

ffirs.indd iiffirs.indd ii 12/09/11 7:52 PM12/09/11 7:52 PM

BEGINNING

FLASH®, FLEX®, AND AIR® DEVELOPMENT

FOR MOBILE DEVICES

INTRODUCTION . xxi

CHAPTER 1 An Introduction to Flash, Flex, and AIR . 1

CHAPTER 2 Getting Started . 35

CHAPTER 3 Building AIR Applications for Android, BlackBerry,

and iOS Devices . 67

CHAPTER 4 Touch, Multitouch, and Gestures . 101

CHAPTER 5 Developing for Multiple Screen Sizes . 131

CHAPTER 6 Debugging Applications .177

CHAPTER 7 Working with the Filesystem . 199

CHAPTER 8 Working with Data . 239

CHAPTER 9 Working wit h Audio and Video . 289

CHAPTER 10 Utilizing Device Features . 315

INDEX . 359

ffirs.indd iffirs.indd i 12/09/11 7:52 PM12/09/11 7:52 PM

ffirs.indd iiffirs.indd ii 12/09/11 7:52 PM12/09/11 7:52 PM

BEGINNING

Flash®, Flex®, and AIR® Development

for Mobile Devices

ffirs.indd iiiffirs.indd iii 12/09/11 7:52 PM12/09/11 7:52 PM

ffirs.indd ivffirs.indd iv 12/09/11 7:52 PM12/09/11 7:52 PM

BEGINNING

Flash®, Flex®, and AIR® Development

for Mobile Devices

Jermaine G. Anderson

John Wiley & Sons, Inc.

ffirs.indd vffirs.indd v 12/09/11 7:52 PM12/09/11 7:52 PM

Beginning Flash®, Flex®, and AIR® Development for Mobile Devices

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-94815-6
ISBN: 978-1-118-19334-1 (ebk)
ISBN: 978-1-118-19335-8 (ebk)
ISBN: 978-1-118-19336-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available
in standard print versions of this book may appear or be packaged in all book formats. If you have purchased a version of
this book that did not include media that is referenced by or accompanies a standard print version, you may request this
media by visiting http://booksupport.wiley.com. For more information about Wiley products, visit us at
www.wiley.com.

Library of Congress Control Number: 2011905204

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. Flash, Flex, and AIR are registered trademarks of Adobe
Systems, Incorporated. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not
associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 12/09/11 7:52 PM12/09/11 7:52 PM

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com

This book is dedicated to my wife, Joanna, and to the

“little one,” our beautiful darling daughter, Olivia.

Love you both to bits!

Xx

ffirs.indd viiffirs.indd vii 12/09/11 7:52 PM12/09/11 7:52 PM

ffirs.indd viiiffirs.indd viii 12/09/11 7:52 PM12/09/11 7:52 PM

ABOUT THE AUTHOR

JERMAINE G. ANDERSON works within the Software Engineering department of
British Sky Broadcasting in London, UK, currently as Scrum Master, where he
manages the technical delivery for an Agile team responsible for the short-form
online video platform.

In recent years, Jermaine’s work has predominantly centered on video streaming,
where he has been instrumental in creating cutting-edge and innovative products,
specializing in Flash, the Flex framework, and, more recently, AIR.

Jermaine grew up in the town of Wincobank, Sheffi eld, where he developed his passion for science,
technology, art, design, and computing. From an early age he started coding on the family computer,
using BASIC on an Amstrad CPC 6128. When Jermaine was eight years old, his father set him the
task of designing a level for the critically acclaimed U.S. Gold computer game Gauntlet, which he
completed, only to discover that there was a submission date for the level entry, and that date had
passed, to Jermaine’s disappointment. He cites this as one of the early lessons he learned, to always
do something for the enjoyment, and rewards come in various guises. Ultimately, problem solving
and working with technology are his main drivers working in online media, driven by the Internet.

Having earned a BSc (Hons) degree in Chemistry at The University of Birmingham, and a MSc in
Computer Studies from Sheffi eld Hallam University, Jermaine devoted much of his professional
career to working with Flash and online media over the last 11 years, taking a keen interest in
mobile application development from early 2004.

In 2005, Jermaine was awarded the “Best Productivity” category for his Mobile TV application, a
concept that he designed and developed for the Macromedia Flash Lite Contest.

Jermaine’s fi rst book, Professional Flash Lite Mobile Application Development (Wrox, 2010),
focuses on structuring several mobile application concepts using the PureMVC framework targeting
the Flash Lite player. His second book, Beginning Flash, Flex, and AIR Development for Mobile
Devices, focuses on the Flex framework for mobile development, targeting Android, BlackBerry,
and iOS devices.

Jermaine tweets at www.twitter.com/jganderson and writes his personal blog at
www.jgorganic.co.uk/blog.

ffirs.indd ixffirs.indd ix 12/09/11 7:52 PM12/09/11 7:52 PM

ffirs.indd xffirs.indd x 12/09/11 7:52 PM12/09/11 7:52 PM

ABOUT THE TECHNICAL EDITOR

DARREN OSADCHUK has been creating games and applications in Flash for
approximately 10 years. In 2005, he started Ludicrous Software and began
developing games for Flash Lite-enabled mobile devices. Since then, Ludicrous
Software’s games have been available on a variety of platforms, including Apple’s
App Store, the Android Market, Amazon’s Appstore, BlackBerry App World, and
Nokia’s Ovi Store. In addition to games published under the banner of Ludicrous
Software, Darren has developed mobile and web games and applications for
clients around the world. He has a Bachelor of Arts in Political Science from the

University of Manitoba and a Master of Arts in Contemporary Social and Political Thought from
the University of Victoria, British Columbia.

ffirs.indd xiffirs.indd xi 12/09/11 7:52 PM12/09/11 7:52 PM

ffirs.indd xiiffirs.indd xii 12/09/11 7:52 PM12/09/11 7:52 PM

CREDITS

EXECUTIVE EDITOR

Robert Elliott

PROJECT EDITORS

William Bridges

John Sleeva

TECHNICAL EDITOR

Darren Osadchuk

PRODUCTION EDITOR

Rebecca Anderson

COPY EDITOR

Kim Cofer

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Nancy Carrasco

INDEXER

Robert Swanson

COVER DESIGNER

LeAndra Young

COVER IMAGE

© Lise Gagne

ffirs.indd xiiiffirs.indd xiii 12/09/11 7:52 PM12/09/11 7:52 PM

ffirs.indd xivffirs.indd xiv 12/09/11 7:52 PM12/09/11 7:52 PM

ACKNOWLEDGMENTS

FIRST, I WANT TO THANK JOANNA for being an incredibly supportive wife, whom I have known for
12 years, and is still the most intelligent person I know. Jo is a real-life “fi refi ghter” and has helped
me to accomplish this book, every step of the way. Thank you for your patience and understanding
as I worked to fi nish the book at all kinds of crazy hours. And thank you for taking care of all the
things that would have been a distraction to me. And no, I don’t mean LO. I love you.

Olivia, mummy and daddy love you lots. You have been a true inspiration over the 18 months
since you came into our world. Thank you for being an angel.

I want to thank everyone at Wrox and Wiley for all their support. Thank you for sticking with the
changes, especially when the volume of updates brought in for iOS seemed mega!

Thank you to the former Wiley acquisition editor Scott Meyers, for bringing the book to the
attention of executive editor Robert Elliot. Bob, many thanks for your support and overall steer.

I would also like to say a big thank you to project editors William Bridges and John Sleeva, copy
editor Kim Cofer, production editor Becca Anderson, editorial manager Mary Beth Wakefi eld,
and technical editor Darren Osadchuk, for all your contributions and for helping the book
become ship-shape.

Finally, many thanks to my family and friends, for the love and support they gave me while
I was writing this book.

—Jermaine G. Anderson

ffirs.indd xvffirs.indd xv 12/09/11 7:52 PM12/09/11 7:52 PM

ffirs.indd xviffirs.indd xvi 12/09/11 7:52 PM12/09/11 7:52 PM

CONTENTS

INTRODUCTION xxi

CHAPTER 1: AN INTRODUCTION TO FLASH, FLEX, AND AIR 1

Adobe Flash 1

Flash on Mobile Devices 2

ActionScript 3.0 2

ECMAScript 2

Key Concepts 3

The Flex Framework 11

Flex 4.5.1 11

MXML 12

Spark Library Components 14

Data Binding 21

Flex Mobile Application Structure 22

Considerations for Mobile Development 31

Adobe AIR 31

Summary 32

CHAPTER 2: GETTING STARTED 35

Using Flash Builder 4.5.1 35

Working with Workspaces 36

Using the Flash Perspective 37

Using the Flash Debug Perspective 38

Using the Source and Design Views 39

Creating a Mobile Project Using Flash Builder 41

Creating a Hello World App Example 41

Defi ning Run Confi gurations 51

Running Mobile Applications on the Desktop 52

Running Mobile Applications on the Device 55

Summary 64

CHAPTER 3: BUILDING AIR APPLICATIONS FOR ANDROID,
BLACKBERRY, AND IOS DEVICES 67

AIR Application Descriptor Files 67

Setting Properties in the AIR Application Descriptor File 68

Manually Editing the Application Descriptor File

for the Hello World App 69

ftoc.indd xviiftoc.indd xvii 09/09/11 6:20 PM09/09/11 6:20 PM

CONTENTS

xviii

BlackBerry Tablet OS Confi guration 79

Packaging for Google Android 82

Packaging for Apple iOS 88

Packaging for BlackBerry Tablet OS 94

Updating AIR Applications 96

Retrieving Details from the Application Descriptor File 97

Using the Version Number 97

Summary 98

CHAPTER 4: TOUCH, MULTITOUCH, AND GESTURES 101

Multitouch Interactions 102

Determining Touch Input Support 102

Creating a Multitouch and Gestures App Example 103

Touch Event Handling 106

Registering Touch Events on Interactive Objects 114

Determining the Supported Touch Points 117

Gesture Interactions 117

Determining Which Gestures Are Supported on a Device 117

Gesture Events and Event Handling 118

Registering Gesture Events on Interactive Objects 119

Handling Gesture Events 124

Utilizing the Multitouch Panel in Device Central 128

Summary 128

CHAPTER 5: DEVELOPING FOR MULTIPLE SCREEN SIZES 131

Considerations for Multiple Screen Sizes 132

Pixel Density 132

Utilizing Device DPI 133

Adapting Content to Stage Size 138

Using the StageScaleMode and StageAlign Classes 138

Handling Stage Resize Events 140

Creating the Sprite Layout App Example 140

Handling Device Orientation 151

Using the StageOrientation Class 152

Using the StageOrientationEvent Class 152

Using Layouts in Flex 154

Aligning Items in Group Containers 155

Summary 174

ftoc.indd xviiiftoc.indd xviii 09/09/11 6:20 PM09/09/11 6:20 PM

CONTENTS

xix

CHAPTER 6: DEBUGGING APPLICATIONS 177

Setting Breakpoints 177

Global Error Handling 188

Handling Uncaught Errors 188

Try…Catch Statements 191

Stepping through Code 193

Summary 196

CHAPTER 7: WORKING WITH THE FILESYSTEM 199

Reading from the Filesystem 200

The File and FileStream Classes 200

Creating a Files Explorer App Example 203

Modifying Files and Filesystems 216

Creating New Files and Directories 216

Utilizing Browse Dialogs 229

Opening a Single File 230

Opening Multiple Files 230

Saving a Single File to a Location 236

Summary 237

CHAPTER 8: WORKING WITH DATA 239

Detecting Changes in Network Availability 239

Retrieving Data with URLRequest 240

Monitoring the URLRequest Object 240

Creating the Maintaining Data App Example 241

Using SQLite for Storing Data 247

Creating a SQLite Database 248

Summary 286

CHAPTER 9: WORKING WITH AUDIO AND VIDEO 289

Introducing the Open Source Media Framework 289

Creating a URLResource Object 290

Creating a MediaElement Object 291

Media Traits 292

Using the MediaTraitType Class to Identify Traits 293

Using the MediaPlayer to Play Media Elements 294

Using the MediaPlayerSprite Class to Play Media Resources 297

ftoc.indd xixftoc.indd xix 09/09/11 6:20 PM09/09/11 6:20 PM

CONTENTS

xx

Handling Trait Events 298

Using an AudioEvent Object 298

Using the Flex OSMF Wrapper 300

Using the VideoPlayer Component 300

Creating a MediaPlayer Example 301

Summary 313

CHAPTER 10: UTILIZING DEVICE FEATURES 315

Using the Device’s Camera 315

Using the CameraUI Class 316

Creating a Camera App Example 316

Capturing Sound Using the Device’s Microphone 323

Using the Microphone Class 323

Using the SampleDataEvent Class 324

Creating a Microphone App Example 326

Utilizing the Device’s Web Controller 336

Using the StageWebView Class 336

Creating a Browser App Example 338

Utilizing the Device’s Geolocation Sensor 346

Using the Geolocation Class 346

Using the GeolocationEvent Class 347

Creating a Geolocation App Example 348

Summary 355

INDEX 359

ftoc.indd xxftoc.indd xx 09/09/11 6:20 PM09/09/11 6:20 PM

INTRODUCTION

THERE’S A GREAT DEMAND TODAY for mobile content and applications. Many of the leading device
manufacturers and platforms are supporting Adobe Flash Player, and since many of them are also
integrating Adobe AIR directly into the mobile device’s OS, there has never been a better time for
getting to know how to author content designed for the small screen.

With the fast-moving pace of the mobile industry it’s really important to keep abreast of the latest
developments in the Adobe Flash Platform, and so Beginning Flash, Flex, and AIR Development
for Mobile Devices includes all the key developments of “Flash on mobile” since my fi rst book,
Professional Flash Lite Mobile Development (Wrox, 2010).

Over the course of the book, you learn how to utilize industry-leading software for authoring
mobile content. You’ll become familiar with the Adobe Flex framework and the MXML
components optimized for mobile devices. You’ll also learn how to utilize the Flash Player 10.3 and
AIR ActionScript 3.0 APIs.

The material set out in this book is really targeted for developers at all levels. At a base level it will
help you start creating Flash-enabled mobile applications. This book also contains extensive code
examples that are explained in detail and essentially cover how you create mobile applications from
the ground up, targeted at Flash Player 10.1 and AIR 2.5, using ActionScript 3.0. The book is for
anyone wanting to showcase mobile content across a range of mobile platforms.

WHOM THIS BOOK IS FOR

This book is aimed at mobile developers looking to create and distribute new mobile applications.

Programmers and developers of all experiences will be able to use the book as a reference on how to
author content for mobiles and devices using Adobe Flash, Flex, and AIR.

The book is designed to help both experienced mobile developers and newcomers gain a
comprehensive introduction to Flash, Flex, and AIR. As such, Chapters 1 and 2 are primarily aimed
at newcomers to the Adobe Flash Platform; the background to Flash, Flex, and AIR is discussed,
along with the tools used in the creation of mobile applications — namely, Flash Builder and Device
Central CS5.5.

WHAT THIS BOOK COVERS

Beginning Flash, Flex, and AIR Development for Mobile Devices introduces the reader to a number
of topics covering the key authoring aspects of developing for the current iteration of the Adobe
Flash Platform, guiding the reader through the following chapters:

 ➤ Chapter 1 — An Introduction to Flash, Flex, and AIR: This chapter provides an overview
of the Adobe Flash Platform covering the Flash Player, the Flex framework, and the Adobe

FLAST.indd xxiFLAST.indd xxi 09/09/11 6:19 PM09/09/11 6:19 PM

INTRODUCTION

xxii

Integrated Runtime. It also takes the reader through the basics of programming with AS3 and
a light introduction to MXML.

 ➤ Chapter 2 — Getting Started: This chapter focuses on getting started with the tools to carry
out mobile development, taking a look at three essential tools used in developing and testing
Flash content: Adobe Flash Builder, Adobe Flash Professional CS5, and Adobe Device
Central CS5.

 ➤ Chapter 3 — Building AIR Applications for Android, BlackBerry, and iOS: This chapter takes
you through building AIR 2.5 applications for the Google Android mobile platform, with a
heavy portion of the chapter focusing on the Adobe AIR Application Descriptor settings. Here
you also learn how you update AIR applications for the Google Android platform.

 ➤ Chapter 4 — Touch, Multitouch, and Gestures: This chapter covers the user input features
introduced in Flash Player 10.1 and provides extensive code listings for you to follow, using
Adobe Flash Builder 4.5 and Adobe Device Central CS5 to create and test the examples.

 ➤ Chapter 5 — Developing for Multiple Screen Sizes: This chapter guides you through the best
practices for creating content for multiple devices with different screen sizes.

 ➤ Chapter 6 — Debugging Applications: This chapter shows you how to utilize the Flash
Debug Perspective in Adobe Flash Builder. It also covers Error Handling and in particular
Global Error Handling, a feature introduced in Flash Player 10.1.

 ➤ Chapter 7 — Working with the Filesystem: This chapter details how to use the AIR File
System API, and walks you through creating a Files Explorer mobile application using
MXML and the Flex framework in Adobe Flash Builder.

 ➤ Chapter 8 — Working with Data: This chapter introduces some of the ways you can utilize
data within mobile applications. It also focuses on SQLite and guides you through the
creation of a Teams database application.

 ➤ Chapter 9 — Working with Audio and Video: This chapter highlights multiple ways in which
you can include sound and video in your mobile applications, and introduces you to the
Open Source Media Framework (OSMF) framework.

 ➤ Chapter 10 — Utilizing Device Features: This chapter draws your attention to the APIs
introduced in AIR 2.7 that particularly rely on device support, including utilizing the device’s
camera, microphone, web browser, and geolocation features.

HOW THIS BOOK IS STRUCTURED

The book is written in such a way that it allows the reader to pick up and start from any chapter.

By design, Chapters 1 through 3 contain relatively little code when compared to later chapters; from
Chapter 4 onwards, you’ll notice a substantial increase in the number of examples to follow and
tasks to carry out.

FLAST.indd xxiiFLAST.indd xxii 09/09/11 6:19 PM09/09/11 6:19 PM

D
ow

n
lo

a
d

INTRODUCTION

xxiii

Each chapter in the book will start with a list of chapter objectives and an introduction,
and then end with a chapter summary, exercises, and a table of the key concepts learned in
the chapter.

Chapter 10 will feature more tasks that rely on the reader using a mobile device to test content.

