THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Beginning

Google Maps
Applications
with PHP and Ajax

From Novice to Professional

Build awesome web-based mapping applications with this powerful API!

Michael Purvis, Jeffrey Sambells,
and Cameron Turner

Foreword by Mike Pegg,
Founder of the Google Maps Mania Blog

Apress’

Beginning Google Maps
Applications with
PHP and Ajax

From Novice to Professional

Michael Purvis
Jeffrey Sambells
and Cameron Turner

Apress-

Beginning Google Maps Applications with PHP and Ajax: From Novice to Professional
Copyright © 2006 by Michael Purvis, Jeffrey Sambells, and Cameron Turner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-707-1
ISBN-10 (pbk): 1-59059-707-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Technical Reviewer: Terrill Dent

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Elizabeth Seymour

Copy Edit Manager: Nicole LeClerc

Copy Editor: Marilyn Smith

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Kinetic Publishing Services, LLC

Proofreader: Liz Welch

Indexer: Beth Palmer

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section
or at the official book site, http://googlemapsbook.com.

To Anne and Jim, that with God’s grace,
I'might one day be so loving a parent.
—Michael Purvis

Dedicated to my loving wife, Stephanie, always by my side as my navigator in life.
May we never lose our way in this crazy world.
And also to my parents, Frank and Linda,
who taught me to always look beyond the horizon.
—Jeffrey Sambells

I dedicate this book to my amazing wife, Tanya, and our son, Owen.
Tanya is the ultimate teammate and life partner—
always willing to dive into an adventure or opportunity regardless of the size.
I'd also like to thank my parents, Barry and Lorna, for supporting me
in all my ambitions and encouraging me to take risks and pursue dreams.
Without all of you, I would never have agreed to write my first book
about a moving-target topic such as Google Maps,
on a compressed timeline, with a newborn baby!
To everyone else who helped out in the last few months, thank you.
We couldn’t have completed this book without your help and patience.
—Cameron Turner

Contents at a Glance

FOrBWOrd ... XV
Aboutthe AUTNOTS Xix
About the Technical Reviewer XXi
ACKNOWIBdgMENtS Xxiii
PART 1 Your First Google Maps

CHAPTER 1 Introducing Google Maps 3

CHAPTER 2 GettingStarted i, 13

CHAPTER 3 Interacting with the User and the Server 31

CHAPTER 4 Geocoding Addresses...................ccoviiiiiiiiainaiin.. 63
PART 2 Beyond the Basics

CHAPTER 5 Manipulating Third-PartyData 97

CHAPTER 6 Improving the User Interface.................................. 119

CHAPTER 7 Optimizing and Scaling for Large Data Sets.................... 145

CHAPTER 8 What’s Next for the Google MapsAPI?......................... 199
PART 3 Advanced Map Features

and Methods

CHAPTER 9 AdvancedTipsandTrickscccooiiiiiiiin... 209

CHAPTER 10 Lines,Lengths,andAreas..............................cooutt. 261

CHAPTER 11 Advanced Geocoding Topics................................... 285
PART 4 Appendixes

APPENDIX A Findingthe DataYouWant 315

APPENDIX B Google MapsAPI............. ... i, 323

INDEX ... 351

Contents

FOrBWOrd ... XV

Aboutthe AUTNOTS Xix

About the Technical Reviewer XXi

ACKNOWIBdgMENtS Xxiii
PART 1 Your First Google Maps

CHAPTER 1 Introducing GoogleMaps.................................... 3

KML:Your FirstMap ... 3

Wayfaring: Your Second Map................ ... i 5

Adding the FirstPoint 6

Adding the FlightRoute ...t 7

Adding the Destination Point 8

AddingaDrivingRoute...............l 9

What's Next? ... 10

CHAPTER 2 GettingStarted... 13

The FirstMap. 13

KeyingUp ... 13

Examiningthe Sample Map.................................. 15

Specifying a New Location. 16

Separating Code from Content 18

Cleaning Up. ... 20

Basic Interaction 21

Using Map Control Widgetscoiiet. 21

Creating Markers...............co i 21

Opening InfoWindowscc i, 23

Alistof Points. 26

Using Arrays and Objectscoooiiiiiiin.s. 26

lterating. ... 28

SUMMArY 29

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

PART 2

CHAPTER 5

Interacting with the User and the Server.................. 31
GoingonaTreasure Hunt........... ..., 32
Creating the Map and Marking Points 33
StartingtheMap 33
Listeningto UserEvents. ...t 35
Asking for More Information with an Info Window. 37
Creating an Info Windowonthe Map.......................... 38
Embedding a Form into the InfoWindow. 39
Avoiding an Ambiguous Statel 44
Controlling the Info Window Size. 46
Using Google’s Ajax Object.oo i 48
Saving DatawithGXmIHttp 49
Parsing the XML Document Using DOM Methods 54
Retrieving Markers fromthe Server................................ 57
Adding Some Flair.c i 59
SUMMArY 62
Geocoding Addresses..................................L. 63
Creating an XML File with the AddressData. 63
Using Geocoding Web Services. ..., 65
Requirements for Consuming Geocoding Services 66
The Google Maps APl Geocodercovvievinnn.. 67
The Yahoo Geocoding APl. il 75
GEOCOdBILUS\t 80
GEOCOUBI.CAttt 83
Services for Geocoding Addresses Outside Google’s Coverage. . .. 85
Caching LoOKUPS.o 86
Building a Store LocationMapl 90
SUMMArY ... 93

Beyond the Basics

Manipulating Third-Party Data............................. 97
Using Downloadable TextFiles ...t 97
Downloading the Database 98
ParsingCSVData................ooiiiiiii 101
Optimizingthe Import.................. i, 102

Using Your New Database Schema........................... 106

CHAPTER 6

CHAPTER 7

CONTENTS

SCreen SCrapingt 113
AScraping Example 114
Screen Scraping Considerations............................. 17

SUMMANY .. 118

Improving the User Interface.............................. 119

CSS:ATouchof Styleo o . 119
MaximizingYourMap 120
Adding Hovering Toolbars.ooiiii.t. 121
Creating Collapsible Side Panels. 124

Scripted Style. ... 126
Switching Up the Body Classes.............................. 126
Resizing with the Power of JavaScript........................ 129
Populating the Side Panel. 131
Getting Side Panel Feedback................................ 134

Warning, Now Loading ... 136

Data PointFiltering 139
Showing and Hiding Points 140
Discovering Groupings ... 140
Creating Filter Buttons 141

SUMMANY ... 143

Optimizing and Scaling for Large Data Sets 145

Understanding the Limitations 145

Streamlining Server-Client Communications 146

Optimizing Server-Side Processing 148
Server-Side BoundaryMethod 149
Server-Side Common Point Method 155
Server-Side Clustering oo i 161
Custom Detail Overlay Method 167
CustomTile Method. i, 176

Optimizing the Client-Side User Experience 186
Client-Side Boundary Method 187
Client-Side Closest to a Common Point Method. 188
Client-Side Clustering. ... 191
Further Optimizationscooiints. 196

SUMMANY ... 198

ix

X

CONTENTS

CHAPTER 8

PART 3

CHAPTER 9

What’s Next for the Google Maps API? 199
Driving Directions 199
Integrated Google SErvices ..o, 200
KMLData ... 202
More Datalayers ... 202
Beyond the Enterprise 204
Interface Improvements.............. 204
SUMMANY .. 205

Advanced Map Features
and Methods

Advanced Tipsand Tricks 209
DebuggingMaps. ... 209
Interacting with the Map fromthe API............................. 210
Helping You FindYourPlace................................. 211
Force Triggering Events with GEvent 212
CreatingYourOwnEvents 214
Creating Map Objects with GOverlay 214
Choosing the Pane forthe Overlay 214
Creating a Quick Tool TipOverlay 216
Creating Custom Controlsot 220
Creating the Control Object 222
Creating the Container, 222
Positioning the Containercoones. 222
Usingthe Controlco i 223
Adding Tabs to InfoWindows. 223
Creating a Tabbed Info Window. 224
Gathering Info Window Information and Changing Tabs......... 226
Creating a Custom InfoWindow 226
Creating the Overlay Object and Containers................... 232
Drawing a LittlelnfoWindow. 232
Implementing Your Own Map Type, Tiles, and Projection............. 237
GMapType: Gluing It Together 237
GProjection: Locating Where ThingsAre 238
GTileLayer: Viewing Images.......................ocoiit. 244
The Blue Marble Map: Putting It All Together 247

SUMMANY ... 258

CONTENTS

CHAPTER 10 Lines, Lengths,andAreas................................. 261
StartingFlat 261
Lengthsand Angles............ i 262
ArEaS 263
Movingto Spheres 266
TheGreatCircle................co i, 266
Great-Circle Lengths........... ... 268
Areaon a Spherical Surface 269
Working with Polylines 274
Building the PolylinesDemo 274
Expanding the PolylinesDemoooo.. 280
What About UTM Coordinates?ccoiiia.. 281
Running Afoul of the Date Lineoiiiit. 283
SUMMANY .. 284
CHAPTER 11 Advanced Geocoding Topics 285
Where Does the Data Come From? 285
Sample Data from Government Sources...................... 286
Sourcesof Raw GISData................................... 289
Geocoding Based on Postal Codes................................ 290
Grabbing the TIGER/Line by the Tail 294
Understanding and DefiningtheData 295
Parsing and Importingthe Data.............................. 299
Building a Geocoding Service ...l 305
SUMMANY ... 311

PART 4

APPENDIX A

Appendixes

Findingthe DataYouWant 315
Knowing What to Look For: Search Tips 315
Finding the Information..................................... 315
Specifying SearchTerms ...t 316
Watching for Errors 316
The Cat Came Back: Revisiting the TIGER/Line 316
More on AIrportS ... 318
The Government Standard: The Geonames Data.................... 319

Shake, Rattle, and Roll: The NOAA Goldmine 319

Xi

Xii CONTENTS

APPENDIX B

For the Space AficionadoinYouooiiiiiat 321
Craterlmpacts o 321
UFO/UAP Sightings ... 322

Google MapsAPI... 323

Class GMap2. 323
GMap2 Constructor.................o i 323
GMap2 Methods.o 324

class GMapOptions 328
GMapOptions Properties. ...l 328

enum GMapPane. 328
GMapPane Constants 329

class GKeyboardHandlerl 329
GKeyboardHandler Bindings 329
GKeyboardHandler Constructor.............................. 329

interface GOverlay.............. 329
GOverlay Constructort 330
GOverlay Static Method 330
GOverlay Abstract Methods 330

class GInfoWindow 330
GInfoWindow Methods 330
GInfoWindow Event 331

class GInfoWindowTab i 331
GInfoWindowTab Constructor................................ 331

class GInfoWindowOptions. L. 331
GInfoWindowOptions Properties 331

class GMarkero 331
GMarker Constructor.l 332
GMarker Methods i 332
GMarker Eventso 332

class GMarkerOptions. 333
GMarkerOptions Properties ...t 333

classGPolyline.o 333
GPolyline Constructor L 333
GPolylineMethods.o it 333
GPolylineEvent...... 334

class Glcon 334
Glcon Constructor ... 334
GleconConstant.......... 334

Glcon Properties. 334

CONTENTS

classGPoint 335
GPoint Constructor.l 335
GPoint PropertieS............ocoiii 335
GPointMethodscoo i 335

Class GSize 335
GSize Constructorl 336
GSize Properties. 336
GSizeMethodsl 336

class GBoUNAS 336
GBounds Constructor 336
GBounds Properties. 336
GBoundsMethods 336

class GLatlng. 337
GLatLng Constructor...............oo 337
GLatLng Methods. ... 337
GLatLng Properties ...t 338

class GLatLngBounds 338
GLatLngBounds Constructor 338
GLatLngBounds Methodsccoiiiiiii it 338

interface GControl 339
GControl Constructor. L 339
GControl Methods i 339

class GControll 339
GControl Constructors............. ... i 339

class GControlPosition 339
GControlPosition Constructor................................ 340

enum GControlAnchor. L 340
GControlAnchor Constants.................................. 340

class GMapType. ... 340
GMapType Constructor ..., 340
GMapType Methods.co it 340
GMapType Constants 341
GMapType Event 341

class GMapTypeOptions. ... 341
GMapTypeOptions Properties. 342

interface GTileLayero 342
GTileLayer Constructort 342
GTileLayer Methods. L 342

GTileLayer Event 343

Xiii

Xiv

CONTENTS

class GCopyrightCollection. ool 343
GCopyrightCollection Constructor............................ 343
GCopyrightCollection Methods. 343
GCopyrightCollectionEvent 343

class GCopyright L 343
GCopyright Constructor....................., 343
GCopyright Properties. 344

interface GProjection. 344
GProjectionMethods...................... il 344

class GMercatorProjection............... L 344
GMercatorProjection Constructor 344
GMercatorProjection Methods. 345

namespace GEvent............., 345
GEvent StaticMethods, 345
GEventEvent....... 346

class GEventListener.c i 346

namespace GXmIHttp................ .. 346
GXmIHttp Static Method 346

namespace GXml. it 346
GXml Static Methods.l 347

Class GXSIto 347
GXslt Static Methods.coi i 347

namespace GLOg.t 347
GLog Static Methods. ... 347

enum GGeoStatusCode. 347
GGeoStatusCode Constants................................. 348

class GClientGeocoderco i 348
GClientGeocoder Constructor.cooiiint. 348
GClientGeocoder Methods 348

class GGeocodeCache 348
GGeocodeCache Constructor.ccooiiiis. 349
GGeocodeCache Methods 349

class GFactualGeocodeCache 349
GFactualGeocodeCache Constructor 349
GFactualGeocodeCache Method 349

Functionso 349

Foreword

In the Beginning. . .

In the history of the Internet, 2005-2006 will be remembered as the year when online mapping
finally came of age. Prior to 2005, MapQuest and other mapping services allowed you to look
up directions, search for locations, and map businesses, but these searches were limited, usu-
ally to the companies the services had partnered with, so you couldn’t search for any location.
On February 8, 2005, Google changed all that. As it does with many of its services, Google qui-
etly released the beta of Google Maps to its Labs incubator (http://labs.google.com) and let
word-of-mouth marketing promote the new service.

By all accounts, Google Maps was an instant hit. It was the first free mapping service to
provide satellite map views of any location on the earth, allowing anyone to look for familiar
places. This started the “I can see my house from here” trend, and set the blogosphere abuzz
with links to Google Maps locations around the world.

Like other mapping services, Google Maps offered directions, city and town mapping,
and local business searches. However, what the Google Maps engineers buried within its
code was something that quickly set it apart from the rest. Although unannounced and pos-
sibly unplanned, they provided the means to manipulate the code of Google Maps to plot
your own locations. Moreover, you could combine this base mapping technology with an
external data source to instantly map many location-based points of information. And all of
this could be done on privately owned domains, seemingly independent of Google itself.

At first, mapping “hackers” unlocked this functionality, just as video gamers hack into
games by entering simple cheat codes. They created their own mapping services using Google
Maps and other sources. One of the first these was Housingmaps.com, which combined the
craigslist.org housing listings with a searchable Google Maps interface. Next came Adrian
Holovaty’s chicagocrime.org, which offered a compelling way to view crime data logged by the
Chicago Police Department. These home-brewed mapping applications were dubbed “hacks,”
since Google had not sanctioned the use of its code in external domains on the Web.

The major change came in June 2005, when Google officially introduced the Google Maps
API, which is the foundation for this book. By releasing this API, Google allowed programmers
the opportunity to build an endless array of applications on top of Google Maps. Hundreds of
API keys were registered immediately after the announcement, and many sites integrating
Google Maps appeared within days. The map mashup was born.

The Birth of the Google Maps Mania Blog

The Google Maps labs beta site had been public for barely a month when I tried it for the first
time. I was fascinated. While combing through the blogosphere looking for more information,
I started to see a trend toward Google Maps hacks, how-to sites, Firefox extensions, and web-
sites indexing specific satellite images. I thought that others could benefit from an aggregation
of all of these ideas into one themed blog. Thus, my Google Maps Mania blog was born.

Xvi FOREWORD

Google Maps Mania is more accurately described as a “meta-site,” as host Leo Laporte pointed
out when I was a guest on his NPR G4techTV radio show in November 2005.
April 13, 2005, saw these as my first posts:

Title: Google Maps Mania

If you're like me you were absolutely floored when Google came out with the Google
Maps service. Sure, it’s just another mapping service. Until you realize it’s full potential.
The ability to toggle between regular street/road maps and a satellite view is unreal. I've
started to see a lot of buzz around the blogging community about Google Maps so I've
decided to help you keep up with the Google Maps related sites, blogs and tools that are
cropping up. Stay tuned.

Title: Google Sightseeing

The first Google Maps related site of note is Google Sightseeing. This blog tracks interest-
ing satellite shots as submitted by its visitors, then organizes them by interest area like
buildings, natural landmarks and stadiums. It’s a pretty nifty site. Google Sightseeing even
posted my suggestion of Toronto’s Rogers Centre (Skydome) and the CN Tower!

Title: Flickr Memory Maps

Here’s a Flickr group that took off fast. Memory Maps is a Flickr group that contains maps
with captions describing memories they have of those areas or specific notes about differ-
ent areas. Kind of cool.

Title: Make your own multimedia Google map

Google Blogoscoped tipped me off on this link. Seems Engadget has a page which gives
some pretty good directions on how to create your own annotated multimedia Google
map. There is some pretty serious direction here which includes inserting pictures and
movies from the annotations. I'd like to see an example of this.

Title: My GMaps

myGmaps enables you to create, save and host custom data files and display them with
Google Maps. Create push-pin spots on any map of your choice. Mark your house, where
an event will be held, or the route of a fun-run as a few examples. Then you can publish
the map that you've created to your own website.

These postings represented an interesting cross-section of the ideas, concepts, and web-
sites that I had come across in the two short months since Google Maps came to the Web. In
the year between the start of Google Maps Mania and the release of the second-generation API
(which this book is based on) in April 2006, I have made over 900 posts and attracted more than
6,000 daily readers to the blog, including the architects of the API itself. I've been Slashdotted,
Dug (at Digg), and linked to from the New York Times site, as well as the sites of hundreds of
other mainstream papers and magazines. In June 2006, Google arranged for my entire family to
travel across the country so I could speak at the Google Geo Developer Day in advance of the
Where 2.0 conference.

FOREWORD

So many interesting mashups have been created using the Google Maps API that it’s
becoming impossible to keep up with all of them. I liken this to the early days of the Web when
search directories began to manually catalog new web pages as they came online. The volume
of new sites quickly became too huge to handle manually, and Google itself was born.

You can see why the Google Maps API offers the key for the next killer apps on the Web. It
has been the missing link to take the Web to the next level.

This book will provide you the means to take part in this evolution of the Web. I hope to be
posting about the interesting and unique map creations that you build after reading this book.
Your creations will inspire others to do similar things, and together, we will continue to grow
the Internet, one mapping application at a time. Let me know if you build something cool!

Mike Pegg
Google Maps Mania (http://www.gmapsmania.com)

Xvii

About the Authors

MICHAEL PURVIS is a Mechatronics Engineering student at the
University of Waterloo, in Ontario. He is a mostly self-taught pro-
grammer. Prior to discovering PHP, he was busy making a LEGO®
Mindstorms kit play Connect 4. Currently, he maintains an active
community site for classmates, built mostly from home-brewed
extensions to PunBB and MediaWiki.

He has written about CSS for Position Is Everything, and occa-
sionally participates in the css-discuss mailing list. He particularly
enjoys those clever layouts that mix negative margins, relative posi-
tioning, and bizarre float tricks to create fiendish, cross-browser,
flexible-width concoctions. These and other nontechnical topics
are discussed on his weblog at uwmike.com.

Offline, he enjoys cooking, cycling, and social dancing. He has worked with We-Create, Inc.
on a number of PHP-based projects, and has a strong interest in independent web standards.

JEFFREY SAMBELLS is a graphic designer and self-taught web appli-
cations developer best known for his unique ability to merge the
visual world of graphics with the mental realm of code. With a
Bachelor of Technology degree in Graphic Communications Man-
agement along with a minor in Multimedia, Jeffrey was originally
trained for the traditional paper-and-ink printing industry, but he
soon realized the world of pixels and code was where his ideas
would prosper. In late 1999, he cofounded We-Create, Inc., an Inter-
net software company based in Waterloo, Ontario, which began
many long nights of challenging and creative innovation. Currently,
as Director of Research and Development for We-Create, Jeffrey is
responsible for investigating new and emerging Internet technologies and integrating them using
web standards-compliant methods. In late 2005, he also became a Zend Certified Engineer.

When not playing at the office, Jeffrey enjoys a variety of hobbies from photography to
woodworking. When the opportunity arises, he also enjoys floating in a canoe on the lakes of
Algonquin Provincial Park or going on an adventurous, map-free, drive with his wife. Jeffrey
also maintains a personal website at JeffreySambells.com, where he shares thoughts, ideas,
and opinions about web technologies, photography, design, and more. He lives in Ontario,
Canada, eh, with his wife, Stephanie, and their little dog, Milo.

Xix

XX

ABOUT THE AUTHORS

CAMERON TURNER has been programming computers since his first
VIC 20 at age 7. He has been developing interactive websites since
1994. In 1999, he cofounded We-Create, Inc., which specializes in
Internet software development. He is now the company’s Chief
Technology Officer. Cam obtained his Honors degree in Computer
Science from the University of Waterloo with specialization in
applied cryptography, database design, and computer security.

Cam lives in Canada’s technology capital of Waterloo, Ontario,
with his wife, Tanya, son Owen, and dog Katie. His hobbies include
biking, hiking, water skiing, and painting. He maintains a personal
blog at CamTurner.com, discussing nontechnical topics, thoughts,
theories, and family life.

About the Technical Reviewer

TERRILL DENT is enrolled in Honors Mathematics at the University of
Waterloo. His major interests center around Internet culture, twentieth
century history, and economic theory. Terrill.ca is home to his weblog,
and MapLet.ca is the front for his web application ventures, where he
lets his acute attention to detail show through. Apart from work, he busies
himself with fine arts, cycling, and an occasional novel.

XXi

Acknowledgments

The authors would like to thank Mike Pegg of Google Maps Mania for giving Apress our names
when contacted about doing a book on Google Maps. This book would not have been possible
without his encouragement, support, generosity, and friendship.

Thanks to Terrill for finding the errors of our bleary-eyed coding sessions and helping make
this book what it is today.

Thanks to Jason, Elizabeth, Marilyn, Katie, Julie, and the rest of the team at Apress. We hope
that working with us has been as much fun for you as working with you was for us.

XXxiii

PART 1

Your First
Google Maps

CHAPTER 1

Introducing Google Maps

It’s hard to argue that Google Maps hasn’'t had a fundamental effect on the mapping world.
While everyone else was still doing grainy static images, Google developers quietly developed
the slickest interface since Gmail. Then they took terabytes of satellite imagery and road data,
and just gave it all away for free.

We're big fans of Google Maps and excited to get started here. We've learned a lot about
the Google Maps API since it was launched, and even more during the time spent writing and
researching for this book. Over the course of the coming chapters, you're going to move from
simple tasks involving markers and geocoding to more advanced topics, such as how to acquire
data, present many data points, and provide a useful and attractive user interface.

Alot of important web technologies and patterns have emerged in parallel with the Google
Maps API. But whether you call it Ajax or Web 2.0 is less important than what it means: that
the little guy is back.

You don'’t need an expensive development kit to use the Google Maps API. You don’t need
a computer science degree, or even a lot of experience. You just need a feel for what’s important
data and an idea of what you can do to present it in a visually persuasive way.

We know you're eager to get started on a map project, but before we actually bust out the
JavaScript, we wanted to show you two simple ways of creating ultra-quickie maps: using KML
files and through the Wayfaring map site.

Using either of these approaches severely limits your ability to create a truly interactive
experience, but no other method will give you results as quickly.

KML: Your First Map

The map we're working on here is actually Google Maps itself. In June 2006, Google announced
that the official maps site would support the plotting of KML files. You can now simply plug
a URL into the search box, and Google Maps will show whatever locations are contained in the
file specified by the URL. We aren'’t going to go in depth on this, but we’ve made a quick exam-
ple to show you how powerful the KML method is, even if it is simple.

Note KML stands for Keyhole Markup Language, which is a nod to both its XML structure and Google
Earth’s heritage as an application called Keyhole. Keyhole was acquired by Google late in 2004.

CHAPTER 1 " INTRODUCING GOOGLE MAPS

We created a file called toronto.kml and placed the contents of Listing 1-1 in it. The paragraph
blurbs were borrowed from Wikipedia, and the coordinates were discovered by manually find-
ing the locations on Google Maps.

Listing 1-1. A Sample KML File

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.google.com/earth/kml/2">
<Document>
<name>toronto.kml</name>
<Placemark>
<name>CN Tower</name>
<description>The CN Tower (Canada's National Tower, Canadian National Tower),
at 553.33 metres (1,815 ft., 5 inches) is the tallest freestanding structure on land.
It is located in the city of Toronto, Ontario, Canada, and is considered the
signature icon of the city. The CN Tower attracts close to two million visitors
annually.

http://en.wikipedia.org/wiki/CN_Tower</description>
<Point>
<coordinates>-79.386864,43.642426</coordinates>
</Point>
</Placemark>
</Document>
</kml>

In the actual file (located at http://googlemapsbook.com/chapter1/kml/toronto.kml),
we included two more Placemark elements, which point to other well-known buildings in
Toronto. To view this on Google Maps, paste that URL into the Google Maps search field. Alter-
natively, you can just visit this link:

http://maps.google.com/maps?f=q8hl=en&q=http://googlemapsbook.com/chapter1/kml/
toronto.kml

You can see the results of this in Figure 1-1.

CHAPTER 1 " INTRODUCING GOOGLE MAPS

Help
Web Images Groups News Froogle Maps more »

GO (_)Sle Ihttp:,fjwww.googlemapsbook.com,‘chapterljkml,ftoronto.kml Search ﬁ:r‘;n;i::;:::

e.g., "hotels near lax” or "10 market st, san francisco

Maps Print (< Email &= Link to this page
: : R T T 1 AT 1)
.goog p! e I: - -
\I:E'!sr:-}ell‘ylngfgl'lltegtqf{?m www.googlemapsbook.com - C?;%?nlélk Map Satellite Hybria
e st \ W e R R ——
2 - W = wloronto—— e

s provided by a third party,

CN Tower

The CN Tower (Canada's National Tower, Canadian p ¥
National Tower), at 553.33 metres (1,815 ft., 5 inches) Lt}
is the tallest freestanding structure on land. It is E
located in the city of Toronto, Ontario, Canada, and is i
considered the signature icon of the city. The CN T
Tower attracts close to two million visitors annually.
http:/fen.wikipedia.org/wiki/CN_Tower

o
W
, CN Tower

, Rogers Centre

, Air Canada Centre

Figure 1-1. A custom KML data file being displayed at maps.google.com

Now, is that a quick result or what? Indeed, if all you need to do is show a bunch of locations,
it’s possible that a KML file will serve your purpose. If you're trying to link to your favorite fish-
ing spots, you could make up a KML file, host it somewhere for free, and be finished.

But that wouldn’t be any fun, would it? After all, as cool as the KML mapping is, it doesn’t
actually offer any interactivity to the user. In fact, most of the examples you’ll work through in
Chapter 2 are just replicating the functionality that Google provides here out of the box. But
once you get to Chapter 3, you'll start to see things that you can do only when you harness the
full power of the Google Maps API.

Before moving on, though, we’ll take a look at one other way of getting a map online
quickly.

Wayfaring: Your Second Map

A number of services out there let you publish free maps of quick, plotted-by-hand data. One
of these, which we’ll demonstrate here, is Wayfaring.com (Figure 1-2). Wayfaring has received
attention and praise for its classy design, community features (such as commenting and shared
locations), and the fact that it’s built using the popular Ruby on Rails framework.

6

CHAPTER 1 ©' INTRODUCING GOOGLE MAPS

LogIn
Blo Forums "
wayfarnng roiiow you, oliow me =Ll

Explore | Create Map | My Wayfaring Help

Maps, your way.

Explore Maps Now §

‘ Create Connect

ngto create a : your ma s, ; . Collaborate with others to build
onalized map. , and other creatures = new maps

Figure 1-2. Wayfaring.com home page

Wayfaring is a mapping service that uses the Google Maps API and allows users to quickly
create maps of anything they would like. For example, some people have made maps of their
vacations; others have identified interesting aspects of their hometown or city. As an example,
we'll walk you through making a quick map of an imaginary trip to the Googleplex, in Moun-
tain View, California.

Point your browser at http://www.wayfaring.com and follow the links to sign up for an
account. Once you've created and activated your account, you can begin building your map.
Click the Create link.

Adding the First Point

We'll start by adding the home airport for our imaginary journey. In our case, that would be
Pearson International Airport in Toronto, Ontario, Canada, but you could use the one closest
to you. Since Pearson is an international location (outside the United States), we need to drag
and zoom the map view until we find it. If you're in the United States, you could use instead
the nifty Jump To feature to search by text string. Figure 1-3 shows Pearson nicely centered
and zoomed.

CHAPTER 1 " INTRODUCING GOOGLE MAPS

User: camtumer | Sign Out | Settings

Blo Forums
wayfanng alLic

Edit Map Explore | Create Map | My Wayfaring Help

Map Editor

Name Compose Tag Describe Seftings

@ Add a Waypoint
"

AWaypoint can be reused in other maps

Add a Note
A Mote will exist only in this map

i + ; Add a Route

Tip: click on a marker to edit it

Advanced Options

Greasemonkey

(] Rl / Centennial Park < Back Next > Save Map
Goif Nl Map data @2006 Tete Alas & Sorms ot Use
_{a01]- Cancel

Latitude, Longitude

Figure 1-3. Lester B. Pearson International Airport, Toronto, Ontario

Once you've found your airport, you can click Next and name the map. After clicking
ahead, you should be back at the main Map Editor screen.

Select Add a Waypoint from the list of options on the right. You'll be prompted to name
the waypoint. We'll call ours “Lester B Pearson International Airport.” However, as we type, we
find that Wayfaring is suggesting this exact name. This means that someone else on some other
map has already used this waypoint, and the system is giving us a choice of using their point
or making one of our own. It’s a safe bet that most of the airports you could fly from are already
in Wayfaring, so feel free to use the suggested one if you would like. For the sake of complete-
ness, we'll quickly make our own. Click Next to continue.

The next two screens ask you to tag and describe this point in order to make your map
more searchable for other members. We'll add the tags “airport Toronto Ontario Canada” and
give it a simple description. Finally, click Done to commit the point to the map, which returns
you to the Map Editor screen.

Adding the Flight Route

The next element we're going to add to our map is a route. A route is a line made up of as
many points as you would like. We’ll use two routes in this example. The first will be a straight
line between the two airports to get a rough idea of the distance the plane will have to travel to
get us to Google’s headquarters. The second will be used to plot the driving path we intend to
take between the San Francisco airport and the Googleplex.

To begin, click Add a Route, name the route (something like “airplane trip”), and then
click your airport. A small, white dot appears on the place you clicked. This is the first point on
your line. Now zoom out, scroll over to California, and zoom in on San Francisco. The airport

CHAPTER 1 " INTRODUCING GOOGLE MAPS

we'll be landing at is on the west side of the bay. Click the airport here, too. As you can see in
Figure 1-4, a second white dot appears on the airport and a blue line connects the two points.
You can see how far your flight was on the right side of the screen, underneath the route label.
Wow, our flight seems to have been over 2000 miles! If you made a mistake and accidentally
clicked a few extra times in the process of getting to San Francisco, you can use the Undo Last
option. Otherwise, click Save.

User: camturner | Sign Out | Settings

Blog | Forums
wayfanng

Edit Map Explore | Create Map | My Wayfaring Help

Route Editor

Edit

Add a route

Draw a route on the map by clicking a sequence of poinis
with the mouse.

Route Label (required)
Airplane Ride

Length: 2376.56 miles

McNee Ranch
State Park

Mantara
State|Beach

A

Zipi 4
5 L
Latitude, Longitude

FOVIERED EY

Figure 1-4. Our flight landing at San Francisco International Airport

Adding the Destination Point

Now that you're in San Francisco, let’s figure out how to get to the Googleplex directly. Click
Add aWaypoint. Our destination is Google, so we've called the new point “The Googleplex”
and used the address box feature to jump directly to 1600 Amphitheatre Pky, Mountain View,
CA 94043. Wayfaring is able to determine latitude and longitude from an address via a process
called geocoding, which you'll be seeing a lot more of in Chapter 4.

To confirm you're in the right place, click the Sat button on the top-right corner of the
map to switch it over to satellite mode. You should see something close to Figure 1-5.

wayfanng

Edit Map
i o

Latitude, Longitude

Figure 1-5. The Googleplex

Excellent! Save that waypoint.

Adding a Driving Route

CHAPTER 1 " INTRODUCING GOOGLE MAPS

User: camtumer | Sign Out | Settings
Blog| Forums

Explore | Create Map | My Wayfaring Help
Map Editor

Name Compose Tag Describe Seftings

Add a Waypoint

AWaypoint can be reused in other maps

Add a Note

A Note will exist only in this map

Add a Route
Tip: click on a marker to edit it

Advanced Options

Greasemonkey

¥ '_[- < Back | Next> Save Map
1 - & £ =
[— g o

Next, let’s figure out how far of a drive we have ahead of us. Routes don't really have a starting
and ending point in Wayfaring from a visual point of view, so we can start our route from the
Googleplex and work our way backwards. Switch back into map (or hybrid) mode so you can
see the roads more clearly. From the Map Editor screen, select Add a Route and click the point
you just added. Use 10 to 20 dots to carefully trace the trip from Mountain View back up the
Bayshore Freeway (US Highway 101) to the airport. By our tracing, we end up with about 23
miles of fun driving on this California highway, as shown in Figure 1-6.

CHAPTER 1 " INTRODUCING GOOGLE MAPS

User: camturner | Sign Out | Settings

Blo Forums
wayfarnng Ll

Edit Map Explore | Create Map | My Wayfaring Help

Map Editor

Name Compose Tag Describe Seftings

Add a Waypoint

AWaypoint can be reused in other maps

Add a Note

A Mote will exist only in this map

Lower Crystal | ’, WS
Spring Resenvoir.-3

AL s Add a Route
N :
,,\‘\ Belm:
g : - e -
== (B opring Kol ; Sl Tip: click on a marker to edit it
Vi
|| Burleigh Murray Advanced Options
Ranch'st Park
@ Greasemonkey
Coogle "
Rl —

Latitude, Longitude

Figure 1-6. The drive down the Bayshore Freeway to the Googleplex

That'’s it. You can use the same principles to make an annotated map of your vacation or
calculate how far you're going to travel, and best of all, it’s a snap to share it. To see our map
live, visit http://www.wayfaring.com/maps/show/17131.

Of course, since this is a programming book, you're probably eager to dig into the code
and make something really unique. Wayfaring may be nice, but the whole point of a mashup is
to automate the process of getting a lot of data combined together.

Tip Mashup is a term that originates from DJs and other musicians who create new compositions by
“mashing” together samples from existing songs. A classic example of this is The Grey Album, which joins
the a capella versions of tracks from Jay-Z's The Black Album with unauthorized clips from The White
Album, by The Beatles. In the context of this book, mashup refers to the mashing of data from one source
with maps from Google.

What’s Next?

Now that these examples are out of the way, we hope you're eager to learn how to build your
own mashups from the ground up. By the end of Part 1 of this book, you'll have the skills to do
everything you've just done on Wayfaring (except the route lines and distances, which are cov-
ered in Chapter 10) using JavaScript and XHTML. By the book’s conclusion, you'll have learned
most of the concepts needed to build your own Wayfaring clone!

CHAPTER 1 " INTRODUCING GOOGLE MAPS

So what exactly is to come? We've divided the book into three parts and two appendixes.
Part 1 goes through Chapter 4 and deals with the basics that a hobbyist would need to get started.
You'll make a map, add some custom pins, and geocode a set of data using freely available
services. Part 2 (Chapters 5 through 8) gets into more map development topics, like building
a usable interface, dealing with extremely large groups of points, and finding sources of raw
information you may need to make your professional map ideas a reality. Part 3 (Chapters 9
through 11) dives into advanced topics: building custom map overlays such as your own info
window and tooltip, creating your own map tiles and projections, using the spherical equations
necessary to calculate surface areas on the earth, and building your own geocoder from scratch.
Finally, one appendix provides a reference guide to the Google Maps version 2 API, and another
points to a few places where you can find neat data for extending the examples here, and to
inspire your own projects.

We hope you enjoy!

11

CHAPTER 2

Getting Started

In this chapter, you'll learn how to create your first Google map project, plot some markers,
and add a bit of interactivity. Because JavaScript plays such a central role in controlling the
maps, you'll also start to pick up a few essentials about that language along the way.

In this chapter, you'll see how to do the following:

* Get off the ground with a basic map and a Google Maps API key.
» Separate the map application’s JavaScript functions, data, and XHTML.
¢ Unload finished maps to help browsers free their memory.

¢ Create map markers and respond to clicks on them with an information pop-up.

The First Map

In this section, you'll obtain a Google Maps API key, and then begin experimenting with it by
retrieving Google’s starter map.

Keying Up

Before you start a Google Maps web application, you need sign up for a Google Maps API key.
To obtain your key, you must accept the Google Maps API Terms of Use, which stipulate, among
other things, that you must not steal Google’s imagery, obscure the Google logo, or hold Google
responsible for its software. Additionally, you're prevented from creating maps that invade pri-
vacy or facilitate illegal activities.

Google issues as many keys as you need, but separate domains must apply for a separate
key, as each one is valid for only a specific domain and subdirectory within that domain. For
your first key, you'll want to give Google the root directory of your domain or the space in which
you're working. This will allow you to create your project in any subdirectory within your domain.
Visit http://www.google.com/apis/maps/signup.html (Figure 2-1) and submit the form to get
your key. Throughout this book, nearly all of the examples will require you to include this key
in the JavaScript <script> element for the Google Maps API, as we're about to demonstrate in
Listing 2-1.

13

14 CHAPTER 2 © GETTING STARTED

ene Google Maps APl - Sign Up =

Q:ZI' Eg i\ |G| http:/ fwww.google.com/apis/maps/signup.html v -::) |G\‘

%Disable' |2|Cookies ™ E:}CSS' S Forms* #images * '@'Infnrmatinn' [Z|Miscellaneaus * ﬂOutIine' EResizev '@Tnnls' LEViEWSDUrt
Use. =

Google Maps AFI Terms of Use

Thank you for using the Google Maps API! By using the Google Maps API
(the "Service"), you ("You") accept and agree to be bound by the
following terms and conditions (the "Terms of Use").

1. Service.

1.1 Description of Service. The AFI consists of Javascript that
allows You to display Google map images on your website, subject to
the limitations and conditions described below. The API is limited to
allowing You to display map images only, and does not provide You with
the ability to access the underlying map data, any services provided
by Google in connection with its maps service (such as local search or .
directions), or any other Google service. .
v

[*" I have read and agree with the terms and conditions (printable version)

My web site URL: |http://

Generate APl Key |

Q ‘ : ©2006 Google - Google Home - We're Hiring - Privacy Policy - Terms of Service
.)

<« r &

Done

BN

Figure 2-1. Signing up for an API key. Check the box, and then enter the URL of your webspace.

Note Why a key? Google has its reasons, which may or may not include seeing what projects are where,
which are the most popular, and which may be violating the terms of service. Google is not the only one that
makes you authenticate to use an API. Del.icio.us, Amazon, and others all provide services with APIs that
require you to first obtain a key.

When you sign up to receive your key, Google will also provide you with a very basic
“starter map” to help familiarize you with the fundamental concepts required to integrate
a map into your website. We'll begin by dissecting and working with this starter code so you
can gain a basic understanding of what’s happening.

If you start off using Google’s sample, your key is already embedded in the JavaScript.
Alternatively, you can—as with all listings—grab the source code from the book’s website at
http://googlemapsbook.com and insert your own key by hand.

Either way, save the code to a file called index.php. Your key is that long string of characters fol-
lowing key=. (Our key, in the case of this book’s website, is ABQIAAAA33EjxkLYsh9SEveh MphphQP1yws
R2bHIW2Br]l bW _10KXsyt8cxTKO5Zz-UKoJ6IepT1ZRxN8nfTRgw).

CHAPTER 2 © GETTING STARTED

Examining the Sample Map

Once you have the file in Listing 2-1 uploaded to your webspace, check it out in a browser.
And ta-da, amap in action!

Listing 2-1. The Google Maps API Starter Code

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Google Maps JavaScript API Example</title>
<script src="http://maps.google.com/maps?file=api&v=28amp;key=ABQIAAAAw
33EjxkLYsh9SEveh_MphphQP1yR2bHIW2Brl bW_10KXsyt8cxTKO5Zz-UKoJ6Iews
pT1ZRXN8nfTRgw" type="text/javascript"></script>
<script type="text/javascript">

//<1 [CDATA[

function load() {
if (GBrowserIsCompatible()) {
var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}

/711>
</script>
</head>

<body onload="load()" onunload="GUnload()">
<div id="map" style="width: 500px; height: 300px"></div>
</body>
</html>

In Listing 2-1, the container holding the map is a standard XHTML web page. A lot of the
listing here is just boilerplate—standard initialization instructions for the browser. However,
there are three important elements to consider.

First, the head of the document contains a critical script element. Its src attribute points
to the location of the API on Google’s server, and your key is passed as a parameter:

<script src="http://maps.google.com/maps?file=api&v=2&key=YOUR_KEY HERE"w»
type="text/javascript"></script>

Second, the body section of the document contains a div called map:

<div id="map" style="width: 500px; height: 300px"></div>

15

16

CHAPTER 2 " GETTING STARTED

Although it appears empty, this is the element in which the map will sit. Currently, a style
attribute gives it a fixed size; however, it could just as easily be set it to a dynamic size, such as
width: 50%.

Finally, back in the head, there’s a script element containing a short JavaScript, which is
triggered by the document body’s onload event. It’s this code that communicates with Google’s
API and actually sets up the map.

function load() {
if (GBrowserIsCompatible()) {
var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatlLng(37.4419, -122.1419), 13);

The first line is an if statement, which checks that the user’s browser is supported by
Google Maps. Following that is a statement that creates a GMap2 object, which is one of several
important objects provided by the API. The GMap2 object is told to hook onto the map div, and
then it gets assigned to a variable called map.

Note Keen readers will note that we’ve already encountered another of Google’s special APl objects:
GLatLng. GLatLng, as you can probably imagine, is a pretty important class, that we’re going to see a lot
more of.

After you have your GMap2 object in a map variable, you can use it to call any of the GMap2
methods. The very next line, for example, calls the setCenter () method to center and zoom
the map on Palo Alto, California. Throughout the book, we’ll be introducing various methods
of each of the API objects, but if you need a quick reference while developing your web appli-
cations, you can use Appendix B of this book or view the Google Maps API reference (http://
www.google.com/apis/maps/documentation/) directly online.

Specifying a New Location

A map centered on Palo Alto is interesting, but it’s not exactly groundbreaking. As a first attempt
to customize this map, you're going to specify a new location for it to center on.

For this example, we've chosen the Golden Gate Bridge in San Francisco, California
(Figure 2-2). It’s a large landmark and is visible in the satellite imagery provided on Google
Maps (http://maps.google.com). You can choose any starting point you like, but if you search
for “Golden Gate Bridge” in Google Maps, move the view slightly, and then click Link to This
Page, you'll get a URL in your location bar that looks something like this:

http://maps.google.com/maps?f=q&11=37.818361,-122.478032&spn=0.029969,0.05579

CHAPTER 2 © GETTING STARTED

en0e golden gate bridge - Coogle Maps =
<::" @ Q |G| http:/ /maps.google.com/ v ©([GF 3
xDisahle' |2/Cookies™ 53CSS™ Forms™ #Images™ @ Information~ [=|Miscellaneous * %utlme' [Bresize~ @Tnn\s" [EW\EWSDW

Help

Web Images Groups News Froogle Maps more »

GO Ogle Igolden gate bridge| Search | Search the map

Find businesses
2.g., "hotels near lax” or ~10 market st, san francisco™ Get Directions

Maps Print (-] Email == Link to this page

BNAVTEQ™ - Terms of Use |

Figure 2-2. The Golden Gate Bridge satellite imagery from Google Maps

Caution If you use Google Maps to search for landmarks, the Link to This Page URL won’t immediately
contain the latitude and longitude variable but instead have a parameter containing the search terms. To also
include the latitude and longitude, you need to adjust the zoom level or move the map so that the link is no
longer to the default search position.

It’s clear that the URL contains three parameters, separated by ampersands:
f=aq
11 = 37.818361, -122.478032
spn = 0.029969, 0.05579

The 11 parameter is the important one you'll use to center your map. Its value contains
the latitude and longitude of the center of the map in question. For the Golden Gate Bridge,
the coordinates are 37.82N and 122.48W.

17

18

CHAPTER 2 " GETTING STARTED

Note Latitudeis the number of degrees north or south of the equator, and ranges from —90 (South Pole)
to 90 (North Pole). Longitude is the number of degrees east or west of the prime meridian at Greenwich, in
England, and ranges from —180 (westward) to 180 (eastward). There are several different ways you can
record latitude and longitude information. Google uses decimal notation, where a positive or negative num-
ber indicates the compass direction. The process of turning a street address into a latitude and longitude is
called geocoding, and is covered in more detail in Chapter 4.

You can now take the latitude and longitude values from the URL and use them to recen-
ter your own map to the new location. Fortunately, it’s a simple matter of plugging the values
directly into the GLatLng constructor.

Separating Code from Content

To further improve the cleanliness and readability of your code, you may want to consider
separating the JavaScript into a different file. Just as Cascading Style Sheets (CSS) should not
be mixed in with HTML, it’s best practice to also keep JavaScript separated.

The advantages of this approach become clear as your project increases in size. With large
and complicated Google Maps web applications, you could end up with hundreds of lines of
JavaScript mixed in with your XHTML. Separating these out not only increases loading speeds,
as the browser can cache the JavaScript independently of the XHTML, but their removal also
helps prevent the messy and unreadable code that results from mixing XHTML with other
programming languages. Your eyes and your text editor will love you if they don’t have to deal
with mixed XHTML and JavaScript at the same time.

In this case, you'll actually take it one step further and also separate the marker data file
from the map functions file. This will allow you to easily convert the static data file to a dynami-
cally generated file in later chapters, without the need to touch any of the processing JavaScript.

To accommodate these changes, we've separated the web application’s JavaScript functions,
data, and XHTML, putting them in separate files called index.php for the XHTML portion of
the page, map_functions. js for the behavioral JavaScript code, and map_data.php for the data
to plot on the map. Listing 2-2 shows the revised version of the index. php file.

Listing 2-2. Extrapolated index.php File

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<script src="http://maps.google.com/maps?file=api&v=2&key="=
ABQIAAAATAb2RNhzPafoWimtifapBRI9caN7296ZHDcvjSpGbL7PxwkwBSw
ZidcfOwy4q2EZpjEIx3rc4Lt5Kg" type="text/javascript"></script>

<script src="map_data.php" type="text/javascript"></script>

<script src="map_functions.js" type="text/javascript"></script>
</head>

CHAPTER 2 © GETTING STARTED

<body>

<div id="map" style="width: 500px; height: 300px"></div>
</body>
</html>

Listing 2-2 is the same basic HTML document as before, except that now there are two
extra script elements inside the head. Rather than referencing the external API, these refer-
ence local—on the server—JavaScript files called map_data.php and map_functions.js. For
now, you'll leave the map_data. php file empty, but it will be used later in the chapter when we
demonstrate how to map an existing list of markers. The important thing to note here is that it
must be referenced first, before the map_functions. js file, so that the data is “available” to the
code in the map_functions.js file. Listing 2-3 shows the revised map_functions. js file.

Listing 2-3. Extrapolated map_functions.js File

var centerlatitude = 37.818361,;
var centerlongitude = -122.478032;
var startZoom = 13;

var map;

function init()

{
if (GBrowserIsCompatible()) {
map = new GMap2(document.getElementById("map"));
var location = new GLatlng(centerlLatitude, centerlongitude);
map.setCenter(location, startZoom);
}
}

window.onload = init;

Although the behavior is almost identical, the JavaScript code in Listing 2-3 has two
important changes:

» The starting center point for latitude, longitude, and start zoom level of the map are
stored in var variables at the top of the script, so it will be more straightforward to change
the initial center point the next time. You won’t need to hunt down a setCenter() call
that’s buried somewhere within the code.

* The initialization JavaScript has been moved out of the body of the XHTML and into the
map_functions.js file. Rather than embedding the JavaScript in the body of the XHTML,
you can attach a function to the window.onload event. Once the page has loaded, this
function will be called and the map will be initialized.

For the rest of the examples in this chapter, the index. php file will remain exactly as it is in
Listing 2-2, and you will need to add code only to the map_functions.js and map_data.php files
to introduce the new features to your map.

19

20

CHAPTER 2 " GETTING STARTED

Caution It's important to see the difference between init and init().When you add the parentheses
after the function name, it means “execute it.” Without the parentheses, it means “give me a reference to it.”
When you assign a function to an event handler such as document.onload, you want to be very careful that
you don’t include the parentheses. Otherwise, all you’ve assigned to the handler is the function’s return
value, probably a null.

Cleaning Up

One more important thing to do with your map is to be sure to correctly unload it. The extremely
dynamic nature of JavaScript’s variables means that correctly reclaiming memory (called garbage
collection) can be a tricky process. As a result, some browsers do it better than others.

Firefox and Safari both seem to struggle with this, but the worst culprit is Internet
Explorer. Even up to version 6, simply closing a web page is not enough to free all the memory
associated with its JavaScript objects. An extended period of surfing JavaScript-heavy sites such
as Google Maps could slowly consume all system memory until Internet Explorer is manually
closed and restarted.

Fortunately, JavaScript objects can be manually destroyed by setting them equal to null.
The Google Maps API now has a special function that will destroy most of the API’s objects,
which helps keep browsers happy. The function is GUnload(), and to take advantage of it is
a simple matter of hooking it onto the body.onunload event, as in Listing 2-4.

Listing 2-4. Calling GUnload() in map_functions.js

var centerlatitude = 37.818361;
var centerlongitude = -122.478032;
var startZoom = 13;

var map;

function init() {
if (GBrowserIsCompatible()) {
map = new GMap2(document.getElementById("map"));
var location = new GlLatlng(centerlLatitude, centerlongitude);
map.setCenter(location, startZoom);

}

window.onload = init;
window.onunload = GUnload;

There’s no obvious reward for doing this, but it’s an excellent practice to follow. As your
projects become more and more complex, they will eat up available memory at an increasing
rate. On the day that browsers are perfect, this approach will become a hack of yesterday. But
for now, it’s a quiet way to improve the experience for all your visitors.

