Beginning

Flash, Flex, and AIR

Development for Mobile Devices

IN FULL COLOR

Jermaine G. Anderson

BEGINNING
FLASH®, FLEX®, AND AIR® DEVELOPMENT

FOR MOBILE DEVICES
INTRODUCTION. ..ottt ittt ittt ittt ittt ttite e eeaneeenneeennnns XXi
CHAPTER1 An Introduction to Flash, Flex,and AIRt 1
CHAPTER 2 Getting Started. e 35
CHAPTER 3 Building AIR Applications for Android, BlackBerry,

ANd IOS DeViCeS. . ..ot 67
CHAPTER 4 Touch, Multitouch, and Gestures. 101
CHAPTER5 Developing for Multiple Screen Sizes 131
CHAPTER 6 Debugging Applications. i i 177
CHAPTER7 Working withthe Filesystem 199
CHAPTER8 WorkingwithData....... ... i 239
CHAPTER 9 Working with Audioand Video 289
CHAPTER 10 Utilizing Device Features i 315
INDEX. . ittt ittt ittt ettt ittt eietneeneenssensenseneeassnnsensensennss 359

BEGINNING

Flash®, Flex’, and AIR® Development
for Mobile Devices

& Y Y Y Y Y YY Y YY Y Y Y - : i i @ e @ P
000000000000000000000000000 0. - .

Y ¥ ¥ Y v ¥ Y ¥ Y

" BEGINNING
Flash®, Flex’, and AIR® Development
for Mobile Devices

Jermaine G. Anderson

WILEY
John Wiley & Sons, Inc.

Beginning Flash®, Flex®, and AIR® Development for Mobile Devices

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-94815-6
ISBN: 978-1-118-19334-1 (ebk)
ISBN: 978-1-118-19335-8 (ebk)
ISBN: 978-1-118-19336-5 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or

108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available
in standard print versions of this book may appear or be packaged in all book formats. If you have purchased a version of
this book that did not include media that is referenced by or accompanies a standard print version, you may request this
media by visiting http: //booksupport.wiley.com. For more information about Wiley products, visit us at
www.wiley.com.

Library of Congress Control Number: 2011905204

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Flash, Flex, and AIR are registered trademarks of Adobe
Systems, Incorporated. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not
associated with any product or vendor mentioned in this book.

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com

This book is dedicated to my wife, Joanna, and to the
“little one,” our beautiful darling daughter, Olivia.

Love you both to bits!

Xx

ABOUT THE AUTHOR

JERMAINE G. ANDERSON works within the Software Engineering department of
British Sky Broadcasting in London, UK, currently as Scrum Master, where he
manages the technical delivery for an Agile team responsible for the short-form
online video platform.

In recent years, Jermaine’s work has predominantly centered on video streaming,
where he has been instrumental in creating cutting-edge and innovative products,
specializing in Flash, the Flex framework, and, more recently, AIR.

Jermaine grew up in the town of Wincobank, Sheffield, where he developed his passion for science,
technology, art, design, and computing. From an early age he started coding on the family computer,
using BASIC on an Amstrad CPC 6128. When Jermaine was eight years old, his father set him the
task of designing a level for the critically acclaimed U.S. Gold computer game Gauntlet, which he
completed, only to discover that there was a submission date for the level entry, and that date had
passed, to Jermaine’s disappointment. He cites this as one of the early lessons he learned, to always
do something for the enjoyment, and rewards come in various guises. Ultimately, problem solving
and working with technology are his main drivers working in online media, driven by the Internet.

Having earned a BSc (Hons) degree in Chemistry at The University of Birmingham, and a MSc in
Computer Studies from Sheffield Hallam University, Jermaine devoted much of his professional
career to working with Flash and online media over the last 11 years, taking a keen interest in
mobile application development from early 2004.

In 2005, Jermaine was awarded the “Best Productivity” category for his Mobile TV application, a
concept that he designed and developed for the Macromedia Flash Lite Contest.

Jermaine’s first book, Professional Flash Lite Mobile Application Development (Wrox, 2010),
focuses on structuring several mobile application concepts using the PureMVC framework targeting
the Flash Lite player. His second book, Beginning Flash, Flex, and AIR Development for Mobile
Devices, focuses on the Flex framework for mobile development, targeting Android, BlackBerry,
and i0S devices.

Jermaine tweets at www. twitter.com/jganderson and writes his personal blog at
www.Jjgorganic.co.uk/blog.

ABOUT THE TECHNICAL EDITOR

DARREN OSADCHUK has been creating games and applications in Flash for
approximately 10 years. In 20035, he started Ludicrous Software and began
developing games for Flash Lite-enabled mobile devices. Since then, Ludicrous
Software’s games have been available on a variety of platforms, including Apple’s
App Store, the Android Market, Amazon’s Appstore, BlackBerry App World, and
Nokia’s Ovi Store. In addition to games published under the banner of Ludicrous
Software, Darren has developed mobile and web games and applications for
clients around the world. He has a Bachelor of Arts in Political Science from the
University of Manitoba and a Master of Arts in Contemporary Social and Political Thought from
the University of Victoria, British Columbia.

CREDITS

EXECUTIVE EDITOR
Robert Elliott

PROJECT EDITORS
William Bridges
John Sleeva

TECHNICAL EDITOR
Darren Osadchuk

PRODUCTION EDITOR
Rebecca Anderson

COPY EDITOR
Kim Cofer

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER
Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

PROOFREADER
Nancy Carrasco

INDEXER
Robert Swanson

COVER DESIGNER
LeAndra Young

COVER IMAGE
© Lise Gagne

ACKNOWLEDGMENTS

FIRST, | WANT TO THANK JOANNA for being an incredibly supportive wife, whom I have known for

12 years, and is still the most intelligent person I know. Jo is a real-life “firefighter” and has helped
me to accomplish this book, every step of the way. Thank you for your patience and understanding
as I worked to finish the book at all kinds of crazy hours. And thank you for taking care of all the

things that would have been a distraction to me. And no, I don’t mean LO. I love you.

Olivia, mummy and daddy love you lots. You have been a true inspiration over the 18 months
since you came into our world. Thank you for being an angel.

I want to thank everyone at Wrox and Wiley for all their support. Thank you for sticking with the
changes, especially when the volume of updates brought in for iOS seemed mega!

Thank you to the former Wiley acquisition editor Scott Meyers, for bringing the book to the
attention of executive editor Robert Elliot. Bob, many thanks for your support and overall steer.

I would also like to say a big thank you to project editors William Bridges and John Sleeva, copy
editor Kim Cofer, production editor Becca Anderson, editorial manager Mary Beth Wakefield,
and technical editor Darren Osadchuk, for all your contributions and for helping the book
become ship-shape.

Finally, many thanks to my family and friends, for the love and support they gave me while
I was writing this book.

—JERMAINE G. ANDERSON

CONTENTS

INTRODUCTION

CHAPTER 1: AN INTRODUCTION TO FLASH, FLEX, AND AIR

XXi

-

Adobe Flash 1
Flash on Mobile Devices 2
ActionScript 3.0 2
ECMAScript 2
Key Concepts 3
The Flex Framework 1"
Flex 4.5.1 1
MXML 12
Spark Library Components 14
Data Binding 21
Flex Mobile Application Structure 22
Considerations for Mobile Development 31
Adobe AIR 31
Summary 32
CHAPTER 2: GETTING STARTED 35
Using Flash Builder 4.5.1 35
Working with Workspaces 36
Using the Flash Perspective 37
Using the Flash Debug Perspective 38
Using the Source and Design Views 39
Creating a Mobile Project Using Flash Builder 4
Creating a Hello World App Example 41
Defining Run Configurations 51
Running Mobile Applications on the Desktop 52
Running Mobile Applications on the Device 55
Summary 64
CHAPTER 3: BUILDING AIR APPLICATIONS FOR ANDROID,
BLACKBERRY, AND IOS DEVICES 67
AIR Application Descriptor Files 67
Setting Properties in the AIR Application Descriptor File 68
Manually Editing the Application Descriptor File
for the Hello World App 69

CONTENTS

BlackBerry Tablet OS Configuration 79
Packaging for Google Android 82
Packaging for Apple iOS 88
Packaging for BlackBerry Tablet OS 94
Updating AIR Applications 96
Retrieving Details from the Application Descriptor File 97
Using the Version Number 97
Summary 98
CHAPTER 4: TOUCH, MULTITOUCH, AND GESTURES 101
Multitouch Interactions 102
Determining Touch Input Support 102
Creating a Multitouch and Gestures App Example 103
Touch Event Handling 106
Registering Touch Events on Interactive Objects 14
Determining the Supported Touch Points 117
Gesture Interactions 17
Determining Which Gestures Are Supported on a Device 17
Gesture Events and Event Handling 18
Registering Gesture Events on Interactive Objects 19
Handling Gesture Events 124
Utilizing the Multitouch Panel in Device Central 128
Summary 128
CHAPTER 5: DEVELOPING FOR MULTIPLE SCREEN SIZES 131
Considerations for Multiple Screen Sizes 132
Pixel Density 132
Utilizing Device DPI 133
Adapting Content to Stage Size 138
Using the StageScaleMode and StageAlign Classes 138
Handling Stage Resize Events 140
Creating the Sprite Layout App Example 140
Handling Device Orientation 151
Using the StageOrientation Class 152
Using the StageOrientationEvent Class 152
Using Layouts in Flex 154
Aligning Items in Group Containers 155
Summary 174

xviii

CONTENTS

CHAPTER 6: DEBUGGING APPLICATIONS 177
Setting Breakpoints 177
Global Error Handling 188
Handling Uncaught Errors 188
Try...Catch Statements 191
Stepping through Code 193
Summary 196

CHAPTER 7: WORKING WITH THE FILESYSTEM 199
Reading from the Filesystem 200

The File and FileStream Classes 200
Creating a Files Explorer App Example 203
Modifying Files and Filesystems 216
Creating New Files and Directories 216
Utilizing Browse Dialogs 229
Opening a Single File 230
Opening Multiple Files 230
Saving a Single File to a Location 236
Summary 237

CHAPTER 8: WORKING WITH DATA 239

Detecting Changes in Network Availability 239
Retrieving Data with URLRequest 240
Monitoring the URLRequest Object 240
Creating the Maintaining Data App Example 241

Using SQLite for Storing Data 247
Creating a SQLite Database 248

Summary 286

CHAPTER 9: WORKING WITH AUDIO AND VIDEO 289

Introducing the Open Source Media Framework 289
Creating a URLResource Object 290
Creating a MediaElement Object 291
Media Traits 292
Using the MediaTraitType Class to Identify Traits 293
Using the MediaPlayer to Play Media Elements 294
Using the MediaPlayerSprite Class to Play Media Resources 297

Xix

CONTENTS

Handling Trait Events 298
Using an AudioEvent Object 298
Using the Flex OSMF Wrapper 300
Using the VideoPlayer Component 300
Creating a MediaPlayer Example 301
Summary 313
CHAPTER 10: UTILIZING DEVICE FEATURES 315
Using the Device’s Camera 315
Using the CameraUl Class 316
Creating a Camera App Example 316
Capturing Sound Using the Device’s Microphone 323
Using the Microphone Class 323
Using the SampleDataEvent Class 324
Creating a Microphone App Example 326
Utilizing the Device’s Web Controller 336
Using the StageWebView Class 336
Creating a Browser App Example 338
Utilizing the Device’s Geolocation Sensor 346
Using the Geolocation Class 346
Using the GeolocationEvent Class 347
Creating a Geolocation App Example 348
Summary 355
INDEX 359

XX

INTRODUCTION

THERE’S A GREAT DEMAND TODAY for mobile content and applications. Many of the leading device
manufacturers and platforms are supporting Adobe Flash Player, and since many of them are also
integrating Adobe AIR directly into the mobile device’s OS, there has never been a better time for
getting to know how to author content designed for the small screen.

With the fast-moving pace of the mobile industry it’s really important to keep abreast of the latest
developments in the Adobe Flash Platform, and so Beginning Flash, Flex, and AIR Development
for Mobile Devices includes all the key developments of “Flash on mobile” since my first book,
Professional Flash Lite Mobile Development (Wrox, 2010).

Over the course of the book, you learn how to utilize industry-leading software for authoring
mobile content. You’ll become familiar with the Adobe Flex framework and the MXML
components optimized for mobile devices. You’ll also learn how to utilize the Flash Player 10.3 and
AIR ActionScript 3.0 APIs.

The material set out in this book is really targeted for developers at all levels. At a base level it will
help you start creating Flash-enabled mobile applications. This book also contains extensive code
examples that are explained in detail and essentially cover how you create mobile applications from
the ground up, targeted at Flash Player 10.1 and AIR 2.5, using ActionScript 3.0. The book is for
anyone wanting to showcase mobile content across a range of mobile platforms.

WHOM THIS BOOK IS FOR

This book is aimed at mobile developers looking to create and distribute new mobile applications.

Programmers and developers of all experiences will be able to use the book as a reference on how to
author content for mobiles and devices using Adobe Flash, Flex, and AIR.

The book is designed to help both experienced mobile developers and newcomers gain a
comprehensive introduction to Flash, Flex, and AIR. As such, Chapters 1 and 2 are primarily aimed
at newcomers to the Adobe Flash Platform; the background to Flash, Flex, and AIR is discussed,
along with the tools used in the creation of mobile applications — namely, Flash Builder and Device
Central CS5.5.

WHAT THIS BOOK COVERS

Beginning Flash, Flex, and AIR Development for Mobile Devices introduces the reader to a number
of topics covering the key authoring aspects of developing for the current iteration of the Adobe
Flash Platform, guiding the reader through the following chapters:

» Chapter 1 — An Introduction to Flash, Flex, and AIR: This chapter provides an overview
of the Adobe Flash Platform covering the Flash Player, the Flex framework, and the Adobe

Download

INTRODUCTION

Integrated Runtime. It also takes the reader through the basics of programming with AS3 and
a light introduction to MXML.

» Chapter 2 — Getting Started: This chapter focuses on getting started with the tools to carry
out mobile development, taking a look at three essential tools used in developing and testing
Flash content: Adobe Flash Builder, Adobe Flash Professional CS5, and Adobe Device
Central CSS.

» Chapter 3 — Building AIR Applications for Android, BlackBerry, and iOS: This chapter takes
you through building AIR 2.5 applications for the Google Android mobile platform, with a
heavy portion of the chapter focusing on the Adobe AIR Application Descriptor settings. Here
you also learn how you update AIR applications for the Google Android platform.

» Chapter 4 — Touch, Multitouch, and Gestures: This chapter covers the user input features
introduced in Flash Player 10.1 and provides extensive code listings for you to follow, using
Adobe Flash Builder 4.5 and Adobe Device Central CSS5 to create and test the examples.

» Chapter 5 — Developing for Multiple Screen Sizes: This chapter guides you through the best
practices for creating content for multiple devices with different screen sizes.

» Chapter 6 — Debugging Applications: This chapter shows you how to utilize the Flash
Debug Perspective in Adobe Flash Builder. It also covers Error Handling and in particular
Global Error Handling, a feature introduced in Flash Player 10.1.

» Chapter 7 — Working with the Filesystem: This chapter details how to use the AIR File
System APIL, and walks you through creating a Files Explorer mobile application using
MXML and the Flex framework in Adobe Flash Builder.

» Chapter 8 — Working with Data: This chapter introduces some of the ways you can utilize
data within mobile applications. It also focuses on SQLite and guides you through the
creation of a Teams database application.

» Chapter 9 — Working with Audio and Video: This chapter highlights multiple ways in which
you can include sound and video in your mobile applications, and introduces you to the
Open Source Media Framework (OSMF) framework.

» Chapter 10 — Utilizing Device Features: This chapter draws your attention to the APIs
introduced in AIR 2.7 that particularly rely on device support, including utilizing the device’s
camera, microphone, web browser, and geolocation features.

HOW THIS BOOK IS STRUCTURED

xxii

The book is written in such a way that it allows the reader to pick up and start from any chapter.

By design, Chapters 1 through 3 contain relatively little code when compared to later chapters; from
Chapter 4 onwards, you’ll notice a substantial increase in the number of examples to follow and
tasks to carry out.

INTRODUCTION

Each chapter in the book will start with a list of chapter objectives and an introduction,
and then end with a chapter summary, exercises, and a table of the key concepts learned in
the chapter.

Chapter 10 will feature more tasks that rely on the reader using a mobile device to test content.

WHAT YOU NEED TO USE THIS BOOK

You will need to have one of the following Operating Systems:
» Mac OS
> Windows
» Linux
To use the code samples and run the example applications in this book you will need the following:
» Adobe Flash Builder 4.5
» Adobe Device Central CSS5.5
> Adobe AIR 2.7 SDK

While you do not explicitly need a Flash- or AIR-enabled mobile device, to complete all the tasks, a
Google Android device running Gingerbread 2.3.4 is recommended. Many of the examples covered
in this book, in addition to Google Android, will run on Apple iOS devices with version 4.x and
above, including the iPad, iPhone, and iPod Touch devices. Each of the examples will also work on
the BlackBerry PlayBook device, running the BlackBerry Tablet OS.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book. Among these are the Try It Out activity and the accompanying
How It Works. A sample of the format follows:

LAANNCI M The Try It Out is an exercise you should work through, following
the text in the book.

1. The exercise usually consists of a set of steps.
2. Each step has a number.

3. Follow the steps through with your copy of the database.

xxiii

INTRODUCTION

WARNING Boxes with a warning icon like this one hold important, not-to-be-
forgotten information that is directly relevant to the surrounding text.

NOTE The pencil icon indicates notes, tips, hints, tricks, and asides to the
current discussion.

As for styles in the text:
> We highlight new terms and important words when we introduce them.
> We show filenames, URLs, and code within the text like so: object .method ().

We present code in a few different ways:

We use this monofont type with no highlighting for some of the code examples.

We use bold to emphasize code that is particularly important in the present
context.

Also, the Source view in Flash Builder provides a rich color scheme to indicate various parts of code
syntax. This is a great tool to help you learn language features in the editor and to help prevent
mistakes as you code. To reinforce the colors used in Flash Builder, the code listings in this book are
colorized using colors similar to what you would see on screen in Flash Builder working with the
book’s code. In order to optimize print clarity, some colors have a slightly different hue in print than
what you see on screen. But all the colors for the code in this book should be close enough to the
default Flash Builder colors to give you an accurate representation of the colors.

The following example taken from Chapter 4 shows how code could be colored and highlighted:

package
{
import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;
import flash.ui.Multitouch;

public class MultitouchAndGestures extends Sprite
{

private var multitouch:TextField;

public function MultitouchAndGestures ()

XXiv

INTRODUCTION

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code files that accompany the book. All the source code used in this
book is available for download at www.wrox.com. When at the site, simply locate the book’s title
(use the Search box or one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book. Code that is included on the website is highlighted

by the following icon:

Available for
download on
Wrox.com

Listings include the filename in the title and also are identified by a Listing number. If the
downloaded item is just a code snippet, you’ll find the filename in a code note such as this in
the text:

Code snippet filename

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-0-470-94815-6.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete

XXV

http://www.wrox.com
http://www.wrox.com

INTRODUCTION

book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will find a number of different forums that will help you, not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXVi

{ 1 1 1]]

. vy S - .

(11 1]
900090 E

b——b—b—b—-—4 R

An Introduction to Flash,
Flex, and AIR

WHAT YOU WILL LEARN IN THIS CHAPTER:

An overview of the Adobe Flash platform
Outlining the key concepts of the ActionScript 3.0 language

Exploring the Flex framework and MXML components

Y VY VY VY

A brief introduction to Adobe AIR
In this chapter you’ll take a look at each of the core elements of the book: Flash, Flex,

and AIR.

First you’ll cover a number of the core aspects of Flash and the programming language
ActionScript 3.0, which this book uses.

You’ll then explore the key features of the Flex framework and MXML components, looking
at examples through code snippets.

Lastly, you’ll be introduced to features of AIR, the Adobe Integrated Runtime.

ADOBE FLASH

Adobe’s Flash platform consists of several Flash-based runtime clients: Flash Player, Flash Lite,
and Adobe AIR. Each run time has its own set of functions and APIs that are specific for that
run time.

The Flash platform also encompasses a component framework, Flex. All these elements, the
runtime clients and component frameworks, support and utilize the SWF format.

2

CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

Flash on Mobile Devices

Flash is predominantly used for the web deployment of rich content and
applications. It is installed as a web browser plug-in, and can also run
content in standalone mode. The Adobe Flash logo is shown in Figure 1-1.

There are currently two ways in which Flash has dedicated support on
mobile devices. These involve using Flash Lite and Flash Player, respectively.

Flash Lite 4.0 FIGURE 1-1: The Adobe

Flash Lite runs Flash content and applications intended to run on Flash logo

performance-limited mobile devices. Flash Lite offers a different set of capabilities compared with
Flash Player. Until recently Flash Lite supported only the ActionScript 2.0 (AS2). Currently Flash
Lite is in version 4.0 and the run time now supports ActionScript 3.0 (AS3).

To learn more about Flash Lite and how you can create mobile applications using the technology,
check out the book Professional Flash Lite Mobile Application Development, by Jermaine
Anderson (Wrox, 2010).

Flash Player 10.x

Flash Player 10.1 was the first release of Flash Player aimed at supporting the development of
content and SWF format deployment to both traditional web browser and mobile devices.

At the time of writing, a beta for Adobe Flash Player 11 was underway, allowing developers to
preview new and enhanced features targeting the next release of the run time. With the potential for
new APIs to be dropped, none of the features could be covered in this book, but look for an

update. For more information, visit the Adobe Labs website (1abs.adobe.com/technologies/) and
search for Adobe Flash Player 11.

This book centers on the development of Flash content targeting the latest release, Adobe Flash
Player 10.3 using AS3.

Flash is fully supported on Google Android and the BlackBerry Tablet OS mobile platforms. Unless
you’ve been hiding under a rock for the past few years, you’ll know Flash isn’t supported on the
Apple i0S platform. However, using AS3 and AIR, you can target your applications to run on the
platform via standalone applications.

ACTIONSCRIPT 3.0

AS3 is an object-oriented language for creating media content for playback in the Flash runtime
clients’ Flash Player, Flash Lite, and Adobe AIR.

ECMAScript

The core of the AS3 language is based on the ECMAScript 4th Edition language specification,
which you can view on the ECMA International website at www.ecmascript.org/. You can view
the AS3 specification at http://livedocs.adobe.com/specs/actionscript/3.

ActionScript 3.0 | 3

AS3 has a syntax that is very similar to Java; it is also similar to the widely used JavaScript, the
popular language used in web browsers. If you are from either of these programming disciplines,
then AS3 will be very familiar.

ECMAScript 4 defines a number of rules for how code is written in AS3, including grammar and
syntax. These dictate that code be written in a particular way, which should mean that code written
by one developer will be recognizable to another.

A number of core programming concepts, such as variables, functions, classes, objects, expressions,
and statements, form part of ECMAScript 4 and are inherited by AS3.

ECMAScript 4 also defines several built-in data types for AS3, allowing developers to utilize
frequent data types such as an array, Boolean, number, and string.

Key Concepts

You need to grasp a number of important key concepts when programming with AS3; these will
stand you in good stead for the rest of this book. Here you’ll take a look at some of these concepts.

Classes, Objects, and Instances

A class is what gives an object its properties and the features by which an object accomplishes
particular tasks through its methods and functions. A class is essentially a blueprint for an object.

AS3 classes are text-based files identified by the .as file extension. A class is defined by the class
keyword, followed by the name of the class, which should start with a capital letter. It is this class
name that must match the filename the class is created in. The following snippet shows you an
example of a class called Mobile that’s being defined:

class Mobile {}

An object represents part of a program that describes a particular thing. That thing could be a
shape that has three sides and is colored blue; a film that has a PG rating; or a mobile device that
allows you to store contacts. An object can be anything you can think of.

Objects have properties that give them their character and also have methods that allow them to
carry out particular tasks.

In AS3, objects are created from classes by instantiating them, calling the new keyword before the
class name and parentheses (). The following snippet shows you an example of the Mobile class
being instantiated:

new Mobile();

Packages

A package defines the path to a class, which should be uniquely identified in respect to other classes
that may have the same class name. Packages also reflect the folder structure.

Ultimately, packages are used to avoid conflicts between classes.

a

CHAPTER1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

It is best practice to give packages meaningful names. Grouping similar classes together in a package
is common practice and makes it easier to search and utilize different classes when programming.

The Mobile class could well be placed in a package called devices, sitting alongside another class
called Tablet, if that class were to be created.

package devices

{
class Mobile {}
}

While this example shows a fully qualified package, the naming convention is usually more
granular, and with the package name defined for a class set as a dot-delimited, reverse-DNS-style
string. For example, the devices package declaration could quite easily have been referenced as
part of the Wrox.com domain, with the Chapter 1 name com.wrox.chl.devices, as shown in the
following snippet:

package com.wrox.chl.devices
{

class Mobile {}
}

Packages are also used when importing classes into AS documents, denoted by the import keyword, as
shown in the following code snippet where the package com.wrox.chl.devices example is used again:

import com.wrox.chl.devices.Mobile;

A class has to be referenced by its full package reference before it can be used.

NOTE In AS3 you need to specify the package declaration, ensuring that the
class declaration is made inside the package curly brackets. The package name
can be left blank, but this should be avoided. In AS2 the package declaration
was absent in class creation.

Functions, Methods, and Scope

A function is what allows an object to do a particular task and perform a set of reusable
instructions. Functions are defined using the function keyword followed by the name of the task.

Class Scope Modifiers

Four keywords give scope to the properties and functions of an object: public, private,
protected, and internal.

The public scope modifier means that a variable property or function can be accessed anywhere. The
protected scope modifier means that only the current class and subclasses can use the variable or
function. The private scope modifier restricts access to within the class only, and the internal
scope modifier restricts the scope to the package it is contained in.

ActionScript 3.0 |

The Class Constructor

The constructor of a class is what initializes an object and creates it. The constructor is basically a
class method, which must be declared public. The following snippet shows the constructor for the
Mobile class, which is simply Mobile ():

package devices
{
public class Mobile
{
public function Mobile()
{
// Code to initialize Mobile

}

Return Types

Depending on the set of instructions found in the function, the return type gives an indication of the
value that can be generated by the function call. In the following snippet, a public function called
launchapp () is defined, with the return type specified as void:

package devices
{
public class Mobile
{
public function Mobile()
{
// Code to initialize Mobile

}

public function launchApp():void
{
// Code to launch an app on the mobile.

}

}

The void keyword indicates that a value isn’t expected to be returned by the function. Also note
that class constructors don’t specify a return type.

Variables

A variable is a unique identifier associated with an object that can hold a reference to a value. In
AS3, data types are given to variables so that they can be checked at compile time. Variables are
defined by the var keyword and then followed by the variable name.

In a class, variables that are added outside of functions can be referenced within the scope of the
class; these are known as instance variables. These describe an object’s characteristics and are what
give an object its properties.

6 | CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

The following code snippet shows two private variables being declared: contacts, an array data
type, and phoneNumber, a Number data type:

package devices
{
public class Mobile
{
private var contacts:Array;
private var phoneNumber :Number;

public function Mobile()
{

// Code to initialize Mobile

public function launchApp():void
{
// Code to launch an app on the mobile.

The following code demonstrates creating a Mobile object and assigning it to the variable
mobileObj:

var mobileObj:Mobile = new Mobile();

Notice here that the data type assigned to the object is Mobile. Whenever you instantiate an object
in this way, you need to define the data type on the variable; otherwise, you’ll get a “variable has no
type declaration” warning.

Within a method or function, instance variables can be used to set or reference data values. In the
following code snippet the phoneNumber variable is assigned a value within the constructor method
of Mobile, using the this keyword:

package devices
{
public class Mobile
{
private var contacts:Array;
private var phoneNumber :Number;

public function Mobile()
{
this.phoneNumber = 011003637;

public function launchApp () :void
{
// Code to launch an app on the mobile.

ActionScript 3.0 |

7

Static Variables and Methods

A static reference relates to class methods and variables that can be referenced without instantiating
the class and creating an object.

In the following code snippet, the Mobile class is given the static variable deviceType which is defined
as a string and is given the value smartphone. A static function called switchon () is also defined.

package devices

{
public class Mobile
{

public static var deviceType:String = "Smartphone";

private var contacts:Array;
private var phoneNumber :Number;

public function Mobile()

{
this.phoneNumber = 011003637;

public function launchApp () :void
{

// Code to launch an app on the mobile.
}

public static function switchOn() :void
{

// Code to switch on the device.

The following code demonstrates how you would call the switchon () function:

Mobile.switchOn/() ;

Parameters and Arguments

A parameter is a local variable that is defined and given a data type in the parentheses of a function
declaration.

Instance methods allow you to define functions that exhibit an object’s features and the things it can
do. Parameters can be defined on instance methods to allow values to be passed to an object.

The following snippet shows a new instance method for the Mobile class defined, called
addcontact (). The method has a public scope and has two parameters: cName, a String data type
representing a contact’s name, and cNumber, a Number data type representing the contact’s mobile number.

package devices

{
public class Mobile
{

8 | CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

public static var deviceType:String = "Smartphone";

private var contacts:Array;
private var phoneNumber :Number;

public function Mobile()
{
this.phoneNumber = 011003637;

public function addContact (cName:String, cNumber:Number) :void
{
// Code to add a new contact

}

public function launchApp():void
{

// Code to launch an app on the mobile.
}

public static function switchOn() :void
{

// Code to switch on the device.

Note that local variables are only temporary.

To invoke or call the addcontact () method, you need to use an instance of the Mobile class and
supply what are called the arguments for the method. In this case there are two arguments, as
shown in the following snippet:

var mobileObj:Mobile = new Mobile();
mobileObj.addContact ("Olivia", 736300110);

Here the values 0livia and 736300110 are both arguments. Each argument needs to match the data
types of the parameters specified for the method.

Conditional and Loop statements

A conditional statement is code that executes when a specific condition has been met.

In the following code snippet another static function called switchoff () has been added to the
Mobile class. Here you will see a conditional i f statement that checks the variable 1son, a Boolean
value which is initially set to false in the class. In switchon (), there is an if statement to check
to see if the ison value is false; this is indicated by the exclamation (1) preceding the Boolean
value (that is, 1is0n). The switchoff () function demonstrates another way of writing the same
by asking whether the ison variable is equal to false, and then executing the code within the else
block of the i f statement by setting ison to false.

package devices
{

ActionScript 3.0

9

public class Mobile
{

public static var deviceType:String = "Smartphone";

private var contacts:Array;
private var phoneNumber :Number;
private var isOn:Boolean = false;

public function Mobile()
{
this.phoneNumber = 011003637;

}
public function addContact (cName:String, cNumber:Number) :void
{
// Code to add a new contact
}

public function launchApp():void
{

// Code to launch an app on the mobile.

public static function switchOn() :void
{
if(!1s0n)
{
isOn = true;
// Now add code to switch on the device.

} else {

// Do nothing, device is already on.

public static function switchOff () :void
{
1f(isOn == false)
{
// Do nothing, device is already off.
} else {

isOn = false;

// Now add code to switch off the device.

10 | CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

A loop is a statement in which code is executed for as long as a particular condition is met.

The following code snippet shows how the switchon () function could be updated to include a
while loop statement, which executes the code within the block as long as the seconds variable is
more than 0. The value held by seconds reduces by 1 each time the loop runs.

public static function switchOn() :void
{

if(!isOn)

{

isOn = true;
var seconds:Number = 10;

while (seconds > 0)
{
seconds = seconds - 1;

}
// Now add code to switch on the device.
} else {

// Do nothing, device is already on.

Another loop frequently used in AS development is the for loop statement. In the following code
snippet you’ll see how the switchon () function could be updated to include a for loop statement,
which executes the code within the block as long as the seconds variable is more than 10. This time
the value held by seconds increases by 1 each time the loop executes.

public static function switchOn() :void
{

1f(!1s0n)

{

isOn = true;
for(var seconds:Number = 0; seconds < 10; seconds++)

{

// Now add code to switch on the device.

} else {

// Do nothing, device is already on.

The Flex Framework | 11

Inheritance

Inberitance describes the relationship between two or more classes where one class inherits the
properties and method definitions of another class.

In the following example you’ll see how the class GoogleNexuss is created from the Mobile class:

package devices

{
import devices.Mobile;

public class GoogleNexusS extends Mobile
{
public function GoogleNexusS ()

{
super () ;

}

}

Note here that the extend keyword is used to reference the class that is being extended. And the
super () function called in the GoogleNexuss class constructor method indicates that, when an
instance is created from instantiating GoogleNexuss, it will call the Mobile class constructor
function also. In this context the GoogleNexuss class is referred to as a subclass of Mobile, and
Mobile is the parent class of GoogleNexussS.

Over the course of this book you’ll go through many more examples of using AS3 in mobile
application development.

THE FLEX FRAMEWORK

Flex is a framework that leverages an underlying library of AS3 classes to provide
UI components that allow developers to build rich media applications and
compile to the SWF format. Adobe Flex builds on top of the core runtime APIs
provided by Flash Player and Adobe AIR.

Flex is available through the Flash Builder IDE, a tool that you will take a look
at in the next chapter. Flex is also available through a software development kit FIGURE 1-2: The
(SDK) allowing SWF format content to be created through command line tools. Adobe Flex logo
The Adobe Flex logo is shown in Figure 1-2.

Flex 4.51

This release introduces support for developing mobile applications using the Flex framework. This
book uses the components that are available in the Flex 4.5.1 SDK and the Flash Builder 4.5.1
update release of the latest Flash Builder tool. There will be more on Flash Builder

in Chapter 2.

12 | CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

Mobile applications for touch screen devices undoubtedly should differ from desktop and web
applications for a number of reasons. While mobile devices are becoming more capable, there are
important considerations you need to be aware of when developing applications. These include:

» Ul design: Mobile devices have small screens and high pixel densities, and so applications
have to be designed to account for sizeable components on screens that are easy to
interact with.

> Screen resolution: Mobile devices can have different screen resolutions, and the pixel
densities across most mobile device screens are higher than those of desktop monitors. So
applications have to adapt well to those displays.

» Touch screen input: Mobile devices that provide support for touch interaction must allow for
touch input via the application.

» Memory availability and processor performance: Mobile devices in most cases have limited
memory availability, as well as lower CPU and GPU performances, and so applications have
to be processor-friendly.

Depending on your development experience or background, these points may or may not seem quite
so obvious. But what is important here is for you to understand some of the features that the Flex
framework helps to address in mobile application development.

The Flex framework introduces the MXML language.

MXML

MXML is an XML tag-based markup language, used in the layout and design of components and
data assets for Flex-based user interfaces. As an XML format, MXML is also structured, so there
are several rules you have to follow when you write it, and the contents must be well formed and
valid XML to preserve the integrity of the document.

Every MXML file is a class, but instead of having a .as file extension, it has a .mxml file extension.
And instead of simply having AS3 code and syntax, it can contain both the MXML markup and AS3.

XML Namespaces

In MXML documents, an XML namespace refers to a valid Uniform Resource Identifier

(URI). There is a World Wide Web Consortium (W3C) URI clarification at www.w3 . org/TR/
uri-clarification/. The URI allows for declarative tags, attributes, and sets of components, to be
uniquely identified within the scope of the MXML document.

Three default namespaces are used in this book:

» fx: This namespace references special language declarative tags, as defined by the
MXML 2009 — Functional and Design Specification (Adobe Open Source Wiki, http://
opensource.adobe.com/wiki/display/flexsdk/MXML+2009).

> s: This namespace references the Spark Components Library, introduced into the Flex 4
framework.

» mx: This namespace references the MXML Components Library that was introduced in the
Flex 3 framework but also supported in the Flex 4 framework.

The Flex Framework | 13

The following code snippet shows how the £x, s, and mx namespaces are defined with associated
URTIs, in the root of the opening <s:Application> tag:

<?xml version="1.0" encoding="utf-8"?>

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx">

</s:Application>

The <s:Application> tag is a container that enables you to start adding visual and interactive
components to your mobile application using the Flex framework, without the need to define other
containers.

Notice that the namespace for application is given the s prefix. This is because the Application
component is derived from the Spark Component Library.

The Spark component features are specifically targeted for mobile development, to conserve memory.
Namespaces can also be referenced for local custom components.
Essentially, namespaces are used to do the following:

1. Specify the language version of the document

2. Map XML and CSS tag names to an AS class name

Both these allow the Flex compiler to resolve the implementation for both default and custom
language and component tags.

In general, mobile applications should utilize the fx and s XML namespaces, the majority of which
have been optimized for mobile devices.

y NOTE |[f it makes it easier, think of the namespaces as individual import
statements that allow you to use only certain AS3 classes that have been
imported into that document. For each namespace a number of classes can be
used, once that namespace has been declared in the document.

The <fx:Script> tag declaration permits AS3 code to be added to the document and to be
referenced by other elements in the MXML document, as you’ll see shortly.

As with AS3, MXML follows particular rules for coding. One such MXML rule is that an element
must have an opening and closing tag if it contains other values or nests other tags.

With MXML specifying components like the button requires a lot less code. This is mainly because the
Flex framework contains a lot of the logic and hides it from the developer in design time. Tags that don’t
need to contain nested values in your application may simply be written with an enclosing forward

slash (/), as shown in the following snippet, which highlights the <fx:Declarations> tag being empty:

<fx:Declarations/>

14 | CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

Usually, you will see the <fx:Declarations> tag with an MXML comment nested between the
opening <fx:Declarations> tag and the closing </fx:Declarations> tag:

<fx:Declarations>

<!-- Place non-visual elements (e.g., services, values objects) -->
</fx:Declarations>

As highlighted in the comment, the <fx:Declarations> tag enables you to define value objects for
use within MXML and AS3.

The following code snippet shows how a string, <fx: String>, and an integer, <fx: int>, can be in
<fx:Declarations> to specify two values, “Jermaine G. Anderson,” and a random number “31,”
respectively:

<fx:Declarations>
<fx:String id="myName">Jermaine G. Anderson</fx:String>
<fx:int id="myAge">31</fx:int>

</fx:Declarations>

Notice the id attribute being used in each value object declaration.

The id Attribute

In MXML the id attribute is a special property used as a unique identifier for tags, setting the name
property on the underlying AS3 class. This allows components to be referenced through AS3 defined
in a <fx:Script> tag.

The following code snippet shows an instance of the <s:Label> component being referenced
within the <fx:script> declaration. The id property on <s:Label> has been set to myLabel,
allowing the text property on the component to be set via AS3 within the function called
setLabelText (), when it is called.

<fx:Script>
<! [CDATA [
private function setLabelText () :void
{
myLabel.text = "Hello World";

11>
</fx:Script>

<s:Label id="myLabel"/>

In MXML, each property available for a particular tag component can be set or referenced in AS3
using the id.

Spark Library Components

Spark is the name of the component library, which is a key aspect of the Flex framework and Flash
Builder.

The Flex Framework | 15

These components and their skins have been optimized to run out of the box on mobile touch screen
devices; in Flex 4.5.1, components have been added to address common application design problems
specific to smartphones.

The Spark architecture encompasses a skinning model that provides a separation of a component’s
visual aspect from its working logic, allowing designers and developers more freedom, because

the visual elements of a Flex component can be designed independently of the implementation of the
logic behind the component.

While skinning isn’t a key focus of this book, you’ll get to know the Spark component library well,
enabling you to build relatively robust mobile applications in a very short amount of time.

In Flex, components are declared in their own namespaces. The majority of the components and
data elements defined by the <mx> namespace are not optimized for mobile, while the components
derived from the <s> namespaces have been optimized for applications on mobile devices. This book
predominantly uses the <s> set of components.

Once a namespace has been declared, the components can be referenced within the MXML
document.

The following subsections detail some of the core mobile components that are used throughout
this book.

The Label Component

The <s:Label> tag is a visual Spark component that renders a single line of text. The following
code snippet shows how the <s:Label> component renders the text “Hello World":

<s:Label text="Hello World"/>

The Text Input and Text Area Components

Both the <s:TextInput> and <s:TextArea> tags are visual Spark components that allow
users to enter text using a device’s native keyboard. The following code snippet shows how the
<s:TextInput> component displays the text “Type a name...” via a prompt property:

<s:TextInput prompt="Type a name..."/>

The text set by the prompt property will disappear when the user starts typing or when the
component gains focus, and regain the prompt text if the component loses focus or the user deletes
all the text.

Text for the components can be set and retrieved via the text property, as shown in the following
code snippet, which shows how the <s:Textarea> component displays the text “Once upon a
time...”

<s:TextArea text="Once upon a time..."/>

The <s:TextInput> component allows you to define whether the user input should be hidden by
asterisks via the displayAsPassword property. The <s:TextArea> component allows for multiple
lines of text to be written, whereas the <s: TextInput> does not.

16 | CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

The <s:TextInput> component is shown in Figure 1-3.

Text Input

The Button Component

Text Input (focused)

To add a Button component in an application, specify the <s:Button>

property as myButton, a 1label property with the text Hit Me!, and a

tag. In the following code snippet the <s:Button> tag defines the id [
click property set to a function named onClick(): [

- J J b L J

<s:Button id="myButton"

label="Hit Me!"
click="onClick(event)"/>

| Text Input (disabled) \

The onclick () function assigned to the click event handler needs to be
defined in the <fx:Script> tag.

FIGURE 1-3: The Spark Text
Input control, displaying the
default, focused, prompt,

The <s:Button> is shown in Figure 1-4. password, and disabled

states

The Button Bar Component

The <s:ButtonBar> tag allows you to create a collection of buttons that are
able to navigate between the views of the mobile application. Only one of the
buttons in the bar may be selected at any one time.

In the following code snippet, the two buttons are defined in the
<s:ButtonBar> component, Grid and Vertical List:

<s:ButtonBar>
<s:dataProvider>
<s:ArrayCollection>
<s:NavigatorContent id="gridBtn"
label="Grid"/>

<s:NavigatorContent id="listBtn"
label="Vertical List"/>
</s:ArrayCollection>
</s:dataProvider>
</s:ButtonBar>

The <s:ButtonBar> component is shown in Figure 1-5.

Button Bar

Button Bar (disabled) | Button Bar (selected and disabled)

FIGURE 1-5: The Spark Button Bar control, displaying the default,
down, selected, and disabled states

Button (disabled)

FIGURE 1-4: The
Spark Button control,
displaying the default,
down, and disabled
states

The Flex Framework |

17

The HTTP Service Component

Data can be accessed in a number of ways for applications, one of which is by using an HTTP

Service.

To utilize data over HTTP using MXML, the <s:HTTPService> tag can be used. The following

snippet shows how the <s:HTTPService> tag is defined:

<s:HTTPService id="httpService"
url="http://localhost/HTTPService"
fault="onFault (event)"
result="onResult (event)"
resultFormat="object"
showBusyCursor="true" />

The Web Service Component

To utilize data via a web service, the <s:WebService> tag can be used. The following snippet shows

how the <s:WebService> tag is defined:

<s:WebService id="service"
wsdl="wsdl"
useProxy="false"
showBusyCursor="true"
result="onResult (event)"
fault="onFault (event)"/>

The List Component

The following code snippet shows one of the ways in which

nested tags can be used in MXML for a single component. In this
example the <s:dataProvider> for the <s:List> component is an
<g:ArrayList>:

<s:List id="myList">
<s:dataProvider>
<s:ArrayList id="arrList"
source="[One, Two, Three]"/>
</s:dataProvider>
</s:List>

The <s:List> component is shown Figure 1-6.

Layout Declarations

List ltem

List ltem (down)

FIGURE 1-6: The Spark List
control, displaying the default,
down, selected states for each
List Item

A number of non-visual components can be used in MXML to specify the layout of an application

and to group visual elements.

The <s:1layout> component tag defines a layout, and this needs to nest an accompanying Layout

component tag to give the layout its properties.

18 | CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

The following lists each of the tags that can be nested within the opening <s: layout> and closing
</s:layout> tags:

> <s:BasicLayout>: Arranges components independently of each other, according to their
individual settings. To position each component within a layout, each child element’s position
needs to be explicitly defined, using the x and y properties of the child, or constraints.

> <s:ConstraintLayout>: Gives you the ability to create sibling-relative layouts by
constraining elements to the specified columns and rows.

> <s:HorizontalLayout>: To arrange the layout elements in a horizontal sequence, left to
right, with optional gaps between the elements and optional padding around the elements.

» <s:VerticalLayout>: To arrange the layout elements in a vertical sequence, top to bottom,
with optional gaps between the elements and optional padding around the sequence of elements.

» <s:FormItemLayout>: To provide a constraint-based layout to FormItems.

> <s:TileLayout>: To arrange equally sized cells of components in columns and rows, using
a number of properties that control orientation, count, size, gap, and justification of the
columns and the rows, in addition to an element’s alignment within a cell.

In the following code you see how the horizontal layout tag <s:HorizontalLayout> is defined:

<s:layout>
<s:HorizontalLayout/>
</s:layout>

Chapter 5 explores the use of the <s:HorizontalLayout> and the <s:VerticalLayout>
declarations in more detail.

The Group, HGroup, and VGroup Containers

The <s:Group>, <s :HGroup>, and <s: VGroup> tags are non-visual containers that allow you

to group components. Both the <s:HGroup> and <s:VGroup> containers are subclasses of the
<s:Group> tag. The <s:HGroup> tag uses <s:HorizontalLayout>, and so components that are
nested within the <s:HGroup> tag will be arranged horizontally from left to right. The <s: vGroup>
tag uses <s:VerticalLayout>, and so components that are nested within the <s:VGroup> tag are
arranged vertically from top to bottom.

In the following code snippet you see two buttons horizontally aligned using the <s:HGroup> tag,
with their 1abel properties set to Left and Right, respectively:

<s:HGroup id="buttonContainer"
width="100%"
height="100%">

<s:Button id="buttonl" label="Left"/>
<s:Button id="button2" label="Right"/>

</s:HGroup>

Contrast this with the following code snippet, where the two buttons are vertically aligned within the
<s:VGroup> tag. This time the 1abel properties are set to Top and Bottom, to indicate their arrangement.

The Flex Framework | 19

<s:VGroup id="buttonContainer"
width="100%"
height="100%">

<s:Button id="buttonl" label="Top"/>
<s:Button id="button2" label="Bottom"/>

</s:VGroup>

Throughout the book you will see examples of using <s : Group>, <s : HGroup>, and <s: VGroup> tags.

The CheckBox and RadioButton Controls

The <s:CheckBox> and <s:RadioButton> components are controls that provide a way for users to
make a selective choice.

To add a radio button, you need to specify the <s:RadioButton> tag. The following snippet shows
two radio buttons with their 1abel properties set to Radio 1 and Radio 2, grouped by their
groupName attributes, which are set to myRadioGroup. The selected property on the first radio
button is set to true, which means this will be as follows:

<s:RadioButton label="Radio 1"
groupName="myRadioGroup"
selected="true"/>

<s:RadioButton label="Radio 2"
groupName="myRadioGroup" />

The groupName property is used so that only one button in a group of radio buttons is selected
at a time.

The <s:CheckBox> and <s:RadioButton> components are shown in Figure 1-7.

@ Radio Button @ Check Box

6 Radio Button (down) Check Box (down)

@) Radio Button (disabled) Check Box (disabled)

(@) Radio Button (selected) @] Check Box (selected)

6 Radio Button (selected and down) i Check Box (selected and down)

| . | Radio Button (selected and disabled) w'| Check Box (selected and disabled)

FIGURE 1-7: The Spark Radio Button and Check Box controls

20

CHAPTER1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

The Image Component

Using the <s: Tmage> tag allows for image content to be included in an application via MXML. The
following code shows how to render an image with both its width and height properties set to 100:

<s:Image id="myImage"
width="100"
height="100"
source="flash.png" />

To reference a particular image you need to set the source property on the component to the image
file path you want to load, relative to the .swf file generating the content. The component can also
load image content via a URL over HTTP.

Throughout the book you will see examples of images being referenced using MXML like the one
shown in the example.

Style Declarations

The <fx:Style> tag allows you to specify styles for components and views within an application.

In the following code snippet, you see the backgroundColor property of the spark <s:aApplication>
container set to #CCCCCC, and the fontSize property of the <s:Label> component set to 24:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Style>
@namespace s "library://ns.adobe.com/flex/spark";

s|Application
{
backgroundColor: #CCCCCC;

}

s|Label

{
fontSize:24;

</fx:Style>
</s:Application>

Note that hexadecimal code color values can be specified with either the # or the 0x prefix.

Defining styles in this way enables you to set the styles for components from within the main
application file.

If you wanted a <s:Label> component to have a different font size from that set in the main
application file, you would need to set the fontSize property on that specific <s:Label> instance,
effectively overriding the main style.

The Flex Framework | 21

You can also declare styles in a CSS file and by setting the source property on the <fx:style>
declaration. You can apply those as shown in the following snippet:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark">

<fx:Style source="mobileStyles.css"/>

</s:Application>

Data Binding

The Flex framework supports data binding, a mechanism in which data on one object can be tied to
another object so that any updates or changes in one object are automatically reflected in the other.

The following code snippet demonstrates one of the ways in which data binding can be
accomplished via the <fx:Binding> tag:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark">

<fx:Binding source="txtIn.text"
destination="txtOut.text"/>

<s:TextInput id="txtIn"/>
<s:Label id="txtOut"/>

</s:Application>

Here, whenever text is written in the <s:TextInput> component, which has its id property value
set to txtIn, the source data on the text property will be replicated to the text property on the
<s:Label> component as the user types. To set the data binding, you need to specify the source
and destination properties in the <fx:Binding> tag.

Another way data binding can be demonstrated is to use curly brackets ({}) and explicitly set a
data object within those brackets to bind to. In the following code snippet, the <fx:Binding> tag
is no longer used to assign the source and destination; instead, the text property on the <s:Label>
references the text property on <s:TextInput> to assign its data:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark">

<s:TextInput id="txtIn"/>

<s:Label id="txtOut"
text="{txtIn.text}"/>

</s:Application>

22 | CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

Data binding can also be achieved by creating a bindable object variable. In the following snippet,
you see that the textobj has been declared as a string object. The Bindable keyword is written
above the variable within square brackets ([1), designating the variable as bindable:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Script>
<! [CDATA[

[Bindable]
public var textObj:String = "String object";

public function onClick() :void
{
textObj = "String object has changed!";

11>
</fx:Script>

<s:TextInput text="{textObj}"/>
<s:Button click="onClick()"/>

</s:Application>

When the button is clicked, the value of textobj changes, and those changes are reflected visually
in the <s:TextInput> component, which has its text property assigned to the bindable textobj.

Flex Mobile Application Structure

The mobile application structure employed by the Flex framework consists of a view navigation
pattern, where a user is able to navigate between views by selecting data items or other controls
on screen.

By design, there are a number of components that are core to the mobile application structure
supported by Flex 4.5. These include:

» View

» View menu

» View navigator

» Tabbed view navigator
» Action bar

The main application class recommended for building your Flex mobile applications is
ViewNavigatorApplication, and this utilizes each of the core features.

The Flex Framework | 23

The View Navigator Application
In MXML, the <s:ViewNavigatorapplication> tag is the entry point for your Flex-based mobile
applications. The following code snippet shows how you would define the MXML, specifying the
first view to render on the application on the firstview property:

<?xml version="1.0" encoding="utf-8"7?>

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.FirstView">

</s:ViewNavigatorApplication>

Unlike the <s:Application> container, <s:ViewNavigatorApplication> is optimized for mobile
but requires that a view be specified that displays content.

The View Component
The view component, as defined by the <s:view> tag and the sparks.components.View class,
represents a single user interface screen in your mobile application. This is where you will be able to
place each of the visual mobile components you want to appear within the application.

The following code snippet shows the MXML and <fx:Script> defined for a view. The click
property on the <s:Button> component in the MXML is assigned to the onclick () method
defined in the ActionScript within the <fx:script> tag:

<?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="View Example">

<fx:Script>
<! [CDATA[

private function onClick(e:Event) :void

{
myButton.label = "OQuch!";

11>
</fx:Script>

<s:Button id="myButton"
label="Hit Me!"
click="onClick(event)"/>

</s:View>

Note here that the title property on the view is simply set to View
Example. The title property of a view will be displayed in the
action bar area, at the top of the mobile application (Figure 1-8). FIGURE 1-8: The view example

24 | CHAPTER1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

The View Menu Component

You can include a number of menu buttons that can control elements of your application by
implementing the <s:viewMenuItems> tag.

The view menu in an application can be revealed when a user invokes the menu button on the device.

This is done by defining a set of <s:ViewMenuTItem> components within a <s:viewMenuTtems>
declaration, as shown in the following code snippet:

<s:viewMenultems>

<s:ViewMenultem label="Add"/>
<s:ViewMenultem label="Update"/>
<s:ViewMenultem label="Delete"/>

</s:viewMenultems>

The menu appears at the bottom of the screen when the device’s native menu button is pressed.
When an item has been selected, the view menu will disappear from view.

The menu can also be invoked when you set the viewMenuOpen property on the mx.core
.FlexGlobals.topLevelApplication Object to true:

mx.core.FlexGlobals.topLevelApplication.viewMenuOpen = true;

The following code snippet shows how the c1ick property on a <s:Button> component reveals
the view menu:

<?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="View Menu Example">

<fx:Script>
<! [CDATA[

import mx.core.FlexGlobals;

private function onClick(e:Event):void
{

FlexGlobals.topLevelApplication.viewMenuOpen = true;

}
private function onSelected(e:Event) :void
{
myLabel.text = e.currentTarget.label + " selected";
}

11>
</fx:Script>

<s:Label id="myLabel"/>

<s:Button id="myButton"

The Flex Framework | 25

label="0Open Menu!"
click="onClick(event)"/>

<s:viewMenultems>

<s:ViewMenultem label="Add"
click="onSelected(event)"/>

<s:ViewMenultem label="Update"
click="onSelected(event)" />

<s:ViewMenultem label="Delete"
click="onSelected(event)"/>

</s:viewMenultems>

</s:View>

This example is shown in Figure 1-9.

The View Navigator Add Update | Delete
The viewNavigator class is what manages each of the view FIGURE 1-9: A view menu
containers in a mobile application. Using a stack-based history example

mechanism, the main role of a view navigator is to conserve
memory used by the application, by ensuring that only one view is
in memory at a given time.

When the mobile application starts, a view navigator will show the view specified by its firstview
property, which, as shown, can be defined on the <s:ViewNavigatoraApplication> tag. Each view
created in an application has a reference to a view navigator via its navigator object.

In the following snippet, you see how to navigate to a new view in an application
navigator.pushView (views.HelloWorldAppHome, dObj);

As shown, the pushview () method on the navigator object is called, where the full name of

the view views.HelloWorldappHome is supplied as the first argument, and a data object dob7 is
supplied as the second argument. This method will normally be invoked by user input, like a button
call. The data object supplied can be retrieved on the data property of the next view. Thus, using
pushview (), data can also be passed between views as the user navigates around the application.

When new views are added to an application, they are stacked, like an endless deck of cards. The
popView () and popToFirstview () methods allow the user to navigate back through a series of
screens.

The popview () method can be called to return to the previous view:
navigator.popView() ;
If navigator.popToFirstview () is called, the user will be returned to the first view in a view stack:

navigator.popToFirstView () ;

26

CHAPTER1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

The Tabbed View Navigator Application

The tabbed view navigator application allows you to build more complex mobile applications that
are capable of switching between different view stacks. When the mobile application starts, the user
is able to toggle between a defined number of tabs at the bottom of the screen. Each tab effectively
represents a unique view navigator.

To include this feature in your mobile application, you define the
<s:TabbedViewNavigatorApplication> tag in your main application file. This class utilizes the
TabbedViewNavigator object, which manages a collection of view navigators.

VVhen}Knldeﬁnea,<s:ViewNavigator>forthe<s:TabbedViewNavigatorApplication>,you
need to ensure the value for the firstview property is set to the class path of the view, and that the
width and height properties are set to 100%.

The following code snippet shows how to define three tabs with labels Tab 1, Tab 2, and Tab 3,
respectively, for a tabbed view navigator application:

<?xml version="1.0" encoding="utf-8"?>
<s:TabbedViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">

<s:ViewNavigator label="Tab 1"
width="100%"
height="100%"
firstview="views.FirstTabview"/>

<g:ViewNavigator label="Tab 2"
width="100%"
height="100%"
firstView="views.SecondTabView" />

<s:ViewNavigator label="Tab 3"
width="100%"
height="100%"
firstview="views.ThirdTabview" />

</s:TabbedViewNavigatorApplication>

Figure 1-10 shows the tabs in a Flex mobile application.

The initial screen to appear in this example will be the FirstTabview, which is defined on the first
<s:ViewNavigator> specified in the application.

You can also assign a .png file to the icon property on <s:ViewNavigator>. This will display an
image on the tab (Figure 1-11).

The Flex Framework | 27

Tab Example Settings Tab

Tab 1

FIGURE 1-10: Tabs being FIGURE 1-11: Icons displayed
displayed in the tabbed view on the tabs of a tabbed view
navigator application example navigator application

The following code snippet shows that an image named search.png is assigned to the first tab,
while an image named settings.png is assigned to the second tab:

<?xml version="1.0" encoding="utf-8"?>
<s:TabbedViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark">

<s:ViewNavigator icon="search.png"
width="100%"
height="100%"
firstView="views.FirstTabView" />

<g:ViewNavigator icon="settings.png"
width="100%"
height="100%"
firstview="views.SecondTabView" />

</s:TabbedViewNavigatorApplication>

The data for a view navigator can be set using the firstviewData property, as shown in the
following snippet:

<?xml version="1.0" encoding="utf-8"?>
<s:TabbedViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark">

<fx:Script>

28 | CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

<! [CDATA[
private var dObj:0bject = {name:"Jermaine G. Anderson"};

11>
</fx:Script>

<s:ViewNavigator icon="search.png"
width="100%"
height="100%"
firstview="views.FirstTabview"/>

<s:ViewNavigator icon="settings.png"
width="100%"
height="100%"
firstView="views.SecondTabView"
firstviewData="{d0bj}"/>

</s:TabbedViewNavigatorApplication>

The Action Bar Component

The action bar is the visual header that appears by default at the top of a view in a Flex mobile
application.

This header has space for three distinct content areas, including a central area designated for a view
title. To the left of the title content is an area designated for navigational content, represented in
MXML by the <s:navigationContent> tag, and to the right is an area designated for actionable
content, represented by the <s:actionContent> tag.

Button components can be assigned to the action bar, when necessary, to allow the user to control
navigation and perform actions in the application.

In the following code snippet, you see an example of the navigation and action content areas
specified in a <s:ViewNavigatorApplication> declaration:

<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">

<s:navigationContent>

<s:Button label="Home"
click="navigator.popToFirstView()"/>

</s:navigationContent>
<s:actionContent>

<s:Button label="Search"
click="onSearch()"/>

</s:actionContent>

</s:ViewNavigatorApplication>

The Flex Framework | 29

Action bar content is not limited to button controls within the a0

navigation or action content areas. You can pretty much add any of ﬁ
the visual spark components to be placed in the action bar. In the
following snippet, you also see an example of the title content area

being defined via the <s:titleContent> tag to include a text
input field:

<s:titleContent>

<s:TextInput id="searchTxt"
width="100%"
prompt="Search field..."/>

</s:titleContent>

Figure 1-12 demonstrates the <s:titleContent> being set.

In this example, you see that icons are also specified on the
navigation and action content areas of the action bar.

FIGURE 1-12: Action bar content
defined within a view navigator
application

The action bar can be customized for each individual view of the
application or have controls designated that persist across all the views
of an application when defined in the main application file.

View Transitions

When users navigate between views, they will see the current view transition out of the screen, while
the next view transitions onto the screen via a set of defined animations.

There are two properties of the ViewNavigator object that can be defined to describe the type of
view transition for the view:

» defaultPushTransition: The animation that occurs when a new view is added to the view
stack — e.g., via pushview ()

» defaultPopTransition: The animation that occurs when a view is removed from the view
stack — e.g., via popView()

There are four view transition classes found in the spark.transitions package that can be
customized and assigned to both the default transition objects:

> CrossFadeViewTransition: To fade out the existing view as the new view is revealed
> FlipViewTransition: To flip out the existing view as the new view is revealed

> SlideViewTransition: To slide out the existing view while the new view slides in
>

ZoomViewTransition: To zoom out of the existing view as the new view is revealed, or to
zoom in to the new view over the existing view

Each view transition has a number of properties that can be defined for animations, including
direction, duration, and mode.

30 | CHAPTER1 ANINTRODUCTION TO FLASH, FLEX, AND AIR

The following code snippet shows a zoom transition operating on the pushview () method to reveal
a view called FirstviewTab. The mode is set to zoom in using the ZoomviewTransitionMode.IN
constant, and the transition duration is set to 250 milliseconds:

<fx:Script>
<! [CDATA [

import spark.transitions.ZoomViewTransition;
import spark.transitions.ZoomViewTransitionMode;

private function zoomView () :void

{

var zoom:ZoomViewTransition = new ZoomViewTransition() ;
zoom.mode = ZoomViewTransitionMode.IN;
zoom.duration = 250;

navigator.pushView (views.FirstTabView, null, null, zoom);

11>
</fx:Script>

The ZoomTransition object is supplied as the fourth argument to the pushview () method on the
navigator property of the view.

The following code snippet shows a slide transition, in which the slide mode is set to push using the
SlideViewTransitionMode.PUSH constant, and the transition direction is set to down, using the
ViewTransitionDirection.DOWN constant. The duration is set also to 250 milliseconds:

<fx:Script>
<! [CDATA [

import spark.transitions.ViewTransitionDirection;
import spark.transitions.SlideViewTransition;
import spark.transitions.SlideViewTransitionMode;

private function slideView () :void

{

var slide:SlideViewTransition = new SlideViewTransition() ;
slide.direction = ViewTransitionDirection.DOWN

slide.mode = SlideViewTransitionMode.PUSH;

slide.duration = 250;

navigator.pushView(views.FirstTabView, null, null, slide);

11>
</fx:Script>

Either of the transitions in the previous examples could also be assigned to the navigator
.defaultPushTransition or the navigator.defaultPopTransition on the view:

navigator.defaultPushTransition = slide;
navigator.defaultPopTransition = zoom;

Adobe AIR |

31

By default, Flex uses the slideviewTransition for view transitions.

Over the course of the book, you’ll implement many of the key components of a Flex Mobile
Application, including those that are core to the <s:ViewNavigationApplication> class.

Considerations for Mobile Development

Mobile applications for touch screen devices undoubtedly should differ from desktop and web
applications for a number of reasons. Although mobile devices are becoming more capable, there are
important considerations you need to be aware of when developing applications. These include:

» Ul design: Mobile devices have small screens and high pixel densities, so applications have to
be designed to account for sizeable components on screens that are easy to interact with.

> Screen resolution: Mobile devices can have different screen resolutions, and the pixel
densities across most mobile device screens are higher than those of desktop monitors. Thus,
applications have to adapt well to those displays.

> Touch screen input: Mobile devices that provide support for touch interaction must allow for
touch input via the application.

> Memory availability and processor performance: In most cases, mobile devices have limited
memory availability, as well as lower CPU and GPU performances. Thus, applications have
to be processor-friendly.

Depending on your development experience or background, these points may or may not seem
quite so obvious. What is important here is for you to understand some of the features that the Flex
framework helps to address in mobile application development.

ADOBE AIR

The Adobe Integrated Runtime (AIR, www.adobe.com/products/air) is a cross-platform run time
that allows developers to create and deploy applications for a variety of operating systems outside of
Internet browsers.

AIR for smartphone and tablet devices allows developers to create applications that can be deployed
in the same way as native applications across each mobile platform. And as previously mentioned,
the Flex framework can be used to create mobile applications that are
installed as standalone applications using the Adobe AIR run time. On
Google Android devices supporting AIR, if AIR is not yet installed, the user
will be prompted to download and install the run time on first launch of

an AIR application. On RIM’s BlackBerry PlayBook, AIR is integral to the
operating system, so you need only be concerned with the version of AIR that
has been installed on the device. On Apple iOS devices, such as the iPad and
iPhone, AIR cannot be installed as a separate run time; an AIR application is
installed as a self-contained package.

FIGURE 1-13: The
The Adobe AIR logo is shown in Figure 1-13. Adobe AIR logo

32

CHAPTER1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

When Adobe AIR was first released, it was aimed at the creation of rich media content and
enterprise applications that could run outside the traditional web browser, essentially targeting the
desktop across multiple platforms.

In addition to the SWF format, Adobe AIR can render content produced with both HTML and
JavaScript. Adobe AIR now runs Flash platform applications across a wide range of devices
and operating systems, covering Desktop, TV, and Mobile Devices.

Adobe AIR 2.7 is the most recent release of the client. The first release, AIR 2.5, introduced support
for the mobile device profile; this book uses references to AIR 2.7.

On each of the platforms AIR supports, the client must be installed directly on the end user’s device
at an OS level.

This book covers many of the APIs introduced in AIR 2.7 for mobile devices supported on Google
Android, BlackBerry Tablet OS, and Apple iOS.

At the time of writing, a beta for Adobe AIR 3 was underway, allowing developers to preview
new and enhanced features for desktop and mobile applications targeting the next release of

the run time. With the potential for new APIs to be dropped, none of the features could be
covered in this book, but look for an update. For more information, visit the Adobe Labs website
(labs.adobe.com/technologies/) and search for Adobe AIR 3 in the Products section.

SUMMARY

This introduction to Flash, Flex, and AIR is just the beginning, and many of the topics touched on
here, and more, will be explored in detail over the course of this book.

In this chapter, you learned about the Flash Player run time for mobile and covered many of the key
concepts of AS3.

You then explored some of the core elements of the Flex framework and MXML components, and
then were introduced to Adobe AIR.

In Chapters 2 and 3, you begin building mobile applications for Google Android, Apple iOS, and
BlackBerry Tablet OS devices using AIR 2.7. Then from Chapter 4 onwards, there will be extensive
coverage of AS3 and MXML. You expand on this in Chapters 7, 8, and 10, where you cover many
of the runtime APIs available only via the Adobe AIR installed on mobile devices.

In the next chapter, you get started with mobile application development, creating the Hello World
App example.

At the end of each chapter, you’ll encounter exercises containing additional tasks that will

help you build your knowledge about key aspects of that particular chapter. In the following section,
you can either tackle the exercises now or wait until later; they don’t have to be completed to

follow on.

Summary |

33

1.

Define a new AS3 class called Tablet that is contained in the devices package. Set a few
properties for screen resolution and orientation to indicate whether the device is in portrait or
landscape mode. Then add a public method to toggle between the device orientations.

Define how to create a tile arrangement of five images using MXML.

Define a view navigator application that has four views. Add a label and button to each view.
For the button, implement a click that navigates the user to the next view using a unique view
transition. Add a back button so that you can view.

Define a tabbed view navigator application that has three tab views. For the first view, specify a
list of three items. For the second view, add a 100x100 image of the world that moves randomly
around the screen. Then for the third view, add a label that displays a countdown timer in
seconds. Every time the third view is selected, the countdown starts from 5 and stops at 0. When
the countdown reaches 0, the background color for the view should change.

34 | CHAPTER1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

Flash

Flex framework

Adobe AIR

KEY CONCEPT

Flash Lite 4.0 and Flash Player 10.3 are currently the run times that support SWF
format mobile content out of the box.

Flex 4.5.1is the latest version of the Flex framework.

The Flex framework contains a library of components, styles, and skins optimized
for developing mobile applications.

MXML is the markup language used for developing Flex-based applications.
Adobe AIR 2.7 contains the mobile device profile, which allows for AIR applications

to be deployed on devices across multiple platforms, including Google Android,
Apple iOS, and BlackBerry Tablet OS.

® ® @ &

Getting Started

WHAT YOU WILL LEARN IN THIS CHAPTER:

» Using Flash Builder 4.5.1
» Creating a Flex mobile project

» Defining run configurations for both desktop and devices

Adobe’s portfolio includes numerous software products that enable you to author Flash-based
mobile applications. These include Flash Builder, an Integrated Development Environment
(IDE) that fully supports the build of Flex Framework and AS3-based mobile projects, Flash
Professional for Flash-authored projects, Device Central for emulating content, and the AIR
SDK for targeting multiple platforms.

In this chapter you take a close look at Flash Builder, learning how to create a Flex
mobile project and how to run that project on the desktop, and also take a look at how to
configure the project to run on Apple iOS, BlackBerry Tablet OS, and Google Android.

USING FLASH BUILDER 4.5.1

Flash Builder is the ideal tool of choice for creating mobile applications using the Flex
framework. Built on top of Eclipse, an IDE widely used by many Java developers, Flash
Builder is a robust development environment.

This book mainly focuses on building applications with the latest version of Flash Builder — at
the time of writing, version 4.5.1.

NOTE If you are using Flash Builder 4.5.0, you will need to install the Flash
Builder 4.5.1 updater, which you can find on the Adobe website (www .adobe
.com/support/flex/downloads_updaters.html).

36

CHAPTER 2 GETTING STARTED

Toward the end of this chapter, you are guided through setting up a Flex mobile project using the IDE.

Flash Builder has numerous features that simplify the task of building mobile applications, making
it easier and fun.

Cool features in the latest version include wizards to target new devices that support Adobe AIR,
such as the BlackBerry Playbook and Google Nexus One. You can run content on supported devices
connected to your development environment, so you can install, test, and run an application instantly.

Within the IDE are tabs to switch between a mobile application’s source code and the Design
view. Within the Design view you can drag and drop components from panels within the IDE. The
Source code view supports color schemes that can be applied to AS3 syntax and MXML script,
making it easier to code documents. There is also an integrated debugger facilitating testing and
advanced code hinting, and autocomplete commands that insert full class paths. Flash Builder is
nothing short of a developer’s dream.

The official requirements for Flash Builder are listed at the Adobe website (www.adobe . com/products/
flash-builder/tech-specs.html).

The following sections take a look at the following Flash Builder features:

> Workspaces

» Flash perspective

» Flash Debug perspective
» Source view
>

Design view

Working with Workspaces

Flash Builder enables you to create different workspaces. A workspace contains each of the projects
that you create in Flash Builder, and, by default, the workspace is the Flash Builder installation
path, but this can be changed. You can also add multiple workspaces to keep collections of projects
separate. | recommend for the examples used in this book that you create a workspace and keep the
projects separate.

In this section you take a look within the workspace and a closer look at the tools within the IDE
used to build Flex and ActionScript-based mobile applications.

Flash Builder includes a number of view panels that provide various features and configurable
options for developing and testing applications.

Perspectives are a specific arrangement of view panels displayed together, aimed at providing
suitable tools for a particular task.

By default, Flash Builder has two perspectives: the Flash perspective, which contains an
arrangement of view panels for authoring your applications, and the Flash Debug perspective,
which contains an arrangement of view panels for debugging applications.

Flash Builder will ask you to switch to a different perspective if you are debugging an application.

Using Flash Builder 4.51 | 37

Using the Flash Perspective

The following lists some of the view panels available in the Flash Perspective by default:

>

Editor Area: This is where you can edit files that contain your source code, including .mxm1,
.as, .xml, and . txt files. MXML source has two subpanels, which are available under the
tabs labeled Source and Design. The Source view panel is where the MXML source is written,
and the Design view panel is where the appearance of the application can be viewed or
edited. When you add visual elements like a button component to the layout in Design view,
the changes are automatically reflected in the Source view. The same happens when you add
visual elements in the Source view; changes are reflected in the Design view. Using the Design
view allows you to drag and drop components to the screen, instead of typing code, allowing
you also to visually customize the appearance of the application and individual elements.

Package Explorer: This is where you can see each of the files within the projects of a
workspace. Here you not only see the contents of the project, but if you open an .as or
.mxml file you see a detailed list of all class functions, methods, and variables, whether they
are public, private, or protected.

Outline: This is where you can see all the ingredients of an .mxm1 file or .as file. The outline
contains a list of all the import, variable, and method declarations in the file. After opening
or selecting an . as file, in the Editor Area you can see a list of imports, functions, methods,
and properties utilized by a class in the Outline panel. The Outline panel has controls that
enable you to hide non-public members, to hide static functions and variables, and to sort the
list alphabetically, making it easier to find an item. Outlines are available only for an .as or
.mxm1 file.

Problems: This is where you see any particular issues relating to open projects in the
workspace. Here you will be given warnings and compiler errors detailing the problem. This
details the type of problem along with a description, the resource, the package path, and the
line location on which the error has occurred.

Data/Services: This is where you can create and integrate data services into your applications.
In the Data/Services view panel you can specify and connect to a number of different data
sources including BlazeDS, ColdFusion, HTTP, LiveCycle Data Services, PHP, WSDL Web
Services, and XML. This view panel enables you to connect to remote and local data services
while authoring your applications, giving you the option to specify input values for services
and returns types, and ultimately generating code snippets to create a service call within the
Flex-based project. The Data/Services panel also launches a Test Operation panel, which
enables you to select one of the services you’ve created for your application and specify
variables to run and test the service.

Network Monitor: For Flex-based projects this is where you can monitor and record request
times and response times for the particular service request calls an application makes.

Figure 2-1 shows the Flash Perspective with the view panels displayed at the bottom of the IDE and
the button highlighted on the top right.

38 | CHAPTER2 GETTING STARTED

& Flash Buiider File it Source Muvigate Search Project Dala Run Window Heln W F T R F e MonZF1E MrAnderion O
FYare) ik e Bl reTeT —~
=T e O~ G e | | AP e S =1 Enan

. 0 s =a

s Packags txpienns 2 =0

-
Ty
[yT——
- Witz

el |

O fE s T ™0 [poses O 6 Do (0 Meveot Moster 0 Comcie | 5 Peogenss [T Devign Made Pestsiems | 1 dioc =0
h‘m

FIGURE 2-1: The Flash Perspective shown from the Hello World App project

Using the Flash Debug Perspective

The Flash Debug perspective contains view panels that enable you to rigorously test your application
using a variety of features in a debugging session, including the ability to step through your code
while the application is running.

The aim of the perspective is to help you to examine the source code and values assigned to
variables, ultimately helping you to find problems in your application. The Flash Debug perspective
launches when you select to run a debug session.

When you first run Flash Builder the option to show the Flash Debug perspective is unavailable. You
need to have opened it at least once before within the workspace. Navigate to Window = Perspective
> Flash Debug. You can also open the perspective by clicking the Open Perspective button and then
selecting Flash Debug.

The following lists some of the view panels that are displayed when the Flash Debug perspective is open:

> Breakpoints: This is where you can manage the breakpoints that have been added in your
application.

» Console: This is where you can see several outputs from your application while it is running,
including runtime errors and trace statements.

> Debug: This panel contains all the controls you need to step through your source code in the
debugging session while the application is running.

> Expressions: This is where you can manage expressions on the variables you have set to
watch in your application.

» Variables: This panel is where you can find all of the variables in the current thread of the
application.

Using Flash Builder 4.5.1 | 39

Each of these panels can be seen in Figure 2-2.

Flash Bwilder File Edit Source Wuvigabe Search Project Cata Run Wisdow Weln 4 BF K i D% MonZ0lE MrAsderson O
(s Coong ¥ e v il ifpee .ol Sl b g,

= B O Bie e [5 o0 Oiffrea— "

® o 7 ADAS[F[v =0 [[em— A0
[Ty vy —— =3 ™
7 b 't s -ttt s o —

= W Trrmas changeci - o oy il
Hw Ve mptted, b
v S AGR T [Moo eBon | ik i namy Wrrignn G Anderion
T RN S

="

- et
Tnestiom:Loeatinnlet Lot
¥

m) | e bl o v, S "

.- Fratected Farcilon onberet belompLataC woid
i

L . ey e ey
o ARRRa—an - w10V, rameapae L))
= appigiFiring - e,

1 Gomon B5 | o5 Dunariervans | D sk orsaer - G @0 r3- =8

[58F) el Lobar g, 3nf - 1,163 000 byios ofter decomprration

FIGURE 2-2: The Flash Debug Perspective for the Hello World project

Using the Source and Design Views

The Source view is simply the code editor where for the majority of this book you will be spending
time following many of the example listings covered (Figure 2-3). Next take a look at the Design
view contained within the Editor Area view panel (Figure 2-4). The Design view gives you a preview
of your application.

Flash Bailder File Edt Source Munigate Search Project Data Run Wisdow Hels = F W F @ MonZk1E MrAnderson O
EES 0% @l eEe Bl Proacen "
[pe————] =l PETR T oo shostaegivan e =0

5] e
" et [l wtebiaat B sncbing="stf4"
e 4 Viem g Fe M i

vl amlna - L brary: f/naackise. com Pl an mark®

s Hithe-alic Barie®
.oy = veatinams] steerievetialomalee(d s
“usrime
> — < pemTat
e srotectad fusction oriabeitlsvetd
e m i
o Lo 1 o -
] ! pa—
1 Toeakien nentialnt besk
i 3
1 e gatar sk (i ean i Loar dhpenraga¥ion, i)
L. S

. ctcLabel meGEY TS widiR"ZH" FNLSiHe<"EET benteMy somt (41
SEH L AT FeRiae"IE bead="E L e

“ikskal
b Tann gt e L g hary. .
n:Tantlnpet id-*locationTet® m-%1% y="108" width-*158" prompt-"Enter iocation kers.. %/
] o cetton ae0° ye el labele"Suiei i cliche" ondeleit{) s
\ -
B2 cve B JeivsT=0
e et W
« vieron
Avaon ey rarw
Absimi g
T ansaTat
T e Tal
Con Aol
[t mresiens T o Dutarteviees | 5 Netwsk Mosner |) Povicie 5 Moegreia [Devis Made Posbims | 1 Alfee kndezl=)
s

easir e 1:1

FIGURE 2-3: The Source view of HelloWorldAppHome.mxml

40

CHAPTER 2 GETTING STARTED

@ Flash Bullder File Edt Sowrce Design Mavigate Search Project Data Bun Window BF Rt O % Mon2018 MrAnderson Q
T @ B0 8 @5 - et e
1 Fackage Explores B | =0 Wuarge) neioworiacn a8 T = O s | B "o

¥ea B <susnei>
~ [@pascmeriance
TS
Ry p——
b ity
Beena
i
> et
by B = =
B rasomoritrs-sop sl g Proparmes 2 |5 apsearnee [15 =B
WP 45
I etereme et Lt & e
] Comman
i Tl e womd
davon b, B
T ©
Cvartay coewsis:
- oy
() v o Vi sy sy s crtirem.
Sryhe Bt sries = 4
Corroert 10 38
Teus
B Outtine 20 |5 Componerns -] i ol |
CIEE:
Tirizl CICICIE Nk i |
= Tovhew ek wond)
A Label Oy o 53 - Lapeut
A il 0 B 2]]

[ol 5

[SLe—yr— ; T g : - :

© Dscturarions (5. proviems | 5§ Dusarsarvons |) sermwork siomner | Comote | <G Progeess £ |15 Design Mooe mrosiemy ®~=0
- s peramns 5 s ot 1 e

FIGURE 2-4: The corresponding Design view for the Source view of HelloWorldAppHome.mxml

In the Design view are several panels you can use to help facilitate the design of an application:

» Components: This is where you can see each of the Flex user interface components that are
available to drag onto the view of the application.