WHAT YOU NEED TO USE THIS BOOK

You will need to have one of the following Operating Systems:

 ➤ Mac OS

 ➤ Windows

 ➤ Linux

To use the code samples and run the example applications in this book you will need the following:

 ➤ Adobe Flash Builder 4.5

 ➤ Adobe Device Central CS5.5

 ➤ Adobe AIR 2.7 SDK

While you do not explicitly need a Flash- or AIR-enabled mobile device, to complete all the tasks, a
Google Android device running Gingerbread 2.3.4 is recommended. Many of the examples covered
in this book, in addition to Google Android, will run on Apple iOS devices with version 4.x and
above, including the iPad, iPhone, and iPod Touch devices. Each of the examples will also work on
the BlackBerry PlayBook device, running the BlackBerry Tablet OS.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book. Among these are the Try It Out activity and the accompanying
How It Works. A sample of the format follows:

TRY IT OUT The Try It Out is an exercise you should work through, following
the text in the book.

 1. The exercise usually consists of a set of steps.

 2. Each step has a number.

 3. Follow the steps through with your copy of the database.

FLAST.indd xxiiiFLAST.indd xxiii 09/09/11 6:19 PM09/09/11 6:19 PM

INTRODUCTION

xxiv

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show fi lenames, URLs, and code within the text like so: object.method().

We present code in a few different ways:

We use this monofont type with no highlighting for some of the code examples.

We use bold to emphasize code that is particularly important in the present
context.

Also, the Source view in Flash Builder provides a rich color scheme to indicate various parts of code
syntax. This is a great tool to help you learn language features in the editor and to help prevent
mistakes as you code. To reinforce the colors used in Flash Builder, the code listings in this book are
colorized using colors similar to what you would see on screen in Flash Builder working with the
book’s code. In order to optimize print clarity, some colors have a slightly different hue in print than
what you see on screen. But all the colors for the code in this book should be close enough to the
default Flash Builder colors to give you an accurate representation of the colors.

The following example taken from Chapter 4 shows how code could be colored and highlighted:

package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.ui.Multitouch;

 public class MultitouchAndGestures extends Sprite
 {
 private var multitouch:TextField;

 public function MultitouchAndGestures()

WARNING Boxes with a warning icon like this one hold important, not-to-be-
forgotten information that is directly relevant to the surrounding text.

NOTE The pencil icon indicates notes, tips, hints, tricks, and asides to the
current discussion.

FLAST.indd xxivFLAST.indd xxiv 09/09/11 6:19 PM09/09/11 6:19 PM

INTRODUCTION

xxv

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at www.wrox.com. When at the site, simply locate the book’s title
(use the Search box or one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book. Code that is included on the website is highlighted
by the following icon:

Listings include the fi lename in the title and also are identifi ed by a Listing number. If the
downloaded item is just a code snippet, you’ll fi nd the fi lename in a code note such as this in
the text:

Code snippet fi lename

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-0-470-94815-6.

FLAST.indd xxvFLAST.indd xxv 09/09/11 6:19 PM09/09/11 6:19 PM

http://www.wrox.com
http://www.wrox.com

INTRODUCTION

xxvi

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

FLAST.indd xxviFLAST.indd xxvi 09/09/11 6:19 PM09/09/11 6:19 PM

An Introduction to Flash,
Flex, and AIR

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ An overview of the Adobe Flash platform

 ➤ Outlining the key concepts of the ActionScript 3.0 language

 ➤ Exploring the Flex framework and MXML components

 ➤ A brief introduction to Adobe AIR

In this chapter you’ll take a look at each of the core elements of the book: Flash, Flex,
and AIR.

First you’ll cover a number of the core aspects of Flash and the programming language
ActionScript 3.0, which this book uses.

You’ll then explore the key features of the Flex framework and MXML components, looking
at examples through code snippets.

Lastly, you’ll be introduced to features of AIR, the Adobe Integrated Runtime.

ADOBE FLASH

Adobe’s Flash platform consists of several Flash-based runtime clients: Flash Player, Flash Lite,
and Adobe AIR. Each run time has its own set of functions and APIs that are specifi c for that
run time.

The Flash platform also encompasses a component framework, Flex. All these elements, the
runtime clients and component frameworks, support and utilize the SWF format.

1

CH001.indd 1CH001.indd 1 09/09/11 8:49 AM09/09/11 8:49 AM

2 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

Flash is predominantly used for the web deployment of rich content and
applications. It is installed as a web browser plug-in, and can also run
content in standalone mode. The Adobe Flash logo is shown in Figure 1-1.

Flash on Mobile Devices

There are currently two ways in which Flash has dedicated support on
mobile devices. These involve using Flash Lite and Flash Player, respectively.

Flash Lite 4.0

Flash Lite runs Flash content and applications intended to run on
performance-limited mobile devices. Flash Lite offers a different set of capabilities compared with
Flash Player. Until recently Flash Lite supported only the ActionScript 2.0 (AS2). Currently Flash
Lite is in version 4.0 and the run time now supports ActionScript 3.0 (AS3).

To learn more about Flash Lite and how you can create mobile applications using the technology,
check out the book Professional Flash Lite Mobile Application Development, by Jermaine
Anderson (Wrox, 2010).

Flash Player 10.x

Flash Player 10.1 was the fi rst release of Flash Player aimed at supporting the development of
content and SWF format deployment to both traditional web browser and mobile devices.

At the time of writing, a beta for Adobe Flash Player 11 was underway, allowing developers to
preview new and enhanced features targeting the next release of the run time. With the potential for
new APIs to be dropped, none of the features could be covered in this book, but look for an
update. For more information, visit the Adobe Labs website (labs.adobe.com/technologies/) and
search for Adobe Flash Player 11.

This book centers on the development of Flash content targeting the latest release, Adobe Flash
Player 10.3 using AS3.

Flash is fully supported on Google Android and the BlackBerry Tablet OS mobile platforms. Unless
you’ve been hiding under a rock for the past few years, you’ll know Flash isn’t supported on the
Apple iOS platform. However, using AS3 and AIR, you can target your applications to run on the
platform via standalone applications.

ACTIONSCRIPT 3.0

AS3 is an object-oriented language for creating media content for playback in the Flash runtime
clients’ Flash Player, Flash Lite, and Adobe AIR.

ECMAScript

The core of the AS3 language is based on the ECMAScript 4th Edition language specifi cation,
which you can view on the ECMA International website at www.ecmascript.org/. You can view
the AS3 specifi cation at http://livedocs.adobe.com/specs/actionscript/3.

FIGURE 1-1: The Adobe

Flash logo

CH001.indd 2CH001.indd 2 09/09/11 8:49 AM09/09/11 8:49 AM

ActionScript 3.0 ❘ 3

AS3 has a syntax that is very similar to Java; it is also similar to the widely used JavaScript, the
popular language used in web browsers. If you are from either of these programming disciplines,
then AS3 will be very familiar.

ECMAScript 4 defi nes a number of rules for how code is written in AS3, including grammar and
syntax. These dictate that code be written in a particular way, which should mean that code written
by one developer will be recognizable to another.

A number of core programming concepts, such as variables, functions, classes, objects, expressions,
and statements, form part of ECMAScript 4 and are inherited by AS3.

ECMAScript 4 also defi nes several built-in data types for AS3, allowing developers to utilize
frequent data types such as an array, Boolean, number, and string.

Key Concepts

You need to grasp a number of important key concepts when programming with AS3; these will
stand you in good stead for the rest of this book. Here you’ll take a look at some of these concepts.

Classes, Objects, and Instances

A class is what gives an object its properties and the features by which an object accomplishes
particular tasks through its methods and functions. A class is essentially a blueprint for an object.

AS3 classes are text-based fi les identifi ed by the .as fi le extension. A class is defi ned by the class
keyword, followed by the name of the class, which should start with a capital letter. It is this class
name that must match the fi lename the class is created in. The following snippet shows you an
example of a class called Mobile that’s being defi ned:

class Mobile {}

An object represents part of a program that describes a particular thing. That thing could be a
shape that has three sides and is colored blue; a fi lm that has a PG rating; or a mobile device that
allows you to store contacts. An object can be anything you can think of.

Objects have properties that give them their character and also have methods that allow them to
carry out particular tasks.

In AS3, objects are created from classes by instantiating them, calling the new keyword before the
class name and parentheses (). The following snippet shows you an example of the Mobile class
being instantiated:

new Mobile();

Packages

A package defi nes the path to a class, which should be uniquely identifi ed in respect to other classes
that may have the same class name. Packages also refl ect the folder structure.

Ultimately, packages are used to avoid confl icts between classes.

CH001.indd 3CH001.indd 3 09/09/11 8:49 AM09/09/11 8:49 AM

4 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

It is best practice to give packages meaningful names. Grouping similar classes together in a package
is common practice and makes it easier to search and utilize different classes when programming.

The Mobile class could well be placed in a package called devices, sitting alongside another class
called Tablet, if that class were to be created.

package devices
{
 class Mobile {}
}

While this example shows a fully qualifi ed package, the naming convention is usually more
granular, and with the package name defi ned for a class set as a dot-delimited, reverse-DNS-style
string. For example, the devices package declaration could quite easily have been referenced as
part of the Wrox.com domain, with the Chapter 1 name com.wrox.ch1.devices, as shown in the
following snippet:

package com.wrox.ch1.devices
{
 class Mobile {}
}

Packages are also used when importing classes into AS documents, denoted by the import keyword, as
shown in the following code snippet where the package com.wrox.ch1.devices example is used again:

import com.wrox.ch1.devices.Mobile;

A class has to be referenced by its full package reference before it can be used.

NOTE In AS3 you need to specify the package declaration, ensuring that the
class declaration is made inside the package curly brackets. The package name
can be left blank, but this should be avoided. In AS2 the package declaration
was absent in class creation.

Functions, Methods, and Scope

A function is what allows an object to do a particular task and perform a set of reusable
instructions. Functions are defi ned using the function keyword followed by the name of the task.

Class Scope Modifi ers

Four keywords give scope to the properties and functions of an object: public, private,
protected, and internal.

The public scope modifi er means that a variable property or function can be accessed anywhere. The
protected scope modifi er means that only the current class and subclasses can use the variable or
function. The private scope modifi er restricts access to within the class only, and the internal
scope modifi er restricts the scope to the package it is contained in.

CH001.indd 4CH001.indd 4 09/09/11 8:49 AM09/09/11 8:49 AM

ActionScript 3.0 ❘ 5

The Class Constructor

The constructor of a class is what initializes an object and creates it. The constructor is basically a
class method, which must be declared public. The following snippet shows the constructor for the
Mobile class, which is simply Mobile():

package devices
{
 public class Mobile
 {
 public function Mobile()
 {
 // Code to initialize Mobile
 }
 }
}

Return Types

Depending on the set of instructions found in the function, the return type gives an indication of the
value that can be generated by the function call. In the following snippet, a public function called
launchApp() is defi ned, with the return type specifi ed as void:

package devices
{
 public class Mobile
 {
 public function Mobile()
 {
 // Code to initialize Mobile
 }

 public function launchApp():void
 {
 // Code to launch an app on the mobile.
 }
 }
}

The void keyword indicates that a value isn’t expected to be returned by the function. Also note
that class constructors don’t specify a return type.

Variables

A variable is a unique identifi er associated with an object that can hold a reference to a value. In
AS3, data types are given to variables so that they can be checked at compile time. Variables are
defi ned by the var keyword and then followed by the variable name.

In a class, variables that are added outside of functions can be referenced within the scope of the
class; these are known as instance variables. These describe an object’s characteristics and are what
give an object its properties.

CH001.indd 5CH001.indd 5 09/09/11 8:49 AM09/09/11 8:49 AM

6 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

The following code snippet shows two private variables being declared: contacts, an Array data
type, and phoneNumber, a Number data type:

package devices
{
 public class Mobile
 {
 private var contacts:Array;
 private var phoneNumber:Number;

 public function Mobile()
 {
 // Code to initialize Mobile
 }

 public function launchApp():void
 {
 // Code to launch an app on the mobile.
 }
 }
}

The following code demonstrates creating a Mobile object and assigning it to the variable
mobileObj:

var mobileObj:Mobile = new Mobile();

Notice here that the data type assigned to the object is Mobile. Whenever you instantiate an object
in this way, you need to defi ne the data type on the variable; otherwise, you’ll get a “variable has no
type declaration” warning.

Within a method or function, instance variables can be used to set or reference data values. In the
following code snippet the phoneNumber variable is assigned a value within the constructor method
of Mobile, using the this keyword:

package devices
{
 public class Mobile
 {
 private var contacts:Array;
 private var phoneNumber:Number;

 public function Mobile()
 {
 this.phoneNumber = 011003637;
 }

 public function launchApp():void
 {
 // Code to launch an app on the mobile.
 }
 }
}

CH001.indd 6CH001.indd 6 09/09/11 8:49 AM09/09/11 8:49 AM

ActionScript 3.0 ❘ 7

Static Variables and Methods

A static reference relates to class methods and variables that can be referenced without instantiating
the class and creating an object.

In the following code snippet, the Mobile class is given the static variable deviceType which is defi ned
as a string and is given the value Smartphone. A static function called switchOn() is also defi ned.

package devices
{
 public class Mobile
 {
 public static var deviceType:String = “Smartphone”;

 private var contacts:Array;
 private var phoneNumber:Number;

 public function Mobile()
 {
 this.phoneNumber = 011003637;
 }

 public function launchApp():void
 {
 // Code to launch an app on the mobile.
 }

 public static function switchOn():void
 {
 // Code to switch on the device.
 }
 }
}

The following code demonstrates how you would call the switchOn() function:

Mobile.switchOn();

Parameters and Arguments

A parameter is a local variable that is defi ned and given a data type in the parentheses of a function
declaration.

Instance methods allow you to defi ne functions that exhibit an object’s features and the things it can
do. Parameters can be defi ned on instance methods to allow values to be passed to an object.

The following snippet shows a new instance method for the Mobile class defi ned, called
addContact(). The method has a public scope and has two parameters: cName, a String data type
representing a contact’s name, and cNumber, a Number data type representing the contact’s mobile number.

package devices
{
 public class Mobile
 {

CH001.indd 7CH001.indd 7 09/09/11 8:49 AM09/09/11 8:49 AM

8 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

 public static var deviceType:String = “Smartphone”;

 private var contacts:Array;
 private var phoneNumber:Number;

 public function Mobile()
 {
 this.phoneNumber = 011003637;
 }

 public function addContact(cName:String, cNumber:Number):void
 {
 // Code to add a new contact
 }

 public function launchApp():void
 {
 // Code to launch an app on the mobile.
 }

 public static function switchOn():void
 {
 // Code to switch on the device.
 }
 }
}

Note that local variables are only temporary.

To invoke or call the addContact() method, you need to use an instance of the Mobile class and
supply what are called the arguments for the method. In this case there are two arguments, as
shown in the following snippet:

var mobileObj:Mobile = new Mobile();
mobileObj.addContact(“Olivia”, 736300110);

Here the values Olivia and 736300110 are both arguments. Each argument needs to match the data
types of the parameters specifi ed for the method.

Conditional and Loop statements

A conditional statement is code that executes when a specifi c condition has been met.

In the following code snippet another static function called switchOff() has been added to the
Mobile class. Here you will see a conditional if statement that checks the variable isOn, a Boolean
value which is initially set to false in the class. In switchOn(), there is an if statement to check
to see if the isOn value is false; this is indicated by the exclamation (!) preceding the Boolean
value (that is, !isOn). The switchOff() function demonstrates another way of writing the same
by asking whether the isOn variable is equal to false, and then executing the code within the else
block of the if statement by setting isOn to false.

package devices
{

CH001.indd 8CH001.indd 8 09/09/11 8:49 AM09/09/11 8:49 AM

ActionScript 3.0 ❘ 9

 public class Mobile
 {
 public static var deviceType:String = “Smartphone”;

 private var contacts:Array;
 private var phoneNumber:Number;
 private var isOn:Boolean = false;

 public function Mobile()
 {
 this.phoneNumber = 011003637;
 }

 public function addContact(cName:String, cNumber:Number):void
 {
 // Code to add a new contact
 }

 public function launchApp():void
 {
 // Code to launch an app on the mobile.
 }

 public static function switchOn():void
 {
 if(!isOn)
 {
 isOn = true;

 // Now add code to switch on the device.

 } else {

 // Do nothing, device is already on.

 }
 }

 public static function switchOff():void
 {
 if(isOn == false)
 {

 // Do nothing, device is already off.

 } else {

 isOn = false;

 // Now add code to switch off the device.

 }
 }
 }
}

CH001.indd 9CH001.indd 9 09/09/11 8:49 AM09/09/11 8:49 AM

10 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

A loop is a statement in which code is executed for as long as a particular condition is met.

The following code snippet shows how the switchOn() function could be updated to include a
while loop statement, which executes the code within the block as long as the seconds variable is
more than 0. The value held by seconds reduces by 1 each time the loop runs.

public static function switchOn():void
{
 if(!isOn)
 {
 isOn = true;

 var seconds:Number = 10;

 while(seconds > 0)
 {
 seconds = seconds – 1;
 }

 // Now add code to switch on the device.

 } else {

 // Do nothing, device is already on.

 }
}

Another loop frequently used in AS development is the for loop statement. In the following code
snippet you’ll see how the switchOn() function could be updated to include a for loop statement,
which executes the code within the block as long as the seconds variable is more than 10. This time
the value held by seconds increases by 1 each time the loop executes.

public static function switchOn():void
{
 if(!isOn)
 {
 isOn = true;

 for(var seconds:Number = 0; seconds < 10; seconds++)
 {
 // Now add code to switch on the device.
 }

 } else {

 // Do nothing, device is already on.

 }
}

CH001.indd 10CH001.indd 10 09/09/11 8:49 AM09/09/11 8:49 AM

The Flex Framework ❘ 11

Inheritance

Inheritance describes the relationship between two or more classes where one class inherits the
properties and method defi nitions of another class.

In the following example you’ll see how the class GoogleNexusS is created from the Mobile class:

package devices
{

 import devices.Mobile;

 public class GoogleNexusS extends Mobile
 {
 public function GoogleNexusS()
 {
 super();
 }
 }
}

Note here that the extend keyword is used to reference the class that is being extended. And the
super() function called in the GoogleNexusS class constructor method indicates that, when an
instance is created from instantiating GoogleNexusS, it will call the Mobile class constructor
function also. In this context the GoogleNexusS class is referred to as a subclass of Mobile, and
Mobile is the parent class of GoogleNexusS.

Over the course of this book you’ll go through many more examples of using AS3 in mobile
application development.

THE FLEX FRAMEWORK

Flex is a framework that leverages an underlying library of AS3 classes to provide
UI components that allow developers to build rich media applications and
compile to the SWF format. Adobe Flex builds on top of the core runtime APIs
provided by Flash Player and Adobe AIR.

Flex is available through the Flash Builder IDE, a tool that you will take a look
at in the next chapter. Flex is also available through a software development kit
(SDK) allowing SWF format content to be created through command line tools.
The Adobe Flex logo is shown in Figure 1-2.

Flex 4.5.1

This release introduces support for developing mobile applications using the Flex framework. This
book uses the components that are available in the Flex 4.5.1 SDK and the Flash Builder 4.5.1
update release of the latest Flash Builder tool. There will be more on Flash Builder
in Chapter 2.