CHAPTER 2 © GETTING STARTED

Basic Interaction

Centering the map is all well and good, but what else can you do to make this map more excit-
ing? You can add some user interaction.

Using Map Control Widgets

The Google Maps API provides five standard controls that you can easily add to any map:
* GlargeMapControl, the large pan and zoom control, which is used on maps.google.com
* GSmallMapControl, the mini pan and zoom control, which is appropriate for smaller maps

* (ScaleControl, the control that shows the metric and imperial scale of the map’s current
center

* GSmallZoomControl, the two-button zoom control used in driving-direction pop-ups

* GMapTypeControl, which lets the visitor toggle between Map, Satellite, and Hybrid types

Tip If you're interested in making your own custom controls, you can do so by extending the GControl
class and implementing its various functions. We may discuss this on the googlemapsbook. com blog, so be
sure to check it out.

In all cases, it’s a matter of instantiating the control object, and then adding it to the map with
the CMap2 object’s addControl () method. For example, here’s how to add the small map control,
which you can see as part of the next example in Listing 2-5:

map.addControl(new GSmallMapControl());

You use an identical process to add all the controls: simply pass in a new instance of the
control’s class.

Note What does instantiating mean? In object-oriented programming, a class is like a blueprint for a type
of entity that can be created in memory. When you put new in front of a class name, JavaScript takes the
blueprint and actually creates a usable copy (an instance) of the object. There’s only one GLatLng class, but
you can instantiate as many GLatLng objects as you need.

Creating Markers

The Google Maps API makes an important distinction between creating a marker, or pin, and
adding the marker to a map. In fact, the map object has a general addOverlay() method, used
for both the markers and the white information bubbles.

In order to plot a marker (Figure 2-3), you need the following series of objects:

21

22 CHAPTER 2 " GETTING STARTED

A GlLatLng object stores the latitude and longitude of the location of the marker.

An optional GIcon object stores the image that visually represents the marker on the map.

A GMarker object is the marker itself.

* A GMap2 object has the marker plotted on it, using the addOverlay() method.

Figure 2-3. Marker plotted in the middle of the Golden Gate Bridge map

Does it seem like overkill? It’s less scary than it sounds. An updated map_functions.js is
presented in Listing 2-5, with the new lines marked in bold.

Listing 2-5. Plotting a Marker

var centerlatitude = 37.818361;
var centerlongitude = -122.478032;
var startZoom = 13;

var map;

function init()
{
if (GBrowserIsCompatible()) {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
var location = new GlLatlLng(centerlLatitude, centerLongitude);
map.setCenter(location, startZoom);

CHAPTER 2 © GETTING STARTED

var marker = new GMarker(location)
map .addOverlay(marker);

}

window.onload = init;
window.onunload = GUnload;

Caution If you try to add overlays to a map before setting the center, it will cause the API to give unpre-
dictable results. Be careful to setCenter() your GMap2 object before adding any overlays to it, even if it's
just to a hard-coded dummy location that you intend to change again right away.

See what happened? We assigned the new GLatLng object to a variable, and then we were
able to use it twice: first to center the map, and then a second time to create the marker.

The exciting part isn't creating one marker; it’s creating many markers. But before we come
to that, we must quickly look at the Google Maps facility for showing information bubbles.

WHITHER THOU, GICON?

You can see that we didn’t actually use a GIcon object anywhere in Listing 2-5. If we had one defined, it
would be possible to make the marker take on a different appearance, like so:

var marker = new GMarker(my_GLatLng, my GIcon);

However, when the icon isn’t specified, the APl assumes the red inverted teardrop as a default. There is
a more detailed discussion of how to use the GIcon object in Chapter 3.

Opening Info Windows

It’s time to make your map respond to the user! For instance, clicking a marker could reveal
additional information about its location (Figure 2-4). The API provides an excellent method
for achieving this result: the info window. To know when to open the info window, however,
you’'ll need to listen for a click event on the marker you plotted.

23

CHAPTER 2 " GETTING STARTED

Golden
Gate
Bridge

Figure 2-4. An info window open over the Golden Gate Bridge

Detecting Marker Clicks

JavaScript is primarily an event-driven language. The init() function that you've been using
since Listing 2-3 is hooked onto the window.onload event. Although the browser provides many
events such as these, the API gives you a convenient way of hooking up code to various events
related to user interaction with the map.

For example, if you had a GMarker object on the map called marker, you could detect marker
clicks like so:

function handleMarkerClick() {
alert("You clicked the marker!");

}

GEvent.addListener(marker, 'click', handleMarkerClick);

It’s workable, but it will be a major problem once you have a lot of markers. Fortunately,
the dynamic nature of JavaScript yields a terrific shortcut here. You can actually just pass the
function itself directly to addListener() as a parameter:

GEvent.addListener(marker, 'click',
function() {
alert("You clicked the marker!");
}
);

Opening the Info Window

Chapter 3 will discuss the info window in more detail. The method we’ll demonstrate here is
openInfoWindowHtml(). Although you can open info windows over arbitrary locations on the

CHAPTER 2 © GETTING STARTED

map, here you'll open them above markers only, so the code can take advantage of a shortcut
method built into the GMarker object:

marker.openInfoWindowHtml(description);

Of course, the whole point is to open the info window only when the marker is clicked, so
you'll need to combine this code with the addListener() function:

GEvent.addListener(marker, 'click',
function() {
marker.openInfoWindowHtml(description);
}
)5

Finally, you'll wrap up all the code for generating a pin, an event, and an info window into
a single function, called addMarker (), in Listing 2-6.

Listing 2-6. Creating a Marker with an Info Window

var centerlatitude = 37.818361;
var centerlongitude = -122.478032;
var description = 'Golden Gate Bridge';

var startZoom = 13;
var map;

function addMarker(latitude, longitude, description) {
var marker = new GMarker(new GLatLng(latitude, longitude));

GEvent.addListener(marker, 'click',
function() {
marker .openInfolindowHtml(description);

}
);

map.addOverlay(marker);
}

function init() {
if (GBrowserIsCompatible()) {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

addMarker(centerLatitude, centerLongitude, description);

}

window.onload = init;
window.onunload = GUnload;

25

26

CHAPTER 2 " GETTING STARTED

This is a nice clean function that does everything you need for plotting a pin with a click-
able information bubble. Now you're perfectly set up for plotting a whole bunch of markers on
your map.

A List of Points

In Listing 2-3, we introduced the variables centerLongitude and centerlatitude. Global vari-
ables like these are fine for a single centering point, but what you probably want to do is store
awhole series of values and map a bunch of markers all at once. Specifically, you want a list of
latitude and longitude pairs representing the points of the markers you'll plot.

Using Arrays and Objects

To store the list of points, you can combine the power of JavaScript’s array and object constructs.
An array stores a list of numbered entities. An object stores a list of keyed entities, similar to
how a dictionary matches words to definitions. Compare these two lines:

var myArray = ['John', 'Sue', 'James', 'Edward'];
var myObject = {'John': 19, ' 21, 'James': 24, 'Edward': 18};

Sue':

To access elements of the array, you must use their numeric indices. So, myArray[0] is
equal to 'John', and myArray[3] is equal to 'Edward'.

The object, however, is slightly more interesting. In the object, the names themselves are
the indices, and the numbers are the values. To look up how old Sue is, all you do is check the
value of myObject['Sue'].

Note For accessing members of an object, JavaScript allows both myObject['Sue'] and the alternative
notation myObject. Sue. The second is usually more convenient, but the first is important if the value of the
index you want to access is stored in another variable, for example, myObject [someName].

For each marker you plot, you want an object that looks like this:

var myMarker = {
'latitude': 37.818361,
'longitude': -122.478032,
'name’: 'Golden Gate Bridge'

};

Having the data organized this way is useful because the related information is grouped as
“children” of a common parent object. The variables are no longer just latitude and longitude—
now they are myMarker.latitude and myMarker.longitude.

Most likely, for your application you'll want more than one marker on the map. To proceed
from one to many, it’s just a matter of having an array of these objects:

var myMarkers = [Markerl, Marker2, Marker3, Marker4];

CHAPTER 2

GETTING STARTED

Then you can cycle through the array, accessing the members of each object and plotting

a marker for each entity.

When the nesting is combined into one step (Figure 2-5), it becomes a surprisingly elegant
data structure, as in Listing 2-7.

Listing 2-7. A JavaScript Data Structure for a List of Locations

var markers = [

{

'latitude': 37.818361,
'longitude': -122.478032,
'name’: 'Golden Gate Bridge'

b
{
'latitude': 40.6897,
'longitude': -74.0446,
'name’: 'Statue of Liberty'
b
{
'latitude': 38.889166,
'longitude': -77.035307,
'name': 'Washington Monument'
}
15
markers
0 1 2
latitude latitude latitude
longitude longitude longitude
(-122.478032) || (-74.0446) || (-77.035307)
name name name

Figure 2-5. A series of objects stored inside an array

As you'll see in the next section, JavaScript provides some terrific methods for working
with data in this type of format.

Note In this book, you'll see primarily MySQL used for storing data permanently. Some people however,

have proposed the exact format in Figure 2-5 as an alternative to XML, calling it JSON, for JavaScript Object

Notation. While there are some advantages, JSON’s plethora of punctuation can be intimidating to a less
technical person. You can find more information on JSON at http://json.org. We’ll still be using a lot of
JSON-like structures for communicating data from the server to the browser.

27

28

CHAPTER 2 " GETTING STARTED

Iterating

JavaScript, like many languages, provides a for loop—a way of repeating a block of code for
so many iterations, using a counter. One way of cycling through your list of points would be
aloop such as this:

for (id = 0; id < markers.length; id++) {
// create a marker at markers[id].latitude, markers[id].longitude

}

However, JavaScript also provides a much classier way of setting this up. It’s called a for in
loop. Watch for the difference:

for (id in markers) {
// create a marker at markers[id].latitude, markers[id].longitude

}

Wow. It automatically gives you back every index that exists in an array or object, without
needing to increment anything manually, or ever test boundaries. Clearly, you'll want to use
afor inloop to cycle over the array of points.

Until now, the map_data.php file has been empty and you've been dealing mainly with the
map_functions.js file. To show a list of markers, you need to include the list, so this is where
map_data.php comes in. For this chapter, you're not going to actually use any PHP, but the
intention is that you can populate that file from database queries or some other data store.
We've named the file with the PHP extension so you can reuse the same base code in later
chapters without the need to edit everything and start over. For now, pretend the PHP file is
like any other normal JavaScript file and create your list of markers there. As an example, pop-
ulate your map_data. php file with the structure from Listing 2-7.

To get that structure plotted, it’s just a matter of wrapping the marker-creation code in
afor inloop, as shown in Listing 2-8.

Listing 2-8. map_functions.js Modified to Use the Markers from map_data.php

var map;
var centerlatitude = -95.0446;
var centerlongitude = 40.6897;
var startZoom = 3;

function addMarker(longitude, latitude, description) {
var marker = new GMarker(new GLatlLng(latitude, longitude));

GEvent.addListener(marker, 'click',
function() {
marker.openInfoWindowHtml (description);
}
)s

map.addOverlay(marker);

CHAPTER 2 © GETTING STARTED

function init() {
if (GBrowserIsCompatible()) {
map = new GMap2(document.getElementById("map"));
map.addControl (new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

for(id in markers) {
addMarker(markers[id].latitude, markers[id].longitude, markers[id].name);

}
}

window.onload = init;
window.onunload = GUnload;

Nothing here should be much of a surprise. You can see that the addMarker () function is
called for each of the markers, so you have three markers and three different info windows.

Summary

With this chapter complete, you've made an incredible amount of progress! You've looked at
several good programming practices, seen how to plot multiple markers, and popped up the
info window. And all of this is in a tidy, reusable package.

So what will you do with it? Plot your favorite restaurants? Mark where you parked the
car? Show the locations of your business? Maybe mark your band’s upcoming gigs?

The possibilities are endless, but it’s really just the beginning. In the next chapter, you'll be
expanding on what you learned here by creating your map data dynamically and learning the
key to building a real community: accepting user-submitted information. After that, the weird
and wonderful science of geocoding—turning street addresses into latitudes and longitudes—
will follow, along with a variety of tips and tricks you can use to add flavor to your web
applications.

29

CHAPTER 3

Interacting with the User
and the Server

Now that you've created your first map (in Chapter 2) and had a chance to perform some ini-
tial experiments using the Google Maps AP], it’s time to make your map a little more useful
and dynamic. Most, if not all, of the best Google Maps mashups rely on interaction with the
user in order to customize the information displayed on the map. As you've already learned,
it’s relatively easy to create a map and display a fixed set of points using static HTML and a bit
of JavaScript. Anyone with a few minutes of spare time and some programming knowledge
could create a simple map that would, for example, display the markers of all the places he
visited on his vacation last year. A static map such as this is nice to look at, but once you've
seen it, what would make you return to the page to look at it again? To keep people coming
back and to hold their attention for longer than a few seconds, you need a map with added
interactivity and a bit of flair.

You can add interactivity to your map mashups in a number of ways. For instance, you
might offer some additional detail for each marker using the info window bubbles introduced
in Chapter 2, or use something more elaborate such as filtering the markers based on search
criteria. Google Maps, Google’s public mapping site (http://maps.google.com/) is a mashup of
business addresses and a map to visually display where the businesses are located. It provides
the required interactivity by allowing you to search for specific businesses, and listing other
relevant businesses nearby, but then goes even further to offer driving directions to the marked
locations. Allowing you to see the location of a business you're looking for is great, but telling
you how to get there in your car, now that’s interactivity! Without the directions, the map would
be an image with a bunch of pretty dots, and you would be left trying to figure out how to get
to each dot. Regardless of how it’s done, the point is that interacting with the map is always
important, but don’t go overboard and overwhelm your users with too many options.

In this chapter, we'll explore a few examples of how to provide interactivity in your map using
the Google Maps API, and you'll see how you can use the API to save and retrieve information
from your server. While building a small web application, you'll learn how to do the following:

* Trigger events on your map and markers to add either new markers or info windows.
* Modify the content of info windows attached to a map or to individual markers.
* Use Google’s GXmlHttp object to communicate with your server.

* Improve your web application by changing the appearance of the markers.

31

32

CHAPTER 3 "' INTERACTING WITH THE USER AND THE SERVER

Going on a Treasure Hunt

To help you learn about some of the interactive features of the Google Maps API, you're going
to go on a treasure hunt and create a map of all the treasures you find. The treasures in this
case are geocaches, those little plastic boxes of goodies that are hidden all over the earth.

For those of you who are not familiar with geocaches (not to be confused with geocoding,
which we will discuss in the next chapter), or geocaching as the activity is commonly referred
to, it is a global “hide-and-seek” game that can be played by anyone with a Global Positioning
System (GPS) device (Figure 3-1) and some treasure to hide and seek. People worldwide place
small caches of trinkets in plastic containers, and then distribute their GPS locations using the
Internet. Other people then follow the latitude and longitude coordinates and attempt to locate
the hidden treasures within the cache. Upon finding a cache, they exchange an item in the
cache for something of their own.

Figure 3-1. A common handheld GPS device used by geocachers to locate hidden geocaches

Note For more information about geocaching, check out the official Geocaching website (http: //www.
geocaching.com) or pick up Geocaching: Hike and Seek with Your GPS, by Erik Sherman (http://www.apress.
com/book/bookDisplay. html?bID=194).

As you create your interactive geocache treasure map, you'll learn how to do the following:

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER

 Create a map and add a JavaScript event trigger using the GEvent.addListener()
method to react to clicks by the users, so that people who visit the map can mark their
finds on the map.

* Ask users for additional information about their finds using an info window and an
embedded HTML form.

» Save the latitude, longitude, and additional information in the form to your server
using the GXmlHttp Asynchronous JavaScript and XML (Ajax) object on the client side
and PHP on the server.

* Retrieve the existing markers and their additional information from the server using
Ajax and PHP.

¢ Re-create the map upon loading by inserting new markers from a server-side list, each
with an info window to display its information.

For this chapter, we're not going to discuss any CSS styling of the map and its contents;
we'll leave all that up to you.

Creating the Map and Marking Points

You'll begin the map for this chapter from the same set of files introduced in Chapter 2, which
include the following:

e index.php to hold the XHTML of the page
* map_functions.js to hold the JavaScript functionality
* map_data.php to create a JavaScript array and objects representing each location on the map

Additionally, you'll create a file called storeMarker.php to save information back to the
server and another file called retrieveMarkers.php to retrieve XML using Ajax, but we’ll get to
those later.

Starting the Map

To start, copy the index. php file from Listing 2-2 and the map_functions. js file from Listing 2-3
into a new directory for this chapter. Also, create an empty map_data.php file and empty
storeMarker.php and retrieveMarkers.php files.

While building the map for this chapter and other projects, you'll be adding auxiliary
functions to the map_functions. js file. You may have noticed in Chapter 2 that you declared
the map variable outside the init() function in Listing 2-2. Declaring map outside the init()
function allows you to reference map at any time and from any auxiliary functions you add to
themap_functions. js file. It will also ensure you're targeting the same map object. Also, you
may want to add some of the control objects introduced in Chapter 2, such as GMapTypeControl.
Listing 3-1 highlights the map variable and additional controls.

33

34

CHAPTER 3 " INTERACTING WITH THE USER AND THE SERVER

Listing 3-1. Highlights for map_functions.js

var centerlatitude = 37.4419;
var centerlongitude = -122.1419;
var startZoom = 12;

var map;

function init() {
if (GBrowserIsCompatible()) {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMap2TypeControl());
map.setCenter(new GLatLng(centerLatitude, centerlLongitude), startZoom);

window.onload = init;
window.onunload = GUnload;

Now you have a solid starting point for your web application. When viewed in your web
browser, the page will have a simple map with controls centered on Palo Alto, California
(Figure 3-2). For this example, the starting GLatLng is not important, so feel free to change it to
some other location if you wish.

Thgn
T

m'r.'l’—"ir;‘l == [\

el L (e [Fyoria_|
5 L
[

ll'l

C

L TEe
Ml
=

Figure 3-2. Starting map with controls centered on Palo Alto, California

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER

Listening to User Events

The purpose of your map is to allow visitors to add markers wherever they click. To capture
the clicks on the map, you'll need to trigger a JavaScript function to execute whenever the map
area is clicked. As you saw in Chapter 2, Google’s API allows you to attach these triggers, called
event listeners, to your map objects through the use of the GEvent.addListener() method. You
can add event listeners for a variety of events, including move and click, but in this case, you
are interested only in users clicking the map, not moving it or dragging it around.

Tip If you refer to the Google Maps API documentation in Appendix B, you'll notice a wide variety of events
for both the GMap2 and the GMarker objects, as well as a few others. Each of these different events can be
used to add varying amounts of interactivity to your map. For example, you could use the moveend event for
the GMap2 to trigger an Ajax call and retrieve points for the new area of the map. For the geocaching map
example, you could also use the GMarker’s infowindowclose event to check to see if the information in
the form has been saved and if not, ask the user what to do. You can also attach events to Document
Object Model (DOM) elements using GEvent.addDomListener() and trigger an event using JavaScript
with the GEvent. trigger () method.

The GEvent.addListener () method handles all the necessary code required to watch for
and trigger each of the events. All you need to do is tell it which object to watch, which event
to listen for, and which function to execute when it’s triggered.

GEvent.addListener(map, "click", function(overlay, latlng) {
//your code

};

Given the source map and the event click, this example will trigger the function to run any
code you wish to implement.

Take a look at the modification to the init() function in Listing 3-2 to see how easy it is to
add this event listener to your existing code and use it to create markers the same way you did
in Chapter 2. The difference is that in Chapter 2, you used new GLatLng() to create the latitude
and longitude location for the markers, whereas here, instead of creating a new GLatLng, you can
use the latlng variable passed into the event listener’s handler function. The latlng variable is
a GlLatLng representation of the latitude and longitude where you clicked on the map. The overlay
variable is the overlay where the clicked location resides if you clicked on a marker or another
overlay object.

Listing 3-2. Using the addListener() Method to Create a Marker at the Click Location

function init() {
if (GBrowserIsCompatible()) {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMap2TypeControl());
map.setCenter(new GlLatLng(centerlLatitude, centerlLongitude), startZoom);

35

36

CHAPTER 3 " INTERACTING WITH THE USER AND THE SERVER

//allow the user to click the map to create a marker
GEvent.addListener(map, "click", function(overlay, latlng) {
var marker = new GMarker(latlng)
map .addOverlay(marker);

};

Ta-da! Now, with a slight code addition and one simple click, anyone worldwide could
visit your map page and add as many markers as they want (Figure 3-3). However, all the
markers will disappear as soon as the user leaves the page, never to be seen again. To keep the
markers around, you need to collect some information and send it back to the server for stor-
age using the GXmlHttp object or the GDownloadUr1 object, which we’ll discuss in the “Using
Google’s Ajax Object” section later in this chapter.

ol | (] [Fyoria |
= 2 Y

\eil-.

l?I
ST

Figure 3-3. New markers created by clicking on the map

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER

RETRIEVING THE LATITUDE AND LONGITUDE FROM A MAP CLICK

When you click on a Google map, the 1at1ng variable passed into the event listener’s handler function is

a GLatLng object with 1at() and 1ng() methods. Using the 1at() and 1ng() methods makes it relatively
easy for you to retrieve the latitude and longitude of any point on earth simply by zooming in and clicking on
the map. This is particularly useful when you are trying to find the latitude and longitude of places that do not
have readily accessible latitude/longitude information for addresses.

In countries where there is excellent latitude and longitude information, such as the United States, Canada,
and more recently, France, Italy, Spain and Germany, you can often use an address lookup service to retrieve
the latitude and longitude of a street address. But in other locations, such as the United Kingdom, the data is
limited or inaccurate. In the case where data can’t be readily retrieved by computer, manual human entry of
points may be required. For more information about geocoding and using addresses to find latitude and longi-
tude, see Chapter 4.

Additionally, If you want to retrieve the X and Y coordinates of a position on the map in pixels on the
screen, you can use the fromLatLngToDivPixel() method of the GMap2 object. By passing in a GLatLng
object, GMap2. fromLatLngToDivPixel (latlng) will return a GPoint representation of the X and Y off-
set relative to the DOM element containing the map.

Asking for More Information with an Info Window

You could simply collect the latitude and longitude of each marker on your map, but just the
location of the markers would provide only limited information to the people browsing your
map. Remember interactivity is key, so you want to provide a little more than just a marker.
For the geocaching map, visitors really want to know what was found at each location. To pro-
vide this extra information, let’s create a little HTML form. When asking for input of any type
in a web browser, you need to use HTML form elements. In this case, let’s put the form in an
info window indicating where the visitor clicked.

As introduced in Chapter 2, the info window is the cartoon-like bubble that often appears
when you click map markers (Figure 3-4). It is used by Google Maps to allow you to enter the
To Here or From Here information for driving directions, or to show you a zoomed view of the
map at each point in the directions. Info windows do not need to be linked to markers on the
map. They can also be created on the map itself to indicate locations where no marker is present.

37

CHAPTER 3 "' INTERACTING WITH THE USER AND THE SERVER

L
L - L, o -;_H:_‘\- bt ry -\.'\-'\:_b- ¥ }
Ehl|d|‘BI'IE- Hnspllal Pah] AHCI o “‘L‘F"L’} "\-"_:-;-'_;:.-' Ty -\."?il e,

. ""\'{ e o s e
:'/ 3 ﬁ '\-\."\-_.-.--.- At i
Sta x‘ S LA R “?
i nfnn:l__. N If»\\.\ el H‘“‘fﬂ e, e
Figure 3-4. An empty info window

You're going to use the info window for two purposes:
e It will display the information about each existing marker when the marker is clicked.

e It will hold a little HTML form so that your geocachers can tell you what they’'ve found.

Note When we introduce the Gxm1Http object in the “Using Google’s Ajax Object” section later in this
chapter, we’ll explain how to save the content of the info window to your server.

Creating an Info Window on the Map

In Listing 3-2, you used the event listener to create a marker on your map where it was clicked.
Rather than creating markers when you click the map, you'll modify your existing code to create
an info window. To create an info window directly on the map object, call the openInfolWindow()
method of the map:

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER

GMap2.openInfoWindow(GLatLng, htmlDomElem, GInfoWindowOptions);

openInfoWindow() takes a GLatLng as the first parameter and an HTML DOM document
element as the second parameter. The last parameter, GInfoWindowOptions, is optional unless
you want to modify the default settings of the window.

For a quick demonstration, modify Listing 3-2 to use the following event listener, which
opens an info window when the map is clicked, rather than creating a new marker:

GEvent.addListener(map, "click", function(overlay, latlng) {
map.openInfoWindow (latlng,document.createTextNode("You clicked here!"));

};

Now when you click the map, you'll see an info window pop up with its base pointing at
the position you just clicked with the content “You clicked here!” (Figure 3-5).

' A G’”‘%% i [Wap || Saelie]| Hyond |
_g 5 N ; Bay 1
[§ ‘g =
“FF <
| LIS [£
: 2 i e 2 \
A . o s iR \
] & Saint Patrigks N Palo Alto Arpt
vg ol g Cemetery . @f Santa Clara
N o @ T
o F & & A
L = S &
2
> @2 03
b
. Palo Alto
‘; v}’ \ Medical Clinic
:jlg’ Saanford N =
roég Childrens Hospital | Pgla-Alto -
Stanford)
University Hospital A %G* R
%ﬁ%‘ X N 3 e \\\
g o wb“ Y gg.?f"r.'f
m INKS '
7 iy “&@ 2 .'\\\ Sk
At . Amg
Stanlerd Lniv == X i 7 - q,‘wesd* \\\ \:‘bg
== Golf Course KN . ot R . =
2 e 7152 s o \“\\\ {
s 5 1 5 X
% A SN
W Z -
TP RED BY 6@ ¢ - =
e 1 u 'ia% g
o) 5 . “Map data'©gB05 Tele Atlas <57 &tns Mo

Figure 3-5. An info window created when clicking the map

Embedding a Form into the Info Window

When geocachers want to create a new marker, you'll first prompt them to enter some informa-
tion about their treasure. You'll want to know the geocache’s location (this will be determined
using the point where they clicked the map), what they found at the location, and what they
left behind. To accomplish this in your form, you'll need the following:

39

40 CHAPTER 3 " INTERACTING WITH THE USER AND THE SERVER

A text field for entering information about what they found

A text field for entering information about what they left behind

A hidden field for the longitude
¢ A hidden field for the latitude
¢ A submit button

The HTML form used for the example is shown in Listing 3-3, but as you can see in Listing 3-4,
you are going to use the JavaScript Document Object Model (DOM) object and methods to create
the form element. You need to use DOM because the CMarker . openInfoWindow() method expects an
HTML DOM element as the second parameter, not simply a string of HTML.

Tip If you want to make the form a little more presentable, you could easily add ids and/or classes to the
form elements and use CSS styles to format them accordingly.

Listing 3-3. HTML Version of the Form for the Info Window

<form action="" onsubmit="storeMarker(); return false;">
<fieldset style="width:150px;">
<legend>New Marker</legend>
<label for="found">Found</label>
<input type="text" id="found" style="width:100%;"/>
<label for="left">Left</label>
<input type="text" id="left" style="width:100%;"/>
<input type="submit" value="Save"/>
<input type="hidden" id="longitude"/>
<input type="hidden" id="latitude"/>
</fieldset>
</form>

Note You may notice the form in Listing 3-3 has an onsubmit event attribute that calls a storeMarker ()
JavaScript function. The storeMarker () function does not yet exist in your script, and if you try to click the
Save button, you’ll get a JavaScript error. Ignore this for now, as you'll create the storeMarker () function
in the “Saving Data with GXmIHttp” section later in the chapter, when you save the form contents to the server.

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER 4

Listing 3-4. Adding the DOM HTML Form to the Info Window

GEvent.addListener(map, "click", function(overlay, latlng) {

//create an HTML DOM form element

var inputForm = document.createElement("form");
inputForm.setAttribute("action","");

inputForm.onsubmit = function() {storeMarker(); return false;};

//retrieve the longitude and lattitude of the click point
var 1ng = latlng.lng();
var lat = latlng.lat();

inputForm.innerHTML = '<fieldset style="width:150px;">"

+ '<legend>New Marker</legend>'
'<label for="found">Found</label>"
'<input type="text" id="found" style="width:100%;"/>'
'<label for="left">Left</label>'
"<input type="text" id="left" style="width:100%;"/>"
'<input type="submit" value="Save"/>'
'<input type="hidden" id="longitude" value="' + 1lng + '"/>'
'<input type="hidden" id="latitude" value="' + lat + '"/>'
'</fieldset>';

+
+
+
+
+
+
+
+

map.openInfoWindow (latlng,inputForm);
1;

Caution When creating the DOM form element, you need to use the setAttribute() method to define
things like name, action, target, and method, but once you venture beyond these basic four, you may begin
to notice inconsistencies. For example, using setAttribute() to define onsubmit works fine in Mozilla-based
browsers but not in Microsoft Internet Explorer browsers. For cross-browser compatibility, you need to define
onsubmit using a function, as you did in Listing 3-4. For more detailed information regarding DOM and how
to use it, check out the DOM section of the W3Schools website at http://www.w3schools. com/dom/.

After you've changed the GEvent.addListener() call in Listing 3-2 to the one in Listing 3-4,
when you click your map, you'll see an info window containing your form (Figure 3-6).

42

CHAPTER 3 "' INTERACTING WITH THE USER AND THE SERVER

2 L -
g" X G% T, T : LU Map || Satelite]| FHybrid |
o5 A o 2 ‘1\\\"‘\] Bay Rd __‘Jf' L o
. f ‘é? N N -
[+ o8 New Marker
- g
,P% % er Sl 4 | Found \
4 & Sicipacny | | Palo Alto Arpt
l = S Cemetary Left Of Santa Clara
A ':*q-
[- ht- & I
i k3 e Save |
5 @S|
Palo Al
4 @ ool
féf Sit Stanford X e o
& @éq Childrens Hospilal | Pglo-Alto e v:-\\f»" N
(s \ % k &@@ Lo o
University Hospital & \
x : e B
- - %%3‘@_ ; _‘ﬁ@p . W gnc;renna
) ‘m oif Llinks
¥, 1o, \vd& o T =l
Pl e Amg
Stanfond Lniv onll) X . 4’13"3’(@‘ \\\ N a
[Golf Course ot . o R o =
2 J%i s / .' %’?.5;, ‘vc‘@:‘@ y \\\\ i
) 4 ; -
& %’é \\ -
% @ QP W 2 = |
'Pw.s@ﬂj:\r' fa) -
GQLEt&\ 2 ™ Map datacos Tale Atias 457 4lires Mins

Figure 3-6. The info window with an embedded form

In Listing 3-4, the latitude and longitude elements of the form have been pre-populated
with the latlng.lat() and latlng.1lng() values from the GLatLng object passed in to the event
listener. This allows you to later save the latitude and longitude coordinates and re-create the
marker in the exact position when you retrieve the data from the server. Also, once the informa-
tion has been saved for the new location, you can use this latitude and longitude to instantly
create a marker at the new location, bypassing the need to refresh the web browser to show
the newly saved point.

If you click again elsewhere on the map, you'll also notice your info window disappears
and reappears at the location of the new click. As a restriction of the Google Maps AP], you can
have only one instance of the info window open at any time. When you click elsewhere on the
map, the original info window is destroyed and a brand-new one is created. Be aware that it is
not simply moved from place to place.

You can demonstrate the destructive effect of creating a new info window yourself by fill-
ing in the form (Figure 3-7), and then clicking elsewhere on the map without clicking the Save
button. You'll notice that the information you entered in the form disappears (Figure 3-8)
because the original info window is destroyed and a new one is created.

CHAPTER 3 ©" INTERACTING WITH THE USER AND THE SERVER 43

T

S oo%\ 5
{2
o (@D 90 (\%%\

) X
0, L% @‘j@}?@%

V.

QDS s
‘.C{%?%‘%w/ﬁ \/‘7\

Figure 3-8. New info window that has lost the previously supplied information

44

CHAPTER 3 "' INTERACTING WITH THE USER AND THE SERVER

Earlier, when you created the info window containing “You clicked here!” the same thing
happened. Each marker had the same content (“You clicked here!”), so it just appeared as
though the info window was simply moving around.

Tip If you've taken some time to review the Google Maps APl in Appendix B, you might be wondering why
you couldn’t use the GMap2.openInfolindowHtml() method to add the form to the info window. After
all, it lets you use an HTML string rather than an HTML DOM element. The short answer is you can. In version 1 of
the API, openInfolWindowHtml() required a marker to exist on the map first, whereas openInfolindow() allowed
you to open an info window at a specified point without a marker. We chose to use the openInfolWindow()
method here so that you would be able to see how the DOM structure and click actions interact with the info
window.

Avoiding an Ambiguous State

When creating your web applications, be sure not to create the marker until after you've veri-
fied the information and saved it to the server. If you create the marker first and the user then
closes the info window using the window’s close button (Figure 3-9), there would be a marker
on the map that wasn’t recorded on the server (Figure 3-10).

T v .
& %"w& T e | [Map || Sawlite][Hybrd |
g “—P \\ [4 Ba!.Gus
Love Nl L T A
B =
: : z
o[+ 3 New Marker—— Uy &
= E: g
a% p Found z N
o] Palo Alfo Arpt
2 b Of Santa Clara
n :g" :‘
) Save \\
poo
P @
Ky y
Y‘P \ e \
:j-g’ Stanford B ot A
@ég Childrens Hospital | Pglo ‘ﬂo '{, o, Q}‘i" .ﬁ \\\
Stanford . % f g b,
University Hospital rﬁd \
x T e o,
e %ﬁ%@ N qd.‘bb N Shoraling
2 m Golf Links’
) s, ‘“d@ & ,\\\ Sk
e Amg
Stanfeed Univ = S 3 Q’ﬂ*’“ﬂd* \-\\ nL 8
= Galf Course < o o R L
¥ (4. \ ot + - -
g %“’a o i %"”@ 25 \“\\ A
® ; =
& ‘%"e% 2 Y
P Bl Z ™
TPRMIERED By (o} -
| L A .
L%tﬁ\ 2 %%m Ma data o005 Tole Atlas, 47 Al M

Figure 3-9. Using the close (X) button to close the info window

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER

[Map][Satellite |[Hybrid |
z
=
B
®
&
Palo Alio Arpt
Of Santa Clara
e
—
.
3 3§)
@"-’a -, Channing Ave o
g she Y
@ Pala Alto Ao N
Gl = .\ Medical Clinic o Rl . \\\
ﬂgP A J N Y
é} P Stanford ¥ & a . Y
f ég Childrens Hospilal | Pglo-Alto %&? Q}Q" = L ¥
(s N
% Stanford _%’(-; 3 ﬁo & N
University Hospital c‘\% & & & Y
N
— %) M ?‘\P N 4
' @Q_ qﬁ.\bp oY Shoraling
£y Golf Links
o {101}
¥ + o N Sr
3 W Anrg
- b “?g
Stanfond Liniv =il 4 iﬁg@d" \-\ e
[= Golf Course o o R
o &) .‘:B N -
> “‘31% cau‘“f ‘T&_,GQ‘ ‘rc};\aﬁ"‘ N
1 i) h,
£ T
2 Qg’?a 5 5 9 a0y
4 & =
@ 3 X Z -
TFORERED By [a) Eég - _‘E
Y ¥ & by
‘-3& b Q%A Map data“@_lﬁﬂs Tele Atlas & £ifos ‘Eﬂ%g

Figure 3-10. Marker left behind by closing the window

By creating the marker only after the data has been saved, you ensure the integrity of the
map and keep the visible markers in sync with the stored markers on the server.

If you want, you can save the marker information in two steps: first send just the latitude
and longitude to save the marker’s location, and then send a second request to save the additional
information, if any. Storing the latitude and longitude immediately may seem like a logical
idea, until you realize that users may click the map in the wrong location and inadvertently
add a bunch of points that don't really mean anything. For the geocaching map, you want to
be sure there is information associated with each point, so you need to save all the informa-
tion in one request.

Caution Don’t confuse the GMap2.openInfolWindow() method with the GMarker .openInfoWindow()
method. The map and marker objects have similar properties and methods; however, their parameters differ.
You need to use the GMap2 methods when creating info windows attached to the map itself, but if you have
an existing marker, you could then use the GMarker methods to attach an info window to the marker. The GMarker
methods can’t be used to create an info window without a marker.

45

46 CHAPTER 3 "' INTERACTING WITH THE USER AND THE SERVER

INFO WINDOWS THAT ZOOM

GMap2 . showMapBlowup () and GMarker . showMapBlowup () are two other methods in the Google Maps
API that will let you create info windows. These info windows are special and contain a zoomed-in view of the
map. For example, map . showMapBlowup(new GLatlLng(37.4419, -122.1419), 3, G_SATELLITE_
TYPE) will display a small satellite map at zoom level 3 centered on Palo Alto, California. If you create the map
blowup in an event listener, you can zoom in on any point you click on your map.

Yy [Wap][sateite |[_Fybria_|

Fala Alto

& w .. Medical Clinic ‘n'ﬁa'_ =7
£ Stanfard N & N N
Childrens Hospilal | Palo Alto w \ b
b}f e?‘f e .
Stanford DB) 4P ,
University Hospital & o o <
%‘3 X . \ X
FoERED B . - o N \ﬁ‘bﬁ Y Shomline
Goilgle 5 o @Cﬂ Goit Links:
. 8 A £z Mapd 51 ale Atlas - Tgrmsinl Use

Controlling the Info Window Size

When you add content to the info window, it will automatically expand to encompass the
content you've placed in it. The content container will expand in the same way a <div> tag
expands to its internal content. To provide a bit of control over how it expands, you can add
CSS styles to the content of the info window in the same way you would in a regular HTML
page.

In Listings 3-3 and 3-4, the <fieldset> element was assigned a width of 150px, forcing the
info window’s content container to 150 pixels wide (Figure 3-11). Also, the text <input> ele-
ments were set to a width of 100% to display a simple clean form. (For more tips and tricks
regarding info windows, see Chapter 9.)

CHAPTER 3 ©" INTERACTING WITH THE USER AND THE SERVER

I
am ALAIS]]

Figure 3-11. Info window with an inner width of 150 pixels

Getting tired of the cartoon bubble and want to create something fancier with the info window API? Sorry,

you’re out of luck—well, sort of.

Currently, the Google Maps API doesn’t allow you to change the style of the info window, but you could
create your own using the GOverlay class. If you're interested, check out Chapter 9, where you’ll learn how
to create your own info window, as in the following example.

47

48

CHAPTER 3 " INTERACTING WITH THE USER AND THE SERVER

Using Google’s Ajax Object

To save the markers entered by your geocaching visitors, you're going to upgrade to “Web 2.0”
and use only Ajax to communicate with your server. Ajax relies completely on JavaScript run-
ning in your visitor’s web browser; without JavaScript running, Ajax simply won’t work. You
can argue that using a strictly JavaScript-based Ajax interface might not be a good idea. You read
everywhere that in order to be good coders and offer compliant services, you should always
have an alternative solution to JavaScript-based user interfaces, and that’s completely true,
but the Google Maps API itself doesn’t offer an alternative for JavaScript-disabled browsers.
Therefore, if geocachers are visiting your page without the ability to use JavaScript, they’re not
going to see the map! Feel free to build alternative solutions for all your other web tools, and
we strongly suggest that you do, but when dealing strictly with the Google Maps API, there
isn’t really much point in a non-JavaScript solution, since without JavaScript, the map itself is
useless.

To communicate with your server, Google has provided you access to its integrated Ajax
object called GXmlHttp. If you want to spend the time, you could roll your own Ajax code. If
you're a fan of one of the many free libraries such as Prototype (http://prototype.conio.net),
you could also use one of those. For this example, we’ll stick to the Google Maps API and the
GXmlHttp object, as it’s already loaded for you and doesn'’t require you to include anything else.

Caution The Google Gxm1Http object, and any other Ajax script based on the Xm1HttpRequest object,
allows you to query only within the domain where the map is served. For example, if your map were at
http://example.com/webapp/, then the GXmlHttp.request() method can retrieve data only from
scripts located in the http://example.com domain. You can't retrieve data from another domain such as
http://jeffreysambells.com, as the request would break the web browser’s “Same Origin” security
policy (http://www.mozilla.org/projects/security/components/same-origin.html). Using a little
JavaScript trickery to dynamically add <script> tags to the page does allow you to get around this policy but
requires you to do special things on the server side as well. For an example of how to do this, check out the
XssHttpRequest object at http://jeffreysambells.com/posts/2006/03/06/centralized ajax
services/.

To implement the GXmlHttp object, a few things need to happen when users click the Save
button:

* The information in your form needs to be sent to the server and verified for integrity.
* The information needs to be stored as necessary.

* Your server-side script needs to respond back to the client-side JavaScript to let the
client know that everything was successful and send back any necessary information.

¢ The client-side JavaScript needs to indicate to the user that there was either an error or
a successful response.

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER

To accomplish this, let’s send the information back to the server and store it in a flat XML
file. Then, when responding that everything is okay, let’s create a new marker on the map with
the new information to confirm to the user that the data was successfully saved.

Saving Data with GXmlHttp

To send information to the server using the GXmlHttp object, first you need to retrieve the infor-
mation from the form in the info window you created. Referring back to Listings 3-3 and 3-4,
you'll notice that each of the form elements has a unique id associated with it. Since you're
using the Ajax method to send data, the form will not actually submit to the server using the
traditional POST method. To submit the data, you retrieve the values of the form by using the
JavaScript document.getElementById() method and concatenate each of the values onto the GET
string of the GXmlHttp request object. Then using the onreadystatechange() method of the
GXmlHttp object, you can process the request when it is complete.

Listing 3-5 shows the storeMarker() and createMarker() functions to add to your map_
functions. js file. Also, if you haven't already done so, create the storeMarker.php file in the
same directory as your HTML document and create an empty data.xml file to store your marker
data. Be sure to give the data.xml file the appropriate write permissions for your server
environment.

Tip For more information about the Xm1HttpRequest object and using it to send data via the POST method,
see the W3Schools page at http://www.w3schools.com/xml/xml_http.asp.

Listing 3-5. Sending Data to the Server Using GXmlHttp

function storeMarker(){
var Ing = document.getElementById("longitude").value;
var lat = document.getElementById("latitude").value;

var getVars = "?found=" + document.getElementById("found").value
+ "8left=" + document.getElementById("left").value
+ "8lng=" + lng

+ "&lat=" + lat ;
var request = GXmlHttp.create();

//open the request to storeMarker.php on your server
request.open('GET', 'storeMarker.php' + getVars, true);
request.onreadystatechange = function() {
if (request.readyState == 4) {
//the request is complete

var xmlDoc = request.responseXML;

49

50 CHAPTER 3 " INTERACTING WITH THE USER AND THE SERVER

//retrieve the root document element (response)
var responseNode = xmlDoc.documentElement;

//retrieve the type attribute of the node
var type = responseNode.getAttribute("type");

//retrieve the content of the responseNode
var content = responseNode.firstChild.nodeValue;

//check to see if it was an error or success
if(type!="success"') {
alert(content);
} else {
//create a new marker and add its info window
var latlng = new GlatLng(parseFloat(lat),parseFloat(1lng));
var marker = createMarker(latlng, content);
map .addOverlay(marker);
map.closeInfoWindow();

}
}

request.send(null);
return false;

}

function createMarker(latlng, html) {
var marker = new GMarker(latlng);
GEvent.addListener(marker, 'click', function() {
var markerHTML = html;
marker.openInfoWindowHtml (markerHTML);
b;

return marker;

The storeMarker () function you just added is responsible for sending the marker infor-
mation to the server through Ajax. It retrieves the information from the form and sends it to
the storeMarker.php script in Listing 3-6 using the GXmlHttp object. You can also see that the
createMarker () function is used to create the GMarker object and populate the info window. By
creating the GMarker in another function, you can reuse the same function later when retriev-
ing markers from the server (in Listing 3-8, later in the chapter).

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER

Listing 3-6. storeMarker.php Server-Side Script Used to Store the Marker Information in XML
Format

<?php
header('Content-Type: text/xml");

$lat = (float)$ GET['lat'];
$1ng = (float)$ GET['lng'];
$found = $ GET['found'];
$left = $ GET['left'];

//create an XML node

$marker = <<<MARKER

<marker lat="$lat" lng="$lng" found="$found" left="$left"/>\n
MARKER;

//open the data.xml file for appending

$f=@fopen('data.xml’', 'a+');

if(1$f) die('<?xml version="1.0"?>

<response type="error"><![CDATA[Could not open data.xml file]]></response>

")s

//add the node

$w=@fwrite($f, $marker);

if(1$w) die('<?xml version="1.0"?>

<response type="error"><![CDATA[Could not write to data.xml file]]></response>');

@fclose($f);

//return a response

$newMarkerContent = "<divy>found $found</div><divyleft $left</div>";
echo <<<XML

<?xml version="1.0"?>

<response type="success" icon="$icon"><![CDATA[$newMarkerContent]]></response>
XML;

>

For simplicity in the example, we use a flat file on the server in Listing 3-6 to store the
data. This file (called data.xml) is simply a list of all the points saved to the server and resem-
bles the following:

51

52

CHAPTER 3 "' INTERACTING WITH THE USER AND THE SERVER

<marker lat="37.441" lng="-122.141" found="Keychain" left="Book"/>
<marker lat="37.322" lng="-121.213" found="Water Bottle" left="Necklace"/>

Note there is no surrounding root node, so the file is not actually valid XML. When you
retrieve the XML later in the chapter, you'll be retrieving all the XML at once and wrapping it
in a parent <markers> node, so you'll end up with a valid XML result:

<?xml version="1.0"?>
<markers>

<marker lat="37.441" lng="-122.141" found="Keychain" left="Book"/>

<marker lat="37.322" lng="-121.213" found="Water Bottle" left="Necklace"/>
</markers>

Since you're going to retrieve all the XML without any matching or searching to determine
which bits to retrieve, it makes sense to store the data in one file in the format you want. In
areal-world web application, you would probably want to store the information in a SQL
database and retrieve only a smaller subset of points based on some search criteria. Once
you've mastered sending and retrieving data, you could easily extend this example with
a searchable SQL database, and then retrieve only the points in the latitude and longitude
bounds of the viewable map area.

Checking When the Request Is Completed

When you click the Save button on the info window, the information in the form is sent back
to the server using the GXmlHttp object in Listing 3-5 and awaits a response back in XML for-
mat from the PHP script in Listing 3-6. During the request, the readyState property of the
request object will contain one of five possible incrementing values:

* 0, for uninitialized
* 1, forloading

e 2, forloaded

e 3, for interactive
* 4, for completed

The changes to the readyState property are monitored using the GXmlHttp.
onreadystatechange() event listener (Figure 3-12). At each increment, the function you've
defined for the onreadystatechange() method will be triggered to allow you to execute any
additional JavaScript code you would like. For the example, you need to deal with only the
completed state of the request, so your function checks to see when readyState==4, and then
parses the XML document as necessary.

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER 53

Request

I— Response ——) GXmlHttp

< 1
< 2
onreadystatechange() 4_ | J——
4
readyState

Figure 3-12. GXmlHttp request response diagram

Tip This Ajax implementation is not actually checking to see if the request completed in a valid state. For
example, if the page you requested was not found, the readyState will still be 4 at the end of the request,
but no XML would have been returned. To check the state of the GXm1Http request, you need to check the
GXmlHttp.status property. If status is equal to 200, then the page was successfully loaded. A status of
404 indicates the page was not found. GXm1Http.status could contain any valid HTTP request codes
returned by the server.

Testing the Asynchronous State

Don't forget that the GXmlHttp request is asynchronous, meaning that the JavaScript continues
to run while your GXmlHttp request is awaiting a response. While the PHP script is busy saving
the file to the server, any code you've added after request.send(null); may execute before the
response is returned from the server.

You can observe the asynchronous state of the request and response by adding a JavaScript
alert() call right after you send the request:

request.send(null);
alert('Continue');
return false;

And another alert in the onreadystatechange() method of the request:

request.onreadystatechange = function() {
if (request.readyState == 4) {

54

CHAPTER 3 " INTERACTING WITH THE USER AND THE SERVER

alert('Process Response');

If you run the script over and over, sometimes the alert boxes will appear in the order
Process Response then Continue, but more likely, you'll get Continue then Process Request.
Just remember that if you want something to occur after the response, you must use the
onreadystatechange() method when the readyState is 4.

Tip To further enhance your web application, you could use the various states of the request object to add
loading, completed, and error states. For example, when initiating a request, you could show an animated
loading image to indicate to the user that the information is loading. Providing feedback at each stage of the
request makes it easier for the user to know what’s happening and how to react. If no loading state is dis-
played, users may assume they have not actually clicked the button or will become frustrated and think
nothing is happening.

Using GDownloadUrl for Simple Ajax Requests

If your web application doesn'’t require a high level of control over the Ajax request, you can
use an alternative object called GDownloadUrl. You can use GDownloadUr1 to send and retrieve
content the same way you do with GXmlHttp; however the API is much simpler. Rather than
checking response states and all that other stuff, you just supply a URL with any appropriate
GET variables and a function to execute when the response in returned. This simplifies the
request to the following:

GDownloadUrl('storeMarker.php' + getVars, function(data,responseCode)) {
//Do something with the data

};

But note that this approach doesn’t give you as much control over the different states of
the request.

Parsing the XML Document Using DOM Methods

When the readyState reaches 4 and your onreadystatechange() function is triggered, you need to
parse the response from the server to determine if the PHP script replied with an execution error
or a successful save. Referring back to Listing 3-6, the storeMarker . php source, you can see that in
the event of a successful save, the type attribute of the XML response node is success:

<?xml version="1.0"?>
<response type="success">

<! [CDATA[<div>Found foo</div><div>Left bar </div>]]>
</response>

CHAPTER 3 ©" INTERACTING WITH THE USER AND THE SERVER

In the event of an error, such as the script not having permission to write to the file, the
value of type is error:

<?xml version="1.0"?>
<response type="error">

<![CDATA[Could not open data.xml file.]]>
</response>

When the web browser receives the XML from your request object, it is contained in the
responseXML property. You can now search the XML using the JavaScript DOM methods and
properties, such as xmlDoc.documentElement to give you the root node (in this case, the <response>
node) and the getAttribute() method to retrieve the value of the type attribute of the
<response> node.

In the event of an error in Listing 3-5, you simply need to call a JavaScript alert () with the
content of the <response> tag to alert the user (Figure 3-13).

@ - l:é:l - @ 23 & http:/ /www.googlemapsbook.com Go l@r—‘

Could not open data.xml file

faSianond—J (i)
University Hospital

o i

gl |

DE?’

