be a list of capital cities for all of the countries of the world. Compare the latitude and
longitude of the points for each city from each list, and question anything with a deviation in
the first or second decimal place.

The Cat Came Back: Revisiting the TIGER/Line
The TIGER/Line data covered in depth in Chapter 11 is much more than just a compilation of
roads and addresses. It’s a reasonably complete database for all things related to mapping (in
our case). For instance, we omitted some of the road segments in Chapter 11 because they
either had no addresses or no name associated with them. However, if we pay careful attention
to the CFCCs (Census Feature Class Codes), we find that TIGER gives us mappable information
for everything from roads that are accessible only via an all-wheel-drive vehicle, to walking
trails, to railroads and rail-transfer yards.

APPENDIX A ■ FINDING THE DATA YOU WANT316

7079chAppAFINAL.qxd 7/25/06 1:55 PM Page 316

But wait, it gets better. There is also data on landmarks such as parks, churches, prisons,
military installations, and hospitals. Table A-1 contains a list of the ones we thought would be
most interesting, and page 3-25 in the official TIGER/Line documentation starts off nearly 20
pages of additional options.

Table A-1. CFCCs for Other Interesting Data in the TIGER/Line Files

CFCC Description

A51 Vehicular trail; road passable only by four-wheel-drive vehicle; unseparated

A67 Toll booth barrier to travel

A71 Walkway or trail for pedestrians, usually unnamed

B11 Railroad main track, not in tunnel or underpassing

B14 Abandoned/inactive rail line with tracks present

B19 Railroad main track, bridge

B3x Railroad yard (multiple subclasses exist)

C20 Power transmission line; major category used alone

D10 Military installation or reservation; major category used alone

D21 Apartment building or complex

D23 Trailer court or mobile home park

D24 Marina

D27 Hotel, motel, resort, spa, hostel, YMCA, or YWCA

D28 Campground

D31 Hospital, urgent care facility, or clinic

D33 Nursing home, retirement home, or home for the aged

D35 Orphanage

D36 Jail or detention center

D37 Federal penitentiary or state prison

D42 Convent or monastery

D43 Educational institution, including academy, school, college, and university

D44 Religious institution, including church, synagogue, seminary, temple, and mosque

D45 Museum, including visitor center, cultural center, and tourist attraction

D46 Community center

D47 Library

D51 Airport or airfield

D52 Train station including trolley and mass transit rail system

D53 Bus terminal

D54 Marine terminal

D61 Shopping center or major retail center

Continued

APPENDIX A ■ FINDING THE DATA YOU WANT 317

7079chAppAFINAL.qxd 7/25/06 1:55 PM Page 317

Table A-1 (Continued)

CFCC Description

D64 Amusement center, including arena, auditorium, stadium, coliseum, race course,
theme park, and shooting range

D71 Lookout tower

D72 Transmission tower, including cell, radio, and TV

D73 Water tower

D74 Lighthouse beacon

D78 Monument or memorial

D81 Golf course

D82 Cemetery

D83 National Park Service land

D84 National forest or other Federal land

D85 State or local park or forest

D86 Zoo

D87 Vineyard, winery, orchard, or other agricultural or horticultural establishment

D88 Landfill, incinerator, dump, spoil, or other location for refuse

E23 Island, identified by name

E27 Dam

Fxx Nonvisible boundaries, such as political divisions and property lines

Hxx Water-related polygon (lake), line (river), or point (small ponds)

In Chapter 11, we used mostly data from record type 1, and this is where you’ll find all of
the data (or at least the start of the data) for CFCCs in class A, B, or C. For the rest of the land-
mark features, you’ll need to use record types 7, 8, and P. The parsing strategies in Chapter 11
should serve you well in extracting this data into a database for your own use, so if you don’t
care about building your own geocoder, you might still be interested in reading the first few
parts of the chapter so you can get a better handle on how to extract this data.

Lastly, there is one more source of census-related data that we found (we’re sure there are
some we’ve missed). It’s the summary files for the US 2000 census, located at http://www.census.
gov/prod/cen2000/. These contain condensed information like population, number of houses
per city, economic data, and other general demographics. They are undoubtedly easier to work
with if all you’re looking for are these simple statistics. The summary files won’t help you find
all of the zoos or lighthouses in the United States, but they’ll tell you the number of people per
house for a given city.

More on Airports
While we did find that the TIGER/Line CFCC D51 denotes an airfield or airport, the TIGER/
Line covers only the United States; therefore, we have a few other sources of worldwide infor-
mation to pass along for this category.

The Global Airport Database is a simple database listing nearly 10,000 airports (both large
and small) from around the world. More important, it is explicitly free, just like the government

APPENDIX A ■ FINDING THE DATA YOU WANT318

7079chAppAFINAL.qxd 7/25/06 1:55 PM Page 318

data we’ve been primarily working with here. It can be found at http://www.partow.net/
miscellaneous/airportdatabase/. It makes no claims to be complete, and we’re not sure what
the underlying source of the information is, so you might want to cross-reference this with the
TIGER/Line data for points inside the United States.

Another interesting source of data related to the US airports can be found at the Federal
Aviation Administration’s site at http://www.faa.gov/ATS/ata/ata100/120/stdatafiles.html.
The information here ranges from the polygons that define the airspace for each airport to the
inter-airport routes that constitute the nation’s highways in the sky.

The Government Standard: The Geonames Data
When various US government departments and agencies need to refer to geographic entities
by name or location, they check the databases maintained by the US Board on Geographic
Names. The US Board on Geographic Names is a federal body organized in 1890 and created
in its present form by law in 1947. The Board’s database provides a way to maintain a uniform
geographic name usage throughout the US Federal Government. The Board comprises repre-
sentatives of federal agencies concerned with geographic information, population, ecology,
and management of public lands. These include, but are not limited, to the Federal Bureau of
Investigation (FBI), Central Intelligence Agency (CIA), US Geological Survey (USGS), and US
Census Bureau.

This database is very useful for mapping purposes, as it provides (among other things)
latitudes and longitudes for many of the world’s cities, along with population data. Like the
TIGER/Line data, the US Board of Geographic Names data includes churches, schools, monu-
ments, and landmarks. Unlike with the TIGER/Line data, many of these are located outside
the United States.

We think this database would make a great cross-reference resource for data found in
other places. For example, comparing a list of the locations for cities in Canada with one sup-
plied by the Canadian government would likely weed out any strange anomalies.

The home page for the domestic database is located at http://geonames.usgs.gov/. The
foreign data is available in raw downloadable form from http://earth-info.nga.mil/gns/
html/index.html. The folks at geonames.org have gone a long way in converting this data into
something you can use quite easily. They also seem to have found and integrated a few other
sources of data, like postal codes for many European countries. They have even done some
inspiring Google Maps version 2 mashups, such as the one of the world’s most populated
cities, found at http://www.geonames.org/maps/cities.html.

Shake, Rattle, and Roll: The NOAA Goldmine
While zooming around the satellite images in Google Maps and Google Earth, we occasionally
spotted an active steam or smoke plume coming from a volcano (check out Hawaii’s Kilauea),
and that led us to hunt for a source of names and locations of current volcanoes. We found
a database of more than 1500 worldwide volcanoes and volcano-related features from the
National Geophysical Data Center (NGDC), which is part of the National Oceanographic and
Atmospheric Administration (NOAA). Little did we know that this was just the tip of the ice-
berg of raw, map-oriented data that was available for free download and analysis.

The databases that are available from the various NOAA departments cover everything from
volcanoes and earthquakes to hot springs, hurricanes, and hail. They even have a high-resolution
data set for the elevation above sea level of each square kilometer of the world’s land masses!

APPENDIX A ■ FINDING THE DATA YOU WANT 319

7079chAppAFINAL.qxd 7/25/06 1:55 PM Page 319

We won’t talk about each individual data source since they are all fairly well docu-
mented. Instead, we’ll simply provide a list of links for you to discover what we’ve uncovered.
If you would like to avoid typing each link in to your browser, you can simply visit http://
googlemapsbook.com/appendixa/links.html and browse from there instead. The first link in
each list is the official starting point for the data from the NOAA. The rest are either maps
we’ve found that are based on the same data (Google-based or otherwise) or data we’ve found
for the same topic from other sources. You might want to use secondary sources of data for
cross-referencing to weed out errors.

Volcanoes:

• http://www.ngdc.noaa.gov/seg/hazard/volcano.shtml (data)

• http://www.volcano.si.edu/world/globallists.cfm (data)

• http://www.geocodezip.com/volcanoBrowser.asp (map)

Earthquakes:

• http://www.ngdc.noaa.gov/seg/hazard/earthqk.shtml (data)

• http://earthquake.usgs.gov/eqcenter/recenteqsww/catalogs/ (data)

Tsunami-related:

• http://www.ngdc.noaa.gov/seg/hazard/tsu.shtml (data)

• http://map.ngdc.noaa.gov/website/seg/hazards/viewer.htm (map)

Wildfires:

• http://www.ngdc.noaa.gov/seg/hazard/wildfire.shtml (data)

Hot springs:

• http://www.ngdc.noaa.gov/seg/geotherm.shtml (data)

• http://www.acme.com/jef/hotsprings/ (map)

Hurricanes:

• http://hurricane.csc.noaa.gov/hurricanes/download.html (data)

• http://www.nhc.noaa.gov/ (data)

• http://www.hurricane.com/hurricane-season/hurricane-season-2005.html (data)

• http://flhurricane.com/cyclone/stormlist.php?year=2005 (data and maps)

Hail, tornados, and high winds:

• http://www.spc.noaa.gov/archive/ (data)

• http://www.ems.psu.edu/~nese/ (volatile link, research data up to 1995)

• http://www.stormreportmap.com/ (map)

APPENDIX A ■ FINDING THE DATA YOU WANT320

7079chAppAFINAL.qxd 7/25/06 1:55 PM Page 320

Geomagnetism and gravity:

• http://www.ngdc.noaa.gov/seg/geomag/geomag.shtml (data)

• http://www.ngdc.noaa.gov/seg/gravity/welcome.shtml (data)

Weather prediction and forecasting:

• http://www.weather.gov/organization.php (data)

• http://www.spc.noaa.gov/ (data)

• http://www.cpc.noaa.gov/ (data)

• http://www.ncep.noaa.gov/ (data)

• http://api.weatherbug.com/api/ (data)

Worldwide elevations:

• http://www.ngdc.noaa.gov/mgg/topo/globe.html (data)

Everything else:

• http://www.ngdc.noaa.gov/ngdcinfo/onlineaccess.html (data)

One idea we had was to use a variety of the destructive weather databases to create a his-
toric map combining references to encyclopedic articles for many (or all) of the items on the
map. It would take some research to find or write the articles and cross-reference the names,
but it would be a neat map. This might make a good high-school multidisciplinary project—
computer science, geography, and writing skills would all be required. You could even throw in
some environmental sciences and math, too.