» States: This is where you can manage each of the states available in a view of an application.
States represent variations in the user interface, which are usually associated with a task a
user has performed, such as changing the orientation of a device.

> Properties: This is where you can set the default properties for each of the components
selected in the view.

» Appearance: This is where you can apply a project theme and edit the styles for the project.
For mobile applications using Flex, this includes defining the text properties, the color
properties, and the content background.

By default, the Components panel appears in the same pane as the Outline view panel on the left of
the screen, and the States and Properties view panels appear on the right. The Design view is fully
interactive, so you can drag and drop components directly onto the Stage area of the design.

Flash Builder also has controls to select the orientation of the mobile device, so you can choose to
preview content in landscape or portrait mode.

@ NOTE You can only switch to the Design mode when the source is MXML and
error free. You cannot switch to Design mode when editing an . as file.

Creating a Mobile Project Using Flash Builder |

The Properties view located to the bottom right of the Flash Builder has multiple sections for editing:

>

>

Common: This is where you edit the component properties.

Style: This is where you define the style properties for a component. Depending on the
component these properties may include the chrome color, padding, text, and content

background.

Size and Position: This is where you can provide the width and height of the component.

Layout: This is where you can set the layout properties for a container component. You can
select from one of the default Spark layouts to base the component’s layout on, including the
HorizontalLayout and the VerticalLayout classes.

When you make updates to the style properties the changes are reflected in the Design view, and
depending on which component you select in the Design view, the sublist of properties that appear
in the Properties view panel may change.

CREATING A MOBILE PROJECT USING FLASH BUILDER

A number of different features were covered in the previous section on Flash Builder. In this section,
you take a look at using the IDE for yourself.

Creating a Hello World App Example

Over the course of this chapter you’ll follow the creation of the Hello World App project. This mobile
application simply enables you to enter your name onscreen and present it back with the text “Hello
World, my name is . . .” — a simple example, but
enough to get you started using Flash Builder.

Defining

the Flex Mobile Project Settings

The first few steps take you through defining the
Flex Mobile Project settings, which are usually the
first things you encounter when you start a new

project.

1.

2.

In Flash Builder select File &> New > Flex
Mobile Project to open the New Flex
Mobile Project panel.

In the Project Location tab, set the Project
Name field to HelloWorldApp. Use the
default location for the project files, and
then for the Flex SDK selection, use the
default version (Figure 2-5). The minimum
version used should be version 4.5. Once
the project location details have been set,
click Next.

00
Create a Flex Mobile AIR Project

Choose a name and location for your project

New Flex Mobile Project

n

Build Paths

Location ~ Mabile Settings Server Settings

Project name: | HelloWorldApp

Project location

E] Use default location

Folder: /Users/anderson/Documents /Adobe Flash Builder 4.5/HelloWor Browse.

Flex SDK version

® Use default SDK (currently *Flex 4.5.1") Configure Flex SDKS...

() Use a specific SDK:
Flex 4.5.1 requires Adabe AIR 2.6.

Flex 4.5.1

@

< Back Finish

FIGURE 2-5: Setting the Project Location
for the Hello World App in the New Flex Mobile
Project dialog

a1

42 | CHAPTER2 GETTING STARTED

Targeting Mobile Devices on Different Platforms

Within the Flex Mobile Project panel, you also target your development for the mobile platforms
supported by Flash Builder.

After defining the Project Settings, the next few steps take you through targeting the three mobile
platforms: Apple iOS, Google Android, and BlackBerry Tablet OS.

1. For the Mobile Settings tab, ensure Apple iOS, Google Android, and BlackBerry Tablet OS
are selected in the Target Platforms section. In the Application Template section select
View-based Application, ensuring the Initial View Title is set to Hello World. Then at the
bottom of the panel, in the Application Settings section, leave the Automatically Reorient
checkbox selected (Figure 2-6).

2. Return to the section under Target Platforms and select Permission. Select Apple iOS as
the platform from the drop-down, which should be the default selection. Notice in the
description that you do not need to set permissions for the Apple iOS platform (Figure 2-7).

AN e Progect. AN N 1 n Mt e Brrpect
Cruate & Fius Modile AR Praject Comae & Fies Motsle A0 Prajeet
esndi, i L . L’::‘::I’"rw—l.vmwhw—-mv—-ﬁvw—-n | .
voject Location . Mablle Sattegs - Sener bemingn buliPuh Potgect Lacation Sarwr mtingn ok Pahs
;:::;—‘ M macabery Tsterod. 9 Congie dnsrm :;:::ﬁ ey T 0l Congn A
| At Torstare forrsset urters temep Ajutaynsa Timgio +Pumigiigng s Moy Somngs
— - Pt | Assme i1 =) .
L0 Worw Based Asobester L _l-m
& i e i s S
7 < T [-t 7 « hah s Canni | i)

FIGURE 2-6: Setting the Mobile

Settings for

in the New Flex Mobile Project

dialog

3.

FIGURE 2-7: Setting the
permissions for Apple iOS
Platform for the Hello World
App in the New Flex Mobile
Project dialog

the Hello World App

Select BlackBerry Tablet OS as the platform selection from the drop-down. You will see a

number of permissions that can be set for your application should it require a particular
feature (Figure 2-8).

Select Google Android as the platform selection from the drop-down. You will see a different

set of permissions that can be set, very similar to BlackBerry Tablet OS (Figure 2-9).

Creating a Mobile Project Using Flash Builder

43

7YY Mow Ehen Moblle Project.
Crumte 4 Fies Mobile AR Praject
Coom vt oot e vow | .
et =
Petpect Lstation Sarver Semtingy ki Paths
Fip sy
4 agcm 08 M mcrdery Tl M o e
Rt | By T 5}
L
s s
o et
S
) e carns
g
03 s
=) et hcaten
0 et by
=) v
e
xatgton
e
=
) e e st e smcicaton permiens
]
o hpmar s 0 ol s
O [T
]
7) (s) (et) (R

FIGURE 2-8: Setting the
permissions for BlackBerry
Tablet OS for the Hello World
App in the New Flex Mobile
Project dialog

5.

Crwata & Flas Mobile AR Prapect
s |
soohason.
Targen sartarms
Lt

campas

RECOAD At

o AT, ACCENS_ WLSTATE
Duprmen

Aot kpeheSboRt 15 S9N BECKIE 308 Frabed HTIRL comtest
s

U e S e £ 4 et

FIGURE 2-9: Setting the

permissions for Google Android
for the Hello World App in the
New Flex Mobile Project dialog

Take a look at the Platform Settings tab, with Apple

iOS selected as the platform. Here you can set the target
devices for the platform. Select from either iPad, both
the iPhone and iPod Touch, or all the devices. Leave the

default setting in place (Figure 2-10).

In the Server Settings tab, under the Server Technology

section, leave the default setting for application server
type selected as None/Other, and in the Compiled Flex
Application Location section leave the default setting for
Output Folder set to bin-debug. Then click Next

(Figure 2-11).

In the Build Paths tab, check that the Main Source

Folder is set to src, the Main Application File is set to
HelloWorldApp.mxml, and the Application ID is set to
com.wrox.ch2.HelloWorldapp, before clicking Finish

(Figure 2-12).

LA -
Cruate & Flas Msbile ASR Prajecs
Fia N |
soohason
Locatien Sarvar Bt Pathe
Tarpen ey
e B ey Tastet 08 9 Coogie Ansrer
Ao eatem Trter Py |
Fatterms. | A 13]
m%
et Vo
L]
e
W scanmatie iy e 0 P seveen
0 i e |
Asghcaton ON
@ T T ol [

FIGURE 2-10: Configuring the
target devices for the Apple
iOS platform for the Hello World
App in the New Flex Mobile
Project dialog

| CHAPTER2 GETTING STARTED

AN .
Craute & Flan Mobile AIR Praject
e e N -
g Srarsenigs R
e
e 4]
P — e 51 s At P B AR Vo
e N | ==
PrciecLocaten Mokl Sevogs L BTCSSIGL WusPan .
W vty O Aty v e b et
o amie desec WL
oot . i -
7 < o) () 7 T o) (m—
FIGURE 2-11: Configuring the FIGURE 2-12: Setting the Build
Server Settings for the Hello World Paths for the Hello World App
App in the New Flex Mobile Project in the New Flex Mobile Project
dialog dialog

NOTE At this point you should familiarize yourself with the steps under “Defining
the Flex Mobile Project Settings” and “Targeting Mobile Devices on Different
Platforms” because these will be mentioned only briefly when you start other
example projects in later chapters.

In the Flash Builder Package Explorer panel, you should see that the Hello World project has now
been created, and several files have been automatically generated for the project.

In the src directory, you will see the default package folder, with the main application file
HelloWorldApp.mxml.

In the views package folder, you will see a file called HelloworldappHelloWorldview.mxml. The
name of the file is built from a combination of the project name and the initial view title defined.
The file represents the first view class that the application will see when launched.

Rename the class via Flash Builder to HelloWorldappHome .mxml. Do this by highlighting the file
and selecting File @ Rename from the Flash Builder menu. In the Rename Class panel that opens,

ensure the Update references box is checked, enter HelloWorld AppHome as the name for the file,
and then click OK to confirm.

The third file generated is Helloworldapp-app.xml; this is the AIR application descriptor file
template. AIR application descriptor files are explored in more detail in Chapter 3.

Last, the fourth file generated is the blackberry-tablet.xml file, which is generated when you

target your projects to run on the BlackBerry Tablet OS. BlackBerry Tablet OS files are explored in
more detail in Chapter 3.

Creating a Mobile Project Using Flash Builder | 45

Building the Hello World Project

In Listing 2-1 you see the main application file HelloWor1dapp.mxml, with the fx and s namespaces
defined. Notice here that the firstview property on the application has been set to views
.HelloWorldAppHome to reflect the updated filename.

\, LISTING 2-1: The HelloWorldApp.mxml application file for the Hello World project

Available for <?xml version="1.0" encoding="utf-8"?>
dwmkgg:n <s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"

firstView="views.HelloWorldAppHome" >
</s:ViewNavigatorApplication>

In Listing 2-2 you see the <s:View> container defined in the HelloWorldappHome . mxm1 file. This has
been modified slightly from the generated file, with the title property set to display Hello World.

\, LISTING 2-2: The HelloWorldAppHome.mxml view for the Hello World project

Available for <?xml version="1.0" encoding="utf-8"?>

dwmg:&:" <s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
title="Hello World">

</s:View>

Ensure these two files have been modified as shown in the first two listings, and then follow these
steps to build on the example:

1. InHelloWorldAppHome.mxml add two <s:Label> components. For the first label set the
value of the y position to 56 and the value of the text property to My name is:. Then for
the second label set the value of the y position to 182 and the value of the text property to
I live in:. Then on both components set the value of the x position to 63, the value of the
width property to 289, and the value for the fontsize property to 26 (Listing 2-3).

\, LISTING 2-3: Adding two <s:Label> components to the view in HelloWorldAppHome.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

download on . view xmlns:fx="http://ns.adobe.com/maml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
title="Hello World">

<s:Label x="63"
y="56“
width="289"

fontSize="26"
continues

46 | CHAPTER2 GETTING STARTED

LISTING 2-3 (continued)
text="My name is:"/>

<s:Label x="63"
y="182"
width="289"
fontSize="26"
text="I live in:"/>

</s:View>

2. Addtwo <s:TextInput> components to the view. On the first, set the value of the prompt
property to Enter a name here. . ., the value of the id property to nameTxt, and the
value of the y position to 98. On the second component, set the prompt to Enter location
here. . ., the value of the 1d property to locationTxt, and the y position to 230. Then, on
both components, set the value of the x position to 63 and the value of the width property
to 350 (Listing 2-4).

\, LISTING 2-4: Adding two <s:Textlnput> components to the view in HelloWorldAppHome.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

d&ﬂ:2:$gn <s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Hello World">

<s:Label x="63"
y="56"
width="289"
fontSize="26"
text="My name is:"/>

<s:Label x="63"
y="182"
width="289"
fontSize="26"
text="I live in:"/>

<s:TextInput id="nameTxt"

x="63"
y="98"
width="350"

prompt="Enter a name here..."/>

<s:TextInput id="locationTxt"

x="63"
y="230"
width="350"

prompt="Enter location here..."/>

</s:View>

Creating a Mobile Project Using Flash Builder |

a7

3.

Add a <s:Button> control to the view. Set the value of the 1abel property to submit, and
the values of the x and y properties to 63 and 402, respectively (Listing 2-5).

\’ LISTING 2-5: Adding a <s:Button> component to the view in HelloWorldAppHome.mxml

Available for
download on
Wrox.com

<?xml version="1.0" encoding="utf-8"7?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

title="Hello World">

<s:Label x="63"
y="56"
width="289"
fontSize="26"
text="My name is:"/>

x="63"
y="182"

width="289"
fontSize="26"
text="I live in:"/>

<s:Label

<s:TextInput id="nameTxt"
X:I|63II
y=l|98ll
width="350"

prompt="Enter a name here..

id="locationTxt"
x="63"

y="230"
width="350"

<s:TextInput

/>

prompt="Enter location here..."/>

<s:Button x="63"
y=ll402ll
label="Submit"/>

</s:View>

4.

Save the project, and then open the Design
view, where you will see the components
you’ve just added.

Next add another view to the application

to display the message when the user clicks
Submit. From the Flash Builder menu select
File © New &> MXML Component. Then
in the window that opens enter the details
for the new view. Enter views in the Package
field, and HelloWorld AppMessageView for
the Name. Leave the default values for the
Layout and Based On fields (Figure 2-13).

00 New MXML C

MXML Component
Create a new MXML component.

Source Folder: HelloWorldApp/src

Package: views

Name: HelloWorldAppMessageView

Layout: None =

Browse...

Based on spark.components View

® (cCancel) (5 mmisie)

A

FIGURE 2-13: Creating a new view via
the New MXML Component panel for the Hello
World App

48 | CHAPTER2 GETTING STARTED

After clicking OK the file will be generated in the Project Explorer.

6. Open the HelloWorldappMessageView.mxml file, updating the value of the title property
to Your message. ... Then add a single <s:Label> component to the view, setting the
value of the id property to messageTxt, the values of the width and height properties to
100%, the values for the paddingLeft, paddingRight, and paddingTop properties to 20, the
value of the color property to #868686, and the fontsize property to 32 (Listing 2-6).

\’ LISTING 2-6: Adding a <s:Label> to the view in HelloWorldAppMessageView.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

daﬂgkg&g" <s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Your message...">

<s:Label id="messageTxt"
color="#868686"
paddingLeft="20"
paddingRight="20"
paddingTop="20"
width="100%"
height="100%"
fontSize="32"/>

</s:View>

7. Return to the HelloWorldAppHome.mxml view, and add a new <fx:Script> declaration
containing a protected function called onsubmit () (Listing 2-7).

\, LISTING 2-7: Adding a new function called onSubmit() to the <fx:Script> declaration in

HelloWorldAppHome.mxml

Available for

download on . .
Wrox.com <?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Hello World">
<fx:Script>
<! [CDATA[
protected function onSubmit () :void {}
11>

</fx:Script>

<s:Label x="63"
y.:ll56|l

Creating a Mobile Project Using Flash Builder | 49

width="289"
fontSize="26"
text="My name is:"/>

<s:Label x="63"
y="182"
width="289"
fontSize="26"
text="I live in:"/>

<s:TextInput id=""

x="63"

y="98"

width="350"

prompt="Enter a name here..."/>

<s:TextInput id=""

x="63"

y="230"

width="350"

prompt="Enter location here..."/>

<s:Button x="63"
y:|l402||
label="Submit"/>

</s:View>

8. Inonsubmit () create an object called dobj, which will hold two values, a property called
name set by the first <s: TextInput> component nameTxt, and a property called location,
set by the second <s: TextInput> component locationTxt (Listing 2-8).

\, LISTING 2-8: Defining name and location properties on a data object dObj via onSubmit() in

HelloWorldAppHome.mxml

Available for

download on)
Wrox.com <fx:Script>

<! [CDATA[

protected function onSubmit():void
{
var dObj:Object =
{
name :nameTxt.text,
location:locationTxt.text

11>

</fx:Script>

50 | CHAPTER2 GETTING STARTED

9. Invoke the pushview () method on the navigator object for the view, supplying views
.HelloWorldAppMessageView and dobj as the arguments for onSubmit () (Listing 2-9).

J LISTING 2-9: Calling the pushView() method via the onSubmit() method in

HelloWorldAppHome.mxml
Available for

download on . . .
Wrox.com Protected function onSubmit():void

{
var dObj:0bject =
{
name:nameTxt . text,
location:locationTxt.text
}

navigator.pushvView(views.HelloWorldAppMessageView, dObj);
}

10. Assign the onsubmit () method to the c1ick property on the <s:Button> component
(Listing 2-10).

\) LISTING 2-10: Assigning the onSubmit() method to the click property on the <s:Button>

component in HelloWorldAppHome.mxml

Available for

download on
Wrox.com <S:Button x="63"

y: " 4 02 "
label="Submit"
click="onSubmit ()" />

In onSubmit (), you've created a function that will use the data set via the text input fields,
pushing the data object dobj and the name and location properties set on that object
through to the HelloworldappMessageVview. To utilize the data object, you will need to
update the HelloWorldAppMessageView.

You can use one of the following event properties to handle what happens when the
<s:View> component renders to the screen:

» creationComplete: When a component has completed its construction, property
processing, measuring, layout, and drawing

» viewActivate: When the current view has been activated

Similar to the click event property used for the <s:Button> component, you assign a
method to handle the creationComplete and viewActivate properties.

1. Return to the HelloWorldAppMessageView.mxml VieW, and add a new <fx:Script>
declaration containing a protected function called onCreationComplete (). Assign the
method to the creationComplete event property on the view (Listing 2-11).

Defining Run Configurations |

\) LISTING 2-11: Assigning the onCreationComplete() method to the creationComplete property

in HelloWorldAppMessageView.mxml

Available for
download on } .
Wrox.com <?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Your message... "
creationComplete="onCreationComplete()">

<fx:Script>
<! [CDATA[
protected function onCreationComplete():void {}
11>
</fx:Script>

</s:View>

12. In oncreationComplete () update the value of the text property on the <s:Label> to
utilize the name and location properties defined on the view’s data object, and incorporate
the values into a message saying Hello World, My name is with and T live in phrases
(Listing 2-12).

\) LISTING 2-12: Assigning the name and location properties to the <s:Label> component in

HelloWorldAppMessageView.mxml

Available for
download on . . .
Wrox.com Protected function onCreationComplete():void

{
messageTxt.text = "Hello World, \n\n"
"My name is " + data.name
", and I live in " + data.location + "...";

+ +

Here you see that the data object for HelloworldappMessageView is utilized, and the name and
location properties that were set in HelloWorldAppHome are referenced and assigned to the text
property on messageTxt. Now, whenever the pushview () method is invoked via the onsubmit ()
method in HelloWor1dAppHome, the onCreationCompete () method will display the text entered by
the user.

The Hello World App is now ready for testing. Next you take a look at running your project by
setting up run configurations.

DEFINING RUN CONFIGURATIONS

Run configurations are a key feature of Flash Builder that enable you to create and manage how you
run and debug your mobile projects. You can elect to run your mobile application on the desktop, or
directly on a connected device.

52 | CHAPTER2 GETTING STARTED

When you run your project on the desktop you can select from a number of devices, enabling you to
run your applications using different screen sizes and pixel densities.

The next few sections take you through defining run configurations for desktop and devices.

Running Mobile Applications on the Desktop
First, to set up a project that runs on the desktop, follow these steps:

1. In Flash Builder, select Run &> Run Configurations (Figure 2-14).

W Flash Builder File Edm Sowrce Navigate Search Froject Data LGN Window Help ®F © R i T % Mon2018 MrAsderson Q
ne z Resume [T T TE————_—
Tl ey ra T E dpreanbeney =
il Package Expiores 1 =0 Bswrge T seioworosone s [=o
T Brsoidacs Paml wersioa"1.0" aneading="|
e an:Vies wml
T i einu package
» i hpg mared s
» i abiees
M X
e ew Aoy e wr
» e et
e]
F s omorighca-sos am .
w5 .
> B utwrascad Ubaries ™ Profile Configurations... A
ey SR
e - } Rumn Histary >
o Rum As. >
Labe e Tat® »
»
* Toggle Breakpaint oeE
2 * Toggle Line Breakpoint
N © Toggle Method Breakpoint
E Outie 11 0@ v=a * Toggle Watchpoint
v :‘,‘u:nw-nm . Skip All Breakpaints
ppe- -
A i mesasgaaz 5 Remove AN Breakpoints
Q. External Took *
£ Proviems 3| o Dacariarvions | D) sormwork iomner | (D Comaoie | < Prograss [Design Meste Prosiems | ASDos T=o
Wanmy
Desnonon & Aescuree Pan [
Wi e ?

FIGURE 2-14: Navigating to the Run Configurations in Flash Builder

2. Inthe Run Configurations window that opens, select Mobile Application = New, to
create a mobile configuration type. Then in the Name field for the configuration replace
HelloWorldapp with HelloWorldapp on Desktop. Leave the Application File set as src/
HelloWorldapp. Then for the Target Platform select Google Android. For the Launch
Method, first select On Desktop. Then from the list of devices to run the application
on, choose the Google Nexus One. Finally, click Apply. This should update the Mobile
Application options in the left-hand panel (Figure 2-15).

Defining Run Configurations | 53

8006 _Run Configurations
Create, manage, and run configurations

Run a Mabile application. @
OExX ‘ B 3~ Name: | HelloWorldApp on Deskiop]

type filter text) m] %, Source| = Common
B\ pesktop Application
] Java Applet
[T Java Application HelloWorldApp Browse...
JuJunit
¥ [Mobile Application Application file:
B Helloworldapp on Desktop [sre/HelloWorldApp.mxml +

Project:

Jy Task Context Test
Web Application
Target platform:

[Google Android)

Launch method

@ On desktop: | Google Nexus One %] (configure)

() On device: Device connection help

[_] Clear application data on each launch

Apply) Revert
Filter matched 8 of 8 items,
@ T

4

FIGURE 2-15: Creating a run configuration for the Hello World App running on
the desktop

At this stage you could also elect to choose BlackBerry Tablet OS or Apple iOS and select a device
that runs on those target platforms. For the majority of the book the example projects will be
emulated using the Google Android platform and the Google Nexus One device profile.

WARNING Be aware that selections for the Target Platform in the Run
Configuration window will appear only if you have enabled your application to
be targeted on that platform. So, if you have targeted your application to run
only on Google Android Platform, neither Apple iOS nor BlackBerry Tablet OS
devices will be selectable here.

54 | CHAPTER2 GETTING STARTED

Launching the Project

Once your project’s run configuration has been defined you will be
able to launch your mobile application. To launch the application as
it is currently follow these steps:

1.

Within the Run Configurations window, select Mobile
Application @ Hello World on Desktop and click the Run
button.

In the Adobe Debug Launcher (ADL) window that opens
you’ll see the project as it currently is, running on the
desktop (Figure 2-16).

Enter some details into each of the input fields
(Figure 2-17).

Click the Submit button, and you should see the
new view appear with the Hello World message
(Figure 2-18).

Hello World Your message...

Hello World,

My name is:

lkma' ‘Andarson J My name is Jermaine G.
Anderson, and I live in Lower

1live in: Kingswood, Surrey...

| Lower Kingswood, Surrey |

 Submit |

FIGURE 2-17: Hello World App

with the name and location displaying the Hello World
fields completed message view

FIGURE 2-18: Hello World App

An

Hello World

Submit

FIGURE 2-16: Hello World App
running on the desktop

In the next section you take a look at the steps to create run configurations on Apple iOS,
BlackBerry Tablet iOS, and Google Android devices.

Defining Run Configurations

55

Running Mobile Applications on the Device

Once you’ve set up a run configuration for the Hello World application on the desktop, return to the
Run Configurations window to set up run configurations for an actual mobile device on each of
the target mobile platforms supported, starting with Google Android.

Creating Run Configurations for Google Android

Follow the next steps to create a run configuration for devices running the Google Android OS platform:

1. Within the Run Configurations window, click the New Launch configuration, and update

the name of the configuration to HelloWor1ldapp on Google Android.

2. Leave the Application File set to src/HelloWorldapp.mxml, and then for the Launch
Method select On Device.

3. Click Apply; the device run configuration will appear in the Mobile Application drop-down
(Figure 2-19).

AN

Create, mansge, 4nd rus configuritions
Bam & MR SO

[Oesirco Aowkcaten
s At
[Tl i Agiicatem
h fanat
* () Mobse Azotaron
18 remowartAnn 0n Compe Rndrd
18 rerowerieaos on Ditos
Jiy Thsk Context Test
B wes Azzicaton

Filter reaiched B of B e

5

Hame: [Hebomworenso o Coogie adios
=
P

[e

Apghcaton he

Targat plat'ern

L manhid
J Oe saieg

& Ondwicr (weis conreoen beip

) Char MOSSCMBON A4TE 04 SACH Liusch

Cloe

o =)

FIGURE 2-19: Run configuration for the Hello World App on Google Android now
ready to launch on a USB-connected device

These are the only steps you need to take to create a run configuration for Google Android devices

in Flash Builder. You will also need to make sure your device is connected and has USB debugging

enabled.

56 | CHAPTER2 GETTING STARTED

Enabling USB debugging

For Google Android devices running Android version 2.3.4, you need to ensure USB debugging is
enabled.

1. On the Google Nexus One running Android 2.3.4, navigate to the Development settings.
From the Applications menu, select Settings & Applications = Development.

2. In the Development settings, ensure the USB debugging option is enabled, and when asked
whether to enable USB debugging, select OK. Also ensure the Stay Awake option is enabled,
to prevent your Android device screen from sleeping while you are testing the application
(Figure 2-20).

3. Once you connect your device via USB you will be able to run mobile applications directly
from your Android run configuration. This is indicated by the debugging and USB
connection, in the top left of the status bar (Figure 2-21).

B o000

USB debugging

Stay awake
Allow mock locations

connected

Turn on USB storage

FIGURE 2-20: Development FIGURE 2-21: USB Connected
settings for the Google Nexus status for the Google Nexus
One device running Android One running Android

version 2.3.4 version 2.3.4

If you have a BlackBerry Tablet OS device like the BlackBerry PlayBook, the next section covers the
creating run configurations for BlackBerry Tablet OS.

Creating Run Configurations for BlackBerry Tablet OS
Next take a look at defining a run configuration for devices running the BlackBerry Tablet OS.

Defining Run Configurations | 57

1. Within the Run Configurations window, click the New Launch configuration, and update
the name of the configuration to HelloWor1ldapp on BlackBerry Tablet OS.
2. Leave the Application File set to src/HelloWorldapp.mxml, and then select On Device for
the Launch Method.
Unlike the Google Android platform, you will need to configure a BlackBerry Tablet OS
device in order for the run configuration to be completed (Figure 2-22).
ke Run Configurations
Create, manage, and run configurations
Run a Mobile application. @
CEX[O% Name: | HelloWorldApp on BlackBerry Tablet 05
" type filter text) 8 main &2 source | 5] Common
Y peskrop Application o
[Java Applet Erojact
[T1Java Application HelloWorldApp Browse...
JuJUnit
v [Mobile Application Application file:
g :‘:::g:::‘;zs::g:‘::{': :‘"d“"d [Csrc/HelloWorldApp.mxmi |
JyTask Context Test
[web Application Target platform
| BlackBerry Tablet 05 2
Launch method: = - - =~ - "
() On desktop: Configure...
@ On device: Configure...
Configure the contents of the generated package using Build Packaging.
@ No devices configured. Click configure to add a device.
(] Clear application data on each launch
Apply Revert
Filter matched 9 of 9 items.
@ [—
A

FIGURE 2-22: Creating a run configuration for the Hello World App on a BlackBerry
Tablet OS device

3.

Click the Configure button next to the On Device drop-down. This brings up a Preferences
window where you can add test devices to the BlackBerry Tablet OS (Figure 2-23).

The next few steps in Flash Builder require that you use some properties from your
BlackBerry Tablet OS device. Here you use the BlackBerry PlayBook, where you will need to
obtain an IP address and a password to run you applications on the device.

58 | CHAPTER2 GETTING STARTED

L A&OO Preferences (Filtered)
type filter text Test Devices x TN
¥Flash Builder
¥Target Platforms Default Debug Host IP: | 192.168.1.70

¥ BlackBerry Tablet OS

Test Devices |Device Name Device IP Add...

Edit...
Remove

Set Default

You may configure your stored credentials using Secure Storage.

4

FIGURE 2-23: Preferences window to create a test device for the
Hello World App on the BlackBerry Tablet OS platform

4. On your device you will need to enable the development mode. For this go to Settings =
Security @ Development Mode then switch Use Development Mode to On, where you
should be prompted to enter a password (Figure 2-24). Make a note of the password before
clicking OK.

Password Required
Use development mode.

Password: | *++eveed

ul" “ ! et

FIGURE 2-24: Enabling the use of the development mode for the Hello World App
on a BlackBerry PlayBook

Defining Run Configurations | 59

5. Next connect your device via USB to your PC or Mac. In the home screen on the device
make a note of the IP address from the Development settings on the main bar (Figure 2-25).

@ NOTE In Figure 2-25 you will actually see that the PlayBook is connected

via USB and Wi-Fi; thus, there are two IP addresses. The first IP address
shown, 169.254.168.221, corresponds to the USB connection, whereas the
second IP address, 10.0.1.2, is the Wi-Fi network connection. Either can be used
for the Device IP, which is set in step 5. However, in this example, follow the
USB route. Also, note that the IP address will change whenever you connect
your device.

01:23

Sun, Jul 3, 2011

Development Mode ON

Expires in 10 Days
IP Addresses: 169.254.168.221, 10.0.1.2

Favorites Games

p’\ﬂ
I gl I

Browser Pictures Music Camera App World Videos

FIGURE 2-25: |IP Address displayed when the Development mode is enabled and BlackBerry
PlayBook is connected

6. Returning to Flash Builder, within the Preferences window, click the Add button, and then
in the window that opens enter the details of the BlackBerry Tablet OS device. First set the
Device Name to PlayBook. Then for the Device IP and Password fields, use the values you
used in steps 4 and 5. Also ensure that the Debug Host IP and Debug Token checkboxes are
selected before clicking OK (Figure 2-26).

60

CHAPTER 2 GETTING STARTED

SO0

Add BlackBerry Tablet OS Test Device

Please enter the details of the Blackberry Tablet OS test device.

Device Name: | PlayBook

Device IP: 165.254.168.221

Credentials:

Password: | *xrsees

@ Save password (Could trigger secure storage login)

Debug Host IP:
E Use default debug host IP
Debug Host IP:

Debug Token

A debug token must be present on your device if you wish to deploy and debug development applications that
have not been signed. You do not need to check this option if you have already uploaded a debug token to

your device or if you are using the simulator.
] Create a debug token and upload it ta this device

@ (cancel

) (C—r—

FIGURE 2-26: Details window when adding a test device for the

BlackBerry Tablet OS platform

Before you complete your test device you will need to ensure the device has a
debug token installed. This will enable you to run applications on your device that are

not digitally signed. For this you will need
to register with RIM, who will be able

to send you RDK and PBDT versions of

a CSJ file, both required to create your
debug tokens.

The window in Figure 2-27 shows an
example of the completed details you will
need to provide when creating a debug
token and uploading it straight to the
device.

Registar with A Signing Autherity

Tha Mt e Wit D Order 10 LGS SEORCINNE S6C Cntdle et toRes S rour Sheet.
For aaatorsl imiormanom yor I | www BLACABEITY O | O ICOSENG T AR,

DK CU Rae ADK -] | _rowie
PROT () Pazie Juners) snseryom) Backlerry /chps - MOT- J1M3MA Ay Brows
€8P reearas

Ol Pastwerd saasas

Confirm O Prawarg: +=====>"

W Sive BaHIWOT KON 1NGRE HCUS 108 10}

z Camenl

FIGURE 2-27: Details window when creating a
debug token for the BlackBerry Tablet OS platform

NOTE For more information on debug tokens, | recommend reading the
Running unsigned applications using a debug token article on the BlackBerry
Developers website (http: //docs.blackberry.com/en/developers).

7. Once you have completed your test device, the device name and device IP address appear in

the Preferences window (Figure 2-28).

Defining Run Configurations

61

type filter text

¥ Flash Builder
¥ Target Platforms

Test Devices

Default Debug Host IP: 192.168.1.70
¥ BlackBerry Tablet OS
TescDevices Device Name Device IP
PlayBook (Default) 169.254.168.221

Edit...
Remove

Set Default

‘You may configure your stored credentials using Secure Storage.

@

Cone) oD

A
FIGURE 2-28: Preferences window with PlayBook test device created for
the Hello World App on the BlackBerry Tablet OS platform

8.

Click OK and return to the Run Configurations window where you will see you are now

able use your BlackBerry Tablet OS configuration. Click Apply to save the configuration

(Figure 2-29).

Kame: | neiotor kiAo or Sacuberry Taser 04 1|
e A bt e, % sowree T Commen
[Denines Agphicanion
[owa Apcben _"_"__"
pral L] g
b Mt

'%
r

i)
ek owoniaaas on Drabeos
i Tesh Comtent Test Tarpit plitters
s Acgegsen achBervy Tabien 05]
) O seston: £ (Comtgere
B oncmee | rson) (etgon)
Confige
L Codr ppemation dats om e8P lunh
Aoty L
Filas wanchad B of § 2emi
@

Com)

FIGURE 2-29: Run configuration for the Hello World App on BlackBerry
Tablet iOS ready for launch to a USB connected device

62 | CHAPTER2 GETTING STARTED

Creating Run Configurations for Apple iOS
Next take a look at defining a run configuration for devices running on the Apple iOS platform.

1. Within the Run Configurations window, click the New Launch configuration, and update
the name of the configuration to HelloWorldapp on Apple i0S.

2. Leave the Application File set to src/HelloWorldApp.mxml, and then for the
Launch Method select On Device. For the Packaging Method select the Fast Packaging
option.

Unlike the Google Android and the BlackBerry Tablet OS platforms, for Apple iOS you will
have to define the package settings before the run configuration is complete. Note the error
message in Figure 2-30.

8006 Run Configurations

Create, manage, and run configurations

Run a Mobile application. @

)
ISR ‘ SiE-24 Name: | HelloWorldApp on Apple iOS]

(“type filter text) W b Source| [Common

B peskiop Application

5 Java Applet kolect
[TlJava Applicaticn HelloWorldApp Browse...
JuJunit
¥ B Mobile Application Application file:
I R SR O [“src/HelloWarldApp.mxml =]
[HelloWorldApp on BlackBerry Tablet 05
[® HellowerldApp on Google Android
[® HelloworldApp on Desktop Target platform:
JuyTask Context Test [Apple 105 D)

web Application
REnch it

() On desktop 3 Configure... |

(@ On device: Packaging method:
(O standard (packaging takes several minutes, applicatien performance is similar to a release build)
@ Fast (packaging takes several secands, application runs significantly slower than a release build)

©On Apple i05, you will need to manually install and launch the application.

@ Packaging settings have not yet been configured. [Configure]

[Clear application data on each launch

Apply Revert
Filter matched 3 of 9 items
@ € mn)

A

FIGURE 2-30: Creating a run configuration for the Hello World App on the Apple iOS platform

3. Click the Configure link next to the error message. This will open the Packaging Properties
for the project, where you will need to define the Digital Signature settings.

Defining Run Configurations | 63

This requires you to obtain an Apple iOS Developer Certificate and Mobile Provisioning
profile, which you will need to install on your device prior to deploying your mobile
application. Before you can do this, you need to become a member of the iOS Dev Center.

The window in Figure 2-31 shows an example of the completed Digital Signature details.

8.0.08 Properties for HelloWorldApp

“type filter text | Apple i0S xS W

» Resource
Builders
Flex Applications
¥ Flex Build Packaging

E Enable this target platform

[Digilll Signature | Package Contents Permissions -

Apple i0S

BlackBerry Tablet OS

Google Android Certificate: {Users/anderson/iOS Development/cert12.p12 =] ((Browse..)
Flex Build Path

You will need to convert your Apple i0S developer certificate into P12 farma. [Learn mare]
Flex Compiler
Flex Server

Flex Theme Provisioning file: /Users/anderson/i0S Development/flash_dev_profile.mobileprovision =] (CBrowse...
Project References
Run/Debug Settings Learn more about Apple i0S deployment
b Task Repository
Task Tags

Validation
WikiText

(Restore Defaus) (Apply)

@ Come O oD

A

FIGURE 2-31: Properties window for the Hello World App on the Apple iOS platform,
displaying paths to a developer certificate and iOS provisioning file

@ NOTE For more information on generating certificates and installing mobile
provisioning profiles on your iOS device, visit the iOS Provisioning Portal

at the Apple iOS Developer website (http://developer.apple.com/
devcenter/ios).

4. Once you have completed your Digital Signature settings, you will be able to apply the run
config settings for the Apple iOS device (Figure 2-32).

64

CHAPTER 2 GETTING STARTED

808 Run Configurations
Create, manage, and run configurations
Run a Mobile application. @
% = e
Ex ‘ B Name: | HelloWorldApp on Apple i0S |
" type filter text) w &, Source| 5 Common
BN peskrop Application i
= roje
01 Java Applet 4
[TlJava Application HelloWorldApp Browse...)
Juunit
v B mobile Application Application file:
5 HelloworldApp on Apple 105 [“srcj HelloWorldApp.mxml 2]
[HelloWorldApp on BlackBerry Tablet OS
[® HellowerldApp on Google Android
[® HelloworldApp on Desktop Target platform:
Juj Task Context Test ["Apple 105]
[l web Application
Launch method
O On desktop: ¥ Configure...

@ On device: Packaging method:
() Standard (packaging takes several minutes, application performance is similar to a release build)
@ Fast (packaging takes several seconds, application runs significantly slower than a release build)

On Apple 05, you will need to manually install and launch the application.

Configure packaging settings

(] Clear application data on each launch

Apply Revert
Filter matched 8 of 9 items
@ (S

A

FIGURE 2-32: Run configuration for the Hello World App on Apple iOS ready for packaging

At this stage you have learned how to create configurations for running your mobile applications on
a connected device. The next chapter covers building and packaging for the three mobile platforms
in more detail.

SUMMARY

In this chapter you created a Flex-based mobile application using Flash Builder. Along the way you
also explored the Flash Builder IDE in depth, gaining an understanding of some of the key concepts.

Over the course of the book, the Flash Builder IDE will become more and more familiar as you
build on and create further examples.

You learned how to create run configurations that targeted each of the different mobile platforms
supported in Flash Builder, and may have noticed the differences in how running on a Google
Android is definitely the easier of the three platforms, closely followed by BlackBerry Tablet OS, and
then Apple iOS. The latter two both rely on you registering with the development communities of
Apple and BlackBerry, before you can get started.

In the next chapter you take a closer look at the AIR application descriptor file and building for each
of the mobile platforms in more detail.

Summary

65

EXERCISES

1.

2.

Create another desktop run configuration for the Hello World App, this time for the BlackBerry
Tablet OS platform.

Add a new <s:Button> component next to the existing Submit button that clears the text in the
two input fields when clicked.

Define a splash image for the application that displays for two seconds.
Specify a navigational button in the Action Bar that returns the user back to the first view when

clicked. Then randomize the color of the Hello World message set on the label each time the
message is generated.

66 | CHAPTER2 GETTING STARTED

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT
Run configurations for Apple iOS Obtain a developer certificate and provisioning profile
devices from Apple.

Define the package settings.

Run configurations for BlackBerry Tablet Register with RIM for debug token details.
OS devices Create a test device profile.

Enable development mode on the device.

Set the IP address for the device.

Connect the device via USB.

Run configurations for Google Android Ensure USB debugging is enabled on the Google
devices Android device.

Connect the device via USB.

b - - o .‘. s 2 - " ;
90008 X S0P 0OPOOOOROSBISLESIGS . -

Building AIR Applications
for Android, BlackBerry,
and iOS Devices

WHAT YOU WILL LEARN IN THIS CHAPTER:

Setting the properties of an application descriptor file manually
Specifying image icons for an application
Setting permissions for Android and BlackBerry applications

Packaging AIR applications for Android, BlackBerry, and iOS

Y Y Y Y Y

Updating AIR applications

In this chapter you’ll take a look at some of the elements involved in constructing AIR apps,
outside the task of actually coding an application.

First, you’ll explore the core components of the AIR application descriptor file, understanding
how to specify settings for it, covering image icon assignment, and setting Android
permissions and specifying iOS settings.

You’ll close the chapter by packaging a mobile application using Flash Builder, and then
look at how you can update AIR applications that aren’t uploaded to a target platform’s
marketplace.

AIR APPLICATION DESCRIPTOR FILES

An Adobe AIR application descriptor file contains parameters that are used to identify, install,
and launch an AIR application.

68

CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND |I0S DEVICES

Each new project created in Flash Builder automatically generates an AIR application descriptor
file template. The AIR application descriptor file name is usually generated by the name of the
application set in the Flash Builder New Project wizard, as covered in Chapter 2, in which
HelloWorld App generates HelloWor1dApp-app . xml.

This section takes a look at editing an application descriptor file focusing on each of the core elements.

Setting Properties in the AIR Application Descriptor File

The AIR application descriptor file is essentially an XML file consisting of many elements that you
need to specify for your mobile applications to be built. When these are packaged and then deployed
to the mobile device, the installation of AIR on that device can interpret the package correctly
and ascertain where to install files, write directories, and set data. Some of the elements in the
application descriptor file are required, and some are optional.

In Table 3-1 you see each of the core elements used in the AIR application descriptor file for mobile

applications listed.

TABLE 3-1: AIR Application Descriptor File Elements

ELEMENT
<application>
<id>

<filename>
<name>
<versionNumber>
<versionLabel>
<initialwindow>
<content>
<visible>

<fullScreen>

<aspectRatio>

<autoOrients>

<supportedProfiles>

<icon>

USAGE

Sets the AIR namespace declaration. Required for building AIR apps.
A unique identity for the application.

The name used for the Android Package file (APK, .apk file).

Sets the application name displayed on the device.

The version number of the application.

Used to display a label to users in the application’s installation dialog.
Contains properties for the initial appearance of the application.

To set the path to the main content . swf file of the application.

To set the visibility of the content.

Defines whether the application should use the entire screen of the
device.

To specify whether the application is in portrait or landscape mode.

To set whether the orientation of content in the application
automatically reorients as the device changes orientation.

Defines the supported profile that best fits the type of AIR
application.

To specify the icon images used to launch the application.

AIR Application Descriptor Files | 69

Manually Editing the Application Descriptor File
for the Hello World App

Next you edit the contents of HelloWorldapp-app.xml, the AIR application descriptor file that can
be found in the src folder of the Hello World App project from Chapter 2. Here are the steps:

1. First, remove the automatically generated content in the HelloWorldApp-app.xmnl file, as
if you were creating the file from the beginning. Then begin with the <?xm1> declaration,

setting the version attribute to 1.0, encoding to ut£-8, and standalone property to no
(Listing 3-1).

\, LISTING 3-1: Setting the XML declaration in the Hello World App AIR application descriptor file

Available for <?xml version="1.0" encoding="utf-8" standalone="no"?>
download on

Wrox.com

NOTE When Flash Builder generates HelloWor1ldApp-app .xml, it will contain
numerous comments for properties used for AIR desktop applications that we’'re
not going to cover here. Nevertheless, those comments would be self-explanatory
if you were to read them. Thus, clearing the contents of HelloWorldApp-app . xml
will make it easier to convey some of the settings and their corresponding values.

2. Add the AIR 2.7 namespace declaration in the <application> element (Listing 3-2).

\, LISTING 3-2: Setting the AIR namespace declaration in the Hello World App AIR application
descriptor file

dAvail‘«lzhltlai for

ﬂ‘ﬂgx‘fgo,ﬂ" <?xml version="1.0" encoding="utf-8" standalone="no"?>

<application xmlns="http://ns.adobe.com/air/application/2.7">

Setting an ID for the Application

The recommended form for the AIR application’s ID is a dot-delimited, reverse-DNS-style string, as
shown in the following snippet:

<id>com.wrox.ch3.AppName</id>

WARNING Each new application you install on a device should have a unique
ID associated with it. If it doesn’t, chances are it will override an existing
application with the same ID.

3. Inthe HelloWorldapp-app.xml file, set the <id> property for the application to com.wrox
.ch3.Helloworldapp (Listing 3-3).

70 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

\) LISTING 3-3: Setting the Application ID property in the Hello World App AIR application

descriptor file
Available for

download on . .
Wrox.com <°xml version="1.0" encoding="utf-8" standalone="no"?>

<application xmlns="http://ns.adobe.com/air/application/2.7">
<id>com.wrox.ch3.HelloWorldApp</id>

Setting the Name and Filename Properties

The <name> property in the AIR application descriptor file is used for display purposes. It is the
label the end user will see once the application has been installed on the user’s mobile device. While
the <filename> property is used for the actual file name and file path on the device, it is usually
hidden from the end user’s view. The value for the filename should be a string with no spaces.

4. In HelloWorldApp-app.xml set <filename> to HelloWorldapp and the <name> setting to
Hello World app (Listing 3-4).

J LISTING 3-4: Setting the Name and Filename properties in the Hello World App AIR application

descriptor file
Available for

download on . .
Wrox.com <?xml version="1.0" encoding="utf-8" standalone="no"?>

<application xmlns="http://ns.adobe.com/air/application/2.7">
<id>com.wrox.ch3.HelloWorldApp</id>
<filename>HelloWorldApp</£filename>
<name>Hello World App</name>

Setting the Application Version

The <versionNumber> property is required to identify an instance of the application installed on
the device. The version number’s representation should be a numerical value that incrementally
changes each time an update or new release of the mobile application has been produced, since the
version number can be used to distinguish between applications that have the same <id> values in
their AIR application descriptor files.

Version numbers should contain three integers separated by periods, as shown in the following
snippet:

<versionNumber>7.3.6</versionNumber>

The three integers represent the major, minor, and revision numbers assigned for the application’s
release. These usually refer to an automated build of the application. Each value should be between
0 and 999.

5. Returning to HelloWorldApp-app.xml, set the <versionNumber> to 0.9.0 (Listing 3-5).

AIR Application Descriptor Files | 71

\) LISTING 3-5: Setting the Version Number property in the Hello World App AIR application

descriptor file

Available for

download on } .
Wrox.com <?xml version="1.0" encoding="utf-8" standalone="no"?>

<application xmlns="http://ns.adobe.com/air/application/2.7">
<id>com.wrox.ch3.HelloWorld</id>
<filename>HelloWorldApp</filename>
<name>Hello World App</name>
<versionNumber>0.9.0</versionNumber>

You can also supply the version as a label via the <versionLabel> element, as shown in the
following snippet:

<versionLabel>0.9.0 (BETA)</versionLabel>

The <versionNumber> is required and takes precedence over the <versionLabel>, and if
<versionLabel> is not used, then the value set in <versionNumber> is displayed to users.

Setting the Supported Profile

Three values can be supplied to <supportedprofiles> for AIR applications:
> desktop: An AIR application for the desktop

> extendedDesktop: An AIR application with support for the native process API on the
desktop

> mobileDevice: An AIR application for mobile devices
For AIR mobile applications, you need to set <supportedPropfiles> to the mobileDevice profile.

6. InHelloWorldapp-app.xml, under the <versionNumber> declaration, set the
<supportedProfiles> property to mobileDevice (Listing 3-6).

\) LISTING 3-6: Setting the Supported Profiles property in the Hello World App AIR application

descriptor file

Available for

download on ,)
Wrox.com <?xml version="1.0" encoding="utf-8" standalone="no"?>

<application xmlns="http://ns.adobe.com/air/application/2.7">
<id>com.wrox.ch3.HelloWorldApp</id>
<filename>HelloWorld</filename>
<name>Hello World App</name>
<versionNumber>0.9.0</versionNumber>
<supportedProfiles>mobileDevice</supportedProfiles>

Setting the Initial Appearance

Several properties can define the initial appearance of the application when it starts up: the
content path; whether the content is visible; whether it is showing full-screen; the initial screen
orientation; and whether the application changes to a landscape or portrait orientation when the
user rotates the device.

72 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

The <initialWindow> element of the AIR application descriptor file is what defines these
properties. Here you can specify the <content>, <visible>, <fullScreen>, <aspectRatio>, and
<autoOrients> elements to specify the properties for the initial appearance of the application.

In the following snippet, the Helloworldapp.swf is specified at the <content> property, the
<visible> property is set to true, <fullScreen> is set to true, <aspectRatio> is set to
landscape, and the <autoOrients> property is set to false:

<initialWindow>
<content>HelloWorldApp.swf</content>
<visible>true</visible>
<fullScreen>true</fullScreen>
<aspectRatio>landscape</aspectRatio>
<autoOrients>false</autoOrients>
</initialWindow>

The last two properties set by <aspectRatio> and <autoOrients> indicate that the application
will always be in landscape mode, since the application is prevented from automatically changing its
orientation. Device orientation is covered in greater detail in Chapter 5.

7. InHelloWorldapp-app.xml, under the <supportedProfiles> declaration, add the initial
window declaration setting the <content> to HelloWor1dapp.swf, the <visible> property
to true, the <initialOrientation> property to portrait, and the <autoOrients>
property to true (Listing 3-7).

\) LISTING 3-7: Setting the Initial Window properties in the Hello World App AIR application

descriptor file

Available for
download on . .
Wrox.com <?xml version="1.0" encoding="utf-8" standalone="no"?>

<application xmlns="http://ns.adobe.com/air/application/2.7">
<id>com.wrox.ch3.HelloWorldApp</id>
<filename>HelloWorldApp</filename>
<name>Hello World App</name>
<versionNumber>0.9.0</versionNumber>
<supportedProfiles>mobileDevice</supportedProfiles>
<initialwindow>
<content>HelloWorldApp.swf</content>
<visible>true</visible>
<fullScreen>false</fullScreen>
<aspectRatio>portrait</aspectRatio>
<autoOrients>false</autoOrients>
</initialwindow>

Specifying Paths to Image Icons

The launch icon for an application needs to be specified before packaging. Because devices across
platforms tend to have different screen resolutions, you need to be very specific about the images you
reference. Thus, icon or image size needs to be carefully considered. For the Google Android and
Apple iOS platforms, you set paths to the application icons in the AIR application descriptor file.

AIR Application Descriptor Files | 73

For the BlackBerry Tablet OS platform, you specify the icon in the BlackBerry Tablet settings file,
which will be covered in more detail later.

For the BlackBerry PlayBook, the application icon should be supplied as a single 86x86 pixel .png
image file that is an image with an 86 pixel width and 86 pixel height.

On Android devices, the icon should be supplied as 36x36, 48x48, and 72x72 pixel .png file
images. These icon sizes are used for low-, medium-, and high-density screens, respectively.

On the iPad, iPhone, and iPod Touch iOS devices, there are a number of different screens on the
platform that require different sized icons to be packaged for an application. The following details
the sizes that can be supplied and where they are used:

> 29x29: Used for the Spotlight and Settings screens of iPhone and iPod Touch devices, and
also the settings screen on an iPad.

» 57x57: Used for the Home screens of iPhone and iPod Touch devices.
» 72x72: Used for the Home screen of an iPad.
> 114x114: Used for the Home screen of an iPhone with retina display (e.g., iPhone 4).

The following snippet shows the <icon> declaration in the AIR application descriptor file that specifies
the path to each of the image files that can be used on Android and iOS devices:

<icon>
<image29x29>assets/129x29.png</image29x29>
<image36x36>assets/i36x36.png</image36x36>
<imaged8x48>assets/i48x48.png</imaged 8x48>
<image57x57>assets/i57x57 .png</image57x57>
<image72x72>assets/172x72.png</image72x72>
<imagelldxll4>assets/illdx114.png</imagelldx114>

</icon>

The images are located in a folder called assets, in a folder relative to the content and main

.swf file. Notice that for each image you need to use a different element in the AIR application
descriptor file. For example, to specify a 72x72 pixel file image that can be used for the Home screen
of an iPad and a Google Nexus One, the path to the image is specified in the <image72x72> tag.

If you do not supply an icon of a given size, the next largest size is used and scaled to fit the
occupied space. For example, on a Google Android device, if the <image36x36> icon is not
specified, the <image48x48> declaration is used, and if <image48x48> isn’t set, the application will
default to <image72x72>.

If you don’t specify any of the image icons permitted, or if you incorrectly specify the path to an
image, you will see a default application image icon for the application set by the OS.

@ NOTE For the remaining chapters, the defining of properties in the AIR
application descriptor file process is omitted, so you may notice when you install
the examples on Android devices that the default system icon is used.

74 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND 10S DEVICES

Figure 3-1 shows the default Google Android application icon you will see on the device in the three sizes.

Figure 3-2 shows the six application icons that will be used in the Hello World App project.

a &
36x36 48x48 1262 36x36 48x48 B57x57 72x72 86 x86 114 x 114
FIGURE 3-1: The default FIGURE 3-2: The application icons used for the Hello World App
Android application icons, project, shown in six different sizes

shown in three different sizes

Pt R IR

(@ HelloworldApp

¥ ([#src
8. Ensure the six files, air36x36.png, aird8x48.png, 'Bfgﬁe“”';;zjf:i:’mw
air58x58.png, air72x72.png, air86x86.png, and “Eg;h@“”m
air114x114.png, are present in the src/assets folder Brscnscons
. . Gair25x25 prg
of the project (Figure 3-3). hairs7x57.0ng
& air72x72.png
- . & air86x86.pn
You should notice that once you’ve added the images and the e
assets folder, the bin-debug folder gets automatically e
replicated. Later you’ll see a bin-release folder created and e
used for the final export of the AIR application. B
. ¥ [=assets
9. Returning to the HelloWorldapp-app.xml file, under Butiactioomg
. &% air36x36.png
the <initialwindow> declaration, add the <icon> & air8xa8.png
. . . W airS7x57.png
declaration, setting the paths to the five images, Sarrzxrz.ong

&% air86x86.png
=% blackberry-tablet.xml
. . . 5| HelloWorldApp-app.xml
<imaged48x48>, air57x57.png to <image57x57>, = HelloworldApp.swf

(= libs

air36x36.png to <image36x36>, aird8x48.png to

air72x72.png to <image72x72>,and.airll4xll4.png
to <imagell4x114> (Listing 3-8).

FIGURE 3-3: Package Explorer for
the Hello World App project

\) LISTING 3-8: Setting the Icon properties in the Hello World App AIR application descriptor file

Available for <initialWindow>
daﬂgtz$g" <content>HelloWorldApp.swf</content>
<visible>true</visible>
<fullScreen>false</fullScreen>
<initialOrientation>portrait</initialOrientation>
<autoOrients>false</autoOrients>
</initialwWindow>
<icon>
<image36x36>assets/air36x36.png</image36x36>
<imaged48x48>assets/aird8x48.png</imaged 8x48>
<image57x57>assets/air57x57 .png</image57x57>

AIR Application Descriptor Files | 75

<image72x72>assets/air72x72.png</image72x72>
<imagelld4xll4>assets/airlldx114.png</imagelldx1ld>
</icon>

Referencing the five images, as shown here, will allow application icons to be shown for both
Google Android and Apple iOS.

Setting Android OS Permissions

For Android applications the security model for the OS requires that each application requests
a particular permission in order to use a feature that has security or privacy implications. These
permissions cannot be requested or changed at run time and so must be requested when the
application is packaged in the AIR application descriptor file.

When a user installs an Android application, the operating system informs the user which
permissions an application is requesting.

Android permissions are specified inside the <android> element of the AIR application descriptor file.

In the following snippet, you’ll see that the android:name attribute inside the <uses-permissions>
element is specified as the value android.permission.NAME, representing the full name of an
Android permission.

<android>
<manifestAdditions>
<manifest>
<data>
<! [CDATA [
<uses-permission android:name="android.permission.NAME"/>
11>
</data>
</manifest>
</manifestAdditions>
</android>

Each of the uses-permission statements in the AIR application descriptor file is added directly
to an Android manifest document, when you target the Google Android platform in the New Flex
Mobile Project wizard, as covered in Chapter 2.

The following lists some of the permissions that are required by AIR Android apps, in order for an
application to use particular mobile device features:

> android.permission.ACCESS_FINE_LOCATION: Allows the application to access GPS data
through the Geolocation class

> android.permission.CAMERA: Allows the application to gain access to the device’s camera
> android.permission.INTERNET: Allows the application to make network requests

» android.permission.READ_PHONE_STATE: Allows the AIR run time to mute audio when an
incoming call occurs

» android.permission.RECORD_AUDIO: Allows the application to access the microphone

» android.permission.WAKE_LOCK: Prevents the device from going to sleep while an
application is running

76 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND I0S DEVICES

» android.permission.DISABLE_KEYGUARD: Disables the key guard and stops the device
from locking while an application is running

» android.permission.WRITE_EXTERNAL_STORAGE: Allows the application to write to the
external memory card on the device

So, for example, to allow an application to use the camera you would use the android.permission
.caMERA Android permission, as shown in the following snippet:

<android>
<manifestAdditions>
<manifest>
<data>
<! [CDATA[
<uses-permission android:name="android.permission.CAMERA"/>
11>
</data>
</manifest>
</manifestAdditions>
</android>

NOTE Throughout this book different AIR application descriptor files will be in
use, and depending on the application covered, the file will contain a different
value for each of the settings. For instance, in Chapter 10 you need to use

the ACCESS_FINE_LOCATION, CAMERA, INTERNET, and RECORD_AUDIO Android
permissions.

10. InHelloWworldapp-app.xml, under the <icon> image settings, add an empty <androids>
declaration (Listing 3-9).

\) LISTING 3-9: Setting an empty Android permissions declaration in the HelloWorld AIR

application descriptor file

Available for

download on .. .
Wrox.com <initialWindow>

<content>HelloWorldApp.swf</content>
<visible>true</visible>
<fullScreen>false</fullScreen>
<initialOrientation>portrait</initialOrientation>
<autoOrients>false</autoOrients>
</initialwWindow>
<icon>
<image36x36>assets/air36x36.png</image36x36>
<imaged8x48>assets/aird8x48.png</imaged 8x48>
<image57x57>assets/air57x57.png</image57x57>
<image72x72>assets/air72x72.png</image72x72>
<imagell4xll4>assets/airll4dx114.png</imagelldx114>
</icon>
<android>
<manifestAdditions>
<! [CDATA[
<manifest/>

AIR Application Descriptor Files |

77

11>

</manifestAdditions>

</android>

Defining iOS Capabilities

For i0S, you set application settings inside the <iPhone> element of the AIR application descriptor file.

Setting Info Additions

There are a numerous key-value pairs that define particular settings for your application running on

i0S. These need to be set within the child element <Infoadditions>. The following lists commonly

used keys and some of their associated values:

>

UIApplicationExitOnSuspend: A string that when set to <true/> will exit the application
completely and not just suspend it.

UIDeviceFamily: An array of strings defining the type of iOS device that the application
should run on. A value of 1 specifies iPhone and iPod Touch devices, whereas a value of 2
specifies iPad.

UIPrerenderedIcon: A string that when set to YES will remove the default gloss applied to
the application’s launch icon on iOS devices.

UIRequiredDeviceCapabilities: An array of strings listing the device capabilities that are
required in order for the application to be installed. Possible values include:

> accelerometer
auto-focus-camera
camera-flash

gps
location-services
microphone

sms

still-camera

telophony

Y Y Y VY Y VY VY VY

video-camera
> wifi

UIRequiresPersistentwifi: A string that when set to YES requires the device to have a
Wifi connection open for the length of duration the application is running; otherwise, it will
close after 30 minutes.

UIStatusBarStyle: A string determining how the status bar at the top of an iOS device will
appear. A value of UTStatusBarStyleBlackOpaque means the status bar will not be clear;
a value of UTStatusBarstyleDefault uses the iOS default grey status bar; and a value of
UIStatusBarStyleBlackTranslucent sets the status bar to black with an alpha of 0.5.

78 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

Setting iOS Screen Resolution

Setting the <requestedDisplayResolution> to high allows you to specify that the application should
utilize the full 940 x 640 retina display. This should be set when you want to target iPhone 4,
as shown in the following snippet:

<requestedDisplayResolution>high</requestedDisplayResolution>

By default, this property is set to standard, which means the device screen will appear to your
application as a standard resolution screen of 480 x 320. The application will try to adapt and
upscale a single pixel in standard mode to four equivalent pixels on the high-resolution screen,
giving a blurred appearance.

On non-high resolution iOS devices, if the <requestedbisplayResolution> property is set to
high, the value is ignored and the application defaults to the standard setting.

11. Returning to the AIR application descriptor file, add the iOS capabilities for the application
running on an iPhone 4 under the <android> manifest declaration (Listing 3-10).

\) LISTING 3-10: Setting iOS capabilities for the Hello World App in the AIR application

descriptor file

Available for
download on .
Wrox.com <1con>

<image36x36>assets/air36x36.png</image36x36>
<imaged8x48>assets/aird8x48.png</imaged 8x48>
<imageb57x57>assets/air57x57.png</image57x57>
<image72x72>assets/air72x72.png</image72x72>
<imagelldxll4>assets/airlldx114.png</imagelldx114>

</icon>
<android>
<manifestAdditions>
<! [CDATA[
<manifest/>

11>
</manifestAdditions>
</android>
<iPhone>
<InfoAdditions>
<! [CDATA[
<key>UIDeviceFamily</key>
<array>
<string>1</string>
</array>
<key>UIStatusBarStyle</key>
<string>UIStatusBarStyleBlackTranslucent</string>
<key>UIPrerenderedIcon</key>
<string>YES</string>
11>
</InfoAdditions>
<requestedDisplayResolution>high</requestedDisplayResolution>
</iPhone>

AIR Application Descriptor Files |

79

12. Lastly, save the file as HelloWorldApp-app.xml.

You’ve now covered each of the settings required for a valid AIR application descriptor file to run on
Google Android and Apple iOS devices. Later you’ll you’ll take a look at exporting a release package
for the application, using this descriptor file via Flash Builder. In the final section on updating AIR
applications you also reference several values saved to the file, in particular the <versionNumber>
property. Next take a look at the configuration settings required for BlackBerry Tablet OS.

BlackBerry Tablet OS Configuration

The configuration settings for BlackBerry Tablet OS are found in the blackberry-tablet.xml file,
which is generated when you choose to include the BlackBerry Tablet OS as a target platform during
project setup. In this file you can specify a number of settings and permissions, which are used in
addition to the AIR application descriptor file settings and permissions.

QNX is the platform on which the BlackBerry Tablet OS is based. By default, the XML file simply
has an <?xm1> declaration and an empty <gnx/> node:

<?xml version="1.0" encoding="UTF-8"7?>
<gnx/>

The <gnx> element must have nested elements defined to set the appearance and behavior of the
application on the device. The following code snippet shows an example of a configuration file:

<?xml version="1.0" encoding="UTF-8"7?>

<gnx>
<author>jganderson</author>
<authorId>gYAAgFbt6rihu</authorId>
<category>core.media</category>
<buildIid>1</buildIid>
<platformvVersion>1.0.0.0</platformvVersion>
<icon>



</icon>
<splashscreen>s600x1024.jpg:s1024x600.jpg</splashscreen>
<permission>access_internet</permission>

</anx>

The following sections cover each of the core elements.

Setting the Author and Author Id

The <author> and <authorId> values need to match the values specified in the debug token
generated for the device.

Setting the Build Id and Platform Version

The <buildid> is a value that represents an incremental build number for your application,
which needs to be a whole number. It is combined with the <versionNumber> element of the AIR
application descriptor file, which holds the (Major).(Minor).(Revision) values, and represents the
build portion of a full version number reference in (Major).(Minor).(Revision).(Build).

80 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

The <platformversion> is the minimum version of the BlackBerry Tablet OS required to run the
application. If this number exceeds the number on the device, it won’t install.

The following snippet gives an example of how both these elements should be set:

<buildId>1</buildId>
<platformvVersion>1.0.6.2390</platformversion>

Note that the 1.0.6.2390 value specified for the <plat formversion> here is the version of the
BlackBerry Tablet OS that had AIR version 2.7.0195 installed.

Setting the Category

On a BlackBerry PlayBook device, there are four categories in which you’ll find applications: All,
Favorites, Media, and Games.

Every applications installed on the PlayBook appears under the All category. Setting the <category>
field in the settings file also allows you to add the application’s launch icon to either the Media or
Games categories. Specifying core.games adds the application to Games, while setting to
core.media adds the application to the Media section, as shown in the following snippet:

<category>core.media</category>
This configuration setting is optional.

Setting the Application Icon

As previously mentioned, you need to define only one application icon in the configuration file for
the BlackBerry PlayBook, which needs to be 86px width by 86px height. This is specified as shown
in the following snippet:

<icon>

</icon>

This configuration setting is also optional.

WARNING The list of icons specified in the AIR application descriptor file
override the icon set in the BlackBerry Tablet Settings file. To use your 86x86
icon set in the BlackBerry Tablet settings file, you need to remove those
specified in the AIR application descriptor.

Setting the Permissions

The following lists some of the permissions that need to be added in the configuration settings, in
order for an application to use particular device features on BlackBerry Tablet OS:

AIR Application Descriptor Files | 81

> access_internet: Allows the application to make network requests

> access_shared: Allows the application to access files and grants access to the file system on
the device

play_audio: Allows the application to access the device PIN and serial number

read_geolocation: Allows the application to access GPS data through the Geolocation
class

» record_audio: Allows the application to access the microphone
> set_audio_volume: Allows the application to control the device’s native volume controls
> use_camera: Allows the application to gain access to the device’s camera

Permissions are set through the either the <permission> or <action> element of the BlackBerry
Tablet OS configuration file.

The following snippet shows how to allow an application to use network services and access
GPS data:

<permission>access_internet</permission>
<permission>read_geolocation</permission>

Like with the Google Android platform, permissions can be automatically added to the configuration
file when you target the BlackBerry Tablet OS in the New Flex Mobile Application wizard, as covered
in Chapter 2.

These configuration settings are optional, but bear in mind if they are not set, you may run into
issues not being able to use particular features in your applications.

Setting the Splash Image

While the application is loading you can display an image, known as the splash screen image.

The application can potentially run in both landscape and portrait orientation, so you are able to
specify a value representing two images in the <splashscreen> element.

The screen size of the BlackBerry PlayBook is 1024 x 600. In the following snippet, you see the
value for <splashscreen> is separated by a colon (:). The first image path, s1024x600. jpg,
before the colon, represents the splash image to be shown when the application is in a landscape
orientation. The second image path following the colon, s600x1024. pg, represents the splash
image to be shown when the image is in a portrait orientation.

<splashscreen>s1024x600.jpg:s600x1024.jpg</splashscreen>

If only a single image is specified, the device will default to that image, regardless of the size.
Remember, though, setting the <autoorients> and <initialOrientation> properties in the AIR
application descriptor file will allow you to control the orientation of the application on launch; so,

82 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND 10S DEVICES

you could potentially get away with setting one splash image in a situation where your application
will only use one orientation.

Also be aware that a splash screen image can also be specified for Flex mobile applications in the
main application file. In the following code snippet you see a splash .png image is set to display for
5 seconds before the application launches:

<?xml version="1.0" encoding="utf-8"?>

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.HelloWorldAppHome"
splashScreenImage="@Embed ('assets/splash.png')"
splashScreenMinimumDisplayTime="5000"
splashScreenScaleMode="none">

</s:ViewNavigatorApplication>

If this were to be set in addition to the <splashscreen> setting, you would have two splash images
displayed, with the BlackBerry Tablet OS splash image showing first.

Before moving onto the next section, ensure the blackberry-tablet.xml file for the Hello World
App project is updated with the configuration settings specified in Listing 3-11.

\) LISTING 3-11: Configuration settings for the Hello World BlackBerry Tablet OS

Configuration File
Available for

download on . .
Wrox.com <?xml version="1.0" encoding="UTF-8"?>

<gnx>
<author>authorName</author>
<authorId>authorId</authorId>
<category>core.media</category>
<buildId>1</buildid>
<platformVersion>1.0.0.0</platformVersion>
<icon>



</icon>

</anx>

Note that in Listing 3-11 you will need to replace authorName and authorId with your own values
for deploying to a device that has a debug token installed.
Packaging for Google Android

Using Flash Builder, you can package native AIR Android applications via the Export Release
Build panel.

Packaging applications requires you to use self-signed digital certificates, which associate the
application with an identity, with the aim of forging a trust between the application’s creator and an

AIR Application Descriptor Files | 83

end user. A few of the following steps will reference the creation of a self-signed digital certificate
for use with packaging an AIR Android application.

The native application file package for Android is a .apk file. At the end of this section, you should
be able to install the Hello World App onto an Android device.

1. In Flash Builder, returning to the HelloWorldapp-app.xml file, ensure that only the image
paths required for displaying application icons on devices running the Google Android
platform are set (Listing 3-12).

\, LISTING 3-12: Setting the Icon properties in the Hello World App AIR application descriptor file

targeting the Google Android platform

Available for
download on .
Wrox.com <lcon>
<image36x36>assets/air36x36.png</image36x36>

<image48x48>assets/air48x48.png</imaged8x48>
<image72x72>assets/air72x72.png</image72x72>
</icon>

2. Ensure the Hello World App project is highlighted, and then select File &> Export to open
the Export panel (Figure 3-4).

@ Flash Buiider [0 €% Source Wavigate Search Project Daia Rn Window Help T © A B3 ® Seni72d MrAndemon O
L YaYs) i New N Flash Buider s o
== YT unnl‘-:msuma«.mrmw_.. ——

2 Pockags Drpiorns 1 =g
Close 1
Close All

S ey B

v iensmarign T Export Flash Builder Project....

]
= macaberry-tis
= sasoworisho
W 451
] £ Refresh "
e Coewvert Line Delimiters To L4
& Print... L L
Switch Workspace >
Restart
iy Import...
Properties T
1 HelloWorldApp.mumi [HellcWarkdApp /src]
GE Dutie B
Az

L% protiems o§ Caariervans D moowors donier (O Comoin B 5 Progress m 5 % |l i B-r3-"0

A o D ATOD MG 4 Al o
[58¢] maliohorlalop. snd - 1,000,804 bybes ofter decomprussion

Weitashe Imsert 1:1 Pacuagny

FIGURE 3-4: Selecting the Export option from the File menu in Flash Builder

CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND |OS DEVICES

3. Inthe Export panel that opens, asa Expor,
ect
SeleCt Flash Bullder E:> Release Bu]ld Build and export an optimized release-quality SWF, Adobe AIR or Native application installer. @
(Figure 3-5).
Select an export destination:
4. Click Next. In the Export Build Release b
panel that opens, you should see that the N R
Project, Application, and Base filename —
. . P (= Run/Debug
settings have been pre-populated with the » S Taske
- .) ¥ @ Team
HelloWorldapp, with the Application (i
field automatically set to Helloworldapp
.mxml. For the Target platforms section,
ensure that Google Android is selected
and uncheck both Apple iOS and
BlackBerry Tablet OS options. For the
Export section, leave the Export to folder @) S, () (o
field blank, as the .apk file package will =
be created in the project folder. Leave the =~ FIGURE 3-5: Selecting the Release Build option
Base filename field as HellowWorldapp from the Export panel in the Hello World App project
(Figure 3-6).
[TeNs)] Export Release Build
Export Release Build
Build and export an optimized release-quality version of your application
Project: [HellowerldApp 3]
Application: | HelloWorldApp.mxmi)
Target platforms
(] BlackBerry Tablet 0S # Google Android] Apple i0S
Export
Export to folder: Browse...
(in /HelloWorldApp)
Base filename: HelloWorldApp
Export as:
) signed packages for each target platform
() signed AIR package for installation on desktop
() Intermediate AIRI package that must be manually signed later
@ (<sack) (__mext>) ((cancel) (- Fimish)
A

FIGURE 3-6: Setting the details of the Export Release Build for the Hello World App
project targeting Google Android

5. Still within the Export Release Build panel, click Next. You should see the Exporting release

progress status to the bottom of the panel, before being presented with the Packaging

AIR Application Descriptor Files | 85

Settings. Here you will see Google Android listed as one of the device platforms to the left
in the Target platforms area. This panel also contains three tabs. The first is the Digital
Signature tab where you can see the Target platforms and specify a Certificate and Password
for the packaging. The second is the Package Contents tab, which allows you to see each

of the files that will be packaged in the AIR application. The third is the Deployment tab,
which allows you to specify whether the application should be installed on the device. Note
that there is a No certificate selected error highlighted in the panel at this stage (Figure 3-7).

8.N6o Export Release Build

Packaging Settings

@ No certificate selected.

lareet pletfoms { @ Digital Signature | Package Contents _Deployment |
Google Android
Certificate =] (CBrowse... Create...
Password:
¥ Remember password for this session
@ < Back Next > Cancel Finish
V)

FIGURE 3-7: Displaying the Digital Signature tab for the Hello World App project

targeting Google Android

6. In the Digital Signature section, create a
certificate by clicking the Create button. Then
in the Create Self-Signed Digital Certificate
panel that opens, enter some details for the
Publisher Name, Organizational Unit, and
Organization Name. Select the Country, and
then enter and confirm a password. Leave the
Type selection as 1024-RSa. Save the file as

helloWorldCert (Figure 3-8).

Click the OK button. This will create the
helloWorldCert.p12 file. By default, the
certificate will be located in the default

project workspace for Adobe Flash Builder
4.5, although you can specify an alternative
location. After the file is generated, you will

be returned to the Digital Signature panel.
Complete the section by entering the password
that you set for the certificate (Figure 3-9).

806 Create Self-Signed Digital Certificate
Publisher name*: Jjganderson
Organizational unit: ch3
Organization name: wrox
Type [102a-r5a 3]
Password*: werssans
Confirm password™: ssssssss
*required
Save as: | helloWarldCert (_Browse..)
A

FIGURE 3-8: Creating a Self-Signed digital
certificate for the Hello World App project
targeting Google Android

86

CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND |OS DEVICES

. TeNs) Export Release Build
Packaging Settings
Specify the packaging settings to export a release build.
TR GG { Digital Signature | Package Contents D }
Google Android
Certificate: | /Users/anderson/Android Development/helloWorldCert.p12 =] ((Browse... Create...)
Password: sesssses
¥ Remember password for this session
@ (<Back) (Nex> (cancel) (- Fimsh)
4

FIGURE 3-9: Displaying the completed Digital Signature tab in the Export Release
Build panel for the Hello World App project targeting Google Android

8. Select the Package Contents tab. Here you should see each of the files that will be packaged
in the AIR application installer. Ensure all the items are selected. This should include the
application descriptor HelloWorldApp-app.xml, and HelloWorldApp.swt, and the assets
folder containing the application icons. These are essentially all the files that are needed by
the application (Figure 3-10).

LBO6 Export Release Build
Packaging Settings
Specify the packaging settings to export a release build.
T Do [Digital Signature | Package Contents | D }
Google Android
[) =
included files: [[] 2| .DS_Store s
® [HelloWorldApp-app.xml (required)
& [@Helloworldapp.swf (required)
B vi=assets
B hairlldxlld.png
™ % air36x36.png
™ & airaBx48.png
8 W airs7x57.png
™ & air72x72.png
8 W air86x86.png
a [X] blackberry-tablet.xml
@ (<Back) Next > (cancel) (EFinish-)
A

FIGURE 3-10: Displaying the package contents in the Export Release Build panel for
the Hello World App project targeting Google Android

AIR Application Descriptor Files | 87

Select the Deployment package and ensure that the option for Install and launch application
on any connected device is selected. Here you can also define the Application Store settings.
So, if you plan on deploying an application to the Android Market or the Amazon Appstore,
you can provide those users who download your application, who don’t have the correct

version of AIR installed, a URL to obtain the version from the relevant Application Store
(Figure 3-11).

806

Packaging Settings

Export Release Build

Specify the packaging settings to export a release build.

Tnppsieene ! Digital Signature _Package Contents | Deployment |
Google Android

™ Install and launch application on any connected devices

Application Store settings

Select or enter the URL that will be used to download Adobe AIR if not already installed on the user's device.

The URL specified for an application package must peint to a download location on the store where the
application will be hosted.

AIR download URL: | Android Market - https://market.android.com/details?id=com.adobe.air -
| Android Market - https://market.android.com/details?id=com.adobe.air

Amazon Appstore - http: //www.amazon.com/gp/mas /dl /android?p=com.adabe.air |

@ < Back Next > " Finish

£

FIGURE 3-11: Displaying the Deployment settings in the Export Release Build panel
for the Hello World App project targeting Google Android

10. Click the Finish button to finally create the .apk file. At this point, if you had selected the

checkbox for automatic deployment, Flash Builder will attempt to automatically install
the application onto the device, but only if it is connected via USB. When the publishing is

complete, you’ll get a message indicating that the application was successfully packaged, but
no connected devices were found (Figure 3-12).

.00 Export Release Build

] The package(s) were successfully created but the application could not be
. deployed on one or more devices:

Google Android: No connected devices were found

Device connection help

—

FIGURE 3-12: Confirmation of a successful export release build
for the Hello World App targeting Google Android

88 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND I0S DEVICES

As you will see in Figure 3-13, the newly generated HelloWor1dapp.apk file will be located alongside
the project’s src folder. You may also see a new folder called bin-release, which contains all the
files for the package.