Figure 3-13. An error in the response

55

56

CHAPTER 3 "' INTERACTING WITH THE USER AND THE SERVER

With a successful execution, you create a new marker at the latitude and longitude of the
click and attach an event listener to the marker itself in order to create a new info window with
the content of the response. The new marker now indicates the newly created location on the
map, and when clicked, displays the information about the marker (Figure 3-14).

Map |[Satellite |[Hybrid |

u"""@rsny Al
B

To~e o Bay Rd
NS 5 Vs
. ‘g n .
ol LN &
- " &]
/=]) T L > §
oy o 3 e ON 3 \
&r Saint Patricks Q:" L Palo Alto Arpt
o =: Cer Of Santa Clara
n &, Found Foo
5 g Left Bar
L3
»
o, @D :
& @ .
£ .
\F 4 X
&9’ Stanford Wk, T g
bﬁg Childrens Hospital | Palo
Stanfard
University Hospital
S0
Tt Shoreline
% Golf Links’
4 : \ L Sr
" Amg
Stanford Lniv =l 7 N "g
C = Golf Course o > {
& > >
i % Daﬂw‘f’ N
B W 4
23 ‘%% .S
=
[PosiERED BY
| i A i3
GQ&EK =4 %%A Map data'©ZB05 Tele Atias 7 it Mng

Figure 3-14. A successful request and response

You've probably noticed that in Listing 3-5, you've used the marker.openInfoWindowHTML()
method rather than the map.openInfoWindow() method. Since you now have your marker on
the map, you can apply the info window directly to it and pass in an HTML string rather than

an HTML DOM element.

Caution When accepting input from the users of your website, it is always good practice to assume the data
is evil and the user is trying to take advantage of your system. Always filter input to ensure it’s in the format
you are expecting. Numbers should be numbers, strings should be strings, and unless desired, nothing should
contain HTML or JavaScript code. Listing 3-6 could easily be compromised through cross-site scripting (XSS)
if you don’t filter out JavaScript in the user-submitted data. For more information see http://owasp.org.

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER

Retrieving Markers from the Server

Your geocaching map is almost finished. So far, you've used event listeners to add marks on
the map, displayed info windows to ask for more input, and saved the input back to the server
using Ajax. You now want to take all the markers you've been collecting and show them on the
page when users first visit.

The information to display the markers resides on the server in the data.xml file created
by the storeMarkers.php script in Listing 3-5. In Chapter 2, you loaded the map data from
map_data.php into the head of the index.php document using a <script> tag. You could easily
do the same thing here, but for this chapter, we're going to mix things up a bit and show you
a more controlled way. To gain more interactive control, you'll retrieve the data from the server
using the GXmlHttp object. Using the GXmlHttp object will allow you to retrieve points at any
time, not just when the page loads. For example, when you've finished this example, you could
extend it further by tracking the movements of the map and retrieve the points based on the
map’s viewable area, as you'll see later in Chapter 7.

To start, remove the reference to map_data.php from the head of your index. php file and
create the retrieveMarkers.php file in Listing 3-7 on your server in the same directory as your
HTML document.

Listing 3-7. retrieveMarkers.php Script Used to Format and Retrieve the data.xml File

<?php

header (' Content-Type:text/xml");

$markers = file get contents('data.xml');
echo <<<XML

<markers>

$markers

</markers>

XML;

>

Also, copy the retrieveMarkers() function from Listing 3-8 into the map_functions. js file.
In Listing 3-8, notice the marker is created by the same createMarker() function you used in
Listing 3-5. This allows you to maintain the proper scope of the data passed into the info win-
dow. If you create each marker in the retrieveMarkers() function, each marker’s info window
will have the html value of the last marker created in the loop. The value of html will be identi-
cal for each marker because the info window is not actually created until you click the marker
and html is retrieved from the scope of the JavaScript at that time. By moving the creation into
another function, you've given each instance of the function its own namespace.

Listing 3-8. Ajax retrieveMarkers() Function

function retrieveMarkers() {
var request = GXmlHttp.create();

//tell the request where to retrieve data from.
request.open('GET', 'retrieveMarkers.php', true);

57

58 CHAPTER 3 " INTERACTING WITH THE USER AND THE SERVER

//tell the request what to do when the state changes.
request.onreadystatechange = function() {
if (request.readyState == 4) {
var xmlDoc = request.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName("marker");
for (var i = 0; i < markers.length; i++) {

var Ing = markers[i].getAttribute("1lng");

var lat = markers[i].getAttribute("lat");

//check for lng and lat so MSIE does not error

//on parseFloat of a null value

if(Ing && lat) {

var latlng = new GlatLng(parseFloat(lat),parseFloat(1lng));

var html = '<div>Found '
+ markers[i].getAttribute("found")
+ '</div><div>Left '
+ markers[i].getAttribute("left")
+ '</div>';

var marker = createMarker(latlng, html);
map.addOverlay(marker);
}
} //for
} //if
} //function

request.send(null);

Once you've created the retrieveMarkers.php file and copied the retrieveMarkers()
function into the map_functions. js file, you can load the markers into your map by calling the
retrieveMarkers() function. For example, to load the markers when the page loads, you'll
need to call the retrieveMarkers() function from the init() function after you create the map.

function init() {
.oocut ..
map = new GMap2(document.getElementById("map"));
retrieveMarkers();
. cut ...

When the retrieveMarkers()function is executed, the server-side PHP script,
retrieveMarkers.php (Listing 3-7), will return an XML file containing the latitude and longitude
for each marker you previously saved.

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER

<markers>
<marker lat="37.441" lng="-122.141" found="Keychain" left="Book"/>
<marker lat="37.322" lng="-121.213" found="Water Bottle" left="Necklace"/>
...etc...

</markers>

The XML also contains the additional information you requested for each marker so that
you'll be able to include it in the info window. You can search this file using the JavaScript DOM
methods in the same way you did for the storeMarker () function in Listing 3-5, but because you
have a list of markers, you'll need to loop through the object list from xm1Doc.documentElement.
getElementsByTagName("marker") and create each marker individually.

You don'’t necessarily have to return XML to the GXmlHttp object. You can also return
HTML, text, or the same JSON format introduced in Chapter 2. If you return something other
than XML, you need to use the response.responseText property and parse it accordingly.

Tip For more information about using Ajax, read Beginning Ajax with PHP: From Novice to Professional,
by Lee Babin (http://www.apress.com/book/bookDisplay.html?bID=10117).

Adding Some Flair

You now have a fun little interactive web application that anyone with Internet access can use.
Geocachers can come and see what kinds of things have been found and let others know what
they’ve found. You could be finished with the map, but let’s use the Google Maps API to add
just a bit more flair.

All the red markers on the map don't really mean anything when you look at them as a whole.
Without clicking on each marker to reveal the info window, there’s no way to tell anything about
what'’s there other than the location.

One of the keys to a successful web application is to provide your users the information
they want both easily and quickly. For instance, if you come back to the map frequently, you
would prefer to quickly pick out the points you haven't seen before, rather than hunt and
examine each marker to see the information. To give the map more visual information, let’s let
the geocachers add a custom icon for their finds. This will make the map more visually inter-
esting and provide quick and easy information to the viewers.

By default, Google uses an inverted teardrop pin for marking points on a map, and up until
now, this is what you've been using as well. Now, using Google’s GIcon object, you can rid your
map of the little red dots and customize them to use whatever image you like. Rather than
looking at a red marker, you can add a small icon of the find (Figure 3-15).

59

60

CHAPTER 3 " INTERACTING WITH THE USER AND THE SERVER

Figure 3-15. Different marker icons on a map

To use the GIcon object, you are required to set a minimum of three properties:
* GIcon.image: URL of the image

* GIcon.iconSize: Size of the image in pixels

* GIcon.iconAnchor: Location of the anchor point

Also, because you're currently making use of the info window for each of your markers,
you must specify the infoWindowAnchor property of the icon.

To get the URL for the GIcon. image property, you'll need to ask the geocaching users
where their icon is by adding another element to the info window’s form, and then pass it
through the GET parameters of your GXmlHttp.request. First, in the click event for the map
from Listing 3-4, add the following two highlighted lines:

inputForm.innerHTML = '<fieldset style="width:150px;">"

+ '<legend>New Marker</legend>’

+ '<label for="found">Found</label>"

+ '<input type="text" id="found" style="width:100%"/>"
+ '<label for="left">Left</label>"

+ '<input type="text" id="left" style="width:100%"/>"

+ '<label for="left">Icon URL</label>’
+ '<input type="text" id="icon" style="width:100%"/>"
"<input type="submit" value="Save"/>'

+

CHAPTER 3 © INTERACTING WITH THE USER AND THE SERVER

+ '<input type="hidden" id="longitude" value="' + lng + '"/>'
+ '<input type="hidden" id="latitude" value="' + lat + '"/>'
+ '</fieldset>';

Tip For a complete working example of the following changes, see the final example for Chapter 3 in the
book’s accompanying code or online at http://googlemapsbook.com/chapter3/final.

Second, in the storeMarker () function from Listing 3-5, add the following highlighted
parameter to the request:

var getVars = "?found=" + document.getElementById("found").value
+ "8left=" + document.getElementById("left").value

"&icon=" + document.getElementById("icon").value

+ "&lng=" + Ing

+ "8lat=" + lat ;

+

Now the icon’s URL can be entered and passed to the server. In order to save the information
in the data.xml file, add the following highlighted lines to the storeMarkers.php file in Listing 3-6:

$icon = $ GET['icon'];

$marker = <<<MARKER

<marker lat="$lat" lng="$lng" found="$found" left="¢$left" icon="$icon"/>
MARKER;

When the XML is retrieved from the server, it will automatically include the new icon
information, so you do not need to modify the retrieveMarkers.php file in Listing 3-7. To show
the new icons, you'll need to create a new GIcon object with the appropriate properties when you
retrieve the markers from the server and when you create the new marker upon a successful save.

The GIcon objects are created as independent objects and passed in as the second param-
eter when creating a new GMarker object. The GIcon objects are reusable, so you do not need to
create a new GIcon object for each new GMarker object, unless you are using a different icon for
each marker, as you are doing in this example. To use the icons while retrieving the saved pins
in Listing 3-8, add the icon URL as a third parameter to the createMarker() call:

var marker = createMarker(latlng, html, markers[i].getAttribute("icon"));

Then create your GIcon object in the createMarker () function and assign it to the marker
with the following changes:

function createMarker(latlng, html, iconImage) {
if(iconImage!="") {
var icon = new GIcon();
icon.image = iconImage;
icon.iconSize = new GSize(25, 25);
icon.iconAnchor = new GPoint(14, 25);
icon.infolWindowAnchor = new GPoint(14, 14);

61

62 CHAPTER 3 " INTERACTING WITH THE USER AND THE SERVER

var marker = new GMarker(latlng,icon);
} else {
var marker = new GMarker(latlng);
}
GEvent.addListener(marker, 'click', function() {
var markerHTML = html;
marker .openInfoWindowHtml (markerHTML);
b;

return marker;

Additionally, when you create the new GIcon object in the storeMarker () and
retrieveMarkers() functions, you'll need to retrieve the icon from the XML and pass the icon
image into the createMarker call. In storeMarker (), add the following:

var iconImage = responseNode.getAttribute("icon");
var marker = createMarker(latlng, content, iconImage);

In retrieveMarkers(), add this:

var iconImage = markers[i].getAttribute("icon");
var marker = createMarker(latlng, html, iconImage);

Now when you regenerate the map and create new points, the icon from the URL will be
used rather than the default red marker. The size you pick for your GIcon objects is based on
a width and height in pixels. The preceding changes use an arbitrary GSize of 25 by 25 pixels
for all of the icons. If the image in the URL is larger than 25 by 25 pixels, it will be squished
down to fit.

Summary

Now that you have your first interactive Google Maps web application, grab a GPS and start
looking for geocaches to add to your map! Get your friends involved, too, and show off what
you've learned.

The ideas and techniques covered in this chapter can be applied to many different web
applications, and the same basic interface can be used to mark any geographical information
on a map. Want to chart the world’s volcanoes? Just click away on the map and mark them down.

You may also want to build on the example here and incorporate some of the other fea-
tures of the Google Maps API. For example, try retrieving only a specified list of markers, or
maybe markers within a certain distance of a selected point. You could also improve the inter-
face by adding listener events to trigger when you open and close an info window, or improve
the server-side script by downloading and automatically resizing the desired icons. Later in
the book, we'll discuss a variety of other ways to improve your maps.

In the next chapter, we'll show you how you can use publicly available services to automatically
plot markers on your map based not just on clicks, but also on postal and street addresses.

CHAPTER 4

Geocoding Addresses

As you've probably already guessed, the heart of any mashup is correlating your information
with latitudes and longitudes for plotting on your map. Fortunately, geocoding services are
available to help you convert postal addresses to precise latitude and longitude coordinates. For
locations in the United States and Canada, these services make geocoding addresses relatively
easy and quite accurate most of the time. In other parts of the world, the job can become
much harder.

In this chapter, while building a store locator map, you'll learn how to do the following:

* Create an XML file describing a set of locations and details.
* Request information from geocoding web services and process their responses.

¢ Learn the pros and cons of Google’s new JavaScript-based geocoder, as well as suggestions
on when to use it.

¢ Precompute and cache the latitude and longitude for the points you intend to plot.

Creating an XML File with the Address Data

In this chapter, you're going to create a simple store location map using the postal address of each
location in the chain to map the markers. The important aspect about this kind of data is that it
changes slowly over time. A few points are added every now and then as the chain of stores
expands, but rarely are points removed. In general, it makes sense to precompute and cache
information like latitude and longitude for this type of data, as you'll see in the “Caching Lookups”
section later in this chapter.

For this example, we'll use the chain of stores and attractions known as Ron Jon Surf Shop,
since its story appeals to our own entrepreneurial style:

It was 1959 and on the New Jersey shore a bright young man named Ron DiMenna was just
discovering the sport of surfing with fiberglass surfboards. The pastime soon became
a passion and homemade surfboards would no longer do. When his father heard that
Ron wanted his own custom surfboard from California, he suggested, “Buy three, sell
two at a profit, then yours will be free.” His Dad was right and Ron Jon Surf Shop was born.

http://www.ronjons.com

63

64

CHAPTER 4 © GEOCODING ADDRESSES

With permission, we've taken the addresses of all of the Ron Jon properties from the
website and converted them into the sample XML data file for this chapter. Listing 4-1 shows
the ronjons.xml file that you'll use while following the examples in this chapter. By the end of
the chapter, you'll be able to create your own XML file and use the same techniques to map your
own list of related addresses.

Listing 4-1. Ron Jon Properties (from www.ronjons.com as of July 2006)

<?xml version="1.0" encoding="UTF-8"?>

<stores>

<store>
<name>"The Original” Ron Jon Surf Shop</name>
<address>901 Central Avenue</address>
<city>Long Beach Island</city>
<state>NJ</state>
<zip>08008</zip>
<phone>(609) 494-8844</phone>
<pin>store</pin>

</store>

<store>
<name>"One of a Kind" Ron Jon Surf Shop</name>
<address>4151 North Atlantic Avenue</address>
<city>Cocoa Beach</city>
<state>FL</state>
<zip>32931</zip>
<phone>(321) 799-8888</phone>
<pin>store</pin>

</store>

<store>
<name>Ron Jon Surf Shop - Sunrise </name>
<address>2610 Sawgrass Mills Circle</address>
<address2>Suite 1415</address2>
<city>Sunrise</city>
<state>FL</state>
<zip>33323</zip>
<phone>(954) 846-1880</phone>
<pin>store</pin>

</store>

<store>
<name>Ron Jon Surf Shop - Orlando</name>
<address>5160 International Drive</address>
<city>Orlando</city>
<state>FL</state>
<zip>32819</zip>
<phone>(407) 481-2555</phone>
<pin>store</pin>

</store>

<store>

CHAPTER 4 " GEOCODING ADDRESSES

<name>Ron Jon Surf Shop - Key West</name>
<address>503 Front Street</address>
<city>Key West</city>
<state>FL</state>
<z1ip>33040</zip>
<phone>(305) 293-8880</phone>
<pin>store</pin>

</store>

<store>
<name>Ron Jon Surf Shop - California</name>
<address>20 City Blvd.</address>
<address2>West Building C Suite 1</address2>
<city>Orange</city>
<state>CA</state>
<z1ip>92868</zip>
<phone>(714) 939-9822</phone>
<pin>store</pin>

</store>

<store>
<name>Ron Jon Cape Caribe Resort</name>
<address>1000 Shorewood Drive</address>
<city>Cape Canaveral</city>
<state>FL</state>
<zip>32920</zip>
<phone>(321) 328-2830</phone>
<pin>resort</pin>

</store>

</stores>

Caution We've left out declaring a namespace for this XML document to keep the example simple for XML
novices. For these simple examples, a namespace is not needed. However, using namespaces is generally
a good idea. For more information, check out the excellent primer on namespaces, “XML Namespaces by
Example,” at http://www.xml.com/pub/a/1999/01/namespaces.html.

Using Geocoding Web Services

Converting postal addresses to precise latitude and longitude coordinates is made simple by
a few good geocoding services. In this section, we're going to cover some of the most popular
geocoding services we've found to date. (For an updated list of the geocoders we know about,
check out our website at http://googlemapsbook.com/geocoders.)

However, before you dive into the available web services, there are a few server-side
requirements you'll need to consider.

65

66

CHAPTER 4 © GEOCODING ADDRESSES

Note There are also sources of raw information that you can use to make your own geocoding solutions.
So, if you can’t find a service that fits your needs, and you have a place to get some raw street data, see
Chapter 11 for the basics of creating your own geocoding service.

Requirements for Consuming Geocoding Services

To consume the services, you need a web server permanently connected to the Internet, and it
will need to be able to connect to the appropriate services. For the examples in this chapter, you'll
be using the PHP CURL extension to retrieve the XML information from the available services,
and you'll be using PHP 5’s SimpleXML feature to parse the XML you retrieve.

CURL

Many of these services require you to send a carefully crafted URL request to retrieve your
information. For this purpose, you'll use the CURL extension in PHP. This extension is not bundled
by default with PHP; however, it is one of the most commonly installed extensions, so you should
have no trouble finding a host with it available.

Basically, the PHP CURL functions are available through the use of 1ibcurl, a library created
by Daniel Stenberg, and allow you to connect and communicate with web servers using many
different types of protocols. You'll be using a very small subset of functions here, though we
encourage you to look deeper into this very useful feature by visiting http: //www.php.net/curl.

SimpleXML

Most of the geocoding solutions we're about to investigate return an XML document as their result.
To process these responses, you'll use PHP 5’s SimpleXML features, which are perfectly suited
to the level of complexity of the answers you'll receive. SimpleXML brings a unique perspective
to XML parsing in that element names are automatically (recursively) converted into properties
of an object, and attributes are accessed as if they were items in a named array. From your point
of view, all of this happens when the simplexml load string($string) constructor is called;
however, from a memory usage point of view, it happens on demand.

If you've never used SimpleXML, or need a refresher, we encourage you to check out a great arti-
cle by Zend Technologies available at http://www.zend.com/php5/articles/php5-simplexml.php.
This article also presents an example for PHP 4's DOM processing, in case you don’t have access
to PHP 5 on your server (you should really consider upgrading!).

Note If you have PHP 4 and still want something like SimpleXML you might want to try MiniXML from
http://minixml.psychogenic.com. It gets rave reviews on many forums and news groups, though we
have never needed to use it ourselves. The description from their site states that: “MiniXML provides
a simple, API to generating and parsing XML. Its advantages are ease-of-use and the fact that no additional
libraries are required. It comes with two independent implementations, 100% PHP and 100% PERL, which
you can use separately.”

CHAPTER 4 " GEOCODING ADDRESSES

The Google Maps API Geocoder

We'll begin our investigation of geocoding solutions with the Google Maps API geocoder
(http://www.google.com/apis/maps/documentation/#Geocoding Examples). Google claims that
this solution should give street-level accuracy for the United States, Canada, France, Italy,
Germany, and Spain. The Google developers hope to roll out support for more countries in the
near future, so before you rule them out for a particular country, you might want to check either
our website (http://googlemapsbook.com) or the official API documentation.

Before June 2006, there was no official geocoder from Google. Many hacks used the
maps.google. com site’s built-in geocoder and screen-scraped the answer. This was an explicitly
unauthorized use of the service, and while we never heard of a crackdown on people doing this,
Google did frown upon it. As a result, a number of alternative services popped up to fill the void,
which we'll cover later in the chapter. Despite being late to the game, Google’s geocoder has
a number of really interesting features that none of the others have yet, and we’ll highlight
them throughout the discussion.

First, we'll look at the most basic method for accessing the geocoder: the HTTP-based lookup
methods. You can also access the geocoder within JavaScript, as discussed later in this section
and in Chapter 10's polyline example.

Like most of the other services we’ll investigate, the Google method uses Representational
State Transfer (REST) requests for accessing the service. REST is basically a simple HTTP request
that passes GET parameters by appending things like key=value8key2=value2 to the end of the
request URL. Generally, a REST service returns some form of text-based data structure like XML.
Google’s geocoder is (so far) unique in that it can also return Keyhole Markup Language, or KML
(for use in Google Earth), and JSON directly.

THE ORIGIN OF REST

Representational State Transfer (REST) is a concept used to connect services in distributed systems like the
World Wide Web. The term originated in a 2000 doctoral dissertation about the Web written by Roy Fielding, one of
the principal authors of the HTTP specification, and has quickly passed into widespread use in the networking
community.

Fielding’s vision of REST described a strict abstraction of architectural principles. However, people now often
loosely use the term to describe any simple web-based interface that uses XML and HTTP without the extra
abstraction layers of approaches like the SOAP protocol. As a result, these two different uses of REST cause some
confusion in technical discussions. Throughout this book, we refer to it in the looser, more common, meaning
of REST.

Google has outdone many of the other geocoders on the market in that its geocoder returns
an excellent answer given fairly poor input. It does not require you to separate out the street
number, street name, direction (N, S, E, W, and so on), city, state, or even ZIP code. It simply
takes what you give it, uses Google’s extensive experience with understanding your search terms,
and returns a best guess. Moreover, the service formats the input you give it into a nice, clean,
consistent representation when it gives you the latitude and longitude answer. The geocoder
even goes so far as to look past poor punctuation and strange abbreviations, which is great if
you're taking the input from a visitor to your site.

67

68 CHAPTER 4 © GEOCODING ADDRESSES

Like most of the geocoders available on the market, Google limits the number of geocoding
requests that you can make before it cuts you off. The Google limit is a generous 50,000 lookups
per API key per day, provided you space them out at a rate of one every 1.75 seconds (as of the time
of publishing). To maximize this limit and your bandwidth, we suggest you use the server-side
caching approach discussed in the “Caching Lookups” section later in this chapter.

Google Geocoder Responses

Let’s look at the Google geocoder’s response for a sample query adapted from the official
documentation:

http://maps.google.com/maps/geo?q=1600+AmPhItHEaTRe+PKway+Mtn+View+CA&output=rm
xml&key=your api_key

This query returns the XML in Listing 4-2.

Listing 4-2. Sample Response from Google’s REST Geocoder

<kml>
<Response>
<name>1600 AmPhItHEaTRe PKway Mtn View CA</name>
<Status>
<code>200</code>
<request>geocode</request>
</Status>
<Placemark>
<address>
1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA
</address>
<AddressDetails>
<Country>
<CountryNameCode>US</CountryNameCode>
<AdministrativeArea>
<AdministrativeAreaName>CA</AdministrativeAreaName>
<SubAdministrativeArea>
<SubAdministrativeAreaName>Santa Clara</SubAdministrativeAreaName>
<Locality>
<LocalityName>Mountain View</LocalityName>
<Thoroughfare>
<ThoroughfareName>1600 Amphitheatre Pkwy</ThoroughfareName>
</Thoroughfare>
<PostalCode>
<PostalCodeNumber>94043</PostalCodeNumber>
</PostalCode>
</Locality>

CHAPTER 4 " GEOCODING ADDRESSES

</SubAdministrativeArea>
</AdministrativeArea>
</Country>
</AddressDetails>
<Point>
<coordinates>-122.083739,37.423021,0</coordinates>
</Point>
</Placemark>
<Response>
</kml>

The response has three major components:

* name: The name is exactly what you fed into the geocoder, so you know if it interpreted
your URL encoding properly.

 Status: This is the response code, which indicates whether the lookup was successful or
if it failed. Table 4-1 lists the possible response codes and their meanings.

e Placemark: This is available only if the geocoding was successful and contains the
information you're seeking. The placemark itself contains three important components:

¢ address: The address is the full, nicely formatted string that Google actually used after
it cleaned up the input you gave it. This is useful for a number of reasons, including
storing something clean in your database and debugging when the answers seem to
come back incorrectly.

* Point: The point is a coordinate in 3D space and represents longitude, latitude, and
elevation. Elevation data may or may not be available for a given answer, so take
a 0 with a grain of salt, as it is the default and is also returned if no data is available.

¢ AddressDetails: This is a block of more complicated XML that uses a standard format
called eXtensible Address Language (xAL). Unless you're interested in extracting
the individual pieces of the address for storage in your database or formatting on
your screen, you could safely ignore this chunk of XML and get away with using
only the status, address, and point information.

Note Upon launch of their geocoder, Google developers stated that all elevations would return 0 and that
they were unsure when they would be able to supply elevation data. Before you use any of the elevation data,
check the official API documentation online or the official Google Maps APl blog (http://googlemapsapi.
blogspot.com/) to see which regions now have elevation data available.

69

CHAPTER 4 © GEOCODING ADDRESSES

Table 4-1. Google Geocoder Response Codes

Code Constant Name Description

200 G_GEO_SUCCESS No errors occurred; the address was successfully
parsed and its geocode has been returned.

500 G_GEO_SERVER_ERROR A geocoding request could not be successfully

processed, yet the exact reason for the failure
is not known.

601 G_GEO_MISSING_ADDRESS The HTTP q parameter was either missing
or had no value.
602 G_GEO_UNKNOWN_ADDRESS No corresponding geographic location could

be found for the specified address. This may be
due to the fact that the address is relatively
new, or it may be incorrect.

603 G_UNAVAILABLE_ADDRESS The geocode for the given address cannot
be returned due to legal or contractual reasons.
610 G_GEO_BAD_KEY The given key is either invalid or does not
match the domain for which it was given.
620 G_TOO_MANY_QUERIES You have accessed the service too frequently

and are either temporarily or permanently
blocked from further use.

XAL

Defining a uniform way to describe addresses across 200 countries is no easy task. Some countries use street
names; others don’t. Some place higher importance on the postal code; others insist that the street number is
most important. Some divide their “administrative” zones into a two-tier system of province/city; others use more
tiers like state/county/city/locality. Whatever format is chosen must take all of these situations into account. OASIS
has defined a format called xAL, which stands for eXtensible Address Language (in this case). Google has adopted
it as a component of the XML response that its geocoder returns.

XAL uses a hierarchical data model (XML) since it seems like such a natural fit for addresses. For example,
a country has states, a state has counties, a county has cities, a city has streets, and a street has individual plots
of land. Some countries omit one or more of these levels, of course, but in general, that’s not a problem.

However, you should realize that the xAL specification is designed to describe the address elements, not
to be specific about the formatting and presentation of the address. There is no guarantee that the use of
whitespace in the different elements will be consistent or even predictable, only that each type of data will
be separated in a defined way. Using an XML-based format ensures that the data can be compared, sorted,
and understood using simple programmatic methods.

For more information on xAL, visit the official site at http://www.oasis-open.org/committees/ciq/
ciq.html#6 or Google for the term “xAL address.”

Google Geocoder Requests

Now let’s look at a simple snippet of code that uses CURL to query the HTTP-based geocoding
API and SimpleXML to parse the answer. Listing 4-3 shows this code.

CHAPTER 4 " GEOCODING ADDRESSES

Listing 4-3. Using the Google Maps API Geocoder to Locate the Stores

<?php
$api_key = "yourkey";

// Create a CURL object for later use

$ch = curl init();

curl setopt($ch, CURLOPT HEADER, 0);

curl setopt($ch, CURLOPT RETURNTRANSFER, 1);

// Open the ronjons.xml file
$datafile = simplexml load file("ronjons.xml");
if (!$datafile) die("Unable to open input file!");

foreach ($datafile->store as $store) {
// Construct the geocoder request string (URL)
$url = "http://maps.google.com/maps/geo?output=xml&key=$api key8q=";
$q = $store->address.”, ".$store->city.", ".$store->state.”, ".$store->zip;
$url .= urlencode($q);

echo "\nStore: {$store->name}\n";
echo "Source Address: $gq\n";

// Query Google for this store's longitude and latitude
curl setopt($ch, CURLOPT URL, $url);
$response = curl exec($ch);

// Use SimpleXML to parse our answer into something we can use
$googleresult = simplexml load string($response);
echo "Status: ".$googleresult->Response->Status->code."\n";
if ($googleresult->Response->Status->code != 200)
echo "Unable to parse Google response for {$store->name}!\n";
else foreach ($googleresult->Response as $response) {
foreach ($response->Placemark as $place) {
list($longitude,$latitude) = split(",",$place->Point->coordinates);
echo "Result Address: ".$place->address."\n";
echo " Latitude: $latitude\n";
echo " Longitude: $longitude\n";
} // for each placemark
} // for each Google result
} // for each store

// Close the CURL file and destroy the object
curl close($ch);
2>

7

72

CHAPTER 4 © GEOCODING ADDRESSES

In this example, first we use curl setopt() to define CURLs behavior while talking with
Google. This includes telling CURL that we don’t care about HTTP headers in $googleresult
with the option CURLOPT_HEADER = 0, and instructing CURL to buffer the response (instead of
sending it directly to the output buffer) with CURLOPT_RETURNTRANSFER = 1.

Next, we open your data file and parse it using SimpleXML. The resultant object is then
used in the loop, which in turn creates a REST request URL for each store. Also note that you
must use PHP’s urlencode() function on the query portion of the string to ensure that the
information is transmitted cleanly to the service.

Caution Remember that SimpleXML and XML in general are case-sensitive. The fact that our input XML is all
lowercase means that we loop using $datafile->store (lowercase s), while the Google response uses title
case, and therefore our inner loop uses $googleresult->Response (capital R). We've done this deliberately to
remind you of this fact. Capitalization conventions are a matter of personal style.

Lastly, we give CURL our REST request and return the response into the variable
$googleresult using the curl exec() function. This returns the KML-style XML response
that contains the meat of what we're interested in—the latitude and longitude, which we
simply extract and echo to the screen for now. SimpleXMLs node selectors make the job of
accessing the data extremely trivial.

Listing 4-4 contains the output you should see when you execute this script. For convenience,
you might prefer to output HTML
 tags instead of newline characters (\n), so that you
can see the results (without viewing the source) if you are using a browser to run the code, or
you could prepend header (' content-type:text/plain; ") to the PHP file to convert the output
to plaintext mode.

Listing 4-4. Output from the Google Geocoding Script

Store: "The Original" Ron Jon Surf Shop

Source Address: 901 Central Avenue, Long Beach Island , NJ, 08008

Status: 200

Result Address: 901 Central Ave, Barnegat Light, NJ 08008, USA
Latitude: 39.748586
Longitude: -74.111764

Result Address: 901 Central Ave, Surf City, NJ 08008, USA
Latitude: 39.661016
Longitude: -74.168010

Result Address: 901 Central Ave, Ship Bottom, NJ 08008, USA
Latitude: 39.649667
Longitude: -74.177253

Store: "One of a Kind" Ron Jon Surf Shop

Source Address: 4151 North Atlantic Avenue, Cocoa Beach, FL, 32931
Status: 200

Result Address: 4151 N Atlantic Ave, Cocoa Beach, FL 32931, USA

CHAPTER 4 " GEOCODING ADDRESSES

Latitude: 28.356453
Longitude: -80.608170

Store: Ron Jon Surf Shop - Sunrise
Source Address: 2610 Sawgrass Mills Circle, Sunrise, FL, 33323
Status: 200
Result Address: 2610 Sawgrass Mills Cir, Sunrise, FL 33323, USA
Latitude: 26.150899
Longitude: -80.316233

Store: Ron Jon Surf Shop - Orlando
Source Address: 5160 International Drive, Orlando, FL, 32819
Status: 200
Result Address: 5160 International Dr, Orlando, FL 32819, USA
Latitude: 28.469873
Longitude: -81.450311

Store: Ron Jon Surf Shop - Key West
Source Address: 503 Front Street, Key West, FL, 33040
Status: 200
Result Address: 503 Front St, Key West, FL 33040, USA
Latitude: 24.560287
Longitude: -81.805817

Store: Ron Jon Surf Shop - California
Source Address: 20 City Blvd., Orange, CA, 92868
Status: 200
Result Address: 100 City Blvd E, Orange, CA 92868, USA
Latitude: 33.782107
Longitude: -117.889878
Result Address: 2 City Blvd W, Orange, CA 92868, USA
Latitude: 33.779838
Longitude: -117.893568

Store: Ron Jon Cape Caribe Resort
Source Address: 1000 Shorewood Drive, Cape Canaveral, FL, 32920
Status: 200
Result Address: 699 Shorewood Dr, Cape Canaveral, FL 32920, USA
Latitude: 28.402944
Longitude: -80.604093

There are several interesting things to discuss in this result:

"The Original™ Ron Jon Surf Shop: “The Original” store listed Long Beach Island as
the city. Google doesn’t recognize this as a valid city and has instead used the ZIP
code to determine which cities might be more appropriate. More important, each of the
answers differs by at least a few tenths of a degree, and this is a significant difference

73

74

CHAPTER 4 © GEOCODING ADDRESSES

(about 10 kilometers). It’s up to you to decide how to handle this situation. A few suggestions
might be to always use the first answer and assume that this is the one Google thinks is best.
Another option would be to average the answers. Lastly, you could treat multiple Placemark
nodes as a geocoding failure and ignore all of the data.

Ron Jon Surf Shop - California: For the store in California, the website lists the address
as 20 City Boulevard but fails to give a direction. Google’s two closest matches are 100 City
Blvd E. and 2 City Blvd W. Both closest matches are returned in a separate Placemark node,
and this is where the xAL data becomes very useful. Since each Placemark node is broken
down in a consistent way, you can determine in which component the answer differs from
your input. Doing so will allow you to write code that will make educated decisions about
what to do with the answers. In this case, you probably want to assume that City Blvd is
a straight line and employ some of the math in Chapters 10 and 11 to use a point approxi-
mately 20% of the way along the line between the two answers (20/(100-2) = ~20%).

Ron Jon Cape Caribe Resort:The Cape Caribe Resort doesn’t geocode perfectly. This is
probably because the resort is extremely new and the address hasn’t yet been officially
marked in the data that Google received. What you do in this case is again your decision,
but our suggestion would be to assume that when you receive a single answer, it’s the best
you're going to get.

The Google JavaScript Geocoding API

Google also provides a means to geocode user input without the intervention of your server.
This is a first in the realm of geocoders and enables a few things that can be cumbersome with
server-side geocoding. This geocoder is built directly into the JavaScript API itself and makes Ajax
calls directly to Google’s servers from your visitor'’s computer.

The benefit is that it's quick and convenient because the API abstracts out all of the Ajax
stuff, leaving you with a simple client-side JavaScript call. In addition to this, the latitude and
longitude data can come back in such a way that it is trivial to use to place a point on your map
using the APIL.

However, you need to keep in mind that while you don’t have to contact your own server,
you are talking to a server—Google’s. So, you still need to carefully design your application to
minimize the wait times your visitor sees while using your application.

Good and Bad Reasons to Use the JavaScript Geocoder

Here are some cases where it might be appropriate to use the JavaScript geocoder:

* When the visitor is inputting an address that you then plot on a map, but would never
otherwise store for future use or display to another visitor. For example, this might be the
case for a store locator that suggests locations based on proximity to a particular address.

* You are unable to create files on your web server that can be written to by your PHP
scripts. This should almost never be the case, as a text file could (at the very worst) be
set to world-writable (see the “Caching Lookups” section later in this chapter).

* Once Google exposes its route calculation capabilities, it may become useful for computing
one endpoint of the path on the fly, but this is pure speculation.

CHAPTER 4 " GEOCODING ADDRESSES

A good reason to use this geocoder is to get a point from the user that is used solely for math
calculations. We'll walk through an example of using the JavaScript geocoder in Chapter 10, where
we show you how to add a corner to a polygon by either clicking on the map or entering an address
into a text field.

It is not appropriate to geocode a list of points (such as the Ron Jon stores) on the fly
client-side simply because it’s easy. Overall, this would be a waste of bandwidth. This in turn
means a longer download time for your visitor and a less-responsive map. Also, you definitely don’t
want to use this approach if the user is likely to be looking up the same thing over and over again.

Basically, while useful for quick-and-dirty mapping, the JavaScript geocoder isn't really
useful for many professional map applications since you'll almost always have a server-side
component. Thus, accessing the REST-based geocoder from your own Ajax service will allow
you to integrate and consolidate the geocoding calls with the rest of your application (say,
combining geocoding with looking up store hours). Another benefit of using your own server
follows from Chapter 3’s geocaching discussion about ensuring consistency by guaranteeing
that your points are saved back to the server before showing them on a map. The same principle
applies here. If you need to record any information at all back to your own server, you might as
well use the REST-based geocoder to do the lookups and save yourself one Ajax call.

Client-Side Caching

Google has made a significant effort to limit the impact of lazy mappers (not you!) who will
use the JavaScript geocoder just because it’s easy. Aside from pleading with developers to
“please cache your lookups” when it announced the geocoder, Google has integrated a client-side
geocoding cache into the APL. It is on by default and merely uses your visitors’ RAM to store things
they’ve previously looked up in case they look the same thing up again. You don't need to do
anything special to use this cache, but there is something special you can do with it: you can seed it
with information you already have. This means that you could precompute all of the addresses for
your stores server-side, and then seed the client-side cache with the data. In certain applications,
this could provide a huge speed boost for your map.

As of the time of publishing, the jury is still out on the best way to use some of these shiny
new features. The official Google Maps API newsgroup is gushing with discussion about the
best ways to do things and when to use the client-side cache and JavaScript geocoder to the best
effect. We suggest that you check our website (http://googlemapsbook.com) and the official doc-
umentation to see what the current best practices are when you read this.

The Yahoo Geocoding API

Currently, the Yahoo Geocoding API (http://developer.yahoo.net/maps/rest/Vi/geocode.html)
is really useful only for geocoding addresses in the United States, though with competition from
Google, we're sure this will change. Before Google’s geocoder came along, this was the geocoder
of choice for many people doing US-centric mashups using both the Google Maps API and the
Yahoo Maps API. The only real limitation is that you can make only 5,000 lookup requests per
day (per IP address).

75

76

CHAPTER 4 © GEOCODING ADDRESSES

Caution The rate limit for Yahoo is based on a 24-hour window, not a calendar day. This window begins
when you first send a request to the service and is reset 24 hours later. Also the window does not “slide” (as it
does with other services), meaning that it's not a count of the requests made in the /ast 24-hours, but rather
a fixed time frame. For a more thorough explanation of the rate limiting in the Yahoo Geocoding Web Service,
please visit http://developer.yahoo.net/search/rate.html.

To use the API, you must register for a Yahoo application ID (like the Google API key you
received in Chapter 2). To obtain your application ID, visit http://api.search.yahoo.com/
webservices/register application after logging in to your Yahoo account. If you do not have
aYahoo account, you'll need to create one before proceeding. Once you have your application
ID, you'll need to include it in the requests to the service.

Like the Google geocoder, the Yahoo service is REST-based and requires you to append
URL-encoded parameters onto the end of the request URL, as listed in Table 4-2.

Table 4-2. Request Parameters to the Yahoo Geocoding API

Parameter Value Description

appid String (required) The application ID you obtained from Yahoo.

street String The name and number of the street address. The number is
optional but can improve accuracy.

city String The name of the city or town.

state String The name of the state, either spelled-out in full or as the
two-letter abbreviation, which is more accurate.

zip Integer The five-digit ZIP code. This could also be a string of five
digits, a dash, and the four-digit extension.

location String A free-form string representing an address.*

output String The format for the output. Possible values are xml (the

default) or php. If php is requested, the results will be
returned in serialized PHP format.

*The location parameter overrides the street, city, state, and zip parameters, and allows you to
enter many different common formats for addresses. Thus, you are relying on Yahoo to parse the string
accurately and as you intended, much like the Google service does. Yahoo's geocoder is quite good at doing
this parsing (for the same reasons as Google’s geocoder), so unless you already have the data broken out
into components, your best bet might be to use the single location parameter instead of the individual
parameters.

Yahoo Geocoder Responses

The following is an example of a request for geocoding the Apress headquarters:

http://api.local.yahoo.com/MapsService/V1/geocode?appid=YOUR_APPLICATION ID&street='w
2560+Ninth+Street8city=Berkeley&state=CA&zip=94710

This returns the XML shown in Listing 4-5.

CHAPTER 4 " GEOCODING ADDRESSES

Listing 4-5. Sample Response from the Yahoo Geocoding API

<?xml version="1.0" encoding="UTF-8"?>
<ResultSet xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="urn:yahoo:maps" xsi:schemalLocation="urn:yahoo:maps
http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd">
<Result precision="address" warning="The exact location could not be found,w=
here is the closest match: 2560 9th St, Berkeley, CA 94710">
<Latitude>37.859569</Latitude>
<Longitude>-122.291673</Longitude>
<Address>2560 9TH ST</Address>
<City>BERKELEY</City>
<State>CA</State>
<Zip>94710-2500</Zip>
<Country>US</Country>
</Result>
</ResultSet>

For the purposes of this discussion, we will ignore the xmlns: and xsi: namespaces. What
we care about is the Result node and the elements inside it.

Caution As with the Google service, it is possible to get a ResultSet with multiple Result values. If you
would like to see this, try geocoding The White House (1600 Pennsylvania Avenue, Washington DC) while
leaving out the ZIP code.

The Result node has two attributes in this case:

precision: This is a string indicating how accurate Yahoo thinks the answer is. This can be one
of eight values at the moment: address, street, zip+4, zip+2, zip, city, state, or country.
Changes to this list and additional information can be found in Yahoo'’s API developer
documentation (http://developer.yahoo.net/maps/rest/Vi/geocode.html).

warning: In our experience, nearly all requests had an “exact location could not be found”
warning. This seems to occur for valid addresses whenever the capitalization of the street
name, abbreviation of the street type, or spelling in the address don't exactly match the form
in the database. In the example in Listing 4-5, it happens because the word “Ninth” is spelled
outin full, and the Yahoo database has it listed as “9th.” Using the warning node to determine
if Yahoo's answer is a good match can be tricky, so for now, let’s assume that the first answer
in the result set is always the best answer (but not necessarily the right answer).

Next, we have the actual result fields corresponding to latitude, longitude, address, city,
state, ZIP code, and country. Most of this data probably corresponds to the information you used
to make the request; however, getting back all of this information is useful in picking the “right”
answer in the event of Yahoo returning multiple matches. For now, the latitude and longitude
fields are the ones we're most interested in, as those will be used to plot the Ron Jon store locations
on our map.

77

CHAPTER 4 © GEOCODING ADDRESSES

Yahoo Geocoder Requests

So now that you have a handle on what you should be expecting out of the Yahoo API, let’s create
some PHP code to automate this process. Listing 4-6 shows the script.

Listing 4-6. Using the Yahoo Geocoding API to Locate the Stores

<?php
// Your Yahoo! Application id
$appid = "YOUR_YAHOO APPLICATION ID";

// Create a CURL object for later use

$ch = curl init();

curl setopt($ch, CURLOPT HEADER, 0);

curl setopt($ch, CURLOPT RETURNTRANSFER, 1);

// Open the ronjons.xml file
$datafile = simplexml load file("ronjons.xml");
if (!$datafile) die("Unable to open input file!");

foreach ($datafile->store as $store) {
// Construct the request string
$url = "http://api.local.yahoo.com/MapsService/V1/geocode?appid=$appid";
if ($store-»address) $url .= "&street=".urlencode($store->address);
if ($store->city) $url .= "&city=".urlencode($store->city);
if ($store-»>state) $url .= "&state=".urlencode($store->state);
if ($store->zip) $url .= "8zip=".$store->zip;

echo "Store: {$store->name}\n";

// Query Yahoo for this store's lat/long
curl setopt($ch, CURLOPT URL, $url);
$response = curl exec($ch);

// Use SimpleXML to parse our answer into something we can use
$yahooresult = simplexml load string($response);
if (!$yahooresult) echo "Unable to parse Yahoo response for {$store->name}!\n";
else foreach ($yahooresult->Result as $result) {
echo "Result Precision: {$result['precision’]}\n";
if ($result['precision’] != "address") {
echo "Warning: {$result['warning']}\n";
echo "Address: {$result->Address}\n";
}
echo "Latitude: {$result->Latitude}\n";
echo "Longitude: {$result->Longitude}\n\n";
} // for each Yahoo result
} // for each store

CHAPTER 4 " GEOCODING ADDRESSES

// Close the CURL file and destroy the object
curl close($ch);
>

The code in Listing 4-6 is similar to the one for the Google geocoder (Listing 4-3). In fact, this
is a template we will use a few more times in this chapter, and one that will serve you well for
most REST-based services that return XML. The only real difference in the Yahoo example is
that we've chosen to use the individual parameters since our data file already has them split up.
This means that we need to use PHP’s urlencode() on any parameter that might need it (those
with spaces or special characters, for example), instead of on a single mammoth string. If you used
the location parameter, this example could probably be 95% identical to the one in Listing 4-3.

We also check for the presence of each option before appending it to the URL of the REST
request, despite the fact that Yahoo will silently ignore blank inputs. After all, defensive
programming is always good practice, no matter how trivial the task—especially for experimental
code that will probably grow into production code.

Listing 4-7 gives the resulting output from Listing 4-6.

Listing 4-7. Output from the Yahoo Geocoding Script

Store: "The Original" Ron Jon Surf Shop
Result Precision: address

Latitude: 39.6351

Longitude: -74.1883

Store: "One of a Kind" Ron Jon Surf Shop
Result Precision: address

Latitude: 28.356577

Longitude: -80.608069

Store: Ron Jon Surf Shop - Sunrise
Result Precision: address
Latitude: 26.156292

Longitude: -80.316945

Store: Ron Jon Surf Shop - Orlando
Result Precision: address
Latitude: 28.469972

Longitude: -81.450143

Store: Ron Jon Surf Shop - Key West
Result Precision: address

Latitude: 24.560448

Longitude: -81.805998

Store: Ron Jon Surf Shop - California
Result Precision: address

Latitude: 33.783329

Longitude: -117.890562

79

80

CHAPTER 4 © GEOCODING ADDRESSES

Store: Ron Jon Cape Caribe Resort
Result Precision: street

Warning:

Address: [600-699] SHOREWOOD DR
Latitude: 28.40232

Longitude: -80.59554

Result Precision: street
Warning:

Address: SHOREWOOD DR
Latitude: 28.40168
Longitude: -80.59774

Note You may need to view the source to see formatted output from Listing 4-7.

The only real surprise here is the last entry, Cape Caribe Resort, failed to geocode any more
accurately than the general location of the street. This seems to corroborate Google’s answer
quite nicely (remember that it gave us 699 Shorewood instead of 1000 Shorewood). For now,
simply remember that you'll always need to do some sort of error checking on the results or you
might end up sending your customers to the wrong place. This entry also shows an example of
multiple results being returned, as discussed earlier.

A possible solution to the ambiguous answer problem is to cross-reference (and average)
the answers you get from one service (Google) with another (Yahoo). This is an onerous task if
done for all of the data, but might be an excellent solution for your particular application if applied
only to data that gives you grief.

Geocoder.us

Let’s adapt our code for another US-centric geocoding service. Geocoder.us is a very popular
service and was introduced well before Yahoo's and Google’s services hit the market. For a long
while, it was the measuring stick against which all other services were compared. The service was
developed by two enterprising programmers, who took the freely available 2004 US Census
Bureau’s data and converted it into a web service.

Note The developers of Geocoder.us have made the Perl code that they wrote for their service available
under an open source license and a module called Geo: : Coder : : US. If this interests you, then Chapter 11
may also interest you. In Chapter 11, we dig deep into the US Census data to build our own geocoder from
scratch using PHP instead of Perl.

Just as with the Google and Yahoo services, there are limitations to the Geocoder.us service.
The free service cannot be used for commercial purposes, and is rate-limited to prevent abuse,

CHAPTER 4 " GEOCODING ADDRESSES

though the developers haven't published exactly what the limit is. You can purchase a high-volume
or commercial account that will get you four lookups per penny (20,000 lookups for $50) with
no rate limiting whatsoever.

Geocoder.us offers four different ways to access its web services: an XML-RPC interface,
a SOAP interface, a REST interface that returns an RDF/XML document, and a REST interface that
returns a plaintext CSV result. The accuracy, methods, and return values are equivalent across
all of these interfaces. It's merely a matter of taste as to which one you'll use. For our example,
we'll use the REST-based service and the CSV result (for some variety).

The following is an example of a Geocoder.us request for geocoding the Apress headquarters:

http://geocoder.us/service/csv/geocode?address=2560+Ninth+Street, +Berkeley+CA+94710

This returns the CSV string 37.859524,-122.291713,2560 9th St,Albany,CA,94710.You can
see that it has mistaken Berkeley for Albany, despite the fact that the ZIP codes match. The
latitude and longitude are nearly identical to the results Yahoo gave.

Let’s again reuse the code from Listing 4-3 and adapt it to suit this new service. As with the
Google geocoder, only one parameter is passed into this REST service, and it is called address.
At minimum, either a city and state or a ZIP code must be contained in the address parameter.
Listing 4-8 shows the adapted code.

Caution The code in Listing 4-8 takes a while to run. We'll discuss why in a moment, but for now be patient.

Listing 4-8. Using the Geocoder.us Service to Locate the Stores

<?php

// Create a CURL object for later use

$ch = curl init();

curl_setopt($ch, CURLOPT_HEADER, 0);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

// Open the ronjons.xml file
$datafile = simplexml_load_file("ronjons.xml");
if (!$datafile) die("Unable to open input file!");

foreach ($datafile->store as $store) {
// Construct the request string
$url = "http://geocoder.us/service/csv/geocode?address=";
$address = "";
if ($store->address) $address .= $store->address.”, ";
if ($store->city) $address .= $store->city." ";
if ($store->state) $address .= $store-»>state." ";
if ($store->zip) $address .= $store->zip;

$url .= urlencode($address);

echo "Store: {$store->name}\n";

81

82

CHAPTER 4 © GEOCODING ADDRESSES

// Query Geocoder.us for this store's lat/long
curl setopt($ch, CURLOPT URL, $url);
$response = curl exec($ch);

// Split up the CSV result into components
list($lat,$long,$address,$city,$state,$zip) = split(",",$response);
echo "Latitude: $lat\n";
echo "Longitude: $long\n\n";

} // for each store

// Close the CURL file and destroy the object
curl close($ch);
>

The only real difference here is with the CSV-style response. We've used a convention for
splitting here that is common to the code snippets found on http://www.php.net, namely, using
1ist() to get named strings instead of an array when calling the split() function. Listing 4-9
shows the output of the code in Listing 4-8.