Another idea would be to combine the databases on tourist-attraction-style features like
hot springs with some other travel-related material. You might even be able to make some
money using AdSense or other contextual advertising programs.

For the Space Aficionado in You
We’re geeks, we admit it. This led us to some interesting ideas for a satellite mashup of the
earth’s crater impacts, as well as more fiction-related maps like those of UFO/UAP sightings.

Crater Impacts
We managed to dig up some data that is absolutely screaming to be mashed up. In a sense, it
already has been mashed, just not using Google’s maps, but rather using the vaguely compet-
ing World Wind project. The World Wind project is an open source analogue of Google Earth. It
takes satellite imagery and topographical data, and works them into a desktop application that
allows the browser to “fly” around the maps. It was originally started as a project at the National
Aeronautics and Space Administration (NASA) and has medium-resolution data (15 meters)
driving it. For more information, visit http://www.worldwindcentral.com.

APPENDIX A ■ FINDING THE DATA YOU WANT 321

7079chAppAFINAL.qxd 7/25/06 1:55 PM Page 321

The data found at http://www.worldwindcentral.com/hotspots/ is a lot like the Google
sightseeing forum at http://googlesightseeing.com/. Visiting the craters category (http://www.
worldwindcentral.com/hotspots/index.php?cat=54) yields a list of latitude and longitude coor-
dinates, as well as a short blurb submitted by the poster. You might request permission to use
this data as the starting point for your own visitor-annotated map using the Google Maps API.

UFO/UAP Sightings
Okay, so this is part science and part science fiction/wishful thinking, but we did consider
taking the various unidentified flying object (UFO)—alternatively, unidentified aerial phe-
nomena (UAP)—reporting sites and mashing them up using the Google Maps API.

Most of these reporting sites have at least a city and country associated with them. Using
the US Board of Geographic Names data discussed earlier in this appendix, you could easily
create a mashup of the individual sightings to at least the accuracy of a city/town. You might
even create an “outbreak” style map that adds markers over time based on the sighting date(s).
If you find enough data, using an overlay (see Chapters 7 and 9) might be interesting as well.

The first site we found was the Mutual UFO Network’s site at http://www.mufon.com. Using
the data search tool, we were able to find out about reports on a wide range of criteria. They
seem to be limited to state/country location information, but often have images associated
with them and long descriptions of the circumstances surrounding the event being reported.

The second was the obvious National UFO Reporting Center at http://www.nuforc.org/.
This site has a lot of data (hundreds of items per month); however, most of it appears to be
uncorroborated. And the site developers state that they have been experiencing problems
with falsified reports coming from bored students. The data is also only for the United States
apparently, though it does include date, time, city, state, type, duration, and eyewitness.

Another database we found was a result of looking for some data outside the United
States that had city-level accuracy. The best (though not great) source we found covers a por-
tion of the United Kingdom and seems to stop abruptly in May of 2003. We include it here
since it does appear to have some interesting data that could be used to cross-reference the
data we were not able to find, on the chance that you do. The link is http://www.uform.org/
sightings.htm. Again, this link should be treated as volatile since the most recent data is sev-
eral years old.

As you can see, there is a huge and wide-ranging array of information that can be used to
make your mashup ideas a reality. This list is very US-centric, but it should give readers in (or
building maps for) other countries a sense of where they might find the same data in their
own governments. Many Western governments have a freedom of information policy that
should allow you to obtain some or all of the data, even if they haven’t yet made it available
online. We wish you luck and success in all of your Google Maps endeavors, and hope that this
list of resources can at least provide some inspiration.

APPENDIX A ■ FINDING THE DATA YOU WANT322

7079chAppAFINAL.qxd 7/25/06 1:55 PM Page 322

Google Maps API

This appendix provides a detailed explanation of all the methods, classes, constants, and
objects available through the Google Maps API as of version 2.58. For the most up-to-date list
from the API, visit http://www.google.com/apis/maps/documentation/reference.html.

■Note The class, method, and function arguments listed within square brackets are optional.

class GMap2
GMap2 (aka GMap) is the central class in the API. If you’ve loaded the API using the v=2 flag,
you may also use GMap to refer to the GMap2 class; however, GMap is provided only for better
backward-compatibility, and Google recommends that you modify your code to call GMap2 to
conform with the most current API.

GMap2 Constructor
Constructor Description

GMap2(containerDomElement, [opts]) Instantiating this object creates a new map inside
the given DOM element, usually a DIV. The optional
opts argument should be an instance of GMapOptions.
If no map types are defined in opts, the default
G_DEFAULT_MAP_TYPES set is used. Likewise, if no size
is defined in opts, the size of the containerDomElement
is used. If a size has been defined in opts, the
containerDomElement will be resized accordingly.

323

A P P E N D I X B

■ ■ ■

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 323

APPENDIX B ■ GOOGLE MAPS API324

GMap2 Methods

Configuration

Method Returns Description

enableDragging() Enables the dragging of the map (dragging is enabled
by default).

disableDragging() Disables the dragging of the map.

draggingEnabled() Boolean Returns true if the map is draggable.

enableInfoWindow() Enables the info window operations for the map (the
info window is enabled by default).

disableInfoWindow() Disables the opening of a new info window, and if
one is already open, closes the existing one.

infoWindowEnabled() Boolean Returns true if the info window is enabled.

enableDoubleClickZoom() Enables double-click to zoom. If enabled, double-
clicking with the left mouse button will zoom in on
the map, and double-clicking with the right mouse
button will zoom out on the map. This overrides the
initial functionality of double-clicking to recenter the
map. It is disabled by default.

disableDoubleClickZoom() Disables double-click to zoom. See
enableDoubleClickZoom().

doubleClickZoomEnabled() Boolean Returns true if double-click to zoom is enabled;
otherwise, returns false.

enableContinuousZoom() Enables a smooth zooming transition, similar to the
Google Earth desktop software, for Firefox and
Internet Explorer browsers running under Windows.
By default, this is disabled.

disableContinuousZoom() Disables the smooth zooming transition. See
enableContinuousZoom().

continuousZoomEnabled() Boolean Returns true if smooth zooming transitions are
enabled; otherwise, returns false.

Controls

Method Returns Description

addControl(control, Adds the given GControl object to the map. The
[position]) optional position argument should be an instance of

the GControlPosition class and is used to determine
the position of the control on the map. If no position is
given, the position of the control will be determined by
the GControl.getDefaultPosition() method. You can
add only one instance of each control to a map.

removeControl(control) Removes the control from the map.

getContainer() Node Returns the HTML DOM object that contains the map
(usually a DIV). Called by GControl.initialize().

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 324

Map Types

Method Returns Description

getMapTypes() Array of GMapType Returns, as an array, all of the GMapType objects
registered with the map.

getCurrentMapType() GMapType Returns the GMapType object for the currently
selected map type.

setMapType(type) Sets the map type for the map. The GMapType
object for the map type must have been previously
added using the addMapType() method.

addMapType(type) Adds a new GMapType object to the map. See
Chapter 9 and the GMapType class for more on
how to define custom map types.

removeMapType(type) Removes the GMapType object from the map.

Map State

Method Returns Description

isLoaded() Boolean Returns true if the map has been initialized
by setCenter().

getCenter() GLatLng Returns the geographical coordinates for
the center point of the current viewport.

getBounds() GLatLngBounds Returns the geographical boundary of the
map represented by the visible viewport.

getBoundsZoomLevel(bounds) Number Returns the zoom level at which the given
GLatLngBounds object will fit entirely in the
viewport. The zoom level may vary depending
on the active map type.

getSize() GSize Returns the size of the map viewport in pixels.

getZoom() Number Returns the current zoom level.

Map State Modifications

Method Returns Description

setCenter(center, Loads the map centered on the given GLatLng with
[zoom], [type]) an optional zoom level as an integer and an instance

of a GMapType object. The map type must have been
previously added using the addMapType() method and
be available in the allowed list defined in the
constructor. This method must always be called first
after instantiation of the GMap object to set the initial
state of the map.

panTo(center) Changes the center location of the map. If the given
GLatLng is already visible elsewhere in the viewport,
the pan will be animated as a smooth slide.

panBy(distance) Starts a pan animation, sliding the map by the given
GSize object.

panDirection(dx, dy) Starts a pan animation, sliding the map by half the
width and height in the given direction. +1 is right
and down, and -1 is left and up.

APPENDIX B ■ GOOGLE MAPS API 325

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 325

Method Returns Description

setZoom(level) Changes the zoom level of the map.

zoomIn() Increases the zoom level by one. Larger zoom levels
are closer to the earth’s surface.

zoomOut() Decreases the zoom level by one. Smaller zoom levels
are farther away from the earth’s surface.

savePosition() Tells the map to internally store the current map
position and zoom level for later retrieval using
returnToSavedPosition().

returnToSavedPosition() Restores the map position and zoom level saved by
savePosition().

checkResize() Notifies the map of a change of the size of its con-
tainer. You must call this method if you change the
size of the containing DOM element so that the map
can adjust itself to fit the new size.

Overlays

Method Returns Description

addOverlay(overlay) Adds a GOverlay object to the map.

removeOverlay(overlay) Removes a GOverlay object from the map. The
removeoverlay() event is triggered only if the
GOverlay object existed on the map.

clearOverlays() Removes all GOverlay objects from the map.

getPane(pane) Node Returns the DIV DOM element that holds the object
in the given GMapPane layer.

Info Window

Method Returns Description

openInfoWindow Opens an info window at the given GLatLng
(latlng, dom, [opts]) location. If the info window is not fully visible on

the map, the map will pan to fit the entire window
in the viewport. The content of the info window
must be defined using a DOM node.

openInfoWindowHtml Opens an info window at the given GLatLng
(latlng, html, [opts]) location. If the info window is not fully visible on

the map, the map will pan to fit the entire window
in the viewport. The content of the info window
must be defined using an HTML string.

openInfoWindowTabs Opens a tabbed info window at the given GLatLng
(latlng, tabs, [opts]) location. If the info window is not fully visible on

the map, the map will pan to fit the entire window
in the viewport. The content of the info window
must be defined using a DOM node.

openInfoWindowTabsHtml Opens a tabbed info window at the given GLatLng
(latlng, tabs, [opts]) location. If the info window is not fully visible on

the map, the map will pan to fit the entire window
in the viewport. The content of the info window
must be defined using an HTML string.

APPENDIX B ■ GOOGLE MAPS API326

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 326

Method Returns Description

showMapBlowup Opens an info window at the given GLatLng,
(latlng, [opts]) which contains a close-up view on the map

centered on the given GLatLng.

closeInfoWindow() Closes the current info window.

getInfoWindow() GInfoWindow Returns the info window object of this map. If no
info window exists, it is created but not displayed.
enableInfoWindow() does not affect the result of
getInfoWindow().