FIGURE 1-2: The

Adobe Flex logo

CH001.indd 11CH001.indd 11 09/09/11 8:49 AM09/09/11 8:49 AM

12 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

Mobile applications for touch screen devices undoubtedly should differ from desktop and web
applications for a number of reasons. While mobile devices are becoming more capable, there are
important considerations you need to be aware of when developing applications. These include:

 ➤ UI design: Mobile devices have small screens and high pixel densities, and so applications
have to be designed to account for sizeable components on screens that are easy to
interact with.

 ➤ Screen resolution: Mobile devices can have different screen resolutions, and the pixel
densities across most mobile device screens are higher than those of desktop monitors. So
applications have to adapt well to those displays.

 ➤ Touch screen input: Mobile devices that provide support for touch interaction must allow for
touch input via the application.

 ➤ Memory availability and processor performance: Mobile devices in most cases have limited
memory availability, as well as lower CPU and GPU performances, and so applications have
to be processor-friendly.

Depending on your development experience or background, these points may or may not seem quite
so obvious. But what is important here is for you to understand some of the features that the Flex
framework helps to address in mobile application development.

The Flex framework introduces the MXML language.

MXML

MXML is an XML tag-based markup language, used in the layout and design of components and
data assets for Flex-based user interfaces. As an XML format, MXML is also structured, so there
are several rules you have to follow when you write it, and the contents must be well formed and
valid XML to preserve the integrity of the document.

Every MXML fi le is a class, but instead of having a .as fi le extension, it has a .mxml fi le extension.
And instead of simply having AS3 code and syntax, it can contain both the MXML markup and AS3.

XML Namespaces

In MXML documents, an XML namespace refers to a valid Uniform Resource Identifi er
(URI). There is a World Wide Web Consortium (W3C) URI clarifi cation at www.w3.org/TR/
uri-clarification/. The URI allows for declarative tags, attributes, and sets of components, to be
uniquely identifi ed within the scope of the MXML document.

Three default namespaces are used in this book:

 ➤ fx: This namespace references special language declarative tags, as defi ned by the
MXML 2009 – Functional and Design Specifi cation (Adobe Open Source Wiki, http://
opensource.adobe.com/wiki/display/flexsdk/MXML+2009).

 ➤ s: This namespace references the Spark Components Library, introduced into the Flex 4
framework.

 ➤ mx: This namespace references the MXML Components Library that was introduced in the
Flex 3 framework but also supported in the Flex 4 framework.

CH001.indd 12CH001.indd 12 09/09/11 8:49 AM09/09/11 8:49 AM

The Flex Framework ❘ 13

The following code snippet shows how the fx, s, and mx namespaces are defi ned with associated
URIs, in the root of the opening <s:Application> tag:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:mx=”library://ns.adobe.com/flex/mx”>

</s:Application>

The <s:Application> tag is a container that enables you to start adding visual and interactive
components to your mobile application using the Flex framework, without the need to defi ne other
containers.

Notice that the namespace for Application is given the s prefi x. This is because the Application
component is derived from the Spark Component Library.

The Spark component features are specifi cally targeted for mobile development, to conserve memory.

Namespaces can also be referenced for local custom components.

Essentially, namespaces are used to do the following:

 1. Specify the language version of the document

 2. Map XML and CSS tag names to an AS class name

Both these allow the Flex compiler to resolve the implementation for both default and custom
language and component tags.

In general, mobile applications should utilize the fx and s XML namespaces, the majority of which
have been optimized for mobile devices.

NOTE If it makes it easier, think of the namespaces as individual import
statements that allow you to use only certain AS3 classes that have been
imported into that document. For each namespace a number of classes can be
used, once that namespace has been declared in the document.

The <fx:Script> tag declaration permits AS3 code to be added to the document and to be
referenced by other elements in the MXML document, as you’ll see shortly.

As with AS3, MXML follows particular rules for coding. One such MXML rule is that an element
must have an opening and closing tag if it contains other values or nests other tags.

With MXML specifying components like the button requires a lot less code. This is mainly because the
Flex framework contains a lot of the logic and hides it from the developer in design time. Tags that don’t
need to contain nested values in your application may simply be written with an enclosing forward
slash (/), as shown in the following snippet, which highlights the <fx:Declarations> tag being empty:

<fx:Declarations/>

CH001.indd 13CH001.indd 13 09/09/11 8:49 AM09/09/11 8:49 AM

14 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

Usually, you will see the <fx:Declarations> tag with an MXML comment nested between the
opening <fx:Declarations> tag and the closing </fx:Declarations> tag:

<fx:Declarations>
 <!-- Place non-visual elements (e.g., services, values objects) -->
</fx:Declarations>

As highlighted in the comment, the <fx:Declarations> tag enables you to defi ne value objects for
use within MXML and AS3.

The following code snippet shows how a string, <fx:String>, and an integer, <fx:int>, can be in
<fx:Declarations> to specify two values, “Jermaine G. Anderson,” and a random number “31,”
respectively:

<fx:Declarations>
 <fx:String id=”myName”>Jermaine G. Anderson</fx:String>
 <fx:int id=”myAge”>31</fx:int>
</fx:Declarations>

Notice the id attribute being used in each value object declaration.

The id Attribute

In MXML the id attribute is a special property used as a unique identifi er for tags, setting the name
property on the underlying AS3 class. This allows components to be referenced through AS3 defi ned
in a <fx:Script> tag.

The following code snippet shows an instance of the <s:Label> component being referenced
within the <fx:Script> declaration. The id property on <s:Label> has been set to myLabel,
allowing the text property on the component to be set via AS3 within the function called
setLabelText(), when it is called.

<fx:Script>
 <![CDATA[
 private function setLabelText():void
 {
 myLabel.text = “Hello World”;
 }
]]>
</fx:Script>

<s:Label id=”myLabel”/>

In MXML, each property available for a particular tag component can be set or referenced in AS3
using the id.

Spark Library Components

Spark is the name of the component library, which is a key aspect of the Flex framework and Flash
Builder.

CH001.indd 14CH001.indd 14 09/09/11 8:49 AM09/09/11 8:49 AM

The Flex Framework ❘ 15

These components and their skins have been optimized to run out of the box on mobile touch screen
devices; in Flex 4.5.1, components have been added to address common application design problems
specifi c to smartphones.

The Spark architecture encompasses a skinning model that provides a separation of a component’s
visual aspect from its working logic, allowing designers and developers more freedom, because
the visual elements of a Flex component can be designed independently of the implementation of the
logic behind the component.

While skinning isn’t a key focus of this book, you’ll get to know the Spark component library well,
enabling you to build relatively robust mobile applications in a very short amount of time.

In Flex, components are declared in their own namespaces. The majority of the components and
data elements defi ned by the <mx> namespace are not optimized for mobile, while the components
derived from the <s> namespaces have been optimized for applications on mobile devices. This book
predominantly uses the <s> set of components.

Once a namespace has been declared, the components can be referenced within the MXML
document.

The following subsections detail some of the core mobile components that are used throughout
this book.

The Label Component

The <s:Label> tag is a visual Spark component that renders a single line of text. The following
code snippet shows how the <s:Label> component renders the text “Hello World”:

<s:Label text=”Hello World”/>

The Text Input and Text Area Components

Both the <s:TextInput> and <s:TextArea> tags are visual Spark components that allow
users to enter text using a device’s native keyboard. The following code snippet shows how the
<s:TextInput> component displays the text “Type a name…” via a prompt property:

<s:TextInput prompt=”Type a name...”/>

The text set by the prompt property will disappear when the user starts typing or when the
component gains focus, and regain the prompt text if the component loses focus or the user deletes
all the text.

Text for the components can be set and retrieved via the text property, as shown in the following
code snippet, which shows how the <s:TextArea> component displays the text “Once upon a
time…”

<s:TextArea text=”Once upon a time...”/>

The <s:TextInput> component allows you to defi ne whether the user input should be hidden by
asterisks via the displayAsPassword property. The <s:TextArea> component allows for multiple
lines of text to be written, whereas the <s:TextInput> does not.

CH001.indd 15CH001.indd 15 09/09/11 8:49 AM09/09/11 8:49 AM

16 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

The <s:TextInput> component is shown in Figure 1-3.

The Button Component

To add a Button component in an application, specify the <s:Button>
tag. In the following code snippet the <s:Button> tag defi nes the id
property as myButton, a label property with the text Hit Me!, and a
click property set to a function named onClick():

<s:Button id=”myButton”
 label=”Hit Me!”
 click=”onClick(event)”/>

The onClick() function assigned to the click event handler needs to be
defi ned in the <fx:Script> tag.

The <s:Button> is shown in Figure 1-4.

The Button Bar Component

The <s:ButtonBar> tag allows you to create a collection of buttons that are
able to navigate between the views of the mobile application. Only one of the
buttons in the bar may be selected at any one time.

In the following code snippet, the two buttons are defi ned in the
<s:ButtonBar> component, Grid and Vertical List:

<s:ButtonBar>
 <s:dataProvider>
 <s:ArrayCollection>
 <s:NavigatorContent id=”gridBtn”
 label=”Grid”/>

 <s:NavigatorContent id=”listBtn”
 label=”Vertical List”/>
 </s:ArrayCollection>
 </s:dataProvider>
</s:ButtonBar>

The <s:ButtonBar> component is shown in Figure 1-5.

FIGURE 1-3: The Spark Text

Input control, displaying the

default, focused, prompt,

password, and disabled

states

FIGURE 1-4: The

Spark Button control,

displaying the default,

down, and disabled

states

FIGURE 1-5: The Spark Button Bar control, displaying the default,

down, selected, and disabled states

CH001.indd 16CH001.indd 16 09/09/11 8:49 AM09/09/11 8:49 AM

The Flex Framework ❘ 17

The HTTP Service Component

Data can be accessed in a number of ways for applications, one of which is by using an HTTP
Service.

To utilize data over HTTP using MXML, the <s:HTTPService> tag can be used. The following
snippet shows how the <s:HTTPService> tag is defi ned:

<s:HTTPService id=”httpService”
 url=”http://localhost/HTTPService”
 fault=”onFault(event)”
 result=”onResult(event)”
 resultFormat=”object”
 showBusyCursor=”true”/>

The Web Service Component

To utilize data via a web service, the <s:WebService> tag can be used. The following snippet shows
how the <s:WebService> tag is defi ned:

<s:WebService id=”service”
 wsdl=”wsdl”
 useProxy=”false”
 showBusyCursor=”true”
 result=”onResult(event)”
 fault=”onFault(event)”/>

The List Component

The following code snippet shows one of the ways in which
nested tags can be used in MXML for a single component. In this
example the <s:dataProvider> for the <s:List> component is an
<s:ArrayList>:

<s:List id=”myList”>
 <s:dataProvider>
 <s:ArrayList id=”arrList”
 source=”[One, Two, Three]”/>
 </s:dataProvider>
</s:List>

The <s:List> component is shown Figure 1-6.

Layout Declarations

A number of non-visual components can be used in MXML to specify the layout of an application
and to group visual elements.

The <s:layout> component tag defi nes a layout, and this needs to nest an accompanying Layout
component tag to give the layout its properties.

FIGURE 1-6: The Spark List

control, displaying the default,

down, selected states for each

List Item

CH001.indd 17CH001.indd 17 09/09/11 8:49 AM09/09/11 8:49 AM

18 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

The following lists each of the tags that can be nested within the opening <s:layout> and closing
</s:layout> tags:

 ➤ <s:BasicLayout>: Arranges components independently of each other, according to their
individual settings. To position each component within a layout, each child element’s position
needs to be explicitly defi ned, using the x and y properties of the child, or constraints.

 ➤ <s:ConstraintLayout>: Gives you the ability to create sibling-relative layouts by
constraining elements to the specifi ed columns and rows.

 ➤ <s:HorizontalLayout>: To arrange the layout elements in a horizontal sequence, left to
right, with optional gaps between the elements and optional padding around the elements.

 ➤ <s:VerticalLayout>: To arrange the layout elements in a vertical sequence, top to bottom,
with optional gaps between the elements and optional padding around the sequence of elements.

 ➤ <s:FormItemLayout>: To provide a constraint-based layout to FormItems.

 ➤ <s:TileLayout>: To arrange equally sized cells of components in columns and rows, using
a number of properties that control orientation, count, size, gap, and justifi cation of the
columns and the rows, in addition to an element’s alignment within a cell.

In the following code you see how the horizontal layout tag <s:HorizontalLayout> is defi ned:

<s:layout>
 <s:HorizontalLayout/>
</s:layout>

Chapter 5 explores the use of the <s:HorizontalLayout> and the <s:VerticalLayout>
declarations in more detail.

The Group, HGroup, and VGroup Containers

The <s:Group>, <s:HGroup>, and <s:VGroup> tags are non-visual containers that allow you
to group components. Both the <s:HGroup> and <s:VGroup> containers are subclasses of the
<s:Group> tag. The <s:HGroup> tag uses <s:HorizontalLayout>, and so components that are
nested within the <s:HGroup> tag will be arranged horizontally from left to right. The <s:VGroup>
tag uses <s:VerticalLayout>, and so components that are nested within the <s:VGroup> tag are
arranged vertically from top to bottom.

In the following code snippet you see two buttons horizontally aligned using the <s:HGroup> tag,
with their label properties set to Left and Right, respectively:

<s:HGroup id=”buttonContainer”
 width=”100%”
 height=”100%”>

 <s:Button id=”button1” label=”Left”/>
 <s:Button id=”button2” label=”Right”/>

</s:HGroup>

Contrast this with the following code snippet, where the two buttons are vertically aligned within the
<s:VGroup> tag. This time the label properties are set to Top and Bottom, to indicate their arrangement.

CH001.indd 18CH001.indd 18 09/09/11 8:49 AM09/09/11 8:49 AM

The Flex Framework ❘ 19

<s:VGroup id=”buttonContainer”
 width=”100%”
 height=”100%”>

 <s:Button id=”button1” label=”Top”/>
 <s:Button id=”button2” label=”Bottom”/>

</s:VGroup>

Throughout the book you will see examples of using <s:Group>, <s:HGroup>, and <s:VGroup> tags.

The CheckBox and RadioButton Controls

The <s:CheckBox> and <s:RadioButton> components are controls that provide a way for users to
make a selective choice.

To add a radio button, you need to specify the <s:RadioButton> tag. The following snippet shows
two radio buttons with their label properties set to Radio 1 and Radio 2, grouped by their
groupName attributes, which are set to myRadioGroup. The selected property on the fi rst radio
button is set to true, which means this will be as follows:

<s:RadioButton label=”Radio 1”
 groupName=”myRadioGroup”
 selected=”true”/>

<s:RadioButton label=”Radio 2”
 groupName=”myRadioGroup”/>

The groupName property is used so that only one button in a group of radio buttons is selected
at a time.

The <s:CheckBox> and <s:RadioButton> components are shown in Figure 1-7.

FIGURE 1-7: The Spark Radio Button and Check Box controls

CH001.indd 19CH001.indd 19 09/09/11 8:49 AM09/09/11 8:49 AM

20 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

The Image Component

Using the <s:Image> tag allows for image content to be included in an application via MXML. The
following code shows how to render an image with both its width and height properties set to 100:

<s:Image id=”myImage”
 width=”100”
 height=”100”
 source=”flash.png”/>

To reference a particular image you need to set the source property on the component to the image
fi le path you want to load, relative to the .swf fi le generating the content. The component can also
load image content via a URL over HTTP.

Throughout the book you will see examples of images being referenced using MXML like the one
shown in the example.

Style Declarations

 The <fx:Style> tag allows you to specify styles for components and views within an application.

In the following code snippet, you see the backgroundColor property of the spark <s:Application>
container set to #CCCCCC, and the fontSize property of the <s:Label> component set to 24:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>

 <fx:Style>

 @namespace s “library://ns.adobe.com/flex/spark”;

 s|Application
 {
 backgroundColor:#CCCCCC;
 }

 s|Label
 {
 fontSize:24;
 }

 </fx:Style>

</s:Application>

Note that hexadecimal code color values can be specifi ed with either the # or the 0x prefi x.

Defi ning styles in this way enables you to set the styles for components from within the main
application fi le.

If you wanted a <s:Label> component to have a different font size from that set in the main
application fi le, you would need to set the fontSize property on that specifi c <s:Label> instance,
effectively overriding the main style.

CH001.indd 20CH001.indd 20 09/09/11 8:49 AM09/09/11 8:49 AM

The Flex Framework ❘ 21

You can also declare styles in a CSS fi le and by setting the source property on the <fx:Style>
declaration. You can apply those as shown in the following snippet:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>

 <fx:Style source=”mobileStyles.css”/>

</s:Application>

Data Binding

The Flex framework supports data binding, a mechanism in which data on one object can be tied to
another object so that any updates or changes in one object are automatically refl ected in the other.

The following code snippet demonstrates one of the ways in which data binding can be
accomplished via the <fx:Binding> tag:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>

 <fx:Binding source=”txtIn.text”
 destination=”txtOut.text”/>

 <s:TextInput id=”txtIn”/>

 <s:Label id=”txtOut”/>

</s:Application>

Here, whenever text is written in the <s:TextInput> component, which has its id property value
set to txtIn, the source data on the text property will be replicated to the text property on the
<s:Label> component as the user types. To set the data binding, you need to specify the source
and destination properties in the <fx:Binding> tag.

Another way data binding can be demonstrated is to use curly brackets ({}) and explicitly set a
data object within those brackets to bind to. In the following code snippet, the <fx:Binding> tag
is no longer used to assign the source and destination; instead, the text property on the <s:Label>
references the text property on <s:TextInput> to assign its data:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>

 <s:TextInput id=”txtIn”/>

 <s:Label id=”txtOut”
 text=”{txtIn.text}”/>

</s:Application>

CH001.indd 21CH001.indd 21 09/09/11 8:49 AM09/09/11 8:49 AM

22 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

Data binding can also be achieved by creating a bindable object variable. In the following snippet,
you see that the textObj has been declared as a String object. The Bindable keyword is written
above the variable within square brackets ([]), designating the variable as bindable:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>

 <fx:Script>
 <![CDATA[

 [Bindable]
 public var textObj:String = “String object”;

 public function onClick():void
 {
 textObj = “String object has changed!”;
 }

]]>
 </fx:Script>

 <s:TextInput text=”{textObj}”/>

 <s:Button click=”onClick()”/>

</s:Application>

When the button is clicked, the value of textObj changes, and those changes are refl ected visually
in the <s:TextInput> component, which has its text property assigned to the bindable textObj.

Flex Mobile Application Structure

The mobile application structure employed by the Flex framework consists of a view navigation
pattern, where a user is able to navigate between views by selecting data items or other controls
on screen.