Listing 4-9. Output from the Geocoder.us Script

Store: "The Original" Ron Jon Surf Shop
Latitude: 39.649509
Longitude: -74.177136

Store: "One of a Kind" Ron Jon Surf Shop
Latitude: 28.356433
Longitude: -80.608227

Store: Ron Jon Surf Shop - Sunrise
Latitude: 26.150513
Longitude: -80.316476
Store: Ron Jon Surf Shop - Orlando
Latitude: 28.466795

Longitude: -81.449860

Store: Ron Jon Surf Shop - Key West
Latitude: 24.560083
Longitude: -81.806069

Store: Ron Jon Surf Shop - California
Latitude: 33.781086
Longitude: -117.892520

Store: Ron Jon Cape Caribe Resort
Latitude: 2: couldn't find this address! sorry
Longitude:

CHAPTER 4 " GEOCODING ADDRESSES

When executing the code, the first thing you'll probably notice is that this request takes
along time to run. We believe this is a result of Geocoder.us rate limiting being based on requests
per minute instead of requests per day. When testing, it took well over a minute to geocode just
the seven points in the ronjons.xml data file.

The next thing you'll see if you look carefully is that the latitude and longitude results are the
same as those from Yahoo only to three decimal places (on average). This is not a large difference
and is the result of using different interpolation optimizations on the same data set, which we’ll
discuss in Chapter 11.

Notice that “The Original” store has given us a single answer this time, instead of multiple
answers, and that the resort has given us grief yet again, except in this case, we didn't even get
a best guess.

Note To determine just how large a distance difference the various geocoders give you for each of the results,
you'll need to use the spherical distance equations (such as the Haversine method) we provide in Chapter 10.

Geocoder.ca

Geocoder.ca is similar to the service provided by Geocoder.us, but it is specifically targeted at
providing information about Canada. (This service is in no way affiliated with Geocoder.us, and
it uses a completely different data set, provided by Statistics Canada.)

The people behind Geocoder.ca built it specifically for their own experiments with the
Google Maps API when they had trouble finding a timely, accurate, and cost-effective solution
for geocoding Canadian addresses. They obtained numerous sources of data (postal, census,
and commercial) and cross-referenced everything to weed out the inevitable errors in each set.
This means that the Geocoder.ca service is quite possibly the most accurate information for
Canada so far. (However, now that Google’s solution covers Canada with relatively good accuracy,
we're afraid that this extremely comprehensive service will become marginalized.)

Geocoder.ca provides a lot of neat features like intersection geocoding, reverse geocoding,
and a suggestion system for correcting mistyped (or renamed) street names—none of which
are provided by Google’s geocoder, or any other for that matter. We don’t cover any of these
alternative features in this chapter, but you can find more information about them at their
website if you're interested.

Remember that there is still no free lunch, so as with the other services, there are also
limitations on the Geocoder.ca service. The free service is limited to between 500 and 2000
lookups per day per source IP address, depending on server load (light days you get more;
heavy days less). The developers are willing to extend the limits for nonprofit organizations,
but everyone else will need to purchase an account for commercial uses. The cost is currently
the same as Geocoder.us: 20,000 lookups for $50. Purchasing a commercial account might be an
excellent way to cross-reference Google’s multiple-result answers quickly, cheaply, and effectively.

An example of a query for geocoding the CN Tower in Toronto, Ontario is as follows:

http://geocoder.ca/?&stno=301&addresst=Front%2BStreet%2BWest&city=Toronto8prov=w
ON&postal=M5V2T6&geoit=XML.

This yields the exceedingly simple XML result in Listing 4-10.

83

84

CHAPTER 4 © GEOCODING ADDRESSES

Listing 4-10. Sample Response from Geocoder.ca

<?xml version="1.0" encoding="UTF-8" ?>
<geodata>
<latt>43.643865000</1att>
<longt>-79.388545000</longt>
</geodata>

Notice that the XML response uses latt and longt. The trailing t is easy to miss when
reading the raw XML.

For an example, the Ron Jon Surf Shop data will not work, since the chain has yet to open
a store in Canada. Instead, we’ll again use the CN Tower in Toronto, Ontario. The address for
the CN Tower is 301 Front Street West, Toronto, Ontario M5V 2T6 Canada. Listing 4-11 shows
a small PHP snippet for geocoding this single address, which could easily be looped and
abstracted as in previous examples to do multiple addresses. Feel free to substitute your own
address if you live in the Great White North or know someone who does.

Listing 4-11. Using Geocoder.ca to Locate the CN Tower in Toronto

<?php

// Address to geocode (the CN Tower)
$street no = "301";

$street = "Front Street West";

$city = "Toronto";

$prov = "ON";

$postal = "M5V2T6";

// Create a CURL object for later use

$ch = curl init();

curl setopt($ch, CURLOPT HEADER, 0);

curl setopt($ch, CURLOPT RETURNTRANSFER, 1);

// Construct the request string

$url = "http://geocoder.ca/?";

$url .= "&stno=".urlencode($street_no);
$url .= "8addresst=".urlencode($street);
$url .= "8city=".urlencode($city);

$url .= "&prov=".$prov;

$url .= "8postal=".$postal;

$url .= "8geoit=XML";

// Query Geocoder.ca for the lat/long
curl setopt($ch, CURLOPT URL, $url);
$response = curl exec($ch);

// Use SimpleXML to parse our answer into something we can use
$resultset = simplexml load string($response);
if (!$resultset) die("Unable to parse the response!");

CHAPTER 4 " GEOCODING ADDRESSES

echo "The CN tower is located here:\n";
echo "Latitude: {$resultset->latt}\n";
echo "Longitude: {$resultset->longt}\n";

// Close the CURL file and destroy the object
curl close($ch);
>

The most important lines in Listing 4-11 are highlighted in bold. The first is that the
Geocoder.ca service prefers you to split out the street number from the street name. This isn’t
strictly necessary, but it does imply that greater accuracy can be achieved by doing so. The second
is that the geoit parameter must be included. At this point, there is no alternative value for this
parameter, but there probably will be in the future. Lastly, when parsing the results, again,
remember that the XML response uses latt and longt.

Listing 4-12 shows the output from Listing 4-11.

Listing 4-12. Output from our Geocoder.ca Script

The CN tower is located here:
Latitude: 43.643865000
Longitude: -79.388545000

When you compare this answer with the one Google gives you (43.642411,-79.386649) by
clicking on a map, as in Chapter 3, you see that Geocoder.ca has done an excellent job of finding
the correct coordinates for the CN Tower given its street address.

Services for Geocoding Addresses Outside Google’s Coverage

For addresses outside the set provided by Google’s geocoder, the job becomes much more difficult
due to the lack of good, freely available data. In Chapter 11, you'll see how to create your own
service from some sources of free data for the UK and the US. Maybe some of you will be inspired
to find data for your country and create a service for the rest of us.

For now, however, we're simply going to share a few of the geocoding services we've found
to date for areas outside Google’s coverage area. We can’t guarantee the accuracy or completeness
of data from these services, since we don’t have any real addresses to test with or enough
knowledge of the local geography to wing it. We'll try to keep an updated list of services as we
hear about them on our website at http://googlemapsbook.com/geocoders. Please let us know if
you find or make more!

Geonames.org

Geonames.org has quite a few web services that might fit your needs. There is a full-text search of
its database of place names, landmarks, and other geopositional data at http://www.geonames.
org/export/geonames-search.html. However, you can also find (partial) postal code lookups for
many countries (currently over 50), as well as reverse geocoding solutions for finding the name
of the country or closest named feature for a given latitude and longitude (reverse geocoding).
In Appendix A, we discuss the use of complete database dumps as a possible means to acquire
the data you need to build your application without using external geocoding services.

85

86

CHAPTER 4 © GEOCODING ADDRESSES

ViaMichelin.com

One interesting solution for geocoding addresses in western Europe is http://www.viamichelin.
com. The company that runs this service is part of the same company that makes Michelin tires
(remember the Michelin Man?). The service offers route calculation, geocoding, and even an
alternative source of map data. ViaMichelin is in competition with Google when it comes to
maps, but for European locations where Google does not yet have geocoding services, the
ViaMichelin solution could mean the difference between a successful project and a failure.

Bulk Geocoders

Many bulk geocoding services out there will accept a CSV or Excel file from you, determine
latitude and longitude to the best of their ability, and give you the results a few hours to a few
days later. These services typically charge a per-point fee when they are successful and nothing
when they are not. Many of them use the Microsoft MapPoint Web Service to do the work.
The quality of the data varies (with provider, price, and country), so we suggest that you do
your research before hiring one of them to geocode your points.

Caching Lookups

As programmers, we hate wasting resources, and as service providers, we hate having our
resources wasted. Therefore, for many of the examples in the rest of this book, you’ll be
precomputing the latitude and longitude programmatically and storing that information
along with the point data you want to use in your mashup. This saves your bandwidth by not
requiring unnecessary CURL/API requests, and saves the bandwidth of the services you'll be
using for geocoding. Best of all, it provides a much faster user experience for your map visitors,
which is almost always the single largest factor in determining the success of a website or service.

Caution Caching is not always the right answer. In some of the more novel mashups we’ve seen, the data
is so dynamic that caching the latitude and longitude of the plotted point is actually more of a waste than not
caching it. These examples are typically mashups where a single given point is plotted for only one or two visitors
before it’s never seen again, such as plotting the current position of a GPS device.

To cache the data for your store locator map, you'll modify the code in Listing 4-6 to create
a script (Listing 4-13) that does a bulk geocoding of all of the stores and adds the latitude and
longitude to the data file in Listing 4-14. In the next section, you'll use this data file to make your
map, and assume that the stores already have latitude and longitude values associated with them.

Listing 4-13. Modified Code Showing Write-Back of Cached Data

<?php
// Your Yahoo! Application Code
$appid = YOUR_YAHOO APPLICATION ID;

CHAPTER 4 " GEOCODING ADDRESSES

// Create a CURL object for later use

$ch = curl init();

curl setopt($ch, CURLOPT HEADER, 0);

curl setopt($ch, CURLOPT RETURNTRANSFER, 1);

// Open the ronjons.xml file
$datafile = simplexml load file("ronjons.xml");

// Open a file to store our consolidated information in
$newfile = fopen("ronjons_cache.xml", "w+");

fputs($newfile, '<?xml version="1.0" encoding="UTF-8"2>'."\n");
fputs($newfile, '<stores>'."\n");

foreach ($datafile->store as $store) {
// Construct the request string
$url = "http://api.local.yahoo.com/MapsService/V1/geocode?appid=$appid";
if ($store->address) $url .= "&street=".urlencode($store->address);
if ($store->city) $url .= "8city=".urlencode($store->city);
if ($store->state) $url .= "&state=".urlencode($store->state);
if ($store->zip) $url .= "8zip=".trim($store->zip);

// Query Yahoo for this store's lat/long
curl setopt($ch, CURLOPT URL, $url);
$response = curl exec($ch);

// Use SimpleXML to parse our answer into something we can use
$yahooresult = simplexml load string($response);
foreach ($yahooresult->Result as $result) {
$latitude = $result->Latitude;
$longitude = $result->Longitude;
} // for each Yahoo Result

// Lastly output the XML to our file
fputs($newfile,' <store>'."\n");
fputs($newfile,' <name>'.trim($store->name).'</name>"'."\n");
fputs($newfile,' <addresss'.trim($store->address).'</address>"'."\n");
if ($store->address2)
fputs($newfile,' <address2>'.trim($store->address2).'</address2>'."\n");

fputs($newfile,' <city>'.trim($store->city).'</city>"'."\n");
fputs($newfile,' <state>'.trim($store->state).'</state>'."\n");
fputs($newfile,' <zip>'.trim($store->zip).'</zip>'."\n");
fputs($newfile,' <phone>'.trim($store->phone).'</phone>'."\n");
fputs($newfile,' <pin>'.trim($store->pin).'</pins'."\n");
fputs($newfile,' <latitude>'.trim($latitude).'</latitude>'."\n");
fputs($newfile,' <longitude>'.trim($longitude).'</longitude>'."\n");
fputs($newfile,' </store>'."\n");

} // for each store

87

88

CHAPTER 4 © GEOCODING ADDRESSES

// Close the CURL file and destroy the object
curl close($ch);

// Close the new file freeing the memory
fputs($newfile, '</stores>'."\n");
fclose($newfile);

>

As you can see from the code, in our example we've elected to use the standard fopen(),
fwrite(), and fclose() PHP commands to create the new file. SimpleXML doesn’t provide
a facility to add elements to an open XML document, and getting into a full-blown DOM example
would be counterproductive.

Your modified script now creates a new file on the file system, as shown in Listing 4-14.
You could have just as easily written the file on top of the existing ronjons.xml file, but if the
conversion failed, you could lose all your existing data. The only trick is that you'll need to grant
the web server user access to make new files in the folder you're working in, or you'll need to
create a blank file and make it world-writable before executing this code.

Listing 4-14. The New ronjons_cache.xml File with Caching (ronjons_cache.xml)

<?xml version="1.0" encoding="UTF-8"?>

<stores>

<store>
<name>"The Original” Ron Jon Surf Shop</name>
<address>901 Central Avenue</address>
<city>long Beach Island</city>
<state>NJ</state>
<zip>08008</zip>
<phone>(609) 494-8844</phone>
<pin>store</pin>
<latitude>39.649652</latitude>
<longitude>-74.177547</longitude>

</store>

<store>
<name>"One of a Kind" Ron Jon Surf Shop</name>
<address>4151 North Atlantic Avenue</address>
<city>Cocoa Beach</city>
<state>FL</state>
<zip>32931</zip>
<phone>(321) 799-8888</phone>
<pin>store</pin>
<latitude>28.356577</latitude>
<longitude>-80.608069</longitude>

</store>

<store>
<name>Ron Jon Surf Shop - Sunrise</name>
<address>2610 Sawgrass Mills Circle</address>
<address2>Suite 1415</address2>

CHAPTER 4

<city>Sunrise</city>

<state>FL</state>

<zip>33323</zip>

<phone>(954) 846-1880</phone>
<pin>store</pin>
<latitude>26.156292</latitude>
<longitude>-80.316945</longitude>
</store>

<store>

<name>Ron Jon Surf Shop - Orlando</name>
<address>5160 International Drive</address>
<city>Orlando</city>

<state>FL</state>

<zip>32819</zip>

<phone>(407) 481-2555</phone>
<pin>store</pin>
<latitude>28.469972</latitude>
<longitude>-81.450143</longitude>
</store>

<store>

<name>Ron Jon Surf Shop - Key West</name>
<address>503 Front Street</address>
<city>Key West</city>

<state>FL</state>

<z1ip>33040</zip>

<phone>(305) 293-8880</phone>
<pin>store</pin>
<latitude>24.560448</latitude>
<longitude>-81.805998</longitude>
</store>

<store>

<name>Ron Jon Surf Shop - California</name>
<address>20 City Blvd.</address>
<address2>West Building C Suite 1</address2>
<city>Orange</city>

<state>CA</state>

<z1ip>92868</zip>

<phone>(714) 939-9822</phone>
<pin>store</pin>
<latitude>33.783329</latitude>
<longitude>-117.890562</longitude>
</store>

<store>

<name>Ron Jon Cape Caribe Resort</name>
<address>1000 Shorewood Drive</address>
<city>Cape Canaveral</city>
<state>FL</state>

GEOCODING ADDRESSES

89

90

CHAPTER 4 © GEOCODING ADDRESSES

<zip>32920</zip>
<phone>(321) 328-2830</phone>
<pin>resort</pin>
<latitude>28.40168</latitude>
<longitude>-80.59774</longitude>
</store>
</stores>

Note Ideally, you would be using some sort of relational database rather than a flat file on your file system
for storing the points for your map. This would allow you to check each point at mapping time and look up (and
cache) only those that don’t have geocoded data yet. We'll begin using SQL databases in the next chapter.

The performance gain for caching just seven points is probably not noticeable on your
high-speed connection. However, as your code scales to hundreds or thousands of data points,
it will become critical. Also, if you are paying for each lookup, even at hundreds of lookups per
dollar, the costs can add up quickly if a popular blog links to your map.

Note that the one place to avoid using caching is when your visitors are required to enter
their current location so that the map can tailor itself to their situation and surroundings. This
is often used in a store finder application where visitors enter their address and how far they are
willing to drive to buy your product from a brick-and-mortar store.

Building a Store Location Map

Now that you have your stores and their latitude and longitude coordinates, you're ready to make
your map. This will be a very basic map, but it serves our demonstration nicely. You'll customize
the marker GIcon using the Ron Jon Surf Shop logo, and use the info window to display the store’s
address and phone number to visitors when they click the marker.

To make things a little easier, you can begin by taking the map you created in Chapter 2,
with the addition of the icon creation from Chapter 3, and use the map_data.php file to
convert your XML file of cached locations into the data structure from the map_data.php file
in Listing 2-6. Listings 4-15, 4-16, and 4-17 show the modified map_data.php file, its output,
and the map_functions. js file, respectively.

Listing 4-15. PHP Generation of the JavaScript (JSON) Data File in map_data.php

<?php
// Open the ronjons cache.xml file and load the data for the pins
$datafile = simplexml load file("ronjons cache.xml");
echo "var markers = [\n";
foreach ($datafile->store as $store) {
$description = "{$store->address}
";

if ($store->address2) $description .= "{$store->address2}
";
$description .= "{$store->city}, {$store->state}
";
$description .= "{$store->zip}
";

$description .= "Phone: {$store->phone}
";

CHAPTER 4 " GEOCODING ADDRESSES

echo "{
'latitude’: {$store->latitude},
"longitude': {$store->longitude},
"name': '{$store->name}’,
"description’': '$description’
}\n";
}

echo "];\n";
?>

Listing 4-16. Generated JSON Data Structure in map_data.php

var markers = [
{
'latitude': 39.649652,
"longitude': -74.177547,
"name’: '"The Original" Ron Jon Surf Shop',
"description': '901 Central Avenue
Long Beach Island,w=
NJ
08008
Phone: (609) 494-8844
"
b A
'latitude': 28.356577,
"longitude': -80.608069,
"name’: '"One of a Kind" Ron Jon Surf Shop',
"description': '4151 North Atlantic Avenue
Cocoa Beach,w
FL
32931
Phone: (321) 799-8888
'
b A
'latitude': 26.156292,
"longitude': -80.316945,
"name': 'Ron Jon Surf Shop - Sunrise’,
"description': '2610 Sawgrass Mills Circle
Suite 1415
Sunrise,'=
FL
33323
Phone: (954) 846-1880
'
b A
'latitude': 28.469972,
"longitude': -81.450143,
"name’: 'Ron Jon Surf Shop - Orlando’,

"description': '5160 International Drive
Orlando,'w
FL
32819
Phone: (407) 481-2555
'
bAoA

'latitude': 24.560448,

"longitude': -81.805998,

"name': 'Ron Jon Surf Shop - Key West',

"description': '503 Front Street
Key West,ws
FL
33040<bx/>Phone: (305) 293-8880
'
b A

'latitude’: 33.783329,

"longitude': -117.890562,

"name’: 'Ron Jon Surf Shop - California’,

91

92

CHAPTER 4 © GEOCODING ADDRESSES

"description’: '20 City Blvd.
West Building C Suite 1
Orange,=
CA
92868
Phone: (714) 939-9822
"
b A

'latitude': 28.40168,

'longitude': -80.59774,

"name': 'Ron Jon Cape Caribe Resort',

"description’: '1000 Shorewood Drive
Cape Canaveral,ws
FL
32920
Phone: (321) 328-2830
'
})
1K

Listing 4-17. map_functions.js from Chapter 2 Modified to Add Customized Icons and Info Windows

var centerlatitude = 40.6897;
var centerlongitude = -95.0446;
var startZoom = 3;

var map;

var RonJonLogo = new GIcon();

RonJonLogo.image = 'ronjonsurfshoplogo.png';
RonJonLogo.iconSize = new GSize(48, 24);
RonJonLogo.iconAnchor = new GPoint(24, 14);
RonJonLogo.infolWindowAnchor = new GPoint(24, 24);

function addMarker(latitude , longitude, description) {
var marker = new GMarker(new GlLatlLng(latitude, longitude), RonJonLogo);
GEvent.addListener(marker, 'click',
function() {
marker.openInfoWindowHtml(description);
}
)5

map.addOverlay(marker);

}

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

for(id in markers) {

addMarker(markers[id].latitude , markers[id].longitude,
markers[id].description);

}

window.onload = init;

CHAPTER 4 " GEOCODING ADDRESSES

Figure 4-1 shows the completed map.

g Fa §

A,
(N Iurl co
e, I_,.Lgl'

? 1 e
LA
e ‘f‘;fmmx;

Figure 4-1. The completed map of the Ron Jon Surf Shop US locations

There you have it. The best bits of all of our examples so far combined into a map application.
Data is geocoded, automatically cached for speed, and plotted quickly based on a JSON
representation of our XML data file.

Summary

This chapter covered using geocoding services with your maps. It’s safe to assume that you'll be
able to adapt the general ideas and examples here to use almost any web-based geocoding service that
comes along in the future. From here on, we’ll assume that you know how to use these services
(or ones like them) to geocode and cache your information efficiently.

This ends the first part of the book. In the next part, we'll move on to working with third-party
data sets that have hundreds of thousands of points. Our examples will use the FCC’s antenna
structures database that currently numbers well over a hundred thousand points.

93

PART 2

Beyond the Basics

CHAPTER 5

Manipulating Third-Party Data

In this chapter, we're going to cover two of the most popular ways of obtaining third-party
data for use on your map: downloadable character-delimited text files and screen scraping. To
demonstrate manipulating data, we’ll use a single example in this and the next two chapters
(the FCC Antenna Structures Database). In the end, you'll have an understanding of the data
that will be used for the sample maps, as well as how the examples might be generalized to fit
your own sources of raw information.

In Appendix A, you'll find a list of other sources of free information that you could harvest
and combine to make maps. You might want to thumb to this appendix to see some other neat
things you could do in your own experiments and try applying the tips and tricks presented in
this chapter to some other source of data. The scripts in this chapter should give you a great
toolbox for harvesting nearly any data source, and the ideas in the next two chapters will help
you make an awesome map, no matter how much data there is.

In this chapter, you'll learn how to do the following:

¢ Split up and store the information from character-delimited text files in a convenient
way for later use.

* Use SQL as a server-side information storage system instead of the file-system-based
text files (XML, CSV, and so on) you've been using so far.

* Optimize your SQL queries to extract the information you want quickly and easily.

e Parse the visible HTML from a website and extract the parts that you care about—a
process called screen scraping.

Using Downloadable Text Files

For the next three chapters, we're going to be working with the US Federal Communications
Commission (FCC) Antenna Structure Registration (ASR) database. This database will help us
highlight many of the more challenging aspects of building a professional map mashup.

So why the FCC ASR database? There are several reasons:

97

98 CHAPTER 5 I MANIPULATING THIRD-PARTY DATA

* The data is free to use, easy to obtain, and well documented. This avoids copyright and
licensing issues for you while you play with the data.

e There is a lot of data, allowing us to discuss issues of memory consumption and inter-
face speed. At the time of publication, there were more than 120,000 records.

¢ The latitudes and longitudes are already recorded in the database, removing the need
to cover something we've already discussed in depth.

¢ None of the preceding items are likely to have changed since this book was published,
serving as a future-proof example that should still be relevant as you read this.

* The maps you can make with this data look extremely cool (Figure 5-1)!

| satellite

Figure 5-1. Example of a map built with FCC ASR data (which you will build in Chapter 7)

Downloading the Database

The first thing you need to do is obtain the FCC ASR database. It’s available from http://
wireless.fcc.gov/uls/data/complete/r tower.zip. This file is approximately 65MB to 70MB
when compressed.

After you've downloaded the file, unpack it and transfer RA.dat, EN.dat, and CO.dat into
your working folder. You won't need the rest of the files for this experiment, although they do
contain interesting data. If you're interested in the official documentation, feel free to visit
http://wireless.fcc.gov/cgi-bin/wtb-datadump.pl.

Tables 5-1 through 5-3 outline the contents of the RA.dat, EN.dat, and CO.dat files. RA.dat
(Table 5-1) is the key file, and the one you will use to bind the three together. It lists the unique
identification numbers for each structure, as well as the physical properties, like size and street
address. EN.dat (Table 5-2) outlines the ownership of each structure, and C0.dat (Table 5-3)
outlines the coordinates for the structure in latitude and longitude notation. The Used in Our
Example? column in each table indicates the data you will be using.

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA 99

Table 5-1. RA.dat: Registrations and Applications

Column Data Element Content Definition Used in Our Example?
0 Record Type char(2)

1 Content Indicator char(3)

2 File Number char(8)

3 Registration Number char(7) Yes
4 Unique System Identifier numeric(9) Yes
5 Application Purpose char(2)

6 Previous Purpose char(2)

7 Input Source Code char(1)

8 Status Code char(1)

9 Date Entered mm/dd/yyyy

10 Date Received mm/dd/yyyy

11 Date Issued mm/dd/yyyy

12 Date Constructed mm/dd/yyyy Yes
13 Date Dismantled mm/dd/yyyy Yes
14 Date Action mm/dd/yyyy

15 Archive Flag Code char(1)

16 Version integer

17 Signature First Name varchar(20)

18 Signature Middle Initial char(1)

19 Signature Last Name varchar(20)

20 Signature Suffix varchar(3)

21 Signature Title varchar(40)

22 Invalid Signature char(1)

23 Structure_Street Address varchar(80) Yes
24 Structure_City varchar(20) Yes
25 Structure_State Code char(2) Yes
26 Height of Structure numeric(5,1) Yes
27 Ground Elevation numeric(6,1) Yes
28 Overall Height Above Ground numeric(6,1) Yes
29 Overall Height AMSL numeric(6,1) Yes
30 Structure Type char(6) Yes
31 Date FAA Determination Issued mm/dd/yyyy

32 FAA Study Number varchar(20)

33 FAA Circular Number varchar(10)

34 Specification Option Integer

35 Painting and Lighting varchar(100)

36 FAA EMI Flag char(1)

37 NEPA Flag char(1)

100

CHAPTER 5

MANIPULATING THIRD-PARTY DATA

Table 5-2. EN.dat: Ownership Entity

Column Data Element Content Definition Used in Our Example?
0 Record Type char(2)

1 Content Indicator char(3)

2 File Number char(8)

3 Registration Number char(7) Yes
4 Unique System Identifier numeric(9,0) Yes
5 Entity Type char(1)

6 Licensee ID char(9)

7 Entity Name varchar(200) Yes
8 First Name varchar(20)

9 MI char(1)

10 Last Name varchar(20)

11 Suffix char(3)

12 Phone char(10)

13 Internet Address varchar(50)

14 Street Address varchar(35) Yes
15 PO Box varchar(20)

16 City varchar(20) Yes
17 State char(2) Yes
18 Zip Code char(9) Yes
19 Attention varchar(35)

Note In the Entity Name column of the EN. dat file, there is often an equal sign (=). If you are going to
build a map that has ownership search features (say for cellular carriers), you might want to import only the
part after the equal sign, so that you can more accurately display results to your users.

Table 5-3. CO.dat: Physical Location Coordinates

Column Data Element Content Definition Used in Our Example?
0 Record Type char(2)

1 Content Indicator char(3)

2 File Number char(8)

3 Registration Number char(7) Yes

4 Unique System Identifier numeric(9) Yes

5 Coordinate Type char(1)

6 Latitude Degrees integer Yes

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

Column Data Element Content Definition Used in Our Example?
7 Latitude Minutes integer Yes

8 Latitude Seconds numeric(4,1) Yes

9 Latitude Direction char(1) Yes

10 Latitude_Total_Seconds numeric(8,1)

11 Longitude Degrees integer Yes

12 Longitude Minutes integer Yes

13 Longitude Seconds numeric(4,1) Yes

14 Longitude Direction char(1) Yes

15 Longitude_Total_Seconds numeric(8,1)

As you can see, we're not concerned with most of the data that is available in this data-
base. Our main interest is the location and physical properties of each structure.

Parsing CSV Data

Now that you know what you want to use from the massive amount of data provided by the FCC,
you need to break out those bits into something useful. For this task, you're going to use some
simple PHP. We'll start with the standard fopen()/fgets() example from http://www.php.net/
fgets and add in the code to convert each line into an array. The code in Listing 5-1 shows this
process.

Listing 5-1. Parsing a Pipe (|) Delimited File

<?php
// Open the Registrations and Applications Data file
$handle = @fopen("RA.dat","1r");

// Parse and output the first 50 USI numbers.
$1 = 0;
if ($handle) {
while (!feof($handle)) {
$buffer = fgets($handle, 1024);
$row = explode("|",$buffer);
echo "UST#: ".$row[4]."
\n";
if ($i == 50) break; else $i++;
}
fclose($handle);

}

2>

The code in Listing 5-1 doesn’t do much other than fill your screen with useless information.
We've separated it from the data import into SQL data structures (shown later in Listing 5-3 in
the next section) because it’s a recipe that you'll use repeatedly if you're working with most
third-party data, and thus we felt it warranted its own section.

101

102

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

Note In Listing 5-1, we’ve limited our script to output only the first 50 lines to prevent abuse and save
you time. However, it also serves as a good lesson: you should protect your own (long-running) import/
parsing scripts from being unintentionally (or intentionally) executed by general web surfers, or you may find
yourself the victim of a denial-of-service (DoS) attack.

Optimizing the Import

Leaving all of this data in the flat files won't be very efficient for creating a map from the data,
since it will take minutes each time to parse the files and will likely flood all the memory buffers
on your server and your visitors’ machines. Therefore, you'll import the data points into a SQL
data structure so that you can selectively plot the information based on your visitors’ interests
(as described in the next two chapters).

Caution We assume you are already familiar with MySQL and have an administration tool for your
database that you are skilled at using. If you’re not familiar with MySQL, we recommend Beginning PHP and
MySQL 5: From Novice to Professional, Second Edition, by W. Jason Gilmore (http://www.apress.com/
book/bookDisplay.html?bID=10017).

You'll be storing the information from each of your data files in its own table. While the
data you are interested in has a 1:1:1 relationship among the three files, the reason for doing
this is threefold:

¢ Reading in the contents of each file into a gigantic array and then inserting the data
into a single unified table one record at a time would consume hundreds of megabytes
of memory. Since the default PHP per-script memory limit is 8MB, and most web hosts
don't increase this limit, this isn’t a workable solution in general. We also assume you do
not have sufficient permissions at your web host to increase your own memory limits. If
you do control your own server, feel free to use this method if you prefer, as there are no
real drawbacks other than the one-time memory consumption issue.

* Opening the three files simultaneously and sequentially reassembling the corresponding
records would require that the files be sorted first. (The FCC explicitly states that it will
never sort the files before you download them.) Doing this in PHP would again exceed
the memory limits, and using the Unix sort file system utility requires the use of PHP’s
exec(), which is also a protected function on many web hosts.

* Using a SQL INSERT statement for the data in the RA. dat file, then using an UPDATE state-
ment to fill in the blanks when you later read in EN.dat and CO. dat. would require heavy
use of the MySQL UPDATE feature, which is an order of magnitude (ten times) slower than
using INSERT. We tried this method, and it took more than eight hours to import all of
the data. Listing 5-3 only takes a few minutes.

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA 103

The structure we've chosen for the three-table design is in Listing 5-2. Copy these statements
into your administration tool and execute them.

Listing 5-2. The MySQL Table Creation Statements for the Example

CREATE TABLE fcc_location (
loc_id int(10) unsigned NOT NULL auto_increment,
unique_si loc bigint(20) NOT NULL default 'o',
lat_deg int(11) default 'o',
lat min int(11) default '0',
lat_sec float default '0',
lat_dir char(1) default NULL,
latitude double default '0',
long deg int(11) default 'o',
long_min int(11) default 'o',
long sec float default '0',
long_dir char(1) default NULL,
longitude double default '0',
PRIMARY KEY (loc_id),
KEY unique_si (unique_si loc)
) ENGINE=MyISAM ;

CREATE TABLE fcc_owner (
owner_id int(10) unsigned NOT NULL auto_increment,
unique_si own bigint(20) NOT NULL default 'o',
owner_name varchar(200) default NULL,
owner_address varchar(35) default NULL,
owner_city varchar(20) default NULL,
owner_state char(2) default NULL,
owner_zip varchar(10) default NULL,
PRIMARY KEY (owner id),
KEY unique_si (unique_si own)

) ENGINE=MyISAM ;

CREATE TABLE fcc_structure (
struc_id int(20) unsigned NOT NULL auto_increment,
unique_si bigint(20) NOT NULL default 'o',
date _constr date default '0000-00-00',
date_removed date default '0000-00-00',
struc_address varchar(80) default NULL,
struc_city varchar(20) default NULL,
struc_state char(2) default NULL,
struc_height double default 'o',
struc_elevation double NOT NULL default '0',
struc_ohag double NOT NULL default 'o',
struc_ohamsl double default '0',
struc_type varchar(6) default NULL,
PRIMARY KEY (struc_id),

104

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

KEY unique_si (unique si),
KEY struc_state (struc_state)
) ENGINE=MyISAM;

After you create the tables, run Listing 5-3 from either a browser or the command line to
import the data. Importing the data could take up to ten minutes, so be patient.

Listing 5-3. FCC ASR Conversion to SQL Data Structures

<?php
set_time 1imit(0); // this could take a while

// Connect to the database
require($_SERVER['DOCUMENT ROOT'] . '/db_credentials.php');
$conn = mysql connect("localhost", $db _name, $db_pass);
mysql select db("googlemapsbook", $conn);

// Open the Physical Location Coordinates file
$handle = @fopen("RA.dat","1r");

if ($handle) {
while (!feof($handle)) {
$buffer = fgets($handle, 4096);
$row = explode("|",$buffer);
if ($row[3] > 0) {
// Modify things before we insert them
$row[12] = date("Y-m-d",strtotime($row[12]));

$row[13] = date("Y-m-d",strtotime($row[13]));
$row[23] = addslashes($row[23]);
$row[24] = addslashes($row[24]);
$row[30] = addslashes($row[30]);

// Formulate our query

$query = "INSERT INTO fcc_structure (unique_si, date constr,
date_removed, struc_address, struc_city, struc_state, struc_height,
struc_elevation, struc_ohag, struc_ohamsl, struc_type)
VALUES ({$row[4]}, '{$row[12]}", '{$row[13]}', '{$row[23]}',
"{$row[24]}", ‘'{$row[25]}", '{$row[26]}", '{$row[27]}', '{$row[28]}',
"{$row[29]}", "{$row[30]}")";

// Execute our query

$result = @mysql_query($query);

if (!$result) echo("ERROR: Duplicate structure info #{$row[4]}
\n");
}

}
fclose($handle);

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA 105

}

echo "Done Structures.
\n";

// Open the Ownership Data file
$handle = @fopen("EN.dat","1");

f ($handle) {
while (!feof($handle)) {

$buffer = fgets($handle, 4096);

$row = explode(" ", $buffer);
f ($row[3] > 0) {
$row[7] = addslashes($row[7]);
$row[14] = addslashes($row[14]);
$row[16] = addslashes($row[16]);

$query = "INSERT INTO fcc_owner (unique_si own, owner name,
owner_address, owner c1ty, owner_state, owner zip) VALUES ({$row[4]},

{$row[7]}", "{$row[14]}", " {$row[16]}", '{$row[17]}", '{$row[18]}")";

$result = @mysql query($query);
if (!$result) {
// Newer information later in the file: UPDATE instead
$query = "UPDATE fcc_owner SET owner name='{$row[7]}",
owner_address="{$row[14]}", owner city='{$row[16]}",
owner_ state="{$row[17]}", owner zip='{$row[18]}"
WHERE unique si_own={$row[4]}";
$result = @mysql query($query);
if (!$result)
echo "Failure to import ownership for struc. #{$row[4]}
\n";
else
echo "Updated ownership for struc. #{$row[4]}
\n";

}
}
fclose($handle);

}

echo "Done Ownership.
\n";

// Open the Physical Locations file
$handle = @fopen("CO.dat","1r");

f ($handle) {
while (!feof($handle)) {
$buffer = fgets($handle, 4096);
$Iow = explode(" ", $buffer);
f ($row[3] > 0) {

106 CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

f ($row[9] == "S") $sign = -1; else $sign = 1;
$dec_lat = $sign*($row[6]+$row[7]/60+$row[8]/3600);

f ($row[14] == "W") $sign = -1; else $sign = ;
$dec_long = $sign*($row[11]+$row[12]/60+$r0w[13]/3600);

$query = "INSERT INTO fcc_location (unique si loc, lat deg, lat min,
lat_sec, lat dir, latitude, long deg, long min, long_sec,
long dir, longitude) VALUES ({$row[4]}, '{$row[6]}', '{$row[7]}",
"{$row[8]}", "{$row[9]}', '"$dec lat','{$row[11]}', '{$row[12]}",
"{$row[13]}", '{$row[14]}', '$dec_long')";

$result = @mysql query($query);
if (!$result) {
// Newer information later in the file: UPDATE instead
$query = "UPDATE fcc_location SET lat deg='{$row[6]}',
lat_min="{$row[7]}", lat deg="{$row[8]}"', lat dir="{$row[9]}",
latitude="$dec_lat', long deg="{$row[11]}", long min="{$row[12]}",
long sec="{$row[13]}", long dir="{$row[14]}", longitude='$dec_long'
WHERE unique si loc="{$row[4]}'";
$result = @mysql query($query);
if (!$result)
echo "Failure to import location for struc. #{$row[4]}
\n";
else
echo "Updated location for struc. #{$row[4]}
\n";

}
}
}
fclose($handle);
}
echo "Done Locations.
\n";
2>

Using Your New Database Schema

You could retrieve and combine data from this database in three ways:

* Use PHP to query each table and reassemble it into an array by joining the results based
on the Unique Structure Id field.

* Use a multitable SELECT query and have SQL do the recombination for you.

* If your version of SQL supports views, create a view (a virtual table) and use PHP to
select directly from that instead.

Each method has various drawbacks and benefits, as explained in the following sections.

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

Reconstruction Using PHP’s Memory Space

Using PHP to put the data back together isn't really practical in a production environment. It's
an obvious method if your SQL skills are still new; however, it only works if you're going to be
using a very small set of information. We cover it here to show you how it would work in case
you find a valid use for it, but we do so with hesitation. This is neither a sane nor scalable method,
and the SQL-based solutions presented in a moment are much more robust. The code in List-
ing 5-4 locates all of the towers in Hawaii and consumes a huge amount of memory to do so.

Listing 5-4. Using PHP to Determine the List of Structures in Hawaii

<?php

// Connect to the database
require($ SERVER['DOCUMENT ROOT'] . '/db_credentials.php');
$conn = mysql connect("localhost", $db _name, $db pass);
mysql select db("googlemapsbook", $conn);

// Create our temporary holding arrays
$hawaiian towers = array();
$usi list = array();

// Get a list of the structures in Hawaii
$structures = mysql query("SELECT * FROM fcc_structure WHERE struc_state='HI'");
for($i=0; $i<mysql num rows($structures); $i++) {
$row = mysql fetch array($structures, MYSQL ASSOC);
$hawaiian towers[$row['unique si']] = $row;
$usi list[] = $row['unique si'];
}

unset($structures);

// Get all of the owners for the above structures
$owners = mysql query("SELECT * FROM fcc_owner
WHERE unique si own IN (".implode(",",$usi list).")");

for($i=0; $i<mysql num_rows($owners); $i++) {

$row = mysql fetch array($owners, MYSQL ASSOC);

$hawaiian towers[$row['unique si own']] =

array_merge($hawaiian towers[$row['unique si own']],$row);

}

unset($owners);

// Figure out the location of each of the above structures
$locations = mysql query("SELECT * FROM fcc_location
WHERE unique si loc IN (".implode(",",$usi list).")");
for($i=0; $i<mysql num rows($locations); $i++) {
$row = mysql fetch array($locations,MYSQL ASSOC);
$hawaiian towers[$row['unique si loc']] =

107

108

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

array merge($hawaiian_towers[$row['unique si loc']], $row);

}

unset($locations);

echo memory get usage();
>

You can see that the only thing this script outputs to the screen is the total memory usage
in bytes. For our data set, this is approximately 780KB. This illustrates the fact that this method
is very memory-intensive, consuming one-eighth of the average allotment simply for data
retrieval. As a result, this method is probably one of the worst ways you could go about
reassembling your data. However, this code does introduce the use of the SQL IN clause. IN
simply takes a list of things (in this case integers) and selects all of the rows where one of the
values in the list is in the column unique_si. It’s still better to use joins to take advantage of the
SQL engine’s internal optimizations, but IN can be quite handy at times. You can use PHP’s
implode() function and a temporary array to create the list to pass to IN quickly and easily. For
more information about the array merge() function, check out http://ca.php.net/manual/en/
function.array-merge.php.

The Multitable SELECT Query

Next, you'll formulate a single query to the database that allows you to retrieve all the data for
a single structure as a single row. This means that you could iterate over the entire database
doing something with each record as you go, without having a single point in time where you're
consuming a lot of memory for temporary storage. Working from the example we had at the
end of Chapter 2, we're going to replace the static data file with one that is generated with PHP
and uses our SQL database of the FCC structures. Due to the volume of data we'll be limiting
the points plotted to only those that are owned and operated in Hawaii. For more data man-
agement techniques see Chapter 7. Listing 5-5 shows the new map_data. php file. You will either
need to zoom in on Hawaii or change your centering in the map_functions. js file, too. In
Chapter 6, you will work on the user interface for the map, so right now, you will just plot all of
the points.

Note In reality, this approach is primarily shifting the location where you consume the vast amounts of
memory. We're pushing the problem off the web server and onto the database server. However, in general,
the database server is more capable of handling the load and is optimized explicitly for this purpose.

Listing 5-5. map_data.php: Using a Single SQL Query to Determine the List of Structures

<?php

// Connect to the database

require($ SERVER['DOCUMENT ROOT'] . '/db_credentials.php');
$conn = mysql connect("localhost", $db_name, $db pass);
mysql select db("googlemapsbook", $conn);

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

$query = "SELECT * FROM fcc_structure, fcc_owner, fcc_location
WHERE struc_state="HI' AND owner_state="HI'
AND unique_si=unique_si_own AND unique_si=unique_si_loc";

$result = mysql query($query, $conn);
$joiner = '';

$count = 0;

>

var markers = [
<?php while($row = mysql fetch assoc($result)): 2>
<?= $joiner ?>

{

"latitude': <?= $row['latitude'] ?>,

"longitude’: <?= $row['longitude'] ?>,

"name’: '<?= addslashes($row['struc_address']) ?>'
<?

$joiner = ',";

$count++;
>

<?php endwhile; ?>

I

/* Memory used at the end of the script: <? echo memory get usage(); ?> */
/* Output <?= $count ?> points */

You can see that this approach uses a much more compact and easily maintained query,
as well as much less memory. In fact, the memory consumption reported by memory get usage()
this time is merely the memory used by the last fetch operation, instead of all of the fetch
operations combined.

The tricky part is the order of the WHERE clauses themselves. The basic idea is to list the
WHERE clauses in such an order that the largest amounts of information are eliminated from
consideration first. Therefore, having the struc_state="HI' be the first clause removes more
than 99.8% of all the data in the fcc_structure table from consideration. The remaining clauses
simply tack on the information from the other two tables that correlates with the 0.2% of
remaining information.

Using this map_data.php script in the general map template from Chapter 2 gives you
a map like the one shown in Figure 5-2. Chapter 6 will expand on this example and help you
design and build a good user interface for your map.

109

110

CHAPTER 5 ©° MANIPULATING THIRD-PARTY DATA

=

Figure 5-2. The FCC structures in Hawaii

"Note Most database engines are smart enough to reorder the WHERE clauses to minimize their workload
if they can, and in this case, MySQL would probably do a pretty good job. However, in general, it’s good prac-
tice to help the database optimization engine and use a human brain to think about a sane order for the
WHERE clauses whenever possible.

A SQL View

The other approach you could take is to create a SQL view on the data and use PHP to select
directly from that. A view is a temporary table that is primarily (in our case, exclusively) used
for retrieving data from a SQL database. A view is basically the cached result of a query like the
one in Listing 5-5, without the state-specific data limitation. You can select from a view in the
same way that you can select from an ordinary table, but the actual data is stored across many
different tables. Updating is done on the underlying tables instead of the view itself.

["Note Using a SQL view in this way is possible only with MySQL 5.0.1 and later, PostgreSQL 7.1.x and
later, and some commercial SQL databases. If you’re using MySQL 3.x or 4.x and would like to use the new
view feature, consider upgrading.

Listing 5-6 shows the MySQL 5.x statements needed to create the view.

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

Listing 5-6. MySQL Statement to Create a View on the Three Tables

CREATE VIEW fcc_towers
AS SELECT * FROM fcc_structure, fcc_owner, fcc_location
WHERE unique_si=unique si own AND unique si=unique si loc
ORDER BY struc_state, struc_type

After the view is created, you can replace the query in Listing 5-5 with the insanely simple
$query = "SELECT * FROM fcc_towers WHERE struc_state="HI' AND owner_ state='HI'"; and
you're finished.

So why is a view better than the multitable SELECT? Basically, it precomputes all of the cor-
relations between the various tables and stores the answer for later use by multiple future
queries. Therefore, when you need to select some chunk of information for use in your script,
the correlation work has already been done, and the query executes much faster. However,
please realize that creating a view for a single-run script doesn't make much sense, since the
value is realized in a time/computation savings over time.

For the next two chapters, we'll assume that you were successful in creating the fcc_towers
view. If your web host doesn’t have a view-compatible SQL installation for you to use, then
simply replace our queries in the next two chapters with the larger one from Listing 5-5 and
make any necessary adjustments, or find a different way to create a single combined table
from all of the data.

Tip For more information on the creation of views in MySQL, visit http: //dev.mysql.com/doc/refman/
5.0/en/create-view.html. To see the limitations on using views, visit http://dev.mysql.com/doc/
refman/5.0/en/view-restrictions.html. For more information on views in PostgreSQL, visit http://
www.postgresql.org/docs/8.1/static/sql-createview.html.

KEEPING YOUR DATABASE CURRENT

So now that you have this database full of data, how do you keep it up-to-date? The FCC adds or changes
the data for more than a dozen structures each day, so it doesn’t take long for your information to become
outdated.

To keep current, you can use the daily transaction files that the FCC has made available for this specific
purpose, which are located at http://wireless.fcc.gov/cgi-bin/wtb-transactions.plitow.
These are available each night and represent all of the structures added to the system in the previous day.

To automate this task, you need access to three things on your web-host account:

e The ability to schedule your update program to run periodically
o A shell-scripting language in which to write your update tool
o A program for retrieving the transaction files using your shiny new tool

In our example here, we’re going to use the Unix cron daemon to schedule our program to run each
night, the command-line version of PHP (known as PHP-CGI or PHP-CLI in most Linux distributions), and

111

112

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

wget to retrieve the transaction files from the FCC. If you have a different combination, the general idea pre-
sented here should be adaptable to most combinations.

The basic idea is that you'll write a script that runs each night after midnight and retrieves the zipped
file for the previous day into a temporary folder. You’ll unpack the file, and then extract and insert the infor-
mation into your database exactly as you did in Listing 5-3. In fact, the following code is simply a wrapper
around the code from Listing 5-3.

You'll be making extensive use of PHP’s exec () function, which simply runs an external program. This
is sometimes a banned function on shared-server web hosts, and in that case, this function call will cause an
error, so you'll need to find another way to do the same thing. If you have access to Perl from the command
line, you could easily write this in Perl and call your code from Listing 5-3 as an external program instead of
a code include.

<?php
// Remove any temporary files (left over from last night).
exec("rm r_tow $day.zip CO.dat EN.dat RA.dat");

// Decide which day it is we're interested in
$day = strtolower(date("D",strtotime("yesterday")));

// Formulate the URL we want wget to retrieve
$url = "http://wireless.fcc.gov/uls/data/daily/r tow $day.zip";

// Get the zipped file
exec("/usr/bin/wget -q $url");

// Unpack the parts of the zipped file we care about
exec("/usr/bin/unzip -qq r tow $day.zip CO.dat EN.dat RA.dat");

// Import data into our database using Listing 5-3. You may need to change paths.
require once("../03/index.php");

// Remove our temporary files (prepare for tomorrow night).
exec("rm r_tow $day.zip CO.dat EN.dat RA.dat");
>

As you can see, the wrapper code around Listing 5-3 is fairly simple. The tricky part (if you've never
done this before) comes in setting up the cron job itself, which you'll do now.

The first thing you need to do is open your personal cron schedule. In your shell, you can do this by run-
ning the command crontab -e. Your default command-line text editor should open to your current list of
scheduled jobs (quite likely an empty file).

You'll need to enter the following two lines into the file that opens when you type crontab -e.

MAILTO = youremailaddress
@ 2 % & cd $HOME/public_html/path to your script/; php fcc_update.php

The first line simply tells cron where to send all of the output. If there is no output, it won’t send an
e-mail message, but if you want to output diagnostics using echo (as we have), then you’ll get an e-mail
message showing you the details of the update each night.

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

The second line is a single instruction telling cron what to do. The first number tells cron which minute
of the hour to run (0 through 59). In this case, it will run on the hour at zero minutes. The second number is
which hour(s) to run on (0 through 23), which is 2 a.m. in this example. The three asterisk symbols are wild-
cards telling cron to run each day of the month (1 through 31), each month of the year (1 through 12), on each
day of the week (0 through 6, where Sunday is 0). Therefore, our script will update the database at 2 a.m.
365 days a year. The second half of the line merely tells cron what you would like it to do on your behalf.

Save the file, and you're finished. Your database should now stay in sync. If you want to debug your
crontab, simply change the hours and minutes to be a few minutes in the future and wait for your e-mail.

Screen Scraping

Sometimes the data you want to use just isn't available in a nice, neat little package or service.
In these cases, you can try searching the Web for the data you want, and you might find part or
all of it on someone else’s website. If it’s not available for download, as a web service, or for
purchase, you might consider parsing the visible HTML and extracting the parts that you care
about. This process is called screen scraping, because you are writing a program that pretends
to be a normal, legitimate visitor but is really harvesting the data and usually storing it in your
own database.

Accomplishing this is different for every single source of data, but we'll try to give you the
basic tools you'll need to be successful. The basic idea is to download the pages (maybe using
CURL or wget) in sequence, then using loops and regular expressions or string mangling to find
and extract the interesting bits. Most scrapers also store the data they find in a local data store
to avoid going back to the source of the information each time it’s needed.