Coordinate Transformations

Method Returns Description

fromLatLngToDivPixel(latlng) GPoint Returns the GPoint pixel coordinates of
the given GLatLng geographical location,
relative to the DOM element that contains
the draggable map.

fromDivPixelToLatLng(pixel) GLatLng Returns the GLatLng geographical
coordinates of the given GPoint pixel
coordinates, relative to the DOM element
that contains the draggable map.

fromContainerPixelToLatLng(pixel) GLatLng Returns the GLatLng geographical coordi-
nates of the given GPoint pixel
coordinates, relative to the DOM element
that contains the map on the page.

Events

Event Arguments Description

addmaptype maptype Fired when a map type is added to the map using
addMapType().

removemaptype maptype Fired when a map type is removed from the map
using removeMapType().

click overlay, latlng Fired when the map is clicked with the mouse. If the
click is on a GOverlay object such as a marker, the
overlay is passed to the event handler through the
overlay argument and the overlay’s click event is
fired. If no overlay is clicked, the GLatLng location of
the click is passed in the latlng argument.

movestart Fired when the map tiles begin to move. This will
fire when dragging the map with the mouse, in
which case a dragstart is also fired, or by invoking
the movement using one of the GMap methods.

move Fired while the map is moving. This event may
fire repeatedly as the map moves.

moveend Fired when the map stops moving.

zoomend oldLevel, newLevel Fired when the map reaches a new zoom level.

maptypechanged Fired when another map type is selected.

infowindowopen Fired when the info window opens.

APPENDIX B ■ GOOGLE MAPS API 327

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 327

Event Arguments Description

infowindowclose Fired when the info window closes. If a currently
open info window is reopened at a different point
using another call to openInfoWindow*(), then
infowindowclose will fire first.

addoverlay overlay Fired when an overlay is added using addOverlay().
The overlay is passed to the event handler.

removeoverlay overlay Fired when a single overlay is removed by the
method removeOverlay(). The overlay that was
removed is passed as an argument to the event
handler.

clearoverlays Fired when all overlays are removed by
clearOverlays().

mouseover latlng Fired when the mouse moves into the map from
outside the map. A GLatLng location is passed to
the event handler.

mouseout latlng Fired when the user moves the mouse off the map.
A GLatLng location is passed to the event handler.

mousemove latlng Fired when the user moves the mouse inside the
map. This event is repeatedly fired while the user
moves around the map. A GLatLng location is
passed to the event handler.

dragstart Fired when the user starts dragging the map.

drag Repeatedly fired while the user drags the map.

dragend Fired when the user stops dragging the map.

load Fired when everything on the map has loaded,
with the exception of the image tiles, which load
asynchronously.

class GMapOptions
The GMapOptions class, instantiated as an object literal, is used to provide optional arguments
to the GMap class constructor.

GMapOptions Properties
Property Type Description

size GSize Sets the size of the map container. If the container is of
a different size, the container will be resized to the given
GSize. If no size is passed, the map will assume the current
size of the container.

mapTypes Array of GMapType Array of GMapType constants to allow for the map. If no
mapTypes are defined, the constant G_DEFAULT_MAP_TYPES
is used. See also GMap2.addMapType().

enum GMapPane
As discussed in Chapter 9, the GMapPane constants define the various layers of the map used to
place overlays and their complementary icons and shadows.

APPENDIX B ■ GOOGLE MAPS API328

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 328

GMapPane Constants
Constant Description

G_MAP_MAP_PANE The bottom layer, directly on top of the map. Used to hold
overlays such as polylines.

G_MAP_MARKER_SHADOW_PANE The pane containing the shadow of the markers. Lies
directly beneath the markers.

G_MAP_MARKER_PANE The pane containing the markers.

G_MAP_FLOAT_SHADOW_PANE The pane containing the shadow of the info window. It lies
above the G_MAP_MARKER_PANE to allow the markers to
appear in the shadow of the info window.

G_MAP_MARKER_MOUSE_TARGET_PANE The pane that holds transparent objects that react to the
DOM mouse events registered on the overlays. It lies above
the G_MAP_FLOAT_SHADOW_PANE to allow all the markers on the
map to be clickable, even if they lie in the shadow of the info
window.

G_MAP_FLOAT_PANE The topmost layer. This pane contains any overlays that
appear above all others but under the controls, such as the
info window.

class GKeyboardHandler
You can instantiate a GKeyboardHandler to add your own keyboard bindings to a map.

GKeyboardHandler Bindings
Key Action Description

up, down, left, right Continuously moves the map while the key is pressed. If two
nonopposing keys are pressed simultaneously, the map will
move diagonally.

page down, page up, home, end Triggers an animated pan by three-quarters of the height or
width in the corresponding direction.

+, - Adjusts the zoom level of the map by one level closer (+) or
farther away (-).

GKeyboardHandler Constructor
Constructor Description

GKeyboardHandler(map) Creates a keyboard event handler for the given map.

interface GOverlay
As discussed in detail in Chapters 7 and 9, the GOverlay interface is implemented by the
GMarker, GPolyline, and GInfoWindow classes, as well as any custom overlays you create. The
GOverlay instance must be attached to the map using the GMap2.addOverlay() method. Upon
addition, the map will call the GOverlay.initialize() method. Whenever the map display
changes, the map will call GOverlay.redraw().

APPENDIX B ■ GOOGLE MAPS API 329

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 329

GOverlay Constructor
Constructor Description

GOverlay() Creates the default implementation of the GOverlay methods and should be used
when inheriting from the class.

GOverlay Static Method
Static Method Returns Description

getZIndex(latitude) Number Returns the CSS z-index value for the given latitude. By
default, overlays that are farther south have higher z-index
values, so that the overlays will appear stacked when close
together.

GOverlay Abstract Methods
Method Returns Description

initialize(map) Called by GMap2.addOverlay() so the overlay can draw itself
into the various panes of the map.

remove() Called by GMap2.removeOverlay() and GMap2.clearOverlays().
The overlay should use this method to remove itself from the
map.

copy() GOverlay Returns an uninitialized copy of itself.

redraw(force) Called when the map display changes. force will be true only if
the zoom level or the pixel offset of the map view has changed.

class GInfoWindow
GInfoWindow is always created by the GMap or GMarker class and accessed by their methods.

GInfoWindow Methods
Method Returns Description

selectTab(index) Selects the tab with the given index.

hide() Makes the info window invisible but does not
remove it from the map.

show() Makes the info window visible if it’s currently
invisible.

isHidden() Boolean Returns true if the info window is hidden or closed.

reset(latlng, tabs, size, Resets the state of the info window to the given
[offset], [selectedTab]) arguments. If the argument value is null, that item

will maintain its current value.

getPoint() GLatLng Returns the geographical point at which the info
window is anchored. The default info window points
to this point, modulo the pixel offset.

getPixelOffset() GSize Returns the offset, in pixels, of the tip of the info
window from the anchor point.

getSelectedTab() Number Returns the index of the selected tab. The first left-
most tab is index 0.

APPENDIX B ■ GOOGLE MAPS API330

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 330

GInfoWindow Event
Event Arguments Description

closeclick Fired when the info window’s close button (X) is clicked.

class GInfoWindowTab
Instances of GInfoWindowTab are passed as an array to the tabs argument of GMap2.
openInfoWindowTabs(), GMap2.openInfoWindowTabsHtml(), GMarker.openInfoWindowTabs(), and
GMarker.openInfoWindowTabsHtml().

GInfoWindowTab Constructor
Constructor Description

GInfoWindowTab(label, content) Creates a tab object that can be passed to the tabs argu-
ment for all openInfoWindowTabs*() methods. The label
is the text that appears on the tab. The content can be
either an HTML string or a DOM node, depending on
which openInfoWindowTabs*() method you plan to use.

class GInfoWindowOptions
The GInfoWindowOptions class, instantiated as an object literal, is used to provide optional
arguments for the GMap and GMarker methods: openInfoWindow(), openInfoWindowHtml(),
openInfoWindowTabs(), openInfoWindowTabsHtml(), and showMapBlowup().

GInfoWindowOptions Properties
Property Type Description

selectedTab Number Sets the window to open at the given tab. The first leftmost tab is
index 0. By default, the window will open on tab 0.

maxWidth Number Maximum width, in pixels, of the info window content.

onOpenFn Function Called after the info window has finished opening and the content
is displayed.

onCloseFn Function Called when the info window has been closed.

zoomLevel Number Applies only when using showMapBlowup(). The zoom level of the
blowup map in the info window.

mapType GMapType Applies only when using showMapBlowup(). The map type of the
blowup map in the info window.

class GMarker
An instance of the GMarker class is used to mark a geographical location on a map. It implements
the GOverlay interface and is added to the map using the GMap2.addOverlay() method.

APPENDIX B ■ GOOGLE MAPS API 331

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 331

GMarker Constructor
Constructor Description

GMarker(latlng, [opts]) Creates a new marker at the given GLatLng with optional arguments
specified by GMarkerOptions.

GMarker Methods
Method Returns Description

openInfoWindow Opens the info window over the icon of the marker.
(content, [opts]) The content of the info window must be defined using

a DOM node. Optional arguments are passed using
the GInfoWindowOptions class.

openInfoWindowHtml Opens the info window over the icon of the marker.
(content, [opts]) The content of the info window must be defined using

a string of HTML. Optional arguments are passed
using the GInfoWindowOptions class.

openInfoWindowTabs Opens the tabbed info window over the icon of the
(tabs, [opts]) marker. The content of the info window must be

defined as an array of GInfoWindowTab instances that
contain the tab content as DOM nodes. Optional
arguments are passed using the GInfoWindowOptions
class.

openInfoWindowTabsHtml Opens the tabbed info window over the icon of the
(tabs, [opts]) marker. The content of the info window must be

defined as an array of GInfoWindowTab instances that
contain the tab content as a string of HTML. Optional
arguments are passed using the GInfoWindowOptions
class.

showMapBlowup([opts]) Opens the info window over the icon of the marker.
The content of the info window becomes a close-up of
the area around the info window’s anchor. Optional
arguments are passed using the GInfoWindowOptions
class.

getIcon() GIcon Returns the GIcon associated with this marker as
defined in the constructor.

getPoint() GLatLng Returns the GLatLng geographical coordinates of the
marker’s anchor. The anchor is set by the constructor
or modified by setPoint().

setPoint(latlng) Sets the geographical coordinates of the marker’s
anchor to the given GLatLng instance.

GMarker Events
Event Arguments Description

click Fired when the marker is clicked with the mouse. The
GMap’s click event will also fire with the marker passed
as the overlay argument.

dblclick Fired when the marker icon is double-clicked.

mousedown Fired when the DOM mousedown event is fired on the
marker icon.