If you have an Android device, try connecting it to Flash Builder via USB and then use the export
release function to install the application onto the device. Figure 3-14 shows the app installed on the
home screen.

EACE Sl

¥ ({8 HelloworldApp
¥ Esrc
¥ {1 (default package)
» i HelloworldApp.mxml
¥ {2 assets
Abairl14x114.png
& air36x36.png
b airaBx48.png
A& airs7x57.png
Aair72x72.png
&b airB6xB6.png
v 3 views
» i HelloWorl dAppHome. mxml
» T HelloWorl dAppMessageView.mxml
| blackberry-tablet.xml
| HellowerldApp-app.xmi
b i Flex 4.5.1
¥ = bin-debug
¥ (= assets
Abairll4x114.png
Abairi6x36.png
A% aira8x48.png
A% air57x57.png
Abair7zx72.png
b airB6xB6.png
| blackberry-tablet.xml
| HelloWorldApp-app.xml
“%|HelloWorldApp.swi
¥ [(=-assets
Abairlldx1ld.png
AbairI6x36.png
A% aira8x48.png
A& airs7x57.png
Abair72x72.png
A% air86x86.png
7’| blackberry-tablet.xml
7| HelloWarldApp-app.xml
=% HelloWorldApp.swi
(= libs

FIGURE 3-13: Package Explorer FIGURE 3-14: Hello World App
highlighting the HelloWorldApp on the home screen of a Google
.apk file generated for the Hello Nexus One running Android 2.3.4

World App project targeting
Google Android

Packaging for Apple iOS

The native application file package for the Apple iOS platform is an . ipa file. At the end of this
section, you should be able to install the Hello World App onto an iPhone 4.

Follow the next steps to create a release version of Hello World App using Flash Builder:

1. Returning to the HelloWorldApp-app.xml file, ensure that only the image paths required for
displaying application icons on devices running the Apple iOS platform are set (Listing 3-13).

AIR Application Descriptor Files | 89

\) LISTING 3-13: Setting the Icon properties in the Hello World App AIR application descriptor file

targeting the Apple iOS platform
Available for
download on .
Wrox.com <lcon>

<image57x57>assets/air57x57.png</image57x57>
<image72x72>assets/air72x72.png</image72x72>

<imagelldxlld>assets/airll14x114.png</imagelldx114>
</icon>

2. Ensure the Hello World App project is highlighted. Select Project &> Export Release Build...,
to open the Export Release Build panel. Then select Apple iOS as the Target Platform, and

ensure the Signed packages for each target platform option is selected in the Export as
list (Figure 3-15). Click Next.

8,085
Export Release Build

Export Release Build

Build and export an optimized release-quality version of your application

Project: | HelloWorldApp

=

Application: | HelloWorldApp.mxml

ar| [

Target platforms

[BlackBerry Tablet OS] GCoogle Android # Apple i0s

Export

Export to folder:

Browse...

(in /HelloWorldApp)
Base filename: HelloWorldApp

Export as:
(®) Signed packages for each target platform
() Signed AIR package for installation on desktop

() Intermediate AIRI package that must be manually signed later

@ (<Back) (Next>) (Cancel) (S Finisho)

A
FIGURE 3-15: Setting the details of the Export Release Build for the Hello World App project
targeting Apple iOS

3.

In the Digital Signature tab, ensure the Certificate, accompanying Password and
Provisioning file have been specified correctly. Then in the Package type field you have the

option of Ad hoc package for limited distribution, or Final Release Package for Apple App
store. Select Ad hoc (Figure 3-16).

90 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

AO0 Export Release Build.
Packaging Settings
Specify the packaging settings to export a release build.
EEai=me { Digital Signature | Package Contents |
Apple i0S
Certificate: JUsers/anderson/i0S Development /helloWorldCert.p12 =] (Browse..
*ou will need to convert your Apgle iOS developer certificate inta P12 format. [Learn more]
Password: .
¥ Remember password for this session
file: | fUsers/. 105 D /flash_dev_profile.mobileprovisior®] (_Browse...)
Package type
) Final release package for Apple App Store (requires distribution provisicning profile)
@ Ad hoc package for limited distribution
Learn more about Apple i0S deployment
@ (<Back) next>) ((cancel) (Gt
#

FIGURE 3-16: Displaying the completed Digital Signature tab in the Export Release
Build panel for the Hello World App project targeting Apple iOS

4. Select the Package Contents tab and ensure each of the required project files are selected,
including each of the application icons specified for iOS, and then click Finish to create the
.ipa file (Figure 3-17).

8.6 Export Release Build
Packaging Settings
Specify the packaging settings to export a release build.
Jafoccpltions: [Digital Signature_| Package Contents |}
Apple i0S
Included files:] =] .DS_Store

™ [X] HelloworldApp-app.xml (required)
& @ neloworldapp.swf (required) e
B vizassets
™ A airl14x114.png
] A& airiex3c.png
=] & aira8x48.png
™ A airs7x57.png
=] W air72x72.png
(=] Ak air86x86.png
B [%] blackberry-tablet.xml

@ (<Back) (N>) ((Cancel) (Gt

V|

FIGURE 3-17: Displaying the package contents in the Export Release Build panel for
the Hello World App project targeting Apple iOS

AIR Application Descriptor Files

91

WARNING The process of exporting a release build when targeting the Apple

iOS platform may take several minutes.

5. In the Package Explorer, you should see the
.ipa file located in the root project folder.
This should be named HelloWorldapp.ipa
(Figure 3-18).

Double-click the newly created . ipa file. This should
open iTunes and install the application into the local
library (Figure 3-19).

[F[eg~=n

v 8 HelloworldApp
> Esrc

b = Flex 4.5.1

(= bin-debug
= bin-release
=libs

|2 HelloworldApp.apk
(i) HelloWorldApp.ipa

FIGURE 3-18: Package Explorer
highlighting the HelloWorldApp.ipa
file generated for the Hello World
App project targeting Apple iOS

Pane vpn 15 compiee
0K 10 giscomnect

W iMunes Fie Edil Ve Contols Siore Advarced Wisdow HeD
o =
el -

ARy
2
v,
AT S

S
[
Phers, iPod touch, snd Pud Spos

[=[= 1 =]

Mr Anderion O

- Helo Wavic Aso

FIGURE 3-19: iTunes displaying the Hello World App installed in the Library

@ NOTE At this stage, you will probably notice that the application icon for ITunes
> doesn’t have an icon. In the AIR application descriptor file, you will need to
specify an image that is 512x512 for the <image512x512> property.

7. Before transferring the application to an iPhone 4, you will need to connect the device
to the computer via USB. Then simply drag and drop the application from the Library to
your iPhone (Figure 3-20). The iPhone will display a “sync in progress” status while the
application is installing on the device, before revealing the Home screens.

92 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND 10S DEVICES

@ unes File Edil Veew Conboli Siore Advasced Wisdow Hel Mr Anderion O
-
o v s comple
» ettty - el Waric Az
——

£ Phane, iPod touch, snd Pad Apps

(=15]

FIGURE 3-20: Transferring the Hello World App to the iPhone

8. Navigate through your Home screen on the device to find the Hello World App is installed,
with the correct application icon displayed, ready for launch (Figure 3-21).

You can also navigate to the Spotlight screen and search for the Hello World App and
find the application there, too (Figure 3-22).

< E3

£ Hello world App
441 Search Web
Search Wikipedia

a|wie|R|T|v|uji]o]P
Als|o|FlafulfK|L

b z|x|c|vis|n|mEL
el .

FIGURE 3-21: Hello World App FIGURE 3-22: Spotlight search
on the home screen of an screen listing the Hello World App
iPhone 4 running iOS 4.3.3 on an iPhone 4 running iOS 4.3.3

At this point, realize that the settings defined in the AIR application descriptor file for iOS, while
subtle, are significant. If you remember setting the <UTPrerenderedIcon> to YES earlier, then take
notice of the gloss that was removed from the default setting, as shown in Figure 3-23.

AIR Application Descriptor Files | 93

Also, if you have already run the application on the iPhone 4 without making the changes in this chapter,
you will see the difference from the previous chapter — that the <requiredpisplayResolution> setting
has made in fully utilizing the screen resolution. Figures 3-24 through 3-26 show the Hello World App

in action.

wi_ vodafons UK 3G

Hello World

FIGURE 3-23: Default Hello World FIGURE 3-24: Hello World App
App icon with no gloss removed on an iPhone 4 with iOS 4.3.3
on an iPhone 4 running iOS 4.3.3

i vodafons UK 3G

- vodafone UK 3G 03:21

Hello World Your message...
Hello World,
My name is:
- My name is Jermaine, and | live in Lower
Kingswood..
| live in:
Lower Kingswood (%
alwlelrit]v]u]io]p
Als|ofFla]H]J|K|L
lz|xfc|v[slnmE
FIGURE 3-25: Entering information FIGURE 3-26: Message screen
using the native keyboard in the in the Hello World App running
Hello World App, running on an on an iPhone 4 with iOS 4.3.3

iPhone 4 with iOS 4.3.3

94 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND I0S DEVICES

For the remaining chapters, you will need to repeat the steps learned here to package applications
for iOS devices.

Packaging for BlackBerry Tablet OS

The native application file package for BlackBerry Tablet OS is a .bar file. At the end of this section,
you should be able to create a release package for the Hello World App onto a BlackBerry PlayBook.

Follow the next steps to create a release version of Hello World App for the BlackBerry PlayBook
using Flash Builder:

1.

In HelloWorldApp-app.xml, remove any image references for the application icon. This
should be set in the blackberry-tablet.xml file (Listing 3-14).

\) LISTING 3-14: The Icon property setting in the Hello World App AIR application descriptor file
targeting the BlackBerry Tablet OS platform

Available for

download on ,

Wrox.com <icon/>

2. Ensure the Hello World App project is highlighted, then select Project = Export Release
Build..., to open the Export Release Build panel. Select BlackBerry Tablet OS as the Target
Platform, and ensure the Export as a signed packages for each target platform option is
selected. Click next (Figure 3-27).

8o

Export Release Build

Export Release Build
Build and export an optimized release-quality version of your application

Project: | HellowerldApp

| |ar

Application: | HelloWorldApp.mxmi

Target platforms

™ BlackBerry Tablet OS () Google Android) Apple i0S

Export

Export to folder:

Browse...)

(in /HelloWorldApp)

Base filename: HelloWorldApp

Export as:
) signed packages for each target platform
() signed AIR package for installation on desktop

() Intermediate AIRI package that must be manually signed later

Next>) (Cancel) (ESFinishei)

@ (<sack) (

FIGURE 3-27: Setting the details of the Export Release Build for the Hello World App
project targeting BlackBerry Tablet OS

AIR Application Descriptor Files | 95

3. In the Digital Signature tab, ensure the Enabling digital signing option has been selected.
You will need to have created a debug token and a BlackBerry Tablet OS certificate, as

highlighted in Chapter 2 (Figure 3-28).

/800 Export Release Build

Packaging Settings

Specify the packaging settings to export a release build.

Target platforms:

{ Digital Signature | Package Contents Permissions Advanced

BlackBerry Tablet OS

™ Enable digital signing
Configure the keys and certificates via the BlackBerry Tablet OS Signing preference page.

@ e

P

FIGURE 3-28: Enabling the digital signing for the Hello World App project targeting

BlackBerry Tablet OS

4. In the Package Contents tab, ensure each of the required project files are selected. These
should include the BlackBerry Tablet OS configuration file and the 86 x 86 application icon.

5. For the Permissions tab and the Advance tab, leave the
default settings untouched. Here you would need to
specify the permissions, as covered earlier. For the Hello
World App, there are no permissions that need to be
specified, so leave all the options unselected.

6. Click Finish to create the .bar file. In the Package
Explorer, you should see the .bar file located in the root
of the project folder, named HellowWorldapp
.bar (Figure 3-29).

Figure 3-30 shows the Hello World App installed on the
BlackBerry PlayBook under the Media category.

Fea~-8

¥ [{ HelloworldApp
b Bsrc
b B Flex 4.5.1
» (= bin-debug
P (= bin-release
(= libs
2] HelloWerldApp.apk
B HelloworldApp.bar
@) HelloworldApp.ipa

FIGURE 3-29: Package Explorer
highlighting the HelloWorldApp.bar
file generated for the Hello World
App project targeting BlackBerry
Tablet OS

96 | CHAPTER3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND I0S DEVICES

A0K0))

Fri, Jun 17, 2011

Favorites Media

I o . | T

Music Camera Music Store Voice Notes Hello World Ap...

FIGURE 3-30: Hello World App on the home screen of a BlackBerry PlayBook running
BlackBerry Tablet OS 1.0.6.2390

UPDATING AIR APPLICATIONS

In this chapter, you’ve explored targeting each of the platforms supporting AIR mobile applications.
For more information, I recommend visiting each platform’s Mobile and Devices Developer Center
page on Adobe’s website:

> Google Android: www.adobe.com/devnet/devices/android.html
> Apple iOS: www.adobe. com/devnet /devices/ios.html
> BlackBerry Tablet OS: www.adobe.com/devnet /devices/blackberry.html

Updating your application involves your amending the <versionNumber> value in the application
descriptor file, repackaging the application to the native platform, and uploading the new version
of the application to the target marketplace. For Android, this is the Android Market or Amazon
Appstore; for BlackBerry, it’s AppWorld; and for Apple, it’s App Store.

The process of updating an application installed on a device is simple enough for marketplaces

and usually the process is automatic. However, when you download a mobile application from the
Android marketplace, you can select whether or not to have automatic updates, where you will

be notified when an updated version is available. The user could potentially decide to avoid using the
marketplace to grab the update, choosing to manually check for new versions. In this scenario, there
is a way you can notify users within an application that there is an upgrade available, when they
haven’t requested automatic updates.

Updating AIR applications | 97

Retrieving Details from the Application Descriptor File

Presenting a user with an update notification in the mobile app involves adding code to your
application that uses namespaces to retrieve the descriptor file details and then compares those
details with a reference to the new version.

The first step is to programmatically retrieve the version number from the application descriptor file. The
following snippet shows how to use the NativeApplication class to retrieve an AIR application’s
descriptor file and assign the applicationbescriptor property to a variable called xm10bj of XML type:

var xmlObj:XML = NativeApplication.nativeApplication.applicationDescriptor;

Once the application descriptor’s XML has been assigned to the variable, the Namespace class can be used
to retrieve particular values in the XML file, as shown in the following snippet, where the application id
and version number are retrieved and assigned to variables id and currentversion respectively:

var xmlObj:XML = NativeApplication.nativeApplication.applicationDescriptor;
var ns:Namespace = xmlObj.namespace () ;

var applId:String = xmlObj.ns::1id;

var currentVersion:String = xmlObj.ns::versionNumber;

As previously mentioned, to create an updated release version of your mobile application you will
need to update the version number in the application descriptor file.

Using the Version Number

Using the preceding code snippet, the application can check the value of the version number and
present the user with a message to indicate there is an update available.

In the following snippet the variable newversion is assigned the value 1.0.1, a number that
represents the new version number for an application. This should be different from the value
retrieved from the one present in the application descriptor; you’ll recall that earlier, the
<versionNumber> property was set to 0.9.0:

var xmlObj:XML = NativeApplication.nativeApplication.applicationDescriptor;
var ns:Namespace = xmlObj.namespace () ;

var appld:String = xmlObj.ns::1id;

var currentVersion:String = xmlObj.ns::versionNumber;

var newVersion:String = "1.0.1";

if (currentVersion != newVersion)

{
// The version numbers are not the same...
// Present the user with an update...

} else {

// The version numbers are the same...
// No need to present the user with an update...

98

| CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND |0S DEVICES

Here the if statement uses the currentvVersion value, retrieved from the descriptor file, and checks
that number against the value held by the newversion variable.

The code within the if statement is simply a comment which indicates what can be done.

Essentially the newversion number should be retrieved from a file residing on a server which can be
updated whenever a new release of the application is available.

For this you would have to use the URLLoader class to load in the data from a file on the server.
Working with data is covered in detail in Chapter 8.

SUMMARY

This chapter took a detailed look at building applications that target the Google Android,
BlackBerry Tablet OS, and Apple iOS platforms, noting the contents of the AIR application
descriptor file, specifying the image icons, setting Android and BlackBerry permissions, and
packaging applications.

In the next chapter, you will look at touch, multitouch, and gestures, some of the key features
introduced in Flash Player 10.1.

Once you have completed some of the following chapters, you may want to return here to package
some of the example applications using the steps listed in the walk-through.

EXERCISES

1.

Package another AIR Android application using the Flash Builder, this time changing some of the
initial viewing options. For example, instead of using portrait for the <aspectRatio> try using
landscape to see the effect.

Create and package your own .png file icon for the Hello World App application.

Try packaging each of the examples found in the later chapters.

Summary |

29

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

AIR application
descriptor files

Application IDs

Application’s initial
appearance

Launch icons

Platform configurations

Setting permissions

Packaging applications

Updating AIR mobile
applications

KEY CONCEPT

Be aware of each of the required elements in the AIR application
descriptor file.

Use reverse-DNS style strings to uniquely identify your application via
the Application ID — for example, com.wrox.ch3.HelloWorldApp.

To define the initial appearance of the application when it launches,
define the <initialWindow> element.

Use the <content>, <visible>, <fullScreen>, <aspectRatio>,
<initialOrientation>, and <autoOrients> elements to set the
initial appearance of the application.

To set an application’s icons, define the <icon> element.
Three image sizes are used on Android: 36x36, 48x48, and 72x72.

Five image sizes are used across Apple iOS devices: 29x29, 57x57,
72x72, and 114x114, and 512x512.

One image size is used on BlackBerry Tablet OS: 86x86.

For the Google Android platform, define the configuration settings
within the <android> element of the AIR application descriptor file.

For the Apple iOS platform, define the configuration settings within the
<iphone> element.

For the BlackBerry Tablet OS platform, define the configuration settings
within the <gnx> element of the blackberry-tablet.xml file.

For Google Android, define the <uses-permission> element to
manually define each permission that your application uses.

For BlackBerry Tablet OS, define the <permissions> element in the
blackberry-tablet.xml file to manually define each permission that
your application uses.

For Apple iOS, no permissions are defined.

In Flash Builder, use the Export Release Build Panel to generate release
packages.

The Google Android platform uses an . apk file package.

The Apple iOS platform uses an . ipa file package.

The BlackBerry Tablet OS uses a .bar file package.

Use the NativeApplication class to retrieve details from the AIR
application descriptor file.

Use the <versionNumber> property as an indicator to decipher
whether the user needs to be informed of an upgrade.

b - \.- . -','. e = ; = ; ;
900000004 0000000000000 0

e N g —

J

Touch, Multitouch, and Gestures

WHAT YOU WILL LEARN IN THIS CHAPTER:

» Determining mobile device support for touch points and
gesture input

\

Setting the input mode in an application to detect touch points
or gestures

Understanding touch and gesture event object types
Handling touch and gesture events
Utilizing touch input to draw shapes

Implementing gestures to interact with shapes

Y Y Y Y Y

Using the Multitouch panel in Device Central

Many original equipment manufacturers (OEMs) now opt for user interfaces on their devices
that are designed specifically for touch screens, which gives end users a visual display of
information. In addition, these give users the whole area of the display to contact and navigate
around various screens within the OS and applications. Usually this is with a finger, or an
accompanying device accessory such as a stylus.

The alternative to the touch screen of course is the more traditional mobile device, which
provides the visual display but without touch support. These mobile devices tend to receive
end-user input through a combination of trackball, 4-way D-pad, soft keys, qwerty keyboard,
and alphanumeric keypads.

Mobile devices with touch screen interfaces have been at their height of popularity since the
introduction of the first iPhone, which had a capacitive touch screen implementation, meaning
even the most sensitive of touches will be recognized by a user. The success of the iPhone, in part,
can be attributed to the integration of multitouch and gesture support, which when implemented
in the right way can provide a fun and satisfying end-user experience for mobile applications.

102 | CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

Flash Player 10.1 introduced native support for multitouch and gesture support, and in this chapter
you’ll take a look at these features and how you can implement them as part of your mobile applications.

Over the course of the chapter you’ll construct an example that highlights some of the multitouch
features, beginning with single touch point interactions.

MULTITOUCH INTERACTIONS

As the name indicates, in the context of mobile applications, multitouch is an interaction defining
when a user uses two or more fingers to make contact and interact with a touch-enabled mobile
device screen that is capable of receiving multiple points of input.

With the touch of a single finger being the absolute basic requirement for touch-enabled mobile
devices, multitouch-enabled screens can potentially offer a more natural way for a user to interact
with the device and its applications, by using two, three, four, or even more fingers simultaneously.
And they provide an alternative to menu- or key-driven interactions on a device.

In this section you’ll examine how you can apply multitouch within Flash mobile applications.

NOTE While the Flash Player from version 10.1 supports multitouch natively, not
all devices can receive multiple points of touch input. You should therefore take
into consideration non-multitouch user interactions.

Determining Touch Input Support

Not every mobile device on the market will support multiple touch interactions, so when you are
implementing multitouch features, or should you need to ensure that you are able to develop and
target applications for devices that do not support multitouch, it is best practice to determine
whether a device supports touch input in the first instance.

Next take a look at how to determine support for touch input. You can detect touch support with
AS3 by retrieving the value returned by Multitouch.supportsTouchEvents.

In Listing 4-1 you will see the early stages of the MultitouchAndGestures.as file.
You’ll build on this example throughout the chapter. This class makes four initial imports:
flash.display.Sprite for drawing shapes; flash.text.TextField for rendering
text; flash. text.TextFieldAutoSize for setting the autoSize property on text fields;
and the flash.ui.Multitouch class.

Above the class declaration four properties are defined for the creation of the swf application: the
backgroundColor property, which is set to 0OxFFFFFF (white); frameRate, which is set to 25
frames per second; width, which is set to 320; and height, which is set to 480.

In MultitouchAndGestures you see two Textfield objects declared. The first is called
coordinates, which will be referenced later. The second is called multitouch, which is added to
the stage after it has been populated with the result of Multitouch.supportsTouchEvents via a
switch statement in the class constructor (Listing 4-1).

Multitouch Interactions | 103

\, LISTING 4-1: Determining support for touch point events in MultitouchAndGestures.as

Available for package

download on {
Wrox.com

import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;
import f£lash.ui.Multitouch;

[SWF (backgroundColor="0xFFFFFF",
frameRate="25",
width="320",
height="480")]

public class MultitouchAndGestures extends Sprite
{

private var coordinates:TextField;

private var multitouch:TextField;

public function MultitouchAndGestures ()

{
multitouch = new TextField();
multitouch.autoSize = TextFieldAutoSize.LEFT;

switch (Multitouch. supportsTouchEvents)
{
case true:
{
multitouch.text = "Touch Supported";
}
break;
case false:
{
multitouch.text = "Not Supported";
}
break;
}

stage.addChild (multitouch) ;

The supportsTouchEvents property has a return type of Boolean, so will return true should the
device be capable of receiving touch screen input, and false if it isn’t.

Creating a Multitouch and Gestures App Example

You will need to set up a new ActionScript Project in Flash Builder, taking the following steps:

1.

From the main menu select File & New = ActionScript Project. Set the Project name

to MultitouchAndGestures, set the Project location to use the default location, set the
Application type to Web, and then use the default SDK version (Figure 4-1). Click Next
before moving to the next step.

104

| CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

8.0.0 New ActionScript Project

Create an ActionScript project.
Specify the location of the files in the new project. I {}

Build Paths
£

Project name: EMu\titﬂuchAndGestures]

Project location

@ Use default location

Folder: [Usersfanderson/Decuments/Adobe Flash Builder 4.5/ Multitou {_Browse...

Application type
® %\Neb {runs in Adobe Flash Player)
O @Desklup (runs in Adobe AIR)

Flex SDK version
® Use default SDK (currently "Flex 4.5.1") Configure Flex SDKs...

() use a specific SDK: | Flex 4.5.1 2
Flex 4.5.1 requires Adobe Flash Player 10.

@ < Back (Next >) (Cancel) E'—ﬁwsfr—}

P

FIGURE 4-1 The New ActionScript Project panel in Flash Builder
for the creation of the Multitouch and Gestures App project

/‘ NOTE Take note here that the example project is neither created from either
a Flex Mobile project or an ActionScript Mobile project, nor does it use the
desktop AIR application type. The approach used in this chapter is to create
a .swf file that can be used in Device Central to simulate multitouch and
gestures through the emulator. Unfortunately, there is no such emulator if you
run the application via Flash Builder alone. The only other option is to run

the example project first hand on a device, which you can do on each of the
mobile platforms supporting AIR, including Apple iOS, Google Android, and
BlackBerry Tablet OS.

2. Next confirm the build path for the project. Ensure the Main source folder is set to src, that
the Main application file is set to MultitouchAndGestures.as, and the output folder is set to
bin-debug (Figure 4-2).

Multitouch Interactions | 105

ane New ActionScript Project

Create an ActionScript project.
Set the build paths for the new ActionScript project. I { }

Project Location

J@5«:1urce path | g Library path _]

Framework linkage: |_Use default (merged into code] 4]

Build path libraries:

I mi\ Flex 4.5.1 - [Applications/Adobe Flash Builder 4.5 /sdks4.5.1 Add Praject...

 Add FlexSDK
Edit...
Remove
Up
Down
[verify RSL digests (recommended for production)
™ Use local debug runtime shared libraries when debugging
¥ Automatically determine library ordering based on dependencies
Main source folder src Browse...
Main application file: | MultitouchAndGestures.as | (CBrowse..)
‘Output folder: bin-debug Browse...
‘Output folder URL:
@ (<Back) Next > (_cancel) - Finish—)

A

FIGURE 4-2 Defining the build path for the creation of the
Multitouch and Gestures App project

3. Once you've clicked Finish, the project and its

associated files should be generated. Now open the
MultitouchAndGestures.as file from the src folder,

adding the code from Listing 4-1.

4. Run the project using a Web application
run configuration. Select Run &> Run as &

Web application. This should launch the application

in a browser window, generating the
.swf file for the project.

5. In Device Central, add the

FILES

Name 4 |Date Modified
fﬂ MultitouchAndGestures.swf 28/09/2010 19:18:24
% +. -

FIGURE 4-3 The Files tab in
Device Central displaying the
MultitouchAndGestures.swf file

MultitouchAndGestures.swf file generated to the Files tab. At the bottom of the
tab select Add &> Add Files, then browse for the MultitouchAndGestures.swf file.
Once selected it should appear in the Files tab (Figure 4-3).

106 | CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

6. While still in Device Central, select the Generic Multitouch device from the Devices panel
and then run the first example by double-clicking the MultitouchAndGestures.swt file.
Ensure that in the Info panel the Embedded in HTML option is selected.

In Device Central, attempting to interact with an application
that isn’t capable of dispatching touch events will result in the e e e
output window’s displaying a warning message indicating no

touch support for the emulated device, as shown in Figure 4-4.

Try running the example in Listing 4-1 using other devices
that support Flash Player from version 10.1 to determine

whether multitouch input events can be handled. FIGURE 4-4 The output window in
Device Central displaying the warning

message for no touch support

Touch Event Handling

Once support for touch input has been established, you need to set the input mode for multitouch. Touch
point events are not exclusive multitouch interactions that the Flash player can detect; so you will need to
decide whether the events dispatched in your applications are touch events, gesture events, or neither.

Setting the Input Mode for Touch Events

To handle touch events, you need to set the Multitouch.inputMode property to TOUCH_POINT.
This is one of the three static values held by the £lash.ui.MultitouchInputMode class.

Follow the next few steps to set the input mode:

1. Add the MultitouchInputMode class to the list of import statements (Listing 4-2).

\’ LISTING 4-2: Importing the MultitouchlnputMode class in MultitouchAndGestures.as

Available for package
download on {
Wrox.com
import flash.display.Sprite;

import flash.text.TextField;

import flash.text.TextFieldAutoSize;
import flash.ui.Multitouch;

import flash.ui.MultitouchInputMode;

2. Within the true case of the switch statement in the class constructor, set the input mode to
TOUCH_POINT (Listing 4-3).

\, LISTING 4-3: Setting the input mode for touch events via the class constructor method in

MultitouchAndGestures.as
Available for

download on . .
Wrox.com Switch(Multitouch.supportsTouchEvents)

{
case true:

{

Multitouch Interactions | 107

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

multitouch.text = "Touch events - Supported";
}
break;
case false:
{
multitouch.text = "Touch events - Not Supported";

}

break;

Touch Event Types and Properties

After determining the input mode for multitouch, the next step is to register the application’s interest
in a particular touch event. When selecting TOUCH_POINT as the input mode, the events returned
will be of the event type flash.events.TouchEvent.

Eight event-type values are associated with the TouchEvent class, each essentially being treated as a
different phase of a single touch event interaction:

>

>

TouchEvent . TOUCH_BEGIN: A string with the value touchBegin, signaling when the touch
event begins

TouchEvent . TOUCH_END: A string with the value touchEnd, signaling when the touch event has

ended

TouchEvent . TOUCH_MOVE: A string with the value touchMove, signaling when the touch event
has moved

TouchEvent . TOUCH_OUT: A string with the value touchout, signaling when the touch event is out

TouchEvent . TOUCH_OVER: A string with the value touchover, signaling when the touch event
is over

TouchEvent . TOUCH_ROLL_OUT: A string with the value touchRollout, signaling when the
touch event is a roll out

TouchEvent . TOUCH_ROLL_OVER: A string with the value touchRollover, signaling when the
touch event is a roll over

TouchEvent . TOUCH_TAP: A string with the value touchTap, signaling when the touch event is a tap

To register one of the touch events, you need to supply one of the event types as the first argument to
the addEventListener () method; then for the second argument you supply a reference to an event
handler, which you need to define.

Follow the next few steps to register touch events:

1.

First add the TouchEvent class to the list of import statements (Listing 4-4).

108 | CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

J LISTING 4-4: Importing the TouchEvent class in MultitouchAndGestures.as

Available for package
download on {
Wrox.com
import flash.display.Sprite;

import flash.events.TouchEvent;
import flash.text.TextField;

import flash.text.TextFieldAutoSize;
import flash.ui.Multitouch;

import flash.ui.MultitouchInputMode;

2. Under the constructor for the class, create an event handler function called onTouch ().
This event handler should have one parameter defined, e, which should be of the type
TouchEvent (Listing 4-5).

J LISTING 4-5: Creating the touch event handler in MultitouchAndGestures.as

Available for
downloadon private function onTouch(e:TouchEvent):void {}
Wrox.com
3. InonTouch() add a switch statement that detects the three touch event types,
TOUCH_BEGIN, TOUCH_MOVE and TOUCH_END via the e. type property on the TouchEvent
object (Listing 4-6).

\, LISTING 4-6: Detecting the TOUCH_BEGIN, TOUCH_MOVE, and TOUCH_END event

types via the onTouch() method in MultitouchAndGestures.as
Available for

download on . . .
Wrox.com Private function onTouch (e:TouchEvent) :void

{

switch(e.type)
{
case TouchEvent.TOUCH_ BEGIN:
{
}
break;

case TouchEvent.TOUCH_ MOVE:
{

}

break;

case TouchEvent.TOUCH_END:
{

}

break;

}

Here the value of the type property returned on the e touch event object is used to distinguish
between the three event types.

Multitouch Interactions | 109

Each touch event type represents a unique value, so for every touch interaction you have an interest
in responding to, you have to register it using addEventListener ().

)

Available for
download on
Wrox.com

4. Returning to the constructor, register the three touch event types on the stage, referencing
onTouch () as the event handler (Listing 4-7).

LISTING 4-7: Registering touch events with the stage via the class constructor method
in MultitouchAndGestures.as

case true:

{
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
multitouch.text = "Touch events - Supported";

stage.addEventListener (TouchEvent.TOUCH BEGIN, onTouch);
stage.addEventListener (TouchEvent.TOUCH MOVE, onTouch);
stage.addEventListener (TouchEvent .TOUCH_END, onTouch);

}

break;

case false:

{
multitouch.text = "Touch events - Not Supported";

}

break;

Here the TOUCH_BEGIN, TOUCH_ MOVE, and TOUCH_END events are all handled via the generically
defined event handler called onTouch (). Registering the events with the stage means that the full
stage will listen to any touch input.

The TouchEvent object returned by the event handler has the following core properties associated
with it:

> type: A string value representing one of the eight touch event types

> touchPointID: An integer representing the touch point, which is unique for each touch
point generated

> localx: A number representing the horizontal coordinate of the touch point, along
an x-axis

> localy: A number representing the vertical coordinate of the touch point, along a y-axis
> sizex: A number indicating the width of the touch point along the x-axis

> sizeY: A number indicating the height of the touch point along the y-axis

Next take a look at how some of the object properties returned by the three touch event types
are used.

10 | CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

Tracking Multiple Touch Points in an Application

1. InonTouch(), assign properties of the e touch event object to three new variables. The value of

the touchPointID property should be assigned to the variable id, stageX to the variable x, and
stageY to y (Listing 4-8).

\) LISTING 4-8: Assigning properties of the touch point event via the onTouch() method in

MultitouchAndGestures.as
Available for
download on . .
Wrox.com Private function onTouch (e:TouchEvent) :void

{
var id:Number = e.touchPointID;
var x:Number = e.stageX;
var y:Number = e.stageyY;

switch (e.type)
{
case TouchEvent.TOUCH_BEGIN:
{
}
break;
case TouchEvent.TOUCH_MOVE:
{
}
break;
case TouchEvent.TOUCH_END:
{
}
break;

}

2. After the onTouch () method, create four empty method stubs called drawLines (),
moveLines (), removeLines (), and setCoordinates () (Listing 4-9).

\) LISTING 4-9: Creating stub functions to draw, move, remove, and set coordinates

Availablefor private function onTouch (e:TouchEvent) :void
download on {

Wrox.com

var id:Number = e.touchPointID;
var x:Number = e.stageX;
var y:Number = e.stageY;

switch(e.type)
{
case TouchEvent.TOUCH_BEGIN:
{
}
break;
case TouchEvent.TOUCH_MOVE:
{
}

Multitouch Interactions | 111

Y

Available for
download on
Wrox.com

}

break;

case TouchEvent.TOUCH_END:
{

}

break;

private function drawLines (id:Number,

private function moveLines (id:Number,

private function

private function

x:Number, y:Number):void {}

x:Number, y:Number):void {}

removeLines (id:Number) :void {}

setCoordinates (x:Number, y:Number):void {}

Returning to onTouch (), call each of the newly created functions within the switch statement.
For the TOUCH_BEGIN case call drawLines (), for TOUCH_MOVE call moveLines (), and for
TOUCH_END call removeLines (). Each of the methods called should have the appropriate
parameters supplied (Listing 4-10).

LISTING 4-10: Assigning the functions to each touch event type via the onTouch() method in
MultitouchAndGestures.as

private function onTouch (e:TouchEvent) :void

{

}

var id:Number = e.touchPointID;
var x:Number = e.localX;
var y:Number = e.localY;

switch(e.type)
{

case TouchEvent.TOUCH_BEGIN:

{
drawLines(id, x, y);
}
break;
case TouchEvent.TOUCH_MOVE:
{
moveLines (id, x, y);
}
break;
case TouchEvent.TOUCH_END:
{
removeLines (id) ;
}

break;

4. Within setCoordinates (), set the x and y values on the coordinates.text property so they
can be displayed. First check whether the TextField object, coordinates has been created;

12 |

CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

)

Available for
download on
Wrox.com

5.

O

Available for
download on
Wrox.com

O

Available for
download on
Wrox.com

if it hasn’t been, instantiate a new TextField object and add it to the stage. Finally, position
the text field along the x and y, reducing the position of the y by 15 pixels, while adding 2 pixels
to x (Listing 4-11).

LISTING 4-11: Displaying the x and y coordinates of the touch point via the setCoordinates()
method in MultitouchAndGestures.as

private function setCoordinates (x:Number, y:Number) :void
{
if (!coordinates)

{
coordinates = new TextField():;
stage.addChild(coordinates);

}

coordinates.text = "(" + x + ", " +y + ")";

coordinates.x = x + 2;
coordinates.y = y - 15;
}

In the private variable declarations add two new variables, of fsetX and offsetY (Listing 4-12).

LISTING 4-12: Declaring new class variables in MultitouchAndGestures.as

public class MultitouchAndGestures extends Sprite
{

private var coordinates:TextField;

private var multitouch:TextField;

private var offsetX:Number;

private var offsetY:Number;

Within drawLines () add two lines to the stage. Use the x and y values to position them along
with the stage.stageWidth and stage.stageHeight to define the length of each line. One
line should be positioned vertically, the other horizontally, and both sprites should be named with
reference to the 1d value. Then assign values to of fsetX and of fsetY before finally making a
call to setCoordinates () (Listing 4-13).

LISTING 4-13: Drawing the vertical and horizontal lines via the drawLines() method in
MultitouchAndGestures.as

private function drawLines (id:Number, x:Number, y:Number) :void
{
offsetX
offsety

b
Yy

Ne Ne

var vertical:Sprite = new Sprite();
vertical.name = id + "v";
vertical.graphics.lineStyle(2, 0x000000);

Multitouch Interactions | 113

vertical.graphics.moveTo(x, 0);
vertical.graphics.lineTo(x, stage.stageHeight);
stage.addCchild(vertical);

var horizontal:Sprite = new Sprite();
horizontal.name = id + "h";
horizontal.graphics.lineStyle(2, 0x000000);
horizontal.graphics.moveTo(0, v);
horizontal.graphics.lineTo(stage.stageWidth, y):
stage.addChild (horizontal);

setCoordinates(x, v):

7. Within moveLines () reset the positions of the horizontal and vertical lines. Set the x property of
the vertical line and the y property of the horizontal line, adjusting with offsetX and offsetY,
respectively. Then call setCoordinates (), passing a reference to the x and y (Listing 4-14).

\) LISTING 4-14: Moving the vertical and horizontal lines, while displaying the x and y coordinates

of the touch point via the movelLines() method in MultitouchAndGestures.as
Available for
download on
Wrox.com Private function moveLines (id:Number, x:Number, y:Number):void

{

var childl:Sprite Sprite(stage.getChildByName((id + "v"))):
var child2:Sprite = Sprite(stage.getChildByName((id + "h")));

var vertical:Sprite = childl;
vertical.x = x - offsetX;

var horizontal:Sprite = child2;
horizontal.y = y - offsetY;

setCoordinates(x, y):

8. Within removeLines () remove both the vertical and horizontal lines from stage via
removeChild (), using the id as a reference to retrieve the display object. The coordinates Text
field should also be removed at this stage (Listing 4-15).

\) LISTING 4-15: Removing the vertical and horizontal lines via the removeLines() method in

MultitouchAndGestures.as

Available for
download on
Wrox.com Private function removeLines (id:Number) :void

{
stage.removeChild(Sprite(stage.getChildByName((id + "h"))));
stage.removeChild(Sprite(stage.getChildByName((id + "v")))):
stage.removeChild(coordinates);

coordinates = null;

114 | CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

How It Works

The TOUCH_BEGIN event responds to a user’s touch by initiating the drawing of horizontal and vertical
lines, using the stageX and stageY of the touch event to define where those lines should be drawn.
These values are supplied as parameters to a method called drawLines (), which creates two sprites
representing each line. The touchPointID property is also passed onto the method. This is used to
reference the sprite drawing of each in the lines array as seen in Listing 4-12.

For the TOUCH_MOVE event, the vertical and horizontal line sprites are retrieved using the
getChildByName () function and then re-positioned along new x and y coordinates. Each time
the TOUCH_MOVE event is dispatched, moveLines () is called, responding to the user’s touch point
movement. The key thing to note here is the id value, which
should be the same number passed to the drawLines ()

method in order for the lines to move. The id is also required as
the sole parameter for removeLines (), which is called when the
TOUCH_END event has been dispatched. This time the line sprites
are removed from the screen by a call to removeChild().

touchPeintID ::
touchPeintID ::

touchPeintID ::
touchPeintID ::
touchPeintID ::
touchPeintID ::

@ LR e

L)

If you trace touchPointID in Device Central, you can see in the

output window that every time a touch event has been created FIGURE 4-5 The output window in
with one finger, a unique touchPointID value is generated Device Central, displaying the unique
(Figure 4-5). touchPointID values

At this point you should deduce that the touchPointID is a pretty significant property of the
TouchEvent object.

While up to now you have created an example that handles one touch event at a time, next
you’ll take a look at how you can handle multiple touch events, taking full advantage of the
touchPointID value.

Registering Touch Events on Interactive Objects

Multitouch is best served in an application when users can visually see the benefits of their input,
like scrolling a list of contacts, increasing the size of an image, or moving on to the next picture
in an image gallery. The lines and coordinates give a pretty accurate indication of a user’s finger
position on a device screen. Next let’s examine using touch data to draw shapes to the screen:

1. First create a function called drawShape (). The function requires three parameters: id,
%, and y. The function should create a Sprite object called shape, and then add it to the
stage of the application, but only if the shape does not already exist (Listing 4-16).

\) LISTING 4-16: Creating a new shape sprite via the drawShape() method in

MultitouchAndGestures.as

Available for
download on . . \ .
Wrox.com Private function setCoordinates (x:Number, y:Number):void

{

if (!coordinates)

Multitouch Interactions | 115

coordinates = new TextField();
stage.addChild(coordinates) ;
}

coordinates.text = "(" + x + ", " +y + ")";
coordinates.x = x + 2;
coordinates.y = y - 15;

}

private function drawShape (id:Number, x:Number, y:Number) :void
{

var shape:Sprite;

var shapeId:String = id.toString();

if (!stage.getChildByName (shapeId))

‘ shape = new Sprite();
shape.name = shapeId;
stage.addChild (shape) ;
} else {
shape = stage.getChildByName (shapeId) as Sprite;
}

}

In Listing 4-16, the id is used to define the name of each newly created shape object. Using
stage.getChildByName (), you can retrieve any display object that has been added to the stage. Here
this method is used to check that a shape with the same id, that is, finger touch, hasn’t already been
added to the stage. If getChildByName () returns a DisplayObject, a new shape doesn’t have to be
added to the stage. The object returned by the method can simply be cast as a sprite. At present the
shape doesn’t have any properties, so if you run the example nothing will be visible on stage. You’ll
take a look at this shortly.

2. Next use the shape object to draw a rectangle. Calling the graphics.drawRect () method,
the first two parameters should be offsetX and offsetY, representing the starting x and y
position of the rectangle. The third and fourth parameters are the width and height of the
rectangle, and are calculated by the x and y of the current touch point and the offset values
defined when you first touch the screen (Listing 4-17).

\) LISTING 4-17: Defining the graphic properties of the shape sprite via the drawShape() method

in MultitouchAndGestures.as

Available for

download on . . .
Wrox.com Private function drawShape (id:Number, x:Number, y:Number):void

{
var shape:Sprite;
var shapeId:String = id.toString();

continues

116 | CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

LISTING 4-17 (continued)

if (!stage.getChildByName (shapelId))
{
shape = new Sprite();
shape.name = shapeld;

stage.addChild (shape) ;
} else {

shape = stage.getChildByName (shapeId) as Sprite;
}

var width:Number = x-offsetX;
var height:Number = y-offsetY;

shape.graphics.clear();

shape.graphics.lineStyle (2, 0x000000, 1.0);
shape.graphics.beginFill (0x000000, 0.0);
shape.graphics.drawRect (offsetX, offsetY, width, height);
shape.graphics.endFill();

}

3. Finally, within the TOUCH_BEGIN and TOUCH_MOVE events of onTouch (), call the
drawShape () method (Listing 4-18).

\, LISTING 4-18: Drawing a shape when a finger touches the screen and when it moves via the

onTouch() method in MultitouchAndGestures.as

Available for

download on . .
Wrox.com Private function onTouch (e:TouchEvent) :void

{
var id:Number = e.touchPointID;
var x:Number = e.stageX;
var y:Number = e.stageY;

switch(e.type)
{
case TouchEvent.TOUCH_BEGIN:
{
drawLines (id, x, v);
drawShape (id, x, v):;
}
break;
case TouchEvent.TOUCH_MOVE:
{
moveLines (id, x, Vv);
drawShape (id, x, v):;
}
break;
case TouchEvent.TOUCH_END:

Gesture Interactions | 117

{

removeLines (id) ;

}
break;

Determining the Supported Touch Points

Once you have set the input mode to TOUCH_POINT, you can also determine the number of touch
points for an application by referencing Multitouch.maxTouchPoints.

This is another property of the Multitouch class that should give you the total number of touch
points that can be handled by the device running your application. For instance, if maxTouchPoints
returns 3, then only three fingers would be detectable on the device; if maxTouchPoints returns 1,
then only one touch point, one finger, would be detectable.

The exact number of touch points recognized by a particular device may not always be the same
as on another. The maxTouchPoints property is potentially useful for cross-device multitouch
support. The Google Nexus One running Android 2.3.4 supports two touch points, whereas the
Apple iPhone 4, running iOS 4, supports no fewer than five.

WARNING At the time of writing, the value returned by
Multitouch.maxTouchPoints has not always been reported accurately and, in
some instances, has returned inaccurate readings, depending on the device
the application was running on. So, be careful if you decide you want to use the
property for key logic in your applications.

Now let’s take a look at gestures.

GESTURE INTERACTIONS

Gestures are an extension of multitouch input, characterized more explicitly by specific movement
and direction of the touch point interactions. Their definitive natures are encapsulated in a given

term, like “zoom,” “pan,” or “swipe.”

Determining Which Gestures Are Supported on a Device

Support for various gesture input types should be determined within an application before they are
utilized, similarly to touch points.

You need to use Multitouch.supportsGestureEvents to detect gesture support. In addition,
you can retrieve exactly which types of gestures are supported by calling the
Multitouch.supportedGestures property, as in the following snippet:

if (Multitouch.supportsGestureEvents)

{

118 | CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

var gestures:Vector.<String> = Multitouch.supportedGestures;

for(var i:int=0; i < gestures.length; i++)
{
trace(gestures[il]);
}
}

In the preceding snippet the Multitouch. supportedGestures property returns a Vector of strings.

A vector is simply an array with a specified data type to signify that all the elements in the array are of

that same data type. In the following snippet the data type String is specified in anchors (< and >)
after the Vector declaration, preceded by a period (.):

var gestures:Vector.<String>;

Each supported gesture is then traced to the output console.

Gesture Events and Event Handling

Via the Flash Player, the simple touch of a finger on a device’s screen will trigger an event to be
dispatched, which can be detected in AS3.

Setting the Input Mode for Gesture Events

To handle gesture events, you need to set the Multitouch.inputMode property to

MultitouchInputMode.GESTURE. This will allow you to handle gestures recognized by the device,
as in the following snippet:

if (Multitouch.supportsGestureEvents)

{
Multitouch.inputMode = MultitouchInputMode.GESTURE;

var gestures:Vector.<String> = Multitouch.supportedGestures;

for(var i:int=0; i < gestures.length; i++)
{
trace(gestures[il]);

}

Gesture Event Types and Properties

Once you've selected MultitouchInputMode.GESTURE as the input mode, three main gesture
events can be dispatched depending on what gesture the user has initiated:

> GestureEvent: This gesture event consists of one
event-type property, which is dispatched as
GestureEvent .GESTURE_TWO_FINGER_TAP and represents
a user-initiated two-finger tap. Figure 4-6 shows the

two-finger-tap gesture; here fingers on each hand tap

) FIGURE 4-6 The two-finger-tap
simultaneously.

gesture

Gesture Interactions | 119

> PressAndTapGestureEvent:TTﬁsgeﬁureeventahC)has
one event-type property, which is referenced as
PressAndTapGestureEvent .GESTURE_PRESS_AND_TAP and
represents the user-initiated press and tap. Figure 4-7 shows the
press-and-tap gesture; here the left hand presses while the right hand

taps simultaneously. FIGURE 4-7 The press

and tap gesture
> TransformGestureEvent: This gesture event has four event-type

properties, which can be referenced as:

» TransformGestureEvent.GESTURE_PAN to represent the
user-initiated pan gesture

» TransformGestureEvent.GESTURE_ROTATE to represent the user-initiated rotate gesture
» TransformGestureEvent.GESTURE_SWIPE to represent the user-initiated swipe gesture
> TransformGestureEvent.GESTURE_ZOOM to represent the user-initiated zoom gesture.

Figure 4-8 shows the rotate gesture. Here a finger on the right hand presses
the screen, while a finger on the left hand simulates drawing an arc around the
stationary finger on the right hand.

As with the touch events, each gesture event must be registered through
addEventListener (). The following snippet shows how to handle a
GESTURE_TWO_FINGER_TAP event:

FIGURE 4-8 The
rotate gesture

if (Multitouch.supportsGestureEvents)

{
Multitouch.inputMode = MultitouchInputMode.GESTURE;

var g:Vector.<String> = Multitouch.supportedGestures;

for(var i:int=0; i < g.length; i++)
{
if (gestures[i] == GestureEvent.GESTURE_TWO_FINGER_TAP)

{
this.addEventListener(g[i], onTwoFingerTap) ;

Each of the three gesture event types returns objects that have properties setting them apart from
single touch events.

Registering Gesture Events on Interactive Objects

Up to now the MultitouchAndGestures.as example tracks a single touch point and draws a shape
to the screen when a single finger moves. Next, you look at how the pan gesture can be used to move
each of the shapes drawn in the application, and in the following steps you combine the use of a
timer with gesture events:

1. Begin by importing five new classes, Stage, GesturePhase, TransformGestureEvent,
Timer, and TimerEvent classes (Listing 4-19).

120 | CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

\) LISTING 4-19: Importing the Timer and TimerEvent classes

Available for package
download on {
Wrox.com

import

import
import
import
import
import
import
import
import
import
import

flash.display.Sprite;
flash.display.Stage;
flash.events.GesturePhase;
flash.events.TimerEvent;
flash.events.TouchEvent;
flash.events.TransformGestureEvent;
flash.text.TextField;
flash.text.TextFieldAutoSize;
flash.ui.Multitouch;
flash.ui.MultitouchInputMode;
flash.utils.Timer;

2. Next, in the private variable declarations, define a Timer object called idleTimer, and a
String variable called currentTarget (Listing 4-20).

\) LISTING 4-20: D

Available for public class
download on {
Wrox.com

private

private
private
private
private
private

eclaring new class variables
MultitouchAndGestures extends Sprite

var coordinates:TextField;
var currentTarget:String;
var idleTimer:Timer;

var offsetX:Number;

var offsetY:Number;

var multitouch:TextField;

The purpose of the timer is to reset idle gesture movement, hence the name idleTimer. While
the user’s finger touch is currently handled as a touch point, the aim will be to use the pan
gesture when a shape is touched, allowing it to be moved around. This will mean that the input
mode will need to change from touch to gesture, and then revert back to touch after a period
of inactivity, to allow more shapes to be drawn. The currentTarget is defined to hold the last

shape touched.

3. InMultitouchAndGestures () instantiate idleTimer. The class constructor for Timer

takes milli

seconds as the first parameter and here should be set to 1000, representing 1

second. You also need to add an event listener to the object that triggers an event handler

called onT

imer () when the timer has completed a cycle (Listing 4-21).

\’ LISTING 4-21: Registering timer events via the class constructor in MultitouchAndGestures.as

Available for public function MultitouchAndGestures ()

download on {
Wrox.com

multitouch = new TextField();
multitouch.autoSize = TextFieldAutoSize.LEFT;

idleTimer = new Timer (1000);

Gesture Interactions | 121

idleTimer.addEventListener (TimerEvent .TIMER, onTimer);

switch (Multitouch.supportsTouchEvents)

{

4. Underneath the class constructor create four new stubs: onTimer (),
initializeGestures(), initializeTimer (), and initializeTouch(). The
onTimer () event handler should retrieve the TimerEvent object e; none of the other
functions require parameters to be defined (Listing 4-22).

J LISTING 4-22: Adding the onTimer(), initializeGestures(), initializeTimer(), and initializeTouch()

method stubs in MultitouchAndGestures.as
Available for

download on
Wrox.com Private function onTimer (e:TimerEvent) :void {}

private function initializeGestures():void {}
private function initializeTimer () :void {}

private function initializeTouch() :void {}

5. InonTimer (), to prevent further timer event calls from being made once the timer finishes
a cycle, call the stop () method on idleTimer (Listing 4-23).

\) LISTING 4-23: Stopping the timer via the onTimer() method in MultitouchAndGestures.as

Available for private function onTimer (e:TimerEvent) :void
download on {
Wrox.com

idleTimer.stop();

}

6. Next,in initializeTimer (), set the delay property of idleTimer to 1000. This will
effectively reset the countdown back to the beginning. Also check whether the timer is still
counting down at all; if it is not running, restart it using the start () method (Listing 4-24).

\) LISTING 4-24: Starting the timer via the initializeTimer() method in MultitouchAndGestures.as

Availablefor private function initializeTimer():void
download on {
Wrox.com

idleTimer.delay = 1000;

if (!idleTimer.running)
idleTimer.start();

Note that once stop () has been called on idleTimer the timer should no longer
be running.

7. Inthe initializeTouch () function, set the input mode to touch point (Listing 4-25).

122 | CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

\) LISTING 4-25: Setting the input mode to touch point via the initializeTouch() method in

MultitouchAndGestures.as
Available for
download on
Wrox.com Private function initializeTouch() :void

{
if (Multitouch. supportsTouchEvents)
Multitouch.inputMode = MultitouchInputMode.TOUCH_ POINT;

8. Returning to the onTimer () function after the timer has been stopped, make a call to
initializeTouch() (Listing 4-26).

J LISTING 4-26: Initializing touch points via the onTimer() method in MultitouchAndGestures.as

Availablefor private function onTimer (e:TimerEvent) :void
download on {

Wrox.com) .
idleTimer.stop() ;

initializeTouch();

9. Inthe initializeGestures () function, set the input mode to gesture, then make a call to
initializeTimer () (Listing 4-27).

J LISTING 4-27: Setting the input mode to support gestures and initializing the timer via the

initializeGestures() method in MultitouchAndGestures.as
Available for
download on . . e s :
Wrox.com Private function initializeGestures():void

{

if (Multitouch.supportsGestureEvents)
{

Multitouch.inputMode = MultitouchInputMode.GESTURE;
initializeTimer();

10. Returning to onTouch (), for the TOUCH_BEGIN event use the e.target property to
determine whether a user’s touch event is dispatched from the stage. Save the reference of
the target e. target.name to currentTarget and then call initializeGestures () to
set the input mode to gestures (Listing 4-28).

J LISTING 4-28: Initializing gestures via the onTouch() method in MultitouchAndGestures.as

Available for private function onTouch (e:TouchEvent) :void
download on {

Wrox.com))
var id:Number = e.touchPointID;
var x:Number = e.stageX;

Gesture Interactions | 123

var y:Number = e.stageY;

switch(e.type)
{
case TouchEvent.TOUCH_BEGIN:

{
if (e.target is Stage)

{
drawLines (id, x, Vv);
drawShape (id, x, vy);
} else {
currentTarget = e.target.name;
initializeGestures();
}
}
break;

case TouchEvent.TOUCH_MOVE:
{
moveLines (id, x, v);
drawShape (id, x, y);
}
break;
case TouchEvent.TOUCH_END:
{
removeLines (id) ;

}
break;

11. IndrawShape (), after the shape sprite been instantiated, use
Multitouch.supportedGestures to check whether the gesture pan is supported. Then call
addEventListener (), supplying the TransformGestureEvent . GESTURE_PAN event type
g as the first parameter and an event handler called onPan () as the second parameter. The
onPan () event handler should be added below the drawShape () function (Listing 4-29).

\) LISTING 4-29: Adding the pan gesture event to a shape via the drawShape() method in

MultitouchAndGestures.as

Available for

download on
Wrox.com Private function drawShape (id:Number, x:Number, y:Number):void

{
var shape:Sprite;
var shapeId:String = id.toString();

if (! "stage.getChildByName (shapeId))
{
shape = new Sprite();
shape.name = shapeld;

for each(var g:String in Multitouch.supportedGestures)
continues

124 | CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

LISTING 4-29 (continued)

{
switch(g)
{
case TransformGestureEvent .GESTURE_PAN:
{
shape.addEventListener (g, onPan);
}
break;
}
}

stage.addChild (shape) ;
} else {

shape = child as Sprite;
}

var width:Number = x-offsetX;
var height:Number = y-offsetY;

shape.graphics.clear();
shape.graphics.lineStyle (2, 0x000000, 1.0);
shape.graphics.beginFill (0x000000, 0.0);
shape.graphics.drawRect (offsetX, offsetY, width, height);
shape.graphics.endFill () ;

}

private function onPan(e:TransformGestureEvent) :void {}

Handling Gesture Events
Lastly, take a look at how to use the data in a dispatched gesture event:

1. Inthe onPan() function use the GesturePhase.UPDATE event phase to reposition the
shape that is currently in focus. You need to retrieve the shape using the currentTarget
variable and the getChildByName () function. Then use the offsetX and offsetY
properties of the TransformGestureEvent object e to reposition the shape, before calling
initializeTimer () (Listing 4-30).

\) LISTING 4-30: Assigning the offsetX and offsetY properties to the shape via the onPan()

method in MultitouchAndGestures.as

Available for

download on) \
Wrox.com Private function onPan(e:TransformGestureEvent) :void

{
var shape:Sprite = stage.getChildByName (currentTarget) ;

switch(e.phase)

Gesture Interactions

125

case GesturePhase.UPDATE:

shape.x + e.offsetX;
shape.y + e.offsetY;

initializeTimer();

{
shape.x
shape.y
}
break;

NOTE All the changes to the MultitouchAndGesture.as file from Listing 4-1to
Listing 4-30 should now have been saved to file. Returning to Device Central,
you should now be able to emulate the pan gesture.

In Device Central open the MultitouchAndGestures.swf file in the emulator.

Next draw a shape on screen. Press the Alt key and simultaneously left-click the mouse.
You should see your first touch point, along with the coordinates at which the shape will

be drawn (Figure 4-9). If you are using a Trackpad, you can simply create a touch point by
pressing the Alt key on the keyboard while pressing on the Trackpad.

0P R B0 33 1200340 R
o P Rapw K113 JI0M0 M Tras

0 e P 900 32 400206 QuaRTY

Pk Paywr 18,1
Fiw Py 18,1
i Py 10,1

P Py 101
Pass Payer 181
. P P 181

8 4. =

R

®
\——

AN vam 8 00 Ry .,

:]
[oevea seir+4 I

FIGURE 4-9 Adding the first touch point to the Multitouch and Gestures App in Device Central

4.

stage. You should now have a shape drawn on the stage (Figure 4-10).

With the Alt key and mouse button still pressed, drag the mouse to a new position on the

126 |

CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

0 P P 5.1 33 138 QRN

@ P Papw W01 33 33000 Mittsas KD 0 400 P Paywr 101
e 100 3 SIOICQMETY EOS1D P Py 101 ——a—
] hed o bEde
Jhamp— -
ey bemmas O .80 o 000 P Payer 10.1
WRC Benre - o 000 Pumn Payer 10,1
v ot WO P Py 181
pT I—
o
.
fr
namehatietomed MVONETM 1R18E.
o 4=
T
— From —
a | necenon —
[Sewea st S |
(T AN vaR 800 R ., =

FIGURE 4-10 Drawing a shape in the Multitouch and Gestures App

5. Once the shape is drawn, with the cursor over the shape press the Alt key and simultaneously

left-click the mouse to simulate another finger touch as before (Figure 4-11).

0w M 401 52 1200340 CWRTY

P T B Bapr 181

.

[T
P Ve P 13
Dprn 1520 80

[
—-—— W m
- e—————— i e~

Py —————————————3 a =

it T o s e e 3 e, e

P T e ——

e] i)
[P e $01 32 SIOIAEQMEREY O RID Pt Py 101 ——
[0 ¢ v
ity oo
fGerge ternas O 80 » 800 P Pager 10.1
WOC Bearn . » 800 P Payer 10,1
Ut B 1 WO T P 101 '
o
[T
e
Mnamerhaetomee® MUORETES IR 1804
. 4. =
—
e ™ =
\;
& 2 %= PAN BRI DO Ry .,

:]
[oevea st |

FIGURE 4-11 Adding the first touch point to the shape in the Multitouch and Gestures App

6. While the Alt key is still pressed and the first touch point is still visible, add a second touch
point somewhere else on the shape, this time holding the Shift key (Figure 4-12).

Gesture Interactions

127

e
-i“hﬂl
P e 501 30 KO RERTY R0 B P P 101
W P Rapw K13 3000 Mt Tsas LTl P Paywr 101
[P 100 32 SICUIDUQMERTY WO MI0 P Py 10
E i e o e
g P . Ba0 & 440
| ey termas O 80 » 800 P Pager 10,1
WO Benrn . » 800 P Py 101
St B 1 WO T P 101
ey
-
R
nameniatiot et GRS IR i8Ee
0. 4 =
T
e From:
. S =

PN a8 00 g s,

FIGURE 4-12 Adding the second touch point to the shape in the Multitouch and Gestures App

7. Finally, move the shape to the bottom right of the screen (Figure 4-13).

B L L
0 P B0 3 KO QRERTY B30 B PP 10
W P Papw HL 33 JI0M0 Mt Tras LTl Fwn Paywr 101
[e $01 32 SIOIAUQMEREY EO BT P Py 10
A P LT
gy P & a0 & 980
| eyt O 80 » 800 i Pager 10,1
WO Benrw . o 800 Pamn Payer 10,1
et B 1 A T Py 101
- =
-
N
Mmoo e MUORETES 1R 1804
.. 4. =
—
e alVyom
& S b =

AN | vam|8 DO Y e,

H | vecann —
[Bewea st
oo

FIGURE 4-13 Using the pan gesture to move the shape to the bottom right corner of the
stage in the Multitouch and Gestures App

128

| CHAPTER4 TOUCH, MULTITOUCH, AND GESTURES

UTILIZING THE MULTITOUCH PANEL IN DEVICE CENTRAL

In Device Central the Multitouch panel provides three settings MULTITOUCH

that can be used to simulate touch points, including a user’s i D EE
. . Height: ¢ = 50 |px -

finger coverage and the pressure applied by a finger when it e e

lnteraCts Wlth the screen (Flgure 4- 1 4) ‘ Hold ALT down and click into the canvas to set touchpoints. Hold both
ALT+SHIFT down to move the touchpoints simultanaously.

These properties directly correlate to the properties briefly

mentioned for each of the event types covered in this chapter.

The width and height can be changed along with the pressure. FIGURE 4-14 The Multitouch panel in

Device Central
I recommend experimenting with these properties in the
MultitouchAndGestures.as example. For instance, you
could try changing the line style properties of the horizontal and vertical lines according to the size
of the touch point. You could also try changing the alpha property of the shapes depending on the
pressure applied to the screen.

SUMMARY

Implementing multitouch requires paying a little more attention to how your applications will work
when compared to using button-press events simply because there is more data to handle.

Over the course of the chapter you have created an example that demonstrates the new multitouch
features of the Flash player. First you learned how to determine support for multitouch and the need
to set the input mode for touch and gesture separately.

You also learned how to handle touch and gesture events, using the properties of touch events to
generate shapes and the data returned by the pan gesture to interact with those shapes.

In the next chapter you’ll take a closer look at developing for multiple devices and various screen sizes.

Before moving on to the next chapter, there are a few gesture events and properties not covered by
the code examples in this chapter. The following set of exercises should allow you to explore these
event types in more detail applying them to the example project.

EXERCISES

1.

2.

Apply the rotate gesture event TransformGestureEvent .GESTURE_ROTATE to rotate a shape once it
has been drawn.

Add the press and tap gesture event PressAndTapGestureEvent . GESTURE_PRESS_AND_TAP to
randomly change the color of a selected shape when the gesture is detected.

Use the swipe gesture event TransformGestureEvent . GESTURE_SWIPE to remove a shape from view.

Use the zoom gesture event TransformGestureEvent .GESTURE_ZOOM to increase the size of a shape.

Summary | 129

TOPIC

Multitouch input

Determining
touch input
support

Setting the input
mode for touch
support

Handling touch
events

Determining
gesture input
support

Setting the input
mode for touch
support

Handling gesture
events

Using the
Multitouch
panel

» WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPT

Two categories of multitouch input can be detected in mobile flash
applications: touch input and gesture input.

Use Multitouch. supportsTouchEvents to determine touch input support on
a mobile device. This should return true when supported.

Use MultitouchInputMode.TOUCH_POINT to define the input mode for touch.
Set the Multitouch. inputMode to MultitouchInputMode.TOUCH_POINT to
initialize touch input.

Register a TouchEvent type to handle touch input, using addEventListener ()
to register an interest in one of eight TouchEvent types.

Use Multitouch. supportsGestureEvents to determine gesture support on

a mobile device. Then use Multitouch.supportedGestures to determine
exactly which gestures are supported.

Use MultitouchInputMode.GESTURE to define the input mode for gestures.
Set the Multitouch. inputMode to MultitouchInputMode.GESTURE to initialize
gestures.

Three distinct types of gesture event objects can be dispatched:
GestureEvent, PressAndTapGestureEvent, and TransformGestureEvent.
Each gesture event object has several event type properties.

Register a particular gesture event type using addEventListener () to
respond to gesture movements.

In Device Central use the Multitouch panel to emulate a user’s finger touch.
Modify the size of a user’s finger by setting the width and height of touch points.
Set the degree of weight applied by the finger touch, by altering the pressure.

. .‘h__}-‘__‘_.'_ L A - -

. r
90008 \

o
® 8 &

Developing for Multiple
Screen Sizes

WHAT YOU WILL LEARN IN THIS CHAPTER:

Understanding screen size and screen resolution
Automatically scaling applications

Adapting content to different stage sizes
Handling changes in device orientation

Utilizing MXML group containers

Y Y Y VY VY Y

Using states in a Flex mobile application

In this chapter you’ll take a look at how to approach developing mobile applications that will
adapt to more than one screen size.

In essence, the chapter focuses mainly on the design of the mobile application within the
viewing window. For the majority of apps the logic and core should be the same, and so giving
applications a consistent look is the order of the day.

First you’ll get an understanding of screen resolution and the difference between measuring
screen size by the number of pixels and measuring the screen size by physical distances.

Then you’ll take a look at utilizing the stage to handle size changes in an application. You’ll
also examine how to determine the relative dimensions and sizes of assets, components, and
fonts.

This chapter guides you through how to update an application when the device changes
orientation between portrait and landscape. You’ll then go through a series of techniques to
position assets in the application using Flash Builder.

| CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

CONSIDERATIONS FOR MULTIPLE SCREEN SIZES

The screen size on a mobile handset is pretty much what determines the space available to you,
and the viewing window for an application. Not all mobile devices have the same screen size, which
poses potential issues in presenting a consistent look-and-feel across multiple devices.

The main goal of this chapter is to outline the techniques that will help you target and deploy
applications to multiple devices. When coding for different screen sizes, the two main things you
have to take into consideration are:

> Screen resolution: The total number of pixels a screen contains
> Screen aspect ratio: The measured width of a screen in relation to the height

In tackling the first point, you should consider whether an application will need to look different if
it runs on a device with a higher or lower pixel density.

And with the screen aspect ratio, you must consider whether the application will need to run on a
device where the full width of the screen needs to be longer or shorter than its measured height.

Both these factors affect the design or layout of a mobile application.

Pixel Density

Although pixels give a computational measurement of screen size, they don’t represent the
real physical measurements directly, in the way that centimeters or inches do. The number of
dots per inch (DPI) or pixels per inch (PPI) is used to provide a way by which the number

of inches on a screen can be calculated.

Table 5-1 lists some screen resolutions for comparison across different devices.

TABLE 5-1: A Comparison of Mobile Devices with Different Screen Resolutions

DISPLAY SIZE SCREEN RESOLUTION PRIMARY
DEVICE (INCHES) (PIXELS) ORIENTATION DPI
Google Nexus 3.7" 480w x 800h Portrait 254
One
Google Nexus S 4" 480w x 800h Portrait 235
Apple iPhone 4 3.5" 640w x 960h Portrait 326
Apple iPad 9.7" 768w x 1024h Portrait 132
BlackBerry 7" 1024w x 600h Landscape 170
PlayBook

Motorola Xoom 10.1" 1280w x 800h Landscape 160

Considerations for Multiple Screen Sizes | 133

Take a look at the DPI column in Table 5-1. The first thing you should notice is the difference in
screen display size, which varies depending on whether the mobile device is a tablet or smartphone.

Smartphone devices like the Google Nexus One, which has a screen resolution of 480 x 800 pixels,
have a pixel density of 254 DPI, whereas the Apple iPhone 4 has a resolution of 640 x 960 pixels,
with a pixel density of 326 DPI.

A tablet device like the BlackBerry PlayBook has a screen resolution of 1024 x 600 pixels, with a
pixel density of 170 DPI, whereas the Apple iPad has a resolution of 768 x 1024 pixels, with a pixel
density of 132 DPI.

What you can also take from the table is the fact that just because a device has a larger screen size
doesn’t mean it has a higher pixel density.

In Flash Builder you can view a number of device configurations and properties, including pixel
density, in the Preferences panel (see Figure 5-1). To open this panel, select Flash Builder =
Preferences . . . from the main menu.

1806 Preferences
|
|| type filter text Device Configurations v L
¥ General 1
| »Adobe Add, remove, and edit device configurations. ‘
| PAnt Device Name Platform Full Screen Size Usable Portrait Size Usable Landscape Size Pixels Per Inch (PPI) /T\
[e—dde—
| Fash guiider @ Apple iPad Apple 105 768x 1024 768 x 1004 1024 x 748 132 |
| Data/Services & Apple iPhone 3G5 Apple I0S 320 x 480 320 x 460 480 x 300 163 i |
gz"_“g s & Apple iPhone 4 Apple 105 640 x 960 640 x 920 960 x 600 326
vice Configurations
| - - @ BlackBerry PlayBook BlackBerry Tablet OS 1024 x 600 600 x 1024 1024 x 600 167
» Editors Remove
| T L— # Google Nexus One Google Android 480 x 800 480 x 762 800 x 442 252 ‘
| File Exclusions £ Google Nexus S Google Android 480 x 800 480 x 762 800 x 442 235 —_—
mpor
File Templates & HTC Desire Google Android 480 x 800 480 x 762 800 x 442 252 = |
: FlexUnit & HTC Droid Incredible Google Android 480 x 800 480 x 762 800 x 442 252
| el ey o B HTCEvo Google Android 480 x 80O 480 x 762 800 x 442 217
.:‘e'z“"'k Mon oy & Motorola Droid Google Android 480 x 854 480 x 816 854 x 442 265
| ,T:Q:Pworm B MotorolaDroid2 Google Android 430x 854 480816 854 x 442 265
b Help # Motorola Droid Pro Google Android 320 x 480 320 x 455 480 x 295 144 ‘
| ¥ Install/Update # Motorola Droid X Google Android 480 x 854 480 x 816 854 x 442 228 |
»java & Motorola XOOM Google Android 1280x 800 800 x 1232 1280 x 752 150 ‘
¥ Run/Debug @ Samsung Captivate Google Android 480 x 800 480 x 762 800 x 442 233
| P Tasks & Samsung Epic Google Android 480 x 800 480 x 762 500 x 442 233 |
leam @ Ssamsung Fascinate Google Android 480 x 800 480 x 762 800 x 442 233 |
| ’;;"Ld"“"" & Samsung Galaxy Tab Google Android 500x 1024 50O x 386 1024 x 562 168
@& samsung Vibrant ‘Google Android 480 x 800 480 x 762 BOO x 442 233 ‘
|
€ - KIS ‘
| (Restore Defaults) ‘
| |
|
@ =>}
[l s—————SSSSassS———— =5 A

FIGURE 5-1: Flash Builder Preferences panel displaying numerous device configurations

Utilizing Device DPI

The device DPI can be utilized in a number of ways. You can let an application detect and handle
differences in DPI across devices automatically, or you can programmatically code for those
differences.

134

| CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

Scaling Applications with the Application DPI

When you create a Flex-based mobile application, you have the option of scaling the application to
automatically address potential differences in pixel density when your application runs on different
devices.

You do this by setting the applicationDPT property of the main application container, either inside
your <s:ViewNavigatorApplication> or the <s: TabbedViewNavigatorApplication> tag, as
shown in the following snippet:

<?xml version="1.0" encoding="utf-8"?>

<s:TabbedViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
applicationDPI="240">

</s:TabbedViewNavigatorApplication>

This property can be set to one of three values: 160, 240 or 320. These three values are
known as DPI Classification constants and are defined by three static properties of the
mx.core.DPIClassification class:

» DPIClassification.DPI_160: A number equal to 160 representing a density value for
low-density devices

> DPIClassification.DPI_240: A number equal to 240 representing a density value
for medium-density devices

» DPIClassidication.DPI_320: A number equal to 320 representing a density value for
high-density devices

As shown by the comparison in Table 5-1, many popular devices don’t have the same screen
resolution. Setting the applicationDPT means you are effectively targeting your development at a
device that has a resolution at the value defined for applicationDPI.

When the applicationDPI property is set, Flex scales everything in the application in relation to
another property, known as the runtimepp1. This is the screen resolution of the device in which
the application is currently running; it is read-only and retrieves its value from the flash.system
.Capabilities.screenDPT property. We’ll discuss this in more detail shortly.

When an app runs on a device that has a different runt imeDPT from the target applicationDPT
value, it scales the content automatically. If the applicationDPI property is not set, no scaling
occurs.

Consider the following scenarios:

If the applicationDPT is set to 160 and the target device has a DPI of 160, no scaling occurs.

The scale is deemed to be a factor of 1, or 100%. If the target device has a DPI of 320, a scale
factor of 2, or 200%, is applied. If a target device has a DPI of 240, a scale factor of 1.5, or 150%,
is applied.

Considerations for Multiple Screen Sizes | 135

Scale factors can go up as well as down. So, if the applicationDPT is set to 320 and the target
device has a DPI of 160, then a scale factor of 0.5, or 50%, is applicable.

Note that when you run an application in Flash Builder, the debug window uses a DPI of 240.

A device’s runtimeDPI value will fall into one of three DPI Classification constants, which are
mapped by default in Flash Builder to one of three associated ranges, as shown in Table 5-2.

TABLE 5-2: Device DPI to DPI Classification Constant Mappings

DEVICE DPI DPI CLASSIFICATION
Less than 200 dpi 160 dpi
Between 201 dpi and 279 dpi 240 dpi
280 dpi and above 320 dpi

Using Table 5-2 as a guide, you can expect that when the applicationDPT property is set to 240,
content running on a Google Nexus One won’t scale, as its runt imeDPT, a value of 254, will fall
into the 240 dpi classification, and hence a scale factor of 1.

From Table 5-2 and Table 5-1, you can also determine that the Apple iPad, BlackBerry
PlayBook, and Motorola Zoom, each with DPI values of less than 200 dpi, will fall into the
160 dpi classification, whereas only the Apple iPhone 4 will fall into the high-density 320 dpi
classification.

Setting Styles with the Application DPI

Using the Flex framework there is also support for applying styles based on the target OS and
application DPI in CSS, by setting a @media rule in the <fx:styles> declaration.

To do this, you can use a combination of the application-dpi and os-platform properties to
selectively apply styles based on the device DPI and the target platform on which the application is
running.

Like the applicationDPT property, the supported values for the application-dpi CSS property
are 160, 240, and 320.

The os-platform CSS property is matched to the value of the first three letters of the flash
.system.Capabilities.version property returned by the application running in Flash Player.

Set the os-platform property to one of the supported values:
> anD: To reference the Google Android platform
> 108: To reference the Apple iOS platform

> onx: To reference the BlackBerry Tablet OS platform

136 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

> Mac: To reference the Apple Macintosh platform
> wiN: To reference the Windows platform
» 1nx: To reference the Linux platform
The e@media rule supports the common operators and, or, and not.

The following code snippet shows how to set the default fontsize style property to 12 for the
<s:Label> control, and also uses the @media rule to determine whether the application is running
on an Apple iOS device and whether it uses 240 DPI to set the fontsize property to 10:

<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
applicationDPI="160">
<fx:Style>

@namespace s "library://ns.adobe.com/flex/spark";

s|Label
{
fontSize:12;
}
@media (os-platform: "IOS") and (application-dpi: 240)
{
s |Label
{
fontSize:10;
}
}

</fx:Style>
</s:ViewNavigatorApplication>

The following code snippet sets the backgroundColor property of an application running on
the BlackBerry Tablet OS platform to #000000, when the device DPI is 160, but not on Android,
nor 10S:

<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
applicationDPI="160">
<fx:Style>

@namespace s "library://ns.adobe.com/flex/spark";
@media (os-platform: "QNX") and (application-dpi: 160),

not (os-platform: "AND"),
not (os-platform: "IOS")

Considerations for Multiple Screen Sizes | 137

s|ViewNavigatorApplication
{
backgroundColor:#000000;

}

</fx:Style>
</s:ViewNavigatorApplication>

When setting styles, you can essentially override the scale factor applied to the application once you
have set the applicationDPI.

Using the Screen DPI to Calculate Physical Measurements

Let’s now turn to the Capabilities.screenDPT property, which you can use to retrieve the device’s
screen DPI and calculate the number of pixels for a particular physical measurement.

The screen size and DPI prove to be important factors when developing for multiple screens, because
components’ assets could in essence work perfectly on one device but be too small to read or tap on
devices with higher resolutions.

When we refer to physical measurements, essentially what this means is that for the Google
Nexus One, one inch is represented by 254 pixels, and on the BlackBerry PlayBook, one inch is
170 pixels.

Use the following import statement to use the Capabilities class:
import flash.system.Capabilities;

The following snippet draws a 2-inch x 1-inch rectangle on the stage. Targeting the Nexus One
device, this is done by multiplying 254 by 2 to get the width at 508 pixels, and then using 267 pixels
for the height of the rectangle.

var rectangle:Sprite = new Sprite();
rectangle.graphics.beginFill (0x000000) ;
rectangle.graphics.drawRect (0, 0, 508, 267)
rectangle.graphics.endFill () ;

addChild(rectangle) ;

For the BlackBerry PlayBook, however, the rectangle would actually be rendered as 3.14 x 3 inches,
which is larger than the physical dimensions specified for the application. Also, if the application
were to run on the Apple iPhone 4, the rectangle would be rendered as 1.64 inches.