COPYRIGHT AND LEGAL ISSUES

There are legal and ethical concerns to consider when scraping, and neither the authors of this book nor
Apress condone information or intellectual property theft or copyright infringement in any form. Please
always ask for permission from site owners before scraping their sites. Sometimes owners would prefer to
provide you with the data in a less bandwidth-intensive (and more convenient for you) way, or have other
terms and conditions for using their data (like reciprocal links or copyright attributions).

There are many legitimate reasons to use screen scraping to obtain data. Among other reasons, site
owners may not have the resources or the skills to create a web service or an API for their data. Therefore,
they might say you’re welcome to take any data you want, but they can’t help you get it into a more convenient
format.

Regardless of the reason for scraping, you should always get written permission. Simply because the
data is available without fee on a website does not mean that you are free to take it and republish it at your
whim, even if you do not charge any sort of fee. Consult a lawyer if you can’t get permission; otherwise, you
might find that your hobby map turns into a crushing lawsuit against you.

113

114 CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

A Scraping Example

As an example, you'll be taking a list of latitudes and longitudes for the capital cities of many
countries in the world. The page that you'll scrape is located at http://googlemapsbook.com/
chapter5/scrape_me.html. It's not the most challenging scraping example, but it will serve our
purposes.

The first thing you need to do is use wget to retrieve a local copy of the page. From the
shell, run the following command while in your working directory for this example:

wget http://googlemapsbook.com/chapter5/scrape me.html

Tip If you would prefer to snag this page live from the Web directly from within your code, then grab
a snippet of the CURL code from Chapter 4’s geocoding web services examples. The only trick should be
splitting up the result on the newlines to form an array of lines, instead of using fgets () to read each line in
sequence.

Next, you need to do some analysis of the HTML of this page to decide what you can do
with it. Listing 5-7 shows the important bits for our discussion.

Listing 5-7. Snippets of HTML from the Sample Scraping Page

(After about 10 lines of header HTML you'll find this...)
<!-- Content Body -->

<table border="1" width="100%">

<tr>

<td >Country</td>

<td >Capital City</td>

<td >latitude</td>

<td >Longitude</td></tr>

<tr><td class="latlongtable">Afghanistan</td>
<td class="latlongtable">Kabul</td>

<td class="latlongtable">34.28N</td>

<td class="latlongtable">69.11E</td></tr>

<tr><td class="latlongtable">Albania</td>
<td class="latlongtable">Tirane</td>
<td class="latlongtable">41.18N</td>
<td class="latlongtable">19.49E</td></tr>

<tr><td class="latlongtable">Algeria</td>
<td class="latlongtable">Algiers</td>
<td class="latlongtable">36.42N</td>
<td class="latlongtable">03.08E</td></tr>

(and 190 countries later...)

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

<tr><td class="latlongtable">Zambia</td>
<td class="latlongtable">Lusaka</td>
<td class="latlongtable">15.285</td>
<td class="latlongtable">28.16E</td></tr>

<tr><td class="latlongtable">Zimbabwe</td>
<td class="latlongtable">Harare</td>

<td class="latlongtable">17.435</td>

<td class="latlongtable">31.02E</td>

</tr>

</table>

<!-- Content Body End -->

So how do you extract the information that you care about? The first thing is to find
the patterns that you can exploit. In our case, we're going to ignore all of the data that
comes before the HTML comment <!-- Content Body --> and after the closing comment
<!-- Content Body End -->.In between, we’ll care about only the lines where class=
"latlongtable" appears. We're lucky that the data we care about is surrounded entirely by
HTML and that PHP has a handy function to remove it: strip tags().The largest string man-
gling we need to do is determining the sign of the latitude and longitude measurements based
on the N/S E/W labels. You can see the required code in Listing 5-8.

Listing 5-8. Screen Scraping Example

<?php

// Open the file and the database

$handle = @fopen("scrape_me.html","r");

$conn = mysql_connect("localhost","username", "password");
mysql select db("geocoding experiment",$conn);

// Status flags and temporary variables
$in_main_table = false;
$count = 0;

if ($handle) {
while (!feof($handle)) {
$buffer = fgets($handle, 4096);

// Look for "<!-- Content Body -->"

if (trim($buffer) == "<!-- Content Body -->") {
$in_main_table = true;
continue;

}

// For each line that has "latlongtable" in it trim

if ($in_main_table &8 strstr($buffer,'class="latlongtable"') !== false) {
// Dig out the part we care about
$interesting data = trim(strip_ tags($buffer));

115

116 CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

switch($count % 4) {

case 0:
// Country Info
$city = array(); // reset
$city[0] = addslashes($interesting data);
break;

case 1:
// Capital City Info
$city[1] = addslashes($interesting data);
break;

case 2:
// Latitude Information (determine sign)
$latitude = substr($interesting data,0,strlen($interesting data)-1);
if (substr($interesting data,-1,1) == 'S') $sign = "-";
else $sign = "";
$city[2] = $sign.$latitude;
break;

case 3:
//Longitude Information (determine sign)
$longitude = substr($interesting data,0,strlen($interesting data)-1);
if (substr($interesting data,-1,1) == 'W') $sign = "-";
else $sign = "";
$city[3] = $sign.$longitude;

echo implode(" ",$city)."
";

// Write to the database
$result = mysql query("INSERT INTO capital cities
(country,capital,lat,1lng) VALUES ('".implode("',"",$city)."")");

break;
} // switch

// Increment our counter
$count++;

// Stop when we find "<!-- Content Body End -->"
if ($buffer == "<!-- Content Body End -->") break;
y/7if
} // while
} /7 if

fclose($handle);
?>

You can store this information using a database table like the one in Listing 5-9.

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

Listing 5-9. SQL Database Structure for the Screen Scraping Example

CREATE TABLE capital cities (
uid int(11) NOT NULL auto_increment,
country text NOT NULL,
capital text NOT NULL,
lat float NOT NULL default 'o',
lng float NOT NULL default '0',
PRIMARY KEY (uid),
KEY lat (lat,lng)
) ENGINE=MyISAM;

Note We hereby explicitly grant permission to any person who has purchased this book to use the infor-
mation contained in the body table of scrape_me.html for any purpose (commercial or otherwise), provided
it is in conjunction with a map built on the Google Maps APl and conforms to Google’s terms of service. We
make no warranties about the accuracy of the information (in fact, there is one deliberate error) or its suit-
ability for any purpose.

Screen Scraping Considerations

You need to consider a few things when doing screen scraping:

e Ifyou intend to scrape a dynamic source on a schedule or repeatedly over the course of
time, you'll need to build in a lot of error checking. For example, our code would com-
pletely break if we made a change as simple as the name of the CSS class or the words
in the HTML comments.

¢ Rarely will the data be this cleanly laid out. If the problem is at all challenging, you
should look into using the PHP regular expression extensions. Many tutorials and
books are available that can help you with regular expressions. Some simple searching
will do the trick. Regular expressions are very, very powerful. Used properly with some
status flags, they can extract just about anything from an HTML page.

¢ Not all sources of data are going to be 100% accurate. For example, we've deliberately
made a mistake for Ottawa, Canada, changing the sign from N to S, thereby flipping it
below the equator. This causes our import script to treat the latitude as negative instead
of positive. These kinds of mistakes are likely to happen with any data source you use,
and in most cases, they will need to be corrected manually after the import.

* Sometimes the data is static or from a single source, and writing a program to do the
work doesn’'t make sense. If the problem looks simple, you might try using your code
editor’s built-in search and replace functions. They certainly would have worked well as
an alternative for our example in Listing 5-9.

117

118

CHAPTER 5 ©© MANIPULATING THIRD-PARTY DATA

Summary

As you can see, there are a lot of ways to get the information you need to create a successful
map. We encourage you to look at Appendix A, where we've collected a wide variety of differ-
ent sources of information for common (and not so common) mapping applications. You'll
find things like political boundaries and the locations of airports, schools, and churches, as
well as data on lakes and rivers.

In the next chapter, we'll continue with the example from Listing 5-5 and build a proper
user interface. We'll show you how to do some fancy things with CSS and DOM manipulation.
In Chapter 7, we'll round out this example with a thorough discussion of ways to handle such
vast amounts of data on a map simultaneously and reminisce about the days when Google
Maps API version 1 gave us a practical limit of 50 to 75 pins and a crash-the-browser limit of
just a couple hundred. Progress is wonderful.

CHAPTER 6

Improving the User Interface

In this chapter, you'll use the FCC ASR data you collected in Chapter 5 and create a mashup
that really shines. What kind of interface surrounds a helpful map? What tricks can you do
with a little more CSS and JavaScript? What kinds of things besides markers can you put on
amap to increase its usefulness? You'll find some suggestions in this chapter.

This chapter begins where the middle of Chapter 5 left off, but if you're starting here, it’s
easy to catch up. As a basis, we're using the code from Chapter 2, which plots points listed in
afile called map_data.php. We've replaced that flat data file, however, with a PHP script that
queries the database and dynamically serves up a list of points corresponding to FCC broad-
cast structures in Hawaii.

In this chapter, you'll learn how to use CSS and JavaScript to enhance your maps as follows:

* Have your map adjust its size to fill any browser.

* Add a toolbar that hovers over the map.

* Create side panels for your map.

* Display a loading message to alert users when the map is processing or initializing.

¢ Allow users to selectively view or hide groups of data points.

CSS: A Touch of Style

CSS is the modern method of choice for controlling the visual appearance of an XML docu-
ment. Just as we've kept the HTML structure separate from JavaScript behavior and JavaScript
data, we're also going to keep the CSS separate.

In your index.php file, you'll need to add a reference to an external style sheet, as shown
in Listing 6-1. Since its appearance will momentarily be controlled by this CSS file, it’s also
possible to remove the explicit size from the map div.

Listing 6-1. Index.php with External Style Sheet Reference

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head»

119

120

CHAPTER 6 = IMPROVING THE USER INTERFACE

<script src="http://maps.google.com/maps?file=api8iv=28key=API KEY"w»
type="text/javascript"></script>
<script src="map_data.php" type="text/javascript"></script>
<script src="map_functions.js" type="text/javascript"></script>
<link href="style.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="map"></div>
</body>
</html>

Without the style attribute, the map div collapses to nothing, and thus, no map appears.
Clearly, you need to actually create the style sheet and reapply the size declarations that were
removed. Listing 6-2 shows the style.css file that you should create and save in the same
directory as everything else.

Listing 6-2. Style.css to Give the Map Dimensions

#map {
width: 500px;
height: 400px;

With the style sheet from Listing 6-2 in place, all should be as it was when we set out at
the beginning of the chapter. Now that you have a central styling mechanism, read on for
some of the interesting things you can put there.

Maximizing Your Map

A surprising number of Google Maps projects seem to use fixed-size maps. But why lock the
users into particular dimensions when their screen may be significantly smaller or larger than
yours? It’s time to meet the map that fills up your browser, regardless of its screen size. Try
swapping out your style.css file for Listing 6-3.

Listing 6-3. Style.css for a Maximized Map

html, body {
margin: 0;
padding: 0;
height: 100%;
}

#map {
position: absolute;
top: 0;
left: o;
width: 100%;
height: 100%;

CHAPTER 6 = IMPROVING THE USER INTERFACE

As you can see in Figure 6-1, the map is now completely flexible and fills any size of
browser screen.

Xe)s) Mozilla Firefox =]
'\::" C:) @ @ Gj |e http:/ /www.googlemapsbook.com/chapteré /maximize ¥ | @ l'rv N Lo

xDIsab\e' @kales' E‘:‘}CSS' B ms™ @Images' olnfnrmallor:' [E]Miscellaneous * %utllne' EResize @T{mls' Vlwanur

R

Figure 6-1. Our map fills up the browser at 800x600.

This method is particularly ideal for situations where a map is being used as part of a slide
show or on a kiosk. However, it also works in the web-page context, especially when combined
with the trick described in the next section.

ITip Once you have the map maximized, you might notice how Internet Explorer 6 likes to show

a disabled vertical scrollbar on our perfectly fitted page. Under most circumstances, this is actually desired
behavior, since it means that centered sites are consistent with both short and long content. In our case,
however, you really don’t want it there. Fortunately, banishment is achieved with a pretty straightforward
rule: html { overflow: hidden; }.

Adding Hovering Toolbars

The introduction of CSS brought the concept of layering to web page layout. Prior to CSS, the
only way to stack up any content was by nesting table tags, and then placing different images
in the backgrounds of the successive table cells. However, using the CSS declaration for position,

121

122

CHAPTER 6 = IMPROVING THE USER INTERFACE

it’s possible to pile up anything you like, including text, images, and even things like Flash
movies and scrolling div elements.

For the map, this means you can make content of various kinds hover on top of the map
that the API generates. For comparison, Windows Live Local uses a full-screen map with
translucent control widgets; check it out at http://local.live.com/

Continuing the example from Listing 6-3, change the index. php file to include some
markup for a toolbar, as shown in Listing 6-4.

Listing 6-4. Index.php with Added Markup for a Toolbar

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"ws
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<script src="http://maps.google.com/maps?file=apilv=28key=API KEY"w»
type="text/javascript"></script>
<script src="map_data.php" type="text/javascript"></script>
<script src="map_functions.js" type="text/javascript"></script>
<link href="style.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="map"></div>
<div id="toolbar">
<h1>Cell-Tower Locations</h1>
<ul id="options">
Towers</1i>
Poles</1i>
Masts</1i>
0Other</1i>

</divy
</body>
</html>

And now, some CSS magic to take that markup and pull the toolbar up on top of the map.
Add the styles in Listing 6-5 to your style.css file.

Listing 6-5. Styles for a Floating Toolbar

#toolbar {
position: absolute;
top: 20px;
left: 60px;
width: 400px;
padding: 5px;
background: white;
border: 1px solid black;

CHAPTER 6 = IMPROVING THE USER INTERFACE

You can see in Figure 6-2 that we've added a few more styles to make the toolbar’s menu
and titles prettier, but they're not critical to the layout example here. The important thing to
note is the position: absolute bit. A block-level element such as a div naturally expands to
fill all of the width it has available, but once you position it as absolute or float it, it no longer
exhibits that behavior. So, unless you want it shrink-wrapping its longest line of text, you'll
need to specify a width as either a fixed amount or some percentage of the window width.

S]G] Mozilla Firefox =
@I' E:/ @ @ m |e http:/ jwww.googlemapsbook.com/chapter6 fhoveringT ¥ ‘ @ (_v D) Ee

xDIsab\e' |£lCookies™ FhCSS™ SForms™ #Images” @information™ [Z]Miscellaneous™ @Outllne' [FResize™ @Tnnls' VlewSour

Cell-Tower Locations
Towers Poles Masts Other

Figure 6-2. Some styles for the toolbar

["Note If you're curious how to make a floating toolbar actually draggable, a number of resources and
libraries out there can help you achieve this. Unfortunately, several seem to exhibit frustrating bad practices
or are simply way overengineered. This one is a good starting point, though: http://tool-man.org/
examples/dragging.html.

123

124

CHAPTER 6 = IMPROVING THE USER INTERFACE

WHAT ABOUT A FULL-WIDTH TOOLBAR?

Shouldn’t it be possible to create a bar that’s some fixed amount /ess than 100% of the available width?
What about a floating toolbar that starts exactly 60 pixels from the left edge and then goes to exactly 40 pixels
from the right edge?

It's possible, in two different ways. In a few pages, you'll see how to accomplish sizing maneuvers like
this using JavaScript. However, you can also create a full-width toolbar using just CSS. It’s a little hairy, but
there’s certainly convenience (and possibly some pride, too) in keeping the solution all CSS.

The gist of the approach is that you need to “push in” the width of the absolutely positioned toolbar, so
that when it has a declared width of 100%, the 100% is 100% of the exact width you want it to have, rather
than 100% of the browser’s entire client area.

The toolbar div will need an extra wrapper around it, to do the “pushing-in.” So start by changing your
markup:

<div id="toolbar-wrapper">
<div id="toolbar">

</div>
</div>
Now add the following styles to the style.css file:

#toolbar-wrapper {
margin-right: 100px;
position: relative;

}
#toolbar {

width: 100%;
}

The right margin on the toolbar wrapper causes the toolbar itself to lose that horizontal space, even
though the toolbar is ultimately being sucked out of the main document flow with position: absolute.

Creating Collapsible Side Panels

A common feature on many Google Maps mashups is some kind of side panel that provides
supplementary information, such as a list of the pins being displayed. You can implement this
simple feature in a number of ways. Here, we'll show you one that uses a little CSS and JavaScript
to make a simple, collapsible panel.

First, the new side panel will need some markup. Modify the body section of Listing 6-4 to
look like Listing 6-6.

Listing 6-6. Index Body with Added Markup for a Side Panel

<body class="sidebar-right">
<div id="map-wrapper">

CHAPTER 6 © IMPROVING THE USER INTERFACE

<div id="map"></div>
</div>
<div id="toolbar">

</div>
<div id="sidebar">
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin
accumsan condimentum dolor. Vestibulum ante fabicum...</p>
</div>
</body>

And now, to style this, you use almost the same trick as you used for the floating toolbar.
This time, that wrapper has a margin that pushes the map div out of the way, so the elements
appear beside each other, rather than overlapping. Listing 6-7 shows the CSS to add to style.css.

Listing 6-7. New Styles for the Side Panel

#map-wrapper {
position: relative;
height: 100%;

}

#sidebar {
position: absolute;
top: 0;
width: 300px;
height: 100%;
overflow: auto;

}

body.sidebar-right #map-wrapper { margin-right: 300px; }
body.sidebar-right #sidebar { right: o0; }

body.sidebar-off #map-wrapper { margin: 0; }
body.sidebar-off #sidebar { display: none; }

If you fill up the side panel with some more content, you can see how the overflow decla-
ration causes it to scroll. It behaves just like a 1997-era frame, but without all the hassle of
broken back buttons and negative frame stigma.

Note Listing 6-7 provides only the simplest styles for this side panel. You’ll find when you try to apply
a right-side padding to #sidebar that it pushes in not just the content, but the scrollbar, too, an undesirable
effect. Fortunately, it’s an easy fix: just nest a sidebar contents div inside the main sidebar, and then put
your styles on that. Alternatively, you can use the CSS selector #sidebar p to give special margins to all
paragraphs residing inside.

125

126

CHAPTER 6 " IMPROVING THE USER INTERFACE

So, what about those classes on the body element? In Figure 6-3, we used the Firefox DOM
Inspector to change the body element’s class attribute, and suddenly the side panel vanished.
It may seem insignificant now, since there are just the two styles that change, but picture a future
where you're making more significant user interface changes dependent on the presence or
absence of the side panel. The technique of hooking major layout rules to a body class is well
worth adopting for its flexibility and scalability.

o006 Mozilla Firefox e)
DE+

Q;‘I' 5 @ @ fb 'e http: / /www.googlemapsbook.com/chapter6 /sidePanel ‘I"O "r'
xDlsable' chckles' E:}JCSS' BForms‘ @Images' elnlormallon' [EIMiscellaneous ™ Bz(lullme' CZresize~ @ch\s‘ ﬁ\hawsaurce

T . .

ipsum dolor sit amet, consectetuer

<][>]*" Cell-Tower Locations -pisc,-}:g elit. Proin accumsan condiment
lor. Vestibulum ante ipsum primis in

e | Towers Poles Masts Other

T ucibus orci luctus et ultrices posuere cubili
- | N urae; Curabitur fringilla, trpis luctus

wislals) Mozilla Firefox (=]

€= E;n @ @ m B http: / /www.googlemapsbook.com/chapt ¥ . (] "r' h) s

xDlsable' mCockles' E:}JCSS' BForm;‘ ’,"':‘)Imges' elnlormalmn‘ [EIMiscellaneous ~ Bz(}utlme' Zresizev @Too\;

N | b s
<|[>] - | Cell-Tower Locations

W+ Towers Poles Masts Other
006 DOM Inspector [as)
hitpy/ /www.googlemapsbook.com/fchapterf fsidePanel/ | Inspect
+ Document - DOM Nodes [e + Object - DOM Node »
 nodeName lid | class B3| = :
Node Name: :BCDY- ” - |

¥ #document

html Namespace URI: |

¥ HTML Node Type: n
p HEAD L
| ___soov ciceoarort [
' nodeName | nodeValue | L]
class sidebar-off

é'

Figure 6-3. The side panel obeys the body’s class.

Scripted Style

With the examples of the previous section in mind, we'll now examine a few ways to augment
those CSS tricks with a little JavaScript.

Switching Up the Body Classes

The class attribute of a markup tag is not limited to a single value. You can actually have as
many classes as you like, separated by spaces. For example, on the popular mezzoblue.com
site, Dave Shea uses the following body element:

<body class="nosidebarplease articles entry">

In a single location, he is stating several important characteristics of the page in question.
The ability to mix and match the various designations (article, blog entry, and so on) offers an

CHAPTER 6 © IMPROVING THE USER INTERFACE

extraordinary amount of control and precision in styling the various pages. This flexibility is
what makes controlling page layout with the body class so appealing.

However, when it comes to accessing it via JavaScript, this means that you can't just get
and set, as you can with most other attributes. You need to use find and replace operations on
the whole className text string. Add the general-purpose function shown in Listing 6-8 to your
map_functions.js file.

Listing 6-8. Function to Swap a Class in the Document’s Body Element

function changeBodyClass(from, to) {
document.body.className = document.body.className.replace(from, to);
return false;

All that remains now is to call that function from a link somewhere. How you do that may
be partially dependent on your level of JavaScript snobbery, with respect to separating markup
from script. Some would consider the following markup perfectly adequate:

<a href="#" onclick="changeBodyClass('sidebar-right', 'sidebar-off');w
return false;">Hide
<a href="#" onclick="changeBodyClass('sidebar-off', 'sidebar-right');ws
return false;">Show

A JavaScript purist, however, might advocate a more elaborate solution, such as the one in
Listing 6-9.

Listing 6-9. Markup for the Side Panel Toggle Buttons

<div id="toolbar">

<ul id="sidebar-controls">
Hide</1i>
Show</1i>

</div>

Note We joke about JavaScript purists, but it’s only because we like the methods they advocate. See
http://www.digital-web.com/articles/separating behavior and structure 2/ for Peter-Paul
Koch’s article, “Separating behavior and structure.”

Accompanying that markup, you'll need to hook on the event handlers in the map_
functions. js initialization function:

document.getElementById('button-sidebar-hide').onclick = function() {w
return changeBodyClass('sidebar-right', 'sidebar-off'); };
document.getElementById('button-sidebar-show').onclick = function() {w
return changeBodyClass('sidebar-off', 'sidebar-right'); };

127

128

CHAPTER 6 " IMPROVING THE USER INTERFACE

Finally, you can add some styles to spruce up the buttons a little. Using CSS, it’s trivial to
hide (or otherwise restyle) whichever button corresponds to the mode you're already in:

body.sidebar-right a#fbutton-sidebar-show { display: none; }
body.sidebar-off a#tbutton-sidebar-hide { display: none; }

Using these style makes the two buttons appear to be the same one, as you can see in
Figure 6-4.

‘000 Modzilla Firefox =)
élv Ep @ @ ﬁ |e http: / /www.googlemapsbook.com/chapter6 /sidePanelTe ¥ | @ (' D) i

xhlsab\e' BCMHQE' E:}CSS' EForm;' @Imagei' Glnformatlon' [E]Miscellaneaus ™ @Gut\lne' [BResize~ @Tmls' EEVIEWSour(e

]

1 orem
=5 [Cell-T r tlons . lpgsuei dolor sit amet, oonc;selftema
Towers Poles Masts Other Hide dolor. Vestibulum ante ipsum primis in
[] faucibus orci luctus et ultrices posuere cubili
urae; Curabitur fringilla, turpis luctus
Mazilla Firefox =)
él' =" @ @ ﬁj ‘e http:/ fwww.googlemapsbook.com/cha ¥ | @ 'r' D i

xDISable' @kales' 575CsST [FormsT #9Images™ (@ Information~ [Z]Miscellaneous ™ ﬁoulllne' [BResize @Toc

CeII-Tower Locallons

Towers Poles Masts Other

Figure 6-4. The show/hide buttons behave as one, toggling the visibility of each other and of the
side panel.

We like the second method with the cleaner markup, but bear in mind that its normal
advantages of fallback capabilities mean absolutely nothing here. The application centers
around a JavaScript-powered map created with the Google Maps APIL. Without JavaScript
turned on in their browser, users won't care whether or not they can hide the side panel.

ITip If you're ever facing a situation involving a lot of complex event handlers being hooked onto various
markup elements, you could consider taking advantage of the brilliant Behaviour library, which allows you to
specify event handlers using the same selectors you already use to specify CSS rules. Check it out here:
http://bennolan.com/behaviour/.

CHAPTER 6 © IMPROVING THE USER INTERFACE

Resizing with the Power of JavaScript

As you saw earlier, CSS gives you a significant amount of control over a page’s horizontal layout.
However, control over the vertical spacing is very much lacking. With only a style sheet, you can
make a map the entire height of the window, or some percentage of that height, but you
cannot make it be “from here to the bottom,” or “100% minus 90 pixels.” With JavaScript, however,
this is very much possible.

JavaScript is an event-driven programming language. You don’'t need to be checking for
things to have happened all the time; you simply “hook” functionality onto various events
triggered by the web browser.

With that in mind, all of the examples so far have already made use of the event window.
onload to initialize the API and plot points on its map. What you're going to do next is hook
some resizing functionality onto the event window.onresize. This code will execute when the
window changes shape and resize the map to fit it.

Unfortunately, as is very obvious in the windowHeight () function of Listing 6-10, it has
taken browser makers a long time to agree on how to expose the height of the client area to
JavaScript. The method we've used here is the product of some exceptional research by Peter-
Paul Koch (see http://www.quirksmode.org/viewport/compatibility.html). Incidentally, it’s
almost identical to the one Google itself uses to control the height of the Google Maps site’s
main map and side panel.

Pull up your map_functions. js file and add the code shown in Listing 6-10 to it.

Listing 6-10. Filling Vertical Space with the onresize Event

function windowHeight() {

// Standard browsers (Mozilla, Safari, etc.)

if (self.innerHeight)
return self.innerHeight;

// IE 6

if (document.documentElement && document.documentElement.clientHeight)
return y = document.documentElement.clientHeight;

// IE 5

if (document.body)
return document.body.clientHeight;

// Just in case.

return 0;

}

function handleResize() {
var height = windowHeight();
height -= document.getElementById('toolbar').offsetHeight - 30;
document.getElementById('map').style.height = height + 'px';
document.getElementById('sidebar').style.height = height + 'px';

}

function init() {

129

130

CHAPTER 6 = IMPROVING THE USER INTERFACE

handleResize();

}

window.onresize = handleResize;

The handleResize()function itself is actually pretty straightforward. The offsetHeight and
offsetWidth properties are provided by the browser, and return—in pixels—the dimensions of
their element, including any padding. Finding the correct height for the map and side panel is
simply a matter of subtracting that from the overall client window height, and then also removing
the 30 pixels of padding that appear in three 10-pixel gaps between the top, the toolbar, the content
area, and the bottom.

Note It's awkward to be individually assigning heights to the map and side panel. It would be cleaner if
we could just assign the calculated height to a single wrapper, and then set the children to each be perma-
nently height: 100%. Indeed, such an approach works splendidly with Firefox. Unfortunately, Internet
Explorer isn’t able to get it quite right, so we're forced to use the slightly less optimal method of Listing 6-10.

Back in Listing 6-4, we placed the toolbar markup after the map div itself. This was partly
arbitrary and partly because it’s a convention to put the layers that are closer to the user later
in the document. Now, however, the layering is to be removed in favor of a tiled approach,
closer to what the Google Maps site itself uses. It’s natural, then, to move the toolbar markup
to before the map.

Also, we've added that content wrapper around the map and side panel. This is technically
superfluous, but having a bit of extra markup to work with really helps to keep the style sheet
sane. It's nearly always better to add wrappers to your template than to fill your CSS with ugly
browser-specific hacks. (Some might disagree with us on this, but remember that wrappers
are future-proof, while hacks can break with each new browser release.)

You can view the complete CSS changes that accompany Listing 6-11 on this book’s website,
but it's not a dramatic departure from the styles of Listing 6-7. The changes are mostly aesthetic,
now that the handleResize() method lets us do things like put a nice 10-pixel margin between
the key elements.

Listing 6-11. Index Body with Markup Changes for Paneled Layout

<body class="sidebar-right">
<div id="toolbar">

</div>

<div id="content">
<div id="map-wrapper">

<div id="map"></div>

</div>
<div id="sidebar">
</div>

</div>

</body>

CHAPTER 6 = IMPROVING THE USER INTERFACE

You can see how this example looks in Figure 6-5.

806 Mozilla Firefox =

QEI- Ep @ @ ﬁ} |e http: / jwww.googlemapsbook.com/chapter6/onResize/ ¥ | @ (' Dl 3

xnlsable' chckles' ﬂ:CSS' EFcrm;' @Images' elnicrmatmn' [ElMiscellaneous * Bz(lullme' BResize @chls' |E|V|ew5nur

Cell-Tower Locations

Towers FPoles Masis Other Hide

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Proin
accumsan condimentum dolor.
Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere
cubilia Curae; Curabitur fringilla, turpis
luctus dignissim mattis, odio urna
interdum orci, et placerat nisi leo at
metus. Proin non dolor.

Suspendisse elementum, urna quis
tempor ligula, ut ullamcorper leo erat at
pede. In mauris sem, aliquam in,
bibendum sed, porta nec, quam.
Phasellus lacus purus, elementum
dignissim, ultrices a, sollicitudin in,
metus. In vestibulum dui pulvinar nunc.
Etiam eu lacus quis nulla iaculis laoreet.
Praesent hendrerit lacus eu ante. Duis
purus sem, fringilla aliquam,
ullamcorper vulputate, eleifend vitae,
tortor. Morbi leo tortor, pretium at,
viverra id, faucibus non, mauris.
Vivamus eget mi. Donec varius. Fusce
tellus quam, pharetra et, cursus eget,
scelerisque eget, est. Quisque sit amet

Done A

Figure 6-5. The map area is divided into three elegant panels, one of which is collapsible.

Populating the Side Panel

With our fancy side panel up and running, it would be good to get some actual content in
there. A typical side panel use would be to present a list of all the markers plotted. This is
particularly helpful when the markers are distributed in clusters. For example, a user could
be zoomed in on an urban area to view a number of points bunched together, but she would
be made aware that points exist elsewhere because that additional display has them listed.
For the markup in this case, you just need to edit the sidebar section of the main HTML

file, as shown in Listing 6-12.

Listing 6-12. Adding Markup for a Sidebar List

<div id="content">

<div id="sidebar">
<ul id="sidebar-list">

</div>
</div>

131

132

CHAPTER 6 = IMPROVING THE USER INTERFACE

Note It's incorrect HTML to have a ul element that doesn’t contain any children. In our case, however, we
know that as soon as the map loads, there will be elements added to this list, so it’s another standards gray
area. If having it empty troubles you, you could put in a dummy 11 node, and then start your JavaScript out
by removing this node. But, of course, there would still be a moment in time where the ul is empty, which is
why doing anything more than what we’ve got here feels a little silly.

Obviously, the current iteration of map_data.php provides only latitude, longitude, and
a text label. The side panel will be much more useful if it can display supplementary informa-
tion, rather than just the same thing with different formatting. Let’s arbitrarily pick a handful
more fields from the fcc_towers view and add them to the output, as shown in Listing 6-13.

Listing 6-13. An Updated map_data.php Output Section

var markers = [
<?php while($row = mysql fetch_assoc($result)): 2>
<?= $joiner ?>

{
'latitude': <?= $row['latitude'] ?>,
'longitude': <?= $row['longitude'] ?>,
'address': '<?= addslashes($row['struc_address']) ?>',
'city': '<?= addslashes($row['struc_city']) ?>',
'state': '<?= addslashes($row['struc_state']) ?>',
'height': '<?= addslashes($row['struc_height']) 2>',
'elevation': '<?= addslashes($row['struc_elevation']) ?>',
"type': '<?= addslashes($row['struc_type']) ?>',
"owner': '<?= addslashes($row['owner name']) ?>'

}

<?
$joiner = ',"';
$count++;

7>

<?php endwhile; ?>
5

Now we're ready to step back in JavaScript.

Regarding how to actually add these items to the side panel list, there are a number of dif-
ferent schools of thought. The strictest camps would argue for using only XML DOM methods.
This would mean creating each tag—ahem, element—with createElement, putting text inside
it using createTextNode, and then adding it to the list with appendChild. To use this method is
to respect the sanctity of the HTML document tree as an abstract XML data structure in memory.
In contrast, using the innerHTML property lets us inject blobs of already marked-up content—
unvalidated content, which may or may not keep the document correct.

Our method, shown in Listing 6-14, is a hybrid approach. We create and attach the list
items using DOM methods, but each list item’s content is created as a text string and assigned
using innerHTML.

CHAPTER 6 © IMPROVING THE USER INTERFACE

Listing 6-14. The createMarker Function Reimagined As initializePoint

function initializePoint(pointData) {

var point = new GPoint(pointData.longitude, pointData.latitude);

var marker = new GMarker(point);

var listItem = document.createElement('1i');

var listItemlLink = listItem.appendChild(document.createElement('a"));

listItemLink.href = "#";

listItemLink.innerHTML = '' + pointData.address + ' ' +es
" (' + pointData.height + 'm)';

pointData.city + ', ' + pointData.state +

var focusPoint = function() {
marker.openInfoWindowHtml(pointData.address);
map.panTo(point);
return false;

}

GEvent.addListener(marker, 'click', focusPoint);
listItemlLink.onclick = focusPoint;

document.getElementById('sidebar-list"').appendChild(1listItem);

map.addOverlay(marker);

function init() {

for(id in markers) {
initializePoint(markexrs[id]);

}

handleResize();

Here, we greatly expanded the role of the function that used to just create a marker. Now,
it creates a marker and a sidebar list item, as well as a common event-handler function that
fires when either of them is clicked. We added some styles to it, and you can see the results in
Figure 6-6.

Note There might be a case here for isolating the generate-sidebar code from the generate-marker code,
but the lure of a common focusPoint function is simply too great. Indeed, keeping the two tightly knit
offers us more opportunities for crossover functionality, as you’ll see shortly.

133

134

CHAPTER 6 © IMPROVING THE USER INTERFACE

e 06 Mozilla Firefox =3
<‘,élv E %‘ Q m ehrlp:,f,rwww.guuglemapsbuuk.mm;(haplerﬁ;‘sl'dePaneH Ad O [') 2

xDisab\e' @Cockies' E:}CSS' BForms' #images * ﬁlnformation' [ZMiscellaneous ¥ @Outline' [BResize~ @Too\s‘ |E|View50ur

Cell-Tower Locations

Towers FPoles Masts Other Hide

PAPAIKO SUGAR MILL
PAPAIKO, HI (114m)

KALANIANAOLE AVE 2.5 MI NE
HILO, Hi (41m)

2.1 KM NW INT WAIANUENUE & AKOLA
349 KAPIOLANI STREET PUHONUA, #i (30m)

3 KM AT A BEARING OF 51 DEGREES TRUE
FROM
PEPEEKEQ, HI (117m)

349 KAPIOLANI STREET
HILO, HY (30.5m)

4,000 feet § of General Lyman Field Runway
Hila, HI (21.3m)

920 ULULANI ST.
HILO, Hf (18.2m)

Hilo Hawalian Hotel, 71 Banyan Dr.
L Hilb, H (25m)
Hawsll Volcanoes

Nl Park KAMEHAMEHA PARK
Y/ HAWY, Hi (42.7m)

Fuufionua O
‘ P

1.2 MILES SE
OOKALA, Hi (61m)

11 MILES EAST OF SOUTHEAST OF
NAALEHU, HI (15.2m)

<«

ore A

Figure 6-6. The side panel populated with marker details

Getting Side Panel Feedback

In the code as of Listing 6-14, the users can interact with both the side panel item and the marker
itself. However, they’re receiving feedback through only the map marker—its info window
pops up. It would be ideal if we could enhance this behavior by also highlighting the current
point in the side panel list.

Up until now, we've managed to avoid manipulating the classes of elements other than body.
Indeed, with a static navigation system, using body classes is a highly robust way to respond to
feedback. However, the side panel is full of dynamic content, generated within the browser; as
possible as it is, it would be absurd to be dynamically modifying the style rules to accommo-
date an unknown number of items.

The real key to this problem, though, is that the first click means “highlight me,” but every
subsequent click means “highlight me and unhighlight the previous selection.” Previously, the
API handled this transparently, by providing only a single info window. Now, you need to do it
yourself.

The method will be a global variable, called deselectCurrent, which always stores a func-
tion for unselecting the current selection. Whenever something new is selected, the handler
can simply run the current function, select itself, and then reassign the variable to a new func-
tion that will unselect itself. Perhaps it will make more sense in code, as shown in Listing 6-15.

CHAPTER 6 © IMPROVING THE USER INTERFACE 135

Listing 6-15. A Function to Deselect the Current List Item

var deselectCurrent = function() {}; // Empty function

function initializePoint(pointData) {
var point = new GPoint(pointData.longitude, pointData.latitude);
var marker = new GMarker(point);

var listItem = document.createElement('1i');
var listItemlLink = listItem.appendChild(document.createElement('a"));

listItemLink.href = "#";
listItemLink.innerHTML = '' + pointData.address + ' ' +es

pointData.city + ', ' + pointData.state + ' (' + pointData.height + 'm)';

var focusPoint = function() {

deselectCurrent();
listItem.className = 'current';
deselectCurrent = function() { listItem.className = ''; }

marker.openInfoWindowHtml(pointData.address);
map.panTo(point);
return false;

}

GEvent.addListener(marker, 'click', focusPoint);
listItemlLink.onclick = focusPoint;

document.getElementById('sidebar-1list"').appendChild(listItem);

map.addOverlay(marker);

And once again, with a few styles thrown in, you can see the results in Figure 6-7. Although
other sections have done so already, this code is one of the most explicit examples we’'ve had
so far of using a closure. In the code in Listing 6-15, every time a new copy of focusPoint is cre-
ated (one per pin, right?), the JavaScript interpreter makes a copy of the environment in which
it was created. So even though the initializePoint() function has long finished by the time
focusPoint runs, each instance of focusPoint has access to the particular 1istItem object that
was in existence at the time.

136

CHAPTER 6 ©' IMPROVING THE USER INTERFACE

en6 Mozilla Firefox =
<,"—EI' = @ O {.} e http:/ jwww.googlemapsbook.com/chapteré /sidePanell | O "r' D] 3
xDiiable' @Cookies' E:}CSS' EFcrms' #images ™ elniormation' [E|Miscellaneous ™ @Gut\ine' Bresize~ @Tools' EEWiewSour

Cell-Tower Locations

Towers Poles Masts Other hide

PAPAIKO SUGAR MILL
PARAIKO, HI (114m)

KALANIANAOLE AVE 2.5 MINE
HILO, Fif (41rm)

920 ULULANI ST.

2.1 KM NW INT WAIANUENUE & AKOLA
PUHONUA, H {30m)

:é l;(cl::l“ATJA BEARING OF 51 DEGREES TRUE
PEPEEKEO, Hi (117m)

349 KAPIOLANI STREET
HILO, Hi (30.5m)

4,000 feet S of General Lyman Field Runway
Hilo, Hf (21.5m)

920 ULULANI ST.
HILO, H (18.2m)

Hilo Hawailan Hotel, 71 Banyan Dr.
Hio, Hf (25m)

KAMEHAMEHA PARK
HAWI, Hi {42.7m)

1.2 MILES SE
OOKALA, Hf (61m)

11 MILES EAST OF SOUTHEAST OF
NAALEHU, Hi (15.2m)

alr(

Done 2

Figure 6-7. The selected item in the side panel is highlighted.

This, of course, applies to the deselectCurrent() function as well. Although there’s only
one of them at any particular time, whatever one is in existence is maintaining access to the
listItem object that the focusPoint function that spawned it was carrying.

Doesn’t make sense? Don't worry too much. Closures are just one of those computer science
topics that will become clearer after you encounter them a few times.

Warning, Now Loading

As you create map projects of increasing complexity, users will begin to experience a notice-
able lag while the browser gets everything set up. One courtesy that can be added is a message
to alert your users when the map is processing or initializing.

You're going to use almost the exact same trick as was used for the hovering toolbar,
except this time, you're hovering a temporary message rather than a persistent user control.
Modify the body of your markup file to add some structure for a loading message as shown in
Listing 6-16.

Listing 6-16. Markup to Add a Loading Message to the Map

<body class="sidebar-right loading">
<div id="toolbar">

CHAPTER 6 © IMPROVING THE USER INTERFACE 137

</div>
<div id="content">

<div id="map-wrapper">
<div id="map"></div>

</div>

<div id="sidebar">

</div>
<div id="alert"»
<p>Loading data ...</p>
</div>
</div>
</body>

If you wanted, you could add a fancy spinning GIF animation, but this is adequate for
a start. You'll need some similar additions to the CSS to pull this message in front of the map
and center it, as shown in Listing 6-17.

Listing 6-17. Styles to Position the Loading Message in Front of the Map

#alert {
position: absolute;
top: 50%;
left: o;
width: 100%;
text-align: center;
display: none;

}
#alert p {
width: 150px;
margin: 0 auto O auto;
padding: 10px;
background: white;
border: 1px solid #aaa;
}

body.loading #alert { display: block; }

This uses the same strategy as we used in Listing 6-7 to show and hide the side panel. By
hooking the visibility of the alert on the body’s class, you can centralize control of it on that
one spot, and yet still be free later on to move it around and not need to change any JavaScript.
Moreover, you avoid the hassle of having to keep track of specific elements to hide and unhide,
as in Listing 6-15. Figure 6-8 shows the new loading notice.

138

CHAPTER 6 " IMPROVING THE USER INTERFACE

806 Mozilla Firefox =X
Q;Iv P @ @ G} |e hitp: { /www.googlemapsbook.com/chapters /nowLoadit ¥ | © '/' DK+
xDI;abIe' @Co«nkles' i}CSS' BForms' @Images' alnformat\on' [ZIMiscellaneous ¢Gutllne' FaResize @Tools' EEWIawSour

Cell-Tower Locations
Towers Poles Masts Other ‘hide

PAPAIKO SUGAR MILL

PAPAIKO, HI (114m)

KALANIANAOLE AVE 2.5 MINE

HILO, HI (41m)

2.1 KM NW INT WAIANUENUE & AKOLA
PUHONUA, HI (30m)

%A(g“ATA BEARING OF 51 DEGREES TRUE
PEPEEKEO, Hi (117m)

349 KAPIOLANI STREET
HILO, HI (30.5m)

4,000 feet S of General Lyman Field Runway
Hio, Hi (21.3m)

920 ULULANIST.
HILO, HI {18.2m)

Hilo Hawaiian Hotel, 71 Banyan Dr.
Hiio, Hi (25m)

KAMEHAMEHA PARK
HAWI, Hi (42.7m)

1.2 MILES SE
OOKALA, Hi (61m)

11 MILES EAST OF SOUTHEAST OF
MNAALEHU, HY (15.2m)

<« (T

Done v

Figure 6-8. A loading notice on the map

Here’s how to banish the loading message after the map is set up. Tack the line shown in
Listing 6-18 to the end of the init()function.

Listing 6-18. JavaScript to Hide the Loading Notice After Map Loading Is Completed

function init() {

changeBodyClass('loading’, 'standby');

UTip It may seem weird to replace “loading” with “standby,” rather than just deleting it outright. This way,
however, makes it more straightforward to revert back to loading status again at a later point. For example,
if the user interacts with the map in such a way that it needs to download another big block of data, it
becomes trivial to pop up that message again and let the user know you’re working on it.

CHAPTER 6 © IMPROVING THE USER INTERFACE

Data Point Filtering

Just one more area of the application still shows dummy content. With the data just begging to
be broken down by category, why not use that menu bar as a mechanism for selectively displaying
groups of points?

In this final example of the chapter, we'll show you how to filter points into rudimentary
groups.

Note Typically, when you want to display a bunch of things, and then display a bunch of different things,
you think of dashing back to the server to grab the next block of information. While this is important to be
able to do, we’re not actually making an Ajax call here. We’re just selectively limiting what is displayed. When
the entire data set for Hawaii is less than 40KB, what would be the point of breaking it up into multiple server
calls? When you grab it in one big lump, it makes for a more seamless user interface, since there’s no wait-
ing around for network latency on a 5KB file.

Flipping through the database view, it seems there are a handful of different structures
shown in the type field. Most of the Hawaii data seems to fall under either “Tower” or “Pole,”
but there are a few maverick types. Why bother hard-coding in the types of structures, when
the program could just figure them out at runtime?

Let’s go with pretty much the same starting markup for the toolbar list as we did for the
side panel list, as shown in Listing 6-19.

Listing 6-19. Markup for a Dynamic Filter Bar

<div id="toolbar">
<h1>Cell-Tower Locations</h1>
<ul id="filters">

<ul id="sidebar-controls">
hide</1i>
show</1i>

</div>

From here, you have three main tasks:
* Use an efficient mechanism for showing and hiding particular points.
 Figure out which groups exist in the given data.

* Create a function that can cycle through and hide all points not belonging to a particular
group.

139

140

CHAPTER 6 = IMPROVING THE USER INTERFACE

Showing and Hiding Points

The current implementation of initializePoint() (as of Listing 6-15) doesn’t provide any
obvious mechanism for toggling the points on and off—it’s a one-way operation. This isn’t
hard to fix, though. All you need to do is create a pair of functions for each point: one to show
and the other to hide. As for where to store these functions, what better place than inside the
original markers array itself? Listing 6-20 shows how we added the new functions.

Listing 6-20. Adding Methods to the markers Array Members

function initializePoint(pointData) {
var visible = false;

GEvent.addListener(marker, 'click', focusPoint);
listItemlink.onclick = focusPoint;

pointData.show = function() {
if (lvisible) {
document.getElementById('sidebar-1list').appendChild(1listItem);
map.addOverlay(marker);
visible = true;
}

}
pointData.hide = function() {

if (visible) {
document.getElementById('sidebar-1list').removeChild(1listItem);
map . removeOverlay(marker);
visible = false;

}

pointData.show();

Isn't that clever? Now along with latitude and longitude data members, each of those
markers array items has a pair of on-board functions for controlling their visibility.

Discovering Groupings
Figuring out all the unique values appearing in the type field is just a matter of iterating over

all the markers. Inside the init() function, we've added a single line to the existing loop that
runs over each record already, to call initializePoint() on it. This is shown in Listing 6-21.

CHAPTER 6 © IMPROVING THE USER INTERFACE

Listing 6-21. Augmented Initialization Function to Check for Different Structure Types

function init() {
var type;
var allTypes = { 'All':[] };

for(id in markers) {
initializePoint(markers[id]);
allTypes[markers[id].type] = true;
}

for(type in allTypes)
{

}

initializeSortTab(type);

handleResize();
changeBodyClass('loading', 'standby');

For each element of the markers array, initializePoint() is called, and then the point’s
type value is assigned as a key to the al1lTypes object. The nature of an object is that the keys
are unique, so by the end, allTypes has as its keys the different marker types. From there, you
can simply loop through that object and create a button and handler for each of the discov-
ered types.

Creating Filter Buttons

The last section, shown in Listing 6-22, is just implementing the initializeSortTab() function
called in Listing 6-21. Creating the button is identical to how you created sidebar links in
initializePoint(). The primary “gotcha” to pay attention to here is the special case for the All
button. And, of course, you’'ll want to use the spiffy loading message.

Listing 6-22. Adding Filter Buttons to Show and Hide Groups of Markers

function initializeSortTab(type) {
var listItem = document.createElement('1i');
var listItemLink = listItem.appendChild(document.createElement('a"));

listItemLink.href = "#";

listItemLink.innerHTML = type;

listItemLink.onclick = function() {
changeBodyClass('standby', 'loading');

141

142 CHAPTER 6 " IMPROVING THE USER INTERFACE

for(id in markers) {
if (markers[id].type == type || 'All' == type) {
markers[id].show();
} else {
markers[id].hide();
}
}

changeBodyClass('loading', 'standby');
return false;

}
document.getElementById('filters').appendChild(listItem);

And there it is. It's simple code, but there’s a lot of really classy functionality here. Given
almost any set of points, these techniques can be applied to create a useful, high-quality
presentation. The final result is shown in Figure 6-9.

806 Mogzilla Firefox =)

QEI' =" @ Gj ,e http: / fwww.googlemapsbook.com/chapter6/dataFilteri ¥ O '/_' b o

xD\sabIe' @Ccckies' E:}JCSS' EForms' @Images' olnformalion' [E]Miscellancous * Bzcutline' [Bresize™ @ch\s' @ViewSour

Cell-Tower Locations
All TOWER POLE BTWR Z2TOWER BANT 2TA2 hide

Hilo Hawailan Hotel, 71 Banyan Dr.
Hilo, HI (25m)

101 AUPUNI STREET
HILO, Hi (29.8m)

1257 Kileueh Avenue
Hilo, HI (6. 1rm)

le

Done A

Figure 6-9. Marker filters in action

CHAPTER 6 © IMPROVING THE USER INTERFACE

Summary

In this chapter, we took a look at a number of cross-browser layout tricks involving JavaScript
and CSS, as well as a handful of other methods to make your maps more visually and func-
tionally interesting. Together, we can stop the proliferation of boring, fixed-size, single-pane
mashups!

In Chapter 7, you'll continue to develop this code, focusing on how to deal with the vastness
of the full US-wide database.

143

CHAPTER 7

Optimizing and Scaling for
Large Data Sets

So far in the book, we've looked at the basics of the Google Maps API and shown how it’s
possible to retrieve and store data for your map. You've probably come up with some great
ideas for your own map applications and started to assemble the information for your markers.
And you may have found that your data set is overwhelmingly large—far larger than the simple
examples you've been experimenting with so far.

In the previous chapters, you've been experimenting with the US FCC data in the
Antenna Structure Registration (ASR) database. As you've probably noticed, the FCC tower
information is a rather large data set, containing more than 115,000 points across the United
States. If you tried to map the towers using one GMarker per point, the map, or even the user’s
computer, would simply crawl to a halt.

When your data grows from a dozen to a few thousand points, or even hundreds of thou-
sands of points, you need to select the best way to present your information without confusing
or frustrating your users. This chapter presents a variety of methods for working with larger
data sets such as the FCC tower data. The methods you'll learn will provide your users with an
interactive experience while maintaining a sensible overhead in your web application.

When dealing with large data sets, you need to focus on three areas of your application:
the communication between the server and browser, the server side, and the client side. In
this chapter, you'll learn techniques for each of these areas as follows:

» Streamline the data flowing between your server and client’s web browser.
* Optimize your server-side script and data storage.