APPENDIX B ■ GOOGLE MAPS API332

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 332

Event Arguments Description

mouseup Fired for the DOM mouseup on the marker.

mouseover Fired when the mouse moves into the area of the marker
icon.

mouseout Fired when the mouse moves out of the area of the
marker icon.

infowindowopen Fired when the info window of the map is opened using
one of the GMarker info window methods.

infowindowclose Fired when the info window, opened using
GMarker.OpenInfoWindow*(), is closed or if the info
window is opened on another marker.

remove Fired when the marker is removed from the map.

class GMarkerOptions
The GMarkerOptions class, instantiated as an object literal, is used to provide optional argu-
ments for the GMarker class.

GMarkerOptions Properties
Property Type Description

icon GIcon An instance of the GIcon class. If not specified, G_DEFAULT_ICON is used.

clickable Boolean If set to false, the marker becomes inert and consumes fewer
resources. Inert markers will not respond to any events. By default,
this option is true and markers are clickable.

title String The title will appear as a tool tip on the marker, like the title attribute
on HTML elements.

class GPolyline
If available, the GPolyline class draws a polyline on the map using the browser’s built-in vector-
drawing facilities. Otherwise, the polyline is drawn using an image from Google servers.

GPolyline Constructor
Constructor Description

GPolyline(points, [color], Creates a polyline from the array of GLatLng instances. Option-
[weight], [opacity]) ally, the color of the line can be defined as a string in the hexa-

decimal format RRGGBB; the weight can be defined in pixels;
and the opacity can be defined as a number between 0 and 1,
where 0 is transparent and 1 is opaque.

GPolyline Methods
Method Returns Description

getVertexCount() Number Returns the number of vertices in the polyline.

getVertex(index) GLatLng Returns the vertex with the given index in the polyline
starting at 0 for the first vertex.

APPENDIX B ■ GOOGLE MAPS API 333

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 333

GPolyline Event
Event Arguments Description

remove Fired when the polyline is removed from the map.

class GIcon
The GIcon class specifies the image to display as the icon for the GMarker on the map. If no icon
is specified, G_DEFAULT_ICON is used.

GIcon Constructor
Constructor Description

GIcon([copy], [image]) Creates a new GIcon object. Existing GIcon’s properties can be copied
by passing the existing icon into the copy argument. The optional
image argument can be used as a shortcut to the image property.

GIcon Constant
Constant Description

G_DEFAULT_ICON The default icon used by markers.

GIcon Properties
Property Type Description

image String URL for the foreground image.

shadow String URL for the shadow image.

iconSize GSize The pixel size of the foreground image.

shadowSize GSize The pixel size of the shadow image.

iconAnchor GPoint The pixel coordinates of the image’s anchor relative to the
top-left corner of the image.

infoWindowAnchor GPoint The pixel coordinates of the point where the info window
will be anchored, relative to the top-left corner of the image.

printImage String URL of the foreground image used for printed maps. It must
be the same size as the image property.

mozPrintImage String The URL of the foreground icon image used for printed maps in
Firefox/Mozilla. It must be the same size as the image property.

printShadow String The URL of the shadow image used for printed maps. Most
browsers can’t accurately print PNG transparency, so this
property should be a GIF.

APPENDIX B ■ GOOGLE MAPS API334

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 334

Property Type Description

transparent String Used to represent the clickable part of the icon in Internet
Explorer. This should be a URL to a 24-bit PNG version of the
main icon image with 1% opacity and the same shape and
size as the image property.

imageMap Array of Used to represent the clickable part of the icon in browsers
numbers other than Internet Explorer. This should be an array of integers

representing the X/Y coordinates of the clickable image area.

class GPoint
In version 1 of the API, a GPoint represented a geographical latitude and longitude. In version 2
of the API, a GPoint represents a point on the map by its pixel coordinates. Now, for geographi-
cal latitude and longitude, see the GLatLng class.

Unlike regular HTML DOM elements, the map coordinates increase to the left and down,
so the X coordinate increases as objects are farther west, and the Y coordinate increases as
objects are farther south.

■Note Although the x and y properties are accessible and modifiable, Google recommends you always
create a new GPoint instance and avoid modifying an existing one.

GPoint Constructor
Constructor Description

GPoint(x, y) Creates a GPoint object.

GPoint Properties
Property Type Description

x Number X coordinate, increases to the left.

y Number Y coordinate, increases downwards.

GPoint Methods
Method Returns Description

equals(other) Boolean Returns true if the other given GPoint has equal coordinates.

toString() String Returns a string that contains the X and Y coordinates, separated
by a comma and surrounded by parentheses, in the form (x,y).

class GSize
A GSize is a width and height definition, in pixels, of a rectangular area on the map. Note that
although the width and height properties are accessible and modifiable, Google recommends
that you always create a new GSize instance and avoid modifying an existing one.

APPENDIX B ■ GOOGLE MAPS API 335

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 335

GSize Constructor
Constructor Description

GSize(width, height) Creates a GSize object.

GSize Properties
Property Type Description

width Number The width in pixels.

height Number The height in pixels.

GSize Methods
Method Returns Description

equals(other) Boolean Returns true if the other given GSize has exactly equal
components.

toString() String Returns a string that contains the width and height coordi-
nates, separated by a comma and surrounded by parentheses,
in the form (width,height).

class GBounds
A GBounds instance represents a rectangular area of the map in pixel coordinates. The
GLatLngBounds class represents a rectangle in geographical coordinates.

GBounds Constructor
Constructor Description

GBounds(points) Constructs a rectangle that contains all the given points in the points
array.

GBounds Properties
Property Type Description

minX Number The X coordinate of the left edge of the rectangle.

minY Number The Y coordinate of the top edge of the rectangle.

maxX Number The X coordinate of the right edge of the rectangle.

maxY Number The Y coordinate of the bottom edge of the rectangle.

GBounds Methods
Method Returns Description

toString() String Returns a string containing the northwest and the
southeast corners of the area separated by a comma,
surrounded by parentheses, in the form (nw,se).

min() GPoint The point at the upper-left corner of the box.

APPENDIX B ■ GOOGLE MAPS API336

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 336

Method Returns Description

max() GPoint The point at the lower-right corner of the box.

containsBounds(other) Boolean Returns true if the other GBounds is entirely contained in
this GBounds.

extend(point) Increases the size of the bounds so the given GPoint is
also contained in the bounds.

intersection(other) GBounds Returns a new GBounds object that represents the over-
lapping portion of this and the given GBounds.

class GLatLng
A GLatLng instance represents a geographical longitude and latitude on the map projection.

■Note Although longitude is representative of an X coordinate on a map, and latitude with the Y coordinate,
Google has chosen to follow customary cartography terminology where the latitude coordinate is written
first, followed by the longitude as represented in the GLatLng constructor arguments.

GLatLng Constructor
Constructor Description

GLatLng(lat, lng, [unbounded]) Creates a new GLatLng instance. If the unbounded flag is
true, the latitude and longitude will be used as passed.
Otherwise, latitude will be restricted to between -90
degrees and +90 degrees, and longitude will be wrapped to
lie between -180 degrees and +180 degrees.

GLatLng Methods
Method Returns Description

lat() Number Returns the latitude coordinate in degrees.

lng() Number Returns the longitude coordinate in degrees.

latRadians() Number Returns the latitude coordinate in radians, as a number
between -PI/2 and +PI/2.

lngRadians() Number Returns the longitude coordinate in radians, as a number
between -PI and +PI.

equals(other) Boolean Returns true if the other GLatLng has equal components
(within an internal round-off accuracy).

distanceFrom(other) Number Returns the distance, in meters, from this GLatLng to the
other GLatLng. Google’s API approximates the earth as
a sphere, so the distance could be off by as much as 0.3%.

toUrlValue() String Returns a string representation of this point that can be
used as a URL parameter value. The string is formatted with
the latitude and the longitude in degrees rounded to six
decimal digits, separated by a comma, without whitespace.

APPENDIX B ■ GOOGLE MAPS API 337

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 337

GLatLng Properties
There are a few GLatLng properties; however, they exist only for backward-compatibility with
version 1 of the API. Therefore, we do not list them here. If you would like to reference them,
see Google’s online documentation at http://www.google.com/apis/maps/documentation/
reference.html#GLatLng.

class GLatLngBounds
A GLatLngBounds instance represents a rectangle in geographical coordinates. The GBounds
class represents a rectangle in pixel coordinates.

GLatLngBounds Constructor
Constructor Description

GLatLngBounds([sw], [ne]) Creates a new instance of GLatLngBounds with a boundary
defined by the southwest and northeast corners.

GLatLngBounds Methods
Method Returns Description

equals(other) Boolean Returns true if the other GLatLngBounds has equal
components (within an internal round-off accuracy).

contains(latlng) Boolean Returns true if the geographical coordinates of the
given GLatLng lie within the boundary.

intersects(other) Boolean Returns true if the given GLatLngBounds intersects this
GLatLngBounds.

containsBounds(other) Boolean Returns true if the given GLatLngBounds is contained
entirely within this GLatLngBounds.

extend(latlng) Increases the size of the bounds so the given GLatLng
is also contained in the bounds. When calculating the
longitude change, the bounds will enlarged in the
smaller of the two possible ways given the wrapping of
the map. If both directions are equal, the bounds will
extend at the eastern boundary.

getSouthWest() GLatLng Returns the latitude and longitude at the southwest
corner of the rectangle.

getNorthEast() GLatLng Returns the latitude and longitude at the northeast
corner of the rectangle.

toSpan() GLatLng Returns a GLatLng with latitude and longitude degrees
representing the height and width, respectively.

isFullLat() Boolean Returns true if this boundary extends the full height of
the map, from the south pole to the north pole.

isFullLng() Boolean Returns true if this boundary extends fully around the
earth.

isEmpty() Boolean Returns true if this boundary is empty.

getCenter() GLatLng Returns the center point of the rectangle.

APPENDIX B ■ GOOGLE MAPS API338

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 338

interface GControl
As discussed in Chapter 9, the GControl interface is implemented by all control objects, and
implementations must be added to the maps using the GMap2.addControl() method.

GControl Constructor
Constructor Description

GControl([printable], [selectable]) Creates the prototype instance for a new control
class. If the printable flag is true, the control will
appear when printed. Use the selectable argument
to indicate if the control contains text that should be
selectable.

GControl Methods
Method Returns Description

printable() Boolean Returns true to the map if the control should
be printable; otherwise, returns false.

selectable() Boolean Returns true to the map if the control contains
selectable text; otherwise, returns false.

initialize(map) Node Will be called by GMap2.addControl() so the
control can initialize itself and attach itself to
the map container.

getDefaultPosition() GControlPosition Returns to the map the GControlPosition rep-
resenting where the control appears by default.
This can be overridden by the second argument
to GMap2.addControl().

class GControl
The following are existing instances of the GControl interface.