If you were to put each of these values in order, you would expect to find that the higher resolution
should display a bigger rectangle, with an increasing DPI number.

138

| CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

With the capabilities.screenDPI property, you can ensure that the size of the rectangle is rendered
to an exact size, regardless of the screen it’s being drawn on, as shown by example in the following
snippet:

var width:unit = Capabilities.screenDPI * 2;
var height:unit = width;

var rectangle:Sprite = new Sprite();
rectangle.graphics.beginFill (0x000000) ;
rectangle.graphics.drawRect (0, 0, width, height)
rectangle.graphics.endFill () ;

addChild(rectangle) ;

This code would now render a 2- x 1-inch rectangle on each device. Next let’s take a look at how to
adapt content to the stage size.

ADAPTING CONTENT TO STAGE SIZE

One of the main aims of multiple screen development is to enable an application to adapt itself to
different screen sizes. This doesn’t necessarily need to include every part of the application but some
assets will have to be resized to make them more visible.

Using the StageScaleMode and StageAlign Classes

The stagesScaleMode and StageAlign classes can be used together to provide values to set the scale
mode property stage.scaleMode and the alignment property stage.align on the Stage object of
an application.

The stagescaleMode class has the following static constants:

» StageScalelMode.EXACT_FIT: To specify that content in the application fills the visible area
of the stage

» StageScaleMode.NO_BORDER: To ensure that content in the application fills the entire stage
when the stage is scaled

> StageScaleMode.NO_SCALE: To prevent the content in the application from resizing and
filling the entire stage when the stage is scaled

> StageScaleMode.SHOW_ALL: To maintain the aspect ratio of the content in the application
when the stage is scaled

From the list, you see three settings that would at first glance appear to be ideal options for
targeting multiple screen sizes. These are the stageScaleMode.EXACT_FIT, StageScaleMode
.SHOW_ALL, and StageScaleMode.NO_BORDER constants, which would automatically resize content
to fit the stage.

However, using StageScaleMode.EXACT_FIT can potentially distort content in the application,
because the content isn’t resized to maintain its aspect ratio.

Adapting Content to Stage Size | 139

With stageScaleMode.NO_BORDER, cropping may occur because the setting will maintain the aspect
ratio. You can be sure that all content will be displayed only if the aspect ratio fits the size of the stage.

When using StageScaleMode . SHOW_ALL, borders can appear at either side of the application, which
is done to maintain the aspect ratio of the content in the application while filling the area that the
resized stage occupies.

None of the three options discussed are really viable for resizing content on mobile devices because
each has constraints that programmatically are impractical to implement in an application. The
only downside to using StageScaleMode.NO_SCALE is that the application will not resize any of
the content when the stage is scaled. Scaling the stage down from the initial application means
that cropping will occur if the application window is smaller than the content, whereas scaling up
from the initial application content means that the stage of the application will get larger without
adjusting the content, hence the content would look small.

These problems both can be rectified through listening to events triggered from the stage, for
instance detecting when it resizes. This will be covered a little later.

The stagealign class has the following static constants:
> StageAlign.BOTTOM: To align content in the application relative to the bottom of the stage

» StageAlign.BOTTOM LEFT: To align content in the application relative to the bottom-left
corner of the stage

\/

StageAlign.BOTTOM_RIGHT: To align content in the application relative to the bottom-right
corner of the stage

StageAlign.LEFT: To align content in the application relative to the left of the stage
StageAlign.RIGHT: To align content in the application relative to the right of the stage

StageAlign.ToP: To align content in the application relative to the top of the stage

Y VY VY Y

StageAlign.ToP_LEFT: To align content in the application relative to the top-left corner
of the stage

\/

StageAlign.TOP_RIGHT: To align content in the application relative to the top-right corner
of the stage

You need to set the stage.scaleMode property to StageScaleMode.NO_SCALE and the stage
.align property to StageAlign.TOP_LEFT as shown in the following code snippet:

stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;

This will actually prevent automatically scaling the application, allowing you to specify code to
scale and lay out content in the application dynamically.

To dynamically scale and lay out content you need a mechanism by which the application recognizes
the area which it occupies, so that in turn it can apply its own dimensions and position itself
correctly. This can be achieved through the stage by handling the resize event.

140

| CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

Handling Stage Resize Events

The stage dispatches the Event .RESTZE event when the mobile application first initializes, and also
when the device orientation changes. On the desktop and with Flash embedded in the browser the
Event .RESIZE event is also dispatched when the window or embed container is resized.

Using addEventListener () you can assign Event .RESIZE to an event handler, as shown in the
following code snippet:

stage.addEventListener (Event .RESIZE, onResize);

The stage object has two properties to return the width and height of the stage, through the
stage.stageWidth and stage.stageHeight properties, respectively.

For the event.target property for the Event .RESTZE event is the Stage object where you can
retrieve the width and height values. The onResize () event handler would need to include the code
to perform the dynamic changes to the layout. When laying out content it’s important to have a
preconception of what assets may need to be resized and positioned.

You’ll explore handling the stage resize event in more detail shortly.

Creating the Sprite Layout App Example

In this section you’ll simply render the layout for an application using sprites to represent different
proportions of the screen, and use portrait and landscape layouts to arrange and resize each sprite.

In Flash Builder you will need to create a new ActionScript Mobile Project called Sprite Layout App.
This example will use AS3.

The two layouts for the application are shown in Figures 5-2 and 5-3.

FIGURE 5-2: The portrait layout FIGURE 5-3: The landscape layout design for Sprite
design for Sprite Layout App Layout App

Adapting Content to Stage Size | 141

Each layout contains four distinct parts, which will be referred to as a, b, ¢, and d. Referring to the
diagram, a is the blue sprite, b is the green sprite, c is the yellow sprite, and d is the red sprite.

In the portrait layout (Figure 5-1) you can see that @ and b are aligned together horizontally, both
occupying half of the screen width, while ¢ and d are vertically aligned underneath g and &
and occupy the full width of the screen.

In the landscape layout (Figure 5-2) you see that @ and b still occupy the screen width, but this time
they are vertically aligned. Also in the landscape layout, ¢ now occupies half the screen width and is
aligned to the top right of the stage, while d still occupies the full width of the screen at the bottom.

Defining the ActionScript Mobile Project Settings

Following are a few of the settings that you will need to ensure are defined for the project:

>

>

Name: Set the Name for the project to SpriteLayoutApp.

Application ID: Set the Application ID to com.wrox.ch5.SpriteLayoutApp.

Building Sprite Layout App

The following steps will guide you through
creating the example that changes the
arrangement of items depending on whether
it’s in a portrait layout or landscape layout.

)

Available for
download on
Wrox.com

1.

2.

In Flash Builder create the Sprite
Layout App project (Figure 5-4).

In SpriteLayoutApp.as, define four
private static constants of type int to
represent a color for each of the blocks,
and also add four private variables to

represent each of the sprites a, b, ¢, and d.

Then in the class constructor, set the
stage.align property to StageAlign
. TOP_LEFT and the stage.scaleMode
to StageScaleMode.NO_SCALE, to
ensure that the stagealign and

StageScaleMode classes are imported
(Listing 5-1).

806 New ActionScript Mobile Project
Create an ActionScript Mobile AIR Project
Choose a name and location for your project @
Location Mobile Settings Build Paths Build Paths

Project name: SpritelayoutApp

Project location

EI Use default location

Folder: /Users/anderson/Documents/Adobe Flash Builder 4.5 Browse..

Flex SDK version

® Use default SDK (currently "Flex 4.5.1") Configure Flex SDKs...

() Use a specific SDK: | Flex 4.5.1
Flex 4.5.1 requires Adobe AIR 2.6.

@ < Back Cancel Finish

FIGURE 5-4: The New ActionScript Mobile Project
dialog for Sprite Layout App

LISTING 5-1: Declaring static variables for the colors blue, green, red, and yellow, and private
variables for the sprites a, b, ¢, and d in SpriteLayoutApp.as

package

{

import flash.display.Sprite;
import flash.display.StageAlign;

continues

142 |

CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

O

Available for
download on
Wrox.com

LISTING 5-1 (continued)
import flash.display.StageScaleMode;

public class SpriteLayoutApp extends Sprite

{
private static const BLUE:int = 0x3399FF;
private static const GREEN:int = 0x99CC00;
private static const YELLOW:int = O0xFFCCO00;
private static const RED:int = O0xFF3333;

private var a:Sprite;
private var b:Sprite;
private var c:Sprite;
private var d:Sprite;

public function SpriteLayoutApp ()
{

super () ;

stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

3. Next add two protected functions called drawsprites () and drawRectangle (). For
drawRectangle () define four parameters for the method. The first parameter should be iq,
a string representing the sprite object’s 1d and name properties. The second should be widtn,
an integer to represent the width of the sprite. The third parameter should be height, an
integer to set the height of the sprite object, and then lastly color, also an integer to set
the color of the sprite. Then in drawRectangle () create a new sprite object using the
parameters defined, and add it to the application (Listing 5-2).

LISTING 5-2: Adding the drawSprite() and drawRectangle() function calls in
SpriteLayoutApp.as

public function SpriteLayoutApp ()

{
super () ;
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

protected function drawSprites():void {}

protected function drawRectangle(id:String, w:int, h:int, color:int):void

Adapting Content to Stage Size

143

)

Available for
download on
Wrox.com

var sprite:Sprite = new Sprite();
sprite.name = id;
sprite.graphics.beginFill (color);
sprite.graphics.drawRect (0, 0, w, h);
sprite.graphics.endFill();

addchild(sprite);

4. Indrawsprites () make four calls to drawrRectangle (), one for each sprite, assigning
a different color for each. Then in the constructor of SpriteLayoutapp, make a call to
drawsSprites () (Listing 5-3).

LISTING 5-3: Initializing sprites a, b, ¢, and d through the drawSprites() and drawRectangle()
functions in SpriteLayoutApp.as

public function SpriteLayoutApp ()
{

super () ;

stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

drawSprites();

}

protected function drawSprites():void

{
drawRectangle("a", 1, 1, BLUE);
drawRectangle("b", 1, 1, GREEN);
drawRectangle("c", 1, 1, RED);
drawRectangle("d", 1, 1, YELLOW);

protected function drawRectangle(id:String, w:int, h:int, color:int):void
{

var sprite:Sprite = new Sprite();

sprite.name = id;

sprite.graphics.beginFill (color) ;

sprite.graphics.drawRect (0, 0, w, h);

sprite.graphics.endFill () ;

addChild(sprite) ;
}

5. Next register the Event .RESIZE event with stage, and define the private function called

onResize () as the event handler (Listing 5-4).

144 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

\) LISTING 5-4: Assigning Event.RESIZE to the event handler function onResize() in SpriteLayoutApp.as

Available for public function SpriteLayoutApp ()
download on {
Wrox.com

super () ;

stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.addEventListener (Event .RESIZE, onResize);

drawSprites() ;

}

private function onResize(e:Event):void {}

6. InonResize() use a reference to the stage called stageobj to assign the stage
.stagewidth and the Stage.stageHeight properties from the Event object to two new
functions, sizeComponents () and layoutComponents () (Listing 5-5).

\, LISTING 5-5: Supplying the stageWidth and stageHeight properties as arguments to the

sizeComponents() and layoutComponents() functions via onResize() in SpriteLayoutApp.as
Available for

download on
Wrox.com Private function onResize(e:Event):void

{
Stage(e.target) .stageWidth;
Stage(e.target) .stageHeight;

var w:int
var h:int

sizeComponents(w, h);
layoutComponents(w, h);
}

private function sizeComponents(stageWidth:int, stageHeight:int):void {}

private function layoutComponents (stageWidth:int, stageHeight:int):void {}
7. Under the onresize () method add a new function called getSprite () to return one of the
sprites based on its id property (Listing 5-6).
\) LISTING 5-6: Adding the getSprite() function to retrieve a sprite in SpriteLayoutApp.as

Available for private function onResize(e:Event) :void
download on {
Wrox.com

var w:int
var h:int

Stage (e.target) .stageWidth;
Stage (e.target) .stageHeight;

sizeComponents (w, h);
layoutComponents (w, h);

}

public function getSprite(id:String):Sprite
{
return this.getChildByName(id) as Sprite;

Adapting Content to Stage Size | 145

8. In sizeComponents () set the width of sprites a and b to half the stage width. Then set the
height property on both sprites to one third (1/3) of the full screen height (Listing 5-7).

@ LISTING 5-7: Setting the width and height of sprites a and b via the sizeComponents() function

in SpriteLayoutApp.as

Available for
download on
Wrox.com Protected function sizeComponents (stageWidth:int, stageHeight:int):void

{
a = this.getSprite("a");
a.width = stageWidth/2;
a.height = 1/3 * stageHeight;

b = this.getSprite("b");

b.width = stageWidth/2;

b.height = 1/3 * stageHeight;
}

9. In layoutComponent (), set the x and y coordinates of sprite a to 0. And then set the v
P
position of sprite b to 0 and the x position to where sprite a ends. This should be calculated
by retrieving the x and width properties of sprite a (Listing 5-8).
y g prop p g

@ LISTING 5-8: Setting the x and y positions of sprites a and b via the layoutComponents()

function in SpriteLayoutApp.as

Available for
download on
Wrox.com Protected function layoutComponents (stageWidth:int, stageHeight:int):void

{
a = this.getSprite("a");

a.x = 0;

a.y = 0;

b = this.getSprite("b");
b.x = a.x + a.width;
b.y = 0;

10. If you run the application you should now see the two
sprites adjacent to each other (Figure 5-5).

11. Next, in sizeComponents (), set the width property
on sprites ¢ and d to be equal to the full width of the
stage. Then for sprite d set the height equal to
one-sixth of the stage height and exactly half the height
of sprites a and b. Then for sprite ¢ set the height
property to be the remainder of the space available in
view (Listing 5-9).

FIGURE 5-5: Sprites a and
b in the portrait layout for
SpriteLayoutApp

146 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

@ LISTING 5-9: Setting the width and height of sprites ¢ and d via the sizeComponents() function

in SpriteLayoutApp.as
Available for

download on
Wrox.com Protected function sizeComponents (stageWidth:int, stageHeight:int):void

{

a = this.getSprite("a");
a.width = stageWidth/2;
a.height = 1/3 * stageHeight;

b = this.getSprite("b");
b.width = stageWidth/2;
b.height = 1/3 * stageHeight;

c = this.getSprite("c");
c.width = stageWidth;
c.height = stageHeight - (1/3 * stageHeight) - (1/6 * stageHeight);

d = this.getSprite("d");
d.width = stageWidth;
d.height = 1/6 * stageHeight;

12. In layoutComponents () set the x property of sprites ¢ and d to 0. Set the y property of
sprite c to where sprite b ends. Then set the y property of sprite d to the full height of the
stage, less the height of the sprite (Listing 5-10).

@ LISTING 5-10: Setting the x and y positions of sprites ¢ and d via the layoutComponents()

function in SpriteLayoutApp.as

Available for
download on
Wrox.com Protected function layoutComponents (stageWidth:int, stageHeight:int):void

{

a = this.getSprite("a");

a.x = 0;

a.y = 0;

b = this.getSprite("b");

b.x = a.x + a.width;

b.y = 0;

¢ = this.getSprite("c");

c.x = 0;

c.y = b.y + b.height;

d = this.getSprite("d");

d.x = 0;

d.y = stageHeight - d.height;
}

13. If you run the application you should now see each of the
sprites arranged correctly as shown earlier in the Portrait
view (Figure 5-6).

FIGURE 5-6: Sprites a, b, ¢, and
d in the portrait layout for Sprite
Layout App

Adapting Content to Stage Size |

147

Next take a look at how the code will change for a landscape mode.

)

14.

In sizeComponents () wrap the current code in an if statement to ensure that the code

executes when stageHeight is greater than stagewidth (Listing 5-11).

LISTING 5-11: Determining whether the stageWidth property is less or greater than the
stageHeight property via the sizeComponents() function in SpriteLayoutApp.as

Available for
download on

Wrox.com

)

protected function sizeComponents (stageWidth:int, stageHeight:int):void

{

if (stageWidth < stageHeight)

{

a

a.
.height = 1/3 * stageHeight;

a

= this.getSprite("a");
width = stagewWidth/2;

= this.getSprite("b");

.width = stageWidth/2;
.height = 1/3 * stageHeight;

= this.getSprite("c");

.width = stageWidth;
.height = stageHeight - (1/3 * stageHeight) - (1/6 * stageHeight);

= this.getSprite("d");

.width = stageWidth;
.height = 1/6 * stageHeight;

} else if(stageWidth > stageHeight) {

}

15.

Next determine what happens when stagewidth is greater than stageHeight. Set the

width property on sprites a, b, and c to equal half the width of the stage, and then for
sprite d set the width to the full stage width. For sprite d set the height property to

one-sixth of the full stage. Then for sprites a and b set the height property to equal half

the stage height minus the height of sprite d. For sprite d set the height to equal one-sixth
of the stage height. And then for sprite c set the height to be the remainder of the space
available in view (Listing 5-12).

LISTING 5-12: Setting the width and height of sprites a, b, c, and d when the stageWidth property is
greater than the stageHeight property via the sizeComponents() function in SpriteLayoutApp.as

Available for
download on

Wrox.com

{

protected function sizeComponents (stageWidth:int, stageHeight:int):void

if (stageWidth < stageHeight)

continues

148 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-12 (continued)

a = this.getSprite("a");
.width = stageWidth/2;
a.height = 1/3 * stageHeight;

Q

b = this.getSprite("b");
b.width = stagewWidth/2;
b.height = 1/3 * stageHeight;

c = this.getSprite("c");
c.width = stageWidth;
c.height = stageHeight - (1/3 * stageHeight) - (1/6 * stageHeight);

d = this.getSprite("d");
d.width = stageWidth;
d.height = 1/6 * stageHeight;

} else if(stageWidth > stageHeight) {

a = this.getSprite("a");
a.width = stageWidth/2;
a.height = stageHeight/2 - (1/6 * stageHeight)/2;

b = this.getSprite("b");
b.width = stageWidth/2;
b.height = stageHeight/2 - (1/6 * stageHeight)/2;

¢ = this.getSprite("c");
c.width = stagewidth/2;
c.height = stageHeight - (1/6 * stageHeight);

d = this.getSprite("d");
d.width = stagewidth;
d.height = 1/6 * stageHeight;

16. Similarly in layoutComponents () wrap the current code in an if statement to ensure
that the code executes when stageHeight is greater than stagewidth. Then add the
else if portion of the if () statement to determine what happens when stagewidth is
greater than stageHeight. Here set the x property on sprites a, b, and d to 0. For
sprite c set the x property to half the stagewidth. Then set the y property on sprites
a and c to 0. Then for sprite b set the y property to where the height of sprite b ends.
For sprite d set the y property to the full height of the stage, less the height of the
sprite (Listing 5-13).

Adapting Content to Stage Size

149

\, LISTING 5-13: Setting the x and y positions for sprites a, b, ¢, and d when the stageWidth property is
greater than the stageHeight property via the layoutComponents() function in SpriteLayoutApp.as

Available for
download on

Wrox.com Protected function layoutComponents (stageWidth:int,

{

if (stageWidth < stageHeight)

{

o o o o oo
KoM <o

[oe!
KoM

d =

ol

X
d.y

} else if(stageWidth > stageHeight) {

a =
a.x
a.y

}

17. Run the project once again. You will see the portrait layout when it launches in the adl

window.

this.getSprite("a");
=0;
=0;

this.getSprite("b");
= a.x + a.width;
=0;

this.getSprite("c");
=0;
= b.y + b.height;

this.getSprite("d");
= 0;
= stageHeight - d.height;

this.getSprite("a");
= 0;
= 0;

this.getSprite("b");
=0
= a.y + a.height;

this.getSprite("c");
= a.x + a.width;
= 0;

this.getSprite("d");
= 0;
= stageHeight - d.height;

stageHeight:int) :void

To see the landscape layout, use the adl menu and select Device &> Rotate Right (Figure 5-7).

The Landscape view should now be displayed (Figure 5-8).

150

| CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

& adl Fie Ede [EEEEEY Window

FIGURE 5-7: Using the adl menu FIGURE 5-8: Sprites a, b, ¢, and d in the landscape
to rotate the device in Sprite layout for Sprite Layout App
Layout App

There are a number of things going on in this project. First, to give an appreciation of the differences
in layout, the app simply draws four sprites to the screen, then uses two functions to address resizing
and aligning assets.

Resizing Assets

When the stage initializes, the resize event handler onResize () calls two functions, sizeComponents ()
followed by 1ayoutComponents (). Each method is passed two arguments from the stage object,
Stage.stageWidth and Stage.stageHeight.

Both arguments are used to calculate the sizes of each of the sprites added to the view in
SpriteLayoutApp.

Of course, the sizing of each sprite in this case is totally dependent on the design of the layout. For
instance, both sprites a and b needed to occupy half the full width of the stage, and their heights
are calculated to be a third of the height of the stage. Sprite ¢ occupies the full stage width and
calculates the vertical space left, taking into consideration the height of sprite d, which in turn
occupies one-sixth of the full height of the stage.

When the screen is resized, all the measurements will be relative to the stage object’s stagewidth
and stageHeight properties. And so on different screens with various pixel densities, the sprites

will occupy the same space.

When creating Flex mobile applications, it is recommended that you use the systemManager

.screen.width and systemManager.screen.height properties to retrieve the device’s width and

Handling Device Orientation | 151

height, respectively, while an application is running. This method is employed when you build the
Flex example later.

Aligning Assets

To align the sprites correctly a number of techniques have been employed.

First, sprite a is absolutely positioned. Because sprite a will always be in the top left-hand corner
of the screen, its x and y properties are set to 0. Sprites b and ¢ both apply absolute and relative
positioning, as their positioning can be calculated by using the positions of other assets, in
particular sprite a. So the position is relative with respect to setting the y properties, and absolute
with respect to setting the x properties.

For sprite b, the y position is hard-coded to 0, while its x position is calculated based on the position
and width of sprite a. For sprite c, the x position is hard-coded to 0, while its y position is calculated
based on the height of sprite a.

Finally, for sprite d a slightly different approach was taken to calculate its y position. In the design
for the layout the sprite is sitting at the very bottom of the stage. Thus, the y value for sprite d is
calculated by subtracting the height of the actual sprite from the full stage height.

HANDLING DEVICE ORIENTATION

Next take a look at how you can receive notifications for an update in device orientation. These
events are triggered when a user manually changes the orientation of a device, between landscape
and portrait.

In the AIR Application Descriptor file, one of the settings found in the <initialwindow> node is
the <autoorients> property, as shown in the following snippet:

<autoOrients>true</autoOrients>

This tells the mobile application whether to allow auto orientation. Here it is set to true, and so the
application’s content can rotate. When this is set to false, the application will be prevented from
rotating its content, and, in turn, will stay in its initial aspect ratio. So, if an application is initialized
with the stage width set less than the stage height, that is, portrait, it will remain like this even when
a user rotates the device.

When the <autoorient> setting is set to true, the user can rotate a device, which will have an
impact on the application’s design. Retrieving the device’s width and height, you have the best
option for laying out items precisely, especially when the stage resizes.

Some applications may also need to know what the device’s screen orientation is to determine how
the application needs to lay out the particular assets it contains.

Two classes must be used to detect device orientation changes: StageOrientation and
StageOrientationEvent.

152 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

Using the StageOrientation Class

The stageOrientation class has several constants that contain possible values that describe a
device’s orientation. The following list details the possible options:

» StageOrientation.DEFAULT: The default stage orientation.

» StageOrientation.ROTATED_LEFT: The stage has been rotated left.

» StageOrientation.ROTATED_RIGHT: The stage has been rotated right.

> StageOrientation.UNKNOWN: An unknown stage orientation.

> StageOrientation.UPSIDE_DOWN: The stage has been turned upside down.

The device’s orientation can be retrieved from the stage object’s read-only property
deviceOrientation, and when an application launches, this will be set to stageOrientation
.DEFAULT.

Using the StageOrientationEvent Class
The stageOrientationEvent class has two event types:
» StageOrientationEvent.ORIENTATION_ CHANGE: The stage orientation has changed.

» StageOrientationEVENT.ORIENTATION_ CHANGING: The stage is in the process of changing
orientation.

To detect when the deviceorientation property is updated, you need to register an event listener
for the stageOrientationEvent .ORTENTATION_CHANGE event type on the stage Object.

Handling Device Orientation Changes

The following steps will guide you through how to display device orientation changes in the Sprite
Layout App.

1. Above the constructor for SpriteLayoutapp.as, add a new private variable called
spriteOrientation of TextField type (Listing 5-14).

J LISTING 5-14: Adding a TextField component to display the stage orientation in

SpriteLayoutApp.as

Available for

download on . . .
Wrox.com Private static const BLUE:int = 0x3399FF;

private static const GREEN:int = 0x99CC00;
private static const YELLOW:int = 0xXFFCCO0O0;
private static const RED:int = 0xFF3333;

private var a:Sprite;
private var b:Sprite;
private var c:Sprite;
private var d:Sprite;

private var stageOrientation:TextField;

Handling Device Orientation

153

2. Under drawsprites () add a protected function called addTxt (), to initialize stageOrientation.

Assign it a new TextFormat and then add it to the stage (Listing 5-15).

\) LISTING 5-15: Adding the addTxt() method in SpriteLayoutApp.as

Available for protected function drawSprites():void
download on {

Wrox.com
drawRectangle("a", 1, 1, BLUE);
drawRectangle("b", 1, 1, GREEN);
drawRectangle("c", 1, 1, RED);
drawRectangle("d", 1, 1, YELLOW) ;

protected function addTxt():void

{
var tF:TextFormat = new TextFormat();
stageOrientation = new TextField():;
stageOrientation.setTextFormat (tF);
stageOrientation.text = "";
addChild(stageOrientation);

}

3. Inthe constructor for SpriteLayoutapp.as following the drawSprites (), make a call to

addTrxt () (Listing 5-16).

\, LISTING 5-16: Calling addTxt() via the SpriteLayoutApp class constructor in SpriteLayoutApp.as

Available for public function SpriteLayoutApp ()
download on (
Wrox.com

super () ;

stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.addEventListener (Event .RESIZE, onResize);

drawSprites () ;
addTxt () ;

4. Nextadd an event listener for the stageorientationEvent .ORIENTATION CHANGE event
type, and assign it to a new private function called onorientationChange (). Then in
onOrientationChange(), aSSign the StageOrientationEvent object’s deviceOrientation

property to the text property on stageOrientation (Listing 5-17).

154 |

CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

Y

Available for
download on
Wrox.com

LISTING 5-17: Assigning StageOrientationEvent.ORIENTATION_CHANGE to the event handler
function onOrientationChange() in SpriteLayoutApp.as

public function SpriteLayoutApp ()
{

super () ;

stage.align = StageAlign.TOP_LEFT;

stage.scaleMode = StageScaleMode.NO_SCALE;

stage.addEventListener (Event .RESIZE,

onResize) ;

stage.addEventListener(StageOrientationEvent.ORIENTATION CHANGE,
onOrientationChange);

drawSprites() ;
addTxt () ;
}

private function onOrientationChange(e:StageOrientationEvent):void

{

stageOrientation.text = e.target.deviceOrientation;

}

Run the project using either a device or
desktop run configuration. When the Sprite
Layout App is initialized you see each of the
sprites arranged as before.

When you use a device run configuration,
rotate the device and you will see the
deviceOrientation property displayed.

When you use a desktop run configuration
you can use the adl menu to simulate rotating
the device physically. Select Device = Rotate
Left to rotate the device to the left, or select
Device = Rotate Right to rotate the device to
the right.

The result of rotating the device right is
shown in Figure 5-9.

FIGURE 5-9: The deviceOrientation property being
displayed in the landscape layout design for Sprite
Layout App

Usl

NG LAYOUTS IN FLEX

As mentioned in Chapter 1, the Flex framework provides a lot of functionality when it comes to
laying out components and resizing elements in an application.

In this section you’ll take a look at applying the design of the layout in portrait and landscape using
elements of the Flex framework, and create a second project in Flash Builder called Sprite Layout
Flex App.

Using Layouts in Flex | 155

The layout created in the Sprite Layout App project can quite easily be replicated using a
combination of the MXML declarations, containers, and components, including <s:layout>,
<s:VerticallLayout>, <s:HorizontalLayout>, <s:HGroup>, <s:VGroup>, and <s:Group>.

Aligning Items in Group Containers

As mentioned earlier, each of the group containers <s:Group>, <s:HGroup>, and <s:VGroup> allows
nesting of visual assets within an application and effectively designating the flow of items.

Nesting items in a <s:HGroup> container allows items to be aligned horizontally, and in the
following snippet you will see two sprites, represented by the <s:Graphic> tags, horizontally
aligned:

<s:HGroup>

<s:Graphic>
<s:Rect width="150" height="150">

<s:fill>
<s:solidColor color="0x3399FF">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect width="150" height="150">

<s:fill>
<s:solidColor color="0x99CC00">
</s:fill>

</s:Rect>
</s:Graphic>

</s:HGroup>

Each sprite is rendered with a width and height of 150 pixels. The <s:Graphic> element nests a
series of elements. The first <s:Rect> draws a rectangle and is the equivalent of the Graphics
.drawRectangle () method used for rendering the sprites earlier. Within the <s:Rect> a number of
style properties can be defined; here the <s: £i11> declaration nests a <s:solidColor>, the color
of the sprite.

When nesting items in a <s:VGroup> container you can place items vertically, and in the following
snippet you’ll see an example of the same two sprites, each with a different color assigned, aligned
vertically:

<s:VGroup>

<s:Graphic>
<s:Rect width="150" height="150">
<s:fill>
<s:solidColor color="0x3399FF">
</s:fill>

156 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect width="150" height="150">

<s:fill>
<s:solidColor color="0x99CC00">
</s:fill>

</s:Rect>
</s:Graphic>

</s:VGroup>

A number of attributes in the <s:HGroup> and <s:VGroup> containers can affect the layout
rendering, including:

» direction: Sets the directional flow of items in a container
gap: Assigns spacing between each item
paddingBottom: Assigns padding to the bottom of the container
paddingLeft: Assigns padding to the left of the container
paddingRight: Assigns padding to the right of the container

paddingTop: Assigns padding to the top of the container

Y Y Y VY Y Y

verticalAlign: Vertically aligns items within the container
> horizontalAlign: Horizontally aligns items within the container.

Setting the direction property allows you to define how the items in the containers should be
rendered. Specifying 1tr means that the container will render items from left to right; specifying
rt1 means items will be rendered from right to left. The following snippet demonstrates reversing
the default flow of items in the <s:HGroup> container, which by default renders items from left

to right:

<s:HGroup direction="rtl">

<s:Graphic>
<s:Rect width="150" height="150">

<g:fill>
<s:solidColor color="0x3399FF">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect width="150" height="150">
<g:fill>
<s:solidColor color="0x99CC00">
</s:fill>

Using Layouts in Flex | 157

</s:Rect>
</s:Graphic>

</s:HGroup>

Setting the gap property on the container allows you to set the spacing between each item. This is a
pixel measurement. The gap property represents the vertical gap set between items in a <s: VGroup>
container, and the horizontal gap for items in a <s : HGroup> container.

In the following snippet the vertical gap for <s: vVGroup> is set to 10 pixels:

<s:VGroup gap="10">

<s:Graphic>
<s:Rect width="150" height="150">

<s:fill>
<s:solidColor color="0x3399FF">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect width="150" height="150">

<s:fill>
<s:solidColor color="0x99CC00">
</s:fill>

</s:Rect>
</s:Graphic>

</s:VGroup>

Applying the <s:HGroup> and <s:VGroup> Containers in the Portrait
Layout of Sprite Layout App

Returning to the Sprite Layout App, remember that both sprites a and b in the Portrait view need
to be horizontally aligned, and so they can be placed in a <s :HGroup> container, as shown in the

following snippet:

<s:HGroup gap="10">

<s:Graphic>
<s:Rect id="a" width="150" height="150">

<s:fill>
<s:solidColor color="0x3399FF">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect id="b" width="150" height="150">
<s:fill>
<s:solidColor color="0x99CC00">

158 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

</s:fill>
</s:Rect>
</s:Graphic>

</s:HGroup>

Because sprite ¢ needs to be placed underneath sprites a and b, these items can all be placed in
a <s:VGroup> container, nesting the <s:HGroup> containing sprites a and b, as shown in the
following snippet:

<s:VGroup gap="10">
<s:HGroup gap="10">

<s:Graphic>
<g:Rect id="a" width="150" height="150">

<g:fill>
<s:solidColor color="0x3399FF">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect id="b" width="150" height="150">

<s:fill>
<s:solidColor color="0x99CC00">
</s:fill>

</s:Rect>
</s:Graphic>

</s:HGroup>

<s:Graphic>
<s:Rect id="c" width="150" height="150">

<g:fill>
<s:solidColor color="0xFFCCO00">
</s:fill>

</s:Rect>
</s:Graphic>

</s:VGroup>

Both sprites ¢ and d also are vertically aligned in the Portrait view, and so they can be aligned in the
same <s:VGroup> container:

<s:VGroup gap="10">
<s:HGroup gap="10">

<s:Graphic>
<s:Rect id="a" width="150" height="150">
<s:fill>
<s:solidColor color="0x3399FF">
</s:fill>

Using Layouts in Flex | 159

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect id="b" width="150" height="150">

<g:fill>
<s:solidColor color="0x99CC00">
</s:fill>

</s:Rect>
</s:Graphic>

</s:HGroup>

<s:Graphic>
<s:Rect id="c" width="150" height="150">

<s:fill>
<s:solidColor color="0xFFCCO00">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect id="d" width="150" height="150">

<g:fill>
<g:solidColor color="0xFF3333">
</s:fill>

</s:Rect>
</s:Graphic>

</s:VGroup>

The main problem with nesting the items in <s:HGroup> and <s:VGroup> containers is that if and
when the layout needs to change, whether it is through resizing or changes in device orientation,
each of the items will be aligned incorrectly. When using the group containers there’s no easy way to
change the alignment at run time.

For instance sprites a and b, which are nested in the <s:HGroup>, will not be vertically aligned when
the orientation changes to the Landscape view. Also, sprite ¢ will remain nested in the <s:vGroup>
and so will not be horizontally aligned in the Landscape view. For this you will need to utilize the
<s:layout> declaration.

Using Layout Declarations within Containers

An alternative approach to laying out items in a view is to use <s:Group> containers and specify a
<s:layout> declaration.

The following snippet demonstrates how you can use the <s:HorizontalLayout> declaration to
specify that elements should be arranged horizontally, without using a <s : HGroup> container:

<s:Group>

<g:layout>
<s:HorizontalLayout/>

160 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

</s:layout>

<s:Graphic>
<s:Rect width="150" height="150">

<s:fill>
<s:solidColor color="0x3399FF">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect width="150" height="150">

<s:fill>
<s:solidColor color="0x99CC00">
</s:fill>

</s:Rect>
</s:Graphic>

</s:Group>

In the following snippet, the <s:VerticalLayout> declaration is being applied to a <s: Group>
container:

<s:Group>

<s:layout>
<s:VerticalLayout/>
</s:layout>

<s:Graphic>
<s:Rect width="150" height="150">

<s:fill>
<s:solidColor color="0x3399FF">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect width="150" height="150">

<g:fill>
<s:solidColor color="0x99CC00">
</s:fill>

</s:Rect>
</s:Graphic>

</s:Group>

Using States to Change the Layout of a Container at Run Time

Different layouts can be applied in applications with the help of states, and using the <s:State>
declaration. Consider the portrait and Landscape views of Sprite Layout App. To define these as
individual states you specify them in the <fx:Declarations> block of a view, as shown in the
following snippet:

Using Layouts in Flex | 161

<fx:Declarations>
<s:State name="portrait">
<gs:State name="landscape">
</fx:Declarations>

In the context of layouts, the <s: state> declaration allows you to apply a state for any particular
<s:layout> declaration in a view. In the following snippet the items nested in the <s:Group>
container will be vertically aligned when the portrait state is active in the view, but horizontally
aligned when the landscape state is active:

<s:Group>

<s:layout.portrait>
<s:VerticalLayout/>
</s:layout.portrait>

<s:layout.landscape>
<s:HorizontalLayout/>
</s:layout.landscape>

<s:Graphic>
<s:Rect width="150" height="150">

<s:fill>
<s:solidColor color="0x3399FF">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect width="150" height="150">

<g:fill>
<s:solidColor color="0x99CC00">
</s:fill>

</s:Rect>
</s:Graphic>

</s:Group>

Notice here that in order to specify the state in which a layout should be applied, the state
name, preceded by a period (.), is added after the 1ayout. Thus, referring to the preceding code
snippet, <s:layout.portrait> allows rendering the <s:VerticalLayout> container in the
pOHIMtSUHe,and<s:layout.landscape>aHowmlfndeﬂngthe<s:HorizontalLayout>in
the landscape state.

To set the state of the application you need to set the currentState property of the view. In the
following snippet you see that the 1andscape state is set for the application:

currentState = "landscape";

In the next section you’ll take a look at creating the Sprite Layout Flex App, which demonstrates the
use of states in this context.

162 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

Using Group Containers to Create the Sprite Layout Flex App

The following steps will guide you through re-creating the Sprite Layout App, this time using Flex
and the Flash Debug Perspective. First take a look at utilizing breakpoints in the Source view:

1. In Flash Builder create a new Flex Mobile project and call it SpriteLayoutFlexapp (Figure 5-10).

anmo New Flex Mobile Project
Create a Flex Mobile AIR Project
Choose a name and location for your project

Mabile Settings ~ Server Settings ~ Build Paths

Project name: | SpriteLayoutFlexApp
Project location

E Use default location

Folder: /Users/anderson/Documents/Adobe Flash Builder 4.5 Browse..

Flex SDK version
() Use default SDK (currently "Flex 4.5.1") Configure Flex SDKs...

() Use a specific SDK: | Flex 4.5.1 =
Flex 4.5.1 requires Adobe AIR 2.6.

@ <sack) (Gomexem) (cancel) (Finish

FIGURE 5-10: Defining the Sprite Layout Flex App project in
Flash Builder

2. In SpritelayoutFlexAppHome .mxml, set the actionBarVisible property of the view to false
and the tabBarvVisible property to false. Then assign the onCreationComplete () stub to the
creationComplete property. Also define each of the colors for the sprites (Listing 5-18).

\, LISTING 5-18: Setting the actionBarVisible and tabBarVisible properties, defining variables for

the colors in SpriteLayoutFlexAppHome.mxml

Available for
download on . .
V\‘ﬂnx.cnm <?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
actionBarVisible="false"
tabBarVisible="false"

Using Layouts in Flex

163

Y

Available for
download on
Wrox.com

4.

)

Available for
download on
Wrox.com

creationComplete="onCreationComplete ()"
title="Home">

<fx:Script>
<! [CDATA [

private static const BLUE:int = 0x3399FF;

private static const GREEN:int = 0x99CC00;

private static const YELLOW:int = O0xFFCCO00;

private static const RED:int = 0xFF3333;

protected function onCreationComplete():void {}
11>

</fx:Script>
</s:View>

In onCreationComplete () add an event listener for the Event . ADDED_TO_STAGE event,
assigning onAddedToStage () as the event handler. Then in onaddedToStage () assign the
StageOrientationEvent.ORIENTATION_CHANGE event to the stage, with the method stub
onOrientationChange () as the event handler (Listing 5-19).

LISTING 5-19: Adding event handlers for the ADDED_TO_STAGE and the
ORIENTATION_CHANGE events in SpriteLayoutFlexAppHome.mxml

protected function onCreationComplete():void
{
this.addEventListener (Event .ADDED TO_STAGE, onAddedToStage);

private function onAddedToStage(e:Event) :void
{
e.target.stage.addEventListener(StageOrientationEvent.ORIENTATION CHANGE,
onOrientationChange);

private function onOrientationChange (e:StageOrientationEvent) :void {}
Following the closing <fx:Script> tag, add a <s:Group> container with the two <s:Rect>
sprites for a and b (Listing 5-20).
LISTING 5-20: Defining <s:Rect> a and b components and adding them to a <s: Group>
container in SpriteLayoutFlexAppHome.mxml

<fx:Script>
<! [CDATA[

continues

164 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-20 (continued)
private static const BLUE:int = 0x3399FF;
private static const GREEN:int = 0x99CC00;
private static const YELLOW:int = OxFFCCO00;
private static const RED:int = 0xFF3333;
private function onCreationComplete():void {}

11>
</fx:Script>

<s:Group>

<s:Graphic>
<s:Rect id="a">
<s:£ill>
<s:solidColor color="{BLUE}">
</s:£ill>
</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect id="b">
<s:£fill>
<s:solidColor color="{GREEN}">
</s:£ill>
</s:Rect>
</s:Graphic>

</s:Group>

5. Add the <s:Rect> for sprite ¢ to the view and nest it within a <s:Group> container (Listing 5-21).

\, LISTING 5-21: Defining <s:Rect> c and adding it to a <s:Group> container in

SpriteLaypoutFlexAppHome.mxml

Available for
download on
Wrox.com <sS:Group>

<s:Group>

<s:Graphic>
<s:Rect id="a">

<s:fill>
<gs:solidColor color="{BLUE}">
</s:fill>

</s:Rect>

Using Layouts in Flex | 165

</s:Graphic>

<s:Graphic>
<s:Rect id="b">

<s:fill>
<s:solidColor color="{GREEN}">
</s:fill>

</s:Rect>
</s:Graphic>

</s:Group>

<s:Graphic>
<s:Rect id="c">
<s:£il1l>
<s:solidColor color="{YELLOW}">
</s:£il11>
</s:Rect>
</s:Graphic>

</s:Group>

6. Add the <s:Rect> for sprite d to the view and nest it within a <s:Group> container (Listing 5-22).

\, LISTING 5-22: Defining <s:Rect> d and adding it to a <s:Group> container in

SpriteLaypoutFlexAppHome.mxml

Available for
download on
Wrox.com <S:Group>

<s:Group>
<s:Group>

<s:Graphic>
<s:Rect id="a">

<s:fill>
<s:solidColor color="{BLUE}">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect id="b">

<s:fill>
<s:solidColor color="{GREEN}">
</s:fill>

</s:Rect>
</s:Graphic>

</s:Group>

<s:Graphic>
continues

166 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-22 (continued)

<s:Rect id="c">

<s:fill>
<s:solidColor color="{YELLOW}">
</s:fill>

</s:Rect>
</s:Graphic>

</s:Group>

<s:Graphic>
<s:Rect id="4">
<s:£ill>
<s:solidColor color="{RED}">
</s:£ill>
</s:Rect>
</s:Graphic>

</s:Group>

7. Underneath each opening <s:Group> tag, add a <s:layout> declaration with a nesting
<s:VerticalLyout>. Set the gap property on the <s:VerticalLayout> to 0 (Listing 5-23).

\, LISTING 5-23: Adding <s:layout> declarations to the view in SpriteLayoutFlexAppHome.mxml

Available for <s:Group>
download on
Wrox.com

<s:layout>

<s:VerticalLayout gap="0"/>
</s:layout>

<s:Group>
<s:layout>
<s:VerticalLayout gap="0"/>
</s:layout>
<s:Group>
<s:layout>
<s:VerticalLayout gap="0"/>

</s:layout>

<s:Graphic>
<s:Rect id="a">

<s:fill>
<s:solidColor color="{BLUE}">
</s:fill>

</s:Rect>

Using Layouts in Flex | 167

</s:Graphic>

<s:Graphic>
<s:Rect id="b">

<g:fill>
<s:solidColor color="{GREEN}">
</s:fill>

</s:Rect>
</s:Graphic>

</s:Group>

<s:Graphic>
<s:Rect id="c">

<s:fill>
<s:solidColor color="{YELLOW}">
</s:fill>

</s:Rect>
</s:Graphic>

</s:Group>

<s:Graphic>
<s:Rect id="d">

<s:fill>
<g:solidColor color="{RED}">
</s:fill>

</s:Rect>
</s:Graphic>

</s:Group>

8. Next add two <s:State> declarations to the view within the <fx:Declarations> blocks called
portrait and landscape (Listing 5-24).

\’ LISTING 5-24: Defining the portrait and landscape states for the view in

SpriteLayoutFlexAppHome.mxml

Available for
download on , .
Wrox.com <?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
actionBarVisible="false"
tabBarVisible="false"
creationComplete="onCreationComplete ()"
title="Home">

<fx:Declarations>
<s:State name="portrait"/>
<s:State name="landscape"/>
</fx:Declarations>

168 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

9. For each of the <s:layout> definitions specify the portrait state, updating the MXML tags to
<s:layout.landscape> (Listing 5-25).

\, LISTING 5-25: Updating the <s:layout> declaration in SpriteLayoutFlexAppHome.mxml

Available for <s:Group>
download on
Wrox.com
<s:layout.portrait>

<s:VerticalLayout gap="0"/>
</s:layout.portrait>

<s:Group>
<s:layout.portrait>
<s:VerticalLayout gap="0"/>
</s:layout.portrait>
<s:Group>
<s:layout.portrait>
<s:VerticalLayout gap="0"/>

</s:layout.portrait>

<s:Graphic>
<s:Rect id="a">

<g:fill>
<s:so0lidColor color="{BLUE}">
</s:fill>

</s:Rect>
</s:Graphic>

10. Copy the sizecomponents () function that was completed in Listing 5-12, the earlier project,
into SpriteLayoutFlexAppHome.mxml. You will need to remove each of the getSprite () calls
(Listing 5-26).

\’ LISTING 5-26: Adding the sizeComponents() method in SpriteLayoutFlexAppHome.mxml

svmﬁbﬁlm protected function sizeComponents (stageWidth:int, stageHeight:int):void
ownload on
Wrox.com)))

if (stageWidth < stageHeight)

{
a.width = stageWidth/2;
a.height = 1/3 * stageHeight;

b.width = stageWidth/2;
b.height = 1/3 * stageHeight;

c.width = stageWidth;

Using Layouts in Flex

169

1.

)

Available for
download on
Wrox.com

12.

c.height = stageHeight - (1/3 * stageHeight) - (1/6 * stageHeight) ;

d.width = stageWidth;
d.height = 1/6 * stageHeight;

} else if(stageWidth > stageHeight) {

a.width = stageWidth/2;
a.height = stageHeight/2 - (1/6 * stageHeight)/2;

b.width = stageWidth/2;
b.height = stageHeight/2 - (1/6 * stageHeight)/2;

c.width = stageWidth/2;
c.height = stageHeight - (1/6 * stageHeight) ;

d.width = stageWidth;
d.height = 1/6 * stageHeight;

IntheonAddedToStage()andonOrientationChange()nKthdglnakeacaﬂtosizeComponents(h

supplying the systemManager . screen.width and systemManager.screen.height properties as

arguments (Listing 5-27).

LISTING 5-27: Calling the sizeComponents() method from within onAddedToStage()
and onOrientationChange() in SpriteLayoutFlexAppHome.mxml

private function onAddedToStage (e:Event) :void
{
e.target.stage.addEventListener (StageOrientationEvent.ORIENTATION_CHANGE,
onOrientationChange) ;

sizeComponents (systemManager.screen.width, systemManager.screen.height);

private function onOrientationChange (e:StageOrientationEvent) :void
{

sizeComponents (systemManager.screen.width, systemManager.screen.height);
}

Next add three more <s:1layout> declarations to the view for when the application state
changes to landscape. Underneath each of the existing <s:layout.portrait> declarations,
add a <s:layout.landscape> declaration. In the outermost <s:Group> container, the
layout should be defined as a <s:VerticalLayout>. The other two declarations should be
<s:HorizontalLayout>. Again set the gap property to 0 (Listing 5-28).

170 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

@ LISTING 5-28: Adding <s:layout.landscape> layout declarations in

SpriteLayoutFlexAppHome.mxml

Available for
download on
Wrox.com <S:Group>

<s:layout.portrait>
<s:VerticalLayout gap="0"/>
</s:layout.portrait>

<s:layout.landscape>
<s:VerticalLayout gap="0"/>
</s:layout.landscape>

<s:Group>

<s:layout.portrait>
<s:VerticalLayout gap="0"/>
</s:layout.portrait>

<s:layout.landscape>
<s:HorizontalLayout gap="0"/>
</s:layout.landscape>

<s:Group>

<s:layout.portrait>
<s:VerticalLayout gap="0"/>
</s:layout.portrait>

<s:layout.landscape>
<s:HorizontalLayout gap="0"/>
</s:layout.landscape>

<s:Graphic>
<s:Rect id="a">

<g:fill>
<s:solidColor color="{BLUE}">
</s:fill>

</s:Rect>
</s:Graphic>

<s:Graphic>
<s:Rect id="b">

<g:fill>
<g:solidColor color="{GREEN}">
</s:fill>

</s:Rect>
</s:Graphic>

</s:Group>

Using Layouts in Flex | 171

13. Last, set the currentstate property of the view to portrait when the stagewidth is less than
the stageHeight, and set it to landscape when the stagewidth is more than the stageHeight
(Listing 5-29).

\) LISTING 5-29: Setting the currentState property on the view via the sizeComponents() method
in SpriteLayoutFlexAppHome.mxml

Available for
download on

Wrox.com Protected function sizeComponents (stageWidth:int, stageHeight:int):void

{

}

if (stagewidth < stageHeight)

{

currentState = "portrait";

d.
d.

.width = stageWidth/2;
.height = 1/3 * stageHeight;

.width = stagewidth/2;
.height = 1/3 * stageHeight;

.width = stagewidth;
.height = stageHeight - (1/3 * stageHeight) - (1/6 * stageHeight);

width = stagewidth;
height = 1/6 * stageHeight;

} else if(stageWidth > stageHeight) {

currentState = "landscape";

a.width = stageWidth/2;

a.height = stageHeight/2 - (1/6 * stageHeight)/2;
b.width = stageWidth/2;

b.height = stageHeight/2 - (1/6 * stageHeight)/2;

.width = stagewidth/2;
.height = stageHeight - (1/6 * stageHeight);

.width = stagewidth;
.height = 1/6 * stageHeight;

14. Run the Sprite Layout Flex App using the desktop run configuration.

You should see the Portrait view (Figure 5-11) and Landscape view (Figure 5-12) exactly as
defined in the design of the application.

172 | CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

FIGURE 5-11: Sprites a, b, ¢, and FIGURE 5-12: Sprites a, b, ¢, and d in the landscape
d in the portrait layout for Sprite layout for Sprite Layout Flex App
Layout Flex App

The main benefit to using the state approach with the <s:1ayout> declaration and the <s:Group>
containers is that less ActionScript code is required to make the changes to the arrangement of items.

You can also visually see what items should be visible and in which state when you view the States
view in the Source view of the Flash Perspective in Flash Builder. In Figure 5-13 you will see the
default Source view, which displays the code for all states.

Flash Beilder File Edt Source Muvigabe Search Project Data Run Wisdow Help F W f W3 4 Wed 2058 W Anderson O
[YL o o M I I == SF-ue—
e A T ot e ot S : s
B Sl I D | Semsis: (Mre 3

T

enducapen
dcallmyout pap"¥ /o
wrashopt. ladscenes

i

AEEFITFILEAZLERT

o

alaymt. pertraits
aicVertiesllayst gast" fa
i bt et

alayst. Lascucapes
e o

st ot Dardicapen

antrnepn

anclayant . anducoser
4T icelLarest gog=t" fn
/¥ilaveet, Lentrcapes

e lyat partreits
e Horimsetalligout po="8" o
¥ layeen. partraite

(ot 0 @[N[E] 70wt @ oo €
- G iemtare A hksciors. o ambaies e Siaplny a s e,
et

| st vt B Coara 7 G oo S, ~ eEemecof

FIGURE 5-13: Displaying all states in the Source view of Sprite Layout Flex App

Using Layouts in Flex | 173

In Figure 5-14 you will see the Portrait view source, which displays only the MXML that is
applicable to the Portrait view.

Flash Bwilder File Edit Source Wuwigabe Search Project Dala Run Window Heln F T Rt 3w Wed 2058 W Anderson O
I:£; Flash as
r1e] O R [[e B B e - 1 gprwis oy liruas
2 Package Kspian 31 ¥ ES T "0 B el avsatiiadon =]
i bemiprid [b | e (e)
e [ERpT—
i et achagel " Nt portrai
] . wavarticallayout pop ¥
si-» arat iyt postenit
e et
[
e e
e,
- skroven
Ly purtraits
saVekieslLaysot gay
et
T H]
I e 1 BB N[BT O e | Boniens D et Mo | Bl Ecani 11 bogerss E:1-=0
* G st uAsctions Nttt it o
P R
0 M
b
o
o
+ praskich : Cashic
W eer LR

FIGURE 5-14: Displaying the portrait state in the Source view of Sprite Layout Flex App

Lastly in Figure 5-15 you will see the Landscape Source view, which displays only the MXML that
is applicable to the application when the landscape state is active.

Flash Bwilder File Edit Source Wuwigabe Search Project Data Run Window Heln F T Rt Wed 2058 W Anderson O
I:£; Flash as

Te % O R [[e B B e - 1 ooy [liruas
et Package Lapian 31 ¥ EET"0 W gL avsatiiaton =]
i bemiprid [t 5 e | Moot boeaes)
g [ERp—
B vt packagel "
;.wnm-m .
Bt st dpntiers el
= e smateados- a0 s NET——
e v - Mot pop- b
niing whatheyout. londse
- -

b
/¥ilaveet, Lentrcapes

EF riee 2 o @ 8| T T O restiems | o Donrteices K monest moiter | B Covane TS5 npersa 2-r+=0
Gl ushspiors. T devedied b Seigli o P e

P R

=8 ket

P

-

i lm

peasiich - Cangive

b vert o

FIGURE 5-15: Displaying the landscape state in the Source view of Sprite Layout
Flex App

All in all, states provide a neat feature in the Flash Builder IDE to allow you to develop for multiple
screen sizes without the need to provide excessive code.

174

| CHAPTERS5 DEVELOPING FOR MULTIPLE SCREEN SIZES

SUMMARY

In this chapter you explored a number of topics relating to how you can develop for multiple screen
sizes using both ActionScript and Flex.

First you took a look at understanding the differences between screen size and screen resolution,
and how the screen DPI can affect how assets are drawn to the screen.

You also examined aspects of the stage and in particular how content can be affected by changes in
device orientation and stage resizing.

Finally the chapter covered how to combine states with layouts to arrange sprites based on the width
and height of the screen using the Flex framework.

In the next chapter you take a look at using Flash Builder to debug applications. Before you move on
to the next chapter, try the following exercises, which are designed to help further your knowledge
of debugging applications.

EXERCISES

1.

2.

List the scale factors for a Flex mobile application running on each of the devices found in the
Flash Builder preferences, using applicationDPI of 240.

In an ActionScript Mobile Project, create a new layout for a project and implement it using sprites.

Replicate your design using a Flex Mobile Project, substituting each of the sprites in your layout
for a Flex-based MXML component.

Use the @media rule to style one of the example applications found in the later chapters.

Summary | 175

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

Using the stage

Utilizing
Application DPI
Setting styles

based on
Application DPI

Utilizing
capabilities

Detecting stage
resize

Using application
states

Defining states on
layouts

KEY CONCEPT

Use StageScaleMode.NO_SCALE and StageAlign.TOP_LEFT to define the
scale mode and alignment of content in the mobile application.

Use Stage.stageWidth and Stage.stageHeight to retrieve the width and
height of the device’s screen in pixels.

Use the applicationDPI property to automatically scale an application,
using one of three DPI Classification constants: 160, 240, or 320.

Use the @media rule, application-dpi, and os-platform properties to set
styles based on a device’s DPI.

Use AND for Android, 10s for Apple iOS, and QNX for BlackBerry PlayBook,
when styling against mobile platforms.

Use Capabilities.ScreenDPI to retrieve the number of dots perinch
available across multiple devices.

Use StateOrientationEvent .CHANGE to detect when the stage has
resized.

Define states for a view using the <s:State name="STATE_NAME"> within
the <fx:Declarations>, where STATE_NAME is the name of the state being
defined.

Use <s:layout .STATE_NAME> to define the state of a <s:layout>
declaration.

Debugging Applications

WHAT YOU WILL LEARN IN THIS CHAPTER:

Setting breakpoints in source code and using the Breakpoints panel
Using the Flash Debug Perspective in Flash Builder

Utilizing the Variables panel

Global error handling

Handling uncaught errors

Using Try...Catch statements

Y Y Y VY VY VY

Stepping through source code

In this chapter you’ll take a closer look at using Flash Builder to debug applications using the
Flash Debug Perspective.

Flash Builder offers debugging capabilities that allow you to find bugs within your application.
The Debug panel allows you to stop and start the mobile application to find problems, or to
examine or substitute values for variables.

This chapter covers example code that intentionally introduces a bug from the outset. You
then go through a series of tools and techniques to identify and fix the issue using the Debug
Perspective in Flash Builder.

SETTING BREAKPOINTS

In this section you create the Debugging App project in Flash Builder and take a look at
setting breakpoints for specific lines in source code.

178 | CHAPTER6 DEBUGGING APPLICATIONS

Setting Breakpoints

The following steps will guide you through using the Flash Debug Perspective. First take a look at
utilizing breakpoints in the Source view.

1. In Flash Builder create a new Flex Mobile project and call it Debugging App (Figure 6-1).

ann New Flex Mobile Project
Create a Flex Mobile AIR Project
Choose a name and location for your project E@
Mobile Settings ~ Server Settings ~ Build Paths

Project name: DebuggingApp
Project location

™ Use default location

Folder: /Users/anderson/Documents/Adobe Flash Builder 4.5 Browse...

Flex SDK version

® Use default SDK (currently "Flex 4.5.1" Configure Flex SDKs...

() Use a specific SDK: Flex 4.5.1
Flex 4.5.1 requires Adobe AIR 2.6.

® < Back Next > Cancel Finish

FIGURE 6-1: New Flex Mobile Project panel for the
Debugging App in Flash Builder

2. In DebuggingAppHome.mxml, set the title property of the view to Debugging App. Add a
<s:VGroup>ConnﬁnerdelthepaddingLeft,paddingRight,andpaddingTopImOpmiksset
to 20. Within the container add a <s:Label> and <s:Button> component to the view, setting the
id property on the <s:Label> component to testLabel, and the id property on the <s:Button>
component to testButton. Also set the 1abel property on the <s:Button> component to
Test onClick() (Listing 6-1).

\’ LISTING 6-1: Adding the <s:Button> and <s:Label> components to a <s:VGroup> container in

DebuggingAppHome.mxml
:i\vailallbh:I for
"}“,’:ﬂx'?gm,'i" <?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Debugging App">

<s:VGroup paddingLeft="20"
paddingRight="20"
paddingTop="20">

<s:Label id="testLabel"/>

<s:Button id="testButton"

Setting Breakpoints

179

label="Test onClick()"/>

</s:VGroup>

</s:View>

3. Next add a <fx:Script> block with a new protected function defined called onclick (). Then

assign the function to the <s:Button> component’s click property (Listing 6-2).

\, LISTING 6-2: Adding the onClick() method to the <fx:Script> declaration in

DebuggingAppHome.mxml
Available for
download on

Wrox.com <?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="1library://ns.adobe.com/flex/spark"
title="Debugging App">

<fx:Script>
<! [CDATA[

protected function onClick():void {}

11>
</fx:Script>

<s:VGroup>

<s:Label id="testLabel"/>

<s:Button id="testButton"
label="Test onClick()"
click="onClick()"/>

</s:VGroup>
</s:View>

Within onclick () add a local variable called 1abelstr of string type. Then create a for
loop that increments the variable i. Within the loop add an if statement to set labelStr to

label text is set when 1 is equal to 5. Following the for loop, assign the 1abelstr variable
to the text property on the <s:Label> component, using the String.toLowerCase () method

(Listing 6-3).

\, LISTING 6-3: Creating the for loop and if statement within the onClick() in
DebuggingAppHome.mxml

Available for

download on . \

Wrox.com Protected function onClick():void
{

var labelStr:String;
var i:int;

for(i=0; i<=4; i++)

continues

180 | CHAPTER6 DEBUGGING APPLICATIONS

LISTING 6-3 (continued)

{
if (i==5)
{
labelStr = "label text is set.";

}
}

testLabel.text = labelStr.toLowerCase();

Note here that the for loop is only incremented to 4.

5. Next add two breakpoints. Add the first breakpoint on the first line of the for loop declaration, by
double-clicking the space next to the line number. Then add the second breakpoint on the line that
assigns the text to labelstr. The breakpoints should be set on lines 14 and 18 (Figure 6-2).

F M G &3 e Fnirii M Anderson O
i~

W Flash Bulider Fie EOR Sowte Niviglle Seach Froect [ata ken Window Heip
Aann Flank i

S0 O Qe Qe[| 4 H e 0% e £1 & rum Doty Eirusn
=0 [san Page F 1 £ -p

» Nameiies = “lamel vest is ser.”
¥

tentisbel beat = DabelStr tolewerCaseCh;

FE Ot 30 @ == 0|2 wrosien | o Deesterworn | () wetwer searer | () Comote 22| 55 Frogrems. g-ri-=0
7 T v by aaw oo conachs e Sighay e

A R Wit
o seushetian (Test aaChckl]

i i Lt

FIGURE 6-2: Setting breakpoints in DebuggingAppHome.mxml

NOTE By default Flash Builder doesn’t display line numbers. If there are no

line numbers displayed in the IDE, to view them you must enable them in the
Text Editor Preferences panel. Bring up the context menu in the source view

of DebuggingAppHome.mxml, then Select = Preferences . . . to display the
Preferences panel. Finally toggle the Show Line Numbers checkbox, click Apply,
then OK.

6. Next run the project using a Debug configuration. Select Run = Debug (Figure 6-3).

Setting Breakpoints | 181

W Flash Buiider Fie EOR Sowce Navigale Seach Proec Dara LU Window Hein

» Resume
1 T T Suipand
| Terminate
ol Pachage apiorsr 3 = 0 [pege [
BlE®T ELTT Shep Over
.]:uunoln = . ag=? i Saep Raturn
4 Ham v Run 1o Line
i sk ' -*Library: fines
[i — 2 ket U She ke
B
e reacatisme et ripls G Run
- [COARAL
i peatected funceied i Profile
-, testivrid Profile History
i polile As
iy tor ficd toed Pr0file Configurmions...
] Run Histary
‘ 5] nAs
wis lasels Run Configurations.
) Debug History
tonttabel et DEBOR A3
! Drbuy Configumations..
I & Add Warchpoint...
ateripe s Toooht Brashpoint
xi¥irn paddinglefn.zer ¥ Toggle Line Breakpoint
X, -
padctingTap- 20" - ‘Waichpok
. 5Rip Al Breakpoits
B e 3 @[% e " =0 e B e
) . @ Extemnal Tools
ot
v Hvormn
ye—
(st netinon (Test sallcill

F M W3 e Fniril W Anderson O
£1 i rum ooy [irn
-0
o
£ X
L
.
»
.
»
L
%
O-r-=0
L
LT - e

FIGURE 6-3: Launching the project with a Debug configuration

7. 1In the Debug Configurations panel that opens, create a configuration for launching the application
called Debugging App on Desktop. Enter Debugging App as the project, leave src/Debuggingapp
.mxml as the application file, choose Google Android as the target platform, and select Desktop
and Google Nexus One as the launch method. Click Apply, and then click Debug to launch the
project in a debugging session (Figure 6-4).

W Flash Builder — F © M &3 e Fnir35 M Anderson c.x_

r W O fuw o, ramage, and e cenigurtoa. [

ot Packags Captorar 3T i SSSpSESS—— ‘F =0

Wovriratse ax|es e [1
e | e
e L —
N e = o]
£ | :
Wt Ao v amn Targat phatioar —
- ® = ||
O Ondarcn: ¥ Duploy e appboation i the dewes sver U3 Bran T
B o 2 oo|3 i @-ri-=0
?‘H\E:mm - et s ey) (e
) Mrmon sesliumian Testd @ —

FIGURE 6-4: Creating a Debug Configuration for the Debugging App project

182 | CHAPTER6 DEBUGGING APPLICATIONS

8. In the adl window that opens, click the Test onClick() button (Figure 6-5).

" Tet

Debugging App

Test onClick()

FIGURE 6-5: The Debugging
App project

When you click the button you will be asked to switch to the Flash Debug Perspective. This is
automatically opened when a breakpoint has been reached. Click Yes to continue (Figure 6-6).

W Flash Builder F 0N W3 e fnirii e Anderson O
Glals Flanh « Difbesg ing g sre fiwn D b gingAgpédome maml « Flash Budder » Miver Landersos Tacumesty Adsbe Flash Buider 4.5
1 00 R Qe | [% [0 B e e £1 g rum ey @imsn
i kg upiorar 3 =0
i
B
il et sackage
» Tlecuirahsstane sl i
- —— bz
- mPas ! retectsd Function aaClizC) vel
. peatectes anCiieC) veld
= i Tebalite g
Lrink; A0,
" fer CieB; Skt G04) |
A1)
T4 1 e et o Tkt Bt
» Lable = “Lamel vane i3 see” FER AR
1] i
)
Cowttabel beut = TabulStr totemerCes D by
! =)
I
T 4
s paddingLeft"20"
PO =
Paddinglu. 30"
B o 20 @[% W e T =02 proten | % Detervon | weorork e | B Como 2|55 progrm. L] m (]~ Q- r1- =0
T o o B
ey 306 Bebsgotrohe. sal - ,HAR. S84 Byes afier decompracsise
H v
A el vt
s sthian (Tes amChck
LT - e

FIGURE 6-6: Confirm Perspective Switch dialog in Flash Builder

Setting Breakpoints | 183

The debugging session will pause the current thread of the application at this stage, which is focused on
the onclick () function (Figure 6-7).

JO=NE ORI

Step Into Step Over

(> = IEX2O3=E

Hestine \ / Step Return

Mavigate Search Project Y = W § BT % Sen 1724 MrAnderson G

@ Flash Bullder e Edit Source

1 ass Detveg [@Nusr
POEH T [T U0 e vaskie 5 % ke | 5 Gemmion =kl
7 1B Détwpg s o Desaton Mcar Ao cat-sel hamc Vo

v TP /Db sgian - ey Detupginphce - oo ued s vt Detrepesphostione (1883644 11
8 am Threas Guiersiess labatir il

Lad'ad 0 S W=

T

= vres. Gutpgnphsosioms.
ol P Dt S AS0 I Seus Debpn AL - hot e

protected functios sellick()svedd
4

1 LabelStr:Shring:

: e trinks

»is o Cicki Lt 10) m
-8

») Tebelfar - “lebel text iy et

1

Restlabel tent = lobelShe iolomerCasel);

B conusie 5 o Dumrtervices | O menmark Marior | (5 Comscie | 55 Progress - o]

[58F] Bebugginglos. snf - 2,381,554 bytes after decampreasisn

W et L:1

FIGURE 6-7: The current thread of the application being displayed in the Debug panel. Note
the Step Over and other buttons.

NOTE When the application reaches a breakpoint, the application is paused,
and the current line highlighted in the source code is the line that is about to be
executed by the compiler. You can use the Step Over button in the Debug panel
(Figure 6-7) to progress through the app and move onto the next line. Some of
the other buttons shown on the panel will be referred to later in this chapter.

9. Take a look at the Variables panel in the Flash Debug panel. In the list of variable names, look for
the 1abelstr. The value of the 1abelstr should be set to null. Also look for the variable i; this
value should be set to 0 (Figure 6-8).

184 | CHAPTER6 DEBUGGING APPLICATIONS

Flash Builder Fie Edn smum e Wagare Search Proct DOara ken Windon Help F T Rt 3w Frilr3 W Anderson O
tﬂ"“ =
1 0 R Qe |6 | A SREL ~ T~ T I 1 @ rum Devey M
B Dy B I FIEX-FEAF B Bshsirts & xpreminay N E~=0
0 Duveppiios su Duskmp Bt Aspicanen] m
o= Ty R vy Mo i —— . «nlul--u_-u-uwlou-ul
T M it D] -;_u- -
e) =8 g

. Danpprohicitons |_teithonisn, ik
ull Foe DetreggmgAany - et Desepprpion - apn ard

Riwnrg Boogrpunron i ovcopagaomone mars =8
oo |
Bretectad fusction satlich{}rld

’ 1

1 o LIS S ngy

1 vor itnki
- for (il Ged; dee)

- .

L

e Tabalfir - “lobel bext {a set.*
- N
i
NewkLebat. bext = TobaliAr. ik omrCanails

D oo 11 o et D nenwers s | B consse 5 rogrens . s EE]

[0F] Dobugoingher. saf - £, 300,568 bybes ofter docempranisn

L] i [

FIGURE 6-8: The list of variables available in the current thread of the application,
displayed in the Variables panel

Note that the first breakpoint is only reached because of the conditional i f statement. One lesson to learn is
that breakpoints are reached only when the line of code that the breakpoint is set on is about to be executed.

10. The application is currently paused in this debugging session. Resume the application by clicking
the Resume button in the Debug panel or pressing FS8.

Notice that the breakpoint on the conditional for loop statement is reached again. Look at the value of
variable 1 in the Variables panel; this should now be highlighted in yellow, and the value should be set
to 1 (Figure 6-9).

Flash Builder Fie Edn smum e Navgare Searth Proect DOara ken Windon Help. F T Rt 3w Frilr33 W Anderson O
0B Qe |6 | A LR LT LI 1 @ rum Devey M
P e B I FIEX-FAF '-ﬂmﬂmﬂ‘w A ET"0
lww«mmml e —
e s Dy g (B HEF 11
o et -
o 0
-8
x B Lkl
T g
- for (il Ged; des)
- .
T 0G5
a1 U ket - “hobed sact 1 ant.*
-)
¥
Narblebl. bant - Tabalr, b oearCanel i
D cormcn 38 o Dutervens| D menwcen e | B comsre 5 Progress . s EE]
[125] Dobugorirgher.unf - £, 304,568 byben coftar cocempemirion
sy e [

FIGURE 6-9: Checking the value of variable i in the Variables panel for the first time

Setting Breakpoints

185

11. Next click the Step Over button in the Debug panel or press F6, twice, to increment through the

for loop. Check the value of variable i in the Variables panel once again. This time the value set

for i will be 2 (Figure 6-10).

@ Flash Bullder File Edt Source Mavigste Search Project Data Bun Wisdow Help T Mt 3 % 2233 MrAsderson O
g 1.5

[0 DD S A voeE G e 71 G ety [l
LT LI L R i T A @ev=0
* 8 Dubusingipe on Dyverss st Appisavea] =1 Vo

v Ll v DeDeg i opheeeaTe (LSRN

W han Thisad Chapesded] o e -

= e Byt e i ai x
B vtms Duboppaghciions_Hsabenen, i

™
Beere @ i]] =0
CE= o)

. protected fusction enClbekl):mtd

1 [

1 - tridtring;
- Tor Cily ey es)

1 1

1#{imes)
1 [
» lobelitr - “lobel text in wet.*
I
}
Reatiabal bawl = lobelite tolewerlasel);
B conive 11 of owrservees | B menwon manner [conian | 5 magress - ¥ EE =
[Ea1] Bebuggiogher vaf - 1,308 44 byter ofter decompression
e oasrt [

FIGURE 6-10: Checking the value of variable i in the Variables panel for the second time

12. Next disable the first breakpoint. Select the Breakpoints panel in the Flash Debug perspective,
which should be next to the Variables panel. Then select the breakpoint that references the

conditional 1f statement and unselect the checkbox (Figure 6-11).

@ Flash Bullder File Edt Source Mavigste Search Project Data Bun Wisdow Help T Mt @ % 2233 NrAsderson O
i 15

=l PO Qr M| E A L R -l Y -

® uon B » B[22 .a5 L T =0 mwam [SToomeom Xl w|FER| N v ""0

* 8 Debupsinghon on Dysines Msiss Mgl <t
o Y rerer—r——]
" e Thrad Chapedes)
= et Byt
= wrmq Bt gpaghreinme _tethotin, o

9 et 99 dispiay for the CaTeRs peincion.

Bawre @ : " ==l
i
» protectad fusction anCliekl):veld
1 [
' vor Tabet St dtring;
12 var sink;
w14 Tor (U85 {e=d 1e4)
1 i
19 {i=e)
1 [
» lobelitr - “lobel text in wet.*
}
Reshlabel . bewi = labelSte. tolowarCasal):
- E e @ =0

5 conore 53| o§ Dotarsarvees | B metworn wareser |) oo < mogrnss

[6m1] Bebugginghpn wnf - 2,300,104 bytos after decompresuion

Warasia s L1

FIGURE 6-11: Disabling the first breakpoint in the Breakpoints panel

186 | CHAPTER6 DEBUGGING APPLICATIONS

Once you have disabled the first breakpoint, the line in the source code that assigns the text to the variable
labelstr should still have a breakpoint in place and enabled. If you double-click one of the breakpoints
in the Breakpoints panel you should see the line of code highlighted in the Source view (Figure 6-12).

@ Flash Bullder File Edt Source Mavigste Search Project Data Bun Wisdow Help F . Wt &3 ® 2233 NrAsderson O
i 1.5

= & DR Q@& v [g m S, 21 v Dey Wl

B uen B w20 e Dh] . T ™0 oo s % bskoono I AL Gamsen BB w | BER| Y e~"0

¥ 18 Debussinshze on Dusktes Bt Aopicatasl Dl O Debwosnphaptsremund vg: 141

> DeggrpAmtenemd e 18]
e Thiad Chapedes)
et

9 et 99 display for che Camees pelecion.

=0
protectad fusction enlliek() vid
' o lmbe St String;
12 war drink;
b 14 Tor (U85 de=ti 14s)
15 i
1F{i=e)
b lobelftr - “lobel tert s wet.*
m '
}
Restlabel . bewt = Tobelite tolomerCasal):

B conuse I3 | of atrsernees | D menwer arner | (5 conase 5 mogress .

[581] Bebeggiagten uaf - 2,300,584 byton afiee decoepressicn

Warasia s L1

FIGURE 6-12: Selecting a line of code in Source view that has the breakpoint, from
within the Breakpoints panel

You can toggle the breakpoint by double-clicking it in the Breakpoints panel or via the context menu
(Figure 6-13).

@ Flash Bullder File Edit Source Navigate Search Project Data Bun Wisdow Help F . Wt &3 ® Fri22i3 MrAsderson O
= & DR Q@& v [g m e, 21 v Doy Wl

B uoen B a0 e Dh L T ™0 oo st % bsksono I A Camsen BB w | BER| Y e-"0
¥ 1 Debussinshze on Dusktes Bt Aopicatasl Dl O Debognphapter mund ne: 141

e U]
" e Thrad Chapedes)
=

D o S
5 v Dubugpiaghectiome_ismbenen, chck
™

9 et 99 display for the Camees pelecion.

=
protected theon enlliek():veid
1 [
3 o lmbe St String;
12 war drink;
b 14 Tor Cic Lot ies)
18 1#i==5)
po1r toh-tEpr - “lobel tert s set.t
] Add Task... o= Tabelite tolomerCasal):
L Add
Chcke Fise
© v Show Culck D ~0Q e naener| B conusn | 5, mragrvss - [in 2980 % @2+ — O
ut +* Show == Ll
[58 Falding » * bytes afier decospesssion
Preferences...

Warasia s L1

FIGURE 6-13: Using the context menu to toggle a breakpoint

Setting Breakpoints | 187

13. Next resume the application once more.

You will notice that the application throws an error on the line that assigns the labelstr variable
to the text property on the <s:Label> component. This error is highlighted in both the Debug and
Console panels (Figure 6-14).

@ Flash Guilder File Edt Source Mavigste Search Project Data Run Wisdow Help F Mt @ 2233 MrAsderson O
i 15

F3= PO PR M| E A L ok a2 Y -
* » R P - T LY Ty — w@c-w|zew|y[e =0
B Cvti mahss o0 Dusotes Motmd A <at o] L O DebegersAapteme mand g 14]

v B Drbuggnphoptenemund fo 18]

' i Thovad Cispantes: Typeler Urvar #1099 Camoet skt 3 raparty are
E vema T
o
3 et 98 debplay for Dhe CalTHAL BeiRCIOn.

Brnrs @ i | " =g
= o)

- protected fusction anliek():vedd

1 [

: vor et St Strimg;

12 var isint;
014 Tor (it ety ie4]

1 19ine)

[

al lobelitr - “lobel text in wet.*

. ,
. Reatiabal bawt = lobelite tolewerlasel):

3 }
15 conive 11 of onnrievees | D) menwon maner (5 conue | < mogress - [L-.pg::-c._—»--u_

FIGURE 6-14: An application error being displayed in the Debug and Console panels

14. If you take a look in the Variables panel, you should see that variable i is set to 5 (Figure 6-15).

@ Flash Quilder File Edt Source Mavigate Seach Project Data Run Window Help F © Mt & % 2233 NrAsderson O
- B0 B Qe |@ 5 7 oG, 71 @ mn Dvay WlNs
v B = m[a o e G0 T ™0 skl % wesosm 4 s a=T=g
* 8 Debpsinshos on Dysines Msiss Mgl <t hamg Vo

o o e T

W P i Thinad Chungucies: Trpetrvsr Urver #1009; Canrost Sivek 3 Grparty o mathod of 3l st svberence. © o
= i Dt i . @) n
o
™
" =g

3 : ction ’
e Tor Ciets ety o) m
15 i

1 1F(i==5)

or h
a1 tabelttr - “label taxt in set.*

" }
. ReshLabal bemt = TobelSte tolsmarCasel);
3 }
B comoe 3§ o (D meswon vecner B conise < mopras - . L-_W:-g._—».-u_
[6817 Bebgginghpp_unf - 2,000, L8 bytos after decomprear
Tyvrrer: |
Sebopy i rghppions menl 1]
i i ne S Bty nplepiteny. s
Wtasta at o

FIGURE 6-15: Checking the value of variable i in the Variables panel for the third time

188 | CHAPTER6 DEBUGGING APPLICATIONS

Note that because the conditional statement within the for loop is only set to execute when i is less
than or equal to 4, the last iteration it makes is incrementing the variable i from 4 to 5.

How It Works

You’ve reached a point where there is a minor error in the source code. Using the current logic, the
application throws an error on the line that assigns the 1abelstr variable to the text property on
the <s:Label> component.