By design, there are a number of components that are core to the mobile application structure
supported by Flex 4.5. These include:

 ➤ View

 ➤ View menu

 ➤ View navigator

 ➤ Tabbed view navigator

 ➤ Action bar

The main application class recommended for building your Flex mobile applications is
ViewNavigatorApplication, and this utilizes each of the core features.

CH001.indd 22CH001.indd 22 09/09/11 8:49 AM09/09/11 8:49 AM

The Flex Framework ❘ 23

The View Navigator Application

In MXML, the <s:ViewNavigatorApplication> tag is the entry point for your Flex-based mobile
applications. The following code snippet shows how you would defi ne the MXML, specifying the
fi rst view to render on the application on the firstView property:

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 firstView=”views.FirstView”>

</s:ViewNavigatorApplication>

Unlike the <s:Application> container, <s:ViewNavigatorApplication> is optimized for mobile
but requires that a view be specifi ed that displays content.

The View Component

The view component, as defi ned by the <s:View> tag and the sparks.components.View class,
represents a single user interface screen in your mobile application. This is where you will be able to
place each of the visual mobile components you want to appear within the application.

The following code snippet shows the MXML and <fx:Script> defi ned for a view. The click
property on the <s:Button> component in the MXML is assigned to the onClick() method
defi ned in the ActionScript within the <fx:Script> tag:

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”View Example”>

 <fx:Script>
 <![CDATA[

 private function onClick(e:Event):void
 {
 myButton.label = “Ouch!”;
 }

]]>
 </fx:Script>

 <s:Button id=”myButton”
 label=”Hit Me!”
 click=”onClick(event)”/>

</s:View>

Note here that the title property on the view is simply set to View
Example. The title property of a view will be displayed in the
action bar area, at the top of the mobile application (Figure 1-8).

FIGURE 1-8: The view example

CH001.indd 23CH001.indd 23 09/09/11 8:49 AM09/09/11 8:49 AM

24 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

The View Menu Component

You can include a number of menu buttons that can control elements of your application by
implementing the <s:viewMenuItems> tag.

The view menu in an application can be revealed when a user invokes the menu button on the device.

This is done by defi ning a set of <s:ViewMenuItem> components within a <s:viewMenuItems>
declaration, as shown in the following code snippet:

<s:viewMenuItems>

 <s:ViewMenuItem label=”Add”/>
 <s:ViewMenuItem label=”Update”/>
 <s:ViewMenuItem label=”Delete”/>

</s:viewMenuItems>

The menu appears at the bottom of the screen when the device’s native menu button is pressed.
When an item has been selected, the view menu will disappear from view.

The menu can also be invoked when you set the viewMenuOpen property on the mx.core
.FlexGlobals.topLevelApplication object to true:

mx.core.FlexGlobals.topLevelApplication.viewMenuOpen = true;

The following code snippet shows how the click property on a <s:Button> component reveals
the view menu:

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”View Menu Example”>

 <fx:Script>
 <![CDATA[

 import mx.core.FlexGlobals;

 private function onClick(e:Event):void
 {
 FlexGlobals.topLevelApplication.viewMenuOpen = true;
 }

 private function onSelected(e:Event):void
 {
 myLabel.text = e.currentTarget.label + “ selected”;
 }

]]>
 </fx:Script>

 <s:Label id=”myLabel”/>

 <s:Button id=”myButton”

CH001.indd 24CH001.indd 24 09/09/11 8:49 AM09/09/11 8:49 AM

The Flex Framework ❘ 25

 label=”Open Menu!”
 click=”onClick(event)”/>

 <s:viewMenuItems>

 <s:ViewMenuItem label=”Add”
 click=”onSelected(event)”/>
 <s:ViewMenuItem label=”Update”
 click=”onSelected(event)”/>
 <s:ViewMenuItem label=”Delete”
 click=”onSelected(event)”/>

 </s:viewMenuItems>

</s:View>

This example is shown in Figure 1-9.

The View Navigator

The ViewNavigator class is what manages each of the view
containers in a mobile application. Using a stack-based history
mechanism, the main role of a view navigator is to conserve
memory used by the application, by ensuring that only one view is
in memory at a given time.

When the mobile application starts, a view navigator will show the view specifi ed by its firstView
property, which, as shown, can be defi ned on the <s:ViewNavigatorApplication> tag. Each view
created in an application has a reference to a view navigator via its navigator object.

In the following snippet, you see how to navigate to a new view in an application

navigator.pushView(views.HelloWorldAppHome, dObj);

As shown, the pushView() method on the navigator object is called, where the full name of
the view views.HelloWorldAppHome is supplied as the fi rst argument, and a data object dObj is
supplied as the second argument. This method will normally be invoked by user input, like a button
call. The data object supplied can be retrieved on the data property of the next view. Thus, using
pushView(), data can also be passed between views as the user navigates around the application.

When new views are added to an application, they are stacked, like an endless deck of cards. The
popView() and popToFirstView() methods allow the user to navigate back through a series of
screens.

The popView() method can be called to return to the previous view:

navigator.popView();

If navigator.popToFirstView() is called, the user will be returned to the fi rst view in a view stack:

navigator.popToFirstView();

FIGURE 1-9: A view menu

example

CH001.indd 25CH001.indd 25 09/09/11 8:49 AM09/09/11 8:49 AM

26 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

The Tabbed View Navigator Application

The tabbed view navigator application allows you to build more complex mobile applications that
are capable of switching between different view stacks. When the mobile application starts, the user
is able to toggle between a defi ned number of tabs at the bottom of the screen. Each tab effectively
represents a unique view navigator.

To include this feature in your mobile application, you defi ne the
<s:TabbedViewNavigatorApplication> tag in your main application fi le. This class utilizes the
TabbedViewNavigator object, which manages a collection of view navigators.

When you defi ne a <s:ViewNavigator> for the <s:TabbedViewNavigatorApplication>, you
need to ensure the value for the firstView property is set to the class path of the view, and that the
width and height properties are set to 100%.

 The following code snippet shows how to defi ne three tabs with labels Tab 1, Tab 2, and Tab 3,
respectively, for a tabbed view navigator application:

<?xml version=”1.0” encoding=”utf-8”?>
<s:TabbedViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>

 <s:ViewNavigator label=”Tab 1”
 width=”100%”
 height=”100%”
 firstView=”views.FirstTabView”/>

 <s:ViewNavigator label=”Tab 2”
 width=”100%”
 height=”100%”
 firstView=”views.SecondTabView”/>

 <s:ViewNavigator label=”Tab 3”
 width=”100%”
 height=”100%”
 firstView=”views.ThirdTabView”/>

</s:TabbedViewNavigatorApplication>

Figure 1-10 shows the tabs in a Flex mobile application.

The initial screen to appear in this example will be the FirstTabView, which is defi ned on the fi rst
<s:ViewNavigator> specifi ed in the application.

You can also assign a .png fi le to the icon property on <s:ViewNavigator>. This will display an
image on the tab (Figure 1-11).

CH001.indd 26CH001.indd 26 09/09/11 8:49 AM09/09/11 8:49 AM

The Flex Framework ❘ 27

The following code snippet shows that an image named search.png is assigned to the fi rst tab,
while an image named settings.png is assigned to the second tab:

<?xml version=”1.0” encoding=”utf-8”?>
<s:TabbedViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>

 <s:ViewNavigator icon=”search.png”
 width=”100%”
 height=”100%”
 firstView=”views.FirstTabView”/>

 <s:ViewNavigator icon=”settings.png”
 width=”100%”
 height=”100%”
 firstView=”views.SecondTabView”/>

</s:TabbedViewNavigatorApplication>

The data for a view navigator can be set using the firstViewData property, as shown in the
following snippet:

<?xml version=”1.0” encoding=”utf-8”?>
<s:TabbedViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>

 <fx:Script>

FIGURE 1-10: Tabs being

displayed in the tabbed view

navigator application example

FIGURE 1-11: Icons displayed

on the tabs of a tabbed view

navigator application

CH001.indd 27CH001.indd 27 09/09/11 8:49 AM09/09/11 8:49 AM

28 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

 <![CDATA[

 private var dObj:Object = {name:”Jermaine G. Anderson”};

]]>
 </fx:Script>

 <s:ViewNavigator icon=”search.png”
 width=”100%”
 height=”100%”
 firstView=”views.FirstTabView”/>

 <s:ViewNavigator icon=”settings.png”
 width=”100%”
 height=”100%”
 firstView=”views.SecondTabView”
 firstViewData=”{dObj}”/>

</s:TabbedViewNavigatorApplication>

The Action Bar Component

The action bar is the visual header that appears by default at the top of a view in a Flex mobile
application.

This header has space for three distinct content areas, including a central area designated for a view
title. To the left of the title content is an area designated for navigational content, represented in
MXML by the <s:navigationContent> tag, and to the right is an area designated for actionable
content, represented by the <s:actionContent> tag.

Button components can be assigned to the action bar, when necessary, to allow the user to control
navigation and perform actions in the application.

In the following code snippet, you see an example of the navigation and action content areas
specifi ed in a <s:ViewNavigatorApplication> declaration:

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>

 <s:navigationContent>

 <s:Button label=”Home”
 click=”navigator.popToFirstView()”/>

 </s:navigationContent>

 <s:actionContent>

 <s:Button label=”Search”
 click=”onSearch()”/>

 </s:actionContent>

</s:ViewNavigatorApplication>

CH001.indd 28CH001.indd 28 09/09/11 8:49 AM09/09/11 8:49 AM

The Flex Framework ❘ 29

Action bar content is not limited to button controls within the
navigation or action content areas. You can pretty much add any of
the visual spark components to be placed in the action bar. In the
following snippet, you also see an example of the title content area
being defi ned via the <s:titleContent> tag to include a text
input fi eld:

<s:titleContent>

 <s:TextInput id=”searchTxt”
 width=”100%”
 prompt=”Search field...”/>

</s:titleContent>

Figure 1-12 demonstrates the <s:titleContent> being set.

 In this example, you see that icons are also specifi ed on the
navigation and action content areas of the action bar.

The action bar can be customized for each individual view of the
application or have controls designated that persist across all the views
of an application when defi ned in the main application fi le.

View Transitions

When users navigate between views, they will see the current view transition out of the screen, while
the next view transitions onto the screen via a set of defi ned animations.

There are two properties of the ViewNavigator object that can be defi ned to describe the type of
view transition for the view:

 ➤ defaultPushTransition: The animation that occurs when a new view is added to the view
stack — e.g., via pushView()

 ➤ defaultPopTransition: The animation that occurs when a view is removed from the view
stack — e.g., via popView()

There are four view transition classes found in the spark.transitions package that can be
customized and assigned to both the default transition objects:

 ➤ CrossFadeViewTransition: To fade out the existing view as the new view is revealed

 ➤ FlipViewTransition: To fl ip out the existing view as the new view is revealed

 ➤ SlideViewTransition: To slide out the existing view while the new view slides in

 ➤ ZoomViewTransition: To zoom out of the existing view as the new view is revealed, or to
zoom in to the new view over the existing view

Each view transition has a number of properties that can be defi ned for animations, including
direction, duration, and mode.

FIGURE 1-12: Action bar content

defi ned within a view navigator

application

CH001.indd 29CH001.indd 29 09/09/11 8:49 AM09/09/11 8:49 AM

30 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

The following code snippet shows a zoom transition operating on the pushView() method to reveal
a view called FirstViewTab. The mode is set to zoom in using the ZoomViewTransitionMode.IN
constant, and the transition duration is set to 250 milliseconds:

<fx:Script>
 <![CDATA[

 import spark.transitions.ZoomViewTransition;
 import spark.transitions.ZoomViewTransitionMode;

 private function zoomView():void
 {
 var zoom:ZoomViewTransition = new ZoomViewTransition();
 zoom.mode = ZoomViewTransitionMode.IN;
 zoom.duration = 250;

 navigator.pushView(views.FirstTabView, null, null, zoom);
 }
]]>
</fx:Script>

The ZoomTransition object is supplied as the fourth argument to the pushView() method on the
navigator property of the view.

The following code snippet shows a slide transition, in which the slide mode is set to push using the
SlideViewTransitionMode.PUSH constant, and the transition direction is set to down, using the
ViewTransitionDirection.DOWN constant. The duration is set also to 250 milliseconds:

<fx:Script>
 <![CDATA[

 import spark.transitions.ViewTransitionDirection;
 import spark.transitions.SlideViewTransition;
 import spark.transitions.SlideViewTransitionMode;

 private function slideView():void
 {
 var slide:SlideViewTransition = new SlideViewTransition();
 slide.direction = ViewTransitionDirection.DOWN
 slide.mode = SlideViewTransitionMode.PUSH;
 slide.duration = 250;

 navigator.pushView(views.FirstTabView, null, null, slide);
 }

]]>
</fx:Script>

Either of the transitions in the previous examples could also be assigned to the navigator
.defaultPushTransition or the navigator.defaultPopTransition on the view:

navigator.defaultPushTransition = slide;
navigator.defaultPopTransition = zoom;

CH001.indd 30CH001.indd 30 09/09/11 8:49 AM09/09/11 8:49 AM

Adobe AIR ❘ 31

By default, Flex uses the SlideViewTransition for view transitions.

Over the course of the book, you’ll implement many of the key components of a Flex Mobile
Application, including those that are core to the <s:ViewNavigationApplication> class.

Considerations for Mobile Development

Mobile applications for touch screen devices undoubtedly should differ from desktop and web
applications for a number of reasons. Although mobile devices are becoming more capable, there are
important considerations you need to be aware of when developing applications. These include:

 ➤ UI design: Mobile devices have small screens and high pixel densities, so applications have to
be designed to account for sizeable components on screens that are easy to interact with.

 ➤ Screen resolution: Mobile devices can have different screen resolutions, and the pixel
densities across most mobile device screens are higher than those of desktop monitors. Thus,
applications have to adapt well to those displays.

 ➤ Touch screen input: Mobile devices that provide support for touch interaction must allow for
touch input via the application.

 ➤ Memory availability and processor performance: In most cases, mobile devices have limited
memory availability, as well as lower CPU and GPU performances. Thus, applications have
to be processor-friendly.

Depending on your development experience or background, these points may or may not seem
quite so obvious. What is important here is for you to understand some of the features that the Flex
framework helps to address in mobile application development.

ADOBE AIR

The Adobe Integrated Runtime (AIR, www.adobe.com/products/air) is a cross-platform run time
that allows developers to create and deploy applications for a variety of operating systems outside of
Internet browsers.

AIR for smartphone and tablet devices allows developers to create applications that can be deployed
in the same way as native applications across each mobile platform. And as previously mentioned,
the Flex framework can be used to create mobile applications that are
installed as standalone applications using the Adobe AIR run time. On
Google Android devices supporting AIR, if AIR is not yet installed, the user
will be prompted to download and install the run time on fi rst launch of
an AIR application. On RIM’s BlackBerry PlayBook, AIR is integral to the
operating system, so you need only be concerned with the version of AIR that
has been installed on the device. On Apple iOS devices, such as the iPad and
iPhone, AIR cannot be installed as a separate run time; an AIR application is
installed as a self-contained package.

The Adobe AIR logo is shown in Figure 1-13.
FIGURE 1-13: The

Adobe AIR logo

CH001.indd 31CH001.indd 31 09/09/11 8:49 AM09/09/11 8:49 AM

32 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

When Adobe AIR was fi rst released, it was aimed at the creation of rich media content and
enterprise applications that could run outside the traditional web browser, essentially targeting the
desktop across multiple platforms.

In addition to the SWF format, Adobe AIR can render content produced with both HTML and
JavaScript. Adobe AIR now runs Flash platform applications across a wide range of devices
and operating systems, covering Desktop, TV, and Mobile Devices.

Adobe AIR 2.7 is the most recent release of the client. The fi rst release, AIR 2.5, introduced support
for the mobile device profi le; this book uses references to AIR 2.7.

On each of the platforms AIR supports, the client must be installed directly on the end user’s device
at an OS level.

This book covers many of the APIs introduced in AIR 2.7 for mobile devices supported on Google
Android, BlackBerry Tablet OS, and Apple iOS.

At the time of writing, a beta for Adobe AIR 3 was underway, allowing developers to preview
new and enhanced features for desktop and mobile applications targeting the next release of
the run time. With the potential for new APIs to be dropped, none of the features could be
covered in this book, but look for an update. For more information, visit the Adobe Labs website
(labs.adobe.com/technologies/) and search for Adobe AIR 3 in the Products section.

SUMMARY

This introduction to Flash, Flex, and AIR is just the beginning, and many of the topics touched on
here, and more, will be explored in detail over the course of this book.

In this chapter, you learned about the Flash Player run time for mobile and covered many of the key
concepts of AS3.

You then explored some of the core elements of the Flex framework and MXML components, and
then were introduced to Adobe AIR.

In Chapters 2 and 3, you begin building mobile applications for Google Android, Apple iOS, and
BlackBerry Tablet OS devices using AIR 2.7. Then from Chapter 4 onwards, there will be extensive
coverage of AS3 and MXML. You expand on this in Chapters 7, 8, and 10, where you cover many
of the runtime APIs available only via the Adobe AIR installed on mobile devices.

In the next chapter, you get started with mobile application development, creating the Hello World
App example.

At the end of each chapter, you’ll encounter exercises containing additional tasks that will
help you build your knowledge about key aspects of that particular chapter. In the following section,
you can either tackle the exercises now or wait until later; they don’t have to be completed to
follow on.

CH001.indd 32CH001.indd 32 09/09/11 8:49 AM09/09/11 8:49 AM

Summary ❘ 33

EXERCISES

 1. Defi ne a new AS3 class called Tablet that is contained in the devices package. Set a few

properties for screen resolution and orientation to indicate whether the device is in portrait or

landscape mode. Then add a public method to toggle between the device orientations.

 2. Defi ne how to create a tile arrangement of fi ve images using MXML.

 3. Defi ne a view navigator application that has four views. Add a label and button to each view.

For the button, implement a click that navigates the user to the next view using a unique view

transition. Add a back button so that you can view.

 4. Defi ne a tabbed view navigator application that has three tab views. For the fi rst view, specify a

list of three items. For the second view, add a 100x100 image of the world that moves randomly

around the screen. Then for the third view, add a label that displays a countdown timer in

seconds. Every time the third view is selected, the countdown starts from 5 and stops at 0. When

the countdown reaches 0, the background color for the view should change.

CH001.indd 33CH001.indd 33 09/09/11 8:49 AM09/09/11 8:49 AM

34 ❘ CHAPTER 1 AN INTRODUCTION TO FLASH, FLEX, AND AIR

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Flash Flash Lite 4.0 and Flash Player 10.3 are currently the run times that support SWF

format mobile content out of the box.

Flex framework Flex 4.5.1 is the latest version of the Flex framework.

The Flex framework contains a library of components, styles, and skins optimized

for developing mobile applications.