GControl Constructors
Constructor Description

GSmallMapControl() Creates a control with buttons to pan in four directions, and zoom in
and zoom out.

GLargeMapControl() Creates a control with buttons to pan in four directions, and zoom in
and zoom out, and a zoom slider.

GSmallZoomControl() Creates a control with buttons to zoom in and zoom out.

GScaleControl() Creates a control that displays the map scale.

GMapTypeControl() Creates a control with buttons to switch between map types.

class GControlPosition
The GControlPosition class describes the position of a control in the map container. A corner
from one of the GControlAnchor constants and an offset relative to that anchor determine the
position.

APPENDIX B ■ GOOGLE MAPS API 339

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 339

GControlPosition Constructor
Constructor Description

GControlPosition(anchor, offset) Creates a new control position.

enum GControlAnchor
The GControlAnchor constants are used to reference the position of a GControl within the map
viewport. You will need these if you are creating your own control objects, as discussed in
Chapter 9.

GControlAnchor Constants
Constant Description

G_ANCHOR_TOP_RIGHT Anchored in the top-right corner of the map.

G_ANCHOR_TOP_LEFT Anchored in the top-left corner of the map.

G_ANCHOR_BOTTOM_RIGHT Anchored in the bottom-right corner of the map.

G_ANCHOR_BOTTOM_LEFT Anchored in the bottom-left corner of the map.

class GMapType
As discussed in Chapter 9, the GMapType is the grouping of a map projection and tile layers.

GMapType Constructor
Constructor Description

GMapType(layers, projection, name, [opts]) Creates a new GMapType instance with the
given layer array of GTileLayers, the given
GProjection, a name for the map type con-
trol, and optional arguments from
GMapTypeOptions.

GMapType Methods
Method Returns Description

getSpanZoomLevel Number Returns the zoom level at which the GLatLng
(center, span, viewSize) span, centered on the GLatLng center, will fit

in the GSize defined by viewSize.

getBoundsZoomLevel Returns the zoom level at which the
(latlngBounds, viewSize) GLatLngBounds will fit in the GSize defined

by viewSize.

getName(short) String Returns the name of the map type. If short is
true, the short name will be returned;
otherwise, the full name will be returned.

getProjection() GProjection Returns the GProjection instance.

getTileSize() Number Returns the tile size in pixels. The tiles are
assumed to be quadratic, and all tile layers
have the same tile size.

APPENDIX B ■ GOOGLE MAPS API340

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 340

Method Returns Description

getTileLayers() Array of Returns the array of tile layers.
GTileLayer

getMinimumResolution Number Returns the lowest zoom level.
([latlng])

getMaximumResolution Number Returns the highest zoom level.
([latlng])

getTextColor() String Returns the color that should be used for text,
such as the copyright, overlaid on the map.

getLinkColor() String Returns the color that should be used for
a hyperlink overlaid on the map.

getErrorMessage() String Returns the error message to display on
zoom level where this map type doesn’t have
any map tiles.

getCopyrights Array of strings Returns the copyright messages appropriate
(bounds, zoom) for the given GLatLngBounds bounds at the

given zoom level.

getUrlArg() String Returns a value that can be used as a URL
parameter value to identify this map type in
the current map view. Useful for identifying
maps and returning to the same location via
hyperlinks in web applications.

GMapType Constants
Constant Description

G_NORMAL_MAP The normal street map type.

G_SATELLITE_MAP The Google Earth satellite images.

G_HYBRID_MAP The transparent street maps over Google Earth satellite images.

G_DEFAULT_MAP_TYPES An array of G_NORMAL_MAP, G_SATELLITE_MAP, and G_HYBRID_MAP.

GMapType Event
Event Argument Description

newcopyright copyright Fired when a new GCopyright instance is added to
the GCopyrightCollection associated with one of
the tile layers contained in the map type.

class GMapTypeOptions
The GMapTypeOptions class, instantiated as an object literal, is used to provide optional argu-
ments for the GMapType constructor.

APPENDIX B ■ GOOGLE MAPS API 341

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 341

GMapTypeOptions Properties
Property Type Description

shortName String The short name that is returned from GMapType.getName(true).
The default is the same as the name from the constructor.

urlArg String The URL argument that is returned from GMapType.getUrlArg().
The default is an empty string.

maxResolution Number The maximum zoom level. The default is the maximum from all
tile layers.

minResolution Number The minimum zoom level. The default is the minimum from all
tile layers.

tileSize Number The tile size for the tile layers. The default is 256.

textColor String The text color returned by GMapType.getTextColor(). The
default is "black".

linkColor String The text color returned by GMapType.getLinkColor(). The
default is "#7777cc".

errorMessage String The error message returned by GMapType.getErrorMessage().
The default is an empty string.

interface GTileLayer
As explained in Chapters 7 and 9, you use the GTileLayer interface to implement your own
custom tile layers.

GTileLayer Constructor
Constructor Description

GTileLayer(copyrights, Creates a new tile layer instance. The arguments for the con-
minResolution, maxResolution) structor can be omitted if instantiated as a prototype for

your custom tile layer. copyrights is an array of GCopyright
objects. minResolution and maxResolution refer to the min-
imum and maximum zoom levels, respectively.

GTileLayer Methods
Method Returns Description

minResolution() Number Returns the lowest zoom level for the layer.

maxResolution() Number Returns the highest zoom level for the layer.

getTileUrl(tile, zoom) String Abstract, must be implemented in custom tile layers.
Returns the URL of the map tile. tile is a GPoint
representing the x and y tile index. zoom is the current
zoom level of the map.

isPng() Boolean Abstract, must be implemented in custom tile layers.
Returns true if the tiles are PNG images; otherwise,
GIF is assumed.

getOpacity() Number Abstract, must be implemented in custom tile layers.
Returns the layer opacity between 0 and 1, where 0 is
transparent and 1 is opaque.

APPENDIX B ■ GOOGLE MAPS API342

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 342

GTileLayer Event
Event Argument Description

newcopyright copyright Fired when a new GCopyright instance is added to the
GCopyrightCollection of this tile layer.

class GCopyrightCollection
The GCopyrightCollect is a collection of GCopyright objects for the current tile layer(s).

GCopyrightCollection Constructor
Constructor Description

GCopyrightCollection([prefix]) Creates a new copyright collection. If the prefix argument
is defined, the copyright messages all share the same given
prefix.

GCopyrightCollection Methods
Method Returns Description

addCopyright(copyright) Adds the GCopyright object to the
collection.

getCopyrights(bounds, zoom) Array of strings Returns all copyrights for the given
GLatLng bounds at the given zoom
level.

getCopyrightNotice(bounds, zoom) String Returns the prefix concatenated
with all copyrights for the given
GLatLng bounds at the given zoom
level, separated by commas.

GCopyrightCollection Event
Event Argument Description

newcopyright copyright Fired when a new GCopyright is added to the
GCopyrightCollection.

class GCopyright
The GCopyright class defines which copyright message applies to a boundary on the map, at
a given zoom level.

GCopyright Constructor
Constructor Description

GCopyright(id, bounds, Creates a new GCopyright object with the given id, the given
minZoom, copyrightText) GLatLng bounds, and the minimum zoom level with which the

copyright applies.

APPENDIX B ■ GOOGLE MAPS API 343

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 343

GCopyright Properties
Property Type Description

id Number A unique identifier.

minZoom Number The lowest zoom level at which this information applies.

bounds GLatLngBounds The latitude and longitude boundary for the copyright.

text String The copyright message.

interface GProjection
As explained in Chapter 9, the GProjection interface is responsible for all the mathematical
calculations related to placing objects on the map. The GMercatorProjection, for example, is
used by all predefined map types and calculates geographical positions based on the Mercator
mapping projection.

GProjection Methods
Method Returns Description

fromLatLngToPixel GPoint Returns the map coordinates in pixels from the
(latlng, zoom) given GLatLng geographical coordinates and the

given zoom level.

fromPixelToLatLng GLatLng Returns the geographical coordinates for the
(point, zoom, [unbounded]) given GPoint and the given zoom level. The

unbounded flag, when true, prevents the
geographical longitude coordinate from wrapping
when beyond the -180 or +180 degrees meridian.

tileCheckRange Returns true if the index of the tile given in the
(tile, zoom, tilesize) tile GPoint is in a valid range for the map type

and zoom level. If false is returned, the map will
display an empty tile. In some cases where the
map wraps past the meridian, you may modify
the tile index to point to an existing tile.

getWrapWidth(zoom) Returns the number of pixels after which the
map repeats itself in the longitudinal direction.
The default is Infinity, and the map will not
repeat itself.

class GMercatorProjection
This GMercatorProjection class is an implementation of the GProjection interface and is used
by all the predefined GMapType objects.

GMercatorProjection Constructor
Constructor Description

GMercatorProjection(zoomlevels) Creates a GProjection object based on the Mercator pro-
jection for the given number of zoom levels.

APPENDIX B ■ GOOGLE MAPS API344

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 344

GMercatorProjection Methods
Method Returns Description

fromLatLngToPixel GPoint See GProjection.
(latlng, zoom)

fromPixelToLatLng GLatLng See GProjection.
(pixel, zoom, [unbounded])

checkTileRange See GProjection.
(tile, zoom, tilesize)

getWrapWidth(zoom) See GProjection. Returns the width of the map
for the entire earth, in pixels, for the given zoom
level.

namespace GEvent
The GEvent namespace contains the methods you need to register and trigger event listeners
on objects and DOM elements. The events defined by the Google Maps API are all custom
events and are fired internally using GEvent.triggerEvent().

GEvent Static Methods
Static Method Returns Description

addListener GEventListener Registers an event handler for the event on
(object, event, handler) the object. Returns the GEventListener

handle that can be used to deregister the
handler with GEvent.removeListener().
When referencing 'this' from within the
supplied handler function, 'this' will
refer to the JavaScript object supplied in
the first argument.

addDomListener GEventListener Registers an event handler for the event on
(dom, event, handler) the DOM object. Returns the GEventListener

handle that can be used to deregister the
handler with GEvent.removeListener().
When referencing 'this' from within the
supplied handler function, 'this' will
refer to the DOM object supplied in the
first argument.

removeListener(handler) Removes the handler. The handler must
have been created using addListener() or
addDomListener().

clearListeners Removes all handlers on the given source
(source, event) object or DOM, for the given event, that

were registered using addListener() or
addDomListener().

clearInstanceListeners Removes all handlers on the given object or
(source) DOM for all events that were registered

using addListener() or addDomListener().

trigger Fires the given event on the source object.
(source, event, ...) Any additional arguments after the event

are passed as arguments to the event
handler functions.