If you remember, the for loop defined reaches only a count of 4 on the variable i and never reaches
5. Thus the line within the conditional if statement that requires i to equal 5 is never executed, and
labelStr remains as null. You cannot assign a null value to the text property of a <s:Label>
component, because it is expecting a String object.

Knowing the reason for the error at this stage shouldn’t distract you from the underlying exercise,
which is to teach you how to use breakpoints and the Debug panel.

GLOBAL ERROR HANDLING

The Flash Player 10.1 runtime API introduced a new class that handles errors at a global level. Here
you’ll take a brief look at how to handle errors using the UncaughtErrorEvent class.

The UncaughtErrorEvent class has just one event type constant, UncaughtErrorEvent
.UNCAUGHT_ERROR.

To capture errors on a global level you need to retrieve the 1oaderInfo object. This is accessible
only when the mobile application has fully loaded, and so using the Flex framework 1oaderInfo
is obtainable only when the applicationComplete event has been dispatched at the root of the
application <s:ViewNavigatorApplications>.

Once you’ve retrieved the loaderInfo object, you use the following code to capture an error:

var err:UncaughtErrorEvents = loaderInfo.uncaughtErrorEvents;
err.addEventListener (UncaughtErrorEvent .UNCAUGHT ERROR, onUncaughtError) ;

In the next section you’ll take a look at implementing the UncaughtErrorEvent in the Debugging
App project.

HANDLING UNCAUGHT ERRORS

So far you have learned how to set breakpoints, and how to read variables during the debugging
session. Now take a look at handling the error introduced to the project using Watch expressions.

Handling Uncaught Errors | 189

Handling Uncaught Errors

The following steps will take you through handling the error introduced in the Debugging App project
using the UncaughtErrorEvent class.

1. Return to the Flash Perspective in the Debugging App project. In DebuggingaApp .mxm1, add a protected
function called onappComplete(), and then assign the function to the applicationComplete
property in the attributes for opening the <s:ViewNavigatorapplication> tag (Listing 6-4).

\) LISTING 6-4: Adding the onAppComplete() method to the <fx:Script> declaration in

DebuggingApp.mxml
Available for

download on . .
Wrox.com <?xml version="1.0" encoding="utf-8"?>

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.DebuggingAppHome"
applicationComplete="onAppComplete()">

<fx:Script>
<! [CDATA[

protected function onAppComplete():void {}

11>
</fx:Script>

</s:ViewNavigatorApplication>

2. InonappComplete () add the code to handle any uncaught errors in the application, using the
loaderInfo object. Add a stub for the private function called onUncaughtError (), defining
the parameter e as an UncaughtErrorEvent type, and assign it to the UncaughtErrorEvent
.UNCAUGHT_ERROR event type via addEventListener () (Listing 6-5).

\) LISTING 6-5: Assigning the UncaughtErrorEvent. UNCAUGHT_ERROR event to the

onUncaughtError() method in DebuggingApp.mxmi
Available for

download on .)
Wrox.com Protected function onAppComplete():void

{
var err:UncaughtErrorEvents = loaderInfo.uncaughtErrorEvents;
err.addEventListener (UncaughtErrorEvent .UNCAUGHT ERROR, onUncaughtError);

private function onUncaughtError (e:UncaughtErrorEvent) :void {}

3. In onUncaughtError () assign the error message on the UncaughtErrorEvent object to the text
property on testLabel. Use the UncaughtErrorEvent .error property to determine the object
type; if the error is an Error object, assign the Error.message property to msg (Listing 6-6).

190 | CHAPTER6 DEBUGGING APPLICATIONS

\) LISTING 6-6: Retrieving the Error.message property via the onUncaughtError() method in

DebuggingApp.mxml
Available for

download on . . :
Wrox.com Private function onUncaughtError (e:UncaughtErrorEvent) :void

{

var msg:String;

if (e.error is Error)
{

msg = Error(e.error) .message;

4. Launch the DebuggingApp project, again using the Debug configuration. Set a breakpoint on the
opening if statement in onUncaughtError () on line 20, and then step through. You should see
the error message caught by the unhandled error assigned to the msg variable in the Variables panel

(Figure 6-16).

W Flsh Builder File Edf Sowte Mivigale Seawch Promct Data ken Window Heip = At &3 e Fni2233 W Anderson O
Aann Flash Debesy. Bukder 4.5 fom
OO R Qe S A . Ll 11 @ rum evey s
P o B » mHng Sl T O el % buosnt & o AE~=o

8 gt i B Mt Ay | = -
* Dtes /e -l Dueprptes- se . b ema abupnghse BIE76DAL
LT —— v oe iR vt st g el 1TSS
= vt sy - Trorte b 4k
e e Dubcpoinphon-aom

Dt -t gy AT apn i

e - —————————————————- |

B B oogiresnon B T tvegpepaon o mar =-a

T e

= Losderinfs.
0 oA 5L b Bl roel vt INCABCH] ERME, salbimgbllcrae]!

Brivate functien oeecoughtinearte:Uscaghtl reosteen) st
! stgiSteing:

ifte.srvar s Lrror)

1' wg = Drrorle eorer) mestoor:

Doomon 1 of mmnerven @ newersmssns @ cosse o, rogrens L] n |~ 8- r»T0

1=

£, 30,64 byben ofter cocempenirion

8] Dobugoinples.

i i Lt

FIGURE 6-16: Handling an uncaught error and assigning the Error.message property
to the msg variable in the Variables panel

How It Works

In this example you are simply writing the code to determine what happens should your application

throw a runtime error.

If you recall, the line within the conditional if statement, which requires i to equal 5, is never
executed, and labelStr remains null, so when it is assigned to the text property on the <s:Label>

component, the application will show an error.

The error invoked bubbles up to the root of the application, and because it doesn’t have any
listeners assigned to it to handle the error, it effectively becomes an uncaught error, dispatching the

UncaughtErrorEvent_ UNCAUGHT_ERROR event.

Try...Catch Statements |

191

In onUncaughtError () you see one type of error event being handled. This could have been an
IOErrorEvent that failed to load an image, in which case onuncaughtError () would need to be
modified to look like the following:

private function onUncaughtError (e:UncaughtErrorEvent) :void
{
var msg:String;
if(e.error is Error)
{
msg = Error(e.error) .message;
} else if(e.error is IOErrorEvent) {

msg = IOErrorEvent (e.error) .text;

}

Note here that ToErrorEvent details its error message via the TOErrorEvent . text property.

While the DebuggingApp project now demonstrates handling an uncaught error at the global level,
the line of code with the potential error should ideally be wrapped in a Try...Catch block.

Next, you’ll take a look at how you use Try...Catch statements.

TRY...CATCH STATEMENTS

To aid in preventing your mobile applications from either crashing or presenting runtime errors to
users, a Try...Catch block should be used in source code where possible.

Try...Catch statements effectively test a block of code to see if it contains errors at run time.

For developers it is not always explicit where or when a Try...Catch block should be used, but in
general these statements can be applied to code wherever there is an uncertainty about a particular
variable assignment or a particular function call. The structure of the Try...Catch statement means
that you can provide an alternative outcome in the catch portion of the Try...Catch block.

Now take a look at using a Try...Catch block in the Debugging App project.

Using a Try...Catch Statement

The following steps will take you through using the Try...Catch statement in the Debugging
App project.

1. In DebuggingAppHome.mxml, wrap the assignment of the 1abelStr variable to testLabel . text
in a Try...Catch statement to handle when the application throws an Error object (Listing 6-7).

192 | CHAPTER6 DEBUGGING APPLICATIONS

\, LISTING 6-7: Adding the Try...Catch statement to the onClick() method in

DebuggingAppHome.mxml
Available for
download . . .
&‘,’:ﬂx‘?ﬂmﬂ" protected function onClick():void

{
var labelStr:String;
var i:int;

for(i=0; i<=4; i++)
labelStr = "label text is set.";

try

testLabel.text = labelStr.toLowerCase() ;

} catch(e:Error)

{

}

2. In the Catch block, simply assign the text Error was caught! to the text property on the
<s:Label> component testLabel (Listing 6-8).

\, LISTING 6-8: Defining the code to execute in the Catch block in the onClick() method in

DebuggingAppHome.mxml
Availellble for
d&'ﬂ:,‘fgg,ﬁ" protected function onClick():void

{
var labelStr:String;
var 1:int;

for(i=0; 1i<=4; i++)
labelStr = "label text is set.";
try

testLabel.text = labelStr.toLowerCase();

} catch(e:Error)

Stepping through Code | 193

testLabel.text = "Error was caught!";

}

3. Launch the Debugging App project, once again using the Run
configuration.

This time when the application launches and you click the Test
onClick() button, you’ll see the text Error was caught! written in
the <s:Label> component (Figure 6-17).

How It Works

Having established exactly where the application error occurs through
using the breakpoints earlier, the Try...Catch block was strategically
placed to handle the nu11 exception on the assignment to the text
property on <s:Label>. The application will still attempt to assign
labelstr even though it is still nul1; however, if an error is thrown,
it will be caught in the Catch portion of the Try...Catch statement.
Here the Catch statement simply defines what should be done if this
error is caught.

Lo

Debugging App

Error was caught!
Test onClick()

FIGURE 6-17: Catching an error
using the Try...Catch statement
in the Debugging App project

STEPPING THROUGH CODE

In this section you’ll finally take a look at how to fix the error in the Debugging App project.

If you recall, an error occurs because the conditional if statement, which requires i to equal 5, is
never executed, and labelstr remains null. So when it is assigned to the text property on the

<s:Label> component the application errors.

Step through code is a term used to describe examining source code, usually line by line. In Flash
Builder the Debug panel provides the tools to step through each line of code, allowing you to see

what happens before and after a line of code has been executed.

Stepping through Code in the Debugging Session

The following steps will take you through fixing the error in the code example about handling the
error introduced in the Debugging App project, using the UncaughtErrorEvent class.

1. First, return to the for loop in onclick() and increase the number of iterations from 4 to 5

(Listing 6-9).

194 | CHAPTER6 DEBUGGING APPLICATIONS

@)

Available for
download on
Wrox.com

{

2. Launch the Debugging App project again, this time using the Debug configuration. Ensure that
only a single breakpoint is in place in the application, where the text is assigned to the labelstr

var labelStr:String;
var 1i:int;

for(1=0; 1<=5; 1i++)

labelStr =

try
testLabel . text

} catch(e:Error)

{

testLabel. text

LISTING 6-9: Updating the number of iterations in the for loop in the onClick() method in
DebuggingAppHome.mxml

protected function onClick():void

"label text 1is set.";

labelStr.toLowerCase() ;

= "The Error was caught!";

variable in DebuggingAppHome . mxml.

NOTE When you add additional lines of code, breakpoints will move with the
line of code that has the breakpoint assigned. In this example the breakpoint
should remain on line 18.

This time when the application launches it will pause at the breakpoint. If you take a look in the
Variables panel, you will see that the variable i is set to 5, and the 1abelstr variable is set to null.
What is more significant here is that now the breakpoint has reached the line where the text is assigned

to the labelstr variable within the if statement (Figure 6-18).

Stepping through Code

195

@ Flash Builder File Edit Source Mavigate Search Project Data Run Window Halp = Nt B3 e 2233 MrAsdeson Q

It B0 Q- S]] e) aai Deteg [@sn
 Dwoeg 1| > md[aaes|E -0 | %o Wnsbgorns S Gagmmipiom Sie~=g

7 1B Détwpgingcn oa Destis MR Aot estos]
v

¥ e e Guiparsest
= vewt. Detupgmahsctitne /O

S s Detgprihsstions | _teimheon cick
™

L EEL | . = k-
B
protected fenction snClick(iveld
var TobalsriSuring;
var fsimky
1 For Cioly LS fesd
iFfm5)
i {
wi TabelStr = “lsbel text is set.”
1 1
]
ey n
2 i &
a4 tantlabel. tant - Lebelfar, tolosarCesel); *
D Comtsie 11| o Dumlarices | Manmak M| (5 Conasie | 55 Progress | L] [2 @3-~ 5|

[58F] Bebugainghos suf - 2,385,787 Byies after decempressisn

FIGURE 6-18: Checking the value of variable i and labelStr in the Variables panel

3. Move off the current line in the code by clicking the Step Over button. Look in the Variables
panel once again, and you will now see that the 1abelstr variable is set to 1abel text is

set (Figure 6-19).

@ Flash Builder File Edit Source Mavigate Search Project Data Run Window Halp = Nt B3 e 2233 MrAsdeson Q

i B0 Q@S]] e) aai Deteg [@n
 Duowg B > md[aaes|Ee -0 | % bnsbgorns S Gagmminom Se~=g

™ 1 DewniegAsy on Desktog Bchon Aoshcatoed

¥ o M i Giparest
= vewt Detupgmahsotitrme /O

S s Detggrihsstions | _tevmheon cick
™

tobal text (s wet.

B @ 3] " =g
o)
protected fenction snClick(ynld
i
o labeiiar Saring;
var Lrimky
e for (iel) LaeS Gee)
¥ T
mis TabelSke = “label text is ser.”
-1 3
]
ey L
23 h .
i Restiebel . text - Lebelftr. tolomerCosel); r
1D coninie B of ummrtervces| (O metmork Morior) Comtoi S Progreia | - | e G v 8-r-=8|

[58F] Bebugainghos suf - 2,385,787 Byies after decempressisn

FIGURE 6-19: Checking the value of variable labelStr in the Variables panel

196 | CHAPTER6 DEBUGGING APPLICATIONS

|

4. Move out of the for loop in onClick() by clicking the Step
Return button. Then click the Step Over button. The next line
highlighted is the opening bracket of the try declaration. Click label text is set.
the Step Over button once again, and the application should fall Test onClick()
on the line where 1abelstr is assigned to testLabel . text,
inside the try statement. Click the Step Over button again. The
next line highlighted is where the catch statement is defined.
Click the Step Over button for the final time, and you will notice
that the debugger skips the line assigning the text Error was
caught! to testLabel. text.

Debugging App

5. Resume the application by clicking the Resume button in the
Debug panel. When the application launches, you should see that
the <s:Label> component is assigned the text label text is
set. Eureka! The bug is now fixed (Figure 6-20).

How It Works
The aim of this exercise was to fix the bug that was introduced when FIGURE 6-20: Debugging App
the Debugging App was created. now displaying “label text is set”

Stepping through code allows you to see what you’re looking for in the
application at a granular level by examining each line of code and also to monitor the variables in the
application.

The hard work was actually finding the bug. That was done through a combination of techniques that
included using breakpoints, watching variables, and stepping through code. The UncaughtErrorEvent
class and the Try...Catch statement helped to ensure there won’t be any unpleasant surprises for end
users if they run the project on their mobile handsets.

SUMMARY

Software bugs can be a real headache. And it can be both time-consuming and challenging to find
them in source code. The art of catching errors, whether major or minor, lies within the Debug
Perspective of Flash Builder, where setting breakpoints and stepping through code allow you to
perform precise debugging sessions while the application is running.

While the Debugging App project only introduced one error, one could argue that with more careful
coding the error would probably not have been introduced. However, you should have gained

an appreciation for the armory of tools and perspectives at your disposal in Flash Builder, which
ultimately helped to isolate and fix the error.

The UncaughtErrorEvent object is useful in situations where you simply cannot locate an error in
the code; unfortunately it doesn’t give you the exact line where the error occurred, which would be
useful.

Summary | 197

Also, the Try...Catch statement proves to be vital in wrapping code in blocks to catch potential
errors, also allowing you to define an alternative track through the code when an error is caught.

In the next chapter you’ll take a look at working with files and the filesystem. But before you move
on to that chapter, try the following exercises, which are designed to help further your knowledge of
debugging applications.

EXERCISES

1. Setanother breakpoint in the Debugging App project, this time at the line where the loaderInfo
object is used in DebuggingApp .mxml. Launch the project using the Debug configuration and take
note of the values for each property in the object.

2. Introduce another error in the code that concerns loading an image, and see if you can use the
techniques delivered in this chapter to isolate and handle the T0ErrorEvent.

3. Revisit Chapter 5 and pick out three areas in which to apply the Try...Catch statement.

198

CHAPTER 6 DEBUGGING APPLICATIONS

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC
Setting breakpoints in

source code

Using the Breakpoints
panel

Using the Variables panel

Using the Debug panel

Stepping through source
code

Global error handling

Adding Try...Catch Blocks

KEY CONCEPT

Set a line breakpoint in the Source view of Flash Builder by double-
clicking the space next to the line number or right-clicking to use
the context menu.

Use the Breakpoints panel to see the lists of all line breakpoints
that have been set across all files in the application.

Enable a breakpoint by selecting a checkbox or disable a
breakpoint by unselecting a checkbox.

Double-click a breakpoint to automatically go to that line in the
Source view.

Use the Variables panel to see a list of all the variable names and
assigned values while the application is running.

Use the Debug panel to see where the current thread of the
application is paused.

Use the Step Into, Step Over, and Step Return buttons to navigate your
way in, around, out, and over lines of code and functions while the
application is running in the debugging session (see Figure 6-7).

To examine each line of code as the application is running, step
through code using the Debug panel.

Use the UncaughtErrorEvents object on loaderInfo to register
an interest in the UncaughtErrorEvent . UNCAUGHT_ERROR event.

Add the event listener for

UncaughtErrorEvent . UNCAUGHT_ERROR in the main application
<s:ViewNavigatorApplication> once the
applicationComplete eventis triggered.

Write AS3 code within the Try block to catch potential errors.

Code within the Catch block executes when the code in the Try
block throws an error.

J

OSSO0 0000000RSSS s -

= . g —

Working with the Filesystem

WHAT YOU WILL LEARN IN THIS CHAPTER:

Creating File and FileStream objects
Resolving file object paths

Modifying files and directories

Y Y Y VY

Using browse dialogs

This chapter takes a look at the AIR File System API in depth, again using Flash Builder to
take you through related examples. These will help you to build applications that can create
or utilize existing data on a user's mobile device, whether that data is an MP3 file found in the
device's native media library, or an image file referenced from the photo gallery.

The key aspect of the API is getting to understand the filesystem, learning how to resolve paths
to files, and containing folders on the device. This chapter looks at all this in depth.

WARNING For security reasons the AIR File System APl is restricted for use
in non-browser Flash applications. Bear this in mind if you intend to create
browser-based Flash mobile applications. In addition, Google Android and
BlackBerry Tablet OS devices require users to grant usage of certain security
levels when using the API.

Over the course of this chapter you’ll construct a simple example running the majority of features.

200 | CHAPTER7 WORKING WITH THE FILESYSTEM

READING FROM THE FILESYSTEM

To utilize the filesystem within your Flash mobile applications on a mobile device using AIR,
you first need to familiarize yourself with the core classes involved in the API, and pay particular
attention to how one points to files and directories in the filesystem.

The File and FileStream Classes

The File and Filestream classes are the key classes that you can use to gain access to the filesystem
data on the mobile device using AIR. Both files are located in the flash. filesystem package.

To use the File class in an ActionScript Mobile project, you need to import the class using the
following statement:

import flash.filesystem.File;

Similarly, to use the FileStream class in an AS project, you need to import the class using the
following statement:

import flash.filesystem.FileStream;

Using Flash Builder with the Flex framework and AIR doesn’t require you to import the class in this
way. The Files Explorer project therefore doesn’t have either of these statements. Bear this in mind
when you create your other projects.

The File class provides reference points to information about files and file directories, also giving you
the methods to create, modify, and delete files or file directories. The FileStream class provides
you with the methods to open, read, write, and modify files on the filesystem.

The File Object

A File object has a number of properties that should uniquely distinguish it from another file object
on the filesystem. These properties include:

> url: An absolute reference to a file object on the device

nativePath: A reference to the file object’s path on the device

name: A string representing the file object’s name

creationDate: A string containing the creation date of the file object, relative to GMT
modificationDate: A string detailing the last time the file object was modified
exists: A Boolean that indicates whether the file object exists

size: A number returning the actual size of the file object

Y Y Y VY Y VY Y

spaceAvailable: A string representing the total space available on the filesystem in which
the file object resides

\

creator: A string representing the creator of the file object

\

type: A string returning the type of file object

Reading from the Filesystem | 201

extension: A string returning the file extension of the file object
isDirectory: A Boolean that indicates whether or not the file object reference is a directory

isHidden: A Boolean that indicates whether or not the file object is hidden

Y VYV VY

isPackage: A Boolean that indicates whether or not the file object is a package
> parent: Returns a reference to a file object in which the current file or directory resides

You should be familiar with the majority of these properties as entities on your home computer. The
modification date is a property of a file used frequently to see when a file was last saved. Looking at
the properties, you can easily identify a file object by its name, whether it is a file or a directory, its
size, the creation or modification dates, and URL paths.

Next take a look at the different ways in which you can create file objects using AIR.

Creating File Objects from the URL Path

The nativeprath and url properties of the file object are references that point to a file object’s
location on the mobile device.

There are three URL schemes that are supported which can be used to create file objects via the
File class constructor: app: /; app-storage:/; and file://.

In the following code snippet the file:// URL scheme is used to create a File object fileObj that
attempts to point to Notes, a folder contained in the Documents directory on the filesystem:

var fileObj:File = new File("file:///documents/notes");

The way this file object is created could potentially pose a few problems for cross-platform
compatibility and running the app on devices with different mobile operating systems. How does the
mobile application know that the Documents or Notes directories exist on a device? And is the file
path URL format recognized by the device?

If you don’t know whether the file object created is present on the device, you can use the File.exists
property of the File object to determine whether a particular file or directory exists — but this is only
once the URL path of the file object has been set, again pointing to a potential issue with the URL
format. To address differences in URL formats, you can use static properties of the file class to retrieve
generic locations on devices, and as you’ll see it provides an alternative way to create a file object by
referencing a specific location on the device.

Creating File Objects from Static Locations

On a laptop or PC you may be familiar with commonly used file spaces such as Documents and
Applications for Mac OS, or My Documents and Programs on a Windows machine. Simply put,
these are quick access references to file directories that have certain document types. In essence

these are familiar short names given to potentially complex filesystem references.

On mobile devices, users are less familiar with locations such as these, and generally come across
physical file directory paths only when using applications designed for this. Applications such as

202

| CHAPTER7 WORKING WITH THE FILESYSTEM

Finder for Mac OS and File Explorer on Windows are designed for large screens, allowing a user to
explore whole filesystems, which on mobile devices would be harder to navigate.

The File class has five static properties that you can use to reference commonly used file locations:

» File.applicationStorageDirectory: Returns a file object pointing to a storage directory
that is unique to the AIR application installed on a device

» File.applicationDirectory: Returns a file object pointing to the location where the
application is installed on the device

» File.desktopDirectory: Returns a file object pointing to an equivalent of the Desktop
directory found on Mac OS and Windows machines

» File.documentsDirectory: Returns a file object pointing to an equivalent of a user’s
Documents directory found on Mac OS and Windows machines

» File.userDirectory: Returns a file object pointing to an equivalent of the Users directory
found on Mac OS and Windows machines

The file objects returned by these properties can be used to avoid potential issues like the ones
encountered when specifying a hard-coded file-path URL. Each of the file references is pretty much
static and can be referenced universally across different platforms using AIR.

Table 7-1 lists example url values returned by each static property on an Android mobile device
running Gingerbread 2.3.4

TABLE 7-1: Example URL Property Values Returned on an Android Device

PROPERTY VALUE
File.applicationDirectory.url app:/
File.applicationStorageDirectory.url app-storage:/
File.desktopDirectory.url file:///mnt/sdcard
File.documentsDirectory.url file:///mnt/sdcard
File.userDirectory.url file:///mnt/sdcard

From the table you’ll see that the Android device returns three distinct file object url values.

WARNING Note that you cannot write to files or directories that have paths that
use the app: URL scheme. Nor can you delete or create files or folders that have
paths that use the scheme, as modifying content in the application directory is
considered a bad practice, and for security reasons, it is usually blocked by the OS.

Reading from the Filesystem | 203

Resolving the Reference Path of a File Object

On Google Nexus One, an Android device running Gingerbread 2.3.4, the File.desktopDirectory,
File.documentsDirectory, and File.userDirectory each returns a file object that points to the
file:///mnt/sdcard location. To ensure that a file object points to a particular location, you must
use the resolvePath () method to refine the target path.

In the following snippet the file object is pointing to the file:///mnt/sdcard/notes directory
using the File.documentsDirectory as the initial reference point:

var fileObj:File = File.documentsDirectory.resolvePath("notes");

For the file object created, f11e0bi, if the Notes directory existed, then fileoObj.exists would
be set to true. Using the resolveprath () method essentially sets the target path for the file object,
whether it exists or not. This is important for creating new files and folders, as you’ll see later.

While the url property of a file object gives a precise value to a location, the nativePath property
gives the full path to the file object as represented in the host operating system.

Next take a look at using the nativePath property of the file object in the example project.

Creating a Files Explorer App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defining the Flex Mobile Project Settings

The following lists a few of the familiar settings you will need to ensure are defined for the project:
» Name: Set the Name for the project to FilesExplorerApp.
> Application ID: Set the Application ID to com.wrox.ch7.FilesExplorerApp.

> Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to FilesExplorerAppHome.

Targeting Mobile Devices on Different Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple
i0S, Google Android, and BlackBerry Tablet OS. For Google Android and BlackBerry Tablet OS,
a number of permissions need to be set to allow the application to utilize the device’s filesystem,
whereas for Apple iOS, no permissions need to be defined specifically.

Defining Google Android Permissions

For the AIR Application Descriptor file generated with the project in Flash Builder,
FilesExplorerApp—app.xml,ensuretheandroid.permission.WRITE_EXTERNAL_STORAGE
permission is included as a manifest addition for the Google Android platform, as shown in the
following code snippet:

<android>
<manifestAdditions>
<! [CDATA[

204 | CHAPTER7 WORKING WITH THE FILESYSTEM

<manifest>
<uses-permission android:name="android.permission.WRITE EXTERNAL STORAGE"/>
</manifest>
11>
</manifestAdditions>
</android>

Defining BlackBerry Tablet OS Permissions

For BlackBerry Tablet OS applications, you need to specify the access_shared permission, to allow
the application to write to the mobile device. Ensure this is set in the blackberry-tablet.xml file,
as shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>

<gnx>
<author>jganderson</author>
<authorId>gYAAgFbt6rihu</authorId>
<category>core.media</category>
<buildId>1</buildIid>
<platformversion>1.0.0.0</platformversion>
<permission>access_shared</permission>

</gnx>

Defining Apple iOS Settings

There are no permissions that need to be defined for the Apple iOS platform.

Creating Run and Debug Configurations

You can elect to run this project on the desktop or directly on your mobile device. For consistency,
this chapter uses a Google Nexus One as the connected device.

Building the Files Explorer App

In this section, you begin building the Files Explorer App project in Flash Builder, first taking a look
at the nativePath property of the File object.

Displaying the Native Path of a File Object

For the Files Explorer App project, follow the next steps to add a label to the main view that shows the
current filesystem directory.

1. Asshown in Listing 7-1, the main application file, FilesExplorerapp.mxml, has a similar
MXML markup as covered in earlier chapters, with the exception of the firstview attribute’s
value, which is set to views.FilesExploreraAppHome (Listing 7-1).

\) LISTING 7-1: The FilesExplorerApp.mxml application file for the Files Explorer project

Available for <?xml version="1.0" encoding="utf-8"?>

daﬂ:gg&g" <s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.FilesExplorerAppHome" >

Reading from the Filesystem | 205

<fx:Declarations>
<!-- Non-visual elements (e.g., services, value objects) -->
</fx:Declarations>

</s:ViewNavigatorApplication>

2. Replace the <fx:Declarations> with an <fx:Style> declaration. Inside the <fx:style>
declaration, specify s as the spark namespace. Then define three style declarations for the View,
Label, and List components that will be used in the application. For the <s:Vview> components,
define the backgroundColor property as #999999, and color property as #393839. For the
<s:Label> components, define the fontSize as 18. Then for the <s:List> components, define
the alternativeItemColors property as #CCCCCC and #EEEEEE, define the selectionColor
property as yellow, fontSize property as 22, and color property as #393839 (Listing 7-2).

\, LISTING 7-2: Setting the styles via the <fx:Style> declaration in FilesExplorerApp.mxml

Available for <?xml version="1.0" encoding="utf-8"?>
dwmtga:" <s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.FilesExplorerAppHome">
<fx:Style>

@namespace s "library://ns.adobe.com/flex/spark";

s|View

{
backgroundColor:#999999;
color:#393839;

}

s |Label

{
fontSize:22;

}

s|List

{
alternatingItemColors: #CCCCCC, #EEEEEE;
selectionColor:yellow;
fontSize:22;
color:#393839;

}

</fx:Style>

</s:ViewNavigatorApplication>

3. Modify the FilesExplorerappHome.mxml file, setting the title property to Files Explorer
Then within a <fx:Script> declaration, add a private method called exit () to quit the
application, calling Nativeapplication.nativeApplication.exit (). Add a protected method
stub called readpir () and assign it to the view’s creationComplete attribute. Finally, add an
<s:layout> declaration container for the view, defining the <s:VerticalLayout> (Listing 7-3).

206 | CHAPTER7 WORKING WITH THE FILESYSTEM

\, LISTING 7-3: The FilesExplorerAppHome.mxml view for the Files Explorer project

Available for <?xml version="1.0" encoding="utf-8"?>

daﬂ:gg&g" <s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="readDir ()"
title="Files Explorer">

<fx:Script>
<! [CDATA[
protected function readDir():void {}

private function exit () :void
{
NativeApplication.nativeApplication.exit();

11>
</fx:Script>

<s:layout>
<s:VerticalLayout/>
</s:layout>

</s:View>

4. Adda<s:Button> component with the label guit to a <s:navigationContent> declaration.
Assign the view’s exit () method to the c1ick property on the <s:Button> component. Under
the <s:navigationContent> definition add a new <s:Label> component to the main view in
FilesExplorerAppHome . mxml. Set the 1d property of the label to currentpir, the width property to
100%, and the height to 60. Then set the paddingLeft property to 10, the paddingTop property to 15,
and the text to read Current Directory. The vertical alignment needs to be set to Middle (Listing 7-4).

\, LISTING 7-4: Adding <s:Button> and <s:Label> components to the view in

FilesExplorerAppHome.mxml
Available for

download on)
Wrox.com <fx:Script>

<! [CDATA[
protected function readDir():void {}

private function exit():void

{

NativeApplication.nativeApplication.exit();

11>
</fx:Script>

<s:layout>
<s:VerticalLayout/>
</s:layout>

<s:navigationContent>

Reading from the Filesystem | 207

<s:Button label="Quit"
click="exit()"/>
</s:navigationContent>

<s:Label id="currentDirectory"
text="Current Directory"
paddingLeft="10"
paddingTop="15"
width="100%"
height="60"
verticalAlign="middle"/>

5. Next, above the readpir () stub, declare a private variable called selectedpir that has the File
type (Listing 7-5).

\, LISTING 7-5: Defining the private variable to reference the selected directory in

FilesExplorerAppHome.mxml

Available for
download on i
Wrox.com <fx:Script>

<! [CDATA[
private var selectedDirectory:File;

protected function readDir () :void {}

private function exit() :void

{

NativeApplication.nativeApplication.exit();

11>
</fx:Script>

6. Within the onCreationComplete () method, assign the documentsbirectory property of the
File class to selectedDirectory. Then using the selectedpirectory file object, set the text
property of the new label to the nativePath (Listing 7-6).

\) LISTING 7-6: Setting the text to the native path in FilesExplorerAppHome.mxml

Available for <fx:Script>

download on

Wrox.com <![CDATAF . .
private var selectedDirectory:File;

protected function readDir () :void

{
selectedDirectory = File.documentsDirectory;
currentDirectory.text = selectedDirectory.nativePath;

}

private function exit():void
{

NativeApplication.nativeApplication.exit () ;

11>
</fx:Script>

208 | CHAPTER7 WORKING WITH THE FILESYSTEM

7. Run the project using the device run configuration. Using an Android device you should see the
native path of the file object device displayed in the application beneath the header (Figure 7-1).

Quit Files Explorer

FIGURE 7-1: Displaying the
current directory in the Files
Explorer App running on
Android 2.3.4

Listing the Files of a Directory

Next take a look at how to display the contents of a directory.

1. First add a new <s:List> component to the directories view in FilesExplorerAppHome .mxml,
directly beneath the <s:Label> component. Set the id property to dirList, set the width
property to 100%, the height property to 85%, the fontFamily property to Arial, and the
contentBackgroundColor to #B6B3B3 (Listing 7-7).

@ LISTING 7-7: Adding a <s:List> component to the view in FilesExplorerAppHome.mxml

Available for <s:TLabel id="currentDirectory"

download on text="C ¢ Di . :

Wrox.com ex = urren irectory
paddingLeft="10"
paddingTop="15"
width="100%"
height="60"

Reading from the Filesystem | 209

verticalAlign="middle"/>

<s:List id="dirList"
width="100%"
height="85%"
fontFamily="Arial"
contentBackgroundColor="#B6B3B3" />

2. Within the readpir () method, declare a new array called docsDirectory, then assign the
getDirectoryListing () method on the selectedpirectory file object to the array (Listing 7-8).

\) LISTING 7-8: Retrieving the directory listing in FilesExplorerAppHome.mxml

Available for protected function readDir():void
download on {
Wrox.com
selectedDirectory = File.documentsDirectory;

currentDirectory.text = selectedDirectory.nativePath;

var docsDirectory:Array = selectedDirectory.getDirectoryListing();

3. Next populate the List component with the file objects retrieved in docsDirectory using the name
property for the label of each row. You will need to instantiate the dataProvider on the List component
and then use the addTtem () function to define the label representing each file object (Listing 7-9).

\) LISTING 7-9: Populating the <s:List> component with the file object name property in

FilesExplorerAppHome.mxml

Available for
download on . \ .
Wrox.com Protected function readDir():void

{
selectedDirectory = File.documentsDirectory;
currentDirectory.text = selectedDir.nativePath;

var docsDirectory:Array = selectedDirectory.getDirectoryListing();

var fileObj:File;
dirList.dataProvider = new ArrayCollection();

for(var i:int = 0; i < docsDirectory.length; i++)

{
fileObj = docsDirectoryl[il;
dirList.dataProvider.addItem({ label: fileObj.name });

4. Run the project using the device configuration. Using an Android device, you should now see
the contents of the Documents directory for the device displayed beneath its native path as in
Figure 7-2.

210 | CHAPTER7 WORKING WITH THE FILESYSTEM

Quit Files Explorer

Activenotes
qf

Images
Documents
Sounds
Videos
Nokia

NIKON0O1.DSC

private

FIGURE 7-2: Displaying the
contents of the Documents
directory in the Files Explorer
App running on Android 2.3.4

Next modify the list so that only folders are displayed.

5. Inthe for loop, use the isDirectory property on the file object to determine whether the
reference is an actual directory and not a file (Listing 7-10).

\, LISTING 7-10: Filtering the List component with directories only in FilesExplorerAppHome.mxml

Availablefor for (var i:int = 0; 1 < docsDirectory.length; i++)
download on {
Wrox.com

fileObj = docsDirectoryl[i];

if (fileObj.isDirectory)
dirList.dataProvider.addItem({ label: fileObj.name });

6. Run the project again using the device configuration. Using an Android device, you should now
see that only folders are visible in the list (Figure 7-3).

Reading from the Filesystem | 211

Quit Files Explorer

Activenotes
Images
Documents
Sounds
Videos
Nokia
private
Fesource

SYs

FIGURE 7-3: Displaying only
folders contained in the
Documents directory in the
Files Explorer App running on
Android 2.3.4

How It Works

Within readpir () the getDirectoryListing () method is what provides the array of file objects from
the selectedpirectory file object to the docsDirectory array. This object points to the reference
Documents Directory on the mobile device. The 1ength property on docsDirectory returns the
number of file objects in the array. This is used in the for loop to iterate through each file object and
display its name property in the List component dirList.

The dirpata is used to hold only file objects that are known to be directories; using the isDirectory
property all the files are filtered out of the array.

Next take a look at navigating between each directory.

7. Add an array called dirData to the private variable list (Listing 7-11).

\, LISTING 7-11: Defining a new private Array object to store file objects in FilesExplorerHome.mxml

dAvaililahlifor <fx:Script>
ownload on
Wrox.com <t [CDATA[.
private var dirData:Array;
private var selectedDirectory:File;

8. Within the readpir () method ensure dirData gets populated with each of the file objects
retrieved (Listing 7-12).

212 | CHAPTER7 WORKING WITH THE FILESYSTEM

\) LISTING 7-12: Storing data in the Array object in FilesExplorerAppHome.mxml

Available for protected function readDir () :void
download on {
Wrox.com
selectedDirectory = File.documentsDirectory;

currentDirectory.text = selectedDirectory.nativePath;
var docsDirectory:Array = selectedDirectory.getDirectoryListing();

var fileObj:File;
dirData = [];
dirList.dataProvider = new ArrayCollection();

for(var i:int = 0; i < docsDirectory.length; i++)
{
fileObj = docsDirectoryl[i];

if (fileObj.isDirectory)
{
dirData.push(fileObj) ;
dirList.dataProvider.addItem({ label: fileObj.name });

}

9. Next update the <s:List> component. Set the selectionColor property to #00A2FF, the
selectedIndex property to a default of 0, and the c1ick property to the readpir () event
(Listing 7-13).

J LISTING 7-13: Setting a selection color, the selected index, and click event handler for the

<s:List> component in FilesExplorerAppHome.mxml

Available for

download on . . s
Wrox.com <s:List id="dirList"

width="100%"

height="85%"

fontFamily="Arial"
contentBackgroundColor="#B6B3B3"
selectionColor="#00A2FF"
selectedIndex="0"
click="readDir ()" />

10. Next modify the readpir () method to allow for other file directories to be read. You need to
utilize the selectedIndex property of the List component (Listing 7-14.)

J LISTING 7-14: Setting the selected directory from the data stored in the data array in

FilesExplorerAppHome.mxml

Available for

download on . .
Wrox.com Protected function readDir () :void

{
if (dirData)

{
selectedDirectory = dirDatal[dirList.selectedIndex];

Reading from the Filesystem |

213

} else {

selectedDirectory =

}

currentDirectory.text =

var docsDirectory:Array =

File.documentsDirectory;

selectedDirectory.nativePath;

selectedDirectory.getDirectoryListing () ;

var fileObj:File;

dirData =

[1;

dirList.dataProvider =

for(var i:int
{
fileObj

new ArrayCollection();

0; 1 < docsDirectory.length; i++)

docsDirectory[i];

if (fileObj.isDirectory)

{

dirData.push(fileObj) ;

dirList.dataProvider.addItem({ label:

}
1.

fileObj.name });

Run the project as it is. You will now be able to select a directory view showing any subfolders it

contains. Figure 7-4 shows a folder being highlighted.

Figure 7-5 shows the screen on the device when the folder has been selected. You will also notice that
the native path is updated in the display.

Quit

Files Explorer

Activenotes
Images
Documents
Sounds
Videos
Nokia
private

Fesource

sys

FIGURE 7-4: Navigating to sub-
folders in the Files Explorer App
running on Android 2.3.4

Quit

Files Explorer

200811

200812

200901

200903

200907

FIGURE 7-5: Displaying the
contents of the Images directory
in the Files Explorer App
running on Android 2.3.4

214 | CHAPTER7 WORKING WITH THE FILESYSTEM

RUNNING THE FILES EXPLORER APP ON APPLE I0S
AND BLACKBERRY TABLET OS DEVICES

For the Files Explorer App running on an Apple iPhone 4, the initial file directory
opened by the application will consist of the following URL path:

/var/mobile/Applications/<ID>/Documents

Here the <1D> value represents a unique value generated for the application by the
device and could vary from iPhone to iPhone.

For the Files Explorer App running on a BlackBerry PlayBook, the initial file
directory will consist of the following path:

/accounts/1000/appdata/com.wrox.ch7.FilesExplorerApp.debug.test<ID>/
shared/documents

Similarly, the <TD> value here also represents a value generated for the application
by the device and could vary from PlayBook to PlayBook.

Next take a look at navigating back to the previous directory. For this you need to use the parent
property of the file object.

12. After the readpir () method, add an empty stub for a new protected method called
setParentDir (). Then above the for loop statement in readpir (), make a call
to setParentDir () as shown in Listing 7-15.

\) LISTING 7-15: Adding a method to call the parent directory in FilesExplorerAppHome.mxml

Available for protected function readDir():void
download on {
Wrox.com))

if (dirData)

{
selectedDirectory = dirDatal[dirList.selectedIndex];

} else {

selectedDirectory = File.documentsDirectory;

Reading from the Filesystem | 215

}
currentDirectory.text = selectedDirectory.nativePath;

var docsDirectory:Array = selectedDirectory.getDirectoryListing();

var fileObj:File;
dirData = [];
dirList.dataProvider = new ArrayCollection();

setParentDir () ;

for(var i:int = 0; i1 < docsDirectory.length; i++)
{
fileObj = docsDirectoryl[i];

if(fileObj.isDirectory)
{
dirData.push(fileObj) ;
dirList.dataProvider.addItem({ label: fileObj.name });

protected function setParentDir():void {}

13. In setparentDir () add the parent file object to the List component using the addTtem ()
method. Use square brackets and two dots [..] to denote the parent directory. You also need to
ensure that the parent is saved to the directory data array (Listing 7-6).

\) LISTING 7-16: Adding the parent file directory to the <s:List> component in
FilesExplorerAppHome.mxml

Available for
download on . .
Wrox.com Protected function setParentDir():void
{
var fileObj:File = selectedDirectory.parent;
if (£ileObj)
{

dirData.push(fileObj);
dirList.dataProvider.addItem({label:"[..]1"});

14. Run the project as it is. You will now be able to select a directory and return to the parent
directory by selecting [. .1 (Figure 7-6).

216 | CHAPTER7 WORKING WITH THE FILESYSTEM

Quit Files Explorer

_

FIGURE 7-6: Navigating to
the parent directory in the
Files Explorer App running on
Android 2.3.4

MODIFYING FILES AND FILESYSTEMS

So far you’ve learned how to read the filesystem of a mobile device using AIR. In this section you
take a look at modifying the filesystem objects.

Creating New Files and Directories

To create files and folders on the mobile device, you need to use a combination of the File,
FileStream, and FileMode classes.

Using the FileMode Class

The FileMode class is found in the flash. filesystem package. When creating ActionScript Mobile
projects, you need to import the class through the following statement:

import flash.filesystem.FileMode;

When creating a Flex Mobile project in Flash Builder, you don’t need to import the class.

The FileMode class provides four static constants. These are flags to define what a FileStream
object should do with a File object it receives via the FileStream.open () method. At least one of
these properties needs to be supplied as the second parameter in the open () method:

Modifying Files and Filesystems | 217

> FileMode.WRITE: To write new data to a file object instance
> FileMode.UPDATE: To update an existing file object instance
> FileMode.APPEND: To append data to a file object instance
» FileMode.READ: To read data from a file object instance

The following sections demonstrate how each of the FileMode properties can be used to read
and write strings to a text file using the FileStream.readUTFBytes () and FileStream
.writeUTFBytes () methods.

Writing to a File

To write, update, and append a file, you use the writeUTFBytes () method on a FileStream object,
supplying the text you want to add to the file as an argument.

In the following code snippet the FileStream object fs opens a text File object called story. txt,
resolving a path located in the documents directory. The file stream opens the file and then writes
the string “A long time ago,” which is 15 characters, and then closes the file stream:

var fileObj:File = File.documentsDirectory.resolvePath("story.txt");

var fs:FileStream = new FileStream() ;
fs.open(fileObj, FileMode.WRITE) ;
fs.writeUTFBytes("A long time ago");
fs.close();

Updating the Contents of a File

In the following code snippet the story. txt file is updated:

var fileObj:File = File.documentsDirectory.resolvePath("story.txt");

var fs:FileStream = new FileStream();
fs.open(fileObj, FileMode.UPDATE) ;

fs.position = 15;

fs.writeUTFBytes (" in a galaxy far, far away.... ");
fs.close();

Notice that the FileStream.position property on the FileStream object is set to 15. This property
represents the current position in the file stream, and has been set so that the existing text in the file is
kept and isn’t overridden when new text is supplied to the FileStream.writeUTFBytes () method.
Following on from the previous code snippet the file should read “A long time ago.” When the
update is applied the file should now read “A long time ago in a galaxy far, far away....”

Similarly, appending to a file using the FileMode.APPEND flag in FileStream.open () updates the
file, but adds whatever is supplied to the FileStream.writeUTFBytes () method to the end of
the file. The following code snippet appends the string “STAR WARS?” to the story. txt file:

var fileObj:File = File.documentsDirectory.resolvePath("story.txt");

var fs:FileStream = new FileStream() ;

218 | CHAPTER7 WORKING WITH THE FILESYSTEM

fs.open(fileObj, FileMode.APPEND) ;
fs.writeUTFBytes ("STAR WARS") ;
fs.close();

Reading the Contents of a File

To read the contents of an existing text file, you need to use the FileStream.readUTFBtyes ()
method by supplying a reference to the bytesaAvailable property on the file stream object.

In the following snippet the story. txt file is read:

var fileObj:File = File.documentsDirectory.resolvePath("story.txt");

var fs:FileStream = new FileStream() ;
fs.open(fileObj, FileMode.READ) ;
fs.readUTFBytes (fs.bytesAvailable);
fs.close();

Here the FileStream object fs is again passed a reference to the File object £ileobj, which points
to the story. txt file. The FileMode .READ flag is also passed to the FileStream.open () method.

If you've followed each of the previous code snippets, the story. txt file should read “A long time
ago, in a galaxy far, far away. ... STAR WARS.”

Creating a New File Directory

Creating a new file directory simply requires calling the createbdirectory () method on the file
object. The path to the new folder needs to be resolved using the resolverath () method, as shown
in the following snippet:

var fileDir:File = File.desktopDirectory.resolvePath("untitled folder");
fileDir.createDirectory() ;

In this snippet the “untitled folder” is created in the Desktop directory.

Moving Files from One Directory to Another

To move a file from one location on the device to another, you need to utilize two file objects. The
first file object should point to the originating location, and the second should point to where you
want to move the file. You call the moveTo () method on the first file object, supplying the second file
object as the parameter as shown in the following snippet:

var originalFile:File = File.documentsDirectory.resolvePath("story.txt");
var newDir:File = File.applicationStorageDirectory.resolvePath("story.txt");

originalFile.moveTo (newDir) ;

Here the story. txt file is moved from the documents directory to the application’s storage directory
on the device.

Modifying Files and Filesystems | 219

The text supplied to resolverath () for the second file object is what defines either the new
filename if you are moving a file, or the directory.

Moving a Folder

To move a file directory also requires the use of the moveTo () method on the file object. In the following

snippet the originalDir file object, which points to the “untitled folder” on the desktop, is moved

to the destinationDir file object, which points to a folder called “shapes” in the documents directory.
var originalDir:File = File.desktopDirectory.resolvePath("untitled folder");
var destinationDir:File = File.documentsDirectory.resolvePath("shapes");
originalDir.moveTo (destinationDir) ;

Here the moveTo () method is called on originalDir, which is the file object representing the

directory that you want to move. The destinationDir file object is supplied as the parameter for
themoveTo()lnethOd.

Copying Files and Directories

Copying a file or a directory also requires two file objects. To copy a file, you need to call the
copyTo () method, as shown in the following snippet:

var file:File = File.applicationStorageDirectory.resolvePath("story.txt");
var newFile:File = File.documentsDirectory.resolvePath("story copy.txt");

file.copyTo (newFile) ;

In the following snippet the originalDir file object, which now points to the “shapes” folder in the
documents directory, is copied and a new file directory newDir is created called “shapes copy” via
thecopyTo()InethOd.

var originalDir:File = File.documentsDirectory.resolvePath("shapes");
var newDir:File = File.documentsDirectory.resolvePath("shapes copy");

originalDir.copyTo (newDir) ;

The copyTo () method is called on originaldir, which is the file object representing the directory
that you want to copy. The newnir file object is supplied as the parameter for copyTo ().

Deleting a File from a Location

Removing a file from the filesystem on the mobile device first requires that a file exists. In the following
snippet the story copy. txt file is removed from the documents directory via the deleteFile () method:

var fileObj:File = File.documentsDirectory.resolvePath("story copy.txt");

if (fileObj.exists)
fileObj.deleteFile();

220 | CHAPTER7 WORKING WITH THE FILESYSTEM

Deleting File Directories

To remove a directory from the filesystem, you call the File.deleteDirectory () method on a

File object. Again, you need to ensure that the resolvePath () returns the correct file directory
location.

var fileDir:File = File.documentsDirectory.resolvePath("stories");

if(fileDir.exists)
fileDir.deleteDirectory() ;

Creating New Files and Folders

Returning to the Files Explorer project, add two new options to the main view, new folder and
new file. These options will be created to demonstrate exactly how the functions perform.

1. First update the view in FilesExploreraAppHome.mxml to include the horizontal group layout
component <s : HGroup>, placing it directly beneath the List component dirList. Set the id
property of the component to buttonContainer, set the width to 100%, set the horizontalAlign
to center, and then set paddingLeft and paddingTop to 10 (Listing 7-17).

\, LISTING 7-17: Adding a horizontal group component to the view in FilesExplorerAppHome.mxml

Available for <s:Tist id="dirList"

download on width="100%"
height="85%"
fontFamily="Arial"
contentBackgroundColor="#B6B3B3"
selectionColor="#00A2FF"
selectedIndex="0"

click="readDir ()" />

<s:HGroup id="buttonContainer"
width="100%"
horizontalAlign="center"
paddingTop="10"
paddingBottom="10">

</s:HGroup>

2. Next add two new <s:Button> components. Set the id property to folderBtn and the label
property to New Folder on the first button. Then on the second button set the id property to
fileBtn and label to New File. Both height properties of the components should be set to 55
and their fontsize properties should be set to 24, (Listing 7-18).

Modifying Files and Filesystems | 221

\, LISTING 7-18: Adding two new <s:Button> components to the horizontal group component in

FilesExplorerAppHome.mxml
Available for
download on .)
Wrox.com <s:HGroup id="buttonContainer"

width="100%"
horizontalAlign="center"
paddingTop="10"
paddingBottom="10">

<s:Button id="folderBtn"
label="New Folder"
height="55"
fontSize="24"/>

<s:Button id="fileBtn"
label="New File"
height="55"
fontSize="24"/>

</s:HGroup>

3. Next create the Folderview.mxml view. In the Package Explorer panel highlight the Views
Package folder. Then select File & New = MXML Component. In the New MXML Component
pop-up window that opens, before clicking the Finish button, ensure that the Package field is set to
views, the Name field to Folder, the Layout field to spark.layouts.VerticalLayout, and the
Based On field to spark.components.view (Figure 7-7). After clicking Finish, the Folderview
.mxml file is created in the Views folder of the Package Explorer panel.

[NN New MXML Component
New MXML Component

Create a new MXML component.

Source folder: FilesExplorerApp/src Browse...
Package: views Browse...
Name: Folderview

Layout: spark.layouts. VerticalLayout :]

Based on: spark.compenents.View Browse...
@ (Cancel) f—ﬂni:lr—a

£

FIGURE 7-7: Creating the FolderView MXML component for the
Files Explorer App

222 |

CHAPTER7 WORKING WITH THE FILESYSTEM

O

Available for
download on

Wrox.com

Next modify the Folderview.mxml to include four new components. In Folderview.mxml
modify the title property of the view component to read Create a new Folder... and set the
creationComplete property to onCreationComplete. In the <s:VerticallLayout> container
set the paddingLeft and paddingTop to 10. The <fx:Script> declaration should be added to
include the oncreationComplete () stub. Directly beneath the <s:1ayout> declaration add two
<s:Label> components. On the first label, set the 1d to currentDirectory and the text property
to Current Directory. On the second <sLabel>, set the text property to Folder name:, and
set the width and height on both labels to 100% and 60, respectively. Add a <s: TextInput>
component to the view, setting the id property on the component to directoryName, width to
450, and contentBackgroundColor to #605E5E. Finally, add a <s:Button> component setting
the 1abel to Create Folder, height to 55, and fontSize to 24 (Listing 7-19).

LISTING 7-19: Creating the FolderView.mxml view for the Files Explorer App project

<?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="onCreationComplete()"
title="Create a new Folder...">

<fx:Script>
<! [CDATA[
protected function onCreationComplete():void {}
11>
</fx:Script>

<s:layout>
<g:VerticallLayout paddingLeft="10"
paddingTop="10"/>

</s:layout>

<s:Label id="currentDirectory"
text="Current Directory"
width="100%"
height="58"
verticalAlign="middle"/>

<s:Label width="152"
height="55"
text="Folder name:"
textAlign="left"
verticalAlign="middle"/>

<s:TextInput id="directoryName"
width="450"
contentBackgroundColor="#605E5E" />

<s:Button label="Create Folder"
height="55"

fontSize="24"/>

</s:View>

Modifying Files and Filesystems | 223

5. Next create the Fileview.mxml component for the project. Add a new MXML component, this
time setting the Name field to Fileview. After clicking the Finish button, the Fileview.mxml file
should appear in the Package Explorer panel.

6. Next modify the File view to include four new components. In Fileview.mxml modify the
title property of the view to read Create a new File... and set the creationComplete
property to onCreationComplete. The <fx:Script> declaration should be added to include
the onCreationComplete () stub. In the <s:VerticalLayout> container set the paddingLeft
and paddingTop to 10. Directly beneath the <s:1ayout/> component add two <s:Label>
components. On the first label set the id to currentbDirectory and the text property to
Current Directory; on the second label set the text property to File name: and set
the width and height on both labels to 100% and 60, respectively. Add a <s: TextInput>
component to the view, setting the id property of the component to fileName, width to 450, and
contentBackgroundColor to #605E5E. Add a second label component with the text property set
to File Content: and then a <s:TextArea> component with an id property set to fileContent.
Then finally add a <s:Button> component setting the 1abel to Create File, the height to 55,
and the fontsize property to 24. The basic structure for the File view is very similar to the Folder
view. Listing 7-20 highlights the subtle differences.

\) LISTING 7-20: Creating the FileView.mxml file for the Files Explorer App project

Available for <?xml version="1.0" encoding="utf-8"?>

dwmrgag" <s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="onCreationComplete ()"
title="Create a new File...">

<fx:Script>
<! [CDATA[
protected function onCreationComplete():void {}
11>
</fx:Script>

<s:layout>
<g:VerticallLayout paddingLeft="10"
paddingTop="10"/>

</s:layout>

<s:Label id="currentDirectory"
text="Current Directory"
width="100%"
height="58"
verticalAlign="middle"/>

<s:Label width="152"
height="55"
text="File name:"
textAlign="left"
continues

224 | CHAPTER7 WORKING WITH THE FILESYSTEM

LISTING 7-20 (continued)
verticalAlign="middle"/>

<s:TextInput id="fileName"
width="450"
contentBackgroundColor="#605E5E" />

<s:Label width="203"
height="55"
text="File Content:"
textAlign="left"
verticalAlign="middle"/>

<s:TextArea id="fileContent"
width="450"
height="209"
contentBackgroundColor="#605E5E"
verticalAlign="top"/>

<s:Button label="Create File"
height="55"
fontSize="24"/>

</s:View>

7. Next modify the Folderview.mxml and Fileview.mxml files. Add a private File type variable
called selectedpirectory, then in the onCreationComplete () function, set the text property
on the currentDirectory label component to the nativePath property on selectedDirectory.
Under the closing <fx:Script> tag, add a <s:Button> component to the <s:navigationContent>
declaration, to navigate back to the FilesExplorerAppHome.mxml view. Add a private function
called back () that calls the navigator.pushview () method of the view, passing a reference to
views.FilesExplorerAppHome and the selectedbirectory file object (Listing 7-21).

\) LISTING 7-21: Displaying the nativePath and adding a back button in FolderView.mxml and
FileView.mxml

Available for

download on)
Wrox.com <fx:Script>

<! [CDATA [
private var selectedDirectory:File;

protected function onCreationComplete():void

{
selectedDirectory = data as File;
currentDirectory.text = selectedDirectory.nativePath;

private function back() :void
{
navigator.pushview(views.FilesExplorerAppHome,
selectedDirectory);

Modifying Files and Filesystems

225

11>
</fx:Script>

<s:navigationContent>
<s:Button label="Back"
click="back()"/>
</s:navigationContent>

8. InFolderview.mxml add a protected function called createFolder () under
onCreationComplete().InthmlneduxiusetheselectedDirectoryfﬂeObkxttocranea
new file object with the resolvePath () method. First retrieve the value set on the text input
component directoryName. If the text doesn’t return a value or is left blank, create a directory
with the path of untitled folder. Should text be set on the Text Input field, use the text

returned. Create the new folder by calling the createDirectory () method on the newDir file
object (Listing 7-22).

\, LISTING 7-22: Adding a method to create a new directory in the FolderView.mxml file

Available for protected function onCreationComplete():void
download on {
Wrox.com

selectedDirectory = data as File;
currentDirectory.text = selectedDirectory.nativePath;

protected function createFolder():void

{
var directoryName:String = directoryName.text;
var newDir:File;
if (!directoryName || directoryName == "")
{
newDir = selectedDirectory.resolvePath("untitled folder");
} else {
newDir = selectedDirectory.resolvePath(directoryName) ;
}
newDir.createDirectory();
}

9. Next make a call to the createFolder () method via the Create Folder button (Listing 7-23).

\, LISTING 7-23: Assigning the createFolder() method to a click event in FolderView.mxml

Available for <s:Button label="Create Folder"
d&\ﬁ_g?ggmon click="createFolder()"
height="55"

fontSize="24"/>

226 | CHAPTER7 WORKING WITH THE FILESYSTEM

10. Next return to the File view. In FileView.mxml add a protected function called createrile ()
below oncreationComplete (). Use the text property on the Text Input field £ileName
along with . txt to generate a filename string. Then use the resolverath () method on the
selectedDirectory to generate a new file object £i1e0bj (Listing 7-24).

\) LISTING 7-24: Adding the createFile() method to create a new file in FileView.mxml

Available for protected function onCreationComplete():void
download on {
Wrox.com

selectedDirectory = data as File;
currentDirectory.text = selectedDirectory.nativePath;

}

protected function createFile():void
{
var nameStr:String = fileName.text + ".txt";
var fileObj:File = selectedDirectory.resolvePath(nameStr);

11. Next use the newly created file object to create the new file through a FileStream object called fs.
Use FileMode.WRITE as the file mode to pass to the open () method of the file stream object along
with the file object. Then use the text property on the fileContent component to write

to the file via writeUTFBytes (). Finally call the close () method on the file stream object
(Listing 7-235).

\, LISTING 7-25: Creating the file stream in FileView.mxml

Availablefor protected function createFile():void
download on {

Wrox.com))
var nameStr:String = fileName.text + ".txt";

var fileObj:File = selectedDirectory.resolvePath (nameStr) ;

var fs:FileStream = new FileStream();
fs.open(fileObj, FileMode.WRITE);
fs.writeUTFBytes(fileContent.text);
fs.close();

}

12. Next make a call to the createFile () method via the Create Folder button (Listing 7-26).

\) LISTING 7-26: Assigning the createFile() method to a click event in FileView.mxml

s"a"?m%'of <s:Button label="Create File"

ownload on o : .

Wrox.com 01:!.ck— createFile()
height="55"

fontSize="24"/>

Modifying Files and Filesystems | 227

13. Finally update the FilesExploreraAppHome.mxml view. Above the exit () method create two
new functions to display the new views. Add the private folderview () method to show the
Folder view, then the fileview() method to show the File view. You need to call the
pushvView () method on the navigator property in each of the methods, supplying the respective
view component along with the selectedDirectory file object as the data for the view
(Listing 7-27).

\) LISTING 7-27: Navigating to the new views in FilesExplorerAppHome.mxml

Available for private function fileView():void
download on {
Wrox.com

navigator.pushView(views.FileView, selectedDirectory);

}
private function folderView():void
{
navigator.pushvView(views.FolderView, selectedDirectory):;
}

private function exit () :void
{

NativeApplication.nativeApplication.exit();

14. Next make a call to each of the view methods from their respective buttons. Set the c1ick event on
folderBtn to folderview() and for fileBtn set it to fileview() (Listing 7-28).

\) LISTING 7-28: Assigning folderView() and fileView() methods to click events in

FilesExplorerAppHome.mxml
Available for

download on . .
Wrox.com <sS:HGroup id="buttonContainer"

width="100%"
horizontalAlign="center">

<s:Button id="folderBtn"
label="New Folder"
click="folderView()"
height="55"
fontSize="24"/>

<s:Button id="fileBtn"
label="New File"
click="filevView()"
height="55"
fontSize="24"/>

</s:HGroup>

228 | CHAPTER7 WORKING WITH THE FILESYSTEM

15. Run the project. You will now see two buttons defined underneath the current directory label and the
List component — the first to create a new folder and the second to create a new file (Figure 7-8).

16. Click the New Folder button. This takes you to the Folder view and displays the directory

selected from the main view and a Text field that allows you to specify a name for the new
folder (Figure 7-9).

Quit Files Explorer Back Create a new Folder...

200811

200812 archive

e

200902

200903

we r r t ui o

% q y p

200905 al is] [dl &F g h j k |

200906 4 2z x cvbnme
FIGURE 7-8: The New Folder FIGURE 7-9: Creating a new
and New File buttons in the folder called “archive” in the
Files Explorer App running on Files Explorer App running on
Android 2.3.4 Android 2.3.4

17. Enter a name for the folder, then click the Create Folder button. This should generate the new folder
in the directory selected from the original list. Then click the Back button in the action bar to go
back to the main view. In the main view you now should see the new folder created (Figure 7-10).

18. Next select the new folder you have just created, then click the New File button. This takes you to
the File view and displays the directory selected from the main view. It also displays a Text field
that allows you to specify a name for the new file and a Text field that allows you to enter text for
the file. Enter a name for the file, then add some content to the text area. Then click the Create File
button. This should generate the new file in the directory selected from the original list. Figure 7-11
shows the Fileview.mxml file.

Utilizing Browse Dialogs | 229

Quit Files Explorer Back Create a new File...

archive
PAIBTN
200811
200812
200901
200902
200903

200904

FIGURE 7-10: Displaying the FIGURE 7-11: Creating a new file
new “archive” folder in the in the Files Explorer App running
Files Explorer App running on on Android 2.3.4

Android 2.3.4

UTILIZING BROWSE DIALOGS

For AIR on Android, three browse methods on the File object
allow you to reference image, video, and audio files using the mobile
device’s native window dialog;:

Upl

Audio Files

> browseForOpen (): To select a single file
> browseForOpenMultiple (): To select multiple files
> browseForSave (): To select a file to save to

On an Android mobile device, the browse dialog allows the
user to select only from audio, image, and video files, as shown in
Figure 7-12.

FIGURE 7-12: Displaying the
browse dialog to open files in
the Files Explorer App running
on Android 2.3.4

230

| CHAPTER7 WORKING WITH THE FILESYSTEM

WARNING On iOS, the browse APIs are not supported.

Opening a Single File

Using the browseForopen () method on a File object, you can present the user with a browse for
open file dialog on the mobile device, which will allow you to reference a file in the application.

The browseForopen () method takes two parameters. The first parameter is a title to be displayed
in the dialog, and the second is an optional file filter that can be used to filter the types of files a user
can select for opening.

The following snippet shows how a FileFilter object called audioFilter is defined to display all
MP3 file types, before the browseForopen () method is called on the File object filepir:

var audioFilter:FileFilter;
audioFilter = new FileFilter("audio", "*.mp3");

var fileDir:File = File.applicationStorageDirectory;
fileDir.addEventListener (Event.SELECT, onSelect);
fileDir.browseForOpen ("Select a file...", [audioFilter]);

In the constructor of the file filter the string audio is supplied as a description along with *.mp3, a
string representing the MP3 file extension. The browseForOpen () method is given two parameters.
The first is the string Select a file..., and the second is an array of FileFilter objects, though
here only the mediaFilter object is supplied.

In the example, addEventListener () is called on fileDir to register Event . SELECT, an event that is
fired when a user selects an item in the browse dialog. The handler for the event defined as onselect ()
returns a file object reference to the file selected in the target property of the Event object e.

Opening Multiple Files

Using the browseForOpenMultiple () method on a File object, you can present the user with a
browse file dialog to open and save files. Instead of Event . SELECT being fired when a user selects a
media file from the browse dialog, the FilelListEvent.SELECT MULTIPLE event is triggered. The
handler for the event returns an array of File objects in the target property instead of just a single file.

The following code snippet demonstrates how to use a browse dialog to select multiple files:

var fileDir:File = File.documentsDirectory;
fileDir.addEventListener (FileListEvent.SELECT MULTIPLE, onSelect);
fileDir.addEventListener (Event.CANCEL, onCancel);
fileDir.browseForOpenMultiple("Select files...");

In this example addEventListener () is called on the File object fileDir to handle the SELECT
MULTIPLE event. In addition, the Event .CANCEL event is also handled by an oncancel () when the
user clicks Cancel.

Take a look at browse dialogs in more detail.

Utilizing Browse Dialogs | 231

Opening Multiple Image Files

Over the next few steps you’ll try utilizing browseForOpenMultiple () by loading multiple images
selected from a browse dialog directly into a mobile application.

1. Under the exit () method in FilesExplorerAppHome.mxml, add another protected function
called selectMedia () that takes a single File object called fileObj as a parameter. In
selectMedia () define a FileFilter object called jpgFilter, which filters the jpeg extension
*.jpg (Listing 7-29).

\) LISTING 7-29: Defining a FileFilter object for selectMedia() in FilesExplorerAppHome.mxml

Availablefor private function exit():void
download on {
Wrox.com

NativeApplication.nativeApplication.exit () ;

}

protected function selectMedia(fileObj:File) :void
{
var jpgFilter:FileFilter;
jpgFilter = new FileFilter ("JPEG Files", "*.jpg");

2. Add an empty stub method called onselect () that takes a single parameter, Event object e. In
selectMedia () register an interest for the FileListEvent.SELECT MULTIPLE event on fileObj,
using onSelect () as the event handler. Then finally call the browseForopenmultiple () method,
supplying a title for the browse dialog and jpgFilter as the single file filter (Listing 7-30).

\, LISTING 7-30: Adding the SELECT_MULTIPLE event to the File object and calling the

browseForOpenMultiple() method in FilesExplorerAppHome.mxml
Available for
download on
Wrox.com Private function exit():void

{
NativeApplication.nativeApplication.exit();

}

protected function selectMedia(fileObj:File) :void
{
var jpgFilter:FileFilter;
jpgFilter = new FileFilter ("JPEG Files", "*.jpg");

fileObj.addEventListener (FileListEvent.SELECT MULTIPLE, onSelect);
fileObj.browseForOpenMultiple("Select 2 image files...", [jpgFilter]);
}

private function onSelect(e:Event):void {}

3. Inthe onselect () event handler, the event object triggered by the SELECT MULTIPLE event type
is passed to the method. Navigate to the Tmagesview view using the navigator.pushview ()
method, but only when the event object is of the FileListEvent type. The first parameter of

232 | CHAPTER7 WORKING WITH THE FILESYSTEM

the pushview () method should be the Images view; the second parameter should be the files
property returned by the event e, (Listing 7-31).

\) LISTING 7-31: Navigating to the Images view in onSelect() in FilesExplorerAppHome.mxml

Available for private function onSelect(e:Event) :void
download on {

Wrox.com
if(e is FileListEvent)
{

navigator.pushView(views.ImagesView, FileListEvent(e).files);

4. Adda<s:Button> to the view in FilesExplorerAppHome.mxml to call the selectMedia ()
method (Listing 7-32).

\) LISTING 7-32: Adding a horizontal group component containing the Open multiple media

button in FilesExplorerAppHome.mxml
Available for
download on . i
Wrox.com <S:HGroup id="buttonContainer"

width="100%"
horizontalAlign="center">

<s:Button height="55"
label="Open multiple media"
click="selectMedia(selectedDirectory)"
fontSize="24"/>

</s:HGroup>

<s:HGroup id="buttonContainer"
width="100%"
horizontalAlign="center">

<s:Button id="folderBtn"
label="New Folder"
height="55"
fontSize="24"/>

<s:Button id="fileBtn"
label="New File"
height="55"
fontSize="24"/>

</s:HGroup>

5. Next create a new view for the project called Tmagesview in the Views package. Add an
onCreationComplete () event handler method stub in the <fx:Script/> declaration and assign it

to the creationComplete property of the view component. Then add a title to the View Selected
Files (Listing 7-33).

Utilizing Browse Dialogs

233

\, LISTING 7-33: Assigning values to the title and creationComplete in ImagesView.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

download on . view xmlns:fx="http://ns.adobe.com/maml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Selected files..."

creationComplete="onCreationComplete()">

<fx:Script>
<! [CDATA[
protected function onCreationComplete():void {}

11>
</fx:Script>

</s:View>

6. Next under onCreationComplete () add a private method called back () to return to the

FilesExplorerAppHome view, and add the call to a button in the <s:navigationContent>
declaration (Listing 7-34).

\, LISTING 7-34: Adding a <s:Button> to navigate back in ImagesView.mxml

Available for <?xml version="1.0" encoding="utf-8"?>
dwmtgag" <s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"

title="Selected files..."
creationComplete="onCreationComplete() ">

<fx:Script>
<! [CDATA[
protected function onCreationComplete():void {}

private function back():void

{

navigator.pushView(views.FilesExplorerAppHome) ;

11>
</fx:Script>

<s:navigationContent>
<s:Button label="Back"
click="back()"/>
</s:navigationContent>

</s:View>
7. Under the <s:navigationContent> component add a vertical group component <s : VGroup>,

with paddingLeft and paddingTop set to 10. Within the vertical group add two <s: Image>
components, with their 1d properties set to img0 and img1 (Listing 7-35).

234 | CHAPTER7 WORKING WITH THE FILESYSTEM

\, LISTING 7-35: Adding a vertical group of <s:Image> components to the view in

ImagesView.mxml

Available for
download on ,)
Wrox.com <s:navigationContent>

<s:Button label="Back"
click="back()"/>
</s:navigationContent>

<s:VGroup paddingTop="10"
paddingLeft="10">

<s:Image id="imgO0"/>
<s:Image id="imgl"/>

</s:VGroup>

8. After onCreationComplete(), add another private method stub called displayImage () that
accepts two parameters: url, a string representing the path to the image; and img, an Image
type referencing the image component in which to display. Set the source property of the image
object img to the url value passed to the method (Listing 7-36).

\’ LISTING 7-36: Setting the source on the image object in ImagesView.mxml

Available for protected function onCreationComplete():void {}

download on
Wrox.com i i .
protected function displayImage(url:String, img:Image):void
{
img.source = url;
}

9. Lastly in onCreationComplete () cast the data object retrieved in the view to an Array
variable called selectedriles. Add a File type variable fileobj. Then iterate through the
selectedFiles array and call the displayTImage () method supplying £ileobj.url, and a
reference to the image component id using this["img" + i] (Listing 7-37).

\) LISTING 7-37: Calling the displaylmage() method via onCreationComplete() in

ImagesView.mxml
Available for

download on . . .
Wrox.com Protected function onCreationComplete():void

{
var selectedFiles:Array = data as Array;
var fileObj:File;

for (var i:int = 0; 1 < 2; i++)

{

Utilizing Browse Dialogs | 235

fileObj = selectedFiles[i];

if (fileObj.exists)
displayImage(fileObj.url, this["img" + i]):;

}

10. Now run the project as it is. Click the Open Multiple Media button. You will see the browse dialog
appear, as shown in Figure 7-13.

Upload

Image Files

FIGURE 7-13: Browsing for
multiple image files in the
Files Explorer App running on
Android 2.3.4

NOTE The text supplied as the title parameter for the browseForOpenMultiple ()
and browseForOpen () methods does not appear in the browse dialog on a
Google Nexus One running Android 2.3.4. In Figure 7-13 and Figure 7-14 you will
see Upload appear as the title.

11. In the browse dialog, select Image Files, then choose two image files (Figure 7-14).

12. Click OK. The Imagesview.mxml view will open and show the images you selected (Figure 7-15).

236

| CHAPTER7 WORKING WITH THE FILESYSTEM

al B oz al B oza9

Back Selected files...

Upload

air.jpg

FIGURE 7-14: Selecting the FIGURE 7-15: Displaying the
flash.jpg and air.jpg files in the selecting images in the Files
Files Explorer App running on Explorer App running on
Android 2.3.4 Android 2.3.4

Saving a Single File to a Location

The browseForsave () method presents a dialog containing a list
of files, and allows a user to save a file to a location on the mobile
device.

The following snippet shows how to call browseForsave ():

var fileDir:File = File.applicationStorageDirectory;
fileDir.addEventListener (Event.SELECT, onSelect);
fileDir.browseForSave ("Save file...");

As with browseForOpen (), Event . SELECT needs to be registered
with the file object to handle when the user selects the OK button to
confirm saving the file (Figure 7-16).

all B oz52

Download

fmnt/sdcard// m

Audio Files

Image Files

Video Files

FIGURE 7-16: Savingto a
directory using the browse
dialog in the Files Explorer App
running on Android 2.3.4

Summary |

237

@ NOTE The text supplied as the title parameter for the browseForSave ()
method doesn’t appear in the browse dialog on a Google Nexus One running
Android 2.3.4. In Figure 7-16 you will see Download appear as the title, and not
Save File as highlighted in the snippet.

SUMMARY

Over the course of this chapter you have learned how to utilize the AIR File System API using a
combination of Flash, Flex, and AIR to build the Files Explorer project.

The File and FileStrean classes are the key aspects of the AIR File System API, and can be
used in a number of ways to read, write, and modify aspects of any existing filesystem via a Flash
application, including: listing the files and folders of a directory; creating text files; and selecting
media files to open on the device.

In the next chapter you’ll use aspects of the AIR File System API to work with app data, focusing
more on the application storage directory.

Before moving on to the next chapter, you can integrate a number of functions covered in this
chapter into the Files Explorer project. The following set of exercises should allow you to explore
these event types and appreciate gestures in more detail.

EXERCISES

1.

2.

Use a checkbox in the FilesExplorerAppHome .mxml View to toggle between displaying files and

folders in the List component.

Use a button in FilesExplorerAppHome .mxml t0 read a . txt text file highlighted in the List
component.

Inthe Fileview.mxml add an option to delete a file.
In the Folderview.mxml add an option to move a folder to another directory.

Modify the List component used in FilesExplorerAppHome.mxml to display the creation date,
size, space available, and (for a file) the file extension.

238 | CHAPTER7 WORKING WITH THE FILESYSTEM

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

Creating file objects

Creating file objects from
static locations

Resolving file object
paths

Writing to files

Modifying files and
directories

Using browse dialogs

KEY CONCEPT

Use one of three URL schemes to create a file object: app: /;
app-storage:/;and file://.

Use one of five static properties to reference a file object, including:
File.applicationDirectory
File.applicationStorageDirectory
File.documentsDirectory

File.desktopDirectory,and File.userDirectory

Use resolvePath () on a file object to refine a target path.

Use the FileStream and FileMode objects to write to a file.

Set the file mode to FileMode .WRITE when opening a file stream to
write to a file.

Use writeUTFBytes () to write content to a file.

Use moveTo () on the file object to move to a file path.

Use copyTo () on the file object to make a duplicate of the file object.
Use deleteFile () to remove a file.

Use deleteDirectory () to remove a folder.

Use browseForOpen () to open a single file and use
browseForOpenMultiple () to open multiple files.

Use browseForSave () to save a file object to the mobile device.

- l,:.__};..__-'.- wvvww!

90008 = L L

-4 -
0000000 RPROGSIESESITS -

Working with Data

WHAT YOU WILL LEARN IN THIS CHAPTER:

Implementing network detection
Handling changes in network availability
Monitoring URL requests

Exploring SQLite operations

Y Y Y VY Y

Utilizing databases and tables

In this chapter you’ll build a Flex mobile example utilizing SQLite, and incorporate the
concept of saving Formula 1 racing team data to a database. If you don’t know much about
Formula 1, don’t worry; you’ll just be referencing a database of basic team data.

The data created by the application will be modifiable on the mobile device, so you will be
able to create a team and add drivers, update the values, and remove them from the database,
directly from the app.

SQL provides an avenue for creating mobile applications with self-contained data using Adobe
AIR. You need to take a number of steps to open a database stored on the device and you
should take a look at these first.

You’ll begin in this chapter by implementing network detection, and learning how you can
retrieve data over an available Internet network.

DETECTING CHANGES IN NETWORK AVAILABILITY

It’s important to have a backup when working with online data services. It’s also useful for the
user to know what the status is when a network service changes.

240 | CHAPTER8 WORKING WITH DATA

Retrieving Data with URLRequest

You request remote data via an HTTP URL path through using the URLRequest and URLLoader
classes. Both classes are found in the flash.net package and need to be imported in ActionScript
mobile projects, as shown in the following snippet:

import flash.net.URLRequest;
import flash.net.URLLoader;

Because they are part of the same package, they can also be imported using the star notation,
indicating that all classes within that package should be imported into the document:

import flash.net.*;

The following snippet shows a request for remote data, using two variables — a URLRequest object
called urirequest, and a URLLoader object called urlt.oader:

var urlRequest:URLRequest;
urlRequest = new URLRequest ("http://localhost/wrox/ch8/data.txt");

var urlLoader:URLLoader;
urlLoader.load (urlRequest) ;

In this example the HTTP URL path http://localhost/wrox/ch8/data.txt is supplied as a
parameter in the constructor of the URLRequest object. Instead of passing the URL to the class
constructor function, you can set the URLRequest .url property to reference the path:

urlRequest.url = "http://localhost/wrox/ch8/data.txt";

The URLLoader.1load () method is what triggers the data load request. To handle the loading of
data the Event.coMPLETE event should be handled on the urizoader object.

NOTE You will need to set up a local host or use a remote server to run the
initial examples in this section.

Monitoring the URLRequest Object

When a network connection is available on a mobile device, the data retrieved by an application
can be presented to a user. Should the network become unavailable, online data cannot be utilized by
an application.

This poses potential problems for data-centric applications that rely on network connectivity, and
so one of the roles of the URLMonitor class is to provide a solution that allows you to monitor a
particular URL request and then notify the application if there are any changes in being able to
execute that request.