MXML is the markup language used for developing Flex-based applications.

Adobe AIR Adobe AIR 2.7 contains the mobile device profi le, which allows for AIR applications

to be deployed on devices across multiple platforms, including Google Android,

Apple iOS, and BlackBerry Tablet OS.

CH001.indd 34CH001.indd 34 09/09/11 8:49 AM09/09/11 8:49 AM

Getting Started

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Using Flash Builder 4.5.1

 ➤ Creating a Flex mobile project

 ➤ Defi ning run confi gurations for both desktop and devices

Adobe’s portfolio includes numerous software products that enable you to author Flash-based
mobile applications. These include Flash Builder, an Integrated Development Environment
(IDE) that fully supports the build of Flex Framework and AS3-based mobile projects, Flash
Professional for Flash-authored projects, Device Central for emulating content, and the AIR
SDK for targeting multiple platforms.

In this chapter you take a close look at Flash Builder, learning how to create a Flex
mobile project and how to run that project on the desktop, and also take a look at how to
confi gure the project to run on Apple iOS, BlackBerry Tablet OS, and Google Android.

USING FLASH BUILDER 4.5.1

Flash Builder is the ideal tool of choice for creating mobile applications using the Flex
framework. Built on top of Eclipse, an IDE widely used by many Java developers, Flash
Builder is a robust development environment.

This book mainly focuses on building applications with the latest version of Flash Builder — at
the time of writing, version 4.5.1.

2

NOTE If you are using Flash Builder 4.5.0, you will need to install the Flash
Builder 4.5.1 updater, which you can fi nd on the Adobe website (www.adobe
.com/support/flex/downloads_updaters.html).

CH002.indd 35CH002.indd 35 09/09/11 9:26 AM09/09/11 9:26 AM

36 ❘ CHAPTER 2 GETTING STARTED

Toward the end of this chapter, you are guided through setting up a Flex mobile project using the IDE.

Flash Builder has numerous features that simplify the task of building mobile applications, making
it easier and fun.

Cool features in the latest version include wizards to target new devices that support Adobe AIR,
such as the BlackBerry Playbook and Google Nexus One. You can run content on supported devices
connected to your development environment, so you can install, test, and run an application instantly.

Within the IDE are tabs to switch between a mobile application’s source code and the Design
view. Within the Design view you can drag and drop components from panels within the IDE. The
Source code view supports color schemes that can be applied to AS3 syntax and MXML script,
making it easier to code documents. There is also an integrated debugger facilitating testing and
advanced code hinting, and autocomplete commands that insert full class paths. Flash Builder is
nothing short of a developer’s dream.

The offi cial requirements for Flash Builder are listed at the Adobe website (www.adobe.com/products/
flash-builder/tech-specs.html).

The following sections take a look at the following Flash Builder features:

 ➤ Workspaces

 ➤ Flash perspective

 ➤ Flash Debug perspective

 ➤ Source view

 ➤ Design view

Working with Workspaces

Flash Builder enables you to create different workspaces. A workspace contains each of the projects
that you create in Flash Builder, and, by default, the workspace is the Flash Builder installation
path, but this can be changed. You can also add multiple workspaces to keep collections of projects
separate. I recommend for the examples used in this book that you create a workspace and keep the
projects separate.

In this section you take a look within the workspace and a closer look at the tools within the IDE
used to build Flex and ActionScript-based mobile applications.

Flash Builder includes a number of view panels that provide various features and confi gurable
options for developing and testing applications.

Perspectives are a specifi c arrangement of view panels displayed together, aimed at providing
suitable tools for a particular task.

By default, Flash Builder has two perspectives: the Flash perspective, which contains an
arrangement of view panels for authoring your applications, and the Flash Debug perspective,
which contains an arrangement of view panels for debugging applications.

Flash Builder will ask you to switch to a different perspective if you are debugging an application.

CH002.indd 36CH002.indd 36 09/09/11 9:26 AM09/09/11 9:26 AM

Using Flash Builder 4.5.1 ❘ 37

Using the Flash Perspective

The following lists some of the view panels available in the Flash Perspective by default:

 ➤ Editor Area: This is where you can edit fi les that contain your source code, including .mxml,
.as, .xml, and .txt fi les. MXML source has two subpanels, which are available under the
tabs labeled Source and Design. The Source view panel is where the MXML source is written,
and the Design view panel is where the appearance of the application can be viewed or
edited. When you add visual elements like a button component to the layout in Design view,
the changes are automatically refl ected in the Source view. The same happens when you add
visual elements in the Source view; changes are refl ected in the Design view. Using the Design
view allows you to drag and drop components to the screen, instead of typing code, allowing
you also to visually customize the appearance of the application and individual elements.

 ➤ Package Explorer: This is where you can see each of the fi les within the projects of a
workspace. Here you not only see the contents of the project, but if you open an .as or
.mxml fi le you see a detailed list of all class functions, methods, and variables, whether they
are public, private, or protected.

 ➤ Outline: This is where you can see all the ingredients of an .mxml fi le or .as fi le. The outline
contains a list of all the import, variable, and method declarations in the fi le. After opening
or selecting an .as fi le, in the Editor Area you can see a list of imports, functions, methods,
and properties utilized by a class in the Outline panel. The Outline panel has controls that
enable you to hide non-public members, to hide static functions and variables, and to sort the
list alphabetically, making it easier to fi nd an item. Outlines are available only for an .as or
.mxml fi le.

 ➤ Problems: This is where you see any particular issues relating to open projects in the
workspace. Here you will be given warnings and compiler errors detailing the problem. This
details the type of problem along with a description, the resource, the package path, and the
line location on which the error has occurred.

 ➤ Data/Services: This is where you can create and integrate data services into your applications.
In the Data/Services view panel you can specify and connect to a number of different data
sources including BlazeDS, ColdFusion, HTTP, LiveCycle Data Services, PHP, WSDL Web
Services, and XML. This view panel enables you to connect to remote and local data services
while authoring your applications, giving you the option to specify input values for services
and returns types, and ultimately generating code snippets to create a service call within the
Flex-based project. The Data/Services panel also launches a Test Operation panel, which
enables you to select one of the services you’ve created for your application and specify
variables to run and test the service.

 ➤ Network Monitor: For Flex-based projects this is where you can monitor and record request
times and response times for the particular service request calls an application makes.

Figure 2-1 shows the Flash Perspective with the view panels displayed at the bottom of the IDE and
the button highlighted on the top right.

CH002.indd 37CH002.indd 37 09/09/11 9:26 AM09/09/11 9:26 AM

38 ❘ CHAPTER 2 GETTING STARTED

Using the Flash Debug Perspective

The Flash Debug perspective contains view panels that enable you to rigorously test your application
using a variety of features in a debugging session, including the ability to step through your code
while the application is running.

The aim of the perspective is to help you to examine the source code and values assigned to
variables, ultimately helping you to fi nd problems in your application. The Flash Debug perspective
launches when you select to run a debug session.

When you fi rst run Flash Builder the option to show the Flash Debug perspective is unavailable. You
need to have opened it at least once before within the workspace. Navigate to Window ➪ Perspective
➪ Flash Debug. You can also open the perspective by clicking the Open Perspective button and then
selecting Flash Debug.

The following lists some of the view panels that are displayed when the Flash Debug perspective is open:

 ➤ Breakpoints: This is where you can manage the breakpoints that have been added in your
application.

 ➤ Console: This is where you can see several outputs from your application while it is running,
including runtime errors and trace statements.

 ➤ Debug: This panel contains all the controls you need to step through your source code in the
debugging session while the application is running.

 ➤ Expressions: This is where you can manage expressions on the variables you have set to
watch in your application.

 ➤ Variables: This panel is where you can fi nd all of the variables in the current thread of the
application.

FIGURE 2-1: The Flash Perspective shown from the Hello World App project

CH002.indd 38CH002.indd 38 09/09/11 9:26 AM09/09/11 9:26 AM

Using Flash Builder 4.5.1 ❘ 39

Each of these panels can be seen in Figure 2-2.

FIGURE 2-2: The Flash Debug Perspective for the Hello World project

Using the Source and Design Views

The Source view is simply the code editor where for the majority of this book you will be spending
time following many of the example listings covered (Figure 2-3). Next take a look at the Design
view contained within the Editor Area view panel (Figure 2-4). The Design view gives you a preview
of your application.

FIGURE 2-3: The Source view of HelloWorldAppHome.mxml

CH002.indd 39CH002.indd 39 09/09/11 9:26 AM09/09/11 9:26 AM

40 ❘ CHAPTER 2 GETTING STARTED

In the Design view are several panels you can use to help facilitate the design of an application:

 ➤ Components: This is where you can see each of the Flex user interface components that are
available to drag onto the view of the application.

 ➤ States: This is where you can manage each of the states available in a view of an application.
States represent variations in the user interface, which are usually associated with a task a
user has performed, such as changing the orientation of a device.

 ➤ Properties: This is where you can set the default properties for each of the components
selected in the view.

 ➤ Appearance: This is where you can apply a project theme and edit the styles for the project.
For mobile applications using Flex, this includes defi ning the text properties, the color
properties, and the content background.

By default, the Components panel appears in the same pane as the Outline view panel on the left of
the screen, and the States and Properties view panels appear on the right. The Design view is fully
interactive, so you can drag and drop components directly onto the Stage area of the design.

Flash Builder also has controls to select the orientation of the mobile device, so you can choose to
preview content in landscape or portrait mode.

FIGURE 2-4: The corresponding Design view for the Source view of HelloWorldAppHome.mxml

NOTE You can only switch to the Design mode when the source is MXML and
error free. You cannot switch to Design mode when editing an .as fi le.

CH002.indd 40CH002.indd 40 09/09/11 9:26 AM09/09/11 9:26 AM

Creating a Mobile Project Using Flash Builder ❘ 41

The Properties view located to the bottom right of the Flash Builder has multiple sections for editing:

 ➤ Common: This is where you edit the component properties.

 ➤ Style: This is where you defi ne the style properties for a component. Depending on the
component these properties may include the chrome color, padding, text, and content
background.

 ➤ Size and Position: This is where you can provide the width and height of the component.

 ➤ Layout: This is where you can set the layout properties for a container component. You can
select from one of the default Spark layouts to base the component’s layout on, including the
HorizontalLayout and the VerticalLayout classes.

When you make updates to the style properties the changes are refl ected in the Design view, and
depending on which component you select in the Design view, the sublist of properties that appear
in the Properties view panel may change.

CREATING A MOBILE PROJECT USING FLASH BUILDER

A number of different features were covered in the previous section on Flash Builder. In this section,
you take a look at using the IDE for yourself.

Creating a Hello World App Example

Over the course of this chapter you’ll follow the creation of the Hello World App project. This mobile
application simply enables you to enter your name onscreen and present it back with the text “Hello
World, my name is . . .” — a simple example, but
enough to get you started using Flash Builder.

Defi ning the Flex Mobile Project Settings

The fi rst few steps take you through defi ning the
Flex Mobile Project settings, which are usually the
fi rst things you encounter when you start a new
project.

 1. In Flash Builder select File ➪ New ➪ Flex
Mobile Project to open the New Flex
Mobile Project panel.

 2. In the Project Location tab, set the Project
Name fi eld to HelloWorldApp. Use the
default location for the project fi les, and
then for the Flex SDK selection, use the
default version (Figure 2-5). The minimum
version used should be version 4.5. Once
the project location details have been set,
click Next.

FIGURE 2-5: Setting the Project Location

for the Hello World App in the New Flex Mobile

Project dialog

CH002.indd 41CH002.indd 41 09/09/11 9:26 AM09/09/11 9:26 AM

42 ❘ CHAPTER 2 GETTING STARTED

Targeting Mobile Devices on Diff erent Platforms

Within the Flex Mobile Project panel, you also target your development for the mobile platforms
supported by Flash Builder.

After defi ning the Project Settings, the next few steps take you through targeting the three mobile
platforms: Apple iOS, Google Android, and BlackBerry Tablet OS.

 1. For the Mobile Settings tab, ensure Apple iOS, Google Android, and BlackBerry Tablet OS
are selected in the Target Platforms section. In the Application Template section select
View-based Application, ensuring the Initial View Title is set to Hello World. Then at the
bottom of the panel, in the Application Settings section, leave the Automatically Reorient
checkbox selected (Figure 2-6).

 2. Return to the section under Target Platforms and select Permission. Select Apple iOS as
the platform from the drop-down, which should be the default selection. Notice in the
description that you do not need to set permissions for the Apple iOS platform (Figure 2-7).

FIGURE 2-6: Setting the Mobile

Settings for the Hello World App

in the New Flex Mobile Project

dialog

FIGURE 2-7: Setting the

permissions for Apple iOS

Platform for the Hello World

App in the New Flex Mobile

Project dialog

 3. Select BlackBerry Tablet OS as the platform selection from the drop-down. You will see a
number of permissions that can be set for your application should it require a particular
feature (Figure 2-8).

 4. Select Google Android as the platform selection from the drop-down. You will see a different
set of permissions that can be set, very similar to BlackBerry Tablet OS (Figure 2-9).

CH002.indd 42CH002.indd 42 09/09/11 9:26 AM09/09/11 9:26 AM

Creating a Mobile Project Using Flash Builder ❘ 43

 5. Take a look at the Platform Settings tab, with Apple
iOS selected as the platform. Here you can set the target
devices for the platform. Select from either iPad, both
the iPhone and iPod Touch, or all the devices. Leave the
default setting in place (Figure 2-10).

 6. In the Server Settings tab, under the Server Technology
section, leave the default setting for application server
type selected as None/Other, and in the Compiled Flex
Application Location section leave the default setting for
Output Folder set to bin-debug. Then click Next
(Figure 2-11).

 7. In the Build Paths tab, check that the Main Source
Folder is set to src, the Main Application File is set to
HelloWorldApp.mxml, and the Application ID is set to
com.wrox.ch2.HelloWorldApp, before clicking Finish
(Figure 2-12).

FIGURE 2-8: Setting the

permissions for BlackBerry

Tablet OS for the Hello World

App in the New Flex Mobile

Project dialog

FIGURE 2-9: Setting the

permissions for Google Android

for the Hello World App in the

New Flex Mobile Project dialog

FIGURE 2-10: Confi guring the

target devices for the Apple

iOS platform for the Hello World

App in the New Flex Mobile

Project dialog

CH002.indd 43CH002.indd 43 09/09/11 9:26 AM09/09/11 9:26 AM

44 ❘ CHAPTER 2 GETTING STARTED

In the Flash Builder Package Explorer panel, you should see that the Hello World project has now
been created, and several fi les have been automatically generated for the project.

In the src directory, you will see the default package folder, with the main application fi le
HelloWorldApp.mxml.

In the views package folder, you will see a fi le called HelloWorldAppHelloWorldView.mxml. The
name of the fi le is built from a combination of the project name and the initial view title defi ned.
The fi le represents the fi rst view class that the application will see when launched.

Rename the class via Flash Builder to HelloWorldAppHome.mxml. Do this by highlighting the fi le
and selecting File ➪ Rename from the Flash Builder menu. In the Rename Class panel that opens,
ensure the Update references box is checked, enter HelloWorldAppHome as the name for the fi le,
and then click OK to confi rm.

The third fi le generated is HelloWorldApp-app.xml; this is the AIR application descriptor fi le
template. AIR application descriptor fi les are explored in more detail in Chapter 3.

Last, the fourth fi le generated is the blackberry-tablet.xml fi le, which is generated when you
target your projects to run on the BlackBerry Tablet OS. BlackBerry Tablet OS fi les are explored in
more detail in Chapter 3.

FIGURE 2-11: Confi guring the

Server Settings for the Hello World

App in the New Flex Mobile Project

dialog

FIGURE 2-12: Setting the Build

Paths for the Hello World App

in the New Flex Mobile Project

dialog

NOTE At this point you should familiarize yourself with the steps under “Defi ning
the Flex Mobile Project Settings” and “Targeting Mobile Devices on Diff erent
Platforms” because these will be mentioned only briefl y when you start other
example projects in later chapters.

CH002.indd 44CH002.indd 44 09/09/11 9:26 AM09/09/11 9:26 AM

Creating a Mobile Project Using Flash Builder ❘ 45

Building the Hello World Project

In Listing 2-1 you see the main application fi le HelloWorldApp.mxml, with the fx and s namespaces
defi ned. Notice here that the firstView property on the application has been set to views
.HelloWorldAppHome to refl ect the updated fi lename.

LISTING 2-1: The HelloWorldApp.mxml application fi le for the Hello World project

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 firstView=”views.HelloWorldAppHome”>

</s:ViewNavigatorApplication>

In Listing 2-2 you see the <s:View> container defi ned in the HelloWorldAppHome.mxml fi le. This has
been modifi ed slightly from the generated fi le, with the title property set to display Hello World.

LISTING 2-2: The HelloWorldAppHome.mxml view for the Hello World project

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Hello World”>

</s:View>

Ensure these two fi les have been modifi ed as shown in the fi rst two listings, and then follow these
steps to build on the example:

 1. In HelloWorldAppHome.mxml add two <s:Label> components. For the fi rst label set the
value of the y position to 56 and the value of the text property to My name is:. Then for
the second label set the value of the y position to 182 and the value of the text property to
I live in:. Then on both components set the value of the x position to 63, the value of the
width property to 289, and the value for the fontSize property to 26 (Listing 2-3).

LISTING 2-3: Adding two <s:Label> components to the view in HelloWorldAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Hello World”>

 <s:Label x=”63”
 y=”56”
 width=”289”
 fontSize=”26”

continues

CH002.indd 45CH002.indd 45 09/09/11 9:26 AM09/09/11 9:26 AM

46 ❘ CHAPTER 2 GETTING STARTED

LISTING 2-3 (continued)

 text=”My name is:”/>

 <s:Label x=”63”
 y=”182”
 width=”289”
 fontSize=”26”
 text=”I live in:”/>

</s:View>

 2. Add two <s:TextInput> components to the view. On the fi rst, set the value of the prompt
property to Enter a name here..., the value of the id property to nameTxt, and the
value of the y position to 98. On the second component, set the prompt to Enter location
here..., the value of the id property to locationTxt, and the y position to 230. Then, on
both components, set the value of the x position to 63 and the value of the width property
to 350 (Listing 2-4).

LISTING 2-4: Adding two <s:TextInput> components to the view in HelloWorldAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Hello World”>

 <s:Label x=”63”
 y=”56”
 width=”289”
 fontSize=”26”
 text=”My name is:”/>

 <s:Label x=”63”
 y=”182”
 width=”289”
 fontSize=”26”
 text=”I live in:”/>

 <s:TextInput id=”nameTxt”
 x=”63”
 y=”98”
 width=”350”
 prompt=”Enter a name here...”/>

 <s:TextInput id=”locationTxt”
 x=”63”
 y=”230”
 width=”350”
 prompt=”Enter location here...”/>

</s:View>

CH002.indd 46CH002.indd 46 09/09/11 9:26 AM09/09/11 9:26 AM

Creating a Mobile Project Using Flash Builder ❘ 47

 3. Add a <s:Button> control to the view. Set the value of the label property to Submit, and
the values of the x and y properties to 63 and 402, respectively (Listing 2-5).