APPENDIX B ■ GOOGLE MAPS API 345

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 345

Static Method Returns Description

bind(source, event, Registers the specified method on the
object, method) given object as the event handler for the

custom event on the given source object.
You can then use the trigger() method to
execute the event.

bindDom(source, event, Registers the specified method on the
object, method) given object as the event handler for the

custom event on the given source object.
Unlike bind(), the source object must be
an HTML DOM element. You can then use
the trigger() method to execute the event.

callback(object, method) Calls the given method on the given object.

callbackArgs Calls the given method on the given object
(object, method, ...) with the given arguments.

GEvent Event
Event Argument Description

clearlisteners event Fired for the object when clearListeners() or
clearInstanceListeners() is called on that object.

class GEventListener
The GEventListener class is opaque. There are no methods or constructor. Instances of the
GEventListener are returned only from GEvent.addListener() and GEvent.addDomListener().
Instances of GEventListener can also be passed back to GEvent.removeListener() to disable
the listener.

namespace GXmlHttp
The GXmlHttp namespace provides a browser-agnostic factory method to create an XmlHttpRequest
(Ajax) object.

GXmlHttp Static Method
Static Method Returns Description

create() GXmlHttp Factory to create a new instance of XmlHttpRequest.

namespace GXml
The GXml namespace provides browser-agnostic methods to handle XML. The methods will
function correctly only in browsers that natively support XML.

APPENDIX B ■ GOOGLE MAPS API346

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 346

GXml Static Methods
Static Method Returns Description

parse(xmlString) Node Parses the given XML string into a DOM representation. In
the event that the browser doesn’t support XML, the
method returns the DOM node of an empty DIV element.

value(xmlDom) String Returns the text value of the XML document fragment
given in DOM representation.

class GXslt
The GXslt class provides browser-agnostic methods to apply XSLT to XML. The methods will
function correctly only in browsers that natively support XSL.

GXslt Static Methods
Static Method Returns Description

create(xsltDom) GXslt Creates a new GXslt instance from the DOM
representation of an XSLT stylesheet.

transformToHtml Boolean Transforms the xmlNode DOM representation
(xmlDom, htmlDom) of the XML document using the XSLT from the constructor.

The resulting HTML DOM object will be appended to the
htmlDom. In the event that the browser does not support
XSL, this method will do nothing and return false.

namespace GLog
The GLog namespace is not directly related to the mapping functions of the map but is pro-
vided to help you debug your web applications. As discussed in Chapter 9, you can use the
write*() methods to open a floating log window and record and debug messages.

GLog Static Methods
Static Method Returns Description

write(message, [color]) Writes a message to the log as plaintext. The
message text will be escaped so HTML characters
appear as visible characters in the log window.

writeUrl(url) Writes a URL to the log as a clickable link.

writeHtml(html) Writes HTML to the log as rendered HTML (not
escaped).

enum GGeoStatusCode
The GGeoStatusCode constants are returned from the geocoder.

APPENDIX B ■ GOOGLE MAPS API 347

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 347

GGeoStatusCode Constants
Constant Description

G_GEO_SUCCESS The supplied address was successfully recognized and no errors
were reported.

G_GEO_SERVER_ERROR The server failed to process the request.

G_GEO_MISSING_ADDRESS The address is null.

G_GEO_UNKNOWN_ADDRESS The supplied address could not be found.

G_UNAVAILABLE_ADDRESS The address was found; however it could not be exposed by Google
for legal reasons.

G_GEO_BAD_KEY The supplied API key is invalid.

class GClientGeocoder
Use the GClientGeocoder class to geocode addressees using Google’s geocoding service.

GClientGeocoder Constructor
Constructor Description

GClientGeocoder([cache]) Creates a new instance of a geocoder. You may optionally supply
your own client-side GFactualGeocodeCache object.

GClientGeocoder Methods
Method Returns Description

getLatLng Retrieves the latitude and longitude of the
(address, callback) supplied address. If successful, the callback

function receives a populated GLatLng object. If
the address can’t be found, the callback receives
a null value.

getLocations Retrieves one or more geocode locations based on
(address, callback) the supplied address and passes them as a response

object to the callback function (see Chapter 10). The
response contains a Status property (response.
Status) that can be examined to determine if the
response was successful.

getCache() GGeocodeCache Returns the cache in use by the geocoder instance.

setCache(cache) Tells the geocoder instance to discard the current
cache and use the supplied GGeocodeCache cache
object. If null is passed, caching will be disabled.

reset() Resets the geocoder and the cache.

class GGeocodeCache
Use the GGeocodeCache class to create a cache for GClientGeocoder requests.

APPENDIX B ■ GOOGLE MAPS API348

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 348

GGeocodeCache Constructor
Constructor Description

GGeocodeCache() Creates a new cache object for storing encoded address. When instanti-
ated, the constructor calls reset().

GGeocodeCache Methods
Method Returns Description

get(address) Object Retrieves the stored response for the given address. If the
address can’t be found, it will return null.

isCachable(reply) Boolean Determines if the given address should be cached. This
method is used to avoid caching null or invalid responses
and can be extended in your custom cache objects to
provide more control of the cache.

put(address, reply) Stores the given reply/address combination in the
cache based on the results of the isCacheable() and
toCanonical() methods.

reset() Empties the cache.

toCanonical(address) String Returns a canonical version of the address by converting
the address to lowercase and stripping out commas and
extra spaces.

class GFactualGeocodeCache
The GFactualGeocodeCache class is a stricter version of the GGeocodeCache class. It restricts the
cache to replies that are unlikely to change within a short period of time.

GFactualGeocodeCache Constructor
Constructor Description

GFactualGeocodeCache() Creates a new instance of the cache.

GFactualGeocodeCache Method
Method Returns Description

isCachable(reply) Boolean Implementation of GGeocodeCache. isCachable() whereby
the status of the response is validated against GGeoStatusCode
constants. Only successful (G_GEO_SUCCESS) requests or
known invalid requests are cached.

Functions
Along with the classes and objects, the API includes a few functions that don’t require you to
instantiate them as new objects.

APPENDIX B ■ GOOGLE MAPS API 349

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 349

Function Returns Description

GDownloadUrl(url, onload) Retrieves the resource from the given URL, and
calls the onload function with the results of the
resource as the first argument and the HTTP
response status code as the second. The URL
should be an absolute or relative path. This
function is a simplified version of the GXmlHttp
class and discussed in Chapter 3. It is subject to
the same-origin restriction of cross-site
scripting and, like the GXmlHttp class, it is
executed asynchronously.

GBrowserIsCompatible() Boolean Returns true if the browser supports the API.
Use this function to determine if the browser is
compatible with the Google Maps API.

GUnload() Dismantles the map objects to free browser
memory and avoid leaks and bugs. Call this func-
tion in the unload event handler for your web
page to free up browser memory and help clean
up browser leaks and bugs. Calling this function
will disable all the map objects on the page.

APPENDIX B ■ GOOGLE MAPS API350

7079chAppBFINAL.qxd 7/26/06 5:05 PM Page 350

■Symbols
() parentheses after function name, 20

■A
addControl() method, 21
addDomListener() method, 35
addListener() method, 25, 35
addMarker() method, 29
addOverlay() method, 21–22, 23, 146
addresses. See also geocoding services, web

service for
Canadian, 83–85, 289–290
converting between latitude/longitude

and postal, 63
European, 86
Japanese, 290
ranges, 305, 311
spacing, limitations of, 311
xAL, 70, 74
XML data files, 63–64

advertisement, integrated, 204
air travel, shortest routes of, 267–268
airports, data on, 6–7, 318–319
Ajax, 48, 59, 147
alert() method, JavaScript, 53–55
angles, 262, 283. See also Pythagorean

theorem
Antenna Structure Registration (ASR)

database (FCC), 97–100, 102, 104,
110–112, 145

arctangent, 262
areas, calculating, 261–262, 263–266, 269–273
array_merge() method, 108
arrays, 26–27, 108
ASR (Antenna Structure Registration)

database (FCC), 97–100, 102, 104,
110–112, 145

atan, 262
atan2() method, 262
Azimuthal projections, 240

■B
background images, overlay, 169, 172, 175
Beginning Ajax with PHP: From Novice to

Professional (Babin), 59
Beginning PHP and MySQL 5: From Novice to

Professional (Gilmore), 102
Behaviour library, 128

BETWEEN clause, 309, 311
blog, googlemapsbook, 21
Blue Marble, 247, 248, 249–258
body class, 126–127, 134
body section of map, 15
body.onunload event, 20
boundary method

client-side, 187–188
server-side, 149–150, 153–155

browsers
forms and, 41
security, 48, 102, 175, 185
XML received by, 55

bubbles, information, 21, 23, 26
businesses, data on, 201
buttons, customizing, 128

■C
caching data

advantages, 63, 86, 90
client-side, 75
creating map from, 90–93
database storage for, 90, 249
example, 86, 88
GClientGeocoder and, 280
inappropriate uses, 86, 90

Canadian addresses, geocoding, 83–85,
289–290

Canadian Census Department’s Statistics
Canada, 290

Canadian Postal Code Conversion File, 290
Canadian Road Network Files (GML version),

311
capital cities, data on, 114, 150
capitalization conventions, 72
Cartesian method of calculating great-circle

distances, 268
Cascading Style Sheets (CSS), 18, 119–120,

129, 275
Census Bureau data, US, 285, 288–289,

294–295, 318. See also Tiger/Line
data

Census Department, Canadian, 290
centering map on location, 16–17, 23
centerLatitude, 26
centerLongitude, 26
circumference, calculating, 263
client-server communication, 146, 147
client-side overlays, 170

Index

351

7079chIDX.qxd 7/28/06 12:55 PM Page 351

client-side processes, optimizing
advantages, 186
boundary method, 187–188
clustering method, 191, 198
common point method, 188–189

closure, 135–136
clustering

client-side, 191, 198
grid method, 162, 191
server-side, 161–163, 165, 167, 198

CO.dat file (ASR database), 98, 100
coding practices, JavaScript, 127, 130,

132–133, 137
comments, conditional, 275
commercial data products, 289
common point method, 155–158, 160, 188–189
communication, server-client, 146, 147
concave, defined, 264
conditional comments, 275
conic projections, 240
contains() method, 187
content wrappers, 130
control widgets, 21
controls, 220–223
convex, defined, 264
copyright credits, 253–255
copyright on data, 113, 117
crater impacts, 321–322
createMarker() method, 49–50, 57
crontab command, 112–113
cross products, 271–272
cross-site scripting (XSS), 56
CSS (Cascading Style Sheets), 18, 119–120,

129, 275
CSV data, 101–102, 290, 292
CURL, 66, 71–72
curl_exec() method, 72
cursor, finding, 211–212
custom detail overlay method, 167–170,