The URLMoni tor class is found in the air.net package and needs to be added to the import
declarations, as shown in the following snippet:

import air.net.URLMonitor;

Detecting Changes in Network Availability | 241

In the following snippet you see that the URLMonitor object, called uriMonitor, is initialized via
the URLMonitor.start () method:

var urlRequest:URLRequest;
urlRequest = new URLRequest ("http://localhost/wrox/ch8/data.txt");

var urlMonitor:URLMonitor = new URLMonitor (urlRequest) ;
urlMonitor.start () ;

The constructor for the new URLMonitor object takes a URLRequest object as a parameter, and in
this example this is the same URLRequest object being used to reference the data file.

The StatusEvent Object

The statusEvent class has a single event-type value called statusEvent . STATUS, which should be
used by the URLMoni tor object to register an interest in status changes in network service availability.
Whenever a change in network availability occurs in the mobile application, the statusEvent object
is dispatched.

Each statusEvent object has a statusEvent.code property that will return one of the following
two values in an event handler that listens for the StatusEvent . STATUS event:

» "Service.available": This is the String value indicating that there is network availability.
» "Service.unavailable": This is the String value indicating that there is no network
availability.

Both these values can therefore be used to determine whether an application should be online or offline.

To retrieve the code property, the URLMoni tor object needs to register an interest in the StatusEvent
. STATUS event using the URLMonitor.addEventListener () method, as shown in the following snippet:

var urlMonitor:URLMonitor = new URLMonitor (urlRequest) ;
urlMonitor.addEventListener (StatusEvent.STATUS, onStatus);
urlMonitor.start();

The event handler for the statusEvent.STATUS event in this example is onStatus (), and this is
where you should be able to handle the changes in network connectivity.

Next, try out displaying the change in status.

Creating the Maintaining Data App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defining the Flex Mobile Project Settings

The following lists a few of the familiar settings that you will need to ensure are defined for the project:
> Name: Set the Name for the project to MaintainingDataApp.

> Application ID: Set the Application ID to com.wrox.ch8.MaintainingDataApp.

242 | CHAPTER8 WORKING WITH DATA

> Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to MaintainingDataAppHome.

Targeting Mobile Devices on Different Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple iOS,
Google Android, and BlackBerry Tablet OS. No permissions need to be specified for either of the
target platforms.

Creating Run and Debug Configurations

You can elect to run this project on the desktop or directly on your mobile device. For consistency,
this chapter uses a Google Nexus One as the connected device.

Displaying the Change in Status of Network Availability

In the following steps, you’ll begin to create Maintaining Data App, a Flex mobile project that will
initially display the change in the network availability on a device. Later this application will be
developed into an app that allows you to create data via the app, retrieve it, delete or update it — hence
a “maintaining data” theme:

1. In the Package Explorer, navigate to the default package, open the MaintainingDataApp.mxml file,
and then add a new style declaration for each of the <s:view> components in the project, setting
the backgroundcolor property to #999999 and the color property to #454545 (Listing 8-1).

\) LISTING 8-1: Setting style properties on the application’s <s:View> components in

MaintainingDataApp.mxml

Available for
download on . .
Wrox.com <?xml version="1.0" encoding="utf-8"?>

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.MaintainingDataAppHome"
applicationDPI="160">

<fx:Style>
@namespace s "library://ns.adobe.com/flex/spark";
s|View
{
backgroundColor:#999999;
color:#454545;
}

</fx:Style>

</s:ViewNavigatorApplication>

2. In the Package Explorer, navigate to the Views package, open the MaintainingDataAppHome . mxml
file, and replace the generated code with that shown in Listing 8-2.

Detecting Changes in Network Availability | 243

\, LISTING 8-2: The initial starting point for MaintainingDataAppHome.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

dwmg:ggn <s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Maintaining Data App"
creationComplete="onCreationComplete">

<fx:Script>
<! [CDATA[

private function onCreationComplete():void {}

11>
</fx:Script>

<s:layout>

<s:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingTop="20"
paddingBottom="20"/>

</s:layout>
</s:View>

3. Note that the <s:Label> component with the id property is set to urlStatus; the width is set
to 100%; the height is set to 30; the fontSize is set to 18; and the text is set to URL Status
(Listing 8-3).

\, LISTING 8-3: Adding a <s:Label> component to the <s:VGroup> layout to display URL status in

MaintainingDataAppHome.mxml

Available for
download on
Wrox.com <S:layout>

<s:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingTop="20"
paddingBottom="20"/>

</s:layout>
<s:VGroup width="100%" height="150">

<s:Label id="urlStatus"
width="100%"
height="30"
paddingLeft="5"
fontSize="18"
text="URL Status"/>

</s:VGroup>

244 | CHAPTERS8 WORKING WITH DATA

Here the MaintainingDataAppHome .mxml file contains a single label that is going to display the status
of the network availability. The text property of the label should display the statusEvent.code value.

4. Within the <fx:Script> declaration, import the URLRequest and URLMoni tor classes (Listing 8-4).

\) LISTING 8-4: Importing the URLMonitor and URLRequest classes in

MaintainingDataAppHome.mxml

Available for
download on i
Wrox.com <fx:Script>

<! [CDATA[

import air.net.URLMonitor;
import flash.net.URLRequest;

private function onCreationComplete():void {}

11>
</fx:Script>

5. Define two URLMonitor and URLRequest Object variables called ur1Monitor and urlRequest,
respectively. Then in onCreationComplete () instantiate urlMonitor with the URLRequest
object, which should be created from the data file data. txt, located on a local host (Listing 8-5).

\, LISTING 8-5: Creating urlRequest and urlMonitor in MaintainingDataAppHome.mxml

Available for import air.net.URLMonitor;

downloadon . flash .

Wrox.com LmPort ash.net.URLRequest;
private var urlMonitor:URLMonitor;
private var urlRequest:URLRequest;

private function onCreationComplete () :void

{

urlRequest new URLRequest ("http://localhost/wrox/ch8/data.txt");
urlMonitor = new URLMonitor (urlRequest);

6. Next, under onCreationComplete () add a new private function called onStatus ().
Register the StatusEvent.STATUS event type and onstatus () with the uriMonitor via
addEventListener (), then call start () to initialize the URLMonitor object. Finally, in
onStatus () set the text property on the urlstatus label to the e.code value (Listing 8-6).

\) LISTING 8-6: Initializing urlMonitor and displaying the updated status code in

MaintainingDataAppHome.mxml
Available for

download on
Wrox.com Private function onCreationComplete():void

{
urlRequest = new URLRequest ("http://localhost/wrox/ch8/data.txt");

urlMonitor = new URLMonitor (urlRequest) ;

Detecting Changes in Network Availability | 245

urlMonitor.addEventListener (StatusEvent.STATUS, onStatus);
urlMonitor.start();
}

private function onStatus(e:StatusEvent):void

{
urlStatus.text = e.code;
}

The data. txt file contains a number of name-value pairs representing a number of teams and drivers
from Formula 1, as shown in Listing 8-7.

@ LISTING 8-7: The contents of the data.txt file

dAvailillhll(eifor tl=Mclaren&t2=Red Bull&dl=L. Hamilton&d2=J. Button&d3=S. Vettel&d4=M. Webber
ownload on
Wrox.com r.Talas

Maintaining Data App

7. Next run the example using a desktop run configuration for
Google Nexus One. To demonstrate the change in network
availability, turn your computer’s Internet connection on and
off. Figure 8-1 shows what is displayed when the service is
unavailable.

At this point you can see that the application displays the status of the
network service availability.

To utilize the network when the service is available you can use a
conditional statement to invoke the URLLoader class and load the data.
Follow the next steps to do just that:

8. Under the urlstatus <s:Label> component add a
<s:TextArea> component with an id property set to
dataResult, the width property set to 100%, the height set
to 66, the fontSize set to 18 and prompt property set to
No data yet (Listing 8-8). FIGURE 8-1: Displaying the

Service.unavailable message in
Maintaining Data App running on
the desktop

@ LISTING 8-8: Adding the dataResult Text Area component to display data returned in

MaintainingDataAppHome.mxml

Available for

I
d“mgxﬁﬁg,g“ <s:VGroup width="100%" height="150">

<s:Label id="urlStatus"
width="100%"
height="50"
paddingLeft="5"
fontSize="18"
continues

246 | CHAPTER8 WORKING WITH DATA

LISTING 8-8 (continued)
text="URL Status"/>

<s:TextArea id="dataResult"
width="100%"
height="66"
fontSize="18"
prompt="No data yet."/>

</s:VGroup>

9. Next import the URLLoader, adding another private variable called urlLoader of the same type.
Then in onStatus () use the e.code value to load the ur1rRequest when the Service.available
status is returned (Listing 8-9).

\, LISTING 8-9: Initializing urlLoader using the URLRequest object in

MaintainingDataAppHome.mxml

Available for

download on . , .
Wrox.com 1mport air.net.URLMonitor;

import f£lash.net.URLLoader;
import flash.net.URLRequest;

private var urlMonitor:URLMonitor;
private var urlLoader:URLLoader;
private var urlRequest:URLRequest;

private function onCreationComplete():void

{
urlRequest = new URLRequest ("http://localhost/wrox/ch8/data.txt");

urlMonitor = new URLMonitor (urlRequest) ;
urlMonitor.addEventListener (StatusEvent.STATUS, onStatus);
urlMonitor.start();

private function onStatus(e:StatusEvent) :void

{

urlStatus.text = e.code;

if(e.code == "Service.available")

{
urlLoader = new URLLoader();
urlLoader.addEventListener (Event .COMPLETE, onLoadComplete);
urlLoader.load(urlRequest);

private function onLoadComplete(e:Event) :void

{
dataResult.text = urlLoader.data;

Using SQLite for Storing Data | 247

When the data. txt file is loaded via the URLLoader into the application, its contents are displayed
(Figure 8-2).

The aim of the network connection is to retrieve data that the application can use directly when the
request has been successful. This data could potentially be stored on the mobile device once loaded so
the user can use it in an offline mode.

Of course, when the service is unavailable you get the “No data yet” message, as shown in Figure 8-3.
If you recall, in Listing 8-8 this value is set on the prompt property of the <s:TextInput> component,
and so is there by default when the application launches.

e . - " e

Maintaining Data App Maintaining Data App

t1=Mclaren&t2=Red Bull&d1=L.
Hamilton&d2=J. Button&d3=5.
Vettel&dd4=M. Webber

FIGURE 8-2: Displaying the FIGURE 8-3: Displaying the
contents of the data.txt file Service.unavailable message in
when the service is available in Maintaining Data App running
Maintaining Data App running on the desktop

on the desktop

In the next section you’ll take a look at one of the ways in which you can store data offline, using
SQLite.

USING SQLITE FOR STORING DATA

AIR for mobile devices has the support for SQLite (www.sqglite.org), which is a database local
to the mobile application. SQLite is a software library that implements a SQL (Structured Query
Language) database engine, allowing you to store and use complex data as part of your Flash-based

248 | CHAPTER8 WORKING WITH DATA

mobile applications. SQL is a language for accessing and manipulating databases, and with it you
can perform a number of operations, including;:

Executing queries against a database
Retrieving data from a database

Inserting records into a database

Y Y VY

Updating records in a database
> Deleting records from a database

In the following subsections you’ll take a look at each of these core operations and learn how to use
SQLite, starting with creating a SQLite database.

Creating a SQLite Database

To create a database, you need to asynchronously resolve a file path pointing to a database file
(.db file), and then open the file via a SQL connection using the sQL.Connection class.

To create a database connection, you need to import the sQL.Connection and the sQL.Event classes:

import flash.data.SQLConnection;
import flash.events.SQLEvent;

To handle errors that may arise in connecting to a database, you should also import the
SQOLErrorEvent class:

import flash.events.SQLErrorEvent;

To open a connection to the database:

1. Create a File object reference pointing to the database file (. db file) in the 1oadpata ()
method.

2. Instantiate a new SQLConnection object.

3. Define a new private function called onopen (). Then use addEventListener () to register
the SQLEvent . OPEN event on the SQL.Connection object and assign it onOpen () as the event
handler.

4. Use the openasync () method on the sgLConnection object, passing the File object
reference as a parameter.

You’ll take a more in-depth look at these steps in the next activity.

The sgLconnection object used to create and open the connection to the database is returned on
the SQLEvent. target value in the event handler. You can use the SQLConnection.connected
property on target to determine whether or not a successful connection to the database was made.

Database Tables

Tables are where data is created and stored in a database file. Tables are essentially made up of rows
and columns, with each row representing a single data object entry and each column representing a

Using SQLite for Storing Data | 249

property assigned to that data object. Then within the row itself a value is assigned to that column.
In each table one column is designated as the primary key, a property of the data object that must
have a unique value to distinguish it from all other data object entries in the table. This is typically
an ID and is automatically generated when a new entry is added.

When you interact with a database to add new data or update existing data, you always reference
the table name and a unique key value to reference a data object entity.

SQLite databases can hold any number of tables depending on file-size restrictions for the individual
database. Tables can also be linked to other tables when a column or field in one table matches a
column or field in the other.

To create a table and populate it with data, you need to use a sequence of SQL statements using the
flash.data.SQLStatement class. A number of SQL statement operations will allow you to carry

out various functions on the data contained within the database. The core ones are highlighted in
Table 8-1.

TABLE 8-1: Core SQL Statement Operations

SQL STATEMENT DESCRIPTION

CREATE Creates a table in a database, using the following syntax:

CREATE TABLE tableName (columnl dataType, column2 dataType,...)

INSERT Inserts a new row in a table, using the following syntax:
INSERT INTO tableName (columnl, column2, column3,...)

VALUES (valuel, value2, value3,...)

SELECT Selects data from a database, using the following syntax:
SELECT columnName (s)

FROM tableName and SELECT * FROM tableName

UPDATE Updates existing records in a table, using the following syntax:
UPDATE tableName
SET columnl=value, column2=value2, ...

WHERE someColumn=someValue

DELETE Deletes rows from a table, using the following syntax:
DELETE FROM tableName

WHERE columnName=someValue

JOIN Selects data matching in multiple tables, using the following syntax:
SELECT columnName (s)
FROM someTable

JOIN ON tableNamel.columnName=tableName2.columnName

250 | CHAPTERS8 WORKING WITH DATA

The SQLStatement Object

To execute a SQL statement using ActionScript 3.0, the sQL.Statement class needs to be imported:
import flash.data.SQLStatement;
The class has a number of properties and methods that you will need to use to interact with

databases:

> SQLStatement.sglConnection: A SQLConnection property representing the SQL
connection assigned to the SQL statement

> SQLStatement.text: A string representing the SQL text

> SQLStatement.parameters: An array of strings, each string representing a parameter
associated with a table column referenced in the SQL text

> SQLStatement . execute (): A method to run the SQL statement

Following the creation of a new sQL.Connection object, the use of SQL statements essentially
involves the following definitive steps:

1. Instantiate a new SQLStatement object.

2. Assign the sQL.Cconnection object to the sQLStatement . sglConnection property.
3. Define event handlers for soLEvent .RESULT and SQLError.Event . ERROR.

4. Pass a SQL query to the SQLStatement . text property.

5. Call the SQLStatement.execute () method.

Over the next few sections you’ll take a more in-depth look at Step 4, which involves using SQL
statements and each of the commands outlined in Table 8-1.

Creating a SQLite Table

In the following snippet you see that the table Teams is created with two columns, the 1D column
and TNAME column:

var sqglText:String = "CREATE TABLE Teams ("
"ID INTEGER PRIMARY KEY, "
"TNAME TEXT)";

+ o+

Each value supplied in the parentheses for the CREATE TABLE SQL statement is in a particular order.
Following the column name is the ID column. The next value is the column type, which is defined
as an INTEGER; for TNAME the column type is TEXT. The 1D is also defined as the PRTMARY XKEY. Each
new column defined for a table is separated by a comma (,).

Saving Data to Tables

Saving to a SQLite database involves inserting data into a table. To insert data into a table the
SQLStatement .parameters property needs to be defined before executing the SQL statement.

Using SQLite for Storing Data | 251

For each value you want to insert you need to specify the table column it corresponds to, using the
INSERT INTO query. You specify the table name followed by an opening bracket and the column
names separated by commas after the closing bracket and a space; you then use the VALUES operator
followed by the values you want to insert into the columns you’ve specified.

In the following snippet you see that the value Ferrari is supplied as a new team name for the

TNAME column:

insertStatement = new SQLStatement () ;
insertStatement.text = "INSERT INTO Teams (TNAME) VALUES (Ferrari)";
insertStatement.execute() ;

Here this is done directly in the SQL text.

Using parameters that are defined on the sQLStatement .parameters property, you can dynamically
insert data into tables using values from your mobile application.

var sqglText:String = "INSERT INTO Teams (TNAME) VALUES(:tname)";
insertStatement = new SQLStatement () ;

insertStatement.text = sglText;
insertStatement.parameters[":tname"] = "Ferrari";
insertStatement.execute() ;

Notice here that the parameter for VALUES in the SQL text tname is preceded by a colon (:) in
parentheses. This denotes that the text : tname is actually a parameter. To set a value for tname, the
parameter’s object references : tname.

Retrieving Data from a Table

To retrieve all the data entries in the table called Teams, you would use the SQL text highlighted in
the following snippet:

var sqglText:String = "SELECT * FROM Teams";

The sELECT operation followed by an asterisk (*) denotes that all the data objects, that is, all rows,
should be retrieved from the table.

To retrieve a single data row entry you need to reference the primary key and use the WHERE
operator, as shown in the following snippet:

var sqglText:String = "SELECT * FROM Teams WHERE ID = 2";

Here the table row entry that has an 1D value of 2 would be retrieved from the database.

NOTE The sQLResult class has a data property containing an array of objects
returned from the SQL request. Each row returned via a SQL operation represents
an index of the array, where data[0] is the first result to be returned.

252

| CHAPTER8 WORKING WITH DATA

Instead of retrieving all data objects from a table, you can specify a table column property after the
SELECT operator to retrieve a specific value from the table. The following snippet shows how you
would retrieve the value of the property TNAME from the table row that has an 1D value of 3:

var sqglText:String = "SELECT TNAME FROM Teams WHERE ID = 3";

The result of executing this SQL statement should return only one row from the database as long as
the 1D column was a primary key.

Updating Table Data

To update data already stored in the database, you need to use the uppaTE SQL statement. The
UPDATE statement requires you to reference the primary key, along with values for each of the
properties you want to update in a table.

The following code snippet shows how you would update the property TNAME in the Teams table,
which corresponds to the row that has an D value of 1:

var sqlText:String = "UPDATE Teams SET TNAME = McLaren WHERE ID = 1";

Notice that you need to define the name of the table you want to update; immediately after the table
name the SET operator is used.

Deleting Data from Tables

To remove data from a table, you need to use the DELETE FrRoM SQL statement. The following snippet
demonstrates how you would define the SQL to remove a team that has an 1D value equal to 1:

var sqglText:String = "DELETE FROM Teams WHERE ID = 1";

With a well-structured table, you should need to supply the value only for your primary key to
delete a single row.

You can also provide a number of values to remove from the database:
var sqglText:String = "DELETE FROM Teams WHERE ID = 1 OR 2";

Having covered the key SQL elements, you can now apply what you have learned in the next activity.

Using SQLite to Create, Save, Update, and Delete Data

Begin by modifying the Maintaining Data App project to open a connection to a database. This file
should have the oncreationComplete () ,onStatus (), and onLoadComplete () methods covered
previously. In this section you may assign a few functions that haven’t been covered. Don’t worry; these
will be explained in due course.

1.

Add a <s:Label> and <s:TextArea> component to a <s:VGroup> container. Set the id
property on the components to dbstatus and dbPath, respectively, the width property on both
components to 100%, and the fontSize to 18. Then set the height of the label to 25, and text
area to 80. Set the value of the text property on the label to Database Status, and the prompt
property on the text area to Database Path (Listing 8-10).

Using SQLite for Storing Data | 253

\, LISTING 8-10: Adding a label and text area to display the native path and status of team.db in

MaintainingDataAppHome.mxml

Available for
download on
Wrox.com <S:layout>

<g:VerticallLayout paddingLeft="20"
paddingRight="20"
paddingTop="20"
paddingBottom="20"/>
</s:layout>

<s:VGroup width="100%">

<s:Label id="dbStatus"
width="100%"
height="25"
paddingLeft="5"
fontSize="18"
text="Database Status"/>

<s:TextArea id="dbPath"
width="100%"
height="80"
fontSize="18"
prompt="Database Path"/>

</s:VGroup>

2. Within a <s:HGroup> container, add a <s:Button> component with the 1abel property set to
Open Database, the height property to 50, and its c1ick property set to openDb (). Also set the
id property to dbBtn (Listing §-11).

\, LISTING 8-11: Adding a <s:Button> to open the database in MaintainingDataAppHome.mxml

Available for <s:VGroup width="100%">
download on
Wrox.com)

<s:Label id="dbStatus"

width="100%"

height="25"
paddingLeft="5"
fontSize="18"
text="Database Status"/>

<s:TextArea id="dbPath"
width="100%"
height="80"
fontSize="18"
prompt="Database Path"/>

<s:HGroup width="100%"
height="65"
continues

254 | CHAPTER8 WORKING WITH DATA

LISTING 811 (continued)

verticalAlign="middle">

<s:Button id="dbBtn"
label="Open Database"
height="50"
click="openDb()"/>

</s:HGroup>

</s:VGroup>

3. Under the first <s:HGroup> component add a second <s : HGroup> component that contains
a single button with the 1abel property set to View Teams and its click event set to the
viewTeams () method, which you define later (Listing 8-12).

\) LISTING 8-12: Adding a <s:Button> to view teams in MaintainingDataAppHome.mxml

ﬁvﬂﬁbﬁim <s:HGroup width="100%"

ownload on . o

Wrox.com height="65
verticalAlign="middle">

<s:Button id="dbBtn"
label="0Open Database"
height="50"
click="openDb()"/>

</s:HGroup>

<s:HGroup width="100%"
height="50">

<s:Button id="viewBtn"
height="50"
visible="false"
label="View Teams"
click="viewTeams()"/>

</s:HGroup>

With the View components and layout defined, let’s take a look at the plumbing.

4. Import the File class and declare a File object variable called db in the project (Listing 8-13).

\) LISTING 8-13: Updating the import statements and declaring the database File object in

MaintainingDataAppHome.mxml

Available for

download on . , .
Wrox.com 1mport air.net.URLMonitor;

import flash.filesystem.File;
import flash.net.URLLoader;
import flash.net.URLRequest;

private var urlMonitor:URLMonitor;

Using SQLite for Storing Data | 255

5.

O

Available for
download on
Wrox.com

O

Available for
download on
Wrox.com

private var urlLoader:URLLoader;
private var urlRequest:URLRequest;
private var db:File;

Next add a private method called opendb () within the <fx:Script> declaration. Ensure the File
object reference db resolves to a database file in the application storage directory called teams.db
in openDB () (Listing §-14).

LISTING 8-14: Resolving a file path to the database via openDb() in
MaintainingDataAppHome.mxml

private function onLoadComplete(e:Event) :void
{

dataResult.text = urlLoader.data;

}

private function openDb() :void
{
db = File.applicationStorageDirectory.resolvePath("teams.db");

Next create a new SQLConnection object called sqlConnection and use the openaAsync ()
method to open the database file. Use addEventListener () to register an interest in the
SQLErrorEvent . ERROR and SQLEvent .OPEN event types, assigning onSQLError () to the ERROR
event, then use an if statement to determine whether the database file already exists to assign
the sQLEvent . OPEN event. If the database doesn’t exist, assign the event to onCreateDb ().

If the database does exist, assign the SQLEvent .OPEN event to onOpenDb (), while also displaying
the nativePath value in the <s:TextField> component dbPath. There should be three method
stubs, one for each event. (Listing 8-15.)

LISTING 8-15: Opening a connection to the database in MaintainingDataAppHome.mxml

import flash.data.SQLConnection;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;
import flash.net.URLLoader;

import flash.net.URLRequest;

private var urlMonitor:URLMonitor;
private var urlLoader:URLLoader;

private var urlRequest:URLRequest;
private var sqglConnection:SQLConnection;
private var db:File;

private function openDb () :void
{

db = File.applicationStorageDirectory.resolvePath("teams.db");

sqlConnection = new SQLConnection();
continues

256 | CHAPTER8 WORKING WITH DATA

LISTING 8-15 (continued)
sqlConnection.addEventListener (SQLErrorEvent .ERROR, onSQLError);

if (db.exists)

{
sqglConnection.addEventListener (SQLEvent .OPEN, onOpenDDb);
dbPath.text = db.nativePath;

} else {

sglConnection.addEventListener (SQLEvent .OPEN, onCreateDb);

sqlConnection.openAsync (db) ;
}

private function onCreateDb(event:SQLEvent) :void {}
private function onOpenDb(e:SQLEvent) :void {}

private function onSQLError (e:SQLErrorEvent):void {}

There isn’t exactly a listener for creating a new database, so remember that you have to determine
whether the database file exists. If the database doesn’t exist, assign the SQLEvent .OPEN event to an
onCreateDb () event handler, and if it does, assign the SQLEvent . OPEN event to an onOpenDb () event
handler. Here when the openaAsync () method is called on the database file, it will automatically create
the database on a valid file path. In onCreateDb () you can then call the openasync () to open the
database. We’ll take a look at this next.

7. Next modify onCreateDb () and onOpenDb () to update the database status text field dbstatus.
When the database is opened, check to see whether the sor.connection object returned is still
connected via the sQLConnection.connection property; if it is, ensure the visible property on
the viewBtn is set to true (Listing 8-16).

\, LISTING 8-16: Displaying the database creation, opening, and connection statuses in

MaintainingDataAppHome.mxml
Available for
download on . . .
VWuxcum private function onCreateDb (e:SQLEvent) :void
{
dbStatus.text = "The database was created...";
createTeamsTable() ;

}
private function onOpenDb (e:SQLEvent) :void
{

dbStatus.text = "The database was opened...";

if (SQLConnection(e.target) .connected)

Using SQLite for Storing Data | 257

viewBtn.visible = true;

dbBtn.enabled = false;
}

8. Next update the onSQLError () method, using the SQLErrorEvent object returned, e, to display
the error1D and the details values (Listing 8-17).

\) LISTING 8-17: Displaying the SQL error status in MaintainingDataAppHome.mxml

Available for
download on

Wrox.com private function onSQLError (e:SQLErrorEvent) :void

"Error id:"
e.error.errorID
"\nDetails:"
e.error.details;

var err:String

+ + +

dbstatus.text = err + = "Error";

dbBtn.enabled = false;

Several errors can trigger the SQLErrorEvent . ERROR event type. For instance if you attempt to insert
or update data into a table that hasn’t been created yet, you are returned a SQLErrorEvent object
with the error1D value set to 3115 and details property set to a No Such Table TableName, where
TableName is the name of the table with the error.

9. Next complete the import statements by adding the soLstatement class to the list of imports
(Listing 8-18).

\, LISTING 8-18: Updating the import statements in MaintainingDataAppHome.mxml

Available for import air.net.URLMonitor;
download on
Wrox.com

import flash.data.SQLConnection;

import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;
import flash.net.URLLoader;

import flash.net.URLRequest;

10. Underneath onsgLError (), define a new private function to create the Teams table in teams
.db called createTeamsTable (). In createTeamsTable () execute the SQL statement to create
the Teams table using sqlConnection as the SQLConnection object for the SQLStatement

258 |

CHAPTER 8 WORKING WITH DATA

O

Available for
download on

Wrox.com

1.

)

Available for
download on
Wrox.com

object createTablesQL, defining the integer TEAM_ID as the primary key and the text TNAME as
the second column of data. Assign the SQLEvent .RESULT event to a new event handler called
onTeamsTable () (Listing 8-19).

LISTING 8-19: Executing the Create Table SQL statement for Teams in
MaintainingDataAppHome.mxml

private function createTeamsTable() :void
{
var sqlText:String = "CREATE TABLE "
"Teams (TEAM ID INTEGER PRIMARY KEY, "
"TNAME TEXT)";

+ o+

var createTableSQL:SQLStatement = new SQLStatement();
createTableSQL.addEventListener (SQLEvent .RESULT, onTeamsTable);
createTableSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError);
createTableSQL.sqglConnection = sglConnection;
createTableSQL.text = sqlText;
createTableSQL.execute();

}

private function onTeamsTable(e:SQLEvent):void {}

In onTeamsTable (), update the text representing the database status. Then under onTeamsTable (),
define a new private function to create the Drivers table in teams.db called createbriversTable (),
making a call to the function in onTeamsTable (). In createDriversTable () execute the SQL
statement to create the Drivers table using sqlConnection as the SQLConnection object for the
SQLStatement object createTablesQL, defining the integer TEAM_ID as the primary key and the
text TNAME as the second column of data. Assign the SQLEvent .RESULT event to a new event handler
called onbriversTable () that updates the database status text notifying that the Drivers table was
created (Listing 8-20).

LISTING 8-20: Executing the Create Table SQL statement for Drivers in
MaintainingDataAppHome.mxml

private function onTeamsTable (e:SQLEvent) :void

{
dbStatus.text = "The Teams table was created";
createDriversTable();

}

private function createDriversTable():void
{
var sqlText:String = "CREATE TABLE "
"Drivers (ID INTEGER PRIMARY KEY, "
"DNAME TEXT, "

+ +

Using SQLite for Storing Data | 259

+ "TEAM ID INTEGER)";

var createTableSQL:SQLStatement = new SQLStatement();
createTableSQL.addEventListener (SQLEvent .RESULT, onDriversTable);
createTableSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError);
createTableSQL.sqglConnection = sglConnection;
createTableSQL.text = sqglText;
createTableSQL.execute();

Maintaining Data App

}

private function onDriversTable(e:SQLEvent) :void

{
dbStatus.text = "The Drivers table was created";
dbBtn.setStyle('chromeColor', '#51B22F"');

}

12. Now run the example, and you’ll be able to see the mobile
application as it is (Figure 8-4).

At this stage the View Teams button is still inactive.

Its usage will simply navigate the user to another view in the
application, the Teams View, which will display each of the teams
in the database.

13. Next add the viewTeams () function, using navigator
.pushView () to pass a new view, called view.TeamsView,
as the first parameter, and sgqlConnection as the second FIGURE 8-4: Displaying the
(Listing 8-21). MaintainingDataAppHome view

in Maintaining Data App running
on Android 2.3.4

@ LISTING 8-21: Navigating to the TeamsView via the viewTeams() function in

MaintainingDataAppHome.mxml
Available for

download on
Wrox.com Private function viewTeams():void

{
navigator.pushView(views.TeamsView, sqglConnection);

If the connection to the teams.dp file is successful, passing the sqlconnection variable to the view
will allow the application to execute additional SQL statements on the SQLConnection object.

Before you can interact with the database in the application, you will need to press the

Open db button first, and then press the Create Teams Table button. Once the database and tables
have been created, you press the View Teams button to move to the Teams View, which you’ll
create next.

260 | CHAPTER8 WORKING WITH DATA

Creating the Teams View

Teams View

Next you’ll follow how to create a working view for
displaying each of the teams found in the SQLite database.
The first milestone for the view looks like the one shown in
Figure 8-5.

Here you see there are only a few View components: two labels, a
list, and a single button. The title of the view is also set. The view
will later be revisited to complete the Add Team, Delete Team, and
Update Team functions. But for now start with getting this view
implemented.

1. In Flash Builder, create a new View component called
TeamsView, and add it to the views package.

2. In TeamsView.mxml, add a private function called
onViewActivate () within the <fx:Script> block,
then set the viewActivate property on the view to
onViewActivate (). Also set the title property
to Teams View (Listing 8-22).

FIGURE 8-5: A preview of the
Teams view in Maintaining Data
App running on Android 2.3.4

@ LISTING 8-22: Assigning viewActivate to onViewActivate() and setting the title in

TeamsView.mxml

Available for

download on . .
Wrox.com <?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Teams View"
viewActivate="onViewActivate()">

<fx:Script>
<! [CDATA[

private function onViewActivate():void {}

11>
</fx:Script>

<s:layout>
<g:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingTop="20"
paddingBottom="20"/>
</s:layout>

</s:View>

3. Add two <s:Label> components, both with width properties set to 100%, height set to 40,
and their verticalalign properties set to middle. Both of these labels are for descriptive

Using SQLite for Storing Data | 261

O

Available for
download on
Wrox.com

O

Available for
download on
Wrox.com

purposes only — that is, they describe what the view is actually doing. For the first label,
set the color property to #454545 and the text property to Teams retrieved from the
database. . .; then for the second label, set the text property to SELECT * FROM TEAMS
INNER JOIN Drivers ON Teams.TEAM ID = DRIVERS.Team ID (Listing 8-23).

LISTING 8-23: Adding descriptive labels in TeamsView.mxml

<s:layout>
<s:VerticallLayout paddingLeft="20"
paddingRight="20"
paddingTop="20"
paddingBottom="20"/>
</s:layout>

<s:Label id="dbStatus"
width="100%"
height="40"
color="#454545"
text="Teams retrieved from the database..."
verticalAlign="middle"/>

<s:Label width="100%"

height="50"

fontSize="14"

text="SELECT * FROM Teams INNER JOIN Drivers ON Teams.TEAM ID
TEAM_ID"

verticalAlign="middle"/>

= Drivers.

4. Adda<s:List>component. Set the id property to teamsList, with the width set to 100%,
the height set to 60%, and its enabled property state set to true, and the selectedIndex

property to 0 (Listing 8-24).

LISTING 8-24: Adding the List component teamsList in TeamsView.mxml

<s:layout>
<g:VerticallLayout paddingLeft="20"
paddingRight="20"
paddingTop="20"
paddingBottom="20"/>
</s:layout>

<s:Label id="dbStatus"
width="100%"
height="40"
color="#454545"
text="Teams retrieved from the database...
verticalAlign="middle" />

<s:Label width="100%"
height="50"

continues

262 | CHAPTER8 WORKING WITH DATA

LISTING 8-24 (continued)

fontSize="14"

text="SELECT * FROM Teams INNER JOIN Drivers ON Teams.TEAM ID = Drivers.
TEAM_ID"

verticalAlign="middle" />

<s:List id="teamsList"
width="100%"
height="60%"
enabled="true"
selectedIndex="0"/>

5. Add five new empty method stubs in the script section: selectTeams (), addTeam(),
updateTeam (), deleteTeam(), and deleteDrivers (). Then in onviewaActive () s make a
call to the selectTeans () (Listing 8-25).

\’ LISTING 8-25: Declaring the private functions selectTeams(), addTeam(), updateTeam(),

deleteTeam(), and deleteDrivers() in TeamsView.mxml

Available for

download on)
Wrox.com <fx:Script>

<! [CDATA[

private function onViewActive() :void

{

selectTeams () ;
private function selectTeams():void {}
private function addTeam():void {}
private function updateTeam() :void {}
private function deleteTeam():void {}
private function deleteDrivers():void {}
11>

</fx:Script>

6. Declare a sgLConnection object, and then in selectTeans (), cast the data object of the
view as a SQLConnection object to the sglConnection variable (Listing 8-26).

\, LISTING 8-26: Setting the SQL Connection object in TeamsView.mxml

Available for private var sqlConnection:SQLConnection;

download on

Wrox.com))) .)
private function onViewActive() :void

{

selectTeams () ;

Using SQLite for Storing Data |

263

private function selectTeams () :void

{
sqglConnection = SQLConnection(data);

SELECT * FROM Teams INNER JOIN Drivers ON Teams.TEAM_ID

In selectTeams () define two variables, the first a string called sq1Text with the value

Drivers.TEAM_ID,

and the second variable a sQr.Statement object called selectal1s9r. Instantiate the
SQLStatement, and then register the sQLStatement object’s interest in the SQLEvent
.RESULT and SQLErrorEvent .ERROR event. These events need to be handled by two new
event handler methods, onSQLError () and onSelectTeams (). Assign onSelectTeams () to
SQLEvent .RESULT and onSQLError () to the SQLErrorEvent . ERROR (Listing 8-27).

\) LISTING 8-27: Defining the Select teams SQL statement in TeamsView.mxml

Available for
download on
Wrox.com

8.

private function selectTeams () :void

{

sglConnection = SQLConnection(data);

var sqlText:String = "SELECT * FROM Teams "
"INNER JOIN Drivers "

+ +

var selectAllSQL:SQLStatement = new SQLStatement();

"ON Teams.TEAM ID = Drivers.TEAM ID";

selectAllSQL.addEventListener (SQLEvent .RESULT, onSelectTeams);
selectAllSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError);

private function onSelectTeams (e:SQLEvent) :void {}

private function onSQLError (e:SQLErrorEvent):void {}

Next assign the selectAllSQL.sglConnection property and sqlText to the selectallsQL

.text property. Finally, call the selectal15QL. execute () method (Listing 8-28).

\) LISTING 8-28: Executing the Select teams SQL statement in TeamsView.mxml

Available for
download on
Wrox.com

private function selectTeams () :void
{
sglConnection = SQLConnection(data);

var sqlText:String = "SELECT * FROM Teams";

var selectAllSQL:SQLStatement = new SQLStatement () ;

selectAllSQL.addEventListener (SQLEvent .RESULT, onSelectTeams) ;
selectAl1SQL.addEventListener (SQLErrorEvent .ERROR, onSQLError) ;

selectAllSQL.sqglConnection = sqglConnection;
selectAllSQL.text = sqglText;
selectAllsSQL.execute();

264 |

CHAPTER 8 WORKING WITH DATA

)

Available for
download on

Wrox.com

9. InonSelectTeans (), add two new variables, the first a soLStatement called
selectTeamsSQL, which needs to have the SQLEvent . target property assigned. Cast the
e.target to selectTeamsSQL. The second variable is a SQLResult object called result. Use
selectTeamsSQL.getResult () to assign the SQLResult object to result (Listing 8-29).

LISTING 8-29: Assigning the getResult() method to a SQLResult object in TeamsView.mxml

private function onSelectTeams (e:SQLEvent) :void

{
var selectTeamsSQL:SQLStatement = SQLStatement (e.target);
var result:SQLResult = selectTeamsSQL.getResult();

10. Use result.complete and the result.data.length to determine whether data has

)

Available for
download on
Wrox.com

been returned from the database. Then use an if statement to instantiate the teamList
.dataProvider, which is an ArrayCollection object. Use a for each statement to

iterate through the number of team objects found in result.data. Using the team objects
found, create a new object obj with two properties, teamName and teamTd. The value for
teamName should be retrieved from the team object using team["TNAME"], while the team1d
should be retrieved from the team object using team["TEAM_TID"]. Also retrieve the driver
names from team["DNAME"] and assign this to the driver property on obj. Finally, use the
ArrayCollection.addItem() method on the teamsList object’s dataProvider property
to add the new object obj to the list (Listing 8-30).

LISTING 8-30: Adding the driver names to the list in TeamsView.mxml

private function onSelectTeams (e:SQLEvent) :void

{
var selectTeamsSQL:SQLStatement = SQLStatement (e.target) ;
var result:SQLResult = selectTeamsSQL.getResult() ;

if (result.complete)

{
if (result.data)
{

teamsList.dataProvider = new ArrayCollection();

var tStr:String;
var dStr:String;

for each(var team:Object in result.data)
{
var obj:Object =
{
teamName:team["TNAME"],
teamId:team["TEAM_ID"]
}:

if (tStr == obj.teamName)

Using SQLite for Storing Data

| 265

{
obj.drivers = dStr + ", " + team["DNAME"];
teamsList.dataProvider.addItem(obj);
} else {
dStr = team["DNAME"];
tStr = obj.teamName;
}

}

11. Next complete the onsQLError () event handler. Simply update the dbstatus label to
display the error code (Listing 8-31).

J LISTING 8-31: Handling SQLErrorEvents via the onSQLError() method in TeamsView.mxml

Available for private function onSQLError (e:SQLErrorEvent) :void
download on {
Wrox.com

dbStatus.text = e.error.errorID.toString();

}

Up to now you’ve defined two of the six methods created for Teamsview.mxml, onviewActivate(),

and selectTeams (), including their associated event handlers for the SQLEvent . RESULT event
onSelectTeams () and SQLErrorEvent .ERROR event onSQLError ().

Next take a look at creating an item renderer for the List component.

Creating an Item Renderer for the List Component

Creating an item renderer allows you to customize and control the default look and feel of a data

item. In Chapter 7 the <s:List> component used for listing files simply consisted of a <s:Label>
component. If you want to display the folder or file title as well as the creation date and file size, you

should include other <s:Label> components.

In this section you’ll take a look at how you can customize the <s:List> component to include
subcomponents and dispatch the custom event types created.

1. In Flash Builder, create a new item renderer. Select File & New = Item Renderer
(Figure 8-6).

2. In the pop-up that opens, set the Package field to views.components.renderers, set the
Name field to TeamTtemRenderer, and set the Select Template field to Icon item renderer for

mobile list (MXML) (Figure 8-7).

266 | CHAPTER8 WORKING WITH DATA

[@ Flex Project

(7 Flex Library Project

[Ea Flex Mobile Project

[5) ActionScript Project

[ActionScript Mobile Project

[Flash Professional Project

‘@ Flash Catalyst Compatible Project
£ Project...

B MXML Application
i MXML Component

i MXML Module

48 MXML Skin

= ActionScript File

= ActionScript Class

= ActionScript Interface
<. ActionScript Skinnable Component
%) CSS File

= Test Case Class

= Test Suite Class

H# Package

[Folder

[File

% Example...

£ Other...

#N

.06,

New Item Renderer

FIGURE 8-6: Selecting MXML Item

Renderer from the Flash Builder file

menu

Item Renderer

Use custom item renderers to control the display of a data item ina
DataGroup, SkinnableDataContainer or in a subclass of those containers

Source Folder: MaintainingDataApp/src

Browse...

Package: views.components.renderers

(_ Browse...

Name: TeamitemRenderer

Template: |_Icon item renderer for mobile List (MXML)

_Template Attributes

Label Field:
Message Field:
Icon Field:
Icon Width:

lcon Height:

Decorator Class:

@

teamName

drivers

C

Cancel) (& Finish—)

A

FIGURE 8-7: Creating a new ltem Renderer in Maintaining
Data App

Flash Builder automatically generates the default code for the new file in the view.components

.renderers package (Listing 8-32).

\, LISTING 8-32: The code automatically generated for TeamltemRenderer.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

download on
Wrox.com

<gs:IconltemRenderer xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
labelField="teamName"
messageField ="drivers">

</s:IconltemRenderer>

Figure 8-8 shows the location of the new item renderer.

Using SQLite for Storing Data | 267

Ym MaintainingDataApp
¥ [#Esrc
¥ {1 (default package)
> n MaintainingDataApp.mxml
¥ 1 views
¥ { components.renderers
> 'n MaintainingDataAppHome.mxmil
> 'nTeam sView.mxml
> 'n UpdateTeamView.mxm|
':'E blackberry-tablet.xml
data.txt
':'E MaintainingDataApp-app.xml
b = Flex 4.5.1
b =i Referenced Libraries
P = bin-debug
= libs

FIGURE 8-8: Highlighting the
TeamltemRenderer.mxml file

in the Package Explorer in
Maintaining Data App running on
Android 2.3.4

3. In TeamItemRenderer.mxml, set the selection color to #68BAFA and the row colors for the
List to alternate between #ccccc and #EEEEEE (Listing 8-33).

\, LISTING 8-33: Adding selection color and alternatingltemColor attributes for the <s:List>

component in TeamltemRenderer.mxml

Available for

download on . .
Wrox.com <?xml version="1.0" encoding="utf-8"?>

<s:IconltemRenderer xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
labelField="teamName"
messageField="drivers"
alternatingItemColors="[#CCCCCC, #EEEEEE]"
selectionColor="#68BAFA">

</s:IconltemRenderer>

268 | CHAPTER8 WORKING WITH DATA

Completing the Teams View

Teams View

Using the TeamTtemRenderer, you will now complete the Teams
view. The view will look something like that shown in Figure 8-9.

Here you update the view to include a view menu that allows the
user to update or delete the selected item in the team list.

McLaren
Next follow these steps: L Hamilton,J. Button
Red Bull
1. Declare an integer i as the parameter for the updateTeam () S Vettel, M. Webber

method. In updateTean (), create two new objects. The
first is called teamob3j, which references the selected item
using the getTtemat () method on the dataProvider of
teamList. The index is the value supplied to the method.
The second object you need to create, called dataobi,
should have four properties: sglConnection, teamId,
teamName, and sglType. Assign the sglConnection
variable to dataObj.sqglConnection; then, using the
TeamsSQLEvent Object, assign teamObj . teamId to the
teamId property and teamOb7 . teamName to teamName.
The SQL query will be an update, so this should be set on
sqlType. Finally, use the navigator.pushview () method
to navigate to a new view you’ll define shortly called updateTeamsview.mxml, passing the
data object dataobj (Listing 8-34).

FIGURE 8-9: A preview of the
Teams view in Maintaining Data
App running on Android 2.3.4

\’ LISTING 8-34: Defining a data object to pass to UpdateTeamView.mxml via the updateTeam()

method in TeamsView.mxml

Available for
download on . . P .
Wrox.com Private function updateTeam(i:int):void

{
var teamObj:Object = teamsList.dataProvider.getItemAt(i);

var dataObj:Object
{

sqlConnection:sglConnection,
teamId:teamObj.teamId,
teamName : teamObj . teamName,
sqlType: "UPDATE"

}:

navigator.pushView(views.UpdateTeamView, dataObj);

2. Next declare an integer i as the parameter for the deleteTeam () method. In deleteTeam ()
define three new variables — the first, an object called teamobi; the second, a string called
sqglText, with the value "DELETE FROM Teams WHERE TEAM_ID = :teamId";then the
third, a soL.statement object called deleteTeamsQr. Using the deleteTeamsSQL object,

Using SQLite for Storing Data |

269

)

Available for
download on
Wrox.com

)

Available for
download on
Wrox.com

register an interest in the SQLEvent .Result and SQLErrorEvent.Error events,
assigning a new handler method called onDeleteTeam() to the SQLEvent.Result event

and the onSQLError () method (as defined earlier) to the SQLErrorEvent . ERROR event
(Listing 8-35).

LISTING 8-35: Defining the SQL to remove a team from the Teams table via the deleteTeam()
method in TeamsView.mxml

private function deleteTeam(i:int):void
{
var teamObj:Object = teamsList.dataProvider.getItemAt(i);

var sqlText:String = "DELETE FROM Teams WHERE TEAM ID = :teamId";
var deleteTeamSQL:SQLStatement = new SQLStatement();

deleteTeamSQL.addEventListener (SQLEvent .RESULT, onDeleteTeam) ;
deleteTeamSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError);

private function onDeleteTeam(e:SQLEvent) :void {}

3. Complete the deleteTeam() method by assigning the sqlConnection object to the
deleteTeamsSQL.sglConnection property, and the sglText string to the deleteTeamsQL

.text property. Then set the teamobj . teamId value to the deleteTeamsSQL.parameters

property, specifying :team1d as the key. Finally, call the sor.statement . execute () method

on the deleteTeamsQL object (Listing 8-36).

LISTING 8-36: Executing the SQL to remove a team from the Teams table via the deleteTeam()
method in TeamsView.mxml

private function deleteTeam(i:int):void
{
var teamObj:0bject = teamsList.dataProvider.getItemAt (i) ;

var sqlText:String = "DELETE FROM Teams WHERE TEAM_ID = :teamId";

var deleteTeamSQL:SQLStatement = new SQLStatement () ;
deleteTeamSQL.addEventListener (SQLEvent .RESULT, onDeleteTeam) ;
deleteTeamSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError) ;
deleteTeamSQL.sqglConnection = sglConnection;
deleteTeamSQL.text = sqglText;
deleteTeamSQL.parameters[":teamId"] = teamObj.teamId;
deleteTeamSQL.execute();

}

4. InonbeleteTeanm(), call the deleteprivers () method, supplying the teamrd property

returned in the parameters on the sQLEvent object’s target property (Listing 8-37).

270 | CHAPTER8 WORKING WITH DATA

J LISTING 8-37: Handling the SQL to remove a team from the Teams table via the onDeleteTeam()

method in TeamsView.mxml

Available for

download on . . .
Wrox.com Private function onDeleteTeam(e:SQLEvent) :void

{
deleteDrivers(e.target.parameters[":teamId"]);

5. For deletedrivers (), add two new variables, the first a string called sqlText with the
value DELETE FROM Driver WHERE TEAM_ID = :teamId, then the second a sQLStatement
object called deletepriversQr. Using the deleteDriversQL object, register an interest in
the sQLEvent .Result and SQLErrorEvent.Error events, assigning a new handler method
called onDeleteDrivers () to the SQLEvent .Result event and the onSQLError () method
(as defined earlier) to the sQLErrorEvent . ERROR event. In the deleteDrivers () method,
assign the sgqlconnection object to the deletebriversSQL.sglConnection property and
the sqlText string to the deleteDriversSQL.text property. Then pass the teamTd as a
value to the deleteDriverssQL.parameters property, specifying : team1d as the key. Then
call the sgLstatement . execute () method on the deleteDdriverssQL object (Listing 8-38).

J LISTING 8-38: Executing the SQL to delete a driver from teams.db in TeamsView.mxml

Available for private function deleteDrivers (teamId:Number) :void
download on {
Wrox.com
var sqlText:String = "DELETE FROM Driver WHERE TEAM ID = :teamId";

var deleteDriversSQL:SQLStatement = new SQLStatement();
deleteDriversSQL.addEventListener (SQLEvent .RESULT, onDeleteDrivers);
deleteDriversSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError) ;
deleteDriversSQL.sqlConnection = sqlConnection;
deleteDriversSQL.text = sqlText;
deleteDriversSQL.parameters[":teamId"] = teamId;
deleteDriversSQL.execute();

}

private function onDeleteDrivers(e:SQLEvent) :void {}

6. InonDeleteDrivers() , set the text property on dbStatus to "The record was deleted
successfully". Then call the selectTeams () method (Listing 8-39).

\) LISTING 8-39: Handling the SQL to remove a driver from the driver’s table via the

onDeleteDrivers() method in TeamsView.mxml

Available for

download on
Wrox.com Private function onDeleteDrivers(e:SQLEvent) :void

{
dbStatus.text = "The record was deleted successfully";
selectTeams () ;

Using SQLite for Storing Data |

271

7. Returning to the MXML portion of the document, add a new button under the list
component in a horizontal group with the label property set to Add new Team and the
click event property set to addTeam () (Listing 8-40).

\, LISTING 8-40: Adding the Add Team button to the view in TeamsView.mxml

Available for <s:Tist id="teamsList"

download on width="100%"
height="55%"
enabled="true"
selectedIndex="0"/>

<s:HGroup width="100%"
height="50"
gap=“16">

<s:Button click="addTeam()"
height="50"
label="Add new Team"/>

</s:HGroup>

8. Next, for the list component teamsList, set the itemRenderer property to the path to
TeamItemRenderer (Listing 8-41).

\, LISTING 8-41: Setting the item renderer on the List component in TeamsView.mxml

Available for <s:I,ist id="teamsList"
dwmgg&:" itemRenderer="views.components.renderers.TeamItemRenderer"
width="100%"
height="55%"
enabled="true"
selectedIndex="0"/>

9. Inthe addTeam() method, navigate to the UpdateTeamsView.mxml view passing a new
dataObj variable as data for the view. Define two properties on the object sqlConnection
and sqlType. Set the sq1Type property to INSERT (Listing 8-42).

\, LISTING 8-42: Navigating to the UpdateTeamsView.mxml via addTeam() in TeamsView.mxml

Availablefor private function addTeam():void
download on {
Wrox.com

var dataObj:Object =

{
sqlConnection:sqglConnection,
sqlType: "INSERT"

};

navigator.pushvView(views.UpdateTeamsView, dataObj);

272 | CHAPTER8 WORKING WITH DATA

10. Under adgdTeam(), add a new private function called toggleMenu () to the view, which
takes the Boolean toggle as a parameter. This should be passed onto the viewMenuopen
property on the FlexGlobals. topLevelApplication object (Listing 8-43).

\) LISTING 8-43: in TeamsView.mxml

Availablefor private function addTeam():void
download on {
Wrox.com

var dataObj:0bject =

{
sglConnection:sglConnection,
sqlType: "INSERT"

Y

navigator.pushView (views.UpdateTeamView, dataObj);
}

private function toggleMenu(toggle:Boolean) :void

{
mx.core.FlexGlobals.topLevelApplication.viewMenuOpen = toggle;

}

11. Assign the toggleMenu () method to the click property on the <s:List>, passing the value
true as an argument (Listing §-44).

\) LISTING 8-44: in TeamsView.mxml

Available for <s:I,ist id="teamsList"
daﬂgtgaﬂ" itemRenderer="views.components.renderers.TeamItemRenderer"
click="toggleMenu (true)"
width="100%"
height="55%"
enabled="true"
selectedIndex="0"/>

12. Finally, under the <s:HGroup> containing the Add new Team button, declare a set of three
<s:ViewMenuItem> components, setting the label properties to Update, Cancel, and
Delete, respectively. For the update menu item, set the focusColor property to #51B22F,
and for the delete menu item, set the focusColor property to #CB0909 (Listing 8-45).

\) LISTING 8-45: Defining the <s:ViewMenultem> component for the view in TeamsView.mxml

Available for <s:HGroup width="100%"

download on ; e
Wrox.com height="50
gap= "6

<s:Button click="addTeam()"
height="50"

Using SQLite for Storing Data

| 273

label="Add new Team"/>
</s:HGroup>
<s:viewMenuItems>
<s:ViewMenuItem label="Update"
focusColor="#51B22F"

click="updateTeam(teamsList.selectedIndex)"/>

<s:ViewMenuItem label="Cancel"
click="toggleMenu(false)"/>

<s:ViewMenuItem label="Delete"
focusColor="#CB0909"

click="deleteTeam(teamsList.selectedIndex)"/>

</s:viewMenuItems>

Creating the Insert and Update Views

To complete the application, in this section you’ll take a look at creating the last view called
UpdateTeamsview.mxml.theamView.mxmlaret“K)nKxhods,addTeam()zuulupdateTeam(L
both of which will present the user with the update view. The update view will actually encompass
two views, Insert and Update. Both addTeam () and updateTeam () have been created to pass the
sqlType property as part of a data object for the view. Follow the next steps to learn how this is
utilized.

O

Available for
download on
Wrox.com

1. In Flash Builder, create a new View component called UpdateTeamsView in the views

package.

2. InUpdateTeamsView.mxml, modify the <s:VerticalLayout> attributes, setting the

padding properties paddingLeft, paddingRight, paddingTop, and paddingBottom to
20. Then underneath the <s:1ayout> declaration, add a <s:Button> component to the
<s:navigationContent> component with its label property set to Back and the click
property to navigator.popView () to navigate content (Listing 8-46).

LISTING 8-46: Setting the padding and back button navigation in UpdateTeamsView.mxml

<?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
creationComplete="onCreationComplete () ">

<fx:Script>
<! [CDATA [
private function onCreationComplete():void {}

11>

continues

274 | CHAPTERS8 WORKING WITH DATA

LISTING 8-46 (continued)
</fx:Script>

<s:layout>
<s:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingTop="20"
paddingBottom="20"/>
</s:layout>

<s:navigationContent>
<s:Button label="Back"
click="navigator.popView()"/>
</s:navigationContent>

</s:View>

3. Next declare two new objects to represent each driver, d1 and a2 (Listing 8-47).

\) LISTING 8-47: Declaring two new objects, d1 and d2, in UpdateTeamsView.mxml

Available for <fx:Script>

dgmoagen ", coama

private var dl:Object={};
private var d2:Object={};

private function onCreationComplete():void {}
11>
</fx:Script>

4. Under onCreationComplete (), add a new function addTeam () to create the SQL statement
addTeamsQL, which should insert a new team name to the database. Use a single parameter
called teamName to set the team name, and assign onaddTeam () as the handler for the
SQLEvent .RESULT event. Use the sqlConnection property on the view’s data object to
set the SQL connection on addTeamsQL. Then in onaddTeam() create an additional SQL
statement called teamIdsQL that retrieves the TEAM_1D value from the team name. Finally,
add a new stub called onTeam1d () and assign it to the SQLEvent . RESULT event dispatched
for team1dsqr (Listing 8-48).

\) LISTING 8-48: Executing the SQL to insert a team into the Teams table via the addTeam()

method in UpdateTeamView.mxml

Available for

download on
Wrox.com Private function onCreationComplete():void {}

private function addTeam(teamName:String) :void
{
var sqQlText:String = "INSERT INTO Teams (TNAME) VALUES(:tname)";

var addTeamSQL:SQLStatement = new SQLStatement();

Using SQLite for Storing Data

275

addTeamSQL.addEventListener (SQLEvent .RESULT, onAddTeam);
addTeamSQL.addEventListener (SQLErrorEvent . ERROR, onSQLError);
addTeamSQL.sqglConnection = data.sqglConnection;
addTeamSQL.text = sq@lText;

addTeamSQL.parameters[":tname"] = teamName;
addTeamSQL.execute() ;

private function onAddTeam(e:SQLEvent) :void

{

var addTeamSQL:SQLStatement = SQLStatement (e.target);
addTeamSQL.removeEventListener (SQLEvent .RESULT, onAddTeam);
addTeamSQL.removeEventListener (SQLErrorEvent .ERROR, onSQLError);

if (addTeamSQL.getResult () .lastInsertRowID != 0)
{
var sqlText:String = "SELECT TEAM ID FROM Teams "
+ "WHERE Teams.TNAME = (:tname)";

var teamIdSQL:SQLStatement = new SQLStatement();
teamIdSQL.addEventListener (SQLEvent .RESULT, onTeamId);
teamIdSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError);
teamIdSQL.sqglConnection = data.sqglConnection;
teamIdSQL.parameters[":tname"] = teamTxt.text;
teamIdSQL.text = sq@lText;

teamIdSQL.execute();

private function onTeamId(e:SQLEvent):void {}

private function onSQLError (e:SQLEvent) :void {}

Notice in onaddTeam () that the last generated row identifier property, lastInsertRowID,

is used to determine whether or not to execute the sQL.Statement object teamTdsSQL in an

if statement. The value is retrieved by calling getResult () .lastInsertRowID on the

SQLStatement object, and returns 0 if the SQL executed is not an INSERT statement.

The row identifier can be used to identify a row of a table within the database, uniquely.

Returning to the MXML, add a <s:Label> component to display a description for the view

(Listing 8-49).

\) LISTING 8-49: Adding a descriptive label to the view in UpdateTeamsView.mxml

Available for
download on
Wrox.com

<g:layout>

<s:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingTop="20"
paddingBottom="20"/>

continues

276 |

CHAPTER 8 WORKING WITH DATA

O

Available for
download on
Wrox.com

LISTING 8-49 (continued)

</s:layout>

<s:navigationContent>

<s:Button label="Back"
click="navigator.popView()"/>

</s:navigationContent>

<s:Label id="description"

width="100%"
height="40"
verticalAlign="middle"/>

Under the descriptive <s:Label> component, create three sets of <s:HGroup> containers
vertically stacked in a single <s:VGroup> container, each containing a <s:Label>
component and an associated <s: TextInput> component. Set the width property
Of<s:VGroup>tO100%,heighttO212,paddingToptO20,paddingLeftt025,and
paddingRight to 50. In the first <s :HGroup>, set the ia property on the <s:TextInput>
component to teamTxt and the text property on the <s:Label> component to Team. In the
second <s:HGroup>, set the id property on the <s:Text Input> component to driveroOne,
and the text property of the <s:Label> component to Driver No. 1. Then in the

third <s:HGroup> component, set the text property on the <s:Label> component to
Driver No. 2 and the id property on the <s:TextInput> component to driverTwo.

Set each of the height properties on the components within the <s:vGroup> to 50, and for
each of the <s:HGroup> components, additionally set the width to 100 and the horizontal
align to right. For the <s:TextInput> components, set the width property to 50, and for
the <s:Label> components, set the verticalalign property to middle and paddingRight
to 10 (Listing 8-50).

LISTING 8-50: Adding label and Text Input components for the Team, Driver 1, and Driver 2 in
UpdateTeamsView.mxml

<s:Label id="description"

width="100%"
height="40"
verticalAlign="middle" />

<s:VGroup width="100%"

height="212"
paddingTop="20"
paddingLeft="25"
paddingRight="50">

<s:HGroup width="100"
height="50"

horizontalAlign="right">

<s:Label height="50"

Using SQLite for Storing Data | 277

text="Team"
verticalAlign="middle"
paddingRight="10"/>

<s:TextInput id="teamTxt"
width="50"
height="50"/>

</s:HGroup>

<s:HGroup width="100"
height="50"
horizontalAlign="right">

<s:Label height="50"
text="Driver No. 1"
verticalAlign="middle"
paddingRight="10"/>

<s:TextInput id="driverOne"
width="50"
height="50"/>
</s:HGroup>

<s:HGroup width="100"
height="50"
horizontalAlign="right">

<s:Label height="50"
text="Driver No. 2"
verticalAlign="middle"
paddingRight="10"/>

<s:TextInput id="driverTwo"
width="50"
height="50"/>
</s:HGroup>

</s:VGroup>

7. Under the <s:vGroup> block, add one more <s:HGroup> component that contains two
button components, buttonl and button2 (Listing 8-51).

\, LISTING 8-51: Adding button1 and button2 to UpdateTeamsView.mxml

TNﬁM§Mr <s:HGroup width="100"
ownload on . e
Wrox.com height="50

horizontalAlign="right">

<s:Label height="50"
text="Driver No. 2"
verticalAlign="middle"
continues

278 | CHAPTER8 WORKING WITH DATA

LISTING 8-51 (continued)
paddingRight="10"/>

<g:TextInput id="driverTwo"
width="50"
height="50"/>
</s:HGroup>

</s:VGroup>

<s:HGroup width="100%"
height="50"
gap=" 16"
horizontalAlign="center"
verticalAlign="bottom">

<s:Button id="buttonl"
height="50"/>

<s:Button id="button2"
click="navigator.popView()"
height="50"
label="Cancel"/>

</s:HGroup>

8. Next, in onTeamTd (), retrieve the result of the SQL query and assign the TEaM_1D value
to the variable tID. Then make two calls to a method called addpriver (), supplying two
parameters, the value of the text property on the <s: TextInput> component for each
driver, and t1d (Listing 8-52).

\) LISTING 8-52: Assigning the team ID to addDriver() via the onTeamld() method in

UpdateTeamView.mxml

Available for
download on . . .
Wrox.com Private function onTeamId(e:SQLEvent) :void

{
var teamIdSQL:SQLStatement = SQLStatement (e.target);
var result:SQLResult = teamIdSQL.getResult();
var tId:Number = result.data[0] ["TEAM ID"];

addDriver (driverOne.text, tId);
addDriver (driverTwo.text, tId);
}

private function addDriver (driverName:String, teamId:Number):void {}

private function onSQLError (e:SQLEvent) :void {}

Using SQLite for Storing Data | 279

9. Inaddpriver (), create the SQL statement to insert a new driver. Use two parameters
that identify the driver, a string called driverName and a number called teamzd. Assign
onAddpriver () as the handler for the sQLEvent .RESULT event. In onAddpriver (), update
the description. text to let the user know the record was inserted successfully (Listing 8-53).

\) LISTING 8-53: Executing the SQL to insert a driver via the addDriver() method in

UpdateTeamView.mxml

Available for
download on , :
Wrox.com Private function addDriver (driverName:String, teamId:Number):void

{
var sqlText:String = "INSERT INTO Drivers(DNAME, TEAM ID) "
+ "VALUES(:dname, :teamId)";

var addDriverSQL:SQLStatement = new SQLStatement();
addDriversSQL.addEventListener (SQLEvent .RESULT, onAddDriver);
addDriverSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError);
addDriverSQL.sqglConnection = data.sglConnection;
addDriverSQL.text = sqglText;

addDriverSQL.parameters[" :dname"] = driverName;
addDriverSQL.parameters[":teamId"] = teamId;
addDriversSQL.execute();

private function onAddDriver (e:SQLEvent) :void

{
var sqglStatement:SQLStatement = SQLStatement (e.target);
sqglStatement.removeEventListener (SQLEvent .RESULT, onAddDriver);
sglStatement.removeEventListener (SQLErrorEvent .ERROR, onSQLError);

if (sglStatement.getResult () .lastInsertRowID != 0)
{
description.text = "The record was inserted successfully";

private function onSQLError (e:SQLEvent) :void {}

As the view changes from TeamsView.mxml to EditTeamView.mxml, the teamName will

be forwarded, but the drivers’ names will not. To update the drivers, the user needs to be
presented with the drivers from the associated team. So these need to be retrieved from the
database.

10. Above onsgoLError (), add two new stubs, selectDrivers () and onSelectDrivers ()
(Listing 8-54).

\) LISTING 8-54: Declaring selectDrivers() and onSelectDrivers() in UpdateTeamsView.mxml

Available for private function selectDrivers():void {}
download on
Wrox.com
private function onSelectDrivers(e:SQLEvent) :void {}

280 | CHAPTERS8 WORKING WITH DATA

1".

In selectDrivers (), create the SQL statement to select all the drivers from the database
with a specific team1d called selectDriverssQL. Assign onSelectDrivers () as the
handler for the sgLEvent .RESULT event. Then in onSelectDrivers (), set the properties
of the driver objects d1 and d2, and finally update the text properties on each of the driver
<s:TextInput> components (Listing §-55).

\) LISTING 8-55: Executing the SQL statement to select a driver in UpdateTeamsView.mxml

Availablefor private function selectDrivers():void

download on {
Wrox.com

}

var sqlText:String = "SELECT * FROM Drivers "
+ "WHERE TEAM ID = (:teamId)";

var selectDriversSQL:SQLStatement = new SQLStatement();
selectDriversSQL.addEventListener (SQLEvent .RESULT, onSelectDrivers);
selectDriversSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError);
selectDriversSQL.sqglConnection = data.sqglConnection;
selectDriversSQL.text = sqlText;
selectDriversSQL.parameters[":teamId"] = Number (data.teamId);
selectDriversSQL.execute();

private function onSelectDrivers (e:SQLEvent) :void

{

12.

var result:SQLResult = SQLStatement (e.target).getResult();

dl.name = result.data[0] ["DNAME"];
dl.id = result.data[0]["ID"];
dl.teamId = result.data[0] ["TEAM_ID"];

d2.name = result.data[l] ["DNAME"];
d2.id = result.datal[l]["ID"];
d2.teamId = result.data[l] ["TEAM ID"];

driverOne.text = dl.name;
driverTwo.text = d2.name;

Above the onsQLError () event handler, add four new method stubs: updateTeam(),
onUpdateTeam (), updateDriver (), and onUpdateDriver (). The updateDriver () method
should take two arguments: driverName and driver1d, while onUpdateTeam () and
onUpdateDriver () should have sQLEvent objects defined (Listing 8-56).

J LISTING 8-56: Declaring the updateTeam(), onUpdateTeam(), updateDriver(), and
onUpdateDriver() methods in UpdateTeamsView.mxml

Available for
download on

Wrox.com Private function updateTeam():void {}

private function onUpdateTeam(e:SQLEvent) :void {}

Using SQLite for Storing Data | 281

private function updateDriver (driverName:String, driverId:Number):void {}
private function onUpdateDriver (e:SQLEvent) :void {}

private function onSQLError (e:SQLErrorEvent):void {}

13. InupdateTeam(), create the SQL statement that updates the TNAME based on the teamId set
on the view (Listing 8-57).

\) LISTING 8-57: Executing the SQL statement to update a team in UpdateTeamsView.mxml

Available for private function updateTeam() :void
download on {
Wrox.com
var sqlText:String = "UPDATE Teams SET TNAME = (:tname) "

+ "WHERE TEAM ID = (:teamId)";

var updateTeamSQL:SQLStatement = new SQLStatement();
updateTeamSQL.addEventListener (SQLEvent .RESULT, onUpdateTeam);
updateTeamSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError);
updateTeamSQL.sqglConnection = data.sqglConnection;
updateTeamSQL.text = sqglText;

updateTeamSQL.parameters[":tname"] = teamTxt.text;
updateTeamSQL.parameters[":teamId"] = Number (data.teamId);
updateTeamSQL.execute() ;

14. In onupdateTeanm(), make two calls to updateDriver (). The first call should supply
the driverone.text property value as the first parameter, then d1.1id as the second
parameter. The second call should supply driverTwo.text and d2.id. After the second
updateDriver () call, remove the view from the application by calling navigator
.popview (). In updateDriver (), create the SQL statement that updates the driver name
with the assigned driver1d (Listing 8-58).

J LISTING 8-58: Executing the SQL statement to update a driver via the updateDriver() method in

UpdateTeamsView.mxml
Available for

download on . . .
Wrox.com Private function onUpdateTeam(e:SQLEvent) :void

{
updateDriver (driverOne.text, dl.id);
updateDriver (driverTwo.text, d2.id);

navigator.popView() ;
}

private function updateDriver (driverName:String, driverId:Number) :void
{
var sqlText:String = "UPDATE Drivers SET DNAME = (:driverName) "
+ "WHERE ID = (:driverId)";

var updateTeamSQL:SQLStatement = new SQLStatement();
continues

282 | CHAPTER8 WORKING WITH DATA

LISTING 8-58 (continued)

updateTeamSQL.addEventListener (SQLEvent .RESULT, onUpdateDriver);
updateTeamSQL.addEventListener (SQLErrorEvent .ERROR, onSQLError);
updateTeamSQL.sqglConnection = data.sglConnection;
updateTeamSQL.text = sqlText;
updateTeamSQL.parameters|[" :driverName"]
updateTeamSQL.parameters[":driverId"] =
updateTeamSQL.execute() ;

= driverName;
driverId;

}

private function onUpdateDriver (e:SQLEvent) :void {}

15. In onupdateDrivers (), set the text property on description to "The record was
updated successfully" (Listing 8-59).

\) LISTING 8-59: Displaying the record update status via the onUpdateDriver() method in

UpdateTeamView.mxml

Available for
download on
Wrox.com Private function onUpdateDriver (e:SQLEvent) :void

{
description.text = "The record was updated successfully";

}

16. Next update the onSQLError () method, setting the text property on description to
"Unable to execute SQL command." (Listing 8-60).

J LISTING 8-60: Displaying the SQL error status in UpdateTeamView.mxml

Availablefor private function onSQLError (e:SQLEvent) :void
download on {
Wrox.com
description.text = "Unable to execute SQL command.";

17. Modify the oncreationcomplete () method to determine what to set on the view’s title
property, as well as the text property on the <s:Label> component for the description,
and the 1abel property for buttonl. Use the sqlType property on the view’s data object
to distinguish between UPDATE and INSERT, setting the visibility on button2 to false for
INSERT and true for UPDATE (Listing 8-61).

J LISTING 8-61: Initializing the view via onCreationComplete() in UpdateTeamsView.mxml

Available for private function onCreationComplete():void
download on {
Wrox.com

if (data.sqlType == "UPDATE")

{

title = "Update Team View";

Using SQLite for Storing Data | 283

description.text = "Make changes to the team...";
teamTxt.text = data.teamName;

buttonl.label = "Save changes";
button2.visible = true;

selectDrivers();

} else if (data.sqglType == "INSERT")

{
title = "Add Team View";
description.text = "Add a new team to the database...";
buttonl.label = "Insert Team";

button2.visible = true;

}

18. Add the onBtnone () method to call updateTeam() when the view is in Update mode, and
call addTeam () when the view is in Insert mode, supplying the team name set on the text
property of teamTxt (Listing 8-62).

\, LISTING 8-62: Creating the button1 click handler in UpdateTeamsView.mxml

Available for private function onBtnOne():void
download on {
Wrox.com

if (data.sqglType == "UPDATE")

{
updateTeam() ;

} else {

addTeam(teamTxt.text);

}

19. Lastly, assign the onBtnone () method to the c1ick property on buttoni (Listing 8-63).

\) LISTING 8-63: Assigning the onBtnOne() method to the button1 click property in
UpdateTeamsView.mxml

Available for

download on .

Wrox.com <S:HGroup width="100%"
height="50"
gap: " 16 n

horizontalAlign="center"
continues

284 | CHAPTER8 WORKING WITH DATA

LISTING 8-63 (continued)
verticalAlign="bottom">

<s:Button id="buttonl"
click="onBtnOne ()"
height="50"/>

<s:Button id="button2"
click="navigator.popView ()"
height="50"
label="Cancel" />

</s:HGroup>

20. Now it’s time to run the application. Use either the desktop or device profile.

21. Navigate to the Add Team view. As well as the clearly set title Add New Team, you
should also be able to see the three labels alongside their corresponding input fields
(Figure 8-10).

Start entering data in each field. In the first field, set the team to McLaren; for Driver 1 set
the driver to L. Hamilton; and for Driver 2 set the driver to J. Button (Figure 8-11).

Back Add Team View Back Add Team View

L. Hamilton

FIGURE 8-10: Displaying the Add FIGURE 8-11: Adding the
Team view in Maintaining Data McLaren team and drivers to
App running on Android 2.3.4 the database via the Add Team

view in Maintaining Data App
running on Android 2.3.4

Using SQLite for Storing Data | 285

22.

23.

Back Add Team View

25.

Click Insert Team. This should bring you back to the Teams view. Add another team to the
database, this time just setting the team name to Red Bull (Figure 8-12).

Next return to the Teams view where you should see both teams McLaren and Red Bull.
If you close the application both teams will be displayed without having to re-enter their
information (Figure 8-13).

Teams View

McLaren
L. Hamilton, J. Button

FIGURE 8-12: Adding the Red FIGURE 8-13: Displaying
Bull team name to the database the team names from the
via the Add Team view in database via the Teams View in
Maintaining Data App running Maintaining Data App running
on Android 2.3.4 on Android 2.3.4
24. Next click the Update button for Red Bull. This should take you to the Update view. When

the view is initialized, notice that the database doesn’t return the values for Driver 1 or
Driver 2. This is because these fields were left blank when the original insertion for the team
was made (Figure 8-14).

Next enter the drivers for Red Bull. For Driver 1, set the text field to S. Vettel. Then for
Driver 2, set the text field to M. Webber (Figure 8-15).

286 | CHAPTER8 WORKING WITH DATA

Back Update Team View Back Update Team View

FIGURE 8-14: Displaying the FIGURE 8-15: Adding new
Update Team view for Red Bull drivers to the Red Bull team in
in Maintaining Data App running Maintaining Data App running
on Android 2.3.4 on Android 2.3.4

26. If you click Save Changes and then return to update the Red Bull team, you will see that all
the details are correctly saved.

SUMMARY

With a simple concept this chapter demonstrated many of the features of SQLite, and highlighted how
effective SQLite can be to store data in a database that mobile applications can rely on, using AIR.

When compared with ActionScript, SQL is an entirely different language, but its fundamental
structure and operations are relatively easy to grasp. It helps if you learn the different operators used
in SQL to leverage the interaction between the client-facing view and underlying services.

In the next chapter you will learn more about using video and audio in mobile applications, where
you will create an example media player linked to a series of media items.

Before moving onto the next chapter, take a look at the following exercises, aimed at building on
your working knowledge of utilizing data in applications.

Summary | 287

EXERCISES

1. Display a country flag next to each driver, which represents the driver’s nationality in the Update
Teams view (views.UpdateTeamsView.mxml).

Hint: Create a new table of nationalities that stores the nationality name and a path to
the image file.

2. Implement a data synchronizing solution that updates the information in both the Teams and
Drivers tables from server-side data.

Hint: Add a new column in the Teams table that references the last modified date for each of the
teams held server-side. Team and driver data should be updated only if the last modified date on
the server side is more recent than that stored for the teams.

288

CHAPTER 8 WORKING WITH DATA

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

Working with data
offline

Creating a SQLite
database

Creating a
database table

Saving data to a
table

Retrieving data
from a table

Updating data in
a table

Deleting data from
a table

KEY CONCEPT

The ServiceMonitor and URLMonitor can be used to establish whether an
application needs to work offline.

Use the StatusEvent.STATUS to determine network availability.

Use the File and SQLCOnnection classes to initialize the creation of a new
database.

Use the CREATE SQL statement to create a new table in a database,
specifying the table name, data properties columns, and a unique identifier
known as the primary key.

Use the INSERT SQL statement to add new data to a table, specifying
the name of the table you want to insert data into, accompanied by the
associated column names and data values.

Use the SELECT SQL statement to retrieve existing data from a table,
specifying the table name and any properties you want to retrieve.

The asterisk * represents retrieving all data.

Use the WHERE SQL statement to pass any number of query arguments to the
database to isolate values you want to retrieve.

Use the UPDATE SQL statement to update data in a table, specifying the
table name and the properties and values you want to update.

Use the WHERE SQL statement to pass any number of query arguments to the
database to isolate values you want to update.

Use the DELETE SQL statement to remove data from a table.

Use the WHERE SQL statement to pass any number of query arguments to the
database to isolate values you want to delete.

® ® @ &

Working with Audio and Video

WHAT YOU WILL LEARN IN THIS CHAPTER:

Introduction to the Open Source Media Framework
Creating media resources and elements
Accessing media traits

Handling media trait events

Using Media Player classes to play media

Y Y Y VY VY Y

Utilizing the Video Player component to play video

This chapter introduces you to aspects of the Open Source Media Framework (OSMF,
www . osmf . org) and explores the core classes found in the framework that are used to work
with audio and video.

You’ll also build a media player example demonstrating the capabilities of OSMF, and using
the Flex <s:VideoPlayer> component to examine how you can use video within your mobile
applications.

INTRODUCING THE OPEN SOURCE MEDIA FRAMEWORK

The Open Source Media Framework is an open source development
framework for Flash-based media players, aimed

at simplifying the build of media based applications, in particular
utilizing audio and video.

Figure 9-1 shows the OSMF logo. open source

The open nature of OSMF and its pluggable architecture facilitates media framework

a collaborative development effort in the Flash community, with FIGURE 9-1: The OSMF logo

290

| CHAPTER9 WORKING WITH AUDIO AND VIDEO

Adobe and many third parties developing plug-ins that can swap in and out of media players.
In addition, the core OSMF source code is updated at periodic intervals.

However, you should note that at the time of writing the release version of OSMF is version 1.5,
while the latest working version is sprint 1.6.