LISTING 2-5: Adding a <s:Button> component to the view in HelloWorldAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Hello World”>

 <s:Label x=”63”
 y=”56”
 width=”289”
 fontSize=”26”
 text=”My name is:”/>

 <s:Label x=”63”
 y=”182”
 width=”289”
 fontSize=”26”
 text=”I live in:”/>

 <s:TextInput id=”nameTxt”
 x=”63”
 y=”98”
 width=”350”
 prompt=”Enter a name here...”/>

 <s:TextInput id=”locationTxt”
 x=”63”
 y=”230”
 width=”350”
 prompt=”Enter location here...”/>

 <s:Button x=”63”
 y=”402”
 label=”Submit”/>

</s:View>

 4. Save the project, and then open the Design
view, where you will see the components
you’ve just added.

 5. Next add another view to the application
to display the message when the user clicks
Submit. From the Flash Builder menu select
File ➪ New ➪ MXML Component. Then
in the window that opens enter the details
for the new view. Enter views in the Package
fi eld, and HelloWorldAppMessageView for
the Name. Leave the default values for the
Layout and Based On fi elds (Figure 2-13).

FIGURE 2-13: Creating a new view via

the New MXML Component panel for the Hello

World App

CH002.indd 47CH002.indd 47 09/09/11 9:26 AM09/09/11 9:26 AM

48 ❘ CHAPTER 2 GETTING STARTED

After clicking OK the fi le will be generated in the Project Explorer.

 6. Open the HelloWorldAppMessageView.mxml fi le, updating the value of the title property
to Your message.... Then add a single <s:Label> component to the view, setting the
value of the id property to messageTxt, the values of the width and height properties to
100%, the values for the paddingLeft, paddingRight, and paddingTop properties to 20, the
value of the color property to #868686, and the fontSize property to 32 (Listing 2-6).

LISTING 2-6: Adding a <s:Label> to the view in HelloWorldAppMessageView.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Your message...”>

 <s:Label id=”messageTxt”
 color=”#868686”
 paddingLeft=”20”
 paddingRight=”20”
 paddingTop=”20”
 width=”100%”
 height=”100%”
 fontSize=”32”/>

</s:View>

 7. Return to the HelloWorldAppHome.mxml view, and add a new <fx:Script> declaration
containing a protected function called onSubmit() (Listing 2-7).

LISTING 2-7: Adding a new function called onSubmit() to the <fx:Script> declaration in

HelloWorldAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Hello World”>

 <fx:Script>

 <![CDATA[

 protected function onSubmit():void {}

]]>

 </fx:Script>

 <s:Label x=”63”
 y=”56”

CH002.indd 48CH002.indd 48 09/09/11 9:26 AM09/09/11 9:26 AM

Creating a Mobile Project Using Flash Builder ❘ 49

 width=”289”
 fontSize=”26”
 text=”My name is:”/>

 <s:Label x=”63”
 y=”182”
 width=”289”
 fontSize=”26”
 text=”I live in:”/>

 <s:TextInput id=””
 x=”63”
 y=”98”
 width=”350”
 prompt=”Enter a name here...”/>

 <s:TextInput id=””
 x=”63”
 y=”230”
 width=”350”
 prompt=”Enter location here...”/>

 <s:Button x=”63”
 y=”402”
 label=”Submit”/>

</s:View>

 8. In onSubmit() create an object called dObj, which will hold two values, a property called
name set by the fi rst <s:TextInput> component nameTxt, and a property called location,
set by the second <s:TextInput> component locationTxt (Listing 2-8).

LISTING 2-8: Defi ning name and location properties on a data object dObj via onSubmit() in

HelloWorldAppHome.mxml

<fx:Script>

 <![CDATA[

 protected function onSubmit():void
 {
 var dObj:Object =
 {
 name:nameTxt.text,
 location:locationTxt.text
 }
 }

]]>

</fx:Script>

CH002.indd 49CH002.indd 49 09/09/11 9:26 AM09/09/11 9:26 AM

50 ❘ CHAPTER 2 GETTING STARTED

 9. Invoke the pushView() method on the navigator object for the view, supplying views
.HelloWorldAppMessageView and dObj as the arguments for onSubmit() (Listing 2-9).

LISTING 2-9: Calling the pushView() method via the onSubmit() method in

HelloWorldAppHome.mxml

protected function onSubmit():void
{
 var dObj:Object =
 {
 name:nameTxt.text,
 location:locationTxt.text
 }

 navigator.pushView(views.HelloWorldAppMessageView, dObj);
}

 10. Assign the onSubmit() method to the click property on the <s:Button> component
(Listing 2-10).

LISTING 2-10: Assigning the onSubmit() method to the click property on the <s:Button>

component in HelloWorldAppHome.mxml

<s:Button x=”63”
 y=”402”
 label=”Submit”
 click=”onSubmit()”/>

In onSubmit(), you’ve created a function that will use the data set via the text input fi elds,
pushing the data object dObj and the name and location properties set on that object
through to the HelloWorldAppMessageView. To utilize the data object, you will need to
update the HelloWorldAppMessageView.

You can use one of the following event properties to handle what happens when the
<s:View> component renders to the screen:

 ➤ creationComplete: When a component has completed its construction, property
processing, measuring, layout, and drawing

 ➤ viewActivate: When the current view has been activated

Similar to the click event property used for the <s:Button> component, you assign a
method to handle the creationComplete and viewActivate properties.

 11. Return to the HelloWorldAppMessageView.mxml view, and add a new <fx:Script>
declaration containing a protected function called onCreationComplete(). Assign the
method to the creationComplete event property on the view (Listing 2-11).

CH002.indd 50CH002.indd 50 09/09/11 9:26 AM09/09/11 9:26 AM

Defi ning Run Confi gurations ❘ 51

LISTING 2-11: Assigning the onCreationComplete() method to the creationComplete property

in HelloWorldAppMessageView.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Your message... “
 creationComplete=”onCreationComplete()”>

 <fx:Script>

 <![CDATA[

 protected function onCreationComplete():void {}

]]>

 </fx:Script>

</s:View>

 12. In onCreationComplete() update the value of the text property on the <s:Label> to
utilize the name and location properties defi ned on the view’s data object, and incorporate
the values into a message saying Hello World, My name is with and I live in phrases
(Listing 2-12).

LISTING 2-12: Assigning the name and location properties to the <s:Label> component in

HelloWorldAppMessageView.mxml

protected function onCreationComplete():void
{
 messageTxt.text = “Hello World, \n\n”
 + “My name is “ + data.name
 + “, and I live in “ + data.location + “...”;
}

Here you see that the data object for HelloWorldAppMessageView is utilized, and the name and
location properties that were set in HelloWorldAppHome are referenced and assigned to the text
property on messageTxt. Now, whenever the pushView() method is invoked via the onSubmit()
method in HelloWorldAppHome, the onCreationCompete() method will display the text entered by
the user.

The Hello World App is now ready for testing. Next you take a look at running your project by
setting up run confi gurations.

DEFINING RUN CONFIGURATIONS

Run confi gurations are a key feature of Flash Builder that enable you to create and manage how you
run and debug your mobile projects. You can elect to run your mobile application on the desktop, or
directly on a connected device.

CH002.indd 51CH002.indd 51 09/09/11 9:26 AM09/09/11 9:26 AM

52 ❘ CHAPTER 2 GETTING STARTED

When you run your project on the desktop you can select from a number of devices, enabling you to
run your applications using different screen sizes and pixel densities.

The next few sections take you through defi ning run confi gurations for desktop and devices.

Running Mobile Applications on the Desktop

First, to set up a project that runs on the desktop, follow these steps:

 1. In Flash Builder, select Run ➪ Run Confi gurations (Figure 2-14).

FIGURE 2-14: Navigating to the Run Confi gurations in Flash Builder

 2. In the Run Confi gurations window that opens, select Mobile Application ➪ New, to
create a mobile confi guration type. Then in the Name fi eld for the confi guration replace
HelloWorldApp with HelloWorldApp on Desktop. Leave the Application File set as src/
HelloWorldApp. Then for the Target Platform select Google Android. For the Launch
Method, fi rst select On Desktop. Then from the list of devices to run the application
on, choose the Google Nexus One. Finally, click Apply. This should update the Mobile
Application options in the left-hand panel (Figure 2-15).

CH002.indd 52CH002.indd 52 09/09/11 9:26 AM09/09/11 9:26 AM

Defi ning Run Confi gurations ❘ 53

At this stage you could also elect to choose BlackBerry Tablet OS or Apple iOS and select a device
that runs on those target platforms. For the majority of the book the example projects will be
emulated using the Google Android platform and the Google Nexus One device profi le.

FIGURE 2-15: Creating a run confi guration for the Hello World App running on

the desktop

WARNING Be aware that selections for the Target Platform in the Run
Confi guration window will appear only if you have enabled your application to
be targeted on that platform. So, if you have targeted your application to run
only on Google Android Platform, neither Apple iOS nor BlackBerry Tablet OS
devices will be selectable here.

CH002.indd 53CH002.indd 53 09/09/11 9:26 AM09/09/11 9:26 AM

54 ❘ CHAPTER 2 GETTING STARTED

Launching the Project

Once your project’s run confi guration has been defi ned you will be
able to launch your mobile application. To launch the application as
it is currently follow these steps:

 1. Within the Run Confi gurations window, select Mobile
Application ➪ Hello World on Desktop and click the Run
button.

 2. In the Adobe Debug Launcher (ADL) window that opens
you’ll see the project as it currently is, running on the
desktop (Figure 2-16).

 3. Enter some details into each of the input fi elds
(Figure 2-17).

 4. Click the Submit button, and you should see the
new view appear with the Hello World message
(Figure 2-18).

FIGURE 2-16: Hello World App

running on the desktop

FIGURE 2-17: Hello World App

with the name and location

fi elds completed

FIGURE 2-18: Hello World App

displaying the Hello World
message view

In the next section you take a look at the steps to create run confi gurations on Apple iOS,
BlackBerry Tablet iOS, and Google Android devices.

CH002.indd 54CH002.indd 54 09/09/11 9:26 AM09/09/11 9:26 AM

Defi ning Run Confi gurations ❘ 55

Running Mobile Applications on the Device

Once you’ve set up a run confi guration for the Hello World application on the desktop, return to the
Run Confi gurations window to set up run confi gurations for an actual mobile device on each of
the target mobile platforms supported, starting with Google Android.

Creating Run Confi gurations for Google Android

Follow the next steps to create a run confi guration for devices running the Google Android OS platform:

 1. Within the Run Confi gurations window, click the New Launch confi guration, and update
the name of the confi guration to HelloWorldApp on Google Android.

 2. Leave the Application File set to src/HelloWorldApp.mxml, and then for the Launch
Method select On Device.

 3. Click Apply; the device run confi guration will appear in the Mobile Application drop-down
(Figure 2-19).

FIGURE 2-19: Run confi guration for the Hello World App on Google Android now

ready to launch on a USB-connected device

These are the only steps you need to take to create a run confi guration for Google Android devices
in Flash Builder. You will also need to make sure your device is connected and has USB debugging
enabled.

CH002.indd 55CH002.indd 55 09/09/11 9:26 AM09/09/11 9:26 AM

56 ❘ CHAPTER 2 GETTING STARTED

Enabling USB debugging

For Google Android devices running Android version 2.3.4, you need to ensure USB debugging is
enabled.

 1. On the Google Nexus One running Android 2.3.4, navigate to the Development settings.
From the Applications menu, select Settings ➪ Applications ➪ Development.

 2. In the Development settings, ensure the USB debugging option is enabled, and when asked
whether to enable USB debugging, select OK. Also ensure the Stay Awake option is enabled,
to prevent your Android device screen from sleeping while you are testing the application
(Figure 2-20).

 3. Once you connect your device via USB you will be able to run mobile applications directly
from your Android run confi guration. This is indicated by the debugging and USB
connection, in the top left of the status bar (Figure 2-21).

FIGURE 2-20: Development

settings for the Google Nexus

One device running Android

version 2.3.4

FIGURE 2-21: USB Connected

status for the Google Nexus

One running Android

version 2.3.4

If you have a BlackBerry Tablet OS device like the BlackBerry PlayBook, the next section covers the
creating run confi gurations for BlackBerry Tablet OS.

Creating Run Confi gurations for BlackBerry Tablet OS

Next take a look at defi ning a run confi guration for devices running the BlackBerry Tablet OS.

CH002.indd 56CH002.indd 56 09/09/11 9:26 AM09/09/11 9:26 AM

Defi ning Run Confi gurations ❘ 57

 1. Within the Run Confi gurations window, click the New Launch confi guration, and update
the name of the confi guration to HelloWorldApp on BlackBerry Tablet OS.

 2. Leave the Application File set to src/HelloWorldApp.mxml, and then select On Device for
the Launch Method.

Unlike the Google Android platform, you will need to confi gure a BlackBerry Tablet OS
device in order for the run confi guration to be completed (Figure 2-22).

FIGURE 2-22: Creating a run confi guration for the Hello World App on a BlackBerry

Tablet OS device

 3. Click the Confi gure button next to the On Device drop-down. This brings up a Preferences
window where you can add test devices to the BlackBerry Tablet OS (Figure 2-23).

The next few steps in Flash Builder require that you use some properties from your
BlackBerry Tablet OS device. Here you use the BlackBerry PlayBook, where you will need to
obtain an IP address and a password to run you applications on the device.

CH002.indd 57CH002.indd 57 09/09/11 9:26 AM09/09/11 9:26 AM

58 ❘ CHAPTER 2 GETTING STARTED

 4. On your device you will need to enable the development mode. For this go to Settings ➪
Security ➪ Development Mode then switch Use Development Mode to On, where you
should be prompted to enter a password (Figure 2-24). Make a note of the password before
clicking OK.

FIGURE 2-23: Preferences window to create a test device for the

Hello World App on the BlackBerry Tablet OS platform

FIGURE 2-24: Enabling the use of the development mode for the Hello World App

on a BlackBerry PlayBook

CH002.indd 58CH002.indd 58 09/09/11 9:26 AM09/09/11 9:26 AM

Defi ning Run Confi gurations ❘ 59

 5. Next connect your device via USB to your PC or Mac. In the home screen on the device
make a note of the IP address from the Development settings on the main bar (Figure 2-25).

NOTE In Figure 2-25 you will actually see that the PlayBook is connected
via USB and Wi-Fi; thus, there are two IP addresses. The fi rst IP address
shown, 169.254.168.221, corresponds to the USB connection, whereas the
second IP address, 10.0.1.2, is the Wi-Fi network connection. Either can be used
for the Device IP, which is set in step 5. However, in this example, follow the
USB route. Also, note that the IP address will change whenever you connect
your device.

 6. Returning to Flash Builder, within the Preferences window, click the Add button, and then
in the window that opens enter the details of the BlackBerry Tablet OS device. First set the
Device Name to PlayBook. Then for the Device IP and Password fi elds, use the values you
used in steps 4 and 5. Also ensure that the Debug Host IP and Debug Token checkboxes are
selected before clicking OK (Figure 2-26).

FIGURE 2-25: IP Address displayed when the Development mode is enabled and BlackBerry

PlayBook is connected

CH002.indd 59CH002.indd 59 09/09/11 9:26 AM09/09/11 9:26 AM

60 ❘ CHAPTER 2 GETTING STARTED

FIGURE 2-26: Details window when adding a test device for the

BlackBerry Tablet OS platform

Before you complete your test device you will need to ensure the device has a
debug token installed. This will enable you to run applications on your device that are
not digitally signed. For this you will need
to register with RIM, who will be able
to send you RDK and PBDT versions of
a CSJ fi le, both required to create your
debug tokens.

The window in Figure 2-27 shows an
example of the completed details you will
need to provide when creating a debug
token and uploading it straight to the
device. FIGURE 2-27: Details window when creating a

debug token for the BlackBerry Tablet OS platform

NOTE For more information on debug tokens, I recommend reading the
Running unsigned applications using a debug token article on the BlackBerry
Developers website (http://docs.blackberry.com/en/developers).

 7. Once you have completed your test device, the device name and device IP address appear in
the Preferences window (Figure 2-28).

CH002.indd 60CH002.indd 60 09/09/11 9:26 AM09/09/11 9:26 AM

Defi ning Run Confi gurations ❘ 61

 8. Click OK and return to the Run Confi gurations window where you will see you are now
able use your BlackBerry Tablet OS confi guration. Click Apply to save the confi guration
(Figure 2-29).

FIGURE 2-28: Preferences window with PlayBook test device created for

the Hello World App on the BlackBerry Tablet OS platform

FIGURE 2-29: Run confi guration for the Hello World App on BlackBerry

Tablet iOS ready for launch to a USB connected device

CH002.indd 61CH002.indd 61 09/09/11 9:26 AM09/09/11 9:26 AM

62 ❘ CHAPTER 2 GETTING STARTED

Creating Run Confi gurations for Apple iOS

Next take a look at defi ning a run confi guration for devices running on the Apple iOS platform.

 1. Within the Run Confi gurations window, click the New Launch confi guration, and update
the name of the confi guration to HelloWorldApp on Apple iOS.

 2. Leave the Application File set to src/HelloWorldApp.mxml, and then for the
Launch Method select On Device. For the Packaging Method select the Fast Packaging
option.

Unlike the Google Android and the BlackBerry Tablet OS platforms, for Apple iOS you will
have to defi ne the package settings before the run confi guration is complete. Note the error
message in Figure 2-30.

FIGURE 2-30: Creating a run confi guration for the Hello World App on the Apple iOS platform

 3. Click the Confi gure link next to the error message. This will open the Packaging Properties
for the project, where you will need to defi ne the Digital Signature settings.

CH002.indd 62CH002.indd 62 09/09/11 9:26 AM09/09/11 9:26 AM

Defi ning Run Confi gurations ❘ 63

This requires you to obtain an Apple iOS Developer Certifi cate and Mobile Provisioning
profi le, which you will need to install on your device prior to deploying your mobile
application. Before you can do this, you need to become a member of the iOS Dev Center.

The window in Figure 2-31 shows an example of the completed Digital Signature details.

FIGURE 2-31: Properties window for the Hello World App on the Apple iOS platform,

displaying paths to a developer certifi cate and iOS provisioning fi le

NOTE For more information on generating certifi cates and installing mobile
provisioning profi les on your iOS device, visit the iOS Provisioning Portal
at the Apple iOS Developer website (http://developer.apple.com/
devcenter/ios).