* Improve the users’ experience with the client-side JavaScript and web browser.

Understanding the Limitations

Before we discuss how to overcome any limitations that arise from dealing with large data
sets, you should probably familiarize yourself with what those limitations are. When we refer
to the “limits of the API,” we don't mean to imply that Google is somehow disabling features of
the map and preventing you from doing something. What we're referring to are the ambiguous
limits that apply to any web-based software, such as the software’s ability to run in the client’s
web browser.

145

146

CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

If you're developing your map application on a cluster of supercomputers, the limitations of
your computer are going to be different than those of someone who is browsing on an old 486
laptop with just a few megabytes of RAM. You'll never know for sure what type of computer
your users are going to have, so remember that not everyone is going to experience a map in the
same way. For this chapter, we'll focus on the limitations related to plotting larger than normal
data sets on an average home computer. These issues are mainly performance-related and
occur when there are too many GOverlay objects on the map at one time.

Overlays are objects that build on the API's GOverlay class and include any items added to
the map using the GMap2 . addOverlay() method. In the Google Maps API, Google uses overlays for
GMarker objects, GPolyline objects, and info windows, all of which you've probably been play-
ing with a lot as you've progressed through this book. In each case, the overlay is built into the
JavaScript class, and in some cases, may include shadows or translucent images. Along with
the API overlays, the map may also contain custom overlays that you've built yourself. You can
implement your own overlays, using the API’s GOverlay object, to display all sorts of informa-
tion. In fact, one of the methods you'll explore in this chapter uses a custom overlay to display
detailed information using a transparent GIE

Here is a summary of the relevant limits:

GMarker limits: If you're going to display only markers on your map, the maximum number
to try for the average user is around 100; however, performance will be slow on anything
but the latest computer hardware. Loading markers and moving them around with
JavaScript is an expensive operation, so for better performance and reliability, try to keep
the number to around 50 to 75 GMarker objects on the map at one time—even fewer if
you're combining them with GPolyline objects.

GPolyline limits: Too many GPolyline objects will slow the map in the same way as do too
many markers. The difference with polylines is in the number of points in the lines, not
the number of lines. One really long line with a bunch of points will slow the map down
just as much as a few little lines. Load a maximum of 100 to 150 points, but keep in mind
that using around 50 to 75 will make your application run a lot smoother. If your applica-
tion requires a large, complicated set of polygons with hundreds of points, check out the
server-side overlay and tile solutions described in this chapter. The examples demonstrate
generating your own overlays and tiles, but the embedded images don’t need to be limited
to just markers—you could draw complicated images, lines, and shapes as well.

Info window limits: As you saw in Chapter 3, there’s only one instance of an info window
on the map at any given time, so there are no direct limits on the info window with regard to per-
formance. However, remember that the info window adds more complexity to the map,
so if you try to slide the map around while the window is open, the map may begin to
slow down.

Streamlining Server-Client Communications

Throughout the book, we've mentioned that providing an interactive experience to your users
is a key characteristic of your mapping application’s success. Adding interactivity often means
creating more requests back and forth between the client’s web browser and the server. More
requests means more traffic and accordingly, a slower response, unless you invest in addi-
tional resources such as hardware to handle the load. To avoid making these investments yet

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

still improve response time, you should always streamline any process or data that you'll be
using to communicate with the client.

As you've probably figured out by now, Ajax doesn’t really need to talk in XML. You can
send and receive any information you want, including both HTML and JavaScript code. Ini-
tially, many web developers make the mistake of bloating their server responses with full,
and often verbose, JavaScript. Bloating the response with JavaScript is easy on you as a devel-
oper, but becomes a burden on both the server and the client. For example, the response from
the server could add ten markers to your map by sending:

map.addOverlay(new GMarker(new GLatLng(39.49,-75.
map.addOverlay(new GMarker(new GLatLng(39.49,-76.
map.addOverlay(new GMarker(new GLatLng(39.64,-74.
map.addOverlay(new GMarker(new GLatlLng(40.76,-73.00)));
map.addOverlay(new GMarker(new GlLatlLng(40.83,-74.47)));

07)));
24)
29)
00)
47)
map.addOverlay(new GMarker(new GlLatlng(40.83,-74.05)));
60)
64)
56)
06)

));
));

map.addOverlay(new GMarker(new GlLatlLng(40.83,-72.60)));
map.addOverlay(new GMarker(new GLatlLng(40.83,-76.64)));
map.addOverlay(new GMarker(new GlLatlLng(41.17,-71.56)));
map.addOverlay(new GMarker(new GlLatlLng(41.26,-70.06)));

The problem with sending all this code in your response becomes apparent as your data set
scales to larger and larger requests. The only unique information for each point is the latitude
and longitude, so that’s all you really need to send. The response would be better trimmed and
rewritten using the JSON objects introduced in Chapter 2, such as the following:

var points = {
{lat:39.49,1ng:-75.07},
{lat:39.49,1ng:-76.24},
{1at:39.64,1ng:-74.29},
{lat:40.76,1ng:-73.00},
{lat:40.83,1ng:-74.47},
{lat:40.83,1ng:-74.05},
{lat:40.83,1ng:-72.60},
{lat:40.83,1ng:-76.64},
{lat:41.17,1ng:-71.56},
{lat:41.26,1ng:-70.06},

By sending only what’s necessary, you decrease every line from about 55 characters to just 23,
an overall reduction of 32 characters per line and a savings of about 9KB for a single request
with 300 locations! Trimming your response and generating the markers from the data in the
response will also give your client-side JavaScript much more control over what to do with
the response. If you're sending a larger data set of 1000 points, you can easily see how you
could save megabytes in bandwidth and download time, plus, considering the number of
requests your application could receive, that will add up to a big savings over time.

Reducing data bloat is a fairly easy concept and requires little, if any, extra work. Though
you may shrug it off as obvious, remember to think about it the next time you build your web
application. Less bloat will make your application run faster! Plus, it will also make your code
much easier to maintain, as JavaScript operations will be contained in one place rather than
spread around in the server response.

147

148

CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

Optimizing Server-Side Processing

When building a map with a large and complex set of data, you'll most likely be interacting
with the server to retrieve only a small subset of the available information. The trick, as you will
soon see, is in how you request the information combined with how it’s processed and displayed.
You could retrieve everything from the server and then display everything in your client’s
web browser but, as we mentioned earlier in the chapter, the client will slow to a crawl, and in
many cases, just quit. To avoid slowing the map and annoying your users, it’s important to
optimize the method of your requests.

How you store your information on your server is up to you, but whichever way you choose,
you’ll need to ensure the data is easily accessible and searchable. Processing a large flat file for
each request will just slow down the server and waste valuable resources, while at the same
time searching multiple XML files can get a bit tricky. For optimum speed and efficiency, you'll
probably want to use a database to store your information. We've already discussed databases
and how to create them throughout the book, so in this chapter we’ll just focus on targeting
the information you need from your database for each request.

To easily search, filter, and categorize the information displayed on the map, make sure
your database has the appropriate data types for each of the fields in your database table. For
example, if you have a 1at and a Ing column, make sure they’re floats with the appropriate
precision for your data. Using the proper data types will allow the database to better optimize
the storage and retrieval of your information, making it a lot quicker to process each request.
Additionally, if your database supports it, be sure to use indexing on frequently requested
columns or other database-specific optimizations on your data.

Once your database is flush with information, your requests and queries will most likely
be retrieving information about points within a particular latitude and longitude boundary.
You'll also need to consider how much information you want to display versus how much
information it is actually possible to display. After you've decided on an appropriate balance of
wants versus needs, you'll need to pick the solution that best fits your data. Here, we'll explore
five possible solutions:

¢ Server-side boundary method

¢ Server-side common point method
* Server-side clustering

* Custom detail overlay method

e Custom tile method

These approaches have varying degrees of effectiveness, depending on your database of
information and the context of the map. We'll describe each method and then point out its
advantages and disadvantages.

CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

Server-Side Boundary Method

The boundary method involves requesting only the points within a specific boundary, defined
using some relevant reference such as the viewport of the visible map. The success of the boundary
method relies on highly dispersed data at a given zoom level.

If you have a large data set and the information is relatively dispersed over the globe, you
can use the GLatLngBounds of the GMap2 object as a boundary for your query. This essentially
restricts the data in your response to those points that are within the on-screen viewable
area of the map. For globally dispersed data at zoom level 1, where the map covers the entire
globe, you'll see the whole world at once, so plotting the data set using markers is still is going
to go beyond the suggested 100 marker limit and cause problems, as shown in Figure 7-1. At
closer zoom levels, say 5 or higher, you'll have a smaller portion of the markers on the map at
one time, and this method will work great, as shown in Figure 7-2. The same would apply for
localized data dispersed across a smaller area or large, less dispersed data, but you'll need to
zoom in much closer to have success.

0686 Mozilla Firefox

=X
— @

Warning: Unresponsive script ator

A script on this page may be busy, or it may have —
stopped responding. You can stop the script now, or you
can continue to see if the script will complete.

(Continue) m

Greenland

Narth)
Pacific Ocean

Figure 7-1. Server-side boundary method with the entire world at zoom level 1

149

150

CHAPTER 7 ©' OPTIMIZING AND SCALING FOR LARGE DATA SETS

o B%Ilr\
& Thetiord Amslgrdam Hannover o

L : Ape'd":_'r" — O Braunschweig Potsdam
o Sawston nglish i
o Channel Rotl%rdam Nijmegen . Minster @ 9 Colthus -H
Colchester, © Paderborn -,
- Endioven § Dortmund
ays o o Kassel Leipzig
p H Ly Lot [o 1
Guildford 2. Tanbridge Brugge @ Gsnl Mianchengladbach @ i Erfuit Dreéden Legni
Slegen o Gera
{ o
) Brighton B 1\L-le E3 (ff‘c:hen Weionn e, ° © Chemnitz v
* ll,_,_\ Belgigue Liéogs
L, Koblenz® —(Frankfurt
L am gﬂa-n Praha
Amiens Jz‘ /.t\ =, i Q
i Wik zbus,
o 4 Mainz il Gizel Ceska

Uxembourg
{ Manih o Republika
Rogen \\‘«l‘- !, ang eim Nugserg
Relms \’
T Y Regensburg

Metz
Caeng o

. a
Paris K"'”S“'}w Stuﬂgart)
o Naoncy Strasbodry @ Ingolstadt
Uim
4 Linz
Minchen S 5
e Mans Orléans A .
o Mulhouse Sattury
PR~ os
Angers o 28 Sk terreich
T
B F.S Sz UJO“ Besam;on “EBasel chh W lnnsﬂﬂf;;:‘~
Liechtenstein G‘r)az

Berna Sclvweuz

S\uzzera

Gene\-e T Lﬁ
190 Slovenia
Limoges Clesrmnnt.Earrand [T N

Figure 7-2. Server-side boundary method at a closer zoom level

To experiment with a smaller, globally dispersed data set, suppose you want to create
a map of capital cities around the world. There are 192 countries, so that would mean 192
markers to display. Capital cities are an appropriate data set for the boundary method because
there are relatively few points and they are dispersed throughout the globe. If you adjust the
zoom of the map to something around 5, you'll have only a small portion of those points on
the map at the same time.

Tip The boundary method is usually used in combination with one of the other solutions. You'll notice that
in many of the server-based methods, the first SQL query still uses the boundary method to initially limit the
data set to a particular area, and then additional optimizations are performed.

Listings 7-1 and 7-2 contain a working example of the server-side boundary method
(http://googlemapsbook.com/chapter7/ServerBounds/) using the SQL database of capital city
locations you created in Chapter 5 (in the screen scraping example). If you haven't created the
database from Chapter 5, you can quickly do so using the Chapter 7 capital cities seed.sql file
in the supplemental code for the book.

Listing 7-1. Client-Side JavaScript for the Server-Side Boundary Method

var map;
var centerlatitude = 49.224773;
var centerlongitude = -122.991943;
var startZoom = 4;

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS 151

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl (new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

updateMarkers();

GEvent.addListener(map, 'zoomend',function() {
updateMarkers();

};

GEvent.addListener(map, 'moveend',function() {
updateMarkers();
D;
}

function updateMarkers() {

//remove the existing points
map.clearOverlays();

//create the boundary for the data

var bounds = map.getBounds();

var southWest = bounds.getSouthWest();

var northEast = bounds.getNorthEast();

var getVars = 'ne=' + northEast.toUrlValue()
+ '8sw=" + southWest.toUrlValue()

//1log the URL for testing
GlLog.writeUrl('server.php?'+getVars);

//retrieve the points using Ajax
var request = GXmlHttp.create();
request.open('GET', 'server.php?'+getVars, true);
request.onreadystatechange = function() {
if (request.readyState == 4) {

var jscript = request.responseText;

var points;

eval(jscript);

//create each point from the list

for (i in points) {
var point = new GlatLng(points[i].lat,points[i].1lng);
var marker = createMarker(point,points[i].city);
map.addOverlay(marker);

152 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

request.send(null);

}

function createMarker(point, html) {
var marker = new CMarker(point);
GEvent.addListener(marker, 'click', function() {
var markerHTML = html;
marker.openInfoWindowHtml(markerHTML);
D;

return marker;

}

window.onload = init;

Listing 7-2. PHP Server-Side Script for the Server-Side Boundary Method

<?php

//retrieve the variables from the GET vars
list($nelat,$nelng) = explode(',"',$ GET['ne']);
list($swlat,$swlng) = explode(',"',$ GET['sw']);

//clean the data

$nelng=(float)$nelng;
$swlng=(float)$swlng;
$nelat=(float)$nelat;
$swlat=(float)$swlat;

~ N~ o~

//connect to the database

require($_SERVER['DOCUMENT ROOT'] . '/db_credentials.php');
$conn = mysql_connect("localhost”, $db_name, $db_pass);
mysql_select_db("googlemapsbook", $conn);

if($nelng > $swlng) {

//retrieve all points in the southwest/northeast boundary
$result = mysql query(
"SELECT
lat,1ng,capital, country
FROM
capital cities
WHERE
(Ing > $swlng AND 1ng < $nelng)
AND (lat <= $nelat AND lat >= $swlat)
ORDER BY
lat"
, $conn);

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

} else {

//retrieve all points in the southwest/northeast boundary
//split over the meridian
$result = mysql query(
"SELECT
lat,1ng,capital, country
FROM
capital cities
WHERE
(Ing >= $swlng OR 1ng <= $nelng)
AND (lat <= $nelat AND lat >= $swlat)
ORDER BY
lat”
, $conn);

}

$list = array();
$i=0;
$row = mysql fetch assoc($result);

while($row)

{
$i++;
extract($row);

$city = addcslashes($capital.’, '.$country,"'");
$list[] = "p{$i}:{lat:{$lat},Ing:{$1ng},city: '{$city}'}";
$row = mysql fetch assoc($result);

}

//echo back the JavaScript object nicely formatted
header('content-type:text/plain;');

echo "var points = {\n\t".join(",\n\t",$list)."\n}";
>

This method has two key parts. The first is the request to the server in Listing 7-1, which
includes the bounds of the map by sending the southwest and northeast corners:

//create the boundary for the data

var bounds = map.getBounds();

var southWest = bounds.getSouthWest();

var northEast = bounds.getNorthEast();

var getVars = 'ne=' + northEast.toUrlValue()
+ '&sw=" + southWest.toUrlValue()

The second is the SQL query to the database in Listing 7-2, which limits the points to the
boundary defined by the southwest and northeast corners:

153

154 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

if($nelng > $swlng) {

//retrieve all points in the southwest/northeast boundary
$result = mysql query(
"SELECT
lat,1ng,capital, country
FROM
capital cities
WHERE
(Ing > $swlng AND 1ng < $nelng)
AND (lat <= $nelat AND lat >= $swlat)
ORDER BY
lat”
, $conn);

} else {

//retrieve all points in the southwest/northeast boundary
//split over the meridian
$result = mysql query(
"SELECT
lat,1ng,capital, country
FROM
capital cities
WHERE
(Ing >= $swlng OR 1ng <= $nelng)
AND (lat <= $nelat AND lat >= $swlat)
ORDER BY
lat”
, $conn);

Caution You may have noticed the SQL is wrapped in an if statement and two different queries are per-
formed depending on the relationship of the longitudes. This is due to the meridian in the Mercator projection
of the map. The map is displayed using a Mercator projection where the meridian of the earth is at the left
and right edges. When you slide to the left or right, the map will wrap as you move past the meridian at
+/— 180 degrees. In that case, the bounds are partially split across the left and right edges of the map and
the northeast corner is actually positioned at a point that is greater than 180 degrees. The Google Maps API
(and probably your data) automatically adjusts the longitude values to fit between —180 and + 180 degrees,
s0 you need to request two portions of the map from your database covering the left and right sides.

When you move the map around or change the zoom level, a new request is created by
the moveend and zoomend events in Listing 7-1. The request to the server retrieves a new JSON
object, which is then processed by the JavaScript to create the necessary markers.

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

As you would expect, there are both pros and cons to using the boundary method. The
advantages are as follows:

* This technique uses the standard existing Google Maps API methods to create the
markers on the map.

e It doesn’t drastically change your code from the simple examples presented earlier in the
book.

¢ The PHP requires little server-side processing and little overhead.

The following are the boundary method’s disadvantages:

* It works for only dispersed data or higher zoom levels.

* It may not work for lower zoom levels, as too many markers will be shown at once.

* The client’s web browser makes a new request for markers after each map movement,
which could increase server traffic.

Server-Side Common Point Method

Unlike the server-side boundary method, the server-side common point method relies on
a known point, one around which you can centralize your data, and retrieves the maximum
number of points relative to that known point. This method is useful for location-based appli-
cations where you are asking your users to search for things relative to other things, or possibly
even relative to themselves. It works for any zoom level and any data set, whether it's a few
hundred points or thousands of points, but larger data sets may require more time to process
the relative distance to each point.

For example, suppose you want to create a map of all the FCC towers relative to someone’s
position so he can determine which towers are within range of his location. Simply browsing
the map using the server-side boundary method won't be useful because the data is fairly dense
and you would need to maintain a very close zoom. What you really want is to find towers rel-
ative to the person’s street address or geographic location. You could have him enter an address
on your map, and then you could create the central point by geocoding the address using the
methods you learned in Chapter 4.

The difficulty with the common point method is calculating the distance between the
central point and all the other points. The calculation itself is fairly simple and can be done
using kilometers, miles, or nautical miles, as shown in the PHP surfaceDistance() function in
Listing 7-3.

Listing 7-3. Surface Distance Calculation Function in PHP
<?php

function surfaceDistance($lat1,$1lng1,$lat2,$1ng2,$type="km"){
$a1 = deg2rad($lat1l); //lat 1 in radians

$a2 = deg2rad($lat2); //lat 2 in radians
$b1 = deg2rad($lngl); //1lng 1 in radians
$b2 = deg2rad($lng2); //Ing 2 in radians

155

156

CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

//earth radius = 6378.8 kilometers or 3963 miles

switch(strtolower($type)) {
case 'km': $r = 6378.8; break; //kilometers
case 'm': $r = 3963; break; //miles
case 'n': $r = 3443.9; break; //nautical

}

return acos(cos($a1)*cos($b1)*cos($a2)*cos($b2) +
cos($a1)*sin($b1)*cos($a2)*sin($b2) +
sin($a1)*sin($a2)) * $r;

>

The problem arises when you need to calculate the distance to every point in your data-
base. Looping through each point is fine for a relatively small database, but when you are dealing
with hundreds of thousands of points, you should first reduce your data set using other meth-
ods. For example, you could limit the search to a certain range from the central point and
construct a latitude/longitude boundary, as you did with the server-side boundary method
in Listing 7-2. This would limit the surface distance calculation to each point in the bound-
ary rather than the entire database. You could also look up the city or state when you geocode
the address and filter your SQL query to points only in that city or state. Either way, it’s best
to provide some level of additional search criteria so you don’t waste resources by calculat-
ing distances to points on the other side of the world.

If you choose to use this method, also be aware that user interface problems may arise if
you don't design your interface correctly. The problem may not be obvious at first, but what hap-
pens when you slide the map away from the common central point? Using strictly this method
means no additional markers are shown outside those closest to the common point. Your users
could be dragging the map around looking for the other markers that they know are there, but
aren't shown due to the restrictions of the central point location, as shown in Figure 7-3.

Easthampt
asthampton West Brookfield
State Forest
)
j
= Hampten Ponds’/ 755 | Chicopee: Ludlow
State, Park [Memarial State:Park < State Park
Westfield 5@
Springfield 7
Y -
Agawam @3 QE
) D
10}
=== Scanic River i,
W State Park @
P !
11
Penwaod |
Stale Park I e !
b1t Mountain | e

Figure 7-3. A map missing the available data outside the viewable area

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

Some maps we've seen use “closest to the center” of the map to filter points. This imposes
the same ambiguity, as the map actually contains much more information but it's simply ignored.
When using the server-side common point method, be sure to indicate to the users that the
information on the map is filtered relative to the known point. That way, they are aware they
must perform an additional search to retrieve more information.

Listings 7-4 and 7-5 show a working example of the common point method (http://
googlemapsbook.com/chapter7/ServerClosest/). To provide a simpler example, we’'ve made
the map clickable. The latitude and longitude of the clicked point is sent back to the server as
the known point. Then, using the FCC tower database, the map will plot the closest 20 towers
to the click. You could easily modify the example to send an address in the request and use
a server-side geocoding application to encode the address into latitude and longitude coordi-
nates, or you could use the API's GClientGeocoder object to geocode an address.

Listing 7-4. Client-Side JavaScript for the Closest to Common Point Method

var map;
var centerlatitude = 42;
var centerlongitude = -72;
var startZoom = 10;

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl (new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

//pass in an initial point for the center
updateMarkers(new GLatlLng(centerLatitude, centerlongitude));

GEvent.addListener(map, 'click',function(overlay,point) {
//pass in the point for the center
updateMarkers(point);

D;

}
function updateMarkers(point) {

//remove the existing points
map.clearOverlays();

//create the boundary for the data to provide
//initial filtering

var bounds = map.getBounds();

var southWest = bounds.getSouthWest();

var northEast = bounds.getNorthEast();

var getVars = 'ne=' + northEast.toUrlValue()
+ '&sw=" + southWest.toUrlValue()

+ '8known=" + point.toUrlvalue();

157

158 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

//1log the URL for testing
GlLog.writeUrl('server.php?'+getVars);

//retrieve the points
var request = GXmlHttp.create();
request.open('GET', 'server.php?'+getVars, true);
request.onreadystatechange = function() {

if (request.readyState == 4) {

}
}

var jscript = request.responseText;
var points;

GlLog.write(jscript);

eval(jscript);

//create each point from the list

for (i in points) {
var point = new GlatLng(points[i].lat,points[i].1lng);
var marker = createMarker(point);
map.addOverlay(marker);

request.send(null);

}

function createMarker(point) {
var marker = new GMarker(point);
return marker;

}

window.onload = init;

Listing 7-5. Server-Side PHP for the Closest to Common Point Method

<?php

//surface distance calculation from Listing 7-3
function surfaceDistance($lat1,$lng1,$lat2,$1ng2,$type="km"){

$a1
$a2
$b1
$b2

deg2rad($lat1); //lat 1 in radians
deg2rad($lat2); //lat 2 in radians
deg2rad($1ng1); //Ing 1 in radians
deg2rad($1lng2); //1ng 2 in radians

//earth radius = 6378.8 kilometers or 3963 miles
switch(strtolower($type)) {

case
case
case

"km': $r = 6378.8; break; //kilometers
'm': $r
'n': $r

3963; break; //miles
3443.9; break; //nautical

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

return acos(cos($a1)*cos($b1)*cos($a2)*cos($b2)
+ cos($a1)*sin($b1)*cos($a2)*sin($b2)
+ sin($a1)*sin($a2)) * $r;

//retrieve the variables from the GET vars
list($knownLat,$knownlng) = explode(',',$ GET['known']);
list($nelat,$nelng) = explode(',"',$ GET['ne']);
list($swlat,$swlng) = explode(',"',$ GET['sw']);

//clean the data
$knownLat=(float)$knownlat;
$knownLng=(float)$knownlLng;
$nelng=(float)$nelng;
$swlng=(float)$swlng;
$nelat=(float)$nelat;
$swlat=(float)$swlat;

//connect to the database

require($ SERVER['DOCUMENT ROOT'] . '/db_credentials.php');
$conn = mysql connect("localhost", $db _name, $db pass);
mysql select db("googlemapsbook", $conn);

/*
* Retrieve the points within the boundary of the map.
* For the FCC data, all the points are within the US so we
* don't need to worry about the meridian problem.
*/
$result = mysql query(
"SELECT
longitude as 1lng,latitude as lat
FROM
fcc_towers
WHERE
(longitude > $swlng AND longitude < $nelng)
AND (latitude <= $nelat AND latitude >= $swlat)
ORDER BY
lat");

$list = $distancelist = array();
$i=0;
$row = mysql fetch assoc($result);
while($row)
{

$i++;

extract($row);

159

160

CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

$list[$i] - "p{$i}:{lat:{$lat},1ng:{$1ng}}";
$distancelist[$i] = surfaceDistance($lat,$lng,$knownLat,$knownlng, 'km');
$row = mysql fetch assoc($result);

}

//sort the arrays by distance
array multisort($distancelist,$list);

//free the distance list
unset($distancelist);

//slice the array to the desired number of points
//20 in this case
$list = array slice($list,0,20);

//echo back the JavaScript object
header (' content-type:text/plain;');
echo "var points = {\n\t".join(",\n\t",$list)."\n}";

>

You may notice the GET variables for the request in Listing 7-4 contain the bounds of the
viewable area along with the clicked point:

var getVars = 'ne=' + northEast.toUrlValue()
+ '&sw=" + southWest.toUrlValue()
+ '8known=" + point.toUrlValue();

As mentioned earlier, sending the bounds allows you to filter the points to the viewable
area first, reducing the number of distance calculations. In Listing 7-5, the script simply records
all the distances into the distancelist array, and then sorts and slices the array by distance to
the known point before returning the request.

The closest to common point method offers the following advantages:

e It works at any zoom level.

* It works for any sized data provided you add additional filtering.
» This method is great for relative location-based searches.

Its disadvantages are as follows:

* Each request must be calculated and can't be easily cached.

¢ Not all available data points appear on the map.

* Itrequires a relative location.

* It may require server resources for larger/dense data sets.

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

Server-Side Clustering

The server-side clustering solution involves using the server to further analyze your requests,
and it works well for high-density data sets. In this case, the server analyzes the locations you've
requested along with their proximity, and then clusters markers to provide the maximum amount
of information from the fewest number of markers. A cluster is just a normal GMarker, but it
represents more than one marker within a close distance and therefore usually has a different
icon.

If your data has a very high density and markers are often overlapping, you can reduce
the number of markers on the map simply by combining near markers into one single cluster
marker. When you zoom the map for a closer look, the cluster marker will expand into several
individual markers, or more cluster markers, until the zoom is close enough that no clusters are
needed. For data sets of around 1000 points, clustering can be accomplished through JavaScript
on the client side, which we’ll discuss in the “Client-Side Clustering” section later in the chapter.
Here, you'll see how to cluster data on the server side when you have hundreds of thousands
of points.

To initially filter your data for the request, you can use either the server-side boundary
method or the server-side closest to common point method. For this example, we've chosen to
request all the points within the viewable area of the map (the boundary method), and then
we’ve applied clustering to the remaining points, as shown in Figure 7-4.

e %

‘ 7 ’ j_.: :', s

D [Fire Tower
] State Park

Manchaug
Pond

. ‘ Whitin
Resenoir
I Douglas ‘

State Forest

Harniltar
Reservoir

®
®
g

Buck Hill
State Mgmt Area

% %

CQuaddick

\g
!
©

e State Park

‘ ‘ 3924 Casimir Pulaski Men

‘ ‘ State Park

Figure 7-4. A map with clustered and single points

Combining clustering with either of the previous two methods can overcome some of
their limitations. The drawback of the server-side boundary method was its limitation to
a “closer to earth” zoom level. Zooming out meant that there would be too many points to dis-
play at one time on the map. By clustering the points, you can zoom out and still view the map
within the marker limit, but some markers will be combined until you zoom in closer.

161

162 CHAPTER 7 ©' OPTIMIZING AND SCALING FOR LARGE DATA SETS

To cluster data into common groups, you need to determine which points lay relatively
close to each other, and then figure out how much clustering to apply to achieve the correct
number of points. There are a variety of ways you can go about this, some simple and others
much more complex. For the example here, we've chosen a simple method that we like to call
the “grid” method.

To cluster using a grid, you take the outer boundary of the data set (for example the view-
port), divide the area into equally sized grid cells, and then allocate each of your points to
a cell. The size of the grid cells will determine how detailed the map data is. If you use a grid
cell that is 100 pixels wide, then all markers within the 100-by-100 block will be combined into
one marker. Listing 7-6 uses an incremental grid size starting with one-thirtieth of the longi-
tude resolution:

$gridSize+=($nelng-$swlng)/30;
which increases if the total is still too large at the end of the loop:
if(count($clustered)>$limit) continue;

By incrementing the size of the cell, you can achieve the best resolution of data for the
number of points available. Figure 7-5 shows an example map with grid cells and map areas

outlined.
__._.._,_.:FJ_,....,. I d I ,I'. —r
Dlsorwon | 1T i Manee
Mational Hist Park) & Keena al']Lf_l __E\S er
\ i N
f [| P
\ R MNashua | =
Wi e — —— s | U e ;
I,I! '\'\! | et L, Al e |..l'r' LIS ‘."_'L
. Eitchburg LOW’E”
> IData Bounds I Ry Gwilsw 2N
S | Pitsfield pibin g~ esencan
) y -__\ . f IlI {EI .‘.: HlsLonclP_arl-c_l
¥ 4 7 il . _Nnr1ha|" Inln_rl . Wallhﬁl‘l‘l =B
:'I 1 Sl ¥ = ‘f-_'-;_
J | W s . o
=y i L0058 g Natian|
) . CHicopee - 3
EF { = o T R L
o { Qp .ngflal.ﬂ Fra&lflln

| s il o | 2
e = R —

Woonsocket

1
] I NE

a “ ; 1 N = o
J:‘ ! '@'ﬁ '_ o Tai
M ; Torrington > ol Lo
[| Providence
FOR Home Mall m g B
(Historic Sits I Wémick Ak]
[| Y \'-\ ul
Poughkeapsie | n' — |
i Grid—] o4 \

:Egmf_t:‘grgh:. = \:\\ CE]I L __ A] l. |/ Tauro Synagogue
W - i " Naligatick " 3 ~ Matl Hist Fark
I ~{|6 | Iy ¥ o

i 4 E’ _:r Ej - ey R Trustom Pond

b : } R 2 g = - Mat Wildiife) Ref

g Peekskill 4 | Mew Haven — i = -

/ l{*'I @ el t W e & e

0 LSe | = Bridgeport e N

: A -"." |'l.'l -~ 2 —] -...'-..-) i — - 5 II

Figure 7-5. A map showing the marked grid cells used for clustering

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

Listings 7-6 and 7-7 (http://googlemapsbook.com/chapter7/ServerCluster/) are modified
versions of the server-side boundary method.

Listing 7-6. Cluster Icon Additions to Improve the Server-Side Boundary Method JavaScript

var map;

var centerlatitude = 42;
var centerlongitude = -72;
var startZoom = 10;

//create an icon for the clusters

var iconCluster = new GIcon();

iconCluster.image = "http://googlemapsbook.com/chapter7/icons/cluster.png";
iconCluster.shadow = "http://googlemapsbook.com/chapter7/icons/cluster_shadow.png";
iconCluster.iconSize = new GSize(26, 25);

iconCluster.shadowSize = new GSize(22, 20);

iconCluster.iconAnchor = new GPoint(13, 25);

iconCluster.infolWindowAnchor = new GPoint(13, 1);

iconCluster.infoShadowAnchor = new GPoint(26, 13);

//create an icon for the pins

var iconSingle = new GIcon();

iconSingle.image = "http://googlemapsbook.com/chapter7/icons/single.png";
iconSingle.shadow = "http://googlemapsbook.com/chapter7/icons/single_shadow.png";
iconSingle.iconSize = new GSize(12, 20);

iconSingle.shadowSize = new GSize(22, 20);

iconSingle.iconAnchor = new GPoint(6, 20);

iconSingle.infoWindowAnchor = new GPoint(6, 1);

iconSingle.infoShadowAnchor = new GPoint(13, 13);

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

updateMarkers();

GEvent.addListener(map, 'zoomend',function() {
updateMarkers();
1
GEvent.addListener(map, 'moveend',function() {
updateMarkers();
1
}

function updateMarkers() {

163

164 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

//remove the existing points
map.clearOverlays();

//create the boundary for the data to provide
//initial filtering

var bounds = map.getBounds();

var southWest = bounds.getSouthWest();

var northEast = bounds.getNorthEast();

var getVars = 'ne=' + northEast.toUrlValue()
+ '8sw=" + southWest.toUrlValue()

//1log the URL for testing
GlLog.writeUrl('server.php?'+getVars);

//retrieve the points
var request = GXmlHttp.create();
request.open('GET', 'server.php?'+getVars, true);
request.onreadystatechange = function() {
if (request.readyState == 4) {

var jscript = request.responseText;

var points;

eval(jscript);

//create each point from the list

for (i in points) {
var point = new GlatLng(points[i].lat,points[i].1lng);
var marker = createMarker(point,points[i].type);
map.addOverlay(marker);

}
}

request.send(null);

}

function createMarker(point, type) {
//create the marker with the appropriate icon
if(type=="c") {
var marker = new CMarker(point,iconCluster,true);
} else {
var marker = new GMarker(point,iconSingle,true);

}

return marker;

}

window.onload = init;

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

Listing 7-7. Cluster Additions to Improve the Server-Side Boundary Method PHP Script

<?php

//This script may require additional memory
ini set('memory limit',8388608 * 10);

//retrieve the variables from the GET vars
list($nelat,$nelng) = explode("',"',$ GET['ne']);
list($swlat,$swlng) = explode("',"',$ GET['sw']);

//clean the data

$nelng = (float)$nelng;
$swlng = (float)$swlng;
$nelat = (float)$nelat;
$swlat = (float)$swlat;

//connect to the database

require($ SERVER['DOCUMENT ROOT'] . '/db_credentials.php');
$conn = mysql connect("localhost", $db _name, $db pass);
mysql select db("googlemapsbook", $conn);

/*
* Retrieve the points within the boundary of the map.
* For the FCC data, all the points are within the US so we
* don't need to worry about the meridian problem.
*/
$result = mysql query(
"SELECT
longitude as lng,latitude as lat,struc_height,struc_elevation
FROM
fcc_towers
WHERE
(longitude > $swlng AND longitude < $nelng)
AND (latitude <= $nelat AND latitude >= $swlat)
ORDER BY
lat");

//extract all the points from the result into an array
$list = array();
$row = mysql fetch assoc($result);
while($row)
{
//use 'm' to indicate this is a regular (m)arker
$list[] = array($row['lat'],$row['Ing'], 'm");
$row = mysql fetch assoc($result);

165

166 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

//close the SQL connection
mysql close($conn);

//1imit to 30 markers
$limit = 30;

$gridSize = 0;
$listRemove = array();

while(count($list)>$1limit) {

//grid size in pixels. if the first pass fails to reduce the
//number of markers below the 1limit, the grid will increase
//again and redo the loop.

$gridSize += ($nelng-$swlng)/30;

$clustered = array();
reset($list);

//1loop through the $list and put each one in a grid square
while(list($k,$v) = each($list)) {
//calculate the y position based on the latitude: $v[O]
$y = floor(($v[0]-$swlat)/$gridSize);
//calculate the x position based on the longitude: $v[1]
$x = floor(($v[1]-$swlng)/$gridSize);
//use the x and y values as the key for the array and append
//the points key to the clustered array
$clustered["{$x},{$y}"1[] = $k;
}

//check if we're below the limit and if not loop again
if(count($clustered)>$limit) continue;

//reformat the list array
$listRemove = array();
while(1list($k,$v) = each($clustered)) {

//only merge if there is more than one marker in a cell
if(count($v)>1) {

//create a list of the merged markers
$listRemove = array merge($listRemove,$v);

//add a cluster marker to the list
$clusterLlat = $list[$v[o]][0];
$clusterlng = $list[$v[0]][1];

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

//use 'c' to indicate this is a (c)luster marker
$1list[] = array($clusterlat,$clusterlng,'c');

}

//unset all the merged pins

//reverse to start with highest key

rsort($listRemove);

while(1list($k,$v) = each($listRemove)) {
unset($1list[$v]);

}

//we're done!
break;

}

reset($list);
$json = array();
while(list($key,$values) = each($list)) {
$i++;
$json[] = "p{$i}:{lat:{$values[0]},1ng:{$values[1]},type:'{$values[2]}"}";
}

//echo back the JavaScript object
header('content-type:text/plain;');
echo "var points = {\n\t".join(",\n\t",$json)."\n}";

>

These are good starting points for your clustering script. To make it even better, you could
make some improvements. For example, you could calculate an average position of the mark-
ers within one grid cell so that the cluster marker better represents the actual location of the
points in that cell. You could also develop an algorithm that would allow you to cluster based
on relative positions, so only dense groups would cluster rather than the entire page.

The advantages of the cluster method are that it isn’t restricted to zoom levels and it works
for any sized data set. Its disadvantage is that the data is clustered over possibly large areas, so
you will still need to zoom in for more detail.

Custom Detail Overlay Method

So far, all the solutions we've presented use the GMarker to represent the data points on the map.
With the release of Google Maps API version 2, Google has exposed additional classes in the API
for building your own custom overlays.

An overlay, as we mentioned earlier, is anything that you add to the map, such as
a GMarker, GPolyline, or an info window. In version 1 of the API, you were limited to the Google-
provided overlays. Now you can implement your own overlays using the GOverlay class. This

167

168 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

opens up a realm of possibilities for creating overlays such as simple shapes or even your own
info window object. Here, we present the possibility of including a detail overlay for a speci-
fied area of the map.

The custom overlay you create can contain any information you want. For example,
the Google Maps API documentation gives the example of a Rectangle overlay, as listed in
Listing 7-8 (from http://www.google.com/apis/maps/documentation/#Custom Overlays).

Listing 7-8. Google's Example Rectangle Overlay

// A Rectangle is a simple overlay that outlines a lat/lng bounds on the
// map. It has a border of the given weight and color and can optionally
// have a semi-transparent background color.
function Rectangle(bounds, opt weight, opt color) {

this.bounds_ = bounds;

this.weight = opt_weight || 2;

this.color = opt color || "#888888";

}
Rectangle.prototype = new GOverlay();

// Creates the DIV representing this rectangle.
Rectangle.prototype.initialize = function(map) {
// Create the DIV representing our rectangle
var div = document.createElement("div");
div.style.border = this.weight + "px solid " + this.color_;
div.style.position = "absolute";

// Our rectangle is flat against the map, so we add our selves to the
// MAP_PANE pane, which is at the same z-index as the map itself (i.e.,
// below the marker shadows)
map.getPane(G_MAP_MAP_PANE).appendChild(div);

this.map_
this.div_

}

map;
div;

// Remove the main DIV from the map pane
Rectangle.prototype.remove = function() {
this.div_.parentNode.removeChild(this.div_);

}

// Copy our data to a new Rectangle
Rectangle.prototype.copy = function() {
return new Rectangle(this.bounds_, this.weight , this.color_,
this.backgroundColor , this.opacity);

}

// Redraw the rectangle based on the current projection and zoom level
Rectangle.prototype.redraw = function(force) {

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

// We only need to redraw if the coordinate system has changed
if (!force) return;

// Calculate the DIV coordinates of two opposite corners of our bounds to
// get the size and position of our rectangle

var cl = this.map_.fromLatLngToDivPixel(this.bounds .getSouthWest());

var c2 = this.map_.fromLatLngToDivPixel(this.bounds .getNorthEast());

// Now position our DIV based on the DIV coordinates of our bounds

this.div_.style.width = Math.abs(c2.x - c1.x) + "px";

this.div_.style.height = Math.abs(c2.y - ci.y) + "px";

this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight) + "px";

this.div_.style.top = (Math.min(c2.y, cl.y) - this.weight) + "px";
}

function load() {
if (GBrowserIsCompatible()) {
var map = new GMap2(document.getElementById("map"));
map.addControl (new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

// Display a rectangle in the center of the map at about a quarter of
// the size of the main map
var bounds = map.getBounds();
var southWest = bounds.getSouthWest();
var northEast = bounds.getNorthEast();
var IngDelta = (northEast.lng() - southWest.lng()) / 4;
var latDelta = (northEast.lat() - southWest.lat()) / 4;
var rectBounds = new GLatLngBounds(
new GlLatlLng(southWest.lat() + latDelta,
southWest.1lng() + lngDelta),
new GlLatlLng(northEast.lat() - latDelta,
northEast.lng() - lngDelta));
map.addOverlay (new Rectangle(rectBounds));

}

window.onload = load;

The Rectangle overlay simply creates a div object on the map and applies a border to it. To
create a detail overlay, you can use the Rectangle object in Listing 7-8, but add one additional
property to the div: a background image. The background image can contain any information
you want, from pictures and icons to lines and shapes, and can be created on the fly using
a server-side script. The new custom detail overlay can then be placed on the map in the
appropriate area on top of the existing Google Maps tiles.

Using an overlay is best for data sets that are high density but cover a relatively small portion
of the map. If your data set contains hundreds of millions of points, creating the overlay is going

169

170

CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

to take some time, and your application will still feel sluggish. If you have massive data sets
spread across the world, you'll need to use custom tiles, which we’ll discuss in the next section.

For the custom detail overlay example, suppose you want to mark all the FCC tower loca-
tions in Hawaii, as you did in Chapter 6. There are about 286 towers—too many for one map
using just the GMarker object. Using a custom overlay, you can simply create a transparent GIF
or PNG that covers all of Hawaii and mark each of the locations in whatever way you like. You
can even add text, shapes, or photos. What you include in your image is up to you.

Listing 7-9 shows the client-side JavaScript for the custom overlay method.

Listing 7-9. Client-Side JavaScript for the Custom Overlay Method

var map;
var centerlatitude = 19.9;
var centerlongitude = -156;
var startZoom = 7;

//create the Detail overlay object

function Detail(bounds, opt weight, opt color) {
this.bounds_ = bounds;
this.weight = opt weight || 2;
this.color = opt color || "#000";

}
Detail.prototype = new GOverlay();

Detail.prototype.initialize = function(map) {
//create the div representing the Detail
var div = document.createElement("div");
div.style.border = this.weight + "px dotted " + this.color_;
div.style.position = "absolute";

//the Detail is flat against the map, so we add it to the

//MAP_PANE pane, which is at the same z-index as the map itself (i.e.,
//below the marker shadows)
map.getPane(G_MAP_MAP_PANE).appendChild(div);

this.map_ = map;
this.div_ = div;

//load the background image
this.loadBackground();

}

Detail.prototype.remove = function() {
this.div_.parentNode.removeChild(this.div_);

}

Detail.prototype.copy = function() {
return new Detail(this.bounds , this.weight , this.color ,

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS 17

this.backgroundColor , this.opacity);
}

Detail.prototype.redraw = function(force) {
if (!force) return;

this.bounds_ = this.map_.getBounds();

var cl = this.map_.fromLatLngToDivPixel(this.bounds .getSouthWest());
var c2 = this.map_.fromLatLngToDivPixel(this.bounds .getNorthEast());

this.div_.style.width = Math.abs(c2.x - c1.x) + "px";
this.div_.style.height = Math.abs(c2.y - ci.y) + "px";
this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight) + "px";
this.div_.style.top = (Math.min(c2.y, cl.y) - this.weight) + "px";

//the position or zoom has changed so reload the background image
this.loadBackground();

}

Detail.prototype.loadBackground = function() {

//retrieve the bounds of the detail area
var southWest = this.bounds .getSouthWest();
var northEast = this.bounds .getNorthEast();

//determine the pixel position of the corners
var swPixels = this.map_.fromLatLngToDivPixel(this.bounds .getSouthWest());
var nePixels = this.map_.fromLatLngToDivPixel(this.bounds .getNorthEast());

//send the lat/lng as well as x/y and zoom to the server
var getVars = 'ne=' + northEast.toUrlValue()
+ '8sw=" + southWest.toUrlValue()

+ '&nePixels=" + nePixels.x + ',' + nePixels.y
+ '&swPixels=" + swPixels.x + ',' + swPixels.y
+ '8z=" + this.map_.getZoom()

ey

//1log the URL for testing
GlLog.writeUrl('server.php?'+getVars);

//set the background image of the div
this.div_.style.background="transparent url(server.php?'+getVars+')';

function init() {
map = new GMap2(document.getElementById("map"));

172 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

map.addControl (new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

var bounds = map.getBounds();
map.addOverlay(new Detail(bounds));

}

window.onload = init;

Tip For examples of the mathematical formulas for different maps such as the Mercator projection
maps, visit MathWorld at http://mathworld.wolfram.com/MercatorProjection.html.

Looking at Listing 7-9, you can see the Rectangle object renamed to Detail and the addi-
tion of a loadBackground method, which modifies the background style property of the Detail
object:

Detail.prototype.loadBackground = function() {
//retrieve the bounds of the detail area
var southWest = this.bounds .getSouthWest();
var northEast = this.bounds .getNorthEast();

//determine the pixel position of the corners
var swPixels = this.map_.fromLatLngToDivPixel(this.bounds .getSouthWest());
var nePixels = this.map_.fromLatLngToDivPixel(this.bounds .getNorthEast());

var getVars = 'ne=' + northEast.toUrlvValue()
+ '8sw=" + southWest.toUrlValue()

"&nePixels=" + nePixels.x + ',' + nePixels.y

'&swPixels=" + swPixels.x + ',"' + swPixels.y
"&z=" + this.map_.getZoom()

e,
)

+ + + +

this.div_.style.background="transparent url(server.php?'+getVars+')";

When loading your background image, you'll need to include several variables for your
server-side script, including the northeast and southwest corners in latitude and longi-
tude, as well as the northeast and southwest corners in pixel values. You also need to pass
the current zoom level for the map. This will allow you to perform the necessary calculations
on the server side and also allow you to modify your image, depending on how far your users
have zoomed in on the map. You can then use the server-side script in Listing 7-10 to create
the appropriately sized image with the appropriate information for the boundary. For the
example in Listing 7-10 (http://googlemapsbook.com/chapter7/ServerCustomOverlay/), we've

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

chosen to create a GIF with a small circle marking each tower location within the northeast and
southwest boundary.

Listing 7-10. Server-Side PHP for the Custom Overlay Method
<?php

//retrieve the variables from the GET vars
list($nelat, $nelng) = explode(',',$ GET['ne']);
list($swlat,$swlng) = explode(',',$ GET['sw']);
list($neX,$neY) = explode(',',$ GET['nePixels']);
list($swX,$swY) = explode(',',$ GET['swPixels']);

//clean the data

$nelng = (float)$nelng;
$swlng = (float)$swlng;
$nelat = (float)$nelat;
$swlat = (float)$swlat;

$w = (int)abs($neX - $swX);
$h = (int)abs($neY - $swY);

$z = (int)$ GET['z'];

//connect to the database

require($_SERVER['DOCUMENT ROOT'] . '/db_credentials.php');
$conn = mysql connect("localhost", $db _name, $db pass);
mysql select db("googlemapsbook", $conn);

/*
* Retrieve the points within the boundary of the map.
* For the FCC data, all the points are within the US so we
* don't need to worry about the meridian.
*/
$result = mysql query(
"SELECT
longitude as 1lng,latitude as lat,struc_height,struc_elevation
FROM
fcc_towers
WHERE
(longitude > $swlng AND longitude < $nelng)
AND (latitude <= $nelat AND latitude >= $swlat)
ORDER BY
lat");
$count = mysql num rows($result);

//calculate the Mercator coordinate position of the top
//latitude and normalize from 0-1
$mercTop = 0.5-(asinh(tan(deg2rad($nelat))) / M _PI / 2);

173

174 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

//calculate the scale and y position on the Google Map
$scale = (1 << ($z)) * 256;
$yTop = $mercTop * $scale;

//calculate the pixels per degree of longitude
$1ngSpan = $nelng-$swlng;
$pixelsPerDeglng = abs($w/$1ngSpan);

//create the image

$im = imagecreate($w,$h);

$trans = imagecolorallocate($im,0,0,255);
$black = imagecolorallocate($im,0,0,0);
$white = imagecolorallocate($im,255,255,255);
imagefill($im,0,0,$trans);
imagecolortransparent($im, $trans);

//1abel the number of points for testing
imagestring($im,1,0,0,$count." points in this area:',$black);

$row = mysql fetch assoc($result);
while($row)
{

extract($row);

$1ng = $row['lng'];
$lat = $row['lat'];
$x = ceil(abs($1lng-$swlng)*$pixelsPerDeglng);

//calculate the mercator cordinate position of this point
//latitude and normalize from 0-1

$yMerc = 0.5-(asinh(tan(deg2rad($lat))) / M PI / 2);
//calculate the y position on the Google Map

$yMap = $yMerc * $scale;

//calculate the y position in the overlay
$y = $yMap-$yTop;

//draw the marker, a dot in this case
imagefilledellipse($im, $x, $y, $z+1, $z+1, $black);
imageellipse($im, $x, $y, $z+1, $z+1, $white);

$row = mysql fetch assoc($result);
}

//echo a GIF
header (' content-type:image/gif;");
imagegif($im);

>

CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

Looking at Listing 7-9 again, you'll notice that your background image for the overlay is
based on the viewable area of the map. You can imagine, when you zoom in very close, the
image covering all of Hawaii would be exponentially larger at each zoom increment.
Limiting the image to cover only the viewable area decreases the number of points that
need to be drawn and decreases the size of the image.

I'Tip Another advantage of the custom overlay method as well as the custom tile method, described next,
is the ability to circumvent the same origin security policy built into most browsers. The policy doesn’t apply
to images, so your map can be hosted on one domain and you can request your background images or tiles
from a different domain without any problems.

Once the overlay is loaded onto the map, you should have the towers for Hawaii marked some-
thing like Figure 7-6. Again, you could use any image for the markers simply by copying it onto
the image in PHP using the appropriate PHP GD functions.

f=

Figure 7-6. A map showing the custom detail overlay for FCC towers in Hawaii

The pros of using the custom overlay method are as follows:
It overcomes API limitations on the number of markers and polylines.
* You can use the same method to display objects, shapes, photos, and more.

* It works for any sized data set and at any zoom level.

175

176 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

The following are its disadvantages:
e It creates a new image after each map movement or zoom change.

» Extremely large data sets could be slow to render.