172–173, 175–176
custom tile method, 176–177, 180–182,

185–186, 198
cylindrical projections, 240–241, 243, 248

■D
data

accuracy, 117, 316
filtering, 26, 56, 139–142
importing, 101–102, 104, 111, 117, 139. See

also screen scraping
large sets, 145, 146, 147
maintaining currency, 111–113
reorganizing, 106–109
saving with GXmlHttp, 49–52
storing, 27, 52, 90, 249. See also file-

system-based information storage
types, selecting, 148

databases, 90, 148, 249, 294. See also specific
databases

date line, 283
The Definitive Guide to ImageMagick (Still),

250
denial-of-service (DoS) attacks, preventing,

102
deselectCurrent variable, 134–135
distance, calculating differences in, 83,

266–267
distanceFrom() method, 188, 269
Document Object Model (DOM), 35, 40–41,

54–56, 159
document.getElementById() method, 49
DOM (Document Object Model), 35, 40–41,

54–56, 159
DOM Scripting: Web Design with JavaScript

and the Document Object Model
(Keith), 159

domain limitations, map queries and, 48
DoS (denial-of-service) attacks, preventing,

102
dot products, 271–272

■E
earth, shape of, 188, 269
earthquakes, data on, 320
elevation data, 69, 321
EN.dat file (ASR database), 98, 100
error checking, importing data and, 117
ethical issues, 113, 117
Europe, geocoding addresses in, 86
events. See also GEvent class; specific events

creating, 214
handlers for, 20, 40, 127–128
listeners, 35, 346
triggering, 35, 212–214

exec() method, 102, 112
eXtensible Address Language (xAL), 70, 74

■F
FAA (Federal Aviation Administration), data

from, 319
FEAT identifiers (Tiger/Line data), 296, 305
Federal Aviation Administration (FAA), data

from, 319
Federal Information Processing Standards

(FIPS) code for county and state, 295,
305

file-system-based information storage,
101–102, 290, 292. See also XML

filtering data, 26, 56, 139–142
FIPS (Federal Information Processing

Standards) code for county and state,
295, 305

Firefox, 20, 130
fires, data on, 320

■INDEX352

7079chIDX.qxd 7/28/06 12:55 PM Page 352

Flash-based interfaces, 204–205
flashing, map, 196–197
for in loops (JavaScript), 28–29
for loops (JavaScript), 28
forms, 39–42, 44
fromLatLngToDivPixel() method, 37, 211–212
fuzzy-pattern matching, 294, 309

■G
garbage collection, 20
GBounds class, 336–337
GClientGeocoder class, 157, 279–280, 348
GControl class, 21, 339–340. See also controls
GControlAnchor class, 340
GControlPosition class, 339–340
GCopyright class, 253–254, 343–344
GCopyrightCollection class, 253, 343
GDownloadUrl class, 36, 54
Geo::Coder, US module, 295
geocaching, 32
Geocoder.ca, 83–85, 289–290
Geocoder.us, 80–83, 290, 295
geocoding, 18, 85
geocoding services. See also specific services

(e.g. CURL, SimpleXML, etc.); US
Census Bureau data

advantages, 311
bulk, 86
creating, 66, 311
data sources for, 285–286
examples, 285, 290–291, 294–306, 309–311
finding sources to create, 285
government source sample data, 286–288
list, 65
requirements for consuming, 66
web service for, 65–86, 292

geological phenomena, data on, 320–321
geomagnetism, data on, 321
Geonames data (US Board on Geographic

Names), 319
Geonames.org, 85, 319
getAttribute() method, 55
getBounds() method, 188
getPane() method, 215
getTileRect() method, 180
getTileUrl() method, 246
GEvent class, 213, 345–346
GEventListener class, 346
GFactualGeocodeCache class, 349
GGeocodeCache class, 348–349
GGeoStatusCode class, 347–348
GIcon class, 22, 23, 59–62, 334–335
GInfoWindow class, 330–331
GInfoWindowOptions class, 331
GInfoWindowTab class, 331
GIS (graphical information systems), 285,

288, 289–290

GKeyboardHandler class, 329
GLargeMapControl class, 220
GLatLng class, 16, 22, 187, 199, 269, 337–338
GLatLngBounds class, 149, 187, 338
Global Airport Database, 318
GLog class, 209–210, 347
GMap class, 16, 22, 256
GMap2 class, 257, 324–328
GMapOptions class, 328
GMapPane class, 214–215, 328–329
GMapType class, 237–238, 340–341
GMapTypeControl class, 21, 220
GMapTypeOptions class, 341–342
GMarker class

class members, 331, 333
clusters as, 161
creating, 50
limitations, 146
openInfoWindowHtml() shortcut, 25
in plotting markers, 22

GMarkerOptions class, 333
GMercatorProjection class, 242–243, 344–345
Golden Gate Bridge location, 16
Google AJAX Search API, 201
Google Earth, 203
Google JavaScript Geocoder, 74–75
Google Maps

described, 31
history, 3
limitations, 145–146

Google Maps API
classes, 323–331, 333–349
functions, 349–350
JavaScript and, 48
reference, online, 16
terms of use, 13

Google Maps API Geocoder
about, 67–68
accessing from JavaScript API, 83–84,

278–280
debugging within, 209–210
discussion group, 199
documentation, 259
Enterprise edition, 200, 204
improvements, future, 199–205
map, interacting with, 31, 146, 210–214
requests, 73–74
responses, 68–74
terms of service, 204
version differences, 199

Google Maps web applications, 13
Google Mini search appliance, 204
Google search, 316
Google services, 200–201
Google Sightseeing, 202–203
Google SketchUp objects, 203
googlemapsbook blog, 21

■INDEX 353

Find it faster at http://superindex.apress.com
/

7079chIDX.qxd 7/28/06 12:55 PM Page 353

GoogleMapsUtility class, 177, 180
GOverlay class, 146, 167, 214–216, 218–220,

329–330
GOverviewMapControl class, 220
GPoint class, 199, 335
GPolyline class, 146, 275, 333–334
GProjection class, 176, 238, 242–243, 344
graphical information systems (GIS), 285,

288, 289–290
gravity, data on, 321
great-circle path, 266–269, 273
grid clustering method, 162, 191
GScaleControl, 21, 220, 223
GSize class, 335–336
GSmallMapControl, 21, 220
GSmallZoomControl, 21, 220
GTile class, 176
GTileLayer class, 238, 246, 251–252, 254,

342–343
GUnload(), 20
GXml class, 346–347
GXmlHttp class, 36, 48, 49–54, 57–59, 346
GXsIt class, 347

■H
hail, data on, 320
handleMapClick() method, 276
handleResize() method, 130
handleSearch() method, 279
Haversine method of calculating great-circle

distance, 268–269
head section of map, 15–16
height, accessing client area, 129–130
highways, 200, 290
hot springs, data on, 320
HTML documents

childless elements, 132
downloading, 113–114
extracting data from, 97, 113–114, 117,

315–316, 322
layering on, 121–123
referencing external API from, 19
separating from Cascading Style Sheets, 18

hurricanes, data on, 320
hybrid maps, 237

■I
icons, 59, 61–62, 220–223. See also GIcon

class
ImageMagick, 250–251
images

background, 169, 172, 175
preparing for display, 249
preslicing, 246, 249–250
of/from space, 247–248, 253, 321

implode() method (PHP), 108
import scripts, protecting, 102

importing data, 101–102, 104, 111, 117, 139.
See also screen scraping

IN clause (SQL), 108
indexing, advantages, 148
index.php file, 14, 18, 19
info windows

classes for, 330–331
closing, 44–45
creating, 38–39, 45–46, 57
custom, 226–227, 232–237
example, 24
forms, embedding, 39–42, 44
limitations, 42, 44, 146
location, 42
opening, 23–24, 26
pan adjustments, 236
positioning, 232–233
retrieving information from, 49, 52, 226
simulating on user click, 186
sizing, 46
styling, 47
tabs, adding, 223, 225–226
uses, 37

information bubbles, 21, 23, 26
infowindowclose events, 35
init() method, 20, 24
initializePoint() method, 276–277
innerHTML property, 132
INSERT statement (SQL), 102
instantiation, 21
intellectual property, 113, 117
interactivity, map, 31, 146, 210–214
international date line, 283
Internet Explorer, 20, 121, 130
interpolation, 288
inverse-tangent, 262

■J
Japan, addressing in, 290
JavaScript

advantages/disadvantages, 147
characteristics, 129
client-side script for custom overlay, 170
closure and, 135–136
code, separating from content, 18–19
coding methodology, 127, 130, 132–133, 137
destroying objects, 20
Google Maps API and, 48
initialization, location of instructions for,

19
limitations, 128
loops, 28–29
nonprimitives, passing as parameters, 265
web page interaction with, 212

JavaScript Geocoder, 74–75
JavaScript Object Notation (JSON), 27, 147, 188
joins (SQL), 108

■INDEX354

7079chIDX.qxd 7/28/06 12:55 PM Page 354

■K
Keyhole Markup Language (KML), 3–5, 202
keys, 13–14
Koch, Peter-Paul, 129

■L
large data sets, 145, 146, 147
lat() method, 37
latitude. See also geocoding services, web

service for
capital cities, 114
converting to Cartesian coordinates, 271
converting to postal addresses, 63
described, 18
forms, populating in, 42
Mercator projections and, 154
retrieving, 37
viewing, 17

latlng variables, 35, 37
layering on web pages, 121–123
layering tiles, 176–177, 244, 246. See also

GTileLayer class
layers, data, 202–203
legal issues, 113, 117
lengths, calculating, 262
Levenshtein distance, 309
libcurl library, 66
libraries, implementing Ajax via, 48
ll parameter, 17
lng() method, 37
load flashing, 196–197
loadBackground() method, 172
loading activity, indicators of, 136–138
longitude. See also geocoding services, web

service for
capital cities, 114
converting to Cartesian coordinates, 271
converting to postal addresses, 63
described, 18
forms, populating in, 42
measuring, 283
Mercator projections and, 154
retrieving, 37
viewing, 17

loops (JavaScript), 28–29
lunes, 270

■M
magnetism, data on, 321
map division of body section, 15
map functions file, separating from marker

data file, 18
map variables, 33–34
map_data.php, 18–19, 28
map_functions.js file, 18–19, 28, 49
mapping services, free, 5. See also Wayfaring

maps. See also projections; user interface
centering on location, 16–17, 23
controlling, 21
interactive, 31, 146, 210–214
location, specifying new, 16–18
mathematical formulas for, 172
sizing, 120–121, 129–130
static, 31
structure, 15–16
types, 237
unloading, 20
wrapping, 154, 180, 254
zooming in on, 46

marker clicks, detecting, 24
marker data file, separating from map

functions file, 18
markers. See also clustering

creating, 21, 23, 44–45
filtering, 139–142
grouping, 261
html value, 57
iterating through, 28–29
keeping, 36
plotting, 22, 26, 27, 59–62
retrieving from server, 57–59
saving information on, 26, 27, 45, 49–52
tracking, 196–197

mashup, term, 10
Math objects, resources for, 269
maximizing maps, 120–121
maxResolution() method, 246
memory management, 20, 102, 108–109
Mercator projections. See also