You will need to download a copy of the OSMF source code to include as part of your mobile
projects. Download the release version from the Source Forge website at http://sourceforge.net/
projects/osmf.adobe/files/.

Over the next few sections you take a look at the fundamentals of OSMF, including:
» Using media resources
» Working with media elements
» Handling media traits
» Utilizing the media player

Many of the OSMF core concepts are explained purely from an AS3 perspective. Using the Flex
framework, you find that the features are wrapped in a single video component <s:VideoPlayer>,
which is covered later.

Creating a URLResource Object

In OSMF media resources are essentially used to reference the physical path of a media object. They
are used by media elements to process the media.

The URLResource class is one type of media resource that holds a reference to a URL property. To create
a URLResource object you first need to import the class, which is found in the org.osmf .media package:
import org.osmf.media.URLResource;

In the following snippet you see the creation of a new URLResource object:

var urlResource:URLResource;
urlResource = new URLResource("http://localhost/wrox/ch9/sound.mp3") ;

Here the URL path to the .mp3 file sound.mp3 is supplied as an argument to the constructor of the
URLResource class, generating a resource that can be utilized by the framework.
In addition to URLResource, a number of different types of media resources can be created, including:

» DynamicStreamingResource: To create a media resource that references multiple representations
of a single item, allowing a media player to dynamically switch from one representation to
another, for instance different bit rates

> MulticastResource: To create a media resource that is able of carrying multicast
streaming information

» StreamingURLResource: To create a media resource that can be streamed

After creating a media resource, it needs to be assigned to a media element; the next section takes a
look at creating media elements and the generic MediaElement class.

Introducing the Open Source Media Framework | 291

Creating a MediaElement Object

OSMF includes a number of media element types, each representing a specific type of media object
to be interpreted by the framework:

>

audioElement: This is used for streaming and progressive audio playback of MP3 and AAC
files. It also supports audio-only streams from Flash Media Server.

DurationElement: This is used for wrapping a media object to give it temporal (time-based)
capabilities.

F4MElement: This is used for loading media from XML documents that adhere to the Flash
Media Manifest format via F4M files.

ImageElement: This is used for loading and presenting any PNG, GIF, or JPG image.

LightWeightVideoElement: This is used for simple RTMP streaming and progressive
video playback.

ParallelElement: This is used for concurrently presenting a number of media elements
in a single media composition.

ProxyElement: This is used for controlling access to a wrapped media element.

SerialElement: This is used for sequentially presenting a number of media elements
in a single media composition.

VideoElement: This is used for streaming and progressive video playback of Flash Video
(FLV) and MP4 files, and it also supports streaming from Flash Media Server.

These media elements represent a particular media implementation. The ParallelElement
and serialElement objects both represent media compositions, while the AudioElement and
VideoElement are representations of elements of specific media types.

Each implementation is derived from the generic MediaElement class, a generic media element that
can represent any particular type of simplified or complex media entity.

To create a MediaElement object, you need to import the class, which is found in the org.osnf.media
package:

import org.osmf.media.MediaElement;

You then assign a resource to the resource property on the MediaElement object:

var mediaElement:MediaElement = new MediaElement () ;
mediaElement.resource = urlResource;

The following sections take a look at the creation of AudioElement and videoElement objects.

Creating an AudioElement Object

An AudioElement is a media element specifically created for audio playback, supporting streaming
and progressive formats.

292 | CHAPTER9 WORKING WITH AUDIO AND VIDEO

When using OSMF to play audio, you will need to import the audioElement class found in the
org.osmf.elements package

import org.osmf.elements.AudioElement;

To create an AudioElement, you first need to create a new URLResource object that references an
audio file or stream, and then assign that URLResource object to the resource property in the
AudioElement object, as shown in the following snippet:

var urlResource:URLResource;
urlResource = new URLResource("http://localhost/wrox/ch9/sound.mp3") ;

var audioElement:AudioElement = new AudioElement () ;
audioElement.resource = urlResource;

Creating a VideoElement Object

The vVideoElement is another media element type; this is specifically used for video playback,
supporting all streaming and progressive formats.

When using OSMF to play video, you need to import the videoElement class, found in the
org.osmf.elements package

import org.osmf.elements.VideoElement;

You then create a URLResource object to a video and assign it to the resource property on the
VideoElement object:

var urlResource:URLResource;
urlResource = new URLResource("http://localhost/wrox/ch9/video.mp4") ;

var videoElement:VideoElement = new VideoElement () ;
videoElement.resource = urlResource;

To actually play audio using an AudioElement or video using the videoElement, it needs to be
assigned to a MediaPlayer object; this will be covered shortly.

The next section covers another concept in OSMF that all media elements can expose, media traits.

Media Traits

Media traits essentially define a media element’s characteristics and are dynamic in nature, so
depending on the resource assigned to a media element the framework will effectively generate a
trait for the media element, if it is possible to do so.

Consider an audio file, a video file, and a still image resource, and when they are loaded into an
application. You would probably expect to be able play the audio and video files, but not the still
image, because an image is not playable. You would also expect to be able to alter the volume

of the audio and video files, but again not the image, because, of course, an image doesn’t have a
sound track.

Introducing the Open Source Media Framework | 293

In OSMF, audible and playable characteristics, like the ones described, are two of a number of
characteristics that provide features and define how you can interact with different media types.
These characteristics are known as traits.

A trait is a particular characteristic that defines a capability exhibited by a media element type.

In some scenarios you will need to access the traits of media elements to determine whether
certain tasks can be carried out on the media. For instance, does a VideoElement have a playable
characteristic so that it can be played?

OSMF has a number of traits, some of which are listed here:

> AudioTrait: A trait that exposes properties that indicate the left-to-right panning of sound,
whether sound is muted, and also the volume level of the sound

> TimeTrait: A trait that exposes properties that indicate the duration and current time
properties of a media type in seconds

> PlayTrait: A trait that exposes properties that indicate whether media playback can be
stopped and started

> SeekTrait: A trait that exposes properties that indicate whether the media is currently
seeking, and exposes the canseekTo () and seek () methods

One of the tricks to using traits is learning what properties and features you want or need to use in
your applications, then refer to each of the trait classes to see which ones are appropriate. Another
useful class is the MediaTraitType class, which is used primarily to identify traits.

Using the MediaTraitType Class to Identify Traits

Up to now you’ve learned how you create media resource objects and assign them to media elements.
During the playback of those media elements you may want to be able to seek a position of an audio
file, or simply display the full duration of a video.

Furthermore, in the previous section you saw how each trait type had particular properties, but
how do you know whether a media element has a particular trait? You can determine whether
a media element type has a particular trait by using the MediaTraitType class found in the
org.osmf.traits package.

This class has a number of static properties that define particular traits, including:

> MediaTraitType.AUDIO: To identify and reference AudioTrait instances
MediaTraitType.BUFFER: To identify and reference BufferTrait instances
MediaTraitType.DISPLAY_OBJECT: To identify and reference DisplayObjectTrait instances
MediaTraitType.LOAD: To identify and reference LoadTrait instances
MediaTraitType.PLAY: To identify and reference PlayTrait instances

MediaTraitType.SEEK: To identify and reference SeekTrait instances

Y Y VY Y Y Y

MediaTraitType.TIME: To identify and reference TimeTrait instances

294 | CHAPTER9 WORKING WITH AUDIO AND VIDEO

To determine whether a MediaElement object has a particular trait, you can use the hasTrait ()
method, supplying the name of the trait via one of the static constants on the MediaTraitType class.

The following snippet shows how to determine whether a MediaElement object has the AudioTrait,

using the MediaTraitType.AUDIO constant as the argument for hasTrait ():

var mediaElement:MediaElement = new MediaElement () ;

if (mediaElement.hasTrait (MediaTraitType.AUDIO))

{
// Media has the audio trait

Retrieving a trait allows you to access the properties and invoke the methods on MediaElement objects.

To actually retrieve and use a trait, again you use the MediaTraitType class, this time supplying
one of the static constants to the getTrait () property on the MediaElement object:

var mediaElement:MediaElement = new MediaElement () ;

if (mediaElement.hasTrait (MediaTraitType.AUDIO))
{

var audioTrait:AudioTrait;
audioTrait = mediaElement.getTrait (MediaTraitType.AUDIO) ;

In the following example you see that once the AudioTrait object has been retrieved, you can
use it to set the volume property to 5 on the MediaElement object:

var mediaElement:MediaElement = new MediaElement () ;

if (mediaElement.hasTrait (MediaTraitType.AUDIO))
{

var audioTrait:AudioTrait;
audioTrait = mediaElement.getTrait (MediaTraitType.AUDIO) ;

audioTrait.volume = 5;

This is just one example of how to utilize media traits in the framework.

Using the MediaPlayer to Play Media Elements

The MediaPlayer class is essentially a controller that can be used to play any of the media element
types that are supported in OSMF.

So, for example, if you supply a MediaPlayer object an TmageElement, it can generate an image, and
if you pass a MediaPlayer object a VideoElement, it can render a video.

The following lists each of the public properties exposed by a MediaPlayer object:
> audiopan: A number representing the pan property of the media

> autoDynamicStreamSwitch: A Boolean indicating whether the media will automatically
switch between dynamic streams

Introducing the Open Source Media Framework | 295

\ 2 Y Y Y Y Y Y Y

Y Y Y VY VY Y Y

\/

autoPlay: A Boolean defining whether the media starts playing as soon as its load operation
has successfully completed

autoRewind: A Boolean defining whether the media is returned to the beginning of playback
after playback of the media completes

buffering: A Boolean indicating whether the media is currently buffering

bufferLength: A number returning the length, measured in seconds, of the content currently
in the media’s buffer

bufferTime: A number that indicates the desired length of the media’s buffer, in seconds
bytesLoaded: A number that returns the bytes of the media that have been loaded

bytesLoadedUpdateInterval: A number representing the interval between the dispatch of
change events for the bytesLoaded property

bytesTotal: A number representing the total number of bytes of the media that will be loaded
canBuffer: A Boolean to indicate whether the media can buffer

canLoad: A Boolean to indicate whether the media can be loaded

canpause: A Boolean to indicate whether the media can be paused

canPlay: A Boolean to indicate whether the media can be played

canSeek: A Boolean to indicate whether the media is seekable

currentDynamicStreamIndex: An integer representing the index of the dynamic stream
currently rendering

currentTime: A number returning the current time of the playhead in seconds

currentTimeUpdateInterval: A number to define the interval between the dispatch of change
events for the current time in milliseconds

displayObject: The Displayobject for the media

drmEndDate: A date representing the end date for the playback window
drmPeriod: A number returning the length of the playback window, in seconds
drmstartDate: A date representing the start date for the playback window
drmstate: A string indicating the current state of the DRM for this media
duration: A number representing the duration of the media’s playback, in seconds

dynamicStreamSwitching: A Boolean to indicate whether a dynamic stream switch is
currently in progress

hasAudio: A Boolean to indicate whether the media has audio
hasDRM: A Boolean to indicate whether the media element has the DrRMTrait

isDVRRecording: A Boolean to indicate whether the media is DVR-enabled and currently
recording

296 | CHAPTER9 WORKING WITH AUDIO AND VIDEO

> isDynamicStream: A Boolean to indicate whether the media consists of a dynamic stream

> loop: A Boolean to indicate whether the media should play again after playback
has completed

» maxAllowedDynamicStreamIndex: An integer representing the maximum allowed dynamic
stream index

\

media: A MediaElement defining the source media element being controlled by the
media player

mediaHeight: A number defining the height of the media, in pixels

mediawidth: A number defining the width of the media, in pixels

muted: A Boolean to indicate whether the media is currently muted

numDynamicStreams: An integer representing the total number of dynamic stream indices
paused: A Boolean to indicate whether the media is currently paused

playing: A Boolean to indicate whether the media is currently playing

seeking: A Boolean to indicate whether the media is currently seeking

state: A string representing the current state of the media

Y Y Y VY Y Y VY VY Y

temporal: A Boolean to indicate whether the media is temporal
> volume: A number representing the volume of the media
The MediaPlayer class also provides many convenient functions to control media, including;:
> authenticate (username:String = null, password:String = null): To authenticate the media

> authenticateWithToken (token:Object): To authenticate the media using an object that
serves as a token

» canSeekTo (seconds:Number): To determine whether the media is capable of seeking to the
specified time, measured in seconds

A\

getBitrateForDynamicStreamIndex (index:int): To retrieve the bit rate in kilobytes for a
specified dynamic stream index

pause (): To pause the media, if it is not already paused
play(): To play the media, if it is not already playing

seek (time:Number): To jump to the specified time in the media file

Y Y VY Y

stop(): To stop playback and return to the beginning of the media file
» switchDynamicStreamIndex(index:int): To switch to a specific dynamic stream index

For your OSMF project you will need to import the MediaPlayer class; this can be found in the
org.osmf .media package:

import org.osmf.media.MediaPlayer;

Introducing the Open Source Media Framework | 297

To utilize an audioElement object, you need to create a MediaPlayer object, and then assign the
AudioElement object to the MediaPlayer object’s media property:

var urlResource:URLResource;
urlResource = new URLResource("http://localhost/wrox/ch9/sound.mp3") ;

var audioElement:AudioElement = new AudioElement () ;
audioElement.resource = urlResource;

var mediaPlayer:MediaPlayer = new MediaPlayer () ;
mediaPlayer.media = audioElement;

To play audio, you simply call the MediaPlayer object’s play () method:

var mediaPlayer:MediaPlayer = new MediaPlayer () ;
mediaPlayer.media = audioElement;
mediaPlayer.play () ;

Using the MediaPlayerSprite Class to Play Media Resources

The MediaPlayersSprite class allows you to assign a resource object to the resource property

on a MediaPlayerSprite Object. The MediaPlayerSprite extends MediaPlayer, but also contains
instances of the MediaContainer and MediaFactory classes, which allow you to set the scale mode
of the media and automatically generate the appropriate MediaElement object, which will be passed
to the MediaPlayer.

To use the MediaPlayersSprite class in your projects, you need to use the following import statement:
import org.osmf.media.MediaPlayerSprite;

The following snippet demonstrates how to use a MediaPlayerSprite object and play an audio file:

var urlResource:URLResource;
urlResource = new URLResource("http://localhost/wrox/ch9/sound.mp3") ;

var mediaPlayerSprite:MediaPlayerSprite = new MediaPlayerSprite();
addChild (mediaPlayerSprite) ;

mediaPlayerSprite.resource = urlResource;

Alternatively, you could assign a media element type to the media property on the
MediaPlayerSprite object. For example, in the following snippet an AudioElement object is created
from a path to the sound.mp3 file. This is then assigned to a MediaPlayerSprite object’s media
property. Here’s how you would assign an AudioElement:

var urlResource:URLResource;
urlResource = new URLResource("http://localhost/wrox/ch9/sound.mp3") ;

var audioElement:AudioElement = new AudioElement () ;

298

| CHAPTER9 WORKING WITH AUDIO AND VIDEO

audioElement.resource = urlResource;
var mediaPlayerSprite:MediaPlayerSprite = new MediaPlayerSprite();

addChild(mediaPlayerSprite) ;
mediaPlayerSprite.media = audioElement;

Handling Trait Events

Let’s say you wanted to display a visual message to the user in your application when a video needs
to “buffer” content, or when a sound clip has been “paused” rather than “stopped.” There are trait
events that are intrinsic to OSMF, which help to present a particular response for media elements,
like the ones just highlighted.

The TraitEventDispatcher class, which we’ll cover shortly, is able to monitor a media element to
check when a trait has been added, and is subsequently able to handle dispatched trait events. But
before you look at how to use the dispatcher, you’ll need to know a little more about the events you
want to handle.

In this section you’ll take a brief look at the audioEvent, PlayEvent, and TimeEvent objects.

Using an AudioEvent Object

An AudioEvent object is dispatched when the properties of an audio trait have changed for a media
element; hence, a derived MediaElement object needs to have an AudioTrait object.

The AudioEvent class can be found in the org.osnf.events package:
import org.osmf.events.AudioEvent;

The class itself has three static event-type properties:

» AudioEvent.MUTED_CHANGE: A string "mutedChange", dispatched when the muted property of
the media has changed

> AudioEvent.PAN_CHANGE: A string "panChange", dispatched when the pan property of the
media has changed

» AudioEvent.VOLUME_CHANGE: A string "volumeChange", dispatched when the volume property
of the media has changed

Three read-only public properties for the AudioEvent object also can be accessed via an event
handler for each of the event types:

> muted: A Boolean indicating whether the audio for the media element is muted
> pan: A number representing the pan
> volume: A number representing the volume level of the audio for the media element

The audio of a MediaElement object that has an audioTrait can be changed through a volume
property, which should trigger an AudioEvent.VOLUME_CHANGE event to be dispatched.

Introducing the Open Source Media Framework | 299

Using the PlayEvent and PlayState Objects

A playEvent object is an OSMF event that is dispatched when the properties of a play trait have
changed for a media element. A derived MediaElement object needs to have a PlayTrait object in
order for PlayEvent objects to be dispatched.

When a PlayEvent is triggered, you can detect changes to the play state of a media element, or
detect whether a media element can be paused.

You have to import the PlayEvent, which can be found in the org.osnf.events package:
import org.osmf.events.PlayEvent;

This class has two static event-type properties:

> PlayEvent.CAN_PAUSE_CHANGE: A string "canPauseChange", dispatched when the canprause
property has changed

> PlayEvent.PLAY_STATE_CHANGE: A string "playStateChange", dispatched when the playing or
paused property of the media has changed

A PlayEvent object also exposes two public properties:
» canPause: A Boolean indicating whether the PlayTrait can be paused
> playState: A string defining the current Playstate of the media element

The playsState property returned on the PlayEvent object is actually tied to a static constant held by
the org.osmf.traits.PlayState class. This has three static constants:

> PlayState.PAUSED: A string defining the play state as paused
> PlayState.PLAYING: A string defining the play state as playing

> PlayState.STOPPED: A string defining the play state as stopped

Using a TimeEvent Object

A TimeEvent object is dispatched when there is a change in the properties of a media element object
that has a time/temporal trait:

import org.osmf.events.TimeEvent;

The class itself has three static event types:
> TimeEvent.COMPLETE: A string "complete", dispatched when the media has completed playback

> TimeEvent.CURRENT_TIME_CHANGE: A string "currentTimeChange", dispatched when the time
property of the media has changed

> TimeEvent.DURATION_CHANGE: A string "durationChange", dispatched when the duration
property of the media has changed

A TimeEvent object exposes a public time property, which holds the value represented by the change
in the media’s TimeTrait.

300

| CHAPTER9 WORKING WITH AUDIO AND VIDEO

Using the TraitEventDispatcher Class

A TraitEventDispatcher object allows you to receive trait events from a MediaElement object, and
thus utilize updates and changes to media properties. In addition to dispatching the trait events of
a MediaElement object, the TraitEventDispatcher has an added bonus with its ability to monitor a
MediaElement object to tell when traits have been added or removed.

To utilize this functionality, you need to import the TraitEventDispatcher class found in the
org.osmf.traits package:

import org.osmf.traits.TraitEventDispatcher;

The TraitEventDispatcher object is one way in which you can listen for OSMF events. First you
need to create a TraitEventDispatcher object, and then assign each of the events you want to listen
to via the addEventListener () method to the TraitEventDispatcher object. You then need to
assign a media element to the media property on the TraitEventDispatcher object.

The following snippet shows how an AudioElement object is added to a TraitEventDispatcher
object called traitDispatcher, where the audioEvent .VOLUME_CHANGE and TimeEvent .COMPLETE
events are listened for and handled by the onvolumechange (), onPlayStateChange (), and
onComplete () event handlers, respectively:

var traitDispatcher:TraitEventDispatcher = new TraitEventDispatcher () ;
traitDispatcher.media = audioElement;

traitDispatcher.addEventListener (AudioEvent.VOLUME_CHANGE, onVolumeChange) ;
traitDispatcher.addEventListener (TimeEvent .COMPLETE, onComplete) ;

Another way in which you can listen for OSMF events is by using a MediaPlayer object, as shown
in the following snippet, which shows how the TimeEvent.COMPLETE event type is registered with a
MediaPlayer object:

mediaPlayer.addEventListener (TimeEvent .COMPLETE, onComplete);

USING THE FLEX OSMF WRAPPER

In addition to the OSMF classes that can be utilized to render video, two components can be used to
accomplish video playback, the <s:videoDisplay> and <s:VideoPlayer> components. Both are Flex
wrappers for OSMF-based AS3 classes.

The <s:VideoDisplay> component is a basic renderer for video playback, without media controls to
interact with the video. Here you’ll explore how to use the <s:VideoPlayer> component, allowing
you to render videos in your mobile applications and control playback.

Using the VideoPlayer Component

This section takes you through some of the properties and methods of the <s:videoPlayer> component,
a skinnable component that also exposes some familiar properties of OSME, covered earlier.

Using the Flex OSMF Wrapper | 301

In total, 14 public properties are exposed with the <s:VideoPlayer> component:

>

Y Y Y Y Y VY VY Y

Y VYV VY

>

autoDisplayFirstFrame: A Boolean used to define whether to display the first frame of a video
autoPlay: A Boolean used to define whether a video automatically plays when it first loads
autoRewind: A Boolean to define whether a video automatically rewinds when it reaches its end
bytesLoaded: A number representing the bytes of data that have been loaded

bytesTotal: A number representing the total bytes of data that will be loaded

currentTime: A number indicating the current position of the video

duration: A number representing the full running time of the video

loop: A Boolean to define whether a video restarts once it has ended

mediaPlayerState: A static string indicating the current state of the video player; the values
include UNINITIALIZED, READY, PLAYING, PAUSED, BUFFERING, and PLAYBACK_ERROR

muted: A Boolean indicating whether the video player’s volume is set to zero
pauselhenHidden: A Boolean to pause the video when it is hidden
playing: A Boolean indicating whether the video is currently playing

scaleMode: A string defining how to size the video content; the values “none,” “stretched,”
“letterbox,” or “zoom” can be assigned

source: A string that defines the path to the video content

In addition to these properties are four public methods that are associated with the <s:videorlayer>

component:
» pause(): To pause a video
> play(): To play a video
> seek(seconds:Number): To seek to a specified time in a video
> stop(): To stop a video

These methods are exactly the same ones exposed by the MediaPlayer and MediaPlayerSprite
classes, covered earlier.

Creating a MediaPlayer Example

You will now need to set up a new Flex Mobile Project in Flash Builder.

Defining the Flex Mobile Project Settings

The following lists a few of the familiar settings you will need to ensure are defined for the project:

>

>

>

Name: Set the Name for the project as MediaPlayerApp.
Application ID: Set the Application ID as com.wrox.ch9.MediaPlayerApp.

Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to MediaPlayerAppHome.

302 | CHAPTER9 WORKING WITH AUDIO AND VIDEO

Targeting Mobile Devices on Different Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple
i0S, Google Android, and BlackBerry Tablet OS. No permissions need to be specified for any of the
target platforms.

Creating Run and Debug Configurations

You can elect to run this project on the desktop or directly on your mobile device. This chapter
focuses on running the app on the desktop; however, both approaches can be employed.

Building the Media Player App

The following steps will take you through the build of a media player app targeted for mobile using
a combination of Flex and ActionScript classes:

1. In the MediaPlayerApp project, create a new ActionScript class named MediaTItenvo in a
new package called model . vo.

2. InMediaTtemvo, add four public variables of string type: title, description, url, and
duration (Listing 9-1).

\) LISTING 9-1: Creating MedialtemVO.as

Available for package model.vo
download on {
Wrox.com
public class MedialtemVO

{
public var title:String;
public var description:String;

[Bindable]
public var url:String;
public var duration:String;

public function MediaItemVO ()
{

}

3. Create a new MXML item renderer called MediaItemRenderer.

4, In MediaItemRenderer add a <s :VerticalLayout> declaration to the <s: layout>, Setting
the gap property to 5, the paddingLeft property to 10, the paddingTop property to 20, and
paddingBottom property to 5. Next update the text property on the item renderer’s default
<s:Label> component. The value supplied to this property should be the data.title and
data.duration properties. Also set the fontsize property to 18. Add another <s:Label>
component that sets the data.description property on the text property, and also the
fontSize to 16 (Listing 9-2).

Using the Flex OSMF Wrapper | 303

\, LISTING 9-2: Assigning the layout and data object properties in MedialtemRenderer.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

dwmtg&g" <s:ItemRenderer xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
autoDrawBackground="true">

<s:layout>
<s:VerticalLayout gap="5"
paddingLeft="10"
paddingTop="20"
paddingBottom="5"/>
</s:layout>

<s:Label text="{data.title} ({data.duration})"
fontSize="18"/>

<s:Label text="{data.description}"
fontSize="16"/>

</s:ItemRenderer>

5. InwMediaPlayerappHome.mxml add the namespace declaration xmlns:vo to the view, specifying
the model.vo.* package. Also set the title property for the view to Media Player App.
Ensure that the <fx:Declarations> and <fx:Script> tags are present (Listing 9-3).

\’ LISTING 9-3: Setting the title and xmIns:vo namespace properties in

MediaPlayerAppHome.mxml

Available for

download on . .
Wrox.com <?xml version="1.0" encoding="utf-8"?>

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:vo="model.vo.*"
title="Media Player App">

<fx:Script>

<! [CDATAL 11>
</fx:Script>
<fx:Declarations>
</fx:Declarations>

</s:View>

6. Within the <fx:Script> block, define a new bindable string called basePath to hold a
reference to a local server path, in which the videos will be stored (Listing 9-4).

304 | CHAPTER9 WORKING WITH AUDIO AND VIDEO

\) LISTING 9-4: Setting the basePath for the videos in MediaPlayerAppHome.mxml

Available for <fx:Script>

Wroxgom <! [CDATAI

[Bindable]

private var basePath:String = "http://localhost/video/";

11>
</fx:Script>

Setting the basePath to "http://localhost/video/" presumes you have a web server running on
you machine with the video folder at the root. The content used in the example can be found in the
bin-debug folder for the project. So, when you run this example, you can also set the basepPath to

", removing the reference to the local web server.

7. Inthe <fx:Declarations> tag, define a new <s:ArrayList> called arrList. Define

three <vo:MediaItemvo> objects. On the first MediaItemvo object, set the id property

to mediaTteml, then set the title property to Sintel, the description property to

The search for a baby dragon., the url property to sintel_trailer.flv, and the duration
property to 0:52. For the second MediaTtemvo object, set the id to mediaTtem2, set the title
to Big Buck Bunny,aruithe<iescriptiontI)Meet three bullying rodents.. Set the url to
big_buck_bunny trailer.flv and the duration to 0:33. Then for the third MediaItemvo
object, set the id to mediaTtem3, set the title to Elephants Dream, and the description to
Emo is introduced to the machine. Then set the url to elephants_dream_trailer.flv

and the duration to 1:15 (Listing 9-5).

\, LISTING 9-5: Declaring an <s:ArrayList> of MedialtemVO objects in

MediaPlayerAppHome.mxml

Available for

download on .
Wrox.com <fx:Declarations>

<s:ArrayList id="arrList">

<vo:MediaItemVO

<vo:MediaItemVO

<vo:MediaItemVO

id="mediaIteml"

title="Sintel"

description="The search for a baby dragon."
url="sintel_trailer.flv"

duration="0:52"/>

id="mediaItem2"

title="Big Buck Bunny"

description="Meet three bullying rodents."
url="big buck bunny trailer.flv"
duration="0:33"/>

id="mediaItem3"
title="Elephants Dream"
description="Emo is introduced to the machine."

Using the Flex OSMF Wrapper

305

</s:ArrayList>

</fx:Declarations>

url="elephants_dream.flv"
duration="1:15"/>

You can package the video files used in this example project for testing on a mobile device. First you

need to ensure that the videos are included in the packaging. Select File & Properties = Flex Build

Packaging, and then enable your target platform. Then select the files you want to include. You will

need to set the basepath to " , and this will then allow you to reference each of the videos relative

to the installation folder.

8.

\, LISTING 9-6: Declaring the portrait and landscape states in MediaPlayerAppHome.mxml

Available for <fx:Declarations>

download on
Wrox.com

Next define two states, portrait and landscape (Listing 9-6).

<s:State name="portrait"/>
<s:State name="landscape"/>

<s:ArrayList id="arrList">

<vo:MediaItemVO

<vo:MedialtemvO

<vo:MedialItemVO

</s:ArrayList>

</fx:Declarations>

9.

id="medialIteml"

title="Sintel"

description="The search for a baby dragon."
url="gsintel_trailer.flv"

duration="0:52"/>

id="mediaItem2"

title="Big Buck Bunny"

description="Meet three bullying rodents."
url="big_buck_bunny_ trailer.flv"
duration="0:33"/>

id="mediaIltem3"

title="Elephants Dream"

description="Emo is introduced to the machine."
url="elephants_dream.flv"

duration="1:15"/>

Under the closing <fx:Declarations> tag, add a <s:Group> container, setting its width
property to 100%. For the container, add two <s:layout> definitions, <s:layout.portrait> and
<s:layout.landscape>, adding the <s :VerticalLayout> declaration to the portrait state

and a <s:HorizontalLayout> declaration for the landscape layout. Set the gap, paddingBottom,
paddingLeft, paddingRight, and paddingTop properties to 0 for both states (Listing 9-7).

306 | CHAPTER9 WORKING WITH AUDIO AND VIDEO

\, LISTING 9-7: Defining the layout properties for the <s:Group> container for portrait and

landscape states in MediaPlayerAppHome.mxml
Available for

download on .
Wrox.com </fx:Declarations>

<s:Group width="100%">

<s:layout.portrait>
<s:VerticalLayout gap="0"
paddingBottom="0"
paddingLeft="0"
paddingRight="0"
paddingTop="0"/>
</s:layout.portrait>

<s:layout.landscape>
<s:HorizontalLayout gap="0"
paddingBottom="0"
paddingLeft="0"
paddingRight="0"
paddingTop="0"/>
</s:layout.landscape>

</s:Group>

10. Next add a <s:videoPlayer> component to the <s:Group> container. Set the id property
on the component to mediaPlayer. Then set the autoPlay property to false and the
autoDisplayFirstFrame and autoRewind properties to true. Also set the fontSize to 16 and
fontWeight to normal. Set the scaleMode property to letterbox and the interactionMode to
touch. Lastly set the source property of the video to use the basePath property and the first
video in arrList, via the mediaTteml.url property (Listing 9-8).

J LISTING 9-8: Adding the <s:VideoPlayer> to the <s:Group> container

in MediaPlayerAppHome.mxml

Available for

download on)
Wrox.com </fx:Declarations>

<s:Group width="100%">

<s:layout.portrait>
<s:VerticalLayout gap="0"
paddingBottom="0"
paddingLeft="0"
paddingRight="0"
paddingTop="0"/>
</s:layout.portrait>

<s:layout.landscape>
<s:HorizontalLayout gap="0"
paddingBottom="0"

Using the Flex OSMF Wrapper | 307

paddingLeft="0"

paddingRight="0"

paddingTop="0"/>
</s:layout.landscape>

<s:VideoPlayer id="mediaPlayer"
autoDisplayFirstFrame="true"
autoPlay="false"
autoRewind="true"
fontSize="16"
fontWeight="normal"
interactionMode="touch"
scaleMode="letterbox"
source="{basePath}{mediaIteml.url}"
volume="5"/>

</s:Group>

11. After the <s:videoPlayer> component, add a <s:List> component, setting the id
property to mediaPlaylist. Assign the MediaItemRenderer to the itemRenderer property.
Then set the dataProvider property to the ArrayList object, arrList. Set both the width
and height properties to 100%. Then finally, set the click property on the <s:List>
component to a new event handler called onclick (). You’ll take a look at that function
shortly (Listing 9-9).

\) LISTING 9-9: Adding the <s:List> to the <s:Group> container in MediaPlayerAppHome.mxml

Available for <s:vVideoPlayer id="mediaPlayer"

download on autoDisplayFirstFrame="true"

Wrox.com play
autoPlay="false"
autoRewind="true"
fontSize="16"
fontWeight="normal"
interactionMode="touch"
scaleMode="1letterbox"
source="{basePath}{medialteml.url}"
volume="5"/>

<s:List id="mediaPlaylist"
itemRenderer="views.renderers.MediaItemRenderer"
width="100%"
height.landscape="100%"
dataProvider="{arrList}"
click="onClick(event)"/>

12. Inthe <fx:script> block, add a protected function called onclick () with a single parameter
e, an Event object. In the function, use the selectedIndex property on the <s:List>
component mediaPlaylist to retrieve a MediaItemvO object. Use the url property on the
MediaItemvo object to build a full path to a video, combined with the basePath. Assign this
to the mediaPlayer.source (Listing 9-10).

308 | CHAPTER9 WORKING WITH AUDIO AND VIDEO

\, LISTING 9-10: Defining the onClick() method in MediaPlayerAppHome.mxml

Available for [Bindable]

daﬂ:yﬂ&g" private var basePath:String = "http://localhost/video/";

protected function onClick(e:Event) :void

{
var mediaItem:MediaItemVO;
medialtem = arrList.source[mediaPlaylist.selectedIndex];
mediaPlayer.source = basePath + mediaItem.url;

}

13. Above the onclick () method, add a protected function called onComplete () with a single
parameter e, a TimeEvent object, which should be imported above the private basepath
variable. In onComplete (), use the selected index on the <s:List> component to determine
which item to play once the current item has completed (Listing 9-11).

\) LISTING 9-11: Defining the onComplete() method in MediaPlayerAppHome.mxml

Available for import org.osmf.events.TimeEvent;
download on
Wrox.com
[Bindable]

private var basePath:String = "http://localhost/videos/";

protected function onComplete(e:TimeEvent) :void

{
var index:int = mediaPlaylist.selectedIndex;
index++;
if (index < arrList.source.length)
{
mediaPlaylist.selectedIndex = index;
mediaPlayer.source = basePath + arrList.source[index].url;
mediaPlayer.play();
}
}

protected function onClick(e:Event) :void

{
var medialtem:MediaIltemVO;
medialtem = arrList[mediaPlaylist.selectedIndex];

mediaPlayer.source = basePath + medialtem.url;

}

14. Update the <s:videoPlayer> component so that it references the onComplete () event
handler (Listing 9-12).

Using the Flex OSMF Wrapper | 309

\, LISTING 9-12: Assigning the complete method in MediaPlayerAppHome.mxml

Available for <s:VideoPlayer id="mediaPlayer"

download on complete="onComplete(event)"

Wrox.com P-€ -Omp
autoDisplayFirstFrame="true"
autoPlay="false"
autoRewind="true"
fontSize="16"
fontWeight="normal"
interactionMode="touch"
scaleMode="1letterbox"
source="{basePath}{medialteml.url}"
volume="5"/>

15. Under the basepath declaration, add four new protected functions: onCreationComplete (),
onAddedToStage (), onOrientationChange(), and updateLayout (). Assign the
onCreationComplete () method to the view’s creationComplete attribute (Listing 9-13).

\, LISTING 9-13: Declaring the onCreationComplete(), onAddedToStage(), onOrientationChange()

and updatelLayout() methods in MediaPlayerAppHome.mxml

Available for

download on .
Wrox.com <s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:vo="model.vo.*"

title="Media Player App"
creationComplete="onCreationComplete()">

<fx:Script>
<! [CDATA [

import org.osmf.events.TimeEvent;

[Bindable]
private var basePath:String = "http://localhost/videos/";

protected function onCreationComplete():void {}
protected function onAddedToStage():void {}
protected function onOrientationChange() :void {}

protected function updateLayout():void {}

16. 1In updateLayout (), define two integers for width and height: w and h, respectively.
Add a switch statement that uses the currentstate property of the view to distinguish
between the portrait and landscape layouts. When the view is in a portrait layout, set the
actionBarVisible property of the view to true, and then use the systemManager.screen.width
property to assign the full width of the device’s screen to the w variable. Use the 4:3 screen
ratio and width to calculate the height for variable n. For the landscape layout, set the
actionBarVisible property to false, and then use the systemManager.screen.width and

310 | CHAPTER9 WORKING WITH AUDIO AND VIDEO

systemManager.screen.height properties to assign values to w and h, respectively. Following
the switch statement, assign the w and h variables to the width and height properties,
respectively, on mediaPlayer (Listing 9-14).

\) LISTING 9-14: Defining the width and height of media player via the updateLayout() method in

MediaPlayerAppHome.mxml
Available for

download on .)
Wrox.com Protected function updateLayout () :void

{
var w:int;
var h:int;

switch(currentState)

{
case "portrait":
{
actionBarVisible = true;
w = systemManager.screen.width;
h=w/ (4/3);
}
break;
case "landscape":
{
actionBarVisible = false;
w = systemManager.screen.width;
h = systemManager.screen.height;
}
break;
}

mediaPlayer.width = w;
mediaPlayer.height = h;

17. In onCreationComplete(), register the Event . ADDED_TO_STAGE event property with the view,
assigning the onaddedTostage () function as the event handler and at the same time defining
a single Event object parameter for the method, e. Then in onAddedToStage (), register the
StageOrientationEvent.ORTENTATION_CHANGE event with the stage via the e.target.stage
property, assigning onOrientationChange () as the event handler. For onorientationChange (),
add a single stageoOrientationEvent object, e, as a parameter. Lastly, call the updateLayout ()
method in both onorientationChange () and onAddedToStage () (Listing 9-15).

\) LISTING 9-15: Completing the onCreationComplete(), onAddedToStage(), and

onOrientationChange() methods in MediaPlayerAppHome.mxml
Available for

download on . . .
Wrox.com Protected function onCreationComplete():void

{
this.addEventListener (Event .ADDED_TO_STAGE, onAddedToStage);

protected function onAddedToStage (e:Event) :void

Using the Flex OSMF Wrapper | 311

e.target.stage.addEventListener(StageOrientationEvent.ORIENTATION_ CHANGE,
onOrientationChange);
updateLayout () ;
}

protected function onOrientationChange (e:StageOrientationEvent) :void
{

updateLayout () ;
}

18. Finally, update the MediaPlayerapp.mxmnl file to include styles for the application.
Replace the <fx:Declarations> with an <fx:Style> declaration. Inside the <fx:Style>
declaration, specify s as the spark namespace. Then define three style declarations that
will be used in the application: one for the View component, one for the List component,
and one for the Video Player component. For the <s:View> components, define the
backgroundColor property as #3F3F3F, and the color property as #393839. Then for the
<s:List> component, define the alternatingItemColors property as #3F3F3F, #3F3F3F,
the contentBackgroundColor property as #3F3F3F, the selectionColor property as
#B2B2B2, the fontSize property as 18, and the color property as #393839. Then for the
<s:VideoPlayer> component, set the chromeColor property to #3F3F3F and the color
property to #FFFFFF (Listing 9-16).

\, LISTING 9-16: Setting the styles via the <fx:Style> declaration in MediaPlayerApp.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

dwmtgggn <s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstview="views.MediaPlayerAppHome">

<fx:Style>

@namespace s "library://ns.adobe.com/flex/spark";

s|View

{
backgroundColor:#3F3F3F;
color:#393839;

}

s|List

{
fontSize:18;
color:#FFFFFF;
alternatingItemColors:#3F3F3F, #3F3F3F;
selectionColor:#B2B2B2;
contentBackgroundColor:#3F3F3F;

}

s|VideoPlayer
continues

312 | CHAPTER9 WORKING WITH AUDIO AND VIDEO

LISTING 9-16 (continued)

{
chromeColor: #3F3F3F;

color:#FFFFFF;
}

</fx:Style>

</s:ViewNavigatorApplication>

19. Now run the example using a desktop run configuration.
When the Media Player application launches in the
portrait view, underneath the Media Player App title
for the app you’ll see the video player and playlist
component populated with the media items.

You can now click Play on the video player’s controls to start
video playback (Figure 9-2).

When you rotate the device to landscape view, you’ll see that the
player occupies the full screen and the playlist is no longer visible FIGURE 9-2: Playing the first
on screen (Figure 9-3). item in the Media Player App

B.0.0 MediaPlayerApp-debug

0:28/0:52

FIGURE 9-3: Rotating the device to change the layout of the components in Media Player App

Summary | 313

SUMMARY

When you rotate the device back to the portrait view, clicking a
new item in the list will change the current video being played
(Figure 9-4).

Over the course of this chapter you have explored the

key concepts of OSMEF, learning from the core how to create
resources and media elements, how to handle media trait
events, and how to distinguish between different media trait
characteristics.

Proog tres 1o intcduce Emo 1o the natum of the machne

You also took a look at creating a rather simple media player
application that used the <s:videoPlayer> component.

In the next chapter you take a look at using some of the device
features available to AIR mobile applications. You’ll take a look at
how to utilize the device’s camera, microphone, web browser, and
geo-location instruments.

FIGURE 9-4: Playing the second
item in the Media Player App

EXERCISES

1.

Add a Settings view to the Media Player application that allows the user to change some of the
default settings on the <s:videoPlayer> component — for example, auto play and continuous play.

Include a still image of each video in the playlist.
Update the playlist to include audio and image items.

Package the Media Player application, selecting one of the target platforms and including
associated video items.

314

CHAPTER9 WORKING WITH AUDIO AND VIDEO

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

Creating media resources

Creating media
elements

Using media traits

Handling media
trait events

Using the MediaPlayer
class

Using the MediaPlayerSprite
class

Using the Video Player
component

Controlling media using
the Video Player
component

KEY CONCEPT

Use URLResource to create a media resource to a media item that
uses an HTTP location reference.

Reference the MediaElement class to create a generic media object.

Reference the AudioElement class to create an element specifically
for audio playback.

Reference the vVideoElement class to create an element specifically
for video playback.

Traits represent the characteristics of a media object.

The AudioTrait represents audible characteristics of media and
exposes properties like AudioTrait.volume.

The PlayTrait represents playable characteristics of media and
exposes properties like PlayTrait.

The BufferTrait represents bufferable characteristics of media
and exposes properties like the BufferTrait.

The TimeTrait represents temporal characteristics of media and
exposes properties like the TimeTrait.

Reference the AudioEvent to handle events dispatched from an
AudioTrait — for example, AudioEvent . VOLUME_CHANGE.

Reference the PlayEvent to handle events dispatched from a
media objects PlayTrait — for example, PlayEvent . PAUSED.

Reference the TimeEvent to handle events dispatched from a
media objects TimeTrait — for example, TimeEvent . COMPLETE.
Assign a MediaElement object to the MediaPlayer.media property
to reference media.

Use the MediaPlayer.play () method to start playback.

Assign a URLResource object to the MediaPlayerSprite.resource
property, or a MediaElement object to the MediaPlayerSprite
.media property to reference media.

Use the <s:VideoPlayer> Flex component.

Use a URL path to assign media to the component using the
VideoPlayer.source.

Use <s:VideoPlayer>.play () to play content.

Use <s:VideoPlayer>.pause () to pause content.

Use <s:VideoPlayer>.stop () to stop content.

000000 NN ¢ ®900000OROGOGOSIESIES - - -

Utilizing Device Features

WHAT YOU WILL LEARN IN THIS CHAPTER:

Launching the device’s native camera application
Using an image taken with the camera

Capturing audio with the device’s microphone
Playing audio captured from the microphone

Displaying dynamic HTML content and web pages

Y Y Y VY VY Y

Utilizing the device’s geolocation sensor

In this chapter you’ll take an in-depth look at some of the cool features of Adobe AIR that
allow you to use the functionality that is integral to most mobile devices.

First you’ll take a look at the camerauT class, examining how you can take photos using the
device’s camera and include the images in your AIR mobile application. You’ll explore the
Microphone API, taking a close look at how you can record and play back audio streams using
the device’s microphone. You then turn your attention to integrating a device’s web control and
presenting web pages into your mobile applications using the stagewebview class. Finally, you
take a look at using the device’s Geolocation sensor to retrieve and incorporate GPS location data.

For each of the four sections, you’ll build an example demonstrating the capabilities of the
core feature.

USING THE DEVICE’S CAMERA

One of the many features of all mobile devices is the camera, and unless you’ve been living in
a cave for the past decade you can use mobile devices to take still photos and video. Although
AIR for desktop has been able to use the camera for a while, the AIR 2.5 release gave
developers their first opportunity to create mobile applications incorporating the camera.

316 | CHAPTER10 UTILIZING DEVICE FEATURES

In this section you’ll examine how to use the camerauT class to utilize photos taken with the
native camera in Flash mobile applications.

Using the CameraUl Class

Using the flash.media.CameraUT class, you can use the device camera to load an image into an
application. As you can imagine this provides many possibilities for mobile applications and a user’s
personal imagery.

For AS3-based mobile projects you will need to import the camerauT class found in the flash
.media package:

import flash.media.CameraUI;

This class has only two API features that can be used to gain access to the native camera app on the
host device:

» CameraUI.isSupported: To determine whether the native camera application can be
launched

» CameraUT.launch (): To launch the camera app

NOTE While native camera functionality via the CameraUT class is supported
on Apple iOS and BlackBerry Tablet OS, not all devices running Google Android
support the API. You should consider implementing non-camera activity for
those devices.

In the following section you’ll take a closer look at the camerauT class and build an example.

Creating a Camera App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defining the Flex Mobile Project Settings
The following lists a few of the familiar settings you will need to ensure are defined for the project:
» Name: Set the Name for the project to CameraApp.
> Application ID: Set the Application ID to com.wrox.ch10.CameraApp.

> Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to CameraAppHome.

Targeting Mobile Devices on Different Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple
i0S, Google Android, and BlackBerry Tablet OS. For Google Android and BlackBerry Tablet OS, a
number of permissions need to be set to allow the application to use the device’s camera. For Apple
i0S, no permissions need to be defined specifically.

Using the Device’s Camera | 317

Defining Google Android Permissions

In the AIR application descriptor file generated with the project in Flash Builder, ensure the
android.permission.CAMERA permission is included as a manifest addition for the Android OS, as
shown in the following code snippet:

<android>
<manifestAdditions>
<! [CDATA[
<manifest>
<uses-permission android:name="android.permission.CAMERA"/>
</manifest>
11>
</manifestAdditions>
</android>

Defining BlackBerry Tablet OS Permissions

For BlackBerry Tablet OS applications, you need to specify both the use_camera and access_
shared permissions, to allow the application to launch the native camera app and to allow the
application to use the image file written to the device, respectively. Ensure these values are set in the
blackberry-tablet.xml file, as shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"7?>

<gnx>
<author>jganderson</author>
<authorId>gYAAgFbt6rihu</authorId>
<buildId>101</buildIid>
<platformversion>1.0.6.2390</platformversion>
<permission>use_camera</permission>
<permission>access_shared</permission>

</anx>

Defining Apple iOS Settings

Because the application will need to use the device’s camera, you can prevent the application

from being installed on an iOS device that doesn’t have a camera by specifying the
UIRequiredDeviceCapabilities key in the AIR application descriptor file via the <Infoadditions>,
and setting the value to an array containing the stil1-camera string, as shown in the following snippet:

<iPhone>
<InfoAdditions>
<! [CDATA[
<key>UIDeviceFamily</key>
<array>
<string>1</string>
<string>l</string>
</array>
<key>UIStatusBarStyle</key>
<string>UIStatusBarStyleBlackTranslucent</string>
<key>UIRequiredDeviceCapabilities</key>
<array>
<string>still-camera</string>

318 | CHAPTER10 UTILIZING DEVICE FEATURES

</array>
11>
</InfoAdditions>
</iPhone>

Building the Camera App

In Listing 10-1 you will see the early stages of the CameraAppHome . mxm1 file.

\) LISTING 10-1: The initial starting point for CameraAppHome.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

daﬂg%g&gn <s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="onCreationComplete ()"

title="Camera App">

<fx:Script>
<! [CDATA[

private function onCreationComplete():void {}

private function launch():void {}

11>
</fx:Script>

<s:layout>

<g:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingBottom="20"
paddingTop="20"/>
</s:layout>

</s:View>

1. Under the <s:1layout> block, add a <s:VGroup> layout container that contains three
components: a <s:Label>, a <s:Image>, and a <s:Button>. Set the text property on the
<s:Label> component to Take a picture and view it below.. ., set the width to
100%, and the height to 25. For the <s: Tmage>, set the id property to capturedImage,
and the backgroundColor to #000000. Finally, set the 1abel property on the <s:Button>
component to Launch Camera, set the click event property to the launch () method, and
then the width to 100% and the height to 75 (Listing 10-2).

\, LISTING 10-2: Adding the <s:Label>, <s:Image>, and <s:Button> components in

CameraAppHome.mxml
Available for
download on
Wrox.com <S:layout>

<s:VerticalLayout paddingLeft="20"
paddingRight="20"

Using the Device’s Camera

319

paddingBottom="20"
paddingTop="20"/>
</s:layout>

<s:VGroup horizontalAlign="center"
width="100%">

<s:Label text="Take a picture and view it below..."
width="100%"
height="25"/>

<s:Image id="capturedImage"
backgroundColor="#000000"/>
<s:Button click="launch()"
label="Launch Camera"
width="100%"
height="75"/>

</s:VGroup>

2. Next add a new private variable cameraut, which is a camerauT object. In

onCreationComplete () check that the camerauT is supported before instantiating a new

CameraUT object. Then assign the MediaEvent .COMPLETE event on the CameraUT object to a

new event handler called oncomplete () (Listing 10-3).

\) LISTING 10-3: Declaring the CameraUl object and assigning the MediaEvent. COMPLETE event

in CameraAppHome.mxml

Available for

download on .
Wrox.com Private var cameraUI:CameraUI;

private function onCreationComplete():void

{
if (CameraUI.isSupported)
{
cameraUI = new CameraUI();

cameraUI.addEventListener (MediaEvent .COMPLETE, onComplete);

private function onComplete(e:MediaEvent) :void {}

3. Inlaunch(), check that the cameraut is supported before calling the camerauz.launch ()

method, supplying MediaType . IMAGE as a parameter (Listing 10-4).

\, LISTING 10-4: Launching the native camera application via the launch() function in

CameraAppHome.mxml

Available for

download on . .) .
Wrox.com Private function onCreationComplete():void

{
if (CameraUI.isSupported)

continues

320 | CHAPTER10 UTILIZING DEVICE FEATURES

LISTING 10-4 (continued)

cameraUI = new CameraUI () ;

cameraUI.addEventListener (MediaEvent .COMPLETE, onComplete) ;

private function launch() :void
{
if (CameraUI.isSupported)
{
cameraUI.launch(MediaType.IMAGE) ;

}

4. InonComplete() use the MediaEvent object e to display the image captured in the
application. Cast the e.data object as a MediaPromise to mediaPromise, then assign the
mediaPromise.file.url property to the image component capturedImage (Listing 10-5).

J LISTING 10-5: Using the MediaPromise object on the MediaEvent to set the source of image

component in CameraAppHome.mxml

Available for

download on . . \
Wrox.com Private function onComplete(e:MediaEvent) :void

{

var mediaPromise:MediaPromise = e.data as MediaPromise;

capturedImage.source = mediaPromise.file.url;

5. Under oncomplete () create a new private method called onImageLoadComplete (), to
handle when an image has loaded. Define an Event object e as a parameter for the method,
casting the e.currentTarget property as an Tmage object to a new variable img. Set the
width property on the object to the full width of the view, subtracting 10 pixels. Then set
the height of the image object to half the view, subtracting 10 pixels thereafter also (Listing
10-6). This will allow you to manipulate an Tmage object representing the captured image
taken with the native camera, and then resize it in the application.

\) LISTING 10-6: Setting the width and height of the captured image via the

onlmageLoadComplete() method in CameraAppHome.mxml
Available for

download on . . .
Wrox.com Private function onComplete(e:MediaEvent) :void

{

var mediaPromise:MediaPromise = e.data as MediaPromise;

capturedImage.source = mediaPromise.file.url;

private function onImageLoadComplete(e:Event) :void

{

Using the Device’s Camera | 321

}

6.

var img:Image = e.currentTarget as Image;
img.width = this.width - 10;
img.height = this.height/2 - 10;

Define the complete attribute in the <s: Tmage> component. Assign the
onImageLoadComplete () method, passing the default event object as the argument
(Listing 10-7).

\, LISTING 10-7: Defining the complete event attribute of the <s:Image> in
CameraAppHome.mxml

Available for
download on

Wrox.com <S:Image id="capturedImage"

backgroundColor="#000000"
complete="onImageLoadComplete(event)" />

Update the cameraapp.mxml file to include styles for the application. Replace the
<fx:Declarations> tag with an <fx:Style> declaration. Inside <fx:sStyle>, specify s as
the spark namespace. For the <s:view> components, define the backgroundColor property
as #3F3F3F, and the color property as #393839. Then for the <s:Label> component,
define the fontsize property as 22 (Listing 10-8).

\) LISTING 10-8: Setting the styles via the <fx:Style> declaration in CameraAppHome.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

download on

Wrox.com <s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="1library://ns.adobe.com/flex/spark"
firstView="views.CameraAppHome">
<fx:Style>

@namespace s "library://ns.adobe.com/flex/spark";

s|View

{
backgroundColor: #3F3F3F;
color:#393839;

}

s |Label

{
fontSize:18;

}

</fx:Style>

</s:ViewNavigatorApplication>

8.
9.

Run the application using a device profile. You should see the screen shown in Figure 10-1.

Click the Launch Camera button, and this should run the device’s native camera
application, as shown in Figure 10-2.

322 | CHAPTER10 UTILIZING DEVICE FEATURES

Camera App

Take a picture and view it below...
Launch Camera
FIGURE 10-1: The Camera App FIGURE 10-2: The native camera
project running on Android 2.3.4 running on Android 2.3.4

10. Take a picture. Click the OK button to confirm you’re happy with the image (Figure 10-3).

This should return you the camera view, with the image loaded (Figure 10-4).

Camera App

| Launch Camera
FIGURE 10-3: The native FIGURE 10-4: The image taken
camera presenting Cancel, with the native camera app
Retake, and OK options, displayed in the Camera App

running on Android 2.3.4 project running on Android 2.3.4

Capturing Sound Using the Device’s Microphone | 323

CAPTURING SOUND USING THE DEVICE’S MICROPHONE

The microphone is another core feature of the mobile device. A mobile’s sound capture device is
commonly used in memo applications, which allow users to record a voice message and play it back later.

In this section you’ll explore how to use the Microphone class to record audio streams, using the
device’s microphone.

Using the Microphone Class
For AS3-based mobile projects, you need to import the Microphone class, found in the
flash.media package:

import flash.media.Microphone;

In total, 11 properties are associated with Microphone:

» Microphone.activityLevel: Returns a number representing the amount of sound the
microphone is detecting

» Microphone.gain: A number representing the amount by which the microphone should
multiply the signal before transmitting it

» Microphone.index: Returns the index of the microphone, represented by the array returned
by Microphone.names

» Microphone.muted: Returns a Boolean indicating whether the user has denied access to the
microphone

» Microphone.name: Returns a string representing the name of the current sound capture
device

» Microphone.names: A static property that returns an array of strings containing the names
of all the available sound capture devices

» Microphone.rate: An integer representing the rate at which the microphone captures sound,
in kHz

» Microphone.silenceLevel: Returns a number representing the amount of sound required
to activate the microphone and dispatch the activity event

> Microphone.silenceTimeout: Returns an integer representing the number of milliseconds
between the time the microphone stops detecting sound and the time the activity event is
dispatched

» Microphone.soundTransform: A SoundTransform Object that controls the sound of this
microphone object when it is in loopback mode

» Microphone.useEchoSuppression: Returns a Boolean indicating whether echo suppression
is enabled

324 | CHAPTER10 UTILIZING DEVICE FEATURES

In addition to these properties, four methods are associated with the Microphone class:

> Microphone.getMicrophone (index:int = -1): To return a reference to a Microphone
object for capturing audio

» Microphone.setLoopBack (state:Boolean = true): To route the audio Captured by the
microphone to local speakers

>» Microphone.setSilenceLevel (silencelLevel :Number, timeout:int = -1): To set
the minimum input level that should be considered for sound and the amount of silent time
signifying that silence has actually begun

> Microphone.setUseEchoSuppression (useEchoSuppression:Boolean): To Specify
whether to use the echo suppression feature of the audio codec

You can use the Microphone features only as long as sound capture capabilities exist on the

mobile device. Using the Microphone.names property you get a list of all the available sound capture
devices that are supported by the Microphone API. You can then use the array to determine which
microphone to use to record from by calling Microphone. getMicrophone ().

In the following snippet, the Microphone object is determined through determining the number of
microphones available, and it then gets the first microphone from a list using getMicrophone (0):

if (Microphone.names.length > 0)
{

var microphone:Microphone = Microphone.getMicrophone (0) ;

Here you see that when there is at least one microphone returned, the first one in the list, 0, is passed
to getMicrophone (), representing the Microphone. index property that can also be retrieved from
a Microphone instance.

Using the SampleDataEvent Class

For AS3-based mobile projects you need to import the SampleDataEvent class, found in the
flash.events package:

import flash.events.SampleDataEvent;

The sampleDataEvent is dispatched when a Microphone object has new audio data to provide. It

is also dispatched when a sound object makes a request for new audio data, when the sound object
hasn’t loaded an MP3 file. As you will see later, using a combination of both sound and Microphone
objects, you can play back recorded audio using SampleDataEvent objects.

The sampleDataEvent class has two public properties:
> SampleDataEvent.data: A ByteArray object representing the data in an audio stream

> SampleDataEvent.position: A number representing the position of the data in an audio
stream

Capturing Sound Using the Device’s Microphone | 325

The event has one event type, a public constant called sampleDataEvent . SAMPLE_DATA.

Capturing the Audio from a Microphone

To capture audio from the microphone on the device, you need to add an event listener for the
SampleDataEvent .SAMPLE_DATA event type and assign it an event handler, as shown in the
following snippet:

if (Microphone.names.length > 0)

{
var microphone:Microphone = Microphone.getMicrophone (0) ;
microphone.addEventListener (SampleDataEvent.SAMPLE_DATA, onSample);

Once an application is running and after the microphone instance has been initialized, each time

a user speaks into the microphone the onsample () event handler defined will be invoked. The
SampleDataEvent object returned in onSample () contains the audio stream recorded on the data
property. To play back an audio stream, this data needs to be written to a flash.utils.ByteArray
object. In the following snippet, you see a new ByteaArray instance being created, and the data
property on the SampleDataEvent object being used to transfer the byte array to the new instance.
1\VOIneﬂlodsOftheByteArray(ﬁﬂeCt,ByteArray.readFloat() and ByteArray.writeFloat (),
are used to read data and write it, respectively.

private var soundByteArray:ByteArray;

private function onSample (e:SampleDataEvent) :void

{
soundByteArray = new ByteArray () ;

while(e.data.bytesAvailable)
{

var audioSample:Number = e.data.readFloat();
soundByteArray.writeFloat (audioSample) ;

Playing the Audio from a ByteArray

Once you have recorded audio stream data in a ByteArray object, you can create a new Sound
object to play back that data:

private var soundObj:Sound = new Sound() ;

As with the Microphone object, you also need to listen for the SampleDataEvent . SAMPLE_DATA
event type as an event for the sound object. In the following snippet the saMpLE_DATA event handler
on the sound object instance soundobj is assigned the function playsound (). Following the event
listener assignment, the play () method on soundobj is called, as shown in the following snippet:

soundObj.addEventListener (SampleDataEvent . SAMPLE_DATA, playSound) ;
soundObj.play () ;

326

| CHAPTER10 UTILIZING DEVICE FEATURES

In playSound () the aim is to effectively broadcast the sample audio data to the sound object, which
is waiting to receive an audio stream after its play () method has been called. The following snippet
shows how this is done:

private function playSound(e:SampleDataEvent) :void

{
if (!soundByteArray.bytesAvailable > 0)

{

return;
} else {

for (var 1:int=0; i < 8192; i++)
{

var audioSample:Number = 0;

if (soundByteArray.bytesAvailable > 0)
{
audioSample = soundByteArray.readFloat();

}

e.data.writeFloat (audioSample) ;
e.data.writeFloat (audioSample) ;

}

In this snippet, notice that the BytesaArray.bytesAvailable property is used to determine whether
there is actually an audio stream of data. There is a for loop used to check that there are bytes
available on soundByteArray, and if bytes are available, that data is read and then written to the
SampleDataEvent object’s data property.

It is recommended that between 2,048 and 8,192 data samples be provided for better playback
quality. The writeFloat () method is called twice so that the audio data sample hits both the left
and right audio channels.

In the next section you take a closer look at the features of the Microphone API and build a working
mobile example.

Creating a Microphone App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defining the Flex Mobile Project Settings

The following lists a few of the familiar settings you will need to ensure are defined for the project:
» Name: Set the Name for the project to MicrophoneApp.
> Application ID: Set the Application ID to com.wrox.ch10.MicrophoneApp.

> Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to MicrophoneAppHome.

Capturing Sound Using the Device’s Microphone | 327

Targeting Devices on Different Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple
i0S, Google Android, and BlackBerry Tablet OS. For Google Android and BlackBerry Tablet OS,
a number of permissions need to be set to allow the application to record audio. For Apple iOS, no
permissions need to be defined specifically.

Defining Google Android Permissions

In the AIR application descriptor file generated with the project in Flash Builder, ensure the
android.permission.RECORD_AUDIO permission is included as a manifest addition for the Android
OS, as shown in the following code snippet:

<android>
<manifestAdditions>
<! [CDATA[
<manifest>
<uses-permission android:name="android.permission.RECORD_AUDIO"/>
</manifest>
11>
</manifestAdditions>
</android>

Defining BlackBerry Tablet OS Permissions

For BlackBerry Tablet OS applications, you need to specify both the record_audio and play_audio
permissions to allow the application to record and play audio, respectively. Ensure these values are
set in the blackberry-tablet.xml file, as shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>

<gnx>
<author>jganderson</author>
<authorId>gYAAgFbt6rihu</authorId>
<buildId>101</buildId>
<platformvVersion>1.0.6.2390</platformvVersion>
<permission>record_audio</permission>
<permission>play audio</permission>

</anx>

Defining Apple iOS Settings

Because the application will need to use the device’s microphone, you can prevent the application

from being installed on a device that doesn’t have audio recording capabilities by specifying the
UTIRequiredDeviceCapabilities key in the AIR application descriptor file via the <Tnfoadditions>,
and setting the value to an array containing the microphone string, as shown in the following snippet:

<iPhone>
<InfoAdditions>
<! [CDATA[
<key>UIDeviceFamily</key>
<array>
<string>1</string>

328 | CHAPTER10 UTILIZING DEVICE FEATURES

<string>l</string>
</array>
<key>UIStatusBarStyle</key>
<string>UIStatusBarStyleBlackTranslucent</string>
<key>UIRequiredDeviceCapabilities</key>
<array>
<string>microphone</string>
</array>
11>
</InfoAdditions>
</iPhone>

Building the Microphone App

In Listing 10-9 you will see the early stages of the MicrophoneappHome .mxm1 file. In addition to the
onCreationComplete () function, you’ll see three accompanying functions: startRecording (),
stopRecording(),andplayRecording(L

\, LISTING 10-9: The initial starting point for MicrophoneAppHome.mxml
Available for <?xml version="1.0" encoding="utf-8"?>
download on . view xmlns:Ex="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
creationComplete="onCreationComplete ()"

title="Microphone App">

<fx:Script>
<! [CDATA[

private function onCreationComplete():void {}
private function startRecording():void {}
private function stopRecording():void {}
private function playRecording():void {}

11>
</fx:Script>

<s:layout>
<s:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingBottom="20"
paddingTop="20"/>

</s:layout>

</s:View>

1. Under the <s:1layout> declaration add each of the components for the view. In a
<s:VGroup> container add a <s:Label>, a <s:ComboBox>, and <s : HGroup> containing

Capturing Sound Using the Device’s Microphone | 329

three <s:Button> components. For the <s:Label> set the id property to description
and height to 30. For the <s:ComboBox> set the id to microphones, textAlign

to center, focusEnabled to false, the width to 397, and height to 55. The three
buttons in the <s:HGroup> should be labeled Record, Stop, and Playback, in that order,
with their respective id properties set to startBtn, stopBtn, and playBtn. Assign the
startRecording () method to the click property on startBtn and the chromeColor to
#51B22F, assign the stopRecording () method to the click property on stopButton, the
chromeColor to #CB0909, and assign the playRecording () method to the playBtn. For
both stopBtn and playBtn set the enabled states to false (Listing 10-10).

\, LISTING 10-10: Adding the <s:Label>, <s:ComboBox>, and <s:Button> components to the

view in MicrophoneAppHome.mxml

Available for
download on
Wrox.com <S:layout>

<s:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingBottom="20"
paddingTop="20"/>

</s:layout>

<s:VGroup width="437"
gap=n20n
horizontalAlign="center">

<s:Label id="description"
text="Select microphone then start recording..."
height="30"/>

<s:ComboBox id="soundCaptureDevices"
width="397"
height="55"
textAlign="center"
focusEnabled="false"/>

<s:HGroup width="437"
gap=" 20"
horizontalAlign="center">

<s:Button id="startBtn"
label="Record"
chromeColor="#51B22F"
click="startRecording()"/>

<s:Button id="stopBtn"
label="Stop"
chromeColor="#CB0909"
click="stopRecording()"
continues

330 | CHAPTER10 UTILIZING DEVICE FEATURES

LISTING 10-10 (continued)
enabled="false"/>

<s:Button id="playBtn"
label="Playback"
click="playRecording()"
enabled="false"/>

</s:HGroup>
</s:VGroup>

2. Above onCreationComplete () hnporttheSampleDataEvent,Microphone,Sound,
ByteArray, and ArrayCollection classes into MicrophoneAppHome .mxml (Listing 10-11).

J LISTING 10-11: Importing SampleDataEvent, Microphone, Sound, ByteArray, and

ArrayCollection classes into MicrophoneAppHome.mxml

Available for

download on)
Wrox.com <fx:Script>

<! [CDATA[

import flash.events.SampleDataEvent;
import flash.media.Microphone;

import flash.media.Sound;

import flash.utils.ByteArray;

import mx.collections.ArrayCollection;

private function onCreationComplete():void {}

3. Next declare three private variables: microphone, soundByteArray, and soundobj
(Listing 10-12).

J LISTING 10-12: Declaring the private variables microphone, soundByteArray, and

soundObj in MicrophoneAppHome.mxml
Available for
downloadon
Wrox.com 1mport flash.events.SampleDataEvent;
import flash.media.Microphone;
import flash.media.Sound;
import flash.utils.ByteArray;
import mx.collections.ArrayCollection;

private var microphone:Microphone;
private var soundByteArray:ByteArray;
private var soundObj:Sound;

private function onCreationComplete():void {}

4. InonCreationComplete() retrieve the microphones available and assign them to the
dataProvider on the ComboBox component microphones. Then set the selectedIndex
property on microphones to 0 (Listing 10-13).

Capturing Sound Using the Device’s Microphone | 331

\) LISTING 10-13: Assigning the microphones available on the device to the <s:ComboBox>

component in MicrophoneAppHome.mxml

Available for
download on
Wrox.com Private function onCreationComplete():void

{
microphones.dataProvider = new ArrayCollection(Microphone.names) ;

microphones.selectedIndex = 0;

5. InstartRecording(), set the enabled states for the three <s:Button> components.
For playBtn and startBtn, set the enabled property to false, and for stopBtn set
the enabled property to true. This ensures that the play and start buttons can’t be
initialized while a recording is in progress. Then instantiate the new Bytearray object,
soundByteArray, to allow for new sound data to be written (Listing 10-14).

J LISTING 10-14: Setting the states for playBtn, startBtn, and stopBtn, and instantiating

soundByteArray in MicrophoneAppHome.mxml

Available for

download on . .)
Wrox.com Private function startRecording():void

{
playBtn.enabled = false;
startBtn.enabled = false;
stopBtn.enabled = true;

soundByteArray = new ByteArray();

6. Next assign the microphone selected in the <s: ComboBox> to the Microphone instance
microphone. Assign the SampleDataEvent . SAMPLE_DATA event type to a new event handler
called onsampleDpata (). Use setSilenceLevel () to set the silence level to 0, and the
associated timeout to 1000 milliseconds. (Listing 10-15). Also set the rate property to 44.

\) LISTING 10-15: Setting the microphone properties via the startRecording() method in

MicrophoneAppHome.mxml

Available for

download on
Wrox.com Private function startRecording():void

{
playBtn.enabled = false;
startBtn.enabled = false;
stopBtn.enabled = true;

soundByteArray = new ByteArray();

var index:int = soundCaptureDevices.selectedIndex;

microphone = Microphone.getMicrophone (index) ;
microphone.addEventListener (SampleDataEvent.SAMPLE_DATA, onSampleData);
microphone.rate = 44;

microphone.setSilenceLevel (0, 1000);

private function onSampleData(e:SampleDataEvent):void {}

332 | CHAPTER10 UTILIZING DEVICE FEATURES

7. In stopRecording (), also set the enabled states for the three <s:Button> components.
For playBtn and startBtn, set the enabled property to true, and for stopBtn set the
enabled property to false. This ensures that a new recording can be started once Stop has
been pressed. Then remove the sampleDataEvent . SAMPLE_DATA event from microphone to
prevent further data being written to soundBytearray through onsample () (Listing 10-16).

J LISTING 10-16: Setting the microphone properties via the onCreationComplete() method in

MicrophoneAppHome.mxml
Available for
download on
Wrox.com Private function stopRecording() :void

{
playBtn.enabled = true;
startBtn.enabled = true;
stopBtn.enabled = false;

microphone.removeEventListener (SampleDataEvent .SAMPLE_DATA, onSampleData);

}

8. InonSample(), write the data returned in the SampleDataEvent object e to the Bytearray
object (Listing 10-17).

\) LISTING 10-17: Writing audio stream data to soundByteArray via onSampleData() in

MicrophoneAppHome.mxml
Available for
download on
Wrox.com Private function onSampleData(e:micData:SampleDataEvent) :void

{
soundByteArray.writeBytes (micData.data);

9. Underneath playRecording (), add a private function called playSound (). In
playRecording () set the ByteArray object’s position property to 0, then instantiate the
Sound Object, assigning the sampleDataEvent .SAMPLE_DATA event to playSound () and
calling the play () method (Listing 10-18).

\) LISTING 10-18: Instantiating the Sound object and initializing play via playRecording() in

MicrophoneAppHome.mxml
Available for
download on
Wrox.com Private function playRecording() :void

{

var trans:SoundTransform = new SoundTransform(l, -1);
soundByteArray.position = 0;
soundObj = new Sound();

soundObj.addEventListener (SampleDataEvent .SAMPLE_DATA, playSound);
soundObj.play(0, 1, trans);

private function playSound(e:SampleDataEvent):void {}

Capturing Sound Using the Device’s Microphone | 333

10. InplaySound(), check that the soundBytearray has had data written to it using the
bytesAvailable property, then use the readrFloat () and writeFloat () methods
(Listing 10-19).

\) LISTING 10-19: Reading the audio stream on soundByteArray and writing it to the Sound object

in MicrophoneAppHome.mxml
Available for

download on . . .
Wrox.com Private function playSound(e:SampleDataEvent) :void

{
if (!soundByteArray.bytesAvailable > 0)
{

return;
} else {

for (var i:int = 0; i < 8192; i++)
{

var audioSample:Number = 0;

if (soundByteArray.bytesAvailable > 0)
{
audioSample = soundByteArray.readFloat();

}

e.data.writeFloat (audioSample);
e.data.writeFloat (audioSample) ;

11. Update the Microphoneapp . mxm1 file to include styles for the application. Replace the
<fx:Declarations> tag with an <fx:Style> declaration. Inside <fx:Style>, specify s as
the spark namespace. For the <s:View> components, define the backgroundColor property
as #999999, and the color property as #393839. Then for the <s:Label> component,
define the fontsize property as 22 (Listing 10-20).

\) LISTING 10-20: Setting the styles via the <fx:Style> declaration in MicrophoneAppHome.mxml

Available for <?xml version="1.0" encoding="utf-8"?>
dwmrgagn <s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
firstView="views.MicrophoneAppHome">
<fx:Style>

@namespace s "library://ns.adobe.com/flex/spark";

s|View
{
backgroundColor:#999999;
continues

334 | CHAPTER10 UTILIZING DEVICE FEATURES

LISTING 10-20 (continued)

color:#393839;
}

s|Label

{
fontSize:18;

}
</fx:Style>

</s:ViewNavigatorApplication>

12. Run the example using a device configuration. When the Microphone application launches,
underneath the title for the app you’ll see the description <s:Label>, <s:ComboBox>, and
the three collective control <s : Button> components vertically aligned (Figure 10-5).

For Android the <s:ComboBox> component is simply populated with the text
AndroidMicrophone, as the Microphone.names property returns only one microphone
(Figure 10-6). Also notice that the Stop and Playback buttons are both disabled, while the
Record button is enabled.

Microphone App Microphone App

AndroidMicrophone
AndroidMicrophone

AndroidMicrophone I

r——

FIGURE 10-5: Displaying the FIGURE 10-6: Selecting the
microphones available on microphone in the Microphone
the device in the Microphone App running on Android 2.3.4

App running on Android 2.3.4

Capturing Sound Using the Device’s Microphone | 335

On Apple iOS 4, the name of the Microphone

on the iPhone 4 is iOSMicrophone. For the Microphone App
BlackBerry OS on the PlayBook, the Microphone
is QNX Microphone.
oo
13. Next press the Record button to use the

—

microphone selected in the <s: ComboBox>

component and start recording with your voice. Record a
message, saying something like “Hello, My name is Earl.”
You should notice that the Record button component
startBtn will become disabled, while stopBtn will
become enabled, and the playBtn will remain disabled
(Figure 10-7).

14. To stop the recording in progress, press the Stop
button. Notice that both the Record and Playback buttons
become enabled, whereas stopBtn is disabled again
(Figure 10-8).

15. Finally, to play the recording you’ve just made, press the FIGURE 10-7: Recording audio
Playback button and you should hear the recording you using the device microphone in
made (Figure 10-9). the Microphone App running on

Android 2.3.4

Microphone App Microphone App

AndroidMicrophone I
Playback

AndroidMicrophone I

FIGURE 10-8: Enabling the FIGURE 10-9: Disabling the
Record and Playback buttons Record button during playback
after a recording has ended in in the Microphone App running
the Microphone App running on on Android 2.3.4

Android 2.3.4

336 | CHAPTER10 UTILIZING DEVICE FEATURES

UTILIZING THE DEVICE’S WEB CONTROLLER

The flash.media.StageWebView class can be used to display HTML content within a Flash-based
AIR for mobile application and is an alternative to the HTMLLoader class, which isn’t supported on
mobile devices.

Using the StageWebView Class

This section looks at the stagewebview object. The stagewebview class utilizes the mobile
operating system’s web control to render HTML; so, depending on what device an app is using
StageWebView, the features experienced could vary.

For AS mobile projects you need to import the stageWebview class found in the flash.media
package:

import flash.media.StageWebView;

Seven properties are associated with StageWebview:

> StageWebView.isHistoryBackEnabled: Returns a Boolean indicating whether there is a
previous page in the web control’s browsing history

> StageWebView.isHistoryForwardEnabled: Returns a Boolean indicating whether there is a
next page in the web control’s browsing history

> StageWebView.isSupported: A static property that returns a Boolean, indicating whether
the stagewebview class is supported on the current device

> StageWebView.location: Returns a string representing a URL of the current location

> StageWebView.stage: Returns a Stage reference on which the stagewebview object is
displayed

StageWebView.title: Returns a string defining the HTML, title property of the web page

> StageWebView.viewPort: Returns a Rectangle object representing the area where the
StageWebView object is displayed

[o use the StageWebview ob'ect, ou attach it directly to a stage using the StageWebView. stage
] Y y g g
property, as shown in the following code snippet:

var webView:StageWebView = new StageWebView() ;
webView.stage = stage;

Using the StageWebView. isSupported property, you can determine whether the feature is
supported:

if (StageWebView.isSupported)

{
var webView:StageWebView = new StageWebView () ;
webView.stage = stage;

Utilizing the Device’s Web Controller | 337

When the stagewebview object is attached to the stage, it is displayed on top of all Flash display
objects, so you will have to take care in sizing and positioning the rendering area via a Rectangle
instance defined for the viewport property. The following snippet creates a new Rectangle for the
viewPort property:

if (StageWebView.isSupported)

{
var webView:StageWebView = new StageWebView();
webView.stage = this.stage;
webView.viewPort = new Rectangle(0, 0, 240, 380);

Here viewport is defined by a rectangle whose x and y positions are both set to 0, with the width set
to 240 and the height to 380. Before taking a look at how to load a web page in the stageWebview
instance, have a look at the remaining methods and features of the stagewebview class:

> StageWebView.assignFocus (direction:String = “none“):Tk)asﬁgnthefocusofthe
app to the content within the stagewebview object

StageWebView.dispose (): To dispose of the StageWebview instance from the stage

> StageWebView.drawViewPortToBitmapData (bitmap:BitmapData): To draw what is
currently visible in the viewPort to a bitmap

> StageWebView.historyBack(): To navigate to the previous page in the web view’s
browsing history

> StageWebView.historyForward(): To navigate to the next page in the web view’s
browsing history

> StageWebView.loadString (text:String, mimeType:String = "text/html"): To load
and display a specified HTML string

> StageWebView.loadURL (url:String): To load and display the page at the specified URL
> StageWebView.reload(): To reload the current page
> StageWebView.stop (): To halt the current Load operation

In total, nine methods are associated with the stagewebview class. In the following snippet,
you see the StageWebView. loadString () method being used to load HTML directly into the
StageWebView instance:

if (StageWebView.isSupported)

{
var webView:StageWebView = new StageWebView() ;
webView.stage = this.stage;
webView.viewPort = new Rectangle(0, 0, 240, 380);

var html:String = "<html><head><title>Doc Title</title></head>"
+ "<body>Hello, world</body></html>";

webView.loadString (html) ;

338 | CHAPTER10 UTILIZING DEVICE FEATURES

The StageWebView.loadURL () method is what is used to load specific URLs directly into the
StageWebView instance, as shown in the following snippet:

if (StageWebView.isSupported)

{
var webView:StageWebView = new StageWebView () ;
webView.stage = this.stage;
webView.viewPort = new Rectangle(0, 0, 240, 380);

webView.loadURL ("http://www.google.com") ;

NOTE The HTTP protocol string http:// has to be specified in the string when
you want to load a URL via the StageWebView.loadURL () call.