 4. Once you have completed your Digital Signature settings, you will be able to apply the run
confi g settings for the Apple iOS device (Figure 2-32).

CH002.indd 63CH002.indd 63 09/09/11 9:26 AM09/09/11 9:26 AM

64 ❘ CHAPTER 2 GETTING STARTED

At this stage you have learned how to create confi gurations for running your mobile applications on
a connected device. The next chapter covers building and packaging for the three mobile platforms
in more detail.

SUMMARY

In this chapter you created a Flex-based mobile application using Flash Builder. Along the way you
also explored the Flash Builder IDE in depth, gaining an understanding of some of the key concepts.

Over the course of the book, the Flash Builder IDE will become more and more familiar as you
build on and create further examples.

You learned how to create run confi gurations that targeted each of the different mobile platforms
supported in Flash Builder, and may have noticed the differences in how running on a Google
Android is defi nitely the easier of the three platforms, closely followed by BlackBerry Tablet OS, and
then Apple iOS. The latter two both rely on you registering with the development communities of
Apple and BlackBerry, before you can get started.

In the next chapter you take a closer look at the AIR application descriptor fi le and building for each
of the mobile platforms in more detail.

FIGURE 2-32: Run confi guration for the Hello World App on Apple iOS ready for packaging

CH002.indd 64CH002.indd 64 09/09/11 9:26 AM09/09/11 9:26 AM

Summary ❘ 65

EXERCISES

 1. Create another desktop run confi guration for the Hello World App, this time for the BlackBerry

Tablet OS platform.

 2. Add a new <s:Button> component next to the existing Submit button that clears the text in the

two input fi elds when clicked.

 3. Defi ne a splash image for the application that displays for two seconds.

 4. Specify a navigational button in the Action Bar that returns the user back to the fi rst view when

clicked. Then randomize the color of the Hello World message set on the label each time the

message is generated.

CH002.indd 65CH002.indd 65 09/09/11 9:26 AM09/09/11 9:26 AM

66 ❘ CHAPTER 2 GETTING STARTED

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Run confi gurations for Apple iOS

devices

Obtain a developer certifi cate and provisioning profi le

from Apple.

Defi ne the package settings.

Run confi gurations for BlackBerry Tablet

OS devices

Register with RIM for debug token details.

Create a test device profi le.

Enable development mode on the device.

Set the IP address for the device.

Connect the device via USB.

Run confi gurations for Google Android

devices

Ensure USB debugging is enabled on the Google

Android device.

Connect the device via USB.

CH002.indd 66CH002.indd 66 09/09/11 9:26 AM09/09/11 9:26 AM

Building AIR Applications
for Android, BlackBerry,
and iOS Devices

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Setting the properties of an application descriptor fi le manually

 ➤ Specifying image icons for an application

 ➤ Setting permissions for Android and BlackBerry applications

 ➤ Packaging AIR applications for Android, BlackBerry, and iOS

 ➤ Updating AIR applications

In this chapter you’ll take a look at some of the elements involved in constructing AIR apps,
outside the task of actually coding an application.

First, you’ll explore the core components of the AIR application descriptor fi le, understanding
how to specify settings for it, covering image icon assignment, and setting Android
permissions and specifying iOS settings.

You’ll close the chapter by packaging a mobile application using Flash Builder, and then
look at how you can update AIR applications that aren’t uploaded to a target platform’s
marketplace.

AIR APPLICATION DESCRIPTOR FILES

An Adobe AIR application descriptor fi le contains parameters that are used to identify, install,
and launch an AIR application.

3

CH003.indd 67CH003.indd 67 09/09/11 3:11 PM09/09/11 3:11 PM

68 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

Each new project created in Flash Builder automatically generates an AIR application descriptor
fi le template. The AIR application descriptor fi le name is usually generated by the name of the
application set in the Flash Builder New Project wizard, as covered in Chapter 2, in which
HelloWorldApp generates HelloWorldApp-app.xml.

This section takes a look at editing an application descriptor fi le focusing on each of the core elements.

Setting Properties in the AIR Application Descriptor File

The AIR application descriptor fi le is essentially an XML fi le consisting of many elements that you
need to specify for your mobile applications to be built. When these are packaged and then deployed
to the mobile device, the installation of AIR on that device can interpret the package correctly
and ascertain where to install fi les, write directories, and set data. Some of the elements in the
application descriptor fi le are required, and some are optional.

In Table 3-1 you see each of the core elements used in the AIR application descriptor fi le for mobile
applications listed.

TABLE 3-1: AIR Application Descriptor File Elements

ELEMENT USAGE

<application> Sets the AIR namespace declaration. Required for building AIR apps.

<id> A unique identity for the application.

<filename> The name used for the Android Package fi le (APK, .apk fi le).

<name> Sets the application name displayed on the device.

<versionNumber> The version number of the application.

<versionLabel> Used to display a label to users in the application’s installation dialog.

<initialWindow> Contains properties for the initial appearance of the application.

<content> To set the path to the main content .swf fi le of the application.

<visible> To set the visibility of the content.

<fullScreen> Defi nes whether the application should use the entire screen of the

device.

<aspectRatio> To specify whether the application is in portrait or landscape mode.

<autoOrients> To set whether the orientation of content in the application

automatically reorients as the device changes orientation.

<supportedProfiles> Defi nes the supported profi le that best fi ts the type of AIR

application.

<icon> To specify the icon images used to launch the application.

CH003.indd 68CH003.indd 68 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 69

Manually Editing the Application Descriptor File

for the Hello World App

Next you edit the contents of HelloWorldApp-app.xml, the AIR application descriptor fi le that can
be found in the src folder of the Hello World App project from Chapter 2. Here are the steps:

 1. First, remove the automatically generated content in the HelloWorldApp-app.xml fi le, as
if you were creating the fi le from the beginning. Then begin with the <?xml> declaration,
setting the version attribute to 1.0, encoding to utf-8, and standalone property to no
(Listing 3-1).

LISTING 3-1: Setting the XML declaration in the Hello World App AIR application descriptor fi le

<?xml version=”1.0” encoding=”utf-8” standalone=”no”?>

NOTE When Flash Builder generates HelloWorldApp-app.xml, it will contain
numerous comments for properties used for AIR desktop applications that we’re
not going to cover here. Nevertheless, those comments would be self-explanatory
if you were to read them. Thus, clearing the contents of HelloWorldApp-app.xml
will make it easier to convey some of the settings and their corresponding values.

 2. Add the AIR 2.7 namespace declaration in the <application> element (Listing 3-2).

LISTING 3-2: Setting the AIR namespace declaration in the Hello World App AIR application

descriptor fi le

<?xml version=”1.0” encoding=”utf-8” standalone=”no”?>
<application xmlns=”http://ns.adobe.com/air/application/2.7”>

Setting an ID for the Application

The recommended form for the AIR application’s ID is a dot-delimited, reverse-DNS-style string, as
shown in the following snippet:

<id>com.wrox.ch3.AppName</id>

WARNING Each new application you install on a device should have a unique
ID associated with it. If it doesn’t, chances are it will override an existing
application with the same ID.

 3. In the HelloWorldApp-app.xml fi le, set the <id> property for the application to com.wrox
.ch3.HelloWorldApp (Listing 3-3).

CH003.indd 69CH003.indd 69 09/09/11 3:12 PM09/09/11 3:12 PM

70 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

LISTING 3-3: Setting the Application ID property in the Hello World App AIR application

descriptor fi le

<?xml version=”1.0” encoding=”utf-8” standalone=”no”?>
<application xmlns=”http://ns.adobe.com/air/application/2.7”>
 <id>com.wrox.ch3.HelloWorldApp</id>

Setting the Name and Filename Properties

The <name> property in the AIR application descriptor fi le is used for display purposes. It is the
label the end user will see once the application has been installed on the user’s mobile device. While
the <filename> property is used for the actual fi le name and fi le path on the device, it is usually
hidden from the end user’s view. The value for the fi lename should be a string with no spaces.

 4. In HelloWorldApp-app.xml set <filename> to HelloWorldApp and the <name> setting to
Hello World App (Listing 3-4).

LISTING 3-4: Setting the Name and Filename properties in the Hello World App AIR application

descriptor fi le

<?xml version=”1.0” encoding=”utf-8” standalone=”no”?>
<application xmlns=”http://ns.adobe.com/air/application/2.7”>
 <id>com.wrox.ch3.HelloWorldApp</id>
 <filename>HelloWorldApp</filename>
 <name>Hello World App</name>

Setting the Application Version

The <versionNumber> property is required to identify an instance of the application installed on
the device. The version number’s representation should be a numerical value that incrementally
changes each time an update or new release of the mobile application has been produced, since the
version number can be used to distinguish between applications that have the same <id> values in
their AIR application descriptor fi les.

Version numbers should contain three integers separated by periods, as shown in the following
snippet:

<versionNumber>7.3.6</versionNumber>

The three integers represent the major, minor, and revision numbers assigned for the application’s
release. These usually refer to an automated build of the application. Each value should be between
0 and 999.

 5. Returning to HelloWorldApp-app.xml, set the <versionNumber> to 0.9.0 (Listing 3-5).

CH003.indd 70CH003.indd 70 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 71

LISTING 3-5: Setting the Version Number property in the Hello World App AIR application

descriptor fi le

<?xml version=”1.0” encoding=”utf-8” standalone=”no”?>
<application xmlns=”http://ns.adobe.com/air/application/2.7”>
 <id>com.wrox.ch3.HelloWorld</id>
 <filename>HelloWorldApp</filename>
 <name>Hello World App</name>
 <versionNumber>0.9.0</versionNumber>

You can also supply the version as a label via the <versionLabel> element, as shown in the
following snippet:

<versionLabel>0.9.0 (BETA)</versionLabel>

The <versionNumber> is required and takes precedence over the <versionLabel>, and if
<versionLabel> is not used, then the value set in <versionNumber> is displayed to users.

Setting the Supported Profi le

Three values can be supplied to <supportedProfiles> for AIR applications:

 ➤ desktop: An AIR application for the desktop

 ➤ extendedDesktop: An AIR application with support for the native process API on the
desktop

 ➤ mobileDevice: An AIR application for mobile devices

For AIR mobile applications, you need to set <supportedPropfiles> to the mobileDevice profi le.

 6. In HelloWorldApp-app.xml, under the <versionNumber> declaration, set the
<supportedProfiles> property to mobileDevice (Listing 3-6).

LISTING 3-6: Setting the Supported Profi les property in the Hello World App AIR application

descriptor fi le

<?xml version=”1.0” encoding=”utf-8” standalone=”no”?>
<application xmlns=”http://ns.adobe.com/air/application/2.7”>
 <id>com.wrox.ch3.HelloWorldApp</id>
 <filename>HelloWorld</filename>
 <name>Hello World App</name>
 <versionNumber>0.9.0</versionNumber>
 <supportedProfiles>mobileDevice</supportedProfiles>

Setting the Initial Appearance

Several properties can defi ne the initial appearance of the application when it starts up: the
content path; whether the content is visible; whether it is showing full-screen; the initial screen
orientation; and whether the application changes to a landscape or portrait orientation when the
user rotates the device.

CH003.indd 71CH003.indd 71 09/09/11 3:12 PM09/09/11 3:12 PM

72 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

The <initialWindow> element of the AIR application descriptor fi le is what defi nes these
properties. Here you can specify the <content>, <visible>, <fullScreen>, <aspectRatio>, and
<autoOrients> elements to specify the properties for the initial appearance of the application.

In the following snippet, the HelloWorldApp.swf is specifi ed at the <content> property, the
<visible> property is set to true, <fullScreen> is set to true, <aspectRatio> is set to
landscape, and the <autoOrients> property is set to false:

<initialWindow>
 <content>HelloWorldApp.swf</content>
 <visible>true</visible>
 <fullScreen>true</fullScreen>
 <aspectRatio>landscape</aspectRatio>
 <autoOrients>false</autoOrients>
</initialWindow>

The last two properties set by <aspectRatio> and <autoOrients> indicate that the application
will always be in landscape mode, since the application is prevented from automatically changing its
orientation. Device orientation is covered in greater detail in Chapter 5.

 7. In HelloWorldApp-app.xml, under the <supportedProfiles> declaration, add the initial
window declaration setting the <content> to HelloWorldApp.swf, the <visible> property
to true, the <initialOrientation> property to portrait, and the <autoOrients>
property to true (Listing 3-7).

LISTING 3-7: Setting the Initial Window properties in the Hello World App AIR application

descriptor fi le

<?xml version=”1.0” encoding=”utf-8” standalone=”no”?>
<application xmlns=”http://ns.adobe.com/air/application/2.7”>
 <id>com.wrox.ch3.HelloWorldApp</id>
 <filename>HelloWorldApp</filename>
 <name>Hello World App</name>
 <versionNumber>0.9.0</versionNumber>
 <supportedProfiles>mobileDevice</supportedProfiles>
 <initialWindow>
 <content>HelloWorldApp.swf</content>
 <visible>true</visible>
 <fullScreen>false</fullScreen>
 <aspectRatio>portrait</aspectRatio>
 <autoOrients>false</autoOrients>
 </initialWindow>

Specifying Paths to Image Icons

The launch icon for an application needs to be specifi ed before packaging. Because devices across
platforms tend to have different screen resolutions, you need to be very specifi c about the images you
reference. Thus, icon or image size needs to be carefully considered. For the Google Android and
Apple iOS platforms, you set paths to the application icons in the AIR application descriptor fi le.

CH003.indd 72CH003.indd 72 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 73

For the BlackBerry Tablet OS platform, you specify the icon in the BlackBerry Tablet settings fi le,
which will be covered in more detail later.

For the BlackBerry PlayBook, the application icon should be supplied as a single 86×86 pixel .png
image fi le that is an image with an 86 pixel width and 86 pixel height.

On Android devices, the icon should be supplied as 36×36, 48×48, and 72×72 pixel .png fi le
images. These icon sizes are used for low-, medium-, and high-density screens, respectively.

On the iPad, iPhone, and iPod Touch iOS devices, there are a number of different screens on the
platform that require different sized icons to be packaged for an application. The following details
the sizes that can be supplied and where they are used:

 ➤ 29×29: Used for the Spotlight and Settings screens of iPhone and iPod Touch devices, and
also the settings screen on an iPad.

 ➤ 57×57: Used for the Home screens of iPhone and iPod Touch devices.

 ➤ 72×72: Used for the Home screen of an iPad.

 ➤ 114×114: Used for the Home screen of an iPhone with retina display (e.g., iPhone 4).

The following snippet shows the <icon> declaration in the AIR application descriptor fi le that specifi es
the path to each of the image fi les that can be used on Android and iOS devices:

<icon>
 <image29x29>assets/i29x29.png</image29x29>
 <image36x36>assets/i36x36.png</image36x36>
 <image48x48>assets/i48x48.png</image48x48>
 <image57x57>assets/i57x57.png</image57x57>
 <image72x72>assets/i72x72.png</image72x72>
 <image114x114>assets/i114x114.png</image114x114>
</icon>

The images are located in a folder called assets, in a folder relative to the content and main
.swf fi le. Notice that for each image you need to use a different element in the AIR application
descriptor fi le. For example, to specify a 72×72 pixel fi le image that can be used for the Home screen
of an iPad and a Google Nexus One, the path to the image is specifi ed in the <image72x72> tag.

If you do not supply an icon of a given size, the next largest size is used and scaled to fi t the
occupied space. For example, on a Google Android device, if the <image36x36> icon is not
specifi ed, the <image48x48> declaration is used, and if <image48x48> isn’t set, the application will
default to <image72x72>.

If you don’t specify any of the image icons permitted, or if you incorrectly specify the path to an
image, you will see a default application image icon for the application set by the OS.

NOTE For the remaining chapters, the defi ning of properties in the AIR
application descriptor fi le process is omitted, so you may notice when you install
the examples on Android devices that the default system icon is used.

CH003.indd 73CH003.indd 73 09/09/11 3:12 PM09/09/11 3:12 PM

74 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

Figure 3-1 shows the default Google Android application icon you will see on the device in the three sizes.

Figure 3-2 shows the six application icons that will be used in the Hello World App project.

FIGURE 3-1: The default

Android application icons,

shown in three diff erent sizes

FIGURE 3-2: The application icons used for the Hello World App

project, shown in six diff erent sizes

 8. Ensure the six fi les, air36x36.png, air48x48.png,
air58x58.png, air72x72.png, air86x86.png, and
air114x114.png, are present in the src/assets folder
of the project (Figure 3-3).

You should notice that once you’ve added the images and the
assets folder, the bin-debug folder gets automatically
replicated. Later you’ll see a bin-release folder created and
used for the fi nal export of the AIR application.

 9. Returning to the HelloWorldApp-app.xml fi le, under
the <initialWindow> declaration, add the <icon>
declaration, setting the paths to the fi ve images,
air36x36.png to <image36x36>, air48x48.png to
<image48x48>, air57x57.png to <image57x57>,
air72x72.png to <image72x72>, and air114x114.png
to <image114x114> (Listing 3-8).

LISTING 3-8: Setting the Icon properties in the Hello World App AIR application descriptor fi le

<initialWindow>
 <content>HelloWorldApp.swf</content>
 <visible>true</visible>
 <fullScreen>false</fullScreen>
 <initialOrientation>portrait</initialOrientation>
 <autoOrients>false</autoOrients>
</initialWindow>
<icon>
 <image36x36>assets/air36x36.png</image36x36>
 <image48x48>assets/air48x48.png</image48x48>
 <image57x57>assets/air57x57.png</image57x57>

FIGURE 3-3: Package Explorer for

the Hello World App project

CH003.indd 74CH003.indd 74 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 75

 <image72x72>assets/air72x72.png</image72x72>
 <image114x114>assets/air114x114.png</image114x114>
</icon>

Referencing the fi ve images, as shown here, will allow application icons to be shown for both
Google Android and Apple iOS.

Setting Android OS Permissions

For Android applications the security model for the OS requires that each application requests
a particular permission in order to use a feature that has security or privacy implications. These
permissions cannot be requested or changed at run time and so must be requested when the
application is packaged in the AIR application descriptor fi le.

When a user installs an Android application, the operating system informs the user which
permissions an application is requesting.

Android permissions are specifi ed inside the <android> element of the AIR application descriptor fi le.

In the following snippet, you’ll see that the android:name attribute inside the <uses-permissions>
element is specifi ed as the value android.permission.NAME, representing the full name of an
Android permission.

<android>
 <manifestAdditions>
 <manifest>
 <data>
 <![CDATA[
 <uses-permission android:name=”android.permission.NAME”/>
]]>
 </data>
 </manifest>
 </manifestAdditions>
</android>

Each of the uses-permission statements in the AIR application descriptor fi le is added directly
to an Android manifest document, when you target the Google Android platform in the New Flex
Mobile Project wizard, as covered in Chapter 2.