GMercatorProjection class
distortion caused by, 239, 241–242, 267
map wrapping and, 154
mathematical formulas, 172, 177, 241
transverse, 281
UTM coordinates, 281
zoom level and, 245

meridian, map wrapping beyond, 180, 254
metaphone() method, 309
methodload() method, 16
Microsoft MapPoint Web Service, 86
MiniXML, 66
minResolution() method, 246
mouse events, 215
mouse position, finding, 211–212
moveend events, 35, 154
movement, tracking user, 197–198
Mutual UFO Network, 322
MySQL, 27, 102, 103, 110–111

■N
names, parsing for alternative place, 305
namespaces, XML, 65

■INDEX 355

Find it faster at http://superindex.apress.com
/

7079chIDX.qxd 7/28/06 12:55 PM Page 355

NASA (National Aeronautics and Space
Administration), data/images from,
247–248, 253, 321

National Center for Atmospheric Research
(NCAR), 316

National Geophysical Data Center (NGDC),
319

National Oceanographic and Atmospheric
Administration (NOAA), data from,
319–321

National UFO Reporting Center, 322
NCAR (National Center for Atmospheric

Research), 316
new keyword, 21
NGDC (National Geophysical Data Center),

319
NOAA (National Oceanographic and

Atmospheric Administration), data
from, 319–321

normal maps, 237

■O
objects, 26–27
onload events, 16, 19, 24
onreadystatechange() method, 49, 52–54
onresize events, 129
onsubmit, browser compatibility and, 41
openInfoWindow() method, 38, 40, 44–45
openInfoWindowHtml() method, 24, 25, 44,

56
optimization. See also client-side processes,

optimizing; server-side processes,
optimizing

choosing method for, 198
flashing, reducing, 196–197
importing data, 102, 111, 139
movement, tracking user, 197–198
tips for, 145, 198
zoom levels and, 149–150, 155, 160–161,

167, 172, 175–176, 180
outcodes, 291
overlay variables, 35
overlays. See also addOverlay() method;

GOverlay class
background image, 169, 172, 175
client-side, 170
contents, potential, 214
custom, 146, 167–169
custom detail overlay method, 167–170,

172–173, 175–176
defined, 167
influence of, 214
limitations, 146
panes, choosing for, 214–215
server-side, 146
tool tip example, 216–220

■P
panes, map, 214–215
parentheses after function name, 20
parsing scripts, protecting, 102
pattern matching, fuzzy, 294, 309
PHP, 106–108, 300
PHP CURL, 66, 71–72
PHP SimpleXML, 66, 72, 88
pins. See markers
PLACE fields (Tiger/Line data), 296, 305–306,

309
place names, parsing for alternative, 305
planar projections, 240
points. See markers
polygons, calculating area of, 272–273
polylines, 146, 274–276, 280–281. See also

GPolyline class
pop() method, 265
POST method, sending data via, 49
postal codes, 63, 288–289, 291
PostgreSQL, view feature support, 110–111
preslicing images, 246, 249–250
projections, map, 238–243, 248. See also

GProjection class; Mercator
projections

Prototype library, 48
Pythagorean theorem, 262, 268. See also

angles

■Q
quantities, calculating, 261–262, 263–266,

269–273

■R
RA.dat file (ASR database), 98–99
radians, 262–263
readyState property of request object, 52
redrawPolyline() method, 276–278
regular expressions (PHP), 117
responseXML property, 55
REST (Representational State Transfer), 67
REST-based geocoder example, 292–293, 305
retrieveMarkers() function, 57–58
Road Network File (RNF), 290
roads, data on, 200, 290, 311
Ron Jon Surf Shop, 63–64, 73–74
routing system, 199–200
RTSQ field (Tiger/Line data), 297

■S
Safari, garbage collection in, 20
Sam Stephenson’s Prototype library, 280
satellite maps, 237
Scalable Vector Graphics (SVG), 275
scheduling tasks, 112–113
screen, finding place on, 211–212

■INDEX356

7079chIDX.qxd 7/28/06 12:55 PM Page 356

screen scraping, 97, 113–114, 117, 315–316,
322

script elements (head section of map), 15, 16,
19

scripts
browser security and, 48, 102
formatting output, 72
protecting, 102
XmlHttpRequest object-based, 48
XSS, 56

scrollbars, 121, 125
search database, 200–201
search, Google, 316
security

browser, 48, 102, 175, 185
database, 294

SELECT queries, multitable, 106, 108–109
selection, controlling current, 134–135
“Separating behavior and structure” (Koch),

127
server side overlays, 146
server-client communication, 146, 147
server-side information storage. See SQL
server-side processes, optimizing

benefits, 148
boundary method, 149–150, 153–155
clustering method, 161–163, 165, 167, 198
common point method, 155–158, 160
custom detail overlay method, 167–170,

172–173, 175–176
custom tile method, 176–177, 180–182,

185–186, 198
setAttribute() method, 41
setCenter() method, 16, 23
shadows, adding, 227, 235
showMapBlowup() method, 46
side panels, 124–127, 131–132, 134–136
SimpleXML, 66, 72, 88
sizing info, windows/maps, 46, 120–121,

129–130
sort file system utility (Unix), 102
soundex() function, 309
space-related data, 247–248, 253, 321, 322
spheres

calculating area on, 261–262, 269–273
calculating distances on, 83, 266–267

SQL. See also MySQL; PostgreSQL
combining data from, 106–107
data storage in, 52
importing data into, 102, 111
retrieving data from, 52, 106–110
syntax, 102, 108, 109–110
views, 106, 110–111

src attribute, 15
Stephenson’s Prototype library, 280
storeMarker() function, 49–50

string matching, partial, 294, 309
strip_tags() function (PHP), 115
style attribute, 16
style sheets, 18, 119–120, 129, 275
substr() method, 303
surfaceDistance() method, 155, 189
SVG (Scalable Vector Graphics), 275

■T
tabs, adding to info windows, 223, 225–226
TextualZoomControl, 220
TIGER/Line data (for Topologically

Integrated Geographic Encoding and
Referencing System)

changes to, 289
data in, 316–318
FEAT identifiers, 296, 305
ignoring information in, 302
latitude/longitude decimal information,

303
non-integer address ranges, 311
PLACE fields, 296, 305–306, 309
RTSQ field, 297
street type/direction information, 311
structure, 294–297, 299–300, 311
TLID fields, 296, 305–306, 309
using, 289

tiles. See also custom tile method; GTile class;
GTileLayer class; overlays

creating, 176, 210
layering, 176–177, 244, 246
size of, 180, 249
storage requirements, 245
zooming in on, 252–253

TLID fields (Tiger/Line data), 296, 305–306,
309

tool tips, 216–220
toolbars, 121–124, 130
Topologically Integrated Geographic

Encoding and Referencing System.
See TIGER/Line data

tornadoes, data on, 320
transverse Mercator projections, 281. See also

Mercator projections
trigger() method, 35, 212–214
tsunamis, data on, 320

■U
unidentified aerial phenomena (UAPs), data

on, 322
unidentified flying objects (UFOs), data on,

322
United Kingdom postal code information,

290
Universal Transverse Mercator (UTM)

coordinates, 281

■INDEX 357

Find it faster at http://superindex.apress.com
/

7079chIDX.qxd 7/28/06 12:55 PM Page 357

UPDATE statement (SQL), 102
updateMarkers() function, 188
urlencode() function, 72, 79
URLs, retrieving, 60–61
US Board on Geographic Names, 319
US Census Bureau data, 285, 288–289,

294–295, 318. See also Tiger/Line
data

US National Geospatial-Intelligence Agency
(US-NGA), 290

user interface
body class and, 126–127, 134
buttons, 128
limitations, computer, 146
loading indicators, 136–138
paneled layout, 130–131
scrollbars, 121, 125
shadows, 227, 235
side panels, 124–127, 131–132, 134–136
sizing, 46, 120–121, 129–130
tool tips, 216–220
toolbars, 121–124, 130

US-NGA (US National Geospatial-
Intelligence Agency), 290

UTM (Universal Transverse Mercator)
coordinates, 281

■V
var variables, storing location information in,

19
Vector Markup Language (VML), 275
vectors, three-dimensional, 272
ViaMichelin.com, 86
views (SQL), 106, 110–111
Visible Earth project, 247–248, 253
VML (Vector Markup Language), 275
volcanoes, data on, 319–320

■W
Wayfaring, 5–10
weather, data on, 320–321
web pages. See HTML documents
website input, filtering, 56

WHERE clauses (SQL), 109–110
wind, data on, 320
Windows Live Local, 122
World Wind project, 321–322
wrappers, content, 130
writeUrl() method, 210

■X
xAL (eXtensible Address Language), 70, 74
XHTML, separating from code, 18
XML

address data files, 63–64
appearance, 18, 119–120, 129, 275
case-sensitivity, 72
DOM methods, parsing with, 54–56
namespaces, 65
for permanent data storage, 27
received by web browsers, 55
response node values, 54
retrieving, 52
searching, 55
storing marker information in, 51–52
type attribute, 54–55

xmlDoc.documentElement, 55
xmlDoc.documentElement.

getElementsByTagName(), 59
XmlHttpRequest object-based scripts, 48
XSS (cross-site scripting), 56
XssHttpRequest objects, 48

■Y
Yahoo Geocoding API, 75–80, 204

■Z
zoom levels

data optimization and, 149–150, 155,
160–161, 167, 172, 175–176, 180

on maps, 46
textual zoom controls, 220
on tiles, 252–253
triggering actions based on, 212–213
version differences, 199

zoomend events, 154

■INDEX358

7079chIDX.qxd 7/28/06 12:55 PM Page 358

	Beginning Google Maps Applications with PHP and Ajax: From Novice to Professional
	Table of Content
	PART 1 Your First Google Maps
	Chapter 1 Introducing Google Maps
	Chapter 2 Getting Started
	Chapter 3 Interacting with the User and the Server
	Chapter 4 Geocoding Addresses

	PART 2 Beyond the Basics
	Chapter 5 Manipulating Third-Party Data
	Chapter 6 Improving the User Interface
	Chapter 7 Optimizing and Scaling for Large Data Sets.
	Chapter 8 What’s Next for the Google Maps API?

	PART 3 Advanced Map Features and Methods
	Chapter 9 Advanced Tips and Tricks
	Chapter 10 Lines, Lengths, and Areas
	Chapter 11 Advanced Geocoding Topics.

	PART 4 Appendixes
	Appendix A Finding the Data You Want
	Appendix B Google Maps API.

	Index