Custom Tile Method

The custom tile method is the most elegant solution to display the maximum amount of infor-
mation on the map with the least overhead. You could use custom tiles to display a single
point or millions of points.

To add your own custom tiles to the map, version 2 of the Google Maps API exposes the
GTile and GProjection objects. This means you can now use the API to show your own tiles on
the map. What's even better is that you can also layer transparent or translucent tiles on top of
each other to create a multilayered map. By layering tiles on top of one another, you have no limit
to what information you can display. For example, you could create tiles with your own driving
directions, outline buildings and environmental features, or even display your information
using an old antique map rather than Google’s default or satellite map types.

To demonstrate this method, let’s create a map of all the available FCC towers in the
United States. That's an excessively large amount of dense data (about 115,000 points as men-
tioned earlier), and it covers a fairly large area of the earth. You could use the custom overlay
method discussed in the previous section, but the map would be very sluggish as it continually
redrew the image when looking at anything larger than a single city in a dense area. Your
best option would be to create transparent tiles containing all your information, and match
them to Google’s tiles so you can overlay them on top of each of the different map types. By
slicing your data into smaller tiles, each image is relatively small (256 by 256 pixels) and both
the client web browser and the server can cache them to reduce redundant processing.
Figure 7-7 shows each of the tiles outlined on the sample Google map.

T
Map |[Satelite][Hybrid |

2]
4

(1]
4
-

(4] 5
= =
g @
,\(\\} @
= Calgary
2 ! @
Burnaby @ k!

|
Seattie Spokane:
3

: @D
Jecoma yashingtan 395! | S) @.
.
. &3
) B _ . B
Ry i :
Polgend - \ -
f
[FOWEREVET] ; m / \
Fﬂ 818' ! i Map data ©2006 TeleAtias - Terms of Use|

Figure 7-7. Tiles outlined on a Google map

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

To layer your data using the same tile structure as the Google Maps API, you'll need to cre-
ate each of your tiles to match the existing Google tiles. Along with the sample code for the
book, we've included a PHP GoogleMapsUtility class in Listing 7-11, which has a variety of
useful methods to help you create your tiles. The tile script for the custom tile method (shown
later in Listing 7-13) uses the methods of the GoogleMapsUtility class to calculate the various
locations of each point on the tile. The calculations in the utility class are based on the
Mercator projection, which we’ll discuss further in Chapter 9, when we talk about types of
map projections.

Listing 7-11. The GoogleMapUtility Class Methods for Tile Construction
<?php

class GoogleMapUtility {

//The Google Maps all use tiles 256x256

const TILE_SIZE = 256;

Vioio

* Convert from a pixel location to a geographical location.

*k /

public static function fromXYToLatLng($point,$zoom) {
$maphWidth = (1 << ($zoom)) * GoogleMapUtility::TILE SIZE;

return new Point(
(int)($normalised->x * $mapWidth),
(int)($normalised->y * $mapWidth)
)5
}

Vioio
* Calculate the pixel offset within a specific tile
* for the given latitude and longitude.
*k /
public static function getPixelOffsetInTile($lat,$lng,$zoom) {
$pixelCoords = GoogleMapUtility::toZoomedPixelCoords(
$lat, $1ng, $zoom
);
return new Point(
$pixelCoords->x % GoogleMapUtility::TILE SIZE,
$pixelCoords->y % GoogleMapUtility::TILE SIZE
);
}

Jxk

* Determine the geographical bounding box for the specified tile index
* and zoom level.
*%
public static function getTileRect($x,$y,$zoom) {
$tilesAtThisZoom = 1 << $zoom;

177

178 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

$1ngWidth = 360.0 / $tilesAtThisZoom;
$1ng = -180 + ($x * $lngWidth);

$latHeightMerc = 1.0 / $tilesAtThisZoom;
$topLatMerc = $y * $latHeightMerc;
$bottomLatMerc = $toplLatMerc + $latHeightMerc;

$bottomLat = (180 / M PI) * ((2 * atan(exp(M PI *
(1 - (2 * $bottomLatMerc))))) - (M PI / 2));
$topLat = (180 / M PI) * ((2 * atan(exp(M PI *
(1 - (2 * $topLatMerc))))) - (M_PI / 2));

$latHeight = $toplLat - $bottomLat;

return new Boundary($lng, $bottomLat, $lngWidth, $latHeight);
}

Vo
* Convert from latitude and longitude to Mercator coordinates.
*k
public static function toMercatorCoords($lat, $lng) {
if ($1ng > 180) {
$1ng -= 360;
}

$1lng /= 360;
$lat = asinh(tan(deg2rad($lat)))/M PI/2;
return new Point($lng, $lat);

}

Vi

* Normalize the Mercator coordinates.

*k /

public static function toNormalisedMercatorCoords($point) {
$point->x += 0.5;
$point->y = abs($point->y-0.5);
return $point;

}

Vi
* Calculate the pixel location of a latitude and longitude point
* on the overall map at a specified zoom level.
*k /
public static function toZoomedPixelCoords($lat, $lng, $zoom) {
$normalised = GoogleMapUtility::toNormalisedMercatorCoords(
GoogleMapUtility::toMercatorCoords($lat, $1lng)
)

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

$scale = (1 << ($zoom)) * GoogleMapUtility::TILE SIZE;
return new Point(
(int) ($normalised->x * $scale),
(int)($normalised->y * $scale)
)s

}

/%K
* Object to represent a coordinate point (x,y).
**/
class Point {
public $x,$y;
function _ construct($x,$y) {
$this->x = $x;
$this->y = $y;
}

function _ toString() {
return "({$this->x},{$this->y})";
}
}

/%K
* Object to represent a boundary point (x,y) and (width,height)
**/
class Boundary {
public $x,$y,$width,$height;
function _ construct($x,$y,$width,$height) {
$this->x = $x;
$this->y = $y;
$this->width = $width;
$this->height = $height;
}
function _ toString() {
return "({$this->x},{$this->y},{$this->width},{$this->height})";
}

>

179

180

CHAPTER 7 ©" OPTIMIZING AND SCALING FOR LARGE DATA SETS

Using the GoogleMapsUtility class, you can determine what information you need to
include in each tile. For example, in the client-side JavaScript for the custom tile method in
Listing 7-12 (which you'll see soon), each tile request:

var tileURL = "server.php?x="+tile.x+"8&y="+tile.y+"&zoom="+zoom;

contains three bits of information: an X position, aY position, and the zoom level. These three
bits of information can be used to calculate the latitude and longitude boundary of a specific
Google tile using the GoogleMapsUtility::getTileRect method, as demonstrated in the
server-side PHP script for the custom tiles in Listing 7-13 (also coming up soon). The X and Y
positions represent the tile number of the map relative to the top-left corner, where positive X
andY are east and south, respectively, starting at 1 and increasing as illustrated in Figure 7-8.
You can also see that the first column in Figure 7-8 contains tile (7,1) because the map has
wrapped beyond the meridian, so the first column is actually the rightmost edge of the map
and the second column is the leftmost edge.

[

e L1) @ 2z 3 (3.1) @ zoom 3
Ocean| .
- Ehsu::hl Beaufort Sea N o S EDED .
or | 3
9 & e
7
(7.2) @ zoom 3 2)@ zoom 3 Greenfes ,
- . . ol
LI
o Gulf of;
oy e
ALIE
B North
Japan Pacific Ocean

Figure 7-8. Google tile numbering scheme

The zoom level is also required so that the calculations can determine the latitude
and longitude resolution of the current map. For now, play with the example in Listings 7-12
and 7-13 (http://googlemapsbook.com/chapter7/ServerCustomTiles/). In Chapter 9, you'll get
into the math required to calculate the proper position of latitude and longitude on the Mer-
cator projection, as well as a few other projections.

For the sample tiles, we’'ve drawn a colored circle outlined in white with each color repre-
senting the height of the tower, as shown in Figure 7-9.

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

(VeI satelite || Hyord |

Figure 7-9. The finalized custom tile map in satellite mode

For testing purposes, each tile is also labeled with the date/time tile number and the
number of points in that tile. If you look at the online example, you'll notice that the tiles ren-
der very quickly. Once drawn, the tiles are cached on the server side so when requested again, the
tiles are automatically served up by the server. Originally, when the tiles were created for zoom
level 1, some took up to 15 seconds to render, as there were almost 50,000 points per tiles in the
United States. If the data on your map is continually changing, you may want to consider
running a script to create all the tiles before publishing your map to the Web so your first
visitors don’t experience a lag when the tiles are first created.

Listing 7-12. Client-Side JavaScript for the Custom Tile Method

var map;

var centerlatitude = 49.224773;
var centerlongitude = -122.991943;
var startZoom = 6;

//create the tile layer object
var detaillayer = new GTilelayer(new GCopyrightCollection('"));

//method to retrieve the URL of the tile

detaillayer.getTileUrl = function(tile, zoom){
//pass the x and y position as well as the zoom
var tileURL = "server.php?x="+tile.x+"8&y="+tile.y+"&zoom="+zoom;
return tileURL;

1

181

182 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

detaillayer.isPng = function() {
//the example uses GIFs
return false;

}

//add your tiles to the normal map projection
detailMaplLayers = G _NORMAL MAP.getTilelayers();
detailMaplLayers.push(detaillayer);

//add your tiles to the satellite map projection
detailMaplLayers = G SATELLITE MAP.getTilelLayers();
detailMaplLayers.push(detaillayer);

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl (new GSmallMapControl());
map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

}

window.onload = init;

Listing 7-13. Server-Side PHP for the Custom Tile Method

<?php

//include the helper calculations
require('GoogleMapUtility.php');

//this script may require additional memory and time
set_time_limit(0);
ini_set('memory limit',8388608%*10);

//create an array of the size for each marker at each zoom level
$markerSizes = array(1,1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12);

//get the lat/lng bounds of this tile from the utility function
//return a bounds object with width,height,x,y
$rect = GoogleMapUtility::getTileRect(
(int)$ CGET['x'],
(int)$_GET['y'],
(int)$ GET['zoom']
)

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

//create a unique file name for this tile
$file = "tiles/c'.md5(
serialize($markerSizes).
serialize($rect).'|".
$ GET['x']."|".
$_GET['y']."|".
$ GET['zoom']).
'Lgif';

//check if the file already exists
if(!file exists($file)) {

//create a new image

$im = imagecreate(GoogleMapUtility::TILE SIZE,GoogleMapUtility::TILE SIZE);
$trans = imagecolorallocate($im,0,0,255);

imagefill($im,0,0,$trans);

imagecolortransparent($im, $trans);

$black = imagecolorallocate($im,0,0,0);

$white = imagecolorallocate($im,255,255,255);

//set up some colors for the markers.

//each marker will have a color based on the height of the tower
$darkRed = imagecolorallocate($im,150,0,0);

$red = imagecolorallocate($im,250,0,0);

$darkGreen = imagecolorallocate($im,0,150,0);

$green = imagecolorallocate($im,0,250,0);

$darkBlue = imagecolorallocate($im,0,0,150);

$blue = imagecolorallocate($im,0,0,250);

$orange = imagecolorallocate($im,250,150,0);

//init some vars

$extend = 0;

$z = (int)$_GET['zoom'];
$swlat=$rect->y + $extend;
$swlng=$rect->x+ $extend;
$nelat=$swlat+$rect->height + $extend;
$nelng=$swlng+$rect->width + $extend;

//connect to the database

require($ SERVER['DOCUMENT ROOT'] . '/db_credentials.php');
$conn = mysql connect("localhost", $db _name, $db pass);
mysql select db("googlemapsbook", $conn);

/*

* Retrieve the points within the boundary of the map.

* For the FCC data, all the points are within the US so we
* don't need to worry about the meridian problem.

*/

183

184 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

$result = mysql query(
"SELECT
longitude as 1lng,latitude as lat,struc_height,struc_elevation
FROM
fcc_towers
WHERE
(longitude > $swlng AND longitude < $nelng)
AND (latitude <= $nelat AND latitude >= $swlat)
ORDER BY
lat”
, $conn);

//get the number of points in this tile
$count = mysql num rows($result);

$filled=array();
$row = mysql fetch assoc($result);
while($row)
{
//get the x,y coordinate of the marker in the tile
$point = GoogleMapUtility::getPixelOffsetInTile($row['lat'],$row[1ng'],$2);

//check if the marker was already drawn there
if($filled["{$point->x},{$point->y}"]<2) {

//pick a color based on the structure's height
if($row['struc_height']<=20) $c = $darkRed;
elseif($row['struc_height']<=40) $c = $red;
elseif($row['struc_height']<=80) $c = $darkGreen;
elseif($row['struc_height']<=120) $c = $green;
elseif($row['struc_height']<=200) $c = $darkBlue;
else $c = $blue;

//1if there is aready a point there, make it orange
if($filled["{$point->x},{$point->y}"]==1) $c=$orange;

//get the size
$size = $markerSizes[$z];

//draw the marker

if($z<2) imagesetpixel($im, $point->x, $point->y, $c);

elseif($z<12) {
imagefilledellipse($im, $point->x, $point->y, $size, $size, $c);
imageellipse($im, $point->x, $point->y, $size, $size, $white);

} else {
imageellipse($im, $point->x, $point->y, $size-1, $size-1, $c);
imageellipse($im, $point->x, $point->y, $size-2, $size-2, $c);

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

imageellipse($im, $point->x, $point->y, $size+1, $size+1, $black);

imageellipse($im, $point->x, $point->y, $size, $size, $white);

}

//record that we drew the marker
$filled["{$point->x},{$point->y}"]++;
}

$row = mysql fetch assoc($result);
}

//write some info about the tile to the image for testing
imagestring($im,1,-1,0,

"$count points in tile ({$ GET['x']},{$ GET['y']}) @ zoom $z
imagestring($im,1,0,1,

"$count points in tile ({$ GET['x']},{$ GET['y']}) @ zoom $z
imagestring($im,1,0,-1,

"$count points in tile ({$ GET['x']},{$ GET['y']}) @ zoom $z
imagestring($im,1,1,0,

"$count points in tile ({$ GET['x']},{$ GET['y']}) @ zoom $z
imagestring($im,1,0,0,

"$count points in tile ({$ GET['x']},{$ GET['y']}) @ zoom $z
imagestring($im,1,0,9,date('r"), $black);

", $white);
", $white);
", $white);
", $white);

",$black);

//output the new image to the file system and then send it to the browser

header (' content-type:image/gif;");
imagegif($im,$file);
echo file get contents($file);

} else {
//output the existing image to the browser

header (' content-type:image/gif;");
echo file get contents($file);

>

Tip Another benefit of using the tile layer is that it bypasses the cross-domain scripting restrictions on the
browser. Each tile is actually an image and nothing more. The GET parameters specify which tile the browser
is requesting, and the browser can load any image from any site, as it is not considered malicious—it’s just

an image.

185

186 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

BUT WHAT ABOUT INFO WINDOWS?

Using tiles to display your “markers” is relatively easy, and you can simulate most of the features of the GMarker
object, with the exception of info windows. You can’t attach an info window to the pretend markers in your tile,
but you can fake it.

Back in Chapter 3, you created an info window when you clicked on the map by using
GMap2.openInfolWindow. You could do the same here, and then use an Ajax request to ask for the content of
the info window using something like this:

GEvent.addListener(map, "click", function(marker, point) {
GDownloadUrl(
"your server side script.php?"
+ "lat=" + point.lat()
+ "81ng=" + point.lng()
+ "&z=" + map.getZoom(),
function(data, responseCode) {
map.openInfoWindow(point,document.createTextNode(data));
b;
D;

The trick is figuring out what was actually clicked. When your users click your map, you'll need to send
the location’s latitude and longitude back to the server and have it determine what information is relative to that
point. If something was clicked, you can then send the appropriate information back across the Ajax request and
create an info window directly on the map. From the client’s point of view, it will look identical to an info window
attached to a marker, except that it will be slightly slower to appear, as your server needs to process the
request to see what was clicked.

Optimizing the Client-Side User Experience

If your data set is just a little too big for the map—somewhere between 100 to 300 points—
you don’t necessarily need to make new requests to retrieve your information. You can achieve
good results using solutions similar to those we've outlined for the server side, but store the
data set in the browser’s memory using a JavaScript object. This way, you can achieve the same
effect but not require an excessive number of requests to the server.

The three methods we'll discuss are pretty much the same as the corresponding server-side
methods, except that the processing is all done on the client side using the methods of the API
rather than calculating everything on the server side:

¢ (Client-side boundary method
¢ Client-side closest to a common point method
* Client-side clustering

After we look at these solutions using client-side JavaScript and data objects, we'll recom-
mend a couple other optimizations to improve your users’ experience.

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

Client-Side Boundary Method

With the server-side boundary method, you used the server to check if a point was inside the
boundary of the map. Doing so on the server side required that you write the calculation man-
ually into your script. Using the Google Maps API provides a much simpler solution, as you
can use the contains() method of the GLatLngBounds object to ask the API if your GLatLng point
is within the specified boundary. The contains() methods returns true if the supplied point is
within the geographical coordinates defined by the rectangular boundary.

Listing 7-14 (http://googlemapsbook.com/chapter7/ClientBounds/) shows the working
example of the boundary method implemented in JavaScript.

Listing 7-14. JavaScript for the Client-Side Boundary Method

var map;

var centerlatitude = 49.224773;
var centerlongitude = -122.991943;
var startZoom = 4;

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl (new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlLongitude), startZoom);

updateMarkers();

GEvent.addListener(map, 'zoomend',function() {
updateMarkers();
1)
GEvent.addListener(map, 'moveend',function() {
updateMarkers();
1)
}

function updateMarkers() {
map.clearOverlays();
var mapBounds = map.getBounds();

//1loop through each of the points from the global points object
for (k in points) {
var latlng = new GlatLng(points[k].lat,points[k].1lng);
if(!mapBounds.contains(latlng)) continue;
var marker = createMarker(latlng);
map.addOverlay(marker);

187

188

CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

function createMarker(point) {
var marker = new GMarker(point);
return marker;

}

window.onload = init;

When you move or zoom the map, the updateMarkers() function loops through
a points object to create the necessary markers for the boundary of the viewable area. The
points JSON object resembles the object discussed earlier in the chapter:

var points = {

pil:{lat:-53,1ng:-74},
p2:{lat:-51.4,1ng:59.51},
p3:{lat:-45.2,1ng:-168.43},
p4:{lat:-41.19,1ng:-174.46},
p5:{lat:-36.3,1ng:60},
p6:{lat:-35.15,1ng:-149.08},
p7:{lat:-34.5,1ng:56.11},

. etc ...

p300:{lat:-33.24,1ng:70.4},

This object was loaded into the browser using another script tag, in the same way you
loaded the data into the map in Chapter 2. Now, rather than creating a new request to the
server, the points object contains all the points, so you only need to loop through points
and determine if the current point is within the current boundary. Listing 7-14 uses the cur-
rent boundary of the map from map.getBounds ().

Client-Side Closest to a Common Point Method

As with the boundary method, the client-side closest to a common point method is similar
to the server-side closest to common point method, but you can use the Google Maps API to
accomplish the same goal on the client side if you don’'t have too many points. With a known
latitude and longitude point, you can calculate the distance from the known point to any other
point using the distanceFrom() method of the GLatLng class as follows:

var here = new GlLatlLng(lat,lng);
var distanceFromThereToHere = here.distanceFrom(there);

The distanceFrom() method returns the distance between the two points in meters, but
remember that the Google Maps API assumes the earth is a sphere, even though the earth is
slightly elliptical, so the accuracy of the distance may be off by as much as 0.3%, depending
where the two points are on the globe.

In Listing 7-15 (http://googlemapsbook.com/chapter7/ClientClosest/), you can see the
client-side JavaScript is very similar to the server-side PHP in Listing 7-5. The main difference
(besides not sending a request to the server) is the use of point.distanceFrom() rather than

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

the surfaceDistance() PHP function. Also for the example, the boundary of the data is out-
lined using the Rectangle object, similar to the one discussed earlier.

Listing 7-15. JavaScript for the Client-Side Closest to Common Point Method

var map;

var centerlatitude = 41.8;
var centerlongitude = -72.3;
var startZoom = 8;

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl (new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

//pass in an initial point for the center
updateMarkers(new GLatLng(centerLatitude, centerlongitude));

GEvent.addListener(map, 'click',function(overlay,point) {
//pass in the point for the center
updateMarkers(point);

};
}

function updateMarkers(relativeTo) {

//remove the existing points
map.clearOverlays();

//mark the outer boundary of the data from the points object
var allsw = new GlatLng(41.57025176609894, -73.39965820312499);
var allne = new GlLatlLng(42.589488572714245, -71.751708984375);
var allmapBounds = new GLatLngBounds(allsw,allne);
map.addOverlay(new Rectangle(allmapBounds,4,"#F00"));

var distancelist = [];
var p = 0;
//1oop through points and get the distance to each point
for (k in points) {
distancelist[p] = {};

distancelist[p].glatlng = new GLatLng(points[k].lat,points[k].1lng);
distancelist[p].distance = distancelist[p].glatlng.distanceFrom(relativeTo);
p++;

}

//sort based on the distance
distancelist.sort(function (a,b) {

189

190 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

if(a.distance > b.distance) return 1
if(a.distance < b.distance) return -1
return O

};

//create the first 50 markers

for (i=0 ; i<50 ; i++) {
var marker = createMarker(distancelist[i].glatlng);
map .addOverlay(marker);
if(++1i > 50) break;

}

function createMarker(point) {
var marker = new GMarker(point);
return marker;

}

window.onload = init;

/*

* Rectangle overlay for testing to mark boundaries

*/

function Rectangle(bounds, opt weight, opt color) {
this.bounds_ = bounds; this.weight = opt weight || 1;
this.color = opt color || "#388888";

}
Rectangle.prototype = new GOverlay();

Rectangle.prototype.initialize = function(map) {
var div = document.createElement("div");
div.innerHTML = 'Click inside area';
div.style.border = this.weight + "px solid " + this.color_;
div.style.position = "absolute";
map.getPane(G_MAP_MAP_PANE).appendChild(div);
this.map_ = map;
this.div_ = div;
}
Rectangle.prototype.remove = function() {
this.div_.parentNode.removeChild(this.div_);
}
Rectangle.prototype.copy = function() {
return new Rectangle(
this.bounds_,
this.weight ,
this.color_,
this.backgroundColor ,

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

this.opacity

)

}

Rectangle.prototype.redraw = function(force) {
if (!force) return;
var cl = this.map_.fromLatLngToDivPixel(this.bounds .getSouthWest());
var c2 = this.map_.fromLatLngToDivPixel(this.bounds .getNorthEast());
this.div_.style.width = Math.abs(c2.x - c1.x) + "px";
this.div_.style.height = Math.abs(c2.y - ci.y) + "px";
this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight) + "px";
this.div_.style.top = (Math.min(c2.y, cl.y) - this.weight) + "px";

Client-Side Clustering

If your data is dense, you may still want to cluster points when there are overlapping points in
proximity. As with the server-side clustering method, there are a variety of ways you can calculate
which points to group. In Listing 7-16 (http: //googlemapsbook.com/chapter7/ClientCluster/), we
use a grid method similar to the one we used with the server-side clustering example. The biggest dif-
ference here is your grid cells will be larger and not as fine-grained, so you don’t slow down the
JavaScript on slower computers. If you modify the grid cells over several loops, the browser
may assume that the script is taking too long and display a warning, as shown in Figure 7-10.

P Warning: Unresponsive script

‘ a | A script on this page may be busy, or it may have
>

stopped responding. You can stop the script now, or you
can continue to see if the script will complete.

(" Continue) £ Stop script)

Figure 7-10. A JavaScript warning in Firefox indicating the script is taking too long to execute

Listing 7-16. JavaScript for Client-Side Clustering

var map;
var centerlatitude = 42;
var centerlongitude = -72;
var startZoom = §;

//create an icon for the clusters

var iconCluster = new GIcon();

iconCluster.image = "http://googlemapsbook.com/chapter7/icons/cluster.png";
iconCluster.shadow = "http://googlemapsbook.com/chapter7/icons/cluster shadow.png";
iconCluster.iconSize = new GSize(26, 25);

iconCluster.shadowSize = new GSize(22, 20);

iconCluster.iconAnchor = new GPoint(13, 25);

iconCluster.infoWindowAnchor = new GPoint(13, 1);

iconCluster.infoShadowAnchor = new GPoint(26, 13);

191

//create an icon for the pins
var iconSingle = new GIcon();
iconSingle.image = "http://googlemapsbook.com/chapter7/icons/single.png";

iconSingle.

iconSingle.iconSize = new GSize(12, 20);
iconSingle.shadowSize = new GSize(22, 20);
iconSingle.iconAnchor = new GPoint(6, 20);
iconSingle.infoWindowAnchor = new GPoint(6, 1);
iconSingle.infoShadowAnchor = new GPoint(13, 13);

function init() {

}

map = new GMap2(document.getElementById("map"));
map.addControl (new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

updateMarkers();

GEvent.addListener(map, 'zoomend',function() {
updateMarkers();

};

GEvent.addListener(map, 'moveend"',function() {
updateMarkers();

};

function updateMarkers() {

//remove the existing points
map.clearOverlays();

//mark the boundary of the data
var allsw = new Glatlng(41.57025176609894, -73.39965820312499);
var allne = new GlLatlLng(42.589488572714245, -71.751708984375);
var allmapBounds = new GlLatLngBounds(allsw,allne);
map .addOverlay(
new Rectangle(
allmapBounds,
4)
'#F00',
'Data Bounds, Zoom in for detail.'

)5

shadow = "http://googlemapsbook.com/chapter7/icons/single shadow.png";

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

//get the bounds of the viewable area

var mapBounds = map.getBounds();

var sw = mapBounds.getSouthWest();

var ne = mapBounds.getNorthEast();

var size = mapBounds.toSpan(); //returns Glatlng

//make a grid that's 10x10 in the viewable area
var gridSize = 10;

var gridCellSizelat = size.lat()/gridSize;

var gridCellSizelng = size.lng()/gridSize;

var gridCells = [];

//1loop through the points and assign each one to a grid cell
for (k in points) {
var latlng = new GlLatLng(points[k].lat,points[k].1lng);

//check if it is in the viewable area,
//1it may not be when zoomed in close
if(!mapBounds.contains(latlng)) continue;

//find grid cell it is in:

var testBounds = new GlLatLngBounds(sw,latlng);

var testSize = testBounds.toSpan();

var 1 = Math.ceil(testSize.lat()/gridCellSizelat);
var j = Math.ceil(testSize.lng()/gridCellSizelng);
var cell = i+j;

if(typeof gridCells[cell] == 'undefined') {
//add it to the grid cell array
var cellSW = new GlLatLng(
sw.lat()+((i-1)*gridCellSizelat),
sw.Ing()+((j-1)*gridCellSizelng)
)s
var cellNE = new GlatLng(
cellSW.lat()+gridCellSizelat,
cellSW.1ng()+gridCellSizelng
)s
gridCells[cell] = {
GLatLngBounds : new GLatLngBounds(cellSW,cellNE),
cluster : false,
markers:[],
length:0
};

//mark cell for testing

193

194 CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

map . addOverlay(
new Rectangle(
gridCells[cell].GLatLngBounds,
1,
'#00F ',
'CGrid Cell'

)s
}

gridCells[cell].length++;

//already in cluster mode
if(gridCells[cell].cluster) continue;

//only cluster if it has more than 2 points

if(gridCells[cell].markers.length==3) {
gridCells[cell].markers=null;
gridCells[cell].cluster=true;

} else {
gridCells[cell].markers.push(latlng);

}

for (k in gridCells) {
if(gridCells[k].cluster == true) {
//create a cluster marker in the center of the grid cell
var span = gridCells[k].GLatLngBounds.toSpan();
var sw = gridCells[k].GLatLngBounds.getSouthWest();
var marker = createMarker(
new GlLatlLng(sw.lat()+(span.lat()/2),

sw.Ing()+(span.1lng()/2))

,'c

)

map .addOverlay(marker);
} else {

//create the single markers

for(i in gridCells[k].markers) {
var marker = createMarker(gridCells[k].markers[i], 'p"');
map .addOverlay(marker);

}

function createMarker(point, type) {

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

//create the marker with the appropriate icon
if(type=="c") {

var marker = new CMarker(point,iconCluster,true);
} else {

var marker

new GMarker(point,iconSingle,true);

}

return marker;

}

window.onload = init;

/*
* Rectangle overlay for development only to mark boundaries for testing...
*/
function Rectangle(bounds, opt weight, opt color, opt html) {
this.bounds_ = bounds; this.weight = opt weight || 1;
this.html = opt html || ""; this.color = opt color || "#888888";

}
Rectangle.prototype = new GOverlay();

Rectangle.prototype.initialize = function(map) {
var div = document.createElement("div");
div.innerHTML = this.html_;
div.style.border = this.weight + "px solid " + this.color_;
div.style.position = "absolute";
map.getPane(G_MAP_MAP_PANE).appendChild(div);
this.map_ = map;
this.div_ = div;
}
Rectangle.prototype.remove = function() {
this.div_.parentNode.removeChild(this.div_);
}
Rectangle.prototype.copy = function() {
return new Rectangle(
this.bounds_,
this.weight ,
this.color _,
this.backgroundColor ,
this.opacity
);
}
Rectangle.prototype.redraw = function(force) {
if (!force) return;
var cl = this.map_.fromLatLngToDivPixel(this.bounds .getSouthWest());
var c2 = this.map_.fromLatLngToDivPixel(this.bounds .getNorthEast());
this.div_.style.width = Math.abs(c2.x - c1.x) + "px";
this.div_.style.height = Math.abs(c2.y - ci.y) + "px";

195

196

CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight) + "px";
this.div_.style.top = (Math.min(c2.y, cl.y) - this.weight) + "px";
}

Further Optimizations

Once you have your server and JavaScript optimized for your data set, you may also want to
consider some additional niceties.

Removing Load Flashing

With the examples we've presented so far, you may have noticed that your maps “flash”
between redraws and requests. This occurs because the JavaScript removes all the points and
then draws them all again. If you don’'t move the map a considerable distance, some points
that are removed are then immediately replaced again. To avoid this, you can create a second-
ary JavaScript object to “remember” which points are currently on the map and remove only
those that aren’t in the new list. Using the same object, you can also add only those that aren’t
in the old list. Listing 7-17 (http://googlemapsbook.com/chapter7/TrackingPoints/) shows
the client-side boundary method from Listing 7-14 modified to keep track of points to remove
the flashing between redraws.

Listing 7-17. Modified Client-Side Boundary JavaScript That Remembers Which Markers Are on
the Map

var map;

var centerlatitude = 49.224773;
var centerlongitude = -122.991943;
var startZoom = 4;

var existingMarkers = {};

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl (new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

updateMarkers();

GEvent.addListener(map, 'zoomend',function() {
updateMarkers();
1
GEvent.addListener(map, 'moveend',function() {
updateMarkers();
1)
}

function updateMarkers() {
//don't remove all the overlays!

CHAPTER 7 = OPTIMIZING AND SCALING FOR LARGE DATA SETS

//map.clearOverlays();
var mapBounds = map.getBounds();

//1loop through each of the points in memory and remove those that
//aren't going to be shown
for(k in existingMarkers) {
if(!mapBounds.contains(existingMarkers[k].getPoint())) {
map . removeOverlay(existingMarkers[k]);
delete existingMarkers[k];

}

//1loop through each of the points from the global points object
//and create markers that don't exist
for (k in points) {

var latlng = new GlatLng(points[k].lat,points[k].1lng);

//skip it if the marker already exists

//or is not in the viewable area

if(lexistingMarkers[k] && mapBounds.contains(latlng)) {
existingMarkers[k] = createMarker(latlng);
map.addOverlay(existingMarkers[k]);

}

function createMarker(point) {
var marker = new GMarker(point);
return marker;

}

window.onload = init;

You can apply the same fix for both server-side and client-side optimizations where the
JavaScript is responsible for creating the markers.

Planning for the Next Move

If you want to be really nice and provide the ultimate user experience, you can put a little
intelligence into your map and have it anticipate what the users are going to do next. From
watching map users in test groups, it’s our experience that most users “drag” the map in very
small increments as they move around. The dragging movement of the map generally reveals
only another 25% to 50% of that map in the direction opposite the drag.

Though you may assume your users will grab the map and drag around in large sweeping
motions (which they still could), smaller motions offer you an advantage. You can keep track of
each movement and anticipate that the next movement will take the map in generally the same
direction. If you know where the users are going to go, you can request the new points for that
direction and have them already waiting before they get there.

197

198

CHAPTER 7 " OPTIMIZING AND SCALING FOR LARGE DATA SETS

Additionally, you could also extend the requested bounds beyond the edge of the viewport to
include what'’s just outside the edge. By extending the boundary a bit outside the viewport, your
users would think the map is loading faster, as markers are appearing quickly around the edge.

Summary

In this chapter, we've presented a few optimization methods, for both your server and the
browser, that allow your web application to run smoothly. By combining methods such as
clustering and closest to point searches, you can further improve and create new optimization
methods that will present your data in easy-to-understand and creative ways.

While working on your projects, be sure to choose the best method for the task at hand
and don’t base your decision on coolness alone. Creating your own tiles, as in the custom tile
method described in this chapter, is pretty neat, but doesn't serve well for data that is gener-
ated from filtered searches, since each tile will always be different. Also, when using a feature
like clustering, make sure that your icons and user interface indicate this to the user.

Once you have your web application working, be sure to go over it again and look for places
that could benefit from further optimization. Check again for areas where you could reduce
the amount of data transferred between the client and the server, or check places where you're
looping through large amounts of data and see if you can reduce it further. Just because your web
application works doesn’t mean it’s working as well as it could. The better optimized your map,
the happier your users will be and the better experience they’ll have.

At the same time you're improving your web application and optimizing it to the best of
your ability, Google will continue to develop its Maps API, adding improvements and new
features. In the next chapter, you'll see some of the possible things Google may add, but no
guarantees!

CHAPTER 8

What’s Next for the Google
Maps API?

As this book goes to press, the Google Maps API is still very much in development; its feature
set continues to change and improve. As the API increases in popularity and new methods are
added, it’s often necessary to alter the way things work to enable new capabilities or provide
more consistency throughout the API as a whole. Version 2, for example, split the GPoint class
into separate GPoint and GLatLng classes, each with enhanced capabilities corresponding to
their respective roles in handling pixel coordinates and geographical locations. In reversing
the zoom levels, which may have been an annoyance to developers, Google allowed the maps
to support as many detail levels as the satellite photography (or your custom overlay) warrants.
So far, we've shown you a lot of really neat techniques and tricks for getting data into your
application and onto a map. In the following chapters, we’ll expand on that and show you
some powerful tools for making complex projects. But before we dive deeper into the API,
we want to mention a few things you may want to keep a lookout for as the API continues to
mature. None of these things are guarantees, but they're likely possibilities, given the demand
and interest in them. As developers like yourself push the API further, the demand for new
capabilities—such as the free geocoder—becomes louder, and when Google consents, we get
more toys and more fun.

Driving Directions

If you follow the Google Maps discussion group at http://groups.google.com/group/
Google-Maps-API, which we highly recommend you do, you'll notice a growing interest in the
routing system built into http://maps.google.com, as shown in Figure 8-1.

199

200 CHAPTER 8 ©© WHAT’S NEXT FOR THE GOOGLE MAPS API?

eee from: Toronto Canada to: New York City - Google Maps [=)

& E@j ﬁ [Gl hep:/ /maps.google.com/ G}

E

Web Images Groups News Froogle Maps more »

GO (\)Sle [foronto Canada 2 [New York City Get Directions

Search the map Eind Get dil
Maps Print (<] Email &5 Link to this page
Start address: 'I{;oronéo, ON L Bairie e Hacmond iorrataicl_Map Sateliite_|[_hybrd
anada > 4 Ki i -
m sl Fine Ferrl'mhurg Topsham . e e
End address: New York, NY | Cape Uncent 7 L il
Distance: | 798 km (about 9 hours 45 mins) || - Vtnatit oo LonoLakeCrouripoint | @ ¥ ‘mw :
y ormtony Tar
i §
Reverse directions I 3 Ellisburg s’ RERIED 7 Chittenden ¢ |
1. Head west from St Leonards Ave - | i " Decosls Trurmant hreral | {9 La:"'a
g0 0.3 km E ok ‘ Comish ew |
| 4 Parme < Tren o ¢ AN e | i Hampshi
2. Tum left at Mt Pleasant Rd - go 6.1 km iamiftan, e * Sodus ha (@EDMienna o {Londonderry
3. Bear left at Jarvis St - go 2.4 km | = Qg e I Yt Salisbury i ¥ gt Weare |
3 : \ X _,,,,m*‘l-__}‘ "m'l e o {Egsicn | =g
4. Continue on Lower Jarvis St - go 0.4 km | Fayette New York 2D T e Greenfiels
=L oo n
5. Tum right into the HWY-2 Wentry ramp - || W e, o D o, Oy 00 S Duaneshurg O U
| | Savoy
g 9,.4 km i I Sfandan. Going. Swama Sanecn [y S Davenport Fulfon Schodack/ @D Massachusett
8. Continue on Gardiner Expy W - go 6.7 km | Asstiield) Ellicottvills Bath Barker Eranklin God Washingien Belchertown s
; v o ;
7. Continue on QEW - go 17 km || passesss Chaviauna Ganistea #candor N A LS s :“y
... = legany . i = ton,
" : 5 5 S22V Troupsburg, Eimira .. Tioga:” v (ot ot S e
8. Continue on HWY-403 W - go 21 km W) TR, Creene - ity ~ MRS H“m”“ bita; it Cmi FHancnck Eo Salisbury Enfield Woodstock (
¥ remont ; S
U} | Litchfield pi= 5
9. Continue on QEW toward NiagaralFort Erlp - ||| (Sprng, Deerfelt Mead LDy oy okt Adirn gy oy (Wanarsing 4 HEVE)]
go 63 km D} Complanter Kingsley Shippen Overten Eorkston Lok il S G Jan!eslwwn
ackawaxen ;
fem b Grsiberry - ipoik Fox Grove!. McHenry : ’ Connecticut |~
10. Take the HWY-405 exit 37 to Queenston - ranberry o Davidson” Ross v =
90 0.4 km DT @ sandy BeechCreek @ Pihe Unen | Codlbaugh / it § it o I
. # Jefferson .7 - Southold!
11. Merge into HWY-405 E - go 8.3 km ¢ reemich
12. Continue on Queenston-Lewiston Brg - bl perm Bl pennsylvania |_ran i e Fn% e o)
Ral Conlie. Creth Wist Penn 97 . Brookhaven
g D) e Tyne' . Jackson - Decatur - Hegins B G 3 i
13. Take the 1-290 E exit 16 to Tonawanda) Pitaburgh Jsckson (225 Alegheny Sante sopel B ddletown
il Lack g Fond
1-90)/Rochester - go 16 km i
(1-00)/ o Pk e Lirorier 09" 1o e &) Gay, Hopeuel
14. Take the 1-90 E exit 149 to Albany - [A S Bristol -
edfo)
g0 210 km o DUNbr Biade oubin 7 o] Priladelpnia Manchester
1 Wharton @ Marc {13 =) Berkeley
16.| Take the 1-690 exit 39 to Syracuse/Fulton - Liwayne - 1 0 e
; e = affor
9015 km T o v @™ rsgrove JNeW
16. Bear right onto the 1630 E ramp to | i i B G Maryland A ersey.
Syracuse/Fairgrounds - go 14 km < |jsom ”, N s daweie (%
17 | Raar rinkt antn the L1 & mmn - an 900 ke |7 || 100KM L FEXL T ey £2006 Coogis < NREFYMA ©2006 NAVTEQ™ - Torms of Usa| Y.~ NG\

Figure 8-1. Google Maps with a route from Toronto to New York

Similar to the recently released geocoding service, Google could add an additional class
that would allow you to retrieve the route information between arbitrary points on your map.
This seems even more likely now that Google is also offering an Enterprise edition of the Maps
API (http://www.google.com/enterprise/maps/) for use in closed, corporate environments.
Franchises and large chains of stores or restaurants could benefit from the inclusion of routing
features to service their customers and delivery personnel.

Routing is an interesting can of worms, since it begins to expose more of Google’s internal
road database. But road information is not a secret, of course; if you want it, you can get it
from freely available sources such as the US Census Bureau’s TIGER/Line files, as you will see
in Chapter 11. The concern would be more with the immense computational power necessary
to serve up complicated road queries in high volume, particularly to amateur API developers,
who may not understand throttling or caching.

Integrated Google Services

As you've seen in Chapter 4, searching manually for data to plot and geocoding all the infor-
mation yourself can be time-consuming and costly. However, vast stores of information are
already available, hidden away in Google’s search and service databases.

CHAPTER 8 ©© WHAT’S NEXT FOR THE GOOGLE MAPS API?

Google already offers its own business listing map web application at http://maps.
google.com, where you can search for businesses based on their geographical location, as
shown in Figure 8-2.

0606 New York Book Stores - Google Maps o
4 :ZP @ ﬁ} |G http:/ ymaps.google.com/ v © (@
Helj
Web Images Groups News Froogle Maps more»
GO L)gle [New York Baok Stores Search Maps
Search the map | Find businesses Get directions
Maps {3 Print 62 Email = Link to this page

Did you mean: BookStores

Sponsored Links.
Bames & Noble Bookstore
Buy Books, Textbooks, CDs, DVDs
and Videos at Bames & Noble.com
www.BamesandNoble.com

Results 1-10 of about 14,300 for Book Stores near
New York, NY - Modify search
Categories: Book Dealers Retail, Books

Barnes & Noble Booksellers:
Superstores

33 E 17th St, New York, NY

1.8 mi NE - (212) 253-0810

Strand Book Store
828 Broadway, New York, NY
1.6 mi NE - (212) 4731452

New York University: Computer Store
44 W 4th St, New York, NY
1.2 mi NE - (212) 9984672

@ New York University Pk
70 Washington Sq S # 1216, New York, NY e ,(/ 4
1.2.mi NE - (212) 473.0079 ® ol S

Used Book Cafe
126 Crosby St, New York, NY £ %
0.9 mi NE - (212) 334-3324 /

Jersey Gty

3

Borders Books & Music PREY .
100 Broadway, New York, NY Admy Terminal &
0.5 mi SW - (212) 964-1988

FAQ Schwarz Inc
767 5th Ave # 401, New York, NY

3.8 mi NE - (212) 644-9400

Bamnes & Noble Booksellers L] |”"'—|—| S5
v | T e

Quinaretarac

5 Al
53005 Gooie c}lap Gata E2006 NAVTEQ M < Tormis bitiss

Figure 8-2. Google Maps search for “New York Book Stores”

If Google chose to integrate its search database into the Google Maps API, Google’s
servers could provide you with ready-to-use mapping information based on search terms.
This would relieve you of some parsing and geocoding tasks, and eliminate the burden of col-
lecting the information for your web application.

Imagine creating a map of bookstores in New York by asking the API for “bookstores in
New York.” The possibility of supplementing your map’s proprietary data with Google’s public
data is certainly an intriguing one. As the owner of a chain of bookstores, you could not only
help your customers locate your stores, but you could also offer added value by throwing up
the results of a “Coffee shops within one mile of StoreLatLng” query.

Tip Though not built into the Google Maps API, using Google’s search database is actually possible now
by combining some additional Google APIs such as the Google AJAX Search APl and maps. For an example,
check out the My Favorite Places page at http://www.google.com/uds/samples/places.html, where
you can type in a request such as “New York Bookstores” and get mapping information.

201

202

CHAPTER 8 " WHAT’S NEXT FOR THE GOOGLE MAPS API?

KML Data

Asyou saw in Chapter 1, the http://maps.google. com site lets you plot any arbitrary KML data
directly on your map. In that chapter, we showed you a quick sample file that marked three
popular destinations in downtown Toronto. Figure 8-3 shows a similar file, which drops an
arbitrary point onto southeastern Ontario.

006 http:/, om feeds /example.kml - Google Maps =)
Cj' @ ﬁ [C] hutp:/ /maps.goog! ? 5 feed! le.kml ~ G 3
Help
) Web Images Groups MNews Froogle Maps more»
Gougle [http://googlemapsbook.com feeds [example.kmi Search Maps
Search the map | Find businesses
Maps Print & Emall e Link to this page

Displaying content from googlemapsbook.com
View on Geogle Earth

The contant overiaid onto this map is provided by a third party,
and Google is not responsie for i

' Example Point 1

Example Point 1
R This peint is from the example feed

Figure 8-3. Sample KML file in a map

At the moment, using KML data is possible only with Google Maps itself, not directly from
the API. But it certainly appears that Google has reason to expand interest in the KML data
format. We expect future versions of the API to provide shortcut functions for loading and
parsing this kind of information. You can do it yourself, of course, but to automate it would
help bridge the gap between users of Google Maps and users of the Maps API.

More Data Layers

The satellite imagery included in the API has opened the whole world to people who may
never even travel out of their hometown. With a simple click and drag of the mouse, sites such
as http://googlesightseeing.com (Figure 8-4) can take you anywhere on the planet, and in
many cases, give you a close enough look to make out cars and people.

CHAPTER 8 ©© WHAT’S NEXT FOR THE GOOGLE MAPS API?

666 Google Sightseeing o

<]:I = @ @ E| http:/ /googlesightseeing.com/

GOOGLE S|1GHTS E EIN G inyBotHER SEEING THE WORLD FOR REAL?

LATEST | LOCALITY ‘ CATEGORY ‘ MAP GOOGLESIGHTSEEING.COM IS NOT SPONSORED BY OR AFFILIATED WITH GOOGLE
Ads by Google Model Railway Railroad Sim N Scale G Gauge Searchl

Coogle Sightseeing is brought to you
Medicine Hat’s Saamis Teepee by Alex, James & Olly, who take you

to the world's best tourist spots
using the freely downloadable
Here in Medicine Hat, Canada, you couldn't possibly miss the S3amis Teepee. Google Earth or Google Maps in your

Designed for the 1988 Winter Olympics in Calgary and moved here in 1991, it web browser.
stands over 65 metres high - making Medicine Hat the proud owner of the

world’s tallest teepee. SUGGEST A SIGHT

You just couldn’t make this stuff up could you? CONTACT US

FAQS
PRESS

ONE YEAR AGO TODAY...

Thanks to Allison.

FEEDS

& 12th Jul 2006 by Alex C) Comments (3) (@ View in Google Earth
C as: § Alberta and

EJ LATEST POSTS

) COMMENTS
& GOOGLE EARTH

Molecule Man and Hammering Man

NETWORK
Apparently floating on the river Spree in Berlin, the massive Molecule Man casts

a striking shadow which leaves you in no doubt what it's a sculpture of. However. w 7 RULES
from ground level you really see how well the illusion is realised. e e

(® GOOGLE EARTH BLOG

Ads by G le

Model Train Secrets

Save Time And Meney,
Avoid Rookie Mistakes!
100's Of Tips Revealed

madeltrains.solomonwebsites.ca

Molecule Man was designed by an American artist Jonathan Borofsky, who is
better known for another of his works, Hammering Man. Seen here outside the

Seattle Art Museum, Hammering Man s actually a series of sculptures installed Model RR, Trains M
in various cities throughout the world, and sometimes (as in Seattle) he’s Better prices, more

Figure 8-4. The Google Sightseeing home page

So if Google can offer two layers of data (satellite and map), then why shouldn’t we expect
that it will begin to offer other complementary layers? The data for things like elevation,
weather trends, and population density are all available, and would make excellent layers in
the system. While this may tread on some of the maps we are building, it could also open up
new opportunities, just as the satellite imagery did for sightseeing.

Also, Google Earth, Google’s desktop mapping software, already allows you to incorporate
Google SketchUp objects, so why not make these objects available to the Google Maps API, too?

203

204

CHAPTER 8 ©© WHAT’S NEXT FOR THE GOOGLE MAPS API?

Beyond the Enterprise

In building new relationships with enterprise providers, Google is edging into the corporate
mapping space previously dominated by desktop products such as Microsoft MapPoint. When
enterprise clients begin to require even greater performance and feature diversity, Google may
provide a Google Maps Mini appliance similar to the Google Mini search appliance offered
today (http://www.google.com/enterprise/mini/). A Mini appliance would provide the corpo-
rate world with a “map-in-a-box” solution that could be highly customized and branded to
offer features that support the needs of specific companies and markets.

Those of us using the free mapping API may also one day see integrated advertisements
in our maps. The terms of service have always provided for the eventuality of Google adding
things to make money from your map. Paying enterprise customers would certainly be exempt
from any integrated advertising, which would offer the rest of us a compelling reason to upgrade
to the enterprise subscription.

Note The API key signup page explicitly states that Google will give developers 90 days notice via the
official Google Maps API blog (http://googlemapsapi.blogspot.com) before introducing advertising into
third-party sites such as those you’re building. If the prospect of advertising bothers you, we suggest that
you follow this blog closely.

Interface Improvements

The current Google Maps interface is built entirely using XHTML, CSS, and JavaScript. It works
extremely well, but is limited by the browser’s ability to quickly scale images or move around
large numbers of on-screen objects. Other mapping tools such as the Yahoo Mapping API
offer alternative Flash clients that can benefit from the performance optimizations of that sys-
tem. Though Google doesn't offer a Flash-based API, others have attempted to incorporate the
Google Maps API with Flash and created unique, highly interactive, and rich web applications.
Figure 8-5 shows one example: the X-Men map at http://xplanet.net.

CHAPTER 8 ©© WHAT’S NEXT FOR THE GOOGLE MAPS API? 205

e n http:prIaneE.net - X-PI

anet : X-Men - The Last Stand (=)

EUDDY LIST 1N now: SEND TO A FRIEND LoEIn

& MUTANTS AT GRS LOCATED
FINOING MUTANTS AT LOCATION

MUTANT GROUF DATA LOADED

POWERED BY LOnE : 12 28 35" W
y LAT : Hsarn
Qogl LNk Ta THIS LOCATIN

510 MUTAMTS IN THIS ARERA

| - WHOSE SIDE WIL.L WOULD YOU TAKE
N XK-PLANET EVENTS FAN SQUADS YOU BE ON ? THE CURE 7 8

Figure 8-5. The X-Men Flash-based Google map*

With the growing competition from Yahoo! Maps and Windows Live Local, Google may
come to offer additional options such as a Flash AP], or even a next-generation one based on
Scalable Vector Graphics (SVG) or some other technology that can bring the browser experi-
ence closer to that of Google Earth.

Summary

In this chapter, we speculated about what might be coming up in the Google API. Along with
the new services, we can expect better tools. As with any web application, Google will be con-
tinually improving on the existing components of the Maps API. Tools like the newly released
geocoder will eventually expand to cover more countries and improve accuracy as more
detailed information becomes available. Satellite imagery will increase in detail and will be
updated continually with more and more recent images.