Next you’ll take a closer look at utilizing some of the methods and features of stagewebview in the
Browser App example.

Creating a Browser App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defining the Flex Mobile Project Settings
The following lists a few of the familiar settings you will need to ensure are defined for the project:
» Name: Set the Name for the project to BrowserApp.
> Application ID: Set the Application ID to com.wrox.ch10.BrowserApp.

> Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to BrowserAppHome.

Targeting Devices on Different Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple iOS,
Google Android, and BlackBerry Tablet OS.

Defining Google Android Permissions

In the AIR application descriptor file generated with the project in Flash Builder, ensure the
android.permission.INTERNET permission is included as a manifest addition for the Android OS,
as shown in the following code snippet:

<android>
<manifestAdditions>
<! [CDATA[
<manifest>
<uses-permission android:name="android.permission.INTERNET"/>

Utilizing the Device’s Web Controller | 339

</manifest>
11>
</manifestAdditions>
</android>

This will grant the application’s access to the use of the Internet on the device.

Defining BlackBerry Tablet OS Permissions

For BlackBerry Tablet OS applications, you need to specify the access_internet permission, to
allow the application to use the Internet. Ensure this value is set in the blackberry-tablet .xml
file, as shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"7?>

<gnx>
<author>jganderson</author>
<authorId>gYAAgFbt6rihu</authorId>
<buildId>101</buildIld>
<platformVersion>1.0.6.2390</platformvVersion>
<permission>access_internet</permission>

</gnx>

Defining Apple iOS Settings

Because the application will need to use an Internet connection, you can prevent the
application from being installed on a device that doesn’t have WIFI capability, by specifying
the UTRequiredDeviceCapabilities key in the AIR application descriptor file via the
<InfoAdditions> and setting the value to an array containing the wifi string, as shown in the
following snippet:

<iPhone>
<InfoAdditions>
<! [CDATA[
<key>UIDeviceFamily</key>
<array>
<string>1l</string>
<string>1l</string>
</array>
<key>UIStatusBarStyle</key>
<string>UIStatusBarStyleBlackTranslucent</string>
<key>UIRequiredDeviceCapabilities</key>
<array>
<string>wifi</string>
</array>
11>
</InfoAdditions>
</iPhone>

Building the Browser App

In Listing 10-21 you’ll see the early stages of the BrowseraAppHome .mxm1 file. In addition to the
onCreationComplete () function, you’ll see three accompanying private functions: back (),
forward (), and go ().

340 | CHAPTER10 UTILIZING DEVICE FEATURES

\, LISTING 10-21: The initial starting point for BrowserAppHome.mxml

Available for <?xml version="1.0" encoding="utf-8"?>

daﬂ:gg&g" <s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
creationComplete="onCreationComplete ()"
title="Browser App">

<fx:Script>
<! [CDATA[

private function onCreationComplete():void {}
private function back():void {}

private function forward():void {}

private function go():void {}

11>
</fx:Script>

<s:layout>

<s:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingBottom="20"
paddingTop="20"/>

</s:layout>

</s:View>

1. Under the <s:layout> declaration, add two <s: Button> components to the view’s
<s:NavigationContent> declaration. For the first button set the 1abel property to back,
the id property to backBtn, and the click property to back (). For the second button
set the 1abel property to forward, the id property to forwardBtn, and the click property
to forward (). Set the enabled property on both buttons to false (Listing 10-22).

\, LISTING 10-22: Adding navigational <s:Button> components for the web view in

BrowserAppHome.mxml

Available for
download on
Wrox.com <S:layout>

<s:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingBottom="20"
paddingTop="20"/>

</s:layout>
<s:navigationContent>

<s:Button id="backBtn"
label="back"
enabled="false"

Utilizing the Device’s Web Controller | 341

click="back()"/>

<s:Button id="forwardBtn"
label="forward"
enabled="false"
click="forward()"/>

</s:navigationContent>

2. Under the <s:navigationContent> declaration, add a <s : VGroup> containing <s: Label>,
<s:TextInput>, and <s:Button> components arranged horizontally in an <s : HGroup>. For the
<s:Label> component, set the 1d property to pageTitle, the paddingLeft property to 5, the
fontSize property to 16, the width property to 100%, the height property to 20, and the text
property to pageTitle. For the <s:TextInput> component, set the id to pageAddress, the
width property to 100%, the height property to 50, the fontSize property to 18, and the text
property to page address. And for the <s:Button>, set the id property to goBtn, the
label property to Go, the height property to 50, and the c1ick property to go () (Listing 10-23).

\, LISTING 10-23: Adding the <s:Label>, <s:Textlnput>, and <s:Button> components to the view in

BrowserAppHome.mxml
Available for
download on . .
Wrox.com <s:navigationContent>
<s:Button id="backBtn"
enabled="false"
click="back()"/>

<s:Button id="forwardBtn"
enabled="false"
click="forward()"/>

</s:navigationContent>

<s:VGroup width="100%"
height="95">

<s:Label id="pageTitle"
paddingLeft="5"
fontSize="16"
width="100%"
height="20"
text="pageTitle"/>

<s:HGroup width="100%"
height="70"
y=||200n>

<s:TextInput id="pageAddress"
width="100%"
height="50"
fontSize="18"
text="page address"/>

<s:Button id="goBtn"
continues

342 | CHAPTER10 UTILIZING DEVICE FEATURES

LISTING 10-23 (continued)

label="Go"
height="50"
click="go()"/>

</s:HGroup>
</s:VGroup>

3. InonCreationComplete (), define a new Rectangle object for the web view called
rectangle. Set the x property to 0 and vy to 185. Set the width on rectangle to Stage
.stagewidth property and height to Stage.stageHeight minus the 185, subtracted for
the y positioning. Then create the stageWebview object webview, assigning the Event
.COMPLETE event type to a new private function called onCcomplete (). Assign the stage
property of the view to the StageWebView object’s stage property, webView.stage. Then
finally assign the rectangle to the Stagewebview object’s viewPort property, before
calling the 1oadurL () method to load the URL http: //www.bbc.co.uk (Listing 10-24).

\, LISTING 10-24: Defining the StageWebView instance webView via the onCreationComplete()

method in BrowserAppHome.mxml

Available for

download on . . .
Wrox.com Private var webView:StageWebView;

private function onCreationComplete():void

{
var rectangle:Rectangle = new Rectangle():;
rectangle.x = 0;
rectangle.y = 185;
rectangle.width = stage.stageWidth;
rectangle.height = (stage.stageHeight - 185);

webView = new StageWebView();
webView.addEventListener (Event .COMPLETE, onComplete);
webView.stage = stage;
webView.viewPort = rectangle;
webView.loadURL("http://www.bbc.co.uk");

}

private function onComplete(e:Event):void {}

4. Add a black dividing line that separates webView from the other components in the view.
Create a sprite object called divider, setting the graphics property to define the object.
Assign the divider to the webView.stage property (Listing 10-25).

J LISTING 10-25: Adding a horizontal dividing line to the stage in BrowserAppHome.mxml

Availablefor private function onCreationComplete():void
download on {
Wrox.com

var rectangle:Rectangle = new Rectangle();

rectangle.x = 0;

Utilizing the Device’s Web Controller | 343

rectangle.y = 185;
rectangle.width = stage.stageWidth;
rectangle.height = (stage.stageHeight - 185);

webView

webView.
webView.
webView.
webView.

new StageWebView() ;

addEventListener (Event.COMPLETE, onComplete);
stage = stage;

viewPort = rectangle;

loadURL ("http://www.bbc.co.uk") ;

var divider:Sprite = new Sprite();
divider.graphics.beginFill (0x000000);
divider.graphics.drawRect (0, 180, stage.stageWidth, 5);
divider.graphics.endFill();

webView.stage.addChild(divider);

5. Next complete the event handler for the Event .coMpLETE method. In onComplete () set the
text property on pageTitle to webvView.title, and the text property on pageAddress
to webView.location. Then use the StageWebView.isHistoryForwardEnabled and
StageWebView. isHistoryBackEnabled to determine whether the two navigational buttons
backBtn and forwardBtn should be disabled or enabled (Listing 10-26).

\) LISTING 10-26: Setting the pageTitle, pageAddress, and the button states for backBtn and
forwardBtn in BrowserApp.mxml

Available for
download on

Wrox.com Private function onComplete(e:Event):void

{

pageTitle.text = webView.title;
pageAddress.text = webView.location;

backBtn.enabled = webView.isHistoryBackEnabled;
forwardBtn.enabled = webView.isHistoryForwardEnabled;

6. Inback(), use StageliebView. isHistoryBackEnabled, this time invoking the
webView.historyBack () method to go to the last visited page. Similarly, in forward (),
use the StageWebview. isHistoryForwardEnabled property to check whether the
historyForward() method can be called (Listing 10-27).

\) LISTING 10-27: Completing the back() and forward() methods in BrowserAppHome.mxml

Available for private function back():void

download on {
Wrox.com

if (webView.isHistoryBackEnabled)

{

webView.historyBack();

continues

344 | CHAPTER10 UTILIZING DEVICE FEATURES

LISTING 10-27 (continued)

}

private function forward() :void

{
if (webView.isHistoryForwardEnabled)
{
webView.historyForward () ;
}

}

7. Call the 10adurL () method on webView in go (), supplying pageAddress. text as the
parameter (Listing 10-28).

\) LISTING 10-28: Completing the go() method in BrowserAppHome.mxml

Available for private function go() :void
download on {
Wrox.com
webView.loadURL (pageAddress.text);

}

8. Run the project, using either a device or desktop configuration profile. When the view is
created the web page should load in the stagewebview object. The title of the web page is
displayed, along with the URL (Figure 10-10).

Browser App

hitipdivwwe bbe.co.uk/mobile/ m

Spanish Grand Prix: Results & reaction

NEXT | PREV ®

© Customise your homepage

@ search

US ‘would repeat Bin Laden

FIGURE 10-10: Title of web
page and URL are displayed
in the Browser App running on
Android 2.3.4.

Utilizing the Device’s Web Controller

345

Using the stagewebView object, you can interact with the web page using multitouch and

gestures.

@ NOTE For a recap on multitouch and gestures, please visit Chapter 4.

If you make a “pinch” gesture on the stagewebview object, you can manipulate the view by

zooming in or out of the web page. If you make the “swiping” gesture you can also scroll

through the web page (Figure 10-11).

9. Next enter a new URL in the Address field and click the Go button. You will see that the
StageWebView object is updated with the new URL and the “back” button’s enabled state is

set to true. The title of the web page is also updated (Figure 10-12).

Browser App

hitipdivwwe bbe.co uk/mobile/ m

Radio & Music _EDIT
NOW ON AIR

Radio 1

Nick Grimshaw and Annie
Mac

6 Music Guy Garvey's Finest Hour
More stations and schedules
&) Podcasts

BBC iPlayer
FEATURED

i D Louis Theroux
N Part 1
More info

FIGURE 10-11: Scroll enabled
StageWebView in the Browser
App running on Android 2.3.4

10. Click the “back” button, and you should see that the stagewebview object returned to

Browser App

httpivwwe google.couk! m

Web [mages Places News more v

Google

Sign in
iGoogle Settings Help
View Google in: Moblle | Classic
Go to Google.com

2011 - Privacy

FIGURE 10-12: The back button
is now enabled in the Browser
App running on Android 2.3.4

the previous web page. Now the “forward” button’s enabled state is set to true while the
“back” button is disabled (Figure 10-13).

If you run the project on an Android device without a network connection, then of course the web

page will not load into the StagewWebview object. In this situation you should be presented with a
user-friendly message, “Web page not available” (Figure 10-14).

346 | CHAPTER10 UTILIZING DEVICE FEATURES

Browser App

page address m
-

Browser App

hitipdivwwn bbe.co.uk/maobile/ m

Radio & Music _EDIT
NOW ON AIR Web page not available
Radio 1 Nick Grimshaw and Annie The Web page at http://www.bbc.co.uk/
Mac might be temporarily down or it may
6 Music Guy Garvey's Finest Hour have moved permanently to a new web
address.
More stations and schedules
Here are some suggestions:

Podcasts "
- # Check to make sure that your device

i has a signal and data connection
BBC |Player * Reload this web page later.
FEATURED = View a cached copy of the web page

) from Google
i D Louis Theroux 8
L Part 1
More info

- . B
FIGURE 10-13: The forward FIGURE 10-14: The Web
button is now enabled in Page Not Available message
the Browser App running on displaying in the Browser App
Android 2.3.4 running on Android 2.3.4

Using the flash.net.URLMonitor class you could implement a way to detect that the page was
unreachable due to the lack of Internet connection and provide the user with an alternative message.

NOTE You can learn more about the URLMonitor class in Chapter 8.

UTILIZING THE DEVICE’S GEOLOCATION SENSOR

In this section you’ll examine how to use the Geolocation and GeolocationEvent classes to
retrieve the location of a mobile device using AIR.

Using the Geolocation Class

Using the flash.sensors.Geolocation class, you can utilize the GPS information retrieved by a
device. This allows an application to pinpoint, with a degree of accuracy, the longitude, latitude,
and altitude coordinates.

For AS3-based mobile projects you will need to import the Geolocation class found in the flash
.sensors package:

import flash.sensors.Geolocation;

Utilizing the Device’s Geolocation Sensor | 347

This class has only three API features that can be used to gain access to the native camera app on
the host device:

> Geolocation.isSupported: A static property of Boolean type that indicates whether the
device actually supports Geolocation and retrieving GPS data

> Geolocation.setRequestedUpdateInterval (interval:Number): A method to set a
timer to retrieve an update from the GPS

> Geolocation.muted: A property of Boolean type that indicates whether the use of GPS is
enabled on the device

Both the issupported and muted properties should be used in combination to retrieve GPS data, as
you will see shortly.

Using the GeolocationEvent Class

The flash.events.GeolocationEvent class provides the properties that actually deliver the GPS
information through updates to the device.

For AS3-based mobile projects you will need to import the GeolocationEvent class found in the
flash.events package:

import flash.sensors.Geolocation;

Each GeolocationEvent object has the following geolocation based properties:

» Geolocation.altitude: A number defining the altitude in meters
Geolocation.heading: A number defining the direction of movement in degrees
Geolocation.horizontalAccuracy: A number defining the horizontal accuracy in meters
Geolocation.latitude: A number defining the latitude in degrees
Geolocation.longitude: A number defining the longitude in degrees

Geolocation.speed: A number defining the speed in meters per second

Y Y Y VY Y Y

Geolocation.timestamp: A number representing the number of seconds since the
Geolocation object was initialized at run time

» Geolocation.verticalAccuracy: A number defining the vertical accuracy in meters

In order to use the geolocation sensor and retrieve a GeolocationEvent object, you need to add an
event listener on a Geolocation object for the GeolocationEvent .UPDATE event type, assigning it
to an event handler:

if (Geolocation.isSupported && !geolocation.muted)

{
var geolocation:Geolocation = new Geolocation();
geolocation.addEventListener (GeolocationEvent .UPDATE, onUpdate) ;

348 | CHAPTER10 UTILIZING DEVICE FEATURES

Creating a Geolocation App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defining the Flex Mobile Project Settings

The following lists a few of the familiar settings you will need to ensure are defined for the project:
» Name: Set the Name for the project to GeolocationApp.
> Application ID: Set the Application ID to com.wrox.ch10.GeolocationApp.

» Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to GeolocationAppHome.

Targeting Devices on Different Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple
i0S, Google Android, and BlackBerry Tablet OS. For Google Android and BlackBerry Tablet
OS, a number of permissions need to be set to allow geolocation capabilities. For Apple iOS, no
permissions need to be defined specifically.

Defining Google Android Permissions

In the AIR application descriptor file generated with the project in Flash Builder, ensure you include
theandroid.permission.ACCESS_FINE_LOCATIONandtheandroid.permission.INTERNET
permission as a manifest addition for the Android OS, as shown in the following code snippet:

<android>
<manifestAdditions>
<! [CDATA [
<manifest>
<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION"/>

<uses-permission
android:name="android.permission.INTERNET" />
</manifest>
11>
</manifestAdditions>
</android>

The ACCESS_FINE_LOCATION permission will grant the application access to the device’s GPS,
allowing you to retrieve longitude and latitude coordinates. The INTERNET permission will grant the
application access to utilize a Google Maps API.

Defining BlackBerry Tablet OS Permissions

Similarly, for BlackBerry Tablet OS applications, you need to specify the read_geolocation and
access_internet permissions, to allow the application to use the GPS and to access the Internet,
respectively.

Utilizing the Device’s Geolocation Sensor | 349

Ensure these values are set in the blackberry-tablet.xml file, as shown in the following
code snippet:

<?xml version="1.0" encoding="UTF-8"?>

<gnx>
<author>jganderson</author>
<authorId>gYAAgFbt6rihu</authorId>
<buildId>101</buildId>
<platformversion>1.0.6.2390</platformvVersion>
<permission>read_geolocation</permission>
<permission>access_internet</permission>

</anx>

Defining Apple iOS Settings

Because the application will need to utilize the GPS, you can prevent the application from being installed
on a device that doesn’t have GPS capability by specifying the UTRequiredbeviceCapabilities key

in the AIR application descriptor file via the <Infoadditions>, and setting the value to an array
containing the gps string, as shown in the following snippet:

<iPhone>
<InfoAdditions>
<! [CDATA[
<key>UIDeviceFamily</key>
<array>
<string>l</string>
<string>1l</string>
</array>
<key>UIStatusBarStyle</key>
<string>UIStatusBarStyleBlackTranslucent</string>
<key>UIRequiredDeviceCapabilities</key>
<array>
<string>gps</string>
</array>
11>
</InfoAdditions>
</iPhone>

Utilizing the Google Static Maps API

In the latter part of coding the Geolocation App, you use the Google Static Maps API to load an
image map representing the longitude and latitude coordinates.

In the following snippet, you’ll see that the center is defined as London, UK; this basically sets the
location to be returned by the API:

http://maps.google.com/maps/api/staticmap?center=London, UK&zoom=15&size=200
x200&sensor=true&maptype=road

Alternatively, you can use the longitude and latitude values to set the location via the center
property, which you will cover when building the Geolocation App shortly.

350 | CHAPTER10 UTILIZING DEVICE FEATURES

In the URL you also see the zoom property set to 15, which
represents the level at which the map should be zoomed in.

The size property, here set at 200x200, determines the width

and height of the image returned from the server. The maptype

is set to road, indicating that only the road map type should be
returned. Lastly, the sensor value is set to true, which relates to
whether the request is made via a GPS call. Figure 10-15 shows the
resulting API call.

The scope of this chapter doesn’t extend to covering the full
features of the Google Static Maps API, but if you want to learn
more take a look at the Static Maps API V2 Developer Guide
found at http://code.google.com/apis/maps/documentation/
staticmaps/.

Building the Geolocation App

or

H

a
e \Westminster,

SEeLm
wbinet B
oms

15 Uauleed

pan St :
= Big Ben

London

A Westminster
A Abbey

cﬂmAiME

£
@
L)
%

o

~ i
FIGURE 10-15: A Google static
image displaying a 200x200
road view of London

data 82011 Google, Tele Atlas

;

In Listing 10-29 you’ll see the early stages of the GeolocationappHome . mxml file.

O

Available for
download on

Wrox.com <?xml version="1.0" encoding="utf-8"?>

<g:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="onCreationComplete ()"
title="Geolocation App">

<fx:Script>
<! [CDATA[

LISTING 10-29: The initial stages of GeolocationAppHome.mxml

private function onCreationComplete():void {}

private function exit() :void

{

NativeApplication.nativeApplication.exit();

}

11>
</fx:Script>

<s:navigationContent>

<s:Button label="Quit"
click="exit()"/>

</s:navigationContent>
<s:layout>

<s:VerticalLayout paddingLeft="20"

Utilizing the Device’s Geolocation Sensor | 351

paddingRight="20"

paddingBottom="20"

paddingTop="20"/>
</s:layout>

</s:View>

1. Above the onCreationComplete () method, import the Geolocation class and define a
Geolocation object (Listing 10-30).

\, LISTING 10-30: Defining a Geolocation object in GeolocationAppHome.mxml

Available for
download on

Wrox.com <fx:Script>

<! [CDATA[
import flash.sensors.Geolocation;
private var geolocation:Geolocation;
private function onCreationComplete():void {}
private function exit():void

{
NativeApplication.nativeApplication.exit();

11>
</fx:Script>

2. InonCreationComplete () instantiate the Geolocation object if geolocation is supported on

the device (Listing 10-31)

\) LISTING 10-31: Determining whether Geolocation is supported and creating a new Geolocation
object in GeolocationAppHome.mxml

Available for
download on .) . .
Wrox.com Private function onCreationComplete():void
{
if (Geolocation.isSupported)
{
geolocation = new Geolocation();
}

}

3. After the Geolocation object has been created, detect whether retrieving GPS
data is disabled via the muted property. If the muted returns false, set the

352 | CHAPTER10 UTILIZING DEVICE FEATURES

requested update interval on the Geolocation object to 5000 milliseconds using
setRequestedUpdateInterval (). Then assign the GeolocationEvent.UPDATE on the
Geolocation object to a new event handler called onupdate () (Listing 10-32).

\, LISTING 10-32: Setting the update interval and assigning the update event on the Geolocation

object in GeolocationAppHome.mxml
Available for

download on
Wrox.com Private function onCreationComplete() :void

{
if (Geolocation.isSupported)
{

geolocation = new Geolocation();

if (!geolocation.muted)

{
geolocation.setRequestedUpdateInterval (5000);
geolocation.addEventListener (GeolocationEvent .UPDATE,
onUpdate) ;
}

}

private function onUpdate(e:GeolocationEvent):void {}

4. Under the <s:1layout> declaration, add a <s:Label> component and set the text
> p
property to Geolocation data...;also add a <s:Textarea> component setting the

id property to geolocationTxt and the height property to 300 and paddingBottom to 10
(Listing 10-33).

\) LISTING 10-33: Adding the <s:Label> and <s:TextArea> components to the view in

GeolocationAppHome.mxmi
Available for
download on
Wrox.com <s:layout>

<g:VerticalLayout paddingLeft="20"
paddingRight="20"
paddingBottom="20"
paddingTop="20"/>
</s:layout>

<s:Label text="Geolocation data..."/>
<s:TextArea id="geolocationTxt"

height="300"
paddingBottom="10"/>

5. In onUpdate (), use the GeolocationEvent object e to assign each of the Geolocation
Obﬁctproperﬂeslongitude,latitude,altitude,horitontalAccuracy,

Utilizing the Device’s Geolocation Sensor

| 353

verticalAccuracy,speedﬁnuitimestamptothetext;noperﬁzonthe<s:TextArea>
component, geolocationTxt (Listing 10-34).

O

Available for
download on . .
Wrox.com Private function onUpdate(e:
{
geolocationTxt.text =
+
+
+
+
+
+
+
+
+
+
+
+
}
6.

LISTING 10-34: Assigning the geolocation details to the text property on the <s:TextArea>
component in GeolocationAppHome.mxml

GeolocationEvent) :void

"longitude: " + e.longitude

n \nll

"latitude: " + e.latitude

n \nll

"altitude: " + e.altitude

n \nll

"horizontalAccuracy: " + e.horizontalAccuracy
n \nll

"yverticalAccuracy: " + e.verticalAccuracy
n \nll

"speed: " + e.speed

n \nll

"timestamp: " + e.timestamp;

Update the GeolocationApp.mxml file to include styles for the application. Replace the

<fx:Declarations> tag with an <fx:Style> declaration. Inside <fx:Style>, specify s as
the spark namespace. For the <s:View> components, define the backgroundcolor property
as #cccecc, and the color property as #393839. Then for the <s:Label> component,
define the fontsize property as 24 (Listing 10-35).

\, LISTING 10-35: Setting the styles via the <fx:Style> declaration in GeolocationApp.mxml

Available for <?xml version="1.0" encoding="utf-8"?>
dmg;u:gn(:n <s:ViewNavigatorApplication

<fx:Style>

xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
firstView="views.GeolocationAppHome">

@namespace s "library://ns.adobe.com/flex/spark";

s|View

{

backgroundColor: #CCCCCC;
color:#393839;

}

s |Label
{

continues

354 | CHAPTER10 UTILIZING DEVICE FEATURES

LISTING 10-35 (continued)

fontSize:24; : ol B oss
} Quit Geolocation App
</fx:Style> Geolocation data...
longitude: 51.460651
</s:ViewNavigatorApplication> latitude: -0.211866
altitude: 0

horizontalAccuracy: 1339
. . . . verticalAccuracy: 1339
7. Run the project using a device configuration speed: 0

profile. Ensure the GPS settings on the device are Hiestams Tt
enabled. When the view is first created, the
GeolocationEvent object should return location
data, which is then displayed in the <s:Textarea>
(Figure 10-16).

8. Under the <s:Textarea> component, add a <s:Label>
and <s:Image>. Set the text property on the <s:Label>
component to Google maps image. .., and set the id
property on the <s: Image> component to googleImage

(Listing 10-36). FIGURE 10-16: Geolocation data

returned in the Geolocation App
running on Android 2.3.4

J LISTING 10-36: Adding the <s:Label> and <s:Image> components in

GeolocationAppHome.mxml

Available for

download on .
Wrox.com <S:Label text="Geolocation data..."/>

<s:TextArea id="geolocationTxt"
height="300"
paddingBottom="15"/>

<s:Label text="Google maps image..."/>
<s:Image id="googleImage"/>

9. Assign the longitude and latitude returned in the GeolocationEvent object e to the
center property on the Google image maps API URL. Also set the zoom property to 15,
the size property to 435x200, and sensor to true (Listing 10-37).

\, LISTING 10-37: Assigning a google image map location to the source property of the <s:Image>

component in GeolocationAppHome.mxml

Available for
download on
Wrox.com Private function onUpdate (e:GeolocationEvent) :void

{

geolocationTxt.text = "longitude: " + e.longitude

Utilizing the Device’s Geolocation Sensor | 355

n \1’1"

"latitude: " + e.latitude

n \1’1"

"altitude: " + e.altitude

" \n"

"horizontalAccuracy: " + e.horizontalAccuracy
" \1’1"

"verticalAccuracy: " + e.verticalAccuracy
n \1’1"

"speed: " + e.speed

" \1'1"

"timestamp: " + e.timestamp;

+ o+ o+ o+ o+ o+ o+ +

googleImage.source = "http://maps.google.com/maps/api/staticmap?"
"center=" + e.latitude + "," + e.longitude
"gzoom=15"

"gsize=435x200"

"gsensor=true";

+ + + o+

}

10. Run the project once again using a device configuration profile. This time when the view
is created the GeolocationEvent object should return data and the image from Google
(Figure 10-17).

Quit Geolocation App

Geolocation data...

longitude: 51.460651
latitude: -0.211866
altitude: 0
horizontalAccuracy: 1339
verticalAccuracy: 1339
speed: 0

timestamp: 9202

Google maps image...
ey O i N
e am vy ¥,

~ % .'" -.I_..ET..
i e _._i
“_I T~ o

FIGURE 10-17: Displaying the
Google static image map in the
Geolocation App running on
Android 2.3.4

356

| CHAPTER10 UTILIZING DEVICE FEATURES

SUMMARY

Over the course of this chapter you have explored three of the key features available in AIR for
mobile devices.

First you learned how to utilize the device’s camera app to take an image using the handset and to
load it into the AIR application.

You then learned how to use the device’s microphone to record and play back audio streams.

Using the device’s web control you also learned how to include support for displaying web pages
within an AIR application.

Finally, you learned how to use the device’s Geolocation sensor, allowing you to use GPS data.

In the next chapter, you take a look at updating the AIR mobile applications installed on the device,
whether it would be to enhance an existing feature, add a new one, or fix a bug.

EXERCISES

1.

2.

Extend the Camera App example by allowing the user to add a filter, rendering the captured
image in black and white.

For the Microphone App example, allow the user to store and reference each of the voice
messages saved.

With the Browser App example, provide an option to save a URL as a bookmark and display a
snapshot image of the web page in use.

In the Geolocation App, add each of the updated Google static map images to a horizontal
scrollable list.

Summary | 357

TOPIC

Determining support for the camera

Launching the camera app

Determining microphone availability

Retrieving a microphone

Capturing audio from a microphone

Audio stream data playback

Determining support for web control

Displaying dynamic HTML content
Displaying web browser content

Navigating the browsing history

Determining support for the
geolocation

Retrieving geolocation information

» WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPT

Use CameraUI. isSupported to determine whether the web
interface is supported on a mobile device.

Use CameraUI.launch () to launch the device’s camera app.

Use Microphone.names to retrieve a list of sound capture
devices available.

Use Microphone.getMicrophone () to return a reference to
a Microphone object for capturing audio.

Register the SampleDataEvent . SAMPLE_DATA event with
a Microphone object and write an audio data stream to a
ByteArray object using writeFloat ().

Register the SampleDataEvent . SAMPLE_DATA event with a
Sound object and call the Sound.play () method.
Re-write an audio data stream to the data property on

SampleDataEvent object usingwriteFloat ().

Use StageWebView. isSupported to determine whether the
web control is supported on a mobile device.

Use StageWebView.loadString () to load HTML.
Use StageWebView.loadURL () to load a web page.

Use StageWebView. isHistoryBackEnabled

and StageWebView.isHistoryForwardEnabled to
determine whether historical navigation of the StageWebView
instance is permitted. Call historyForward () to navigate
forward and historyBack () to navigate back.

Use Geolocation.isSupported to determine whether a
device supports retrieving geolocation data.

Register the GeolocationEvent .UPDATE event with a
Geolocation object to receive updates on geolocation data.

INDEX

ACCESS_FINE_LOCATION, android.permission,

75,76, 348
access_internet, 79, 81, 339, 348
access_shared, 81, 204, 317
action bar component, 28-29
actionBarVisible, 162-163
ActionScript 3.0 (AS3). See also ECMAScript
defined, 2
key concepts, 3-11
SQL, 286
Add Team view, 284, 285
addpriver (), 278,279
ADDED_TO_STAGE, 163, 310
addEventListener ()
SQLEvent .OPEN, 248, 255
TouchEvent types, 107, 109, 119, 121, 123,
124, 129
TraitEventDispatcher, 300
URLMonitor, 241, 244
addTeam (), 262,271,272,273
addTxt (), 153
Adobe Flash. See Flash
Adobe Integrated Runtime. See AIR
Adobe website
Flash Builder 4.5.1 updater, 35
Flash Builder requirements, 36
Mobile and Devices Developer Center page, 96
AIR (Adobe Integrated Runtime)
applications
updating, 96-98, 99
version number, 97-98
camera, 315-316
logo, 31
namespace declaration, Hello World App, 69
overview, 31-32, 34
AIR application descriptor files. See also
HelloWorldApp-app.xml
<autoOrients> property, 151

defined, 67-68
elements, 68, 99
Hello World App, editing, 69-79
retrieving details, 97, 99
setting properties, 68
UIRequiredDeviceCapabilities, 317, 327,
339, 349
AIR File System API, 199-238. See also filesystems
Flash Builder, 199
non-browser Flash applications, 199
air.net package, 240
Amazon Appstore, 87, 96
aND, 135, 175
Android
AIR, 31, 32, 34
.apk file, 68, 83, 84, 87, 88, 99
example projects, 53
Flash Player, 2
launch icons, 72, 73
Mobile and Devices Developer Center page, 96
packaging applications, 82-88, 99
permissions, 75-76, 99
Browser App project, 338-339
Camera App project, 317
Files Explorer App project, 203-204
Geolocation App project, 348
Microphone App project, 327
run configurations, 55-56, 66
targeting
Files Explorer App project, 203-204
Hello World App project, 42—-44
URL property values returned, 202
Android Market, 87, 96
<android> element, 75, 76, 99
android.permission.ACCESS_FINE_LOCATION,
75,76, 348
android.permission.CAMERA, 75, 76, 317
android.permission.DISABLE_KEYGUARD, 76
android.permission.INTERNET, 75, 338, 348
android.permission.READ_PHONE_STATE, 75

359

android.permission.RECORD_AUDIO — browseForOpen()

android.permission.RECORD_AUDIO, AudioEvent object, 298-300, 314
75,76, 81, 327 AudioEvent .MUTED_CHANGE, 298
android.permission.WAKE_LOCK, 75 AudioEvent . PAN_CHANGE, 298
android.permission.WRITE_EXTERNAL_STORAGE, AudioEvent .VOLUME_CHANGE, 298, 300, 314
76,203,204 AudioTrait, 314
.apk files, 68, 83, 84, 87, 88, 99 AudioTrait.volume, 314
app:/,201,202, 238 <author>, 79
App Store, 89, 96 <authorId>, 79
<application>, 68, 69 <autoOrients>, 68, 72, 74, 76, 81, 99, 151

application descriptor files. See AIR application
descriptor files

Application DPI, 175 I
scaling applications, 134-135
setting styles, 135-137, 175 back (), 343-344
Application ID back button, 224-225
Browser App, 338 backgroundColor property, 20, 102, 136, 205, 222,
Camera App, 316 223,242, 311, 318, 321, 333, 353
Files Explorer App, 203 .bar files, 94, 95, 99
Geolocation App, 348 basePath, 303, 304, 306, 308, 309
Hello World App, 43, 69-70 <s:BasicLayout>, 18
Maintaining Data App, 241 BlackBerry Playbook
Media Player App, 301 AlR, 31
Microphone App, 326 launch icon, 73
reverse-DNS-style strings, 4, 69, 99 screen resolutions comparison, 132
Sprite Layout App, 141 BlackBerry Tablet OS
applicationComplete event, 188, 189, 198 AlR, 31, 32, 34
applicationDPI, 134, 135, 137, 174, 175 .bar files, 94, 95, 99
application-dpi, 135, 136, 175 configuration settings, 79-82
app-storage:/, 201,202,238 Files Explorer App project, 214
AppWorld, 96 Flash Player, 2
“archive” folder, 228,229 launch icons, 73, 80
arguments, 7-8 Mobile and Devices Developer Center page, 96
array packaging applications, 94-96, 99
dirData, 211 permissions, 80-81, 99
docsDirectory, 209, 211 Browser App project, 339
ECMAScript 4, 3 Camera App project, 317
FileFilter objects, 230 Files Explorer App project, 204
FilesExplorerAppHome.mxml, 212 Geolocation App project, 348-349
instance variables, 6 Microphone App project, 327
selectedFiles, 234 run configurations, 56-61, 66
soundByteArray, 330, 331, 332 targeting
SQLStatement .parameters, 250, 251 Files Explorer App project, 204
UlIDeviceFamily, 77 Hello World App project, 42—-44
UIRequiredDeviceCapabilities, 77 blackberry-tablet.xml file, 44, 79, 82, 94, 99,
vector, 118 204, 317, 329, 339, 349
<s:ArrayList>, 17, 304-305, 307 breakpoints
AS3. See ActionScript 3.0 Flash Debug perspective, 162, 178, 182, 185
aspect ratio, 132, 138, 139, 151 setting, 177-188, 198
<aspectRatio>, 68, 72,98, 99 Breakpoints panel, 38, 177, 185, 186, 198
asterisk (*), 288 browse dialogs, 229-237, 238
AudioElement object, 291-292, 314 browseForOpen (), 229, 230, 235, 236, 238

360

browseForOpenMultiple() — data synchronizing solution

browseForOpenMultiple (), 229, 230,
231,235,238
browseForSave (), 229,236,237, 238
Browser App project
building, 339-346
exercise, 356
Flex Mobile Project settings, 338
targeting mobile devices, 338-339
BrowserAppHome . mxml
back (), 343-344
backBtn, 343
<s:Button>, 340-341
forward (), 343-344
forwardBtn, 343
go (), 344
horizontal dividing line, 342-343
initial starting point, 340
<s:Label>, 341
OnCreationComplete (), 342
<s:TextInput>, 341
BufferTrait, 314
<buildid>, 79
Button, J., 284
Button Bar component, 16
Button component, 16
<s:Button>
BrowserAppHome .mxml, 340-341
CameraAppHome .mxml, 318-319
click property, S0
DebuggingAppHome .mxml, 178, 179
FilesExplorerAppHome.mxml, 206-207, 220,
221-222,232
FolderView.mxml, 223,224
HelloWorldAppHome .mxml, 47-48
HelloWorldAppMessageView.mxml, 48
ImagesView.mxml, 233
MaintainingDataAppHome.mxml, 253, 254
MicrophoneAppHome .mxml, 329-330, 331,
332,334
Submit button, 65
UpdateTeamsView.mxml, 273
ByteArray, 324, 325-326, 330, 357

camera, 315-322
AIR, 315-316
support, 357

CAMERA, android.permission,

75,76, 317

Camera App project
building, 318-322
exercise, 356
Flex Mobile Project settings, 316
targeting mobile devices, 316-318
CameraAppHome . mxml
<s:Button>, 318-319
CameraUT, 319
<s:Image>, 318-319, 321
initial starting point, 318
<s:Label>, 318-319, 321
launch (), 319-320
MediaEvent .COMPLETE, 319
onImageLoadComplete (), 320-321
setting styles, 321
CameraUT, 316, 319, 357
Capabilities.screenDPI property,
134,137, 138, 175
Catch block. See Try...Catch statements
CheckBox control, 19
classes, 3
click property, SO
<s:ComboBox>, 328, 329, 330, 331, 334, 335
Common section, Properties view, 41
conditional statements, 8-9. See also
if statement
Console view panel, 38
<s:ConstraintLayout>, 18
constructors, 5
<content>, 68, 72, 99
context menu, 180, 186, 198
copying files/file directories, 219
copyTo (), 219, 238
CREATE, 249, 288
CREATE TABLE, 249, 250, 258-259
creationComplete, 232
creationDate, 200
creator, 200
CrossFadeViewTransition, 29
cross-platform, 31, 72, 201
currentState property, 161, 171, 309

data. See also database tables
Formula 1, 239, 245
offline, 247, 288
working with, 239-288
data binding, 21-22
data synchronizing solution, 287

361

database tables — files

database tables
creating, 250, 288
data
deleting, 252, 288
retrieving, 251-252, 288
saving, 250-251, 288
updating, 252, 288
defined, 248-249
databases (SQLite), 248, 288. See also
MaintainingDataAppHome . mxml
dataResult, 245-246
Data/Services, 37
data.txt, 244, 245, 247
debug configurations
Files Explorer App project, 204
Maintaining Data App project, 242
MediaPlayer App project, 302
Debug Configurations panel, 181, 204, 242, 302
Debug panel, 38, 177, 183, 184, 185, 188,
193, 196, 198
debug tokens, 59, 60, 66, 79, 82, 95
debugging, 177-198
breakpoints
Flash Debug perspective, 162, 178, 182, 185
setting, 177-188, 198
Breakpoints panel, 38, 177, 185, 186, 198
stepping through code, 193-196, 198
Debugging App project, 177
Debug Configuration, 181
New Flex Mobile Project panel, 178
DebuggingAppHome.mxml, 178-180, 191, 192, 194
<fx:Declarations>, 175
DELETE, 249, 288
deleteDirectory(), 220, 238
deleteDriver (), 262
deleteFile(), 219,238
deleteTeam(), 262,268,269
descriptive labels, Teamsview.mxml, 261
Design view
defined, 39
HelloWorldAppHome .mxml, 40
overview, 39-41
panels, 40
desktop
mobile applications, 12, 31
run configurations, 52-54
Device Central
emulating content, 35, 104, 125
Generic Multitouch device, 106
Multitouch panel, 128, 129
MultitouchAndGestures.swf, 105, 106, 125
no touch support warning, 106

362

output window, 114

touchPointID, 114
device DPI, 133-138
device DPI to DPI Classification constant mappings, 135
device features, 315-357. See also camera;

geolocation sensor; microphone; web controller

device orientation changes, 151-154
dirData, 211
directories. See file directories
DISABLE_KEYGUARD, android.permission, 76
displayImage(), 234
DisplayObject, 115,295
DisplayObjectTrait, 293
aobi, 25, 49, 50
docsDirectory, 209, 211
DPI Classification constant mappings, 135
DPIClassification.DPI_160, 134
DPIClassification.DPI_240, 134
DPIClassification.DPI_320, 134
drawing shape, Multitouch and Gestures App, 126
drawLines (), 110, 111, 112, 114, 116, 123
drawRectangle (), 115, 116, 142-143, 155
drawShape (), 114, 115, 116, 123
drawSprite(), 142-143
driver names, 264-265
Drivers

CREATE TABLE, 258-259

data synchronizing solution, 287
DynamicStreamingResource, 290

e touch event object, 108, 110

ECMAScript, 2-3

Editor Area, 37

error handling, global, 188, 198

error status, SQL, 257, 282

Error was caught!, 192,193

Event.RESIZE, 140, 143, 144

exists, 200

Export Release Build panel, 82, 84, 86, 87, 89, 90,
94, 99

Expression view panel, 38

extension, 201

file://, 201,202,238
files
contents
reading, 218
updating, 217-218

File class — Flash Lite

copying, 219
creating, 220-229
deleting, 219
moving, to other directories, 218-219
opening
multiple, 230-236
single, 230
saving, 236
writing to, 217, 238
File class, 200-203, 216, 237, 288
file directories
copying, 219
creating, 218
deleting, 220
files
listing, 208-216
moving to other directories, 218-219
File object, 200-201
file objects
creating, 238
from static locations, 201-202, 238
from URL path, 201
native path, 204-208
properties, 200-201
resolving reference path, 203, 238
File.applicationDirectory, 202,238

File.applicationStorageDirectory, 202, 218,

219, 230, 236, 238, 255
File.desktopDirectory, 202,203,238
File.documentsDirectory, 202,203,238
FileFilter objects, 230, 231
FileMode, 216-217, 238
FileMode.APPEND, 217
FileMode.READ, 217, 218
FileMode.UPDATE, 217
FileMode.WRITE, 217, 238
filename property, Hello World App, 70
<filename>, 68, 70
Files Explorer App project
“archive” folder, 228, 229
building, 204-216
FileView.mxml file, 223-224
back button, 224-225
createFile(), 226-227
creating, 223-224
file stream, 226
Flex Mobile Project settings, 203
FolderView.mxml view, 222-223
back button, 224-225
createFolder (), 225-226
creating, 222-223
new directory, 225

Google Nexus One, 204

New File button, 228

New Folder button, 228

running, 214

targeting mobile devices, 203-204
FilesExplorerApp-app.xml, 203
FilesExplorerAppHome.mxml

<s:Button>, 206-207

exercises, 237

fileview(), 227

foldervView(), 227

horizontal group components, 220-222

<s:Label> component, 206-207, 208

<s:List>,208-210

listing files of directory, 208-216

navigating to new views, 227

private variable, 207

retrieving directory listing, 209

setting text to native path, 207-208

view, 206
FilesExplorerApp.mxml, 204-205
FileStream class, 200-203, 237
FileStream object, 238
filesystems

AIR File System API, 199-238

Flash Builder, 199

non-browser Flash applications, 199

modifying, 216-229, 238
reading, 200-216
File.userDirectory, 202,203,238
FileView.mxnl file
back button, 224-225
createFile(), 226-227
creating, 223-224
file stream, 226
Flash
logo, 2
on mobile devices, 2
non-browser Flash applications, 199
platform, 1-2, 34
Flash Builder. See also AIR File System API
features, 36
IDE, 64
overview, 35-36
Preferences panel, 133
requirements, 36
updater, 35
Flash Debug perspective, 36
breakpoints, 162, 178, 182, 185
defined, 38
view panels, 38-39
Flash Lite 4.0, 2, 34

363

Flash perspective — Google Nexus One

Flash perspective
defined, 36
view panels, 37-38
Flash Player 10.x, 2, 34
gesture input support, 102
multitouch support, 102
Flex framework
logo, 11
mobile application structure, 22-31
overview, 11-12, 34
Flex Mobile Project settings
Browser App project, 338
Camera App project, 316
familiarize with steps, 44
Files Explorer App project, 203
Geolocation App project, 348
Hello World App project, 41
Maintaining Data App project, 241-242
MediaPlayer App project, 301
Microphone App project, 326
Flex OSMF wrapper, 300-311
FlipViewTransition, 29
folders
“archive,” 228, 229
creating, 220-229
moving, 219
FolderView.mxml view
back button, 224-225
createFolder (), 225-226
creating, 222-223
new directory, 225
fontSize, 20, 136, 205
for loop, 10, 179, 180, 184, 185, 188, 193, 194, 196,
210, 211, 214, 326
<s:FormItemLayout>, 18
Formula 1 data, 239, 245
forward (), 343-344
<fullScreen>, 68, 72, 74,76, 99
functions, 4-5
fx namespace, 12-14

Generic Multitouch device, 106
Geolocation App project
building, 350-355
exercise, 356
Flex Mobile Project settings, 348
Google Static Maps API, 349-350
targeting devices, 348-349

364

Geolocation class, 346-347
API features, 347
Geolocation.isSupported, 347, 351, 352,
357
geolocation sensor, 346-355
retrieving information, 357
support, 357
GeolocationAppHome . mxml
determining support, 351-352
geolocation object, 351
Google image map location, 354-355
<s:Image>, 354
initial stages, 350-351
<s:Label> component, 352, 353, 354
setting styles, 353-354
<s:TextArea>, 352-353
update event, 352
update interval, 352
GeolocationEvent class
GeolocationEvent.UPDATE, 347, 352, 357
properties, 347
gesture events
handling, 124-127, 129
properties, 118-119
registering, on interactive objects, 119-124
setting input mode, 118
types, 118-119
gesture input support
determining, 117-118, 129
Flash Player 10.1, 102
iPhone success, 101
Multitouch.supportsGestureEvents, 117,
118, 119, 122, 129
GestureEvent, 118, 119, 129
GestureEvent .GESTURE_TWO_FINGER_TAP, 118, 119
GesturePhase, 119, 120
GesturePhase.UPDATE, 124, 125
getChildByName (), 114, 115, 124
getDirectoryListing(), 209, 211
getResult (), 264,275
getsSprite (), 144-145, 168
Gingerbread 2.3.4, 202, 203
global error handling, 188, 198
go(), 344
Google Android. See Android
Google image map location, 354-355
Google Nexus One
example projects, 53
Files Explorer App, 204
Flash Builder, 36
Hello World App, 88

Google Static Maps API — .ipa

file

screen resolutions comparison, 132
72x72 pixel file image, 73
touch points, 117
USB Connected status, 56
Google Static Maps API, 349-350
group containers
attributes, 156
items aligned, 155-161
nesting items, 155
Sprite Layout App
layout declarations in, 159-160
portrait layout, 157-159
using states to change layout, 160-161
Sprite Layout Flex App created, 162-173
Group tags, 18-19

Hamilton, L., 284
Hello World App project
AIR application descriptor files, 69-79
AIR namespace declaration, 69
application ID, 69-70
filename property, 70
initial appearance, 71-72, 99
launch icons, 72-75, 77, 80, 99
name property, 70
supported profile, 71
version number, 70-71
XML declaration, 69
building, 45-51
creation, 41-51
Flash Debug perspective, 39
Flash perspective, 38
Flex Mobile Project settings, 41
launch icons, 74
Package Explorer, 44, 74, 88, 91, 95
self-signed digital certificate, 85
targeting mobile devices, 42-44
HelloWorldApp-app.xml, 44, 68, 69, 70, 71, 72,
74,76, 79, 83, 86, 88, 94
HelloWorldAppHome .mxml, 45, 47-48
<s:Button>, 50
Design view, 40
onSubmit (), 48-49, 50-51
Source view, 39
HelloWorldAppMessageView.mxml, 48, 50, 51
HGroup tags, 18-19
HistoryBack (), 337, 343, 357
historyForward(), 337, 343, 357
horizontal dividing line, 342-343

horizontal group components, 220-222, 232
<s:HorizontalLayout>, 18
HTTP Service component, 17

<icon>, 68,73, 74,76, 78,79, 80, 99
id attribute, 14
<id>, 68, 69
idleTimer, 120, 121
if statement, 8, 98, 147, 148, 179, 184, 188, 190,
193, 194, 255, 264, 275
image sizes, 72, 99. See also launch icons
Image tag, 20
<s:Image>, 20, 233, 318-319, 321, 354
ImagesView.mxml, 233, 234, 235
info additions, 77
<InfoAdditions>, 77, 78, 317, 327, 339, 349
inheritance, 11
initial appearance, Hello World App, 71-72, 99
initializeGestures (), 121,122,123
initializeTimer (), 121,122, 124,125
initializeTouch(), 121,122
<initialwWindow>, 68, 72, 74, 76, 99, 151
INSERT, 249, 271, 275,282, 288
instance variables, 5-6
instances, 3
INTERNET, android.permission,
75, 338, 348

IOErrorEvent, 191, 197
iOS

AIR, 31, 32, 34

Files Explorer App project, 214

Flash Player, 2

info additions, 77

.ipa file, 88, 90, 91, 99

launch icons, 72

Mobile and Devices Developer Center page, 96

packaging applications, 88-94, 99
permissions, 99
run configurations, 62-64, 66
settings
Browser App project, 339
Camera App project, 317-318
capabilities, 77-79
Geolocation App project, 349
Microphone App project, 327-328
targeting, Hello World App project, 42-44
108, 135,175
iOS Provisioning Portal, 63
.ipa files, 88, 90, 91, 99

365

iPads — MaintainingDataAppHome.mxml

iPads
launch icons, 73
screen resolutions comparison, 132
<iphone> element, 77, 78, 99
iPhones
launch icons, 73
multitouch/gesture support, 101
screen resolutions comparison, 132
touch points, 117
iPod Touch devices, 43, 73, 77
isDirectory, 201, 210, 211
isHidden, 201
isPackage, 201
item renderer, 265-267

iTunes, 91
JOIN, 249

key concepts, AS3, 3-11
key-value pairs, 77

Label component, 15

label text is set, 196

<s:Label> component
BrowserAppHome .mxml, 341
CameraAppHome .mxml, 318-319, 321
DebuggingAppHome .mxml, 178
defined, 15
Error was caught!, 192,193
FilesExplorerAppHome.mxml, 206-207, 208
fontSize, 20, 136, 205
GeolocationAppHome.mxml, 352, 353, 354
HelloWorldAppHome .mxml, 45, 48
label text is set, 196
labelstr, 187, 188, 190
<s:layout>, 222,223
<s:List>, 265
MaintainingDataAppHome.mxml, 243
MediaItemRenderer.mxml, 302
MicrophoneAppHome.mxml, 328, 329, 333, 334
onCreationComplete(), 51
<fx:Script>, 14
TeamsView.mxml, 260
UpdateTeamsView.mxml, 275, 276, 282
<s:VGroup>, 252

366

labelstr variable, 179, 183, 186, 187, 188, 190,
191, 192, 193, 194, 195, 196
landscape
<s:layout.landscape>, 170-171
MediaPlayerAppHome.mxml, 305-306
Sprite Layout Flex App, 172, 173
SpriteLayoutFlexAppHome.mxml, 167-168
launch (), 316, 318, 319-320, 357
launch icons, 72-75, 77, 80, 99
layout declarations, 17-18
Layout section, Properties view, 41
<s:layout>, 222,223
defined, 17
nesting, 18
<s:layout.STATE_NAME>, 175
layoutComponents (), 144, 145, 146, 148, 149, 150
<s:layout.landscape>, 170-171
line numbers, 180, 198
List component, 17
<s:List>
FilesExplorerAppHome.mxml, 208-210
<s:Label>, 265
MediaPlayerAppHome.mxml, 307
listing files, of directory, 208-216
local host, 240, 244
localx, 109
localy, 109
logo
AIR, 31
Flash, 2
Flex, 11
OSMF, 289
loop statements, 10. See also for loop

Maintaining Data App project
Add Team view, 284, 285
Flex Mobile Project settings, 241-242
modifying, 252
network availability changes, 242-247
targeting mobile devices, 242
MaintainingDataAppHome .mxml. See also
Drivers; Teams
<s:Button>, 253, 254
database statuses, 256-257
dataResult, 245-246
declaring database File object, 254-255
initial starting point, 243
<s:Label> component, 243-244
opening connection to database, 255-256

MaintainingDataApp.mxml — Multitouch and Gestures app project

resolving file path to database, 255
SQL error status, 257

updating import statements, 254-255, 257-258

urlLoader, 246
urlMonitor, 244
urlRequest, 244
MaintainingDataApp.mxml, 242
maxTouchPoints, 117
McLaren team, 284, 285
media elements
creating, 314
defined, 290
media resources
creating, 314
defined, 290
@media rule, 135, 136, 174, 175
media trait events, 298, 300, 313, 314
media traits, 292-293, 314
MediaElement object, 314
creating, 291-292
MediaPlayer.media, 314
MediaPlayerSprite.media, 314
MediaEvent .COMPLETE, 319
MediaItemRenderer.mxml, 302, 303, 307
MediaItemvo, 302, 304-305, 307
MedialtemVO.as, 302
MediaPlayer App project
building, 302-313
Flex Mobile Project settings, 301
targeting mobile devices, 302
MediaPlayer class
functions, 296
public properties, 294-296
using, 314
MediaPlayerAppHome .mxml
<s:ArrayList>, 304-305
basePath, 304
<s:List>, 307
onAddedtoStage (), 309, 310
onClick(), 308
onComplete (), 308
onCreationComplete(), 309, 310
onOrientationChange (), 309, 310
portrait/landscape states, 305-306
title, 303
updateLayout (), 309, 310
<s:VideoPlayer> added, 306-307
xmlns:vo, 303
MediaPlayerApp.mxml, 311
MediaPlayer.media, 314
MediaPlayer.play(), 314
MediaPlayerSprite class, 297-298, 314

MediaPlayerSprite.media, 314
MediaPlayerSprite.resource, 314
MediaPromise, 320
MediaTraitType class, 293-294
memory availability, 12, 31
methods, 4-5, 7
microphone, 323-335

availability, 357

capturing sound, 323, 325
Microphone App project

building, 328-335

exercise, 356

Flex Mobile Project settings, 326

targeting devices, 327-328
Microphone class, 323-324

methods, 324

Microphone.names, 323, 324, 334, 357

properties, 323
MicrophoneAppHome . mxml
audio stream data, 332, 333
<s:Button>, 329-330
<s:ComboBox>, 329, 331
declaring private variables, 330
importing classes, 330
initial starting point, 328-329
<s:Label> component, 329
microphone properties, 332
playRecording (), 332
setting styles, 333-334
startRecording (), 331
Microphone.getMicrophone (), 324, 357

Mobile and Devices Developer Center page, 96

mobile application development
considerations, 12, 31
desktop applications, 12, 31
mobile application structure, Flex
framework, 22-31
modificationDate, 200
Motorola Zoom, 132, 135
moveLines (), 110, 111, 113, 114
moveTo (), 218, 219, 238
multiple image files, opening, 231-236
multiple screen sizes. See screen sizes

Multitouch and Gestures App project, 103-128

build path for creation, 105
creating, 103-106

drawing shape, 126

New ActionScript Project panel, 104
pan gesture, 127

.swf files, 104

touch points added, 125, 126, 127

367

multitouch input — Outline view panel

multitouch input. See also gesture input support;
touch input support
defined, 102, 129
Flash Player 10.1, 102
iPhone success, 101
Multitouch panel, utilizing, 128, 129
MultitouchAndGesture (), 120
MultitouchAndGestures.as, 102
assigning properties of touch point event, 110
changes, 103-125
detecting touch event types, 108-109
input mode set for touch events, 106-107
MultitouchInputMode imported, 106
registering gesture events, 119-124
registering touch events
on interactive objects, 114-117
with stage via class constructor, 109
touch event handler, 108
TouchEvent imported, 108
tracking touch points in application, 110-114
MultitouchAndGestures.swf, 105, 106, 125
MultitouchInputMode, 106
Multitouch.inputMode property, 106, 107, 109,
118,119, 122, 129
MultitouchInputMode.GESTURE, 118, 119, 122, 129
Multitouch.maxTouchPoints, 117
Multitouch.supportedGestures, 117, 118, 119,
123,129
Multitouch.supportsGestureEvents, 117, 118,
119,122,129
Multitouch.supportsTouchEvents, 102, 103, 129
mx namespace, 12-13
MXML
New MXML Component panel, 47, 221
overview, 12-14, 34

name property, Hello World App, 70
<name>, 68, 70
namespaces, XML
default, 12-14
defined, 12
native path, of file object, 204-208
NativeApplication, 97, 99
nativePath, 200, 202, 203, 204, 207, 224, 255
network availability
changes, 239-247
StatusEvent.STATUS, 241, 244, 245, 246, 288
Network Monitor, 37
New ActionScript Project panel, 103, 104
New File button, 228

368

New Flex Mobile Project wizard, 41, 42, 43, 44, 75,
81,178

New Folder button, 228

New MXML Component panel, 47, 221

Nexus One. See Google Nexus One

non-browser Flash applications, 199

objects, 3
OEMS (original equipment manufacturers), 101
offline data. See data
offset values, 115
offsetXx, 112, 113, 115, 120, 124
offsety, 112, 113, 115, 120, 124
onAddedtosStage (), 163, 169, 309, 310
onAppComplete (), 189
onBtnOne (), 283
onClick(), 16,23,179, 182, 183, 192, 193, 194,
196, 307, 308
onCreationComplete (), 50, 51, 162, 163, 207,
222,223,224,225,226,232,233, 234, 244,
274,282,309, 310, 318, 319, 328, 330, 331, 332,
339, 340, 342, 351
onDeleteTeam(), 269, 270
onImageLoadComplete (), 320-321
onOpenDb (), 255, 256
onOrientationChange (), 153, 154, 163,
169, 309, 310
onPan (), 123, 124
onResize (), 140, 143, 144, 150
onSampleData (), 331, 332
onSelect (), 230,231,232
onSelectDrivers (), 279, 280
onStatus (), 241, 244, 246, 252
onSubmit (), 48-49, 50, 51
onTimer (), 120, 121, 122
onTouch (), 108, 109, 110, 116, 122
onViewActivate(), 260,265
Open Multiple Media button, 232, 235
Open Source Media Framework. See OSMF
openDb (), 253, 255
ORIENTATION_CHANGE, 152, 153, 154, 163, 310
ORIENTATION_CHANGING, 152
original equipment manufacturers (OEMs), 101
OSMF (Open Source Media Framework), 289-314
Flex OSMF wrapper, 300-311
fundamentals, 290
logo, 289
os-platform property, 135, 136, 175
Outline view panel, 37

Package Explorer — screen aspect ratio

Package Explorer
defined, 37
Hello World project, 44, 74, 88, 91, 95
packages, 3-4
packaging applications
Android, 82-88, 99
Apple i0S, 88-94, 99
BlackBerry Tablet OS, 94-96, 99
pan gesture, 119, 120, 123, 125, 127, 128
parameters, 7-8
parent, 201
permissions, 99. See also specific permissions
Android, 75-76, 99
Browser App project, 338-339
Camera App project, 317
Files Explorer App project, 203-204
Geolocation App project, 348
Microphone App project, 327
Apple i0S, 99
BlackBerry Tablet OS, 80-81, 99
Browser App project, 339
Camera App project, 317
Files Explorer App project, 204
Geolocation App project, 348-349
Microphone App project, 327
perspectives, 36-39. See also Flash Debug
perspective; Flash perspective
pixel density, 132-133. See also screen resolutions
play(), 296,297, 301, 314, 325, 326, 332, 357
play_audio, 81, 327
playBtn, 329, 331, 335
PlayEvent object, 299, 314
PlayEvent .PAUSED, 314
playRecording (), 328, 329, 330, 332
playSound(), 325, 326, 332, 333
PlayState object, 299
PlayTrait, 314
portrait
MediaPlayerAppHome.mxml, 305-306
Sprite Layout App, 157-159
Sprite Layout Flex App, 172, 173
SpritelLayoutFlexAppHome.mxml, 167-168
press and tap gesture, 119, 128, 129
PressAndTapGestureEvent, 119, 128, 129
PressAndTapGestureEvent . GESTURE_PRESS_
AND_TAP, 119, 128
primary key, 249, 251, 252,258,288
PRIMARY KEY, 250
Problems, view panel, 37
processor performance, 12, 31

prompt property, 15, 46, 245, 247,252

Properties view, 40, 41

pushview(), 25,29, 30, 50, 51, 224, 227,231, 232,
259,268

ONX, 79, 135, 175, 335
<gnx> element, 79, 82, 99

Radio Button control, 19
read_geolocation, 81, 348, 349
reading filesystems, 200-216
READ_PHONE_STATE, android.permission, 75
RECORD_AUDIO, 75, 76, 81, 327
record_audio, 81
RECORD_AUDIO, android.permission,
75,76, 81, 327
Red Bull team, 285, 286
remote server, 240
removeChild(), 113, 114
removeLines (), 110, 114
<requestedDisplayResolution>, 78
<requiredDisplayResolution>, 93
resolution. See screen resolutions
ResolvePath (), 203, 218, 219, 220, 225, 226, 238
return types, 5
reverse-DNS-style strings, 4, 69, 99
rotate gesture, 119, 128
ROTATED_LEFT, 152
ROTATED_RIGHT, 152
run configurations, 51-52
Apple i0OS, 62-64, 66
BlackBerry Tablet OS, 56-61, 66
desktop, 52-54
Files Explorer App project, 204
Google Android, 55-56, 66
Maintaining Data App project, 242
MediaPlayer App project, 302
mobile devices, 55-64

s namespace, 12-14

SampleDataEvent class, 324-326, 330, 331, 332
SampleDataEvent.SAMPLE_DATA, 325, 331, 332, 357
scaling applications, Application DPI, 134-135
scope, 4

screen aspect ratio, 132, 138, 139, 151

369

screen DPI — SQLErrorEvents

screen DPI, 137-138
screen resolutions
defined, 132
development considerations, 12, 31
i0S, 78-79
mobile devices comparison, 132-133
screen size, 132
screen sizes
defined, 132
screen resolution, 132
<fx:Script>, 13, 14, 16, 23, 48, 50, 163,
179, 189, 205, 222,223,224, 244,255,
260, 303, 307
SELECT, 249, 251, 288
Select teams SQL statement, 263
selectDrivers (), 279, 280
selectedFiles, 234
selectMedia (), 231,232
SELECT_MULTIPLE event, 230, 231
selectTeams (), 262, 263
self-signed digital certificates, 82, 83, 85
Service.available, 241, 246
ServiceMonitor, 288
Service.unavailable, 241, 245, 247
set_audio_volume, 81
setCoordinates (), 110, 111, 112, 113
setting styles. See styles
Size and Position section, Properties view, 41
sizeComponents (), 144, 145, 146, 147, 150,
168-169, 171
sizeX, 109
sizey, 109
skins, 15, 34, 300
SlideViewTransition, 29
soundByteArray, 330, 331, 332
Sound.play (), 357. See also play ()
Source Forge, 290
Source view
defined, 39
HelloWorldAppHome .mxml, 39
spaceAvailable, 200
Spark
architecture, 15
component library, 14-21
default layouts, 41
splash images, 65, 81-82
Spotlight and Settings screens, 73
Sprite Layout App, 140-151
ActionScript mobile project settings, 141
aligning assets, 151
building, 141-150

370

group containers
layout declarations in, 159-160
portrait layout, 157-159
using states to change layout, 160-161
resizing assets, 150-151
Sprite Layout Flex App, 154
all states, 172
creating, with group containers, 162-173
landscape state, 173
portrait state, 173
sprites, portrait/landscape layouts, 172
SpriteLayoutApp.as
addTxt (), 153
drawRectangle (), 142-143
drawSprite (), 142-143
getSprite(), 144-145
stageHeight, 147-150
stageWidth, 147
static variables for colors, 141-142
TextField component, 152-153
SpriteLayoutFlexAppHome . mxml
ADDED_TO_STAGE, 163
currentState property, 171
<s:layout>, 166-167, 168
<s:layout.landscape>, 170-171
ORIENTATION_CHANGE, 163
portrait/landscape views, 167-168
<s:Rect>, 163-166
sizeComponents (), 168-169
sprites
initializing, 143
private variables for, 141-142
Sprite Layout Flex App, 172
width/height, 145, 146
x/y positions, 145, 146
SQL (Structured Query Language)
AS3, 286
defined, 247
SQL error status, 257, 282
SQL statements
CREATE, 249, 288
DELETE, 249, 288
INSERT, 249,271, 275,282, 288
JOIN, 249
list, 249
SELECT, 249, 251, 288
UPDATE, 249, 252,282, 288
WHERE, 249, 251, 288
SQLConnection, 248, 250, 255, 256,257,258, 259,
262,288
SQLErrorEvents, 265

SQLEvent — teams.db

SQLEvent, 248
SQLEvent .OPEN, 248, 255, 256
SQLEvent .RESULT, 250, 258
SQLite, 247-248. See also database tables; databases
SQLStatement object, 250
SQLStatement.execute (), 250, 269, 270
SQLStatement .parameters, 250, 251
SQLStatement.sglConnection, 250
SQLStatement. text, 250
Stage, 119
stage size
content adapted, 138-151
resize events, 140
StageAlign, 138-139
StageAlign.TOP_LEFT, 139, 142,175
stageHeight, 147-150
StageOrientation class, 152
StageOrientationEvent class, 152
StageOrientationEvent.ORIENTATION_CHANGE,
152,153, 154, 163, 310
StageOrientationEVENT.ORIENTATION_
CHANGING, 152
StageOrientation.ROTATED_LEFT, 152
StageOrientation.ROTATED_RIGHT, 152
StageOrientation.UNKNOWN, 152
StageOrientation.UPSIDE_DOWN, 152
StageScaleMode, 138-139, 175
StageScaleMode.EXACT_FIT, 138
StageScaleMode.NO_BORDER, 138, 139
StageScaleMode.NO_SCALE, 138, 139, 175
StageScaleMode.SHOW_ALL, 138, 139
Stage.stageHeight, 112, 113, 140, 144,
150, 175, 342
Stage.stageWidth, 112, 140, 150, 175
StageWebView class, 315, 336-338
methods, 337
properties, 336
StageWebView.isHistoryBackEnabled,
336, 343, 357
StageWebView.isHistoryForwardEnabled, 336,
343,357
StageWebView.isSupported, 336, 357
StageWebView.loadString (), 337, 357
StageWebView.loadURL (), 338, 357
stageWidth, 147-150
stageX, 110, 114
stagev, 110, 114
start (), 121, 241, 244
startBtn, 329, 331, 335
startRecording (), 328, 331
STATE_NAME, 175
StateOrientationEvent.CHANGE, 175

static methods, 7

static variables, 7

StatusEvent object, 241

StatusEvent.STATUS, 241, 244, 245, 246, 288

Step Into button, 198

Step Over button, 183, 185, 195, 196, 198

Step Return button, 196, 198

stepping through code, 193-196, 198

stopBtn, 329, 331, 335

String object, 22, 188

Structured Query Language. See SQL

<fx:Style>, 20, 21, 205, 311, 321, 333, 353

styles
Application DPI, 135-137, 175
CameraAppHome .mxml, 321
declarations, 20-21
GeolocationAppHome.mxml, 353-354
MicrophoneAppHome . mxml, 333-334
Style section, Properties view, 41

Submit button, 54, 65

supported profile, Hello World App, 71

<supportedProfiles>, 68, 71,72

.swf files, 104. See also Multitouch and Gestures

App project

swipe gesture, 119, 128

switchOff (), 8

switchon(), 7, 8,9, 10

tabBarVisible, 162-163
tabbed view navigator application, 26-28
tables. See database tables
targeting mobile devices
Browser App project, 338-339
Camera App project, 316-318
familiarize with steps, 44
Files Explorer App project, 203-204
Geolocation App project, 348-349
Hello World App project, 42—-44
Maintaining Data App project, 242
MediaPlayer App project, 302
Microphone App project, 327-328
TeamItemRenderer.mxml, 266-267
Teams
CREATE TABLE, 258
data synchronizing solution, 287
Teams View
completing, 268-273
creating, 260-265
View Teams button, 259
teams .db, 255, 258, 259, 270

37

teamsList — updateDriver()

teamsList, 261, 271
TeamsView.mxml, 260
Add Team button, 271
declaring private functions, 262
delete driver, 270
deleteTeam(), 269
descriptive labels, 261
driver names added, 264-265
getResult(), 264
onDeleteDrivers (), 270-271
onDeleteTeam (), 270
onViewActivate(), 260
Select teams SQL statement, 263-264
SQL Connection object, 262-263
SQLErrorEvents, 265
teamsList, 261-262
<s:ViewMenuItem>, 272-273
Text Area component, 15-16
Text Input component, 15-16
<s:TextAreas, 15,223, 245, 252, 352, 353, 354
TextField component, 152-153
<s:TextInput> component
BrowserAppHome .mxml, 341
data binding, 21, 22
defined, 15, 16
FilesExplorerAppHome.mxml, 222,223
HelloWorldAppHome.mxml, 46, 49
<s:Label>, 276
prompt property, 15, 46, 245, 247,252
<s:TileLayout>, 18
TimeEvent object, 299-300, 314
TimeEvent.COMPLETE, 299, 314
TimeEvent.CURRENT_TIME_CHANGE, 299
TimeEvent .DURATION_CHANGE, 299
Timer, 119, 120
TimerEvent, 119, 120, 121
TimeTrait, 314
touch events
handling, 106-114, 129
properties, 107-109
registering
on interactive objects, 114-117
with stage via class constructor, 109
setting input mode, 106-107
types, 107-109
touch input support
determining, 102-103, 129
development considerations, 12, 31
Multitouch.supportsTouchEvents, 102,
103, 129
setting input mode, 129

372

touch points
determining, 117
events
determining support, 103
tracking, in application, 110-114
Multitouch and Gestures App project,
125, 126, 127
TOUCH_BEGIN, 107, 108, 109, 110, 114, 116, 122,
123
TOUCH_END, 107, 108, 109, 110, 111, 114, 116, 123
TouchEvent, 107-108, 109, 129
TOUCH_MOVE, 107, 108, 109, 110, 111, 114, 116, 123
TOUCH_ouT, 107
TOUCH_OVER, 107
touchPointID, 109, 110, 111, 114
TOUCH_ROLL_OUT, 107
TOUCH_ROLIL_OVER, 107
TOUCH_TAP, 107
trait events. See media trait events
TraitEventDispatcher, 298, 300
TransformGestureEvent, 119, 124, 129
TransformGestureEvent .GESTURE_PAN, 119,
123, 124
TransformGestureEvent . GESTURE_ROTATE,
119, 128
TransformGestureEvent . GESTURE_SWIPE,
119, 128
TransformGestureEvent .GESTURE_ZOOM, 119, 128
Try...Catch statements, 191-193, 198
two-finger-tap gesture, 118
type, 200

UI design, 12, 31

UIApplicationExitOnSuspend, 77

UlIDeviceFamily, 77

UIPrerenderedIcon, 77,78, 92

UIRequiredDeviceCapabilities, 77, 317, 327,
328,339, 349

UIRequiresPersistentWifi, 77

UIStatusBarStyle, 77,78, 317, 328, 339, 349

uncaught errors, 188-191

UncaughtErrorEvent, 188, 189, 190, 193, 196, 198

UncaughtErrorEvent . UNCAUGHT_ERROR, 188, 189,
190, 198

Uniform Resource Identifiers (URIs), 12, 13

UPDATE, 249, 252,282, 288

Update Teams view, 287

updateDriver (), 280, 281, 282

updateLayout() — ZoomViewTransition

updateLayout (), 309, 310, 311
updateTeam (), 262, 268,273, 280, 281, 283
UpdateTeamsView.mxml, 273-284
updating

AIR applications, 96-98, 99

contents of file, 217-218

database tables, 252, 288

import statements, MaintainingDataAppHome .

mxml, 254-255,257-258

UPSIDE_DOWN, 152
URIs (Uniform Resource Identifiers), 12, 13
url property, 200, 201
URL property values returned, 202
URLLoader, 98, 240, 245, 246, 247
urlLoader, 240, 246
URLMonitor, 240, 241, 244, 288, 346
urlMonitor, 241, 244
URLMonitor.start (), 241
URLRequest, 244, 246

monitoring, 240-241

retrieving data, 240
urlRequest, 244, 246
URLResource object, 290, 314
use_camera, 81, 317

variables
defined, 5-6
static, 7
Variables panel, 38, 183, 184, 185, 187, 190, 194,
195, 198
vector, 118
version number, 70-71, 79-80, 97-98
<versionLabel>, 68,71
<versionNumber>, 68, 70, 71, 72,79, 96, 97, 99
vertical group, 233, 234
<s:VerticalLayout>, 18
VGroup tags, 18-19
<s:VGroup>, 252
DebuggingAppHome .mxml, 178
defined, 18
ImagesView.mxml, 233
MaintainingDataAppHome.mxml, 243
Sprite Layout App, 155, 157, 158, 159
Video Player component, 300-301, 314
VideoElement object, 292, 314
<s:VideoPlayer>, 289
MediaPlayerAppHome.mxml, 306-307
methods, 301
properties, 301
Settings view, 313

view component, 23
view menu component, 24-25
view navigator, 25
view navigator application, 23. See also tabbed view
navigator application
view panels
Flash Debug perspective, 38-39
Flash Perspective, 37-38
View Teams button, 259
view transitions, 29-31
viewActivate, 50,260
<s:ViewMenultem>, 24, 272-273
<s:ViewNavigatorApplication>, 23,25, 28, 45,
82,134, 188, 189, 198
viewTeams (), 254, 259
<visible>, 68, 72, 74,76, 99

W3C (World Wide Web Consortium), 12

WAKE_LOCK, android.permission, 7§

web controller, 336-346, 357. See also Browser App
project; Stagellebview class

Web Service component, 17

WHERE, 249, 251, 288

while loop, 10

workspaces, 36

World Wide Web Consortium (W3C), 12

wrapper. See Flex OSMF wrapper

WRITE_EXTERNAL_STORAGE, android.
permission, 76,203, 204

writeFloat (), 325, 326, 333, 357

writeUTFBytes (), 217,226,238

XML declaration, Hello World App, 69
XML namespaces. See namespaces
xmlns:vo, 303

x/y positions, sprites, 145, 146

y/x positions, sprites, 145, 146

zoom gesture, 119, 128
ZoomViewTransition, 29, 30

373

	Cover
	Beginning: Flash®, Flex®, and AIR® Development for Mobile Devices
	Contents
	Introduction
	Chapter 1: An Introduction to Flash, Flex, and Air
	Adobe Flash
	Flash on Mobile Devices

	ActionScript 3.0
	ECMAScript
	Key Concepts

	The Flex Framework
	Flex 4.5.1
	MXML
	Spark Library Components
	Data Binding
	Flex Mobile Application Structure
	Considerations for Mobile Development

	Adobe AIR
	Summary

	Chapter 2: Getting Started
	Using Flash Builder 4.5.1
	Working with Workspaces
	Using the Flash Perspective
	Using the Flash Debug Perspective
	Using the Source and Design Views

	Creating a Mobile Project Using Flash Builder
	Creating a Hello World App Example

	Defining Run Configurations
	Running Mobile Applications on the Desktop
	Running Mobile Applications on the Device

	Summary

	Chapter 3: Building Air Applications for Android, Blackberry, and IOS Devices
	AIR Application Descriptor Files
	Setting Properties in the AIR Application Descriptor File
	Manually Editing the Application Descriptor File for the Hello World App
	BlackBerry Tablet OS Configuration
	Packaging for Google Android
	Packaging for Apple iOS
	Packaging for BlackBerry Tablet OS

	Updating AIR Applications
	Retrieving Details from the Application Descriptor File
	Using the Version Number

	Summary

	Chapter 4: Touch, Multitouch, and Gestures
	Multitouch Interactions
	Determining Touch Input Support
	Creating a Multitouch and Gestures App Example
	Touch Event Handling
	Registering Touch Events on Interactive Objects
	Determining the Supported Touch Points

	Gesture Interactions
	Determining Which Gestures Are Supported on a Device
	Gesture Events and Event Handling
	Registering Gesture Events on Interactive Objects
	Handling Gesture Events

	Utilizing the Multitouch Panel in Device Central
	Summary

	Chapter 5: Developing for Multiple Screen Sizes
	Considerations for Multiple Screen Sizes
	Pixel Density
	Utilizing Device DPI

	Adapting Content to Stage Size
	Using the StageScaleMode and StageAlign Classes
	Handling Stage Resize Events
	Creating the Sprite Layout App Example

	Handling Device Orientation
	Using the StageOrientation Class
	Using the StageOrientationEvent Class

	Using Layouts in Flex
	Aligning Items in Group Containers

	Summary

	Chapter 6: Debugging Applications
	Setting Breakpoints
	Global Error Handling
	Handling Uncaught Errors
	Try…Catch Statements
	Stepping through Code
	Summary

	Chapter 7: Working with The Filesystem
	Reading from the Filesystem
	The File and FileStream Classes
	Creating a Files Explorer App Example

	Modifying Files and Filesystems
	Creating New Files and Directories

	Utilizing Browse Dialogs
	Opening a Single File
	Opening Multiple Files
	Saving a Single File to a Location

	Summary

	Chapter 8: Working with Data
	Detecting Changes in Network Availability
	Retrieving Data with URLRequest
	Monitoring the URLRequest Object
	Creating the Maintaining Data App Example

	Using SQLite for Storing Data
	Creating a SQLite Database

	Summary

	Chapter 9: Working with Audio and Video
	Introducing the Open Source Media Framework
	Creating a URLResource Object
	Creating a MediaElement Object
	Media Traits
	Using the MediaTraitType Class to Identify Traits
	Using the MediaPlayer to Play Media Elements
	Using the MediaPlayerSprite Class to Play Media Resources
	Handling Trait Events
	Using an AudioEvent Object

	Using the Flex OSMF Wrapper
	Using the VideoPlayer Component
	Creating a MediaPlayer Example

	Summary

	Chapter 10: Utilizing Device Features
	Using the Device's Camera
	Using the CameraUI Class
	Creating a Camera App Example

	Capturing Sound Using the Device's Microphone
	Using the Microphone Class
	Using the SampleDataEvent Class
	Creating a Microphone App Example

	Utilizing the Device's Web Controller
	Using the StageWebView Class
	Creating a Browser App Example

	Utilizing the Device's Geolocation Sensor
	Using the Geolocation Class
	Using the GeolocationEvent Class
	Creating a Geolocation App Example

	Summary

	Index