Now we are ready to move on to some more advancing mapping techniques. In the next
part of the book, we'll cover a wide variety of complementary concepts for your mapping proj-
ects. Chapter 9 demonstrates how to make your own info windows and tool tips, as well as
other overlay-related tricks. In Chapter 10, we’ll cover some mathematics you may need in
a professional map. Finally, in Chapter 11, we’ll show you how to build your own geocoder
from scratch, using a raw data set.

1. X-Men and XPlanet.net copyright Marvel, Fox and their related entities.

PART 3

Advanced Map Features
and Methods

CHAPTER 9

Advanced Tips and Tricks

Beyond what you've seen so far, the Google Maps API has a number of features that are often
overlooked. Here, you’ll go through a variety of examples to learn how to use some of the more
advanced features of the API, such as the ability to change map tiles and the possibility of creating
your own overlay objects.

In this chapter, the examples demonstrate how to do the following:

* Create an overlay for markers that acts as a tool tip.
* Promote yourself with a custom icon control.

* Add tabs to info windows.

¢ Construct your own info window.

* Create your own map tiles using the NASA Blue Marble images.

Debugging Maps

Before diving into the examples, let’s take a quick look at debugging within the Google Maps AP
With the Google Maps API version 1, the debugger’s best friend was alert(). But as they say, “Only
a Lert uses alert to debug,” and if you've ever accidentally “alerted” something in a loop, you know
what they mean! With Google Maps API version 2, you now have access to the wonderfully simple,
yet wonderfully useful, GLog class. Now GLog.write() is the “new” alert(), but it creates a floating
log window, as shown in Figure 9-1, to hold all your debugging messages.

Figure 9-1. Empty GLog window

209

210

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

For example, if you're curious about what methods and properties a JavaScript object has,
such as the CMap2 object, try this:

var map = new GMap2(document.getElementById("map"));
for(i in map) { Glog.write(i); }

Voila! The GLog window in Figure 9-2 now contains a scrolling list of all the methods and
properties belonging to your GMap2 object, and you didn’t need to click OK in dozens of alert
windows to get to it.

13:33:43:235
getInfoWindow
13:33:43: 544

closeInfoWindow

13:33:43: 364

enablelnfoWindow

13:37:43: 942 m
disableInfoWindow

13:33:43: OLC 1
infoWindowEnabled b 1

Figure 9-2. GLog window listing methods and properties of the GMap2 object

The GLog.write() method escapes any HTML and logs it to the window as source code. If
you want to output formatted HTML, you can use the GLog.writeHtml() method. Similarly, to out-
put a clickable link, just pass a URL into the GLog.writeUrl()method. The writeUrl() method
is especially useful when creating your own map tiles, as you'll see in the “Implementing Your
Own Map Type, Tiles, and Projection” section later in the chapter, where you can simply log the
URL and click the link to go directly to an image for testing.

Tip GLog isn’t bound to just map objects; it can be used throughout your web application to debug any
JavaScript code you want. As long as the Google Maps AP! is included in your page, you can use GLog to help
debug anything from Ajax requests to mouse events.

Interacting with the Map from the API

When building your web applications using Google Maps, you'll probably have more in your
application than just the map. What's outside the map will vary depending on the purpose of
your project and could include anything from graphical eye candy to interactive form elements.
When these external elements interact with the map, especially when using the mouse, you may
often find yourself struggling to locate the pixel position of the various map objects on your screen.
You may also run into situations where you need to trigger events, even mouse-related events,
without the cursor ever touching the element. In these situations, a few classes and methods
may come in handy.

CHAPTER 9 = ADVANCED TIPS AND TRICKS 211

Helping You Find Your Place

More and more, your web applications will be interacting with users in detailed and intricate ways.
Gone are the days of simple requests and responses, where the cursor was merely used to navigate
from box to box on a single form. Today, your web application may rely on drag-and-drop, sliders,
and other mouse movements to create a more desktop-like environment. To help you keep track
of the position of objects on the map and on the screen, Google has provided coordinate
transformation methods that allow you to convert a longitude and latitude into X and Y screen
coordinates and vice versa.

To find the pixel coordinates of a location on the map relative to the map’s div container,
you can use the GMap2. fromLatLngToDivPixel() method. By converting the latitude and longitude
into a pixel location, you can then use the pixel location to help position other elements of your
web application relative to the map objects. Take a quick look at Listing 9-1, where the mousemove
event is used to log the pixel location of the cursor on the map.

Listing 9-1. Tracking the Mouse on the Map

var map;
var centerlatitude = 43.49462;
var centerlongitude = -80.548239;
var startZoom = 3;

function init() {

map = new GMap2(document.getElementById("map"));

map.addControl (new GSmallMapControl());

map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(centerLatitude, centerlLongitude), startZoom);

GEvent.addListener(map, 'mousemove’,function(latlng) {
var pixellocation = map.fromLatLngToDivPixel(latlng);
GlLog.write('1l:"' + latlng + ' at:' + pixellocation);
1;
}

window.onload = init;

Moving around the map, the GLog window reveals the latitude and longitude location of the
cursor, along with the pixel location relative to the top-left corner of the map div, as shown in
Figure 9-3.

212

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

| % 1
| AB MBI ;
e | { 8K "% : | £ P NL
. ON. W gc e 2
& a
L VALY MT NBM.,;;PE
{ N "—"ME
OR ' nl --.L_H__
T ot NE "-| 1A 7% * L
by | e bl S ||__|N [oH/_ PA 33 \\MANH
i 1Y% €O | ks mo? f--'rc"ra SNCTRI
CAN, 3y~ \ DE/NJ
TN
AZ | NM OK _lAR’ NG

MSF\L EC pecMD

L T OTX y GA
;'_\ux (LA
FOWERED EY Gulfiaf 3T 0 08

. II: (44.33956524809713, -82.6171875) at:(240, 145
Ugle Mexico MFED 13(4? t3172 L)
II:(43.19716728250127, -78.92578125) at: (261, 154
134703326

I1:(43.19716728250127, -78.92578125) at: (261, 154
134703477

I1:(43.10716728250127, -B0.15625) at:(254, 154)
13:47: 03: 368

I1:(43.19716728250127, -80.33203125) at:(253, 154 v

Figure 9-3. Tracking the mouse movement relative to the map container

Once you have the pixel location from GMap2. fromLatLngToDivPixel(), you can turn it into
alocation relative to the screen or window by applying additional calculations appropriate to
the design and layout of your web application.

Tip For more information about JavaScript and using it to interact with your web page, pick up DOM Scripting:
Web Design with JavaScript and the Document Object Model , by Jeremy Keith (http://www.friendsofed.com/
book.html?isbn=1590595335). It covers everything you need to know when using JavaScript to add
dynamic enhancements to web pages and program Ajax-style applications.

Force Triggering Events with GEvent

The GEvent object, introduced in Chapter 3, lets you run code when specific events are triggered
on particular objects. You can attach events to markers, the map, DOM objects, info windows,
overlays, and any other object on your map. In earlier chapters, you've used the click event to
create markers and the zoomend event to load data from the server. These work great if your users
are interacting with the map, but what happens if theyre interacting with some other part of the
web application and you want those objects to trigger these events? In those cases, you can use
the trigger() method of the GEvent class to force the event to run.

For example, suppose you create an event that runs when the zoom level is changed on
your map using the zoomend event, and it’s logged to the GLog window:

CHAPTER 9 = ADVANCED TIPS AND TRICKS

GEvent.addListener(map, 'zoomend',function(oldLevel, newlevel) {
//some other code
GlLog.write('Zoom changed from

};

If you adjust the zoom level of your map, you'll get a log entry that looks something like
Figure 9-4.

+ oldLevel + ' to ' + newlevel);

13:55: 20: 745
Zoom changed from 3 to 4

Figure 9-4. GLog entry after changing zoom levels using the zoom control

Notice in Figure 9-4 how the old and new zoom levels are specified. From elsewhere in your
web application, you can force the zoomend event to execute by calling
GEvent.trigger(map, 'zoomend');

Executing this method will cause the zoomend event to run as normal. The problem is that
youw’ll get undefined values for both oldLevel and newLevel, as shown in Figure 9-5.

14:03:12: 327
Zoom changed from undefined to undefined

Figure 9-5. GLog entries after triggering zoomend using GEvent.trigger(map, zoomend')

The same applies for any event that passes arguments into its trigger function. If the API
can’t determine what to pass, you'll get an undefined value.

To overcome this problem, you can pass additional arguments after the trigger() event
argument, and they’ll be passed as the arguments to the event handler function. For example,
calling

GEvent.trigger(map, 'zoomend',3,5);

would pass 3 as the oldLevel and 5 as the newLevel. But unless you changed the zoom level of the
map some other way, the zoom level wouldn't actually change, since you've manually forced
the zoomend event without calling any of the zoom-related methods of the map.

213

214

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

Creating Your Own Events

Along with triggering the existing events from the API, GEvent.trigger() can also be used to
trigger your own events. For example, you could create an updateMessage event to trigger a script
to execute when a message box is updated, as follows:

var message = document.getElementById('messageBox');
GEvent.addDomListener(message, 'updateMessage',function() {

//whatever code you want

if(message.innerHtml != '") alert('The system reported messages.');

};

Then, elsewhere in your application, you can update the message and trigger the
updateMessage event using the GEvent.trigger()method:

var message = document.getElementById('messageBox');
if (error) {
message.innerHtml
} else {
message.innerHtml = '';

'There was an error with the script.’;

}

GEvent.trigger(message, 'updateMessage');

Creating Map Objects with GOverlay

In Chapter 7, you saw how to use GOverlay to create an image that could hover over a location on
a map to show more detail. In that instance, the overlay consisted of a simple HTML div element
with a background image, similar to the Rectangle example in the Google Maps API documentation
(http://www.google.com/apis/maps/documentation/#Custom Overlays). Beyond just a simple div,
the overlay can contain any HTML you want and therefore can include anything you could create
in a web page. Even Google’s info window is really just a fancy overlay, so you could create your
own overlay with whatever features you want.

Caution Adding your own overlays will influence the limitations of the map the same way the markers did in
Chapter 7. In fact, your overlays will probably be much more influential, as they will be more complicated and
weighty than the simpler marker overlay.

Choosing the Pane for the Overlay

Before you create your overlay, you should familiarize yourself with the GMapPane constants.
GMapPane is a group of constants that define the various layers of the Google map, as represented
in Figure 9-6.

CHAPTER 9 = ADVANCED TIPS AND TRICKS

G_MAP_FLOAT_PANE

G_MAP_MARKER_MOUSE_TARGET_PANE ———— =
G_MAP_FLOAT_SHADOW_PANE —M ’
G_MAP_MARKER_PANE —— P
G_MAP_MARKER_SHADOW_PANE ———— o

G_MAP_MAP_PANE \

R

Figure 9-6. GMapPane constants layering

At the lowest level, flat against the map tiles, lies the G MAP_MAP_PANE. This pane is used to hold
objects that are directly on top of the map, such as polylines. Next up are the G MAP_MARKER _
SHADOW_PANE and G_MAP_MARKER_PANE. As the names suggest, they hold the shadows and icons for
each of the GMarker objects on the map. The shadow and icon layers are separated, so the shadows
don't fall on top of the icons when markers are clustered tightly together.

The next layer above that is the G MAP_FLOAT_SHADOW_PANE, which is where the shadow of the
info window will reside. This pane is above the markers so the shadow of the info window will be
cast over the markers on the map.

The next layer, G MAP_MARKER MOUSE_TARGET PANE, is an ingenious trick. The mouse events
for markers are not actually attached to the markers on the marker pane. An invisible object,
hovering in the mouse target pane, captures the events, allowing clicks to be registered on the
markers hidden in the shadow of the info window. Without this separate mouse target pane, clicks
on the covered markers wouldn't register, as the info window’s shadow would cover the markers,
and in most browsers, only the top object can be clicked.

Finally, on top of everything else, is the G MAP_FLOAT_PANE. The float pane is the topmost pane
and is used to hold things like the info window or any other overlays you want to appear on top.

When you create your overlay object, you need to decide which of the six panes is best suited.
If your overlay has a shadow, like the custom info window presented later in Listing 9-5, you'll need
to target two panes.

To retrieve and target the DOM object for each pane, you can use the GMap2.getPane()
method. For example, to add a div tag to the float pane, you would do something similar to this:

div = document.createElement('div');
pane = map.getPane(G MAP_FLOAT PANE);
pane.appendChild(div);

Obviously, your code surrounding this would be a little more involved, but you get the idea.

215

216

CHAPTER 9 " ADVANCED TIPS AND TRICKS

Creating a Quick Tool Tip Overlay

For an easy GOverlay example, let’s create an overlay for markers that acts as a tool tip, containing
just a single line of text in a colored box, as shown in Figure 9-7.

r"T_ ' 3% New/Hampshire
~~“"{ linois Indiana o ik’ Massachusetts
O N Cibdnnatie__ West? Danik

: g ; S e, YRS e .
dissourl, £ o/ “Virgipia N
Chrl}ﬂ!,uil'_(enwcﬁ.‘lrf)‘:‘ Virginia |
S Tennessee - North Carolina EEreD
¥ _South,_ el
L__ Mississippi Saroinajl Districiof
[od i Alabama A Columbia
veporty L.

Figure 9-7. Tool tip overlay
Listing 9-2 shows the code for the tool tip overlay.

Listing 9-2. ToolTip Overlay Object

//create the ToolTip overlay object

function ToolTip(marker,html,width) {
this.html_ = html;
this.width = (width ? width + 'px' : 'auto');
this.marker = marker;

}

ToolTip.prototype = new GOverlay();

ToolTip.prototype.initialize = function(map) {
var div = document.createElement("div");
div.style.display = 'none';
map.getPane(G_MAP_FLOAT PANE).appendChild(div);
this.map_ = map;
this.container = div;

}

ToolTip.prototype.remove = function() {

this.container .parentNode.removeChild(this.container);

}

CHAPTER 9 = ADVANCED TIPS AND TRICKS

ToolTip.prototype.copy = function() {
return new ToolTip(this.html);

}

ToolTip.prototype.redraw = function(force) {
if (!force) return;
var pixellocation = this.map_.fromLatLngToDivPixel(this.marker .getPoint());
this.container_.innerHTML = this.html_;
this.container .style.position = 'absolute';
this.container .style.left = pixellocation.x + "px";
this.container .style.top = pixellocation.y + "px";
this.container .style.width = this.width_;
this.container_ .style.font = 'bold 10px/10px verdana, arial, sans';
this.container .style.border = '1px solid black';
this.container_ .style.background = 'yellow';
this.container_ .style.padding = '4px';

//one line to desired width
this.container .style.whiteSpace = 'nowrap';
if(this.width_ != 'auto') this.container .style.overflow = 'hidden';

this.container_ .style.display = 'block';

}

GMarker.prototype.ToolTipInstance = null;
GMarker.prototype.openToolTip = function(content) {
//don't show the tool tip if there is a custom info window
if(this.ToolTipInstance == null) {
this.ToolTipInstance = new ToolTip(this,content)
map.addOverlay(this.ToolTipInstance);
}

}
GMarker.prototype.closeToolTip = function() {

if(this.ToolTipInstance != null) {
map . removeOverlay(this.ToolTipInstance);
this.ToolTipInstance = null;

Now let’s see how it works.

Creating the GOverlay Object

To create the tool tip GOverlay, as listed in Listing 9-2, start by writing a function with the name
you would like to use for your overlay and pass in any parameters you would like to include. For
example, the arguments for the ToolTip overlay constructor in Listing 9-2 are the marker to attach
the tool tip to and the HTML to display in the tool tip. For more control, there’s also an optional
width to force the tool tip to a certain size:

217

218

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

function ToolTip(marker,html,width) {
this.html_ = html;
this.width = (width ? width + "px' : 'auto');
this.marker = marker;

This function, ToolTip, will act as the constructor for your ToolTip class. Once finished, you
would instantiate the object by creating a new instance of the ToolTip class:

var tip = new ToolTip(marker, 'This is a marker');

When assigning properties to the class, such as html, it’s always good to distinguish the
internal properties using something like an underscore, such as this.html . This makes it easy
to recognize internal properties, and also ensure that you don't accidentally overwrite a property
of the GOverlay class, if Google has used html as a property for the GOverlay class.

Next, instantiate the GOverlay as the prototype for your new ToolTip function:

ToolTip.prototype = new GOverlay();

Creating and Positioning the Container

For the guts of your ToolTip class, you need to prototype the four required methods listed in
Table 9-1.

Table 9-1. Abstract Methods of the GOverlay Object

Method Description
initialize() Called by GMap2.addOverlay() when the overlay is added to the map
redraw(force) Executed once when the object is initially created and then again whenever

the map display changes; force will be true in the event the API recalculates
the coordinates of the map

remove() Called when removeOverlay() methods are used

copy() Should return an uninitialized copy of the same object

First, start by prototyping the initialize() function:

ToolTip.prototype.initialize = function(map) {
var div = document.createElement("div");
div.style.display="none';
map.getPane(G_MAP_FLOAT PANE).appendChild(div);
this.map_ = map;
this.container = div;

The initialize() method is called by GMap2.addOverlay() when the overlay is initially
added to the map. Use it to create the initial div, or other element, and to attach the div to the
appropriate pane using map.getPane(). Also, you probably want to assign the map variable to an
internal variable so you'll still have access to it from inside the other methods of the ToolTip object.

Next, prototype the redraw() method:

CHAPTER 9 = ADVANCED TIPS AND TRICKS

ToolTip.prototype.redraw = function(force) {
if (!force) return;
var pixellocation = this.map_.fromLatLngToDivPixel(this.marker .getPoint());
this.container_.innerHTML = this.html_;
this.container .style.position='absolute';
this.container .style.left = pixellocation.x + "px";
this.container .style.top = pixellocation.y + "px";

- cut -

this.container_ .style.display = 'block';

The redraw() method is executed once when the object is initially created and then again
whenever the map display changes. The force flag will be true only in the event the API needs
to recalculate the coordinates of the map, such as when the zoom level changes or the pixel offset
of the map has changed. It’s also true when the overlay is initially created so the object can be
drawn. For your ToolTip object, the redraw() method should stylize the container div element
and position it relative to the location of the marker. In the event that a width was provided, the
div should also be defined accordingly, as it is in Listing 9-2.

Lastly, you should prototype the copy() and remove() methods:

ToolTip.prototype.remove = function() {
this.container .parentNode.removeChild(this.container);

}

ToolTip.prototype.copy = function() {
return new ToolTip(this.marker ,this.html ,this.width);

}

The copy() method should return an uninitialized copy of the same object to the map. The
remove () method should remove the existing object from the pane.

Using Your New Tool Tip Control

At the bottom of Listing 9-2 you'll also notice the addition of a few prototype methods on
the GMarker class. These give you a nice API for your new ToolTip object by allowing you to call
GMarker.openToolTip('This is a marker') to instantiate the tool tip; GMarker.closeToolTip()
will close the tool tip.

Now you can create a marker and add a few event listeners, and you’ll have a tool tip that
shows on mouseover, similar to the one shown earlier in Figure 9-7:

var marker = new GMarker(new GlLatlng(43, -80));

GEvent.addListener(marker, 'mouseover',function() {
marker.openToolTip('This is a GMarker!');

D;

GEvent.addListener(marker, "mouseout’,function() {
marker.closeToolTip();

D;
map .addOverlay(marker);

219

220

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

The ToolTip overlay is relatively simple but very useful. Later in the chapter, you'll revisit
the GOverlay object when you create an overlay that’s a little more complicated, to serve as your
own customized info window (Listing 9-5).

Creating Custom Controls

Overlays are useful, but they generally apply to something on the map fixed to a latitude and
longitude. When you drag the map, the overlays go with it. If you want to create a control or other
object on the map that’s fixed to a relative location within the map container, similar to the zoom
control or the map type buttons, you'll need to implement a GControl interface.

Six controls are built into the Google Maps AP, as you've seen throughout the book. Along
with version 1’s GSmallMapControl, GLargeMapControl, GSmallZoomControl, and GMapTypeControl,
the controls GScaleControl and GOverviewMapControl (which shows a little overview window in
the corner of the screen) were introduced in version 2 of the API. Depending on your application
and features, you can enable or disable the controls so your users can have varying degrees of
control over the map.

If these controls don’t suit your needs, you can implement a custom control that replicates
the functionality of one of Google’s existing controls, or create something completely different.
For example, the Google Maps API documentation at http://www.google.ca/apis/maps/
documentation/#Custom _Controls provides an example of a textual zoom control. The Google
TextualZoomControl creates the text-based Zoom In and Zoom Out buttons shown in Figure 9-8
and is an alternative to the GSmallMapControl.

! SK i
1 l;\ 1
' oN ¥ ac
hE e
WA B r\ﬂ"»—r:_.lpl'
OR "] z TZME % NS
e | W BT NY) ";::”‘“vT
F..T 1o NE
L gl 2= K== finforL PA N MANK
; UT{ €0 | ks Mo, / Wy A \\Tm
I“A-\ - 1 ;.;."'K'\.;’, - \
ol OK [aRZ_ TN
YAZTNM L T '-Mri;*a' "-5'-'- 'JL“I'\."ID
Th I P WA o =LY
;'X’\ LA : Narth
POWERED B Gulfiof, FL Allantic Ocean
i Mexico
Gm:gle Mexico i SeleaiiioG e o

Fusdnn

Figure 9-8. The Google textual zoom control adds Zoom In and Zoom Out buttons.

As an example, we'll show you how to create a custom icon control. After all the hard work
you've poured into your web application, it might be nice to promote yourself a little and put your
company logo down in the corner next to Google’s. After all, a little promotion never hurt anyone.
Implementing the icon control in Figure 9-9 is relatively simple, as you can see in Listing 9-3,
and it’s a great example you can further expand on.

CHAPTER 9 = ADVANCED TIPS AND TRICKS

Figure 9-9. A promotional map control, clickable to a supplied link

Listing 9-3. Promotional Icon PromoControl

var PromoControl = function(url) {
this.url = url;

1
PromoControl.prototype = new GControl(true);

PromoControl.prototype.initialize = function(map) {
var container = document.createElement("div");
container.innerHTML = '<img style="cursor:pointer"ws
src="http://googlemapsbook.com/PromoApress.png" border="0">";
container.style.width="120px";
container.style.height="32px";
url = this.url ;
GEvent.addDomListener(container, "click", function() {
document.location = url;
D;
map.getContainer().appendChild(container);
return container;

};

PromoControl.prototype.getDefaultPosition = function() {
return new GControlPosition(G_ANCHOR BOTTOM LEFT, new GSize(70, 0));
1

The following sections describe how Listing 9-3 works.

221

222

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

Creating the Control Object

To create your promo GControl object, start the same way you did with the GOverlay in the
previous example. Create a function with the appropriate name, but use the prototype object
to instantiate the GControl class.

var PromoControl = function(url) {
this.url = url;
};

PromoControl.prototype = new GControl(true);

By passing in a url parameter, your PromoControl can be clickable to the supplied url and you
can reuse the PromoControl for different URLs, depending on your various mapping applications.

Creating the Container

Next, there are only two methods you need to prototype. First is the initialize() method, which
is similar to the initialize() method from the GOverlay example:

PromoControl.prototype.initialize = function(map) {
var container = document.createElement("div");
container.innerHTML = '<img src="http://googlemapsbook.com/PromoApress.png" =
border="0">";
container.style.width="120px";
container.style.height="32px";
url = this.url ;
GEvent.addDomListener(container, "click", function() {
document.location = url;
1;
map.getContainer().appendChild(container);
return container;

};

The difference is the GOverlay.initialize() method will be called by the CMap2.addControl()
method when you add the control to your map. In the case of GControl, the container div for the
control is attached to the map’s container DOM object returned from the GMap2.getContainer()
method. Also, you can add events such as the click event to the container using the GEvent.
addDomListener () method. For more advanced controls, you can include any HTML you want
and apply multiple events to the various parts of the control. For the PromoControl, you're simply
including an image that links to the supplied URL, so one click event can be attached to the
entire container.

Positioning the Container

Last, you need to position the PromoControl within the map container by returning a new instance
of the GControlPostion class from the getDefaultPosition prototype:

CHAPTER 9 = ADVANCED TIPS AND TRICKS

PromoControl.prototype.getDefaultPosition = function() {
return new GControlPosition(G_ANCHOR BOTTOM LEFT, new GSize(70, 0));

};

The GControlPosition represents the anchor point and offset where the control should reside.
To anchor the control to the map container, you can use one of four constants:

e G_ANCHOR TOP_RIGHT to anchor to the top-right corner

e G_ANCHOR_TOP_LEFT to anchor to the top-left corner

* G_ANCHOR_BOTTOM RIGHT to anchor to the bottom-right corner
e G_ANCHOR _BOTTOM_LEFT to anchor to the bottom-left corner

Once anchored, you can then offset the control by the desired distance. For the PromoControl,
anchoring to just G ANCHOR_BOTTOM LEFT would interfere with the Google logo, thus going against
the Terms and Conditions of the API. To fix this, you offset your control using a new GSize object
with an X offset of 70 pixels, the width of the Google logo.

Caution If you plan on using the GScaleControl as well, remember that it too will occupy the space next
to the Google logo, so you'll need to adjust your PromoControl accordingly.

Using the Control

With your PromoControl finished, you can add it to your map using the same GMap2.addControl()
method and a new instance of your PromoControl:

map.addControl(new PromoControl('http://googlemapsbook.com'));

You'll end up with your logo positioned neatly next to the Google logo, linked to wherever
you like, as shown earlier in Figure 9-9.

Adding Tabs to Info Windows

If you're happy with the look of the Google info window, or you don't have the time or budget
to create your own info window overlay, there are a few new features of the Google Maps API
version 2 info window that you may find useful. With version 1 of the Google Maps AP], the info
window was just the stylized bubble with a close box, as shown in Figure 9-10. You could add
tabs, but the limit was two tabs and doing so required hacks and methods that were not “official”
parts of the API.

223

224

CHAPTER 9 " ADVANCED TIPS AND TRICKS

“ This is a version 1 info window !

_','-)MB'\

Figure 9-10. The version 1 info window

Creating a Tabbed Info Window

With version 2 of the API, Google has added many tab-related features to its info windows. You
can have multiple tabs on each info window;, as shown in Figure 9-11, and you can change the tabs
from within the API using various GInfoWindow methods, as shown in Listing 9-4.

Figure 9-11. A tabbed info window

CHAPTER 9 = ADVANCED TIPS AND TRICKS

Listing 9-4. Info Window with Three Tabs

map = new GMap2(document.getElementById("map"));

map.addControl(new GSmallMapControl());

map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(centerLatitude, centerlongitude), startZoom);

marker = new GMarker(new GLatlLng(centerlLatitude, centerlongitude));
map.addOverlay(marker);

var infoTabs = [
new GInfoWindowTab("Tab A", "This is tab A content"),
new GInfoWindowTab("Tab B", "This is tab B content"),
new GInfoWindowTab("Tab C", "This is tab C content")

1;

marker.openInfoWindowTabsHtml(infoTabs, {
selectedTab:1,
maxWidth:300

};

GEvent.addListener(marker, 'click',function() {
marker.openInfoWindowTabsHtml(infoTabs);

};

To create the info window with three tabs in Figure 9-11, you simply create an array of
GInfoWindowTab objects:

var infoTabs = [
new GInfoWindowTab("Tab A", "This is tab A content"),
new GInfoWindowTab("Tab B", "This is tab B content"),
new GInfoWindowTab("Tab C", "This is tab C content")

Then use GMarker.openInfoWindowTabsHtml() to create the window in right away:

marker.openInfoWindowTabsHtml(infoTabs, {
selectedTab:1,
maxWidth:300

1

or in an event:

GEvent.addListener(marker, 'click',function() {
marker.openInfoWindowTabsHtml(infoTabs);

};

Additionally, you can define optional parameters for the tabbed info window the same way
you can define options using the GMarker.openInfoWindow methods.

225

226

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

Gathering Info Window Information and Changing Tabs

If other parts of your web application need to interact with the various tabs on your info window,
things get a little trickier. When the tabbed info window is created, the API instantiates the object
for you, so you don’t actually have direct access to the info window object yet. As you saw in
Chapter 3, there is only one instance of an info window on a map at a time, so you can use the
GMap2.getInfoWindow() method to retrieve a handle for the current info window:

var windowHandle = map.getInfoWindow();

With the handle, you can then use any of the GInfoWindow methods to retrieve information
or perform various operations, such as the following:

¢ Retrieve the latitude and longitude of the window anchor:
windowHandle.getPoint();

* Hide the window:
windowHandle.hide();

e Switch to another tab:
windowHandle.selectTab(2);

For a full list of the GInfoWindow methods, see the API in Appendix B.

Creating a Custom Info Window

If you follow the Google Maps discussion group (http://groups.google.com/group/
Google-Maps-API), you'll notice daily posts regarding feature requests for the info window. Feature
requests are great, but most people don't realize the info window isn't really anything special. It’s
just another GOverlay with a lot of extra features. With a little JavaScript and GOverlay, you can
create your very own info window with whatever features you want to integrate. To get you started,
we'll show you how to create the new info window in Figure 9-12, which occupies a little less
screen real estate, but offers you a starting point to add on your own features.

@
7

e,
.

|

A CaﬂEtlia -4 . HudsonBay, ¢
1 o8 I ‘ ‘.
=] i Ly e wt
BE SK 5 { N
3 ¥
Hello World! =
This Is my Info window! |
WA LN MT ? 3 -
OR 1D | oy | | =
TN Srel 4
j
(W Tl co r -
CA : MO S
yAzinm LT | »4DCMD
L. I POy o eV
4'—\\/\ Guliof FL Atlantic Ocean
Mexico Mexico
Cul
PR
FowERED BY £ -
GO'G‘E‘ Sais iy Map data ©2006 TeleAtas - [orms of Uso

Figure 9-12. A custom info window

CHAPTER 9 = ADVANCED TIPS AND TRICKS

To begin, you'll need to open up your favorite graphics program and create the frame for the
window. If you just need a box, then it’s not much more difficult then the ToolTip object you
created earlier. For this example, we used the Adobe Photoshop PSD file you'll find with the code
accompanying this book, as illustrated in Figure 9-13. Once you have your info window working,
feel free to modify it any way you want. You can edit the PSD file or create one of your own. For
now, create a folder called 1ittleWindow in your working directory and copy the accompanying
presliced PNG files from the 1ittlelWindow folder in the Chapter 9 source code.

®O6 LittleInfoWindow.psd @ 100% (window, RGB/8)
.|.|.H??|.|.|.|E.'?.|.|.|. L:ll.|.|.|.|E.'t|j.|.|.|.|:.lt|)|.3|.|.|.H??l.l.l.|2.,t|j?|.|.|.|%$?|.|.|.|3.??E.|
03
LE

3 ;
EE

03
T3

E

0
-

100% [@] Doc: 71.5K/238.2K] P

Figure 9-13. The info window art file

The finalized framework for the LittleInfoWindow overlay in Listing 9-5 is almost identical to
the ToolTip overlay you created earlier in Listing 9-3, but the internals of each function are
quite different.

Listing 9-5. The LittleInfoWindow Object

//create the LittleInfoWindow overlay onject
function LittleInfoWindow(marker,html,width) {
this.html_ = html;
this.width = (width ? width + 'px' : 'auto');
this.marker_ = marker;

}

//use the GOverlay class
LittleInfoWindow.prototype = new GOverlay();

//initialize the container and shadowContainer
LittleInfoWindow.prototype.initialize = function(map) {
this.map_ = map;

var container = document.createElement("div");
container.style.display="none";
map.getPane(G_MAP_FLOAT PANE).appendChild(container);
this.container_ = container;

227

228

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

var shadowContainer = document.createElement("div");
shadowContainer.style.display="none";

map.getPane(G_MAP_FLOAT SHADOW_PANE).appendChild(shadowContainer);
this.shadowContainer = shadowContainer;

}

LittleInfolWindow.prototype.remove = function() {
this.container .parentNode.removeChild(this.container);

//don't forget to remove the shadow as well
this.shadowContainer .parentNode.removeChild(this.shadowContainer);

}

LittleInfolWindow.prototype.copy = function() {
return new LittleInfoWindow(this.marker ,this.html ,this.width);

}

LittleInfolWindow.prototype.redraw = function(force) {
if (!force) return;

//get the content div

var content = document.createElement("span");
content.innerHTML = this.html ;
content.style.font="10px verdana';
content.style.margin="0";
content.style.padding="0";
content.style.border="0";
content.style.display="inline";

if(!this.width || this.width =='auto' || this.width <= 0) {
//the width is unknown so set a rough maximum and minimum
content.style.minWidth = "10px';
content.style.maxWidth = '500px"';
content.style.width = 'auto’;

} else {
//the width was set when creating the window
content.style.width= width + 'px';

}

//make it invisible for now
content.style.visibility="hidden";

//temporarily append the content to the map container
this.map_.getContainer().appendChild(content);

//retrieve the rendered width and height
var contentWidth = content.offsetWidth;
var contentHeight = content.offsetHeight;

CHAPTER 9 = ADVANCED TIPS AND TRICKS

//remove the content from the map
content.parentNode.removeChild(content);
content.style.visibility="visible';

//set the width and height to ensure they
//stay that size when drawn again
content.style.width=contentWidth+'px";
content.style.height=contentHeight+'px";

//set up the actual position relative to your images
content.style.position="absolute';
content.style.left="5px";

content.style.top="7px";
content.style.background="white"';

//create the wrapper for the window
var wrapper = document.createElement("div");

//first append the content so the wrapper is above
wrapper.appendChild(content);

//create an object to reference each image
var wrapperParts = {
tl:{1:0, t:0, w:5, h:7},
t:{1:5, t:0, w:(contentWidth-6), h:7},
tr:{1:(contentWidth-1), t:0, w:11, h:9},
1:{1:0, t:7, w:5, h:contentHeight},
r:{l:(contentWidth+5), t:9, w:5, h:(contentHeight-2)},
bl:{1:0, t:(contentHeight+7), w:5, h:5},
p:{1:5, t:(contentHeight+7), w:17, h:18},
b:{1:22, t:(contentHeight+7), w:(contentWidth-17), h:5},
br:{1:(contentWidth+5), t:(contentHeight+7), w:5, h:5}
}

//create the image DOM objects
for (i in wrapperParts) {
var img = document.createElement('img');

//1load the image from your local image directory
//based on the property name of the wrapperParts object
img.src = 'littleWindow/' + i + '.png';

//set the appropriate positioning attributes
img.style.position="absolute';
img.style.top=wrapperParts[i].t+ 'px";
img.style.left=wrapperParts[i].1+'px";
img.style.width=wrapperParts[i].w+ px";

229

230 CHAPTER 9 =" ADVANCED TIPS AND TRICKS

img.style.height=wrapperParts[i].h+'px";
wrapper.appendChild(img);
wrapperParts[i].img = img;

}

//add any event handlers like the close box

var marker = this.marker ;

GEvent.addDomListener(wrapperParts.tr.img, "click", function() {
marker.closelittleInfoWindow();

};

//get the X,Y pixel location of the marker
var pixellocation = this.map_.fromLatLngToDivPixel(
this.marker .getPoint()

)s

//position the container div for the window
this.container_ .style.position="'absolute';
this.container .style.left = (pixellLocation.x-3) + "px";
this.container .style.top = (pixellocation.y

- contentHeight

- 25

- this.marker .getIcon().iconSize.height
)+ "px";
this.container_.style.border
this.container_ .style.margin
this.container_ .style.padding = '0';
this.container_.style.display

1}
S
—
o
n
~

[

//append the styled info window to the container
this.container .appendChild(wrapper);

//add a shadow
this.shadowContainer .style.position="absolute';
this.shadowContainer .style.left = (pixellLocation.x+15) + "px";
this.shadowContainer .style.top = (pixellocation.y

- 10

- this.marker .getIcon().iconSize.height
)+ "px";
this.shadowContainer .style.border = '1px solid black';
this.shadowContainer .style.margin = '0';
this.shadowContainer .style.padding = '0';
this.shadowContainer .style.display = 'block’;

var shadowParts = {
sl:{1l:0, t:0, w:35, h:26},
s:{1:35, t:0, w:(contentWidth-40), h:26},

CHAPTER 9 " ADVANCED TIPS AND TRICKS
sr:{l:(contentWidth-5), t:0, w:35, h:26}

for (i in shadowParts) {
var img = document.createElement('img');
img.src = 'littleWindow/' + i + '.png';
img.style.position="absolute';
img.style.top=shadowParts[i].t+'px";
img.style.left=shadowParts[i].1+ px";
img.style.width=shadowParts[i].w+ px";
img.style.height=shadowParts[i].h+'px";
this.shadowContainer .appendChild(img);

}

//pan if necessary so it shows on the screen

var mapNE = this.map .fromLatLngToDivPixel(
this.map_.getBounds().getNorthEast()

)s

var panx=0;

var panY=0;

if(this.container .offsetTop < mapNE.y) {
//top of window is above the top edge of the map container
panY = mapNE.y - this.container .offsetTop;

}

if(this.container .offsetLeft+contentWidth+10 > mapNE.x) {
//right edge of window is outside the right edge of the map container
panX = (this.container .offsetlLeft+contentWidth+10) - mapNE.x;

}

if(panX!=0 || panY!=0) {
//pan the map
this.map_.panBy(new GSize(-panX-10,panY+30));

//add a new method to GMarker so you

//can use a similar API to the existing info window.
GMarker.prototype.LittleInfoWindowInstance = null;
GMarker.prototype.openLittleInfoWindow = function(content,width) {

if(this.LittleInfoWindowInstance == null) {
this.LittleInfoWindowInstance = new LittleInfoWindow(
this,
content,
width
);
map.addOverlay(this.LittleInfoWindowInstance);

231

232

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

GMarker.prototype.closeLittleInfoWindow = function() {
if(this.LittleInfoWindowInstance != null) {
map . removeOverlay(this.LittleInfoWindowInstance);
this.LittleInfoWindowInstance = null;

The following sections describe how this code works.

Creating the Overlay Object and Containers

Similar to the Google info window, your info window will require three inputs: a marker on which
to anchor the window, the HTML content to display, and an optional width. When you extend
this example for use in your own web application, you'll probably add more input parameters
or additional methods. You could also add the various methods and properties of the existing
GInfoWindow class so that your class provides the same API as Google’s info window, with tabs and
an assortment of options. To keep things simple in the example, we stick to the essentials.

Like the ToolTip object you created earlier, the LittleInfoWindow object in Listing 9-5 starts
off the same way. The LittleInfoWindow function provides a construction using the marker, html,
and width arguments, while the GOverlay is instantiated as the prototype object. The first big
difference comes in the initialize() method where you create two containers. The first
container, for the info window, is attached to the G_MAP_FLOAT_PANE pane:

var container = document.createElement("div");
container.style.display="none";
map.getPane(G_MAP_FLOAT PANE).appendChild(container);
this.container_ = container;

And the second container, for the info window’s shadow, is attached to the G_MAP_FLOAT _
SHADOW_PANE pane:

var shadowContainer = document.createElement("div");
shadowContainer.style.display="none";

map.getPane(G_MAP_FLOAT SHADOW_PANE).appendChild(shadowContainer);
this.shadowContainer = shadowContainer;

Tip A shadow isn’t required for overlays, but it provides a nice finishing touch to the final map and makes
your web application look much more polished and complete.

Next, the remove () and copy() methods are again identical in functionality to the ToolTip
overlay, except the remove () method also removes the second shadowContainer along with the
info window container.

Drawing a LittleInfoWindow

The most complicated part of creating an info window is properly positioning it on the screen
with the redraw() method, and the problem occurs only when you want to position it above the
existing marker or point.

CHAPTER 9 = ADVANCED TIPS AND TRICKS

When rendering HTML, the page is drawn on the screen top down and left to right. You can
assign sizes and positions to html elements using CSS attributes, but in general, if there are no sizes
or positions, things will start at the top and flow down. When you create the info window in the
redraw() method, you'll take the HTML passed into the constructor, put it in a content div, and
wrap it with the appropriate style. On an empty HTML page, you know the top-left corner of the
content div is at (0,0), but where is the bottom-right corner? The bottom-right corner is dependent
on the content of the div and the general style of the div itself.

The ambiguity in the size of the div is compounded when you want to position the div on
the map. The Google Maps API requires you to position the overlay using absolute positioning.
To properly position the info window, so the arrow is pointing at the marker, you need to know
the height of the info window, but as we said, the height varies based on the content. Luckily for
you, browsers have a little-known feature that allows you to access the rendered position and
size of elements on a web page.

Determining the Size of the Container

When creating the redraw() function, the first thing you'll do is put the HTML into a content div
and apply the appropriate base styles to the div:

var content = document.createElement("div");
content.innerHTML = this.html_;
content.style.font="10px verdana';
content.style.margin="0";
content.style.padding="0";
content.style.border="0";
content.style.display="inline";

if(!this.width_ || this.width_=="auto' || this.width_ <= 0) {
//the width is unknown so set a rough maximum and minimum
content.style.minWidth = "10px"';
content.style.maxWidth = '500px"';
content.style.width = 'auto’;

} else {
//the width was set when creating the window
content.style.width= width + 'px';

}

//make it invisible for now.
content.style.visibility="hidden";

The display="inline' and the last style attribute, visibility="hidden"', are important for
the next step. To determine the div’s rendered position and size properties, you need to access
hidden properties of the div elements. When rendered on the page, browsers attach offsetXXX
properties. where the XXX is Left, Right, Width, or Height. These give you the position and size, in
pixels, of the DOM element after it's rendered. For your info window, you're concerned with the
offsetWidth and offsetHeight, as you'll need them to calculate the overall size of the window.

To access the offset variables, you'll first need to render the content div on the page. At this
point in the overlay, the content DOM element exists only in the browser’s memory and hasn't

233

234

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

been “drawn” yet. To do so, append the content to the map container and retrieve the width and
height before removing it again from the map container:

this.map_.getContainer().appendChild(content);
var contentWidth = content.offsetWidth;

var contentHeight = content.offsetHeight;
content.parentNode.removeChild(content);
content.style.visibility="visible';

//set the width and height to ensure they stay that size when drawn again.
content.style.width=contentWidth+'px";
content.style.height=contentHeight+'px'

The brief existence of the content div inside the map container allowed the browser to set
the offset properties so you could retrieve the offsetWidth and offsetHeight. As we mentioned,
the inline display and the hidden visibility are important to retrieving the correct size. When the
display is inline, the bounding div collapses to the size of the actual content, rather than
expanding to a width of 100%, giving you an accurate width. Setting the visibility to hidden
prevents the content from possibly flashing on the screen for a moment, but at the same time,
preserves the size and shape of the div.

Building the Wrapper

Now that you have the size of the content box, the rest is pretty straightforward. First, style the
content accordingly and create another div, the wrapper, to contain the content and the additional
images for the eye candy bubble wrapper from Figure 9-13.

content.style.position="absolute';
content.style.left="5px";
content.style.top="7px";
content.style.background="white"';

var wrapper = document.createElement("div");
wrapper.appendChild(content);

To minimize the HTML required for the LittleInfoWindow, the images in the wrapper can
be positioned using absolute positioning. The sample wrapper consists of nine separate images:
four corners, four sides, and an additional protruding arm, as outlined in Figure 9-14 (along with
the shadow and marker images). To give the new info window a similar feel to Google’s info window,
the upper-right corner has also been styled with an X in the graphic to act as the close box.

vt

]

Hello Worldl | |-
his Is my Info window!
T

Figure 9-14. Outlined images for the LittleInfoWindow wrapper

CHAPTER 9 = ADVANCED TIPS AND TRICKS

To create the wrapper object in Listing 9-5, you could use the innerHTML property to add
the images using regular HTML, but that wouldn't allow you to easily attach event listeners to the
images. By creating each image as a DOM object:

var wrapperParts = {
tl:{1:0, t:0, w:5, h:7},
t:{1:5, t:0, w:(contentWidth-6), h:7},
- cut -

}

//create the images

for (i in wrapperParts) {
var img = document.createElement('img');
- cut -
wrapper.appendChild(img);
wrapperParts[i].img = img;

}

and using the wrapper.appendChild() method, you can then attach event listeners directly to
image DOM elements, as when you want to add a click event to the close box:

var marker = this.marker_;
GEvent.addDomListener(wrapperParts.tr.img, "click", function() {
marker.closelLittleInfoWindow();

};

Now all that’s left to do with the LittleInfolWindow container is position it on the map and
append the wrapper. The design of the LittleInfoWindow has the arm protruding in the lower-left
corner, so you'll want to position the top of the container so that the arm rests just above the
marker. You can get the marker’s position using the GMap2. fromLatLngToDivPixel() method you
saw earlier in the chapter, and then use the calculated height of the LittleInfoWindow plus the
height of the marker icon to determine the final resting position:

var pixellocation = this.map_.fromLatLngToDivPixel(this.marker .getPoint());
this.container_ .style.position='absolute';
this.container .style.left = (pixellocation.x-3) + "px";
this.container .style.top = (pixellLocation.y
- contentHeight
- 25
- this.marker .getIcon().iconSize.height
) + "px";
this.container_.style.display = 'block';

this.container_ .appendChild(wrapper);

Adding a Few Shades of Finesse

Your LittleInfolWindow should now be working, but a few tasks remain before we can call it
complete. First, let'’s add a shadow to the window similar to the one on Google’s info window. The
shadow images are also supplied in the PSD files accompanying the book. The process for adding

235

236

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

the shadow is similar to the wrapper you just created. We won't go through it again here, but you
can take a look at the complete code in Listing 9-5 and see the example there. The shadow, in this
case, expands only horizontally with the size of the wrapper, but you could easily add vertical
expansion as well.

Listing 9-5 also includes some pan adjustments when your window initially opens. The nice
thing about the Google’s info window is when it opens off-screen, the map pans until the window
is visible on-screen. You can easily add this same functionality by comparing the upper-right
corner of your LittleInfoWindow with the top and right edges of the map container:

var mapNE = this.map .fromLatLngToDivPixel(this.map_.getBounds().getNorthEast());
var panx=0;
var panY=0,;
if(this.container .offsetTop < mapNE.y) {
panY = mapNE.y - this.container .offsetTop;
}
if(this.container .offsetlLeft+contentWidth+10 > mapNE.x) {
panX = (this.container .offsetlLeft+contentWidth+10) - mapNE.x;

}
if(panX!=0 || panY!=0) {this.map .panBy(new GSize(-panX-10,panY+30)); }

Then, if necessary, you can pan the map, just as Google does, to show the open window. If you
check out the online example at http://googlemapsbook.com/chapter9/CustomInfoWindow/,
you can see the pan in action by moving the marker to the top or right edge and then clicking it to
open the LittleInfoWindow.

Using the LittleInfoWindow

The last and final addition for your LittleInfoWindow should be the creation of the appropriate
methods on the GMarker class, in the same way you created methods for the ToolTip earlier. Again,
by adding open and close methods to the GMarker class:

GMarker.prototype.LittleInfoWindowInstance = null;
GMarker.prototype.openLittleInfoWindow = function(content,width) {
if(this.LittleInfoWindowInstance == null) {
this.LittleInfoWindowInstance = new LittleInfoWindow(this,content,width)
map.addOverlay(this.LittleInfoWindowInstance);
}

}
GMarker.prototype.closeLittleInfoWindow = function() {

if(this.LittleInfoWindowInstance != null) {
map . removeOverlay(this.LittleInfoWindowInstance);
this.LittleInfoWindowInstance = null;

}

you can access your custom info window with an API similar to the Google info window using
something like this:

GEvent.addListener(marker, 'click',function() {
if(marker.LittleInfoWindowInstance) {

CHAPTER 9 = ADVANCED TIPS AND TRICKS

marker.closelittleInfoWindow();
} else {
marker.openLittleInfolWindow('Hello World!ws

This is my info window!");
}
1;

The difference from Google’s info window is that the LittleInfoWindowInstance is attached
to the CMarker, not the map, so you have the added advantage of opening more than one window
at the same time. If you want to force only one window open at a time, you'll need to track the
instance using the map object, rather than the marker.

Implementing Your Own Map Type, Tiles, and
Projection

By default, three types of maps are built into the Google Maps API:

* Map (often referred to as Normal), which shows the earth using outlines and colored
objects, similar to a printed map you might purchase for driving directions

* Satellite, which shows the map using satellite photos of the earth taken from space

* Hybrid, which is a mixture of the satellite images overlaid with information from the
normal map type

Each map is an instance of the GMapType class, and each has its own constant G_NORMAL_MAP,
G_SATELLITE_MAP, and G_HYBRID_MAP, respectively. To quickly refer to all three, there is also the
G_DEFAULT_MAP_TYPES constant, which is an array of the previous three constants combined.

In the example in this section, you'll create your own map using a new projection and the
NASA Visible Earth images (http://visibleearth.nasa.gov). But first, you need to understand
how the map type, projection, and tiles work together.

GMapType: Gluing It Together

Understanding the GMapType is key to understanding how the different classes interact to create
a single map. Each instance of the GMapType class defines the draggable map you see on the screen.
The map type tells the API what the upper and lower zoom levels are, which GTilelLayer objects
to include in the map, and which GProjection to use for latitude and longitude calculations.
A typical GMapType object would look similar to this:

var MyMapType = new GMapType(

[MyTileLayer1, MyTilelayer2],

MyProjection,

"My Map Type',{
shortName: 'Mine',
tileSize: 256,
maxResolution:5,
minResolution:0

};

237

238

CHAPTER 9 =" ADVANCED TIPS AND TRICKS

MyTilelayer1 and MyTilelLayer2 would be instances of the GTilelayer class, and MyProjection
would be an instance of the GProjection class. The third parameter for GMapType is the label to
show on the map type button in the upper-right corner of the Google map. You'll also notice the
fourth parameter is a JavaScript object implementing the properties of the GMapTypeOptions
class, listed in Table 9-2. In this case, the short name is Mine, the tile size is 256x256 pixels, and
the zoom levels are restricted to 0 through 5.

Caution In your map type, all the tiles in each of the GTileLayer objects must be of equal size. You can’t
mix and match tile sizes within the same map type.

Table 9-2. GMapTypeOptions Properties

Property Description

shortName The short name is returned from GMapType.getName(true) and is used in
the GOverviewMapControl. The default is the same as the name supplied in the
GMapType arguments.

urlArg Optional parameters for the URL of the map type; can be retrieved using
GMapType.getUrlArg().

maxResolution The maximum zoom level of this map type.

minResolution The minimum zoom level of this map type.

tileSize The tile size. The default is 256.

textColor The text color returned by GMapType . getTextColor (). The default is black.

linkColor Text link color returned by GMapType.getLinkColor (). The default is #7777cc.

errorMessage An optional message returned by GMapType.getErrorMessage().

The GMapType object directs tasks to various other classes in the API. For instance, when you
need to know where a longitude or latitude point