The following lists some of the permissions that are required by AIR Android apps, in order for an
application to use particular mobile device features:

 ➤ android.permission.ACCESS_FINE_LOCATION: Allows the application to access GPS data
through the Geolocation class

 ➤ android.permission.CAMERA: Allows the application to gain access to the device’s camera

 ➤ android.permission.INTERNET: Allows the application to make network requests

 ➤ android.permission.READ_PHONE_STATE: Allows the AIR run time to mute audio when an
incoming call occurs

 ➤ android.permission.RECORD_AUDIO: Allows the application to access the microphone

 ➤ android.permission.WAKE_LOCK: Prevents the device from going to sleep while an
application is running

CH003.indd 75CH003.indd 75 09/09/11 3:12 PM09/09/11 3:12 PM

76 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

 ➤ android.permission.DISABLE_KEYGUARD: Disables the key guard and stops the device
from locking while an application is running

 ➤ android.permission.WRITE_EXTERNAL_STORAGE: Allows the application to write to the
external memory card on the device

So, for example, to allow an application to use the camera you would use the android.permission
.CAMERA Android permission, as shown in the following snippet:

<android>
 <manifestAdditions>
 <manifest>
 <data>
 <![CDATA[
 <uses-permission android:name=”android.permission.CAMERA”/>
]]>
 </data>
 </manifest>
 </manifestAdditions>
</android>

NOTE Throughout this book diff erent AIR application descriptor fi les will be in
use, and depending on the application covered, the fi le will contain a diff erent
value for each of the settings. For instance, in Chapter 10 you need to use
the ACCESS_FINE_LOCATION, CAMERA, INTERNET, and RECORD_AUDIO Android
permissions.

 10. In HelloWorldApp-app.xml, under the <icon> image settings, add an empty <android>
declaration (Listing 3-9).

LISTING 3-9: Setting an empty Android permissions declaration in the HelloWorld AIR

application descriptor fi le

<initialWindow>
 <content>HelloWorldApp.swf</content>
 <visible>true</visible>
 <fullScreen>false</fullScreen>
 <initialOrientation>portrait</initialOrientation>
 <autoOrients>false</autoOrients>
</initialWindow>
<icon>
 <image36x36>assets/air36x36.png</image36x36>
 <image48x48>assets/air48x48.png</image48x48>
 <image57x57>assets/air57x57.png</image57x57>
 <image72x72>assets/air72x72.png</image72x72>
 <image114x114>assets/air114x114.png</image114x114>
</icon>
<android>
 <manifestAdditions>
 <![CDATA[
 <manifest/>

CH003.indd 76CH003.indd 76 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 77

]]>
 </manifestAdditions>
</android>

Defi ning iOS Capabilities

For iOS, you set application settings inside the <iPhone> element of the AIR application descriptor fi le.

Setting Info Additions

There are a numerous key-value pairs that defi ne particular settings for your application running on
iOS. These need to be set within the child element <InfoAdditions>. The following lists commonly
used keys and some of their associated values:

 ➤ UIApplicationExitOnSuspend: A string that when set to <true/> will exit the application
completely and not just suspend it.

 ➤ UIDeviceFamily: An array of strings defi ning the type of iOS device that the application
should run on. A value of 1 specifi es iPhone and iPod Touch devices, whereas a value of 2
specifi es iPad.

 ➤ UIPrerenderedIcon: A string that when set to YES will remove the default gloss applied to
the application’s launch icon on iOS devices.

 ➤ UIRequiredDeviceCapabilities: An array of strings listing the device capabilities that are
required in order for the application to be installed. Possible values include:

 ➤ accelerometer

 ➤ auto-focus-camera

 ➤ camera-flash

 ➤ gps

 ➤ location-services

 ➤ microphone

 ➤ sms

 ➤ still-camera

 ➤ telophony

 ➤ video-camera

 ➤ wifi

 ➤ UIRequiresPersistentWifi: A string that when set to YES requires the device to have a
Wifi connection open for the length of duration the application is running; otherwise, it will
close after 30 minutes.

 ➤ UIStatusBarStyle: A string determining how the status bar at the top of an iOS device will
appear. A value of UIStatusBarStyleBlackOpaque means the status bar will not be clear;
a value of UIStatusBarStyleDefault uses the iOS default grey status bar; and a value of
UIStatusBarStyleBlackTranslucent sets the status bar to black with an alpha of 0.5.

CH003.indd 77CH003.indd 77 09/09/11 3:12 PM09/09/11 3:12 PM

78 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

Setting iOS Screen Resolution

Setting the <requestedDisplayResolution> to high allows you to specify that the application should
utilize the full 940 x 640 retina display. This should be set when you want to target iPhone 4,
as shown in the following snippet:

<requestedDisplayResolution>high</requestedDisplayResolution>

By default, this property is set to standard, which means the device screen will appear to your
application as a standard resolution screen of 480 x 320. The application will try to adapt and
upscale a single pixel in standard mode to four equivalent pixels on the high-resolution screen,
giving a blurred appearance.

On non-high resolution iOS devices, if the <requestedDisplayResolution> property is set to
high, the value is ignored and the application defaults to the standard setting.

 11. Returning to the AIR application descriptor fi le, add the iOS capabilities for the application
running on an iPhone 4 under the <android> manifest declaration (Listing 3-10).

LISTING 3-10: Setting iOS capabilities for the Hello World App in the AIR application

descriptor fi le

<icon>
 <image36x36>assets/air36x36.png</image36x36>
 <image48x48>assets/air48x48.png</image48x48>
 <image57x57>assets/air57x57.png</image57x57>
 <image72x72>assets/air72x72.png</image72x72>
 <image114x114>assets/air114x114.png</image114x114>
</icon>
<android>
 <manifestAdditions>
 <![CDATA[
 <manifest/>
]]>
 </manifestAdditions>
</android>
<iPhone>
 <InfoAdditions>
 <![CDATA[
 <key>UIDeviceFamily</key>
 <array>
 <string>1</string>
 </array>
 <key>UIStatusBarStyle</key>
 <string>UIStatusBarStyleBlackTranslucent</string>
 <key>UIPrerenderedIcon</key>
 <string>YES</string>
]]>
 </InfoAdditions>
 <requestedDisplayResolution>high</requestedDisplayResolution>
</iPhone>

CH003.indd 78CH003.indd 78 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 79

 12. Lastly, save the fi le as HelloWorldApp-app.xml.

You’ve now covered each of the settings required for a valid AIR application descriptor fi le to run on
Google Android and Apple iOS devices. Later you’ll you’ll take a look at exporting a release package
for the application, using this descriptor fi le via Flash Builder. In the fi nal section on updating AIR
applications you also reference several values saved to the fi le, in particular the <versionNumber>
property. Next take a look at the confi guration settings required for BlackBerry Tablet OS.

BlackBerry Tablet OS Confi guration

The confi guration settings for BlackBerry Tablet OS are found in the blackberry-tablet.xml fi le,
which is generated when you choose to include the BlackBerry Tablet OS as a target platform during
project setup. In this fi le you can specify a number of settings and permissions, which are used in
addition to the AIR application descriptor fi le settings and permissions.

QNX is the platform on which the BlackBerry Tablet OS is based. By default, the XML fi le simply
has an <?xml> declaration and an empty <qnx/> node:

<?xml version=”1.0” encoding=”UTF-8”?>
<qnx/>

The <qnx> element must have nested elements defi ned to set the appearance and behavior of the
application on the device. The following code snippet shows an example of a confi guration fi le:

<?xml version=”1.0” encoding=”UTF-8”?>
<qnx>
 <author>jganderson</author>
 <authorId>gYAAgFbt6rihu</authorId>
 <category>core.media</category>
 <buildId>1</buildId>
 <platformVersion>1.0.0.0</platformVersion>
 <icon>
 
 </icon>
 <splashscreen>s600x1024.jpg:s1024x600.jpg</splashscreen>
 <permission>access_internet</permission>
</qnx>

The following sections cover each of the core elements.

Setting the Author and Author Id

The <author> and <authorId> values need to match the values specifi ed in the debug token
generated for the device.

Setting the Build Id and Platform Version

The <buildId> is a value that represents an incremental build number for your application,
which needs to be a whole number. It is combined with the <versionNumber> element of the AIR
application descriptor fi le, which holds the (Major).(Minor).(Revision) values, and represents the
build portion of a full version number reference in (Major).(Minor).(Revision).(Build).

CH003.indd 79CH003.indd 79 09/09/11 3:12 PM09/09/11 3:12 PM

80 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

The <platformVersion> is the minimum version of the BlackBerry Tablet OS required to run the
application. If this number exceeds the number on the device, it won’t install.

The following snippet gives an example of how both these elements should be set:

<buildId>1</buildId>
<platformVersion>1.0.6.2390</platformVersion>

Note that the 1.0.6.2390 value specifi ed for the <platformVersion> here is the version of the
BlackBerry Tablet OS that had AIR version 2.7.0195 installed.

Setting the Category

On a BlackBerry PlayBook device, there are four categories in which you’ll fi nd applications: All,
Favorites, Media, and Games.

Every applications installed on the PlayBook appears under the All category. Setting the <category>
fi eld in the settings fi le also allows you to add the application’s launch icon to either the Media or
Games categories. Specifying core.games adds the application to Games, while setting to
core.media adds the application to the Media section, as shown in the following snippet:

<category>core.media</category>

This confi guration setting is optional.

Setting the Application Icon

As previously mentioned, you need to defi ne only one application icon in the confi guration fi le for
the BlackBerry PlayBook, which needs to be 86px width by 86px height. This is specifi ed as shown
in the following snippet:

<icon>
 
</icon>

This confi guration setting is also optional.

WARNING The list of icons specifi ed in the AIR application descriptor fi le
override the icon set in the BlackBerry Tablet Settings fi le. To use your 86×86
icon set in the BlackBerry Tablet settings fi le, you need to remove those
specifi ed in the AIR application descriptor.

Setting the Permissions

The following lists some of the permissions that need to be added in the confi guration settings, in
order for an application to use particular device features on BlackBerry Tablet OS:

CH003.indd 80CH003.indd 80 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 81

 ➤ access_internet: Allows the application to make network requests

 ➤ access_shared: Allows the application to access fi les and grants access to the fi le system on
the device

 ➤ play_audio: Allows the application to access the device PIN and serial number

 ➤ read_geolocation: Allows the application to access GPS data through the Geolocation
class

 ➤ record_audio: Allows the application to access the microphone

 ➤ set_audio_volume: Allows the application to control the device’s native volume controls

 ➤ use_camera: Allows the application to gain access to the device’s camera

Permissions are set through the either the <permission> or <action> element of the BlackBerry
Tablet OS confi guration fi le.

The following snippet shows how to allow an application to use network services and access
GPS data:

<permission>access_internet</permission>
<permission>read_geolocation</permission>

Like with the Google Android platform, permissions can be automatically added to the confi guration
fi le when you target the BlackBerry Tablet OS in the New Flex Mobile Application wizard, as covered
in Chapter 2.

These confi guration settings are optional, but bear in mind if they are not set, you may run into
issues not being able to use particular features in your applications.

Setting the Splash Image

While the application is loading you can display an image, known as the splash screen image.

The application can potentially run in both landscape and portrait orientation, so you are able to
specify a value representing two images in the <splashscreen> element.

The screen size of the BlackBerry PlayBook is 1024 x 600. In the following snippet, you see the
value for <splashscreen> is separated by a colon (:). The fi rst image path, s1024x600.jpg,
before the colon, represents the splash image to be shown when the application is in a landscape
orientation. The second image path following the colon, s600x1024.jpg, represents the splash
image to be shown when the image is in a portrait orientation.

<splashscreen>s1024x600.jpg:s600x1024.jpg</splashscreen>

If only a single image is specifi ed, the device will default to that image, regardless of the size.
Remember, though, setting the <autoOrients> and <initialOrientation> properties in the AIR
application descriptor fi le will allow you to control the orientation of the application on launch; so,

CH003.indd 81CH003.indd 81 09/09/11 3:12 PM09/09/11 3:12 PM

82 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

you could potentially get away with setting one splash image in a situation where your application
will only use one orientation.

Also be aware that a splash screen image can also be specifi ed for Flex mobile applications in the
main application fi le. In the following code snippet you see a splash .png image is set to display for
5 seconds before the application launches:

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 firstView=”views.HelloWorldAppHome”
 splashScreenImage=”@Embed(‘assets/splash.png’)”
 splashScreenMinimumDisplayTime=”5000”
 splashScreenScaleMode=”none”>

</s:ViewNavigatorApplication>

If this were to be set in addition to the <splashscreen> setting, you would have two splash images
displayed, with the BlackBerry Tablet OS splash image showing fi rst.

Before moving onto the next section, ensure the blackberry-tablet.xml fi le for the Hello World
App project is updated with the confi guration settings specifi ed in Listing 3-11.

LISTING 3-11: Confi guration settings for the Hello World BlackBerry Tablet OS

Confi guration File

<?xml version=”1.0” encoding=”UTF-8”?>
<qnx>
 <author>authorName</author>
 <authorId>authorId</authorId>
 <category>core.media</category>
 <buildId>1</buildId>
 <platformVersion>1.0.0.0</platformVersion>
 <icon>
 
 </icon>
</qnx>

Note that in Listing 3-11 you will need to replace authorName and authorId with your own values
for deploying to a device that has a debug token installed.

Packaging for Google Android

Using Flash Builder, you can package native AIR Android applications via the Export Release
Build panel.

Packaging applications requires you to use self-signed digital certifi cates, which associate the
application with an identity, with the aim of forging a trust between the application’s creator and an

CH003.indd 82CH003.indd 82 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 83

end user. A few of the following steps will reference the creation of a self-signed digital certifi cate
for use with packaging an AIR Android application.

The native application fi le package for Android is a .apk fi le. At the end of this section, you should
be able to install the Hello World App onto an Android device.

 1. In Flash Builder, returning to the HelloWorldApp-app.xml fi le, ensure that only the image
paths required for displaying application icons on devices running the Google Android
platform are set (Listing 3-12).

LISTING 3-12: Setting the Icon properties in the Hello World App AIR application descriptor fi le

targeting the Google Android platform

<icon>
 <image36x36>assets/air36x36.png</image36x36>
 <image48x48>assets/air48x48.png</image48x48>
 <image72x72>assets/air72x72.png</image72x72>
</icon>

 2. Ensure the Hello World App project is highlighted, and then select File ➪ Export to open
the Export panel (Figure 3-4).

FIGURE 3-4: Selecting the Export option from the File menu in Flash Builder

CH003.indd 83CH003.indd 83 09/09/11 3:12 PM09/09/11 3:12 PM

84 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

 3. In the Export panel that opens,
select Flash Builder ➪ Release Build
(Figure 3-5).

 4. Click Next. In the Export Build Release
panel that opens, you should see that the
Project, Application, and Base fi lename
settings have been pre-populated with the
HelloWorldApp, with the Application
fi eld automatically set to HelloWorldApp
.mxml. For the Target platforms section,
ensure that Google Android is selected
and uncheck both Apple iOS and
BlackBerry Tablet OS options. For the
Export section, leave the Export to folder
fi eld blank, as the .apk fi le package will
be created in the project folder. Leave the
Base fi lename fi eld as HelloWorldApp
(Figure 3-6).

FIGURE 3-5: Selecting the Release Build option

from the Export panel in the Hello World App project

FIGURE 3-6: Setting the details of the Export Release Build for the Hello World App

project targeting Google Android

 5. Still within the Export Release Build panel, click Next. You should see the Exporting release
progress status to the bottom of the panel, before being presented with the Packaging

CH003.indd 84CH003.indd 84 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 85

Settings. Here you will see Google Android listed as one of the device platforms to the left
in the Target platforms area. This panel also contains three tabs. The fi rst is the Digital
Signature tab where you can see the Target platforms and specify a Certifi cate and Password
for the packaging. The second is the Package Contents tab, which allows you to see each
of the fi les that will be packaged in the AIR application. The third is the Deployment tab,
which allows you to specify whether the application should be installed on the device. Note
that there is a No certifi cate selected error highlighted in the panel at this stage (Figure 3-7).

FIGURE 3-7: Displaying the Digital Signature tab for the Hello World App project

targeting Google Android

 6. In the Digital Signature section, create a
certifi cate by clicking the Create button. Then
in the Create Self-Signed Digital Certifi cate
panel that opens, enter some details for the
Publisher Name, Organizational Unit, and
Organization Name. Select the Country, and
then enter and confi rm a password. Leave the
Type selection as 1024-RSA. Save the fi le as
helloWorldCert (Figure 3-8).

 7. Click the OK button. This will create the
helloWorldCert.p12 fi le. By default, the
certifi cate will be located in the default
project workspace for Adobe Flash Builder
4.5, although you can specify an alternative
location. After the fi le is generated, you will
be returned to the Digital Signature panel.
Complete the section by entering the password
that you set for the certifi cate (Figure 3-9).

FIGURE 3-8: Creating a Self-Signed digital

certifi cate for the Hello World App project

targeting Google Android

CH003.indd 85CH003.indd 85 09/09/11 3:12 PM09/09/11 3:12 PM

86 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

FIGURE 3-9: Displaying the completed Digital Signature tab in the Export Release

Build panel for the Hello World App project targeting Google Android

FIGURE 3-10: Displaying the package contents in the Export Release Build panel for

the Hello World App project targeting Google Android

 8. Select the Package Contents tab. Here you should see each of the fi les that will be packaged
in the AIR application installer. Ensure all the items are selected. This should include the
application descriptor HelloWorldApp-app.xml, and HelloWorldApp.swf, and the assets
folder containing the application icons. These are essentially all the fi les that are needed by
the application (Figure 3-10).

CH003.indd 86CH003.indd 86 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 87

 9. Select the Deployment package and ensure that the option for Install and launch application
on any connected device is selected. Here you can also defi ne the Application Store settings.
So, if you plan on deploying an application to the Android Market or the Amazon Appstore,
you can provide those users who download your application, who don’t have the correct
version of AIR installed, a URL to obtain the version from the relevant Application Store
(Figure 3-11).

FIGURE 3-11: Displaying the Deployment settings in the Export Release Build panel

for the Hello World App project targeting Google Android

 10. Click the Finish button to fi nally create the .apk fi le. At this point, if you had selected the
checkbox for automatic deployment, Flash Builder will attempt to automatically install
the application onto the device, but only if it is connected via USB. When the publishing is
complete, you’ll get a message indicating that the application was successfully packaged, but
no connected devices were found (Figure 3-12).

FIGURE 3-12: Confi rmation of a successful export release build

for the Hello World App targeting Google Android

CH003.indd 87CH003.indd 87 09/09/11 3:12 PM09/09/11 3:12 PM

88 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

As you will see in Figure 3-13, the newly generated HelloWorldApp.apk fi le will be located alongside
the project’s src folder. You may also see a new folder called bin-release, which contains all the
fi les for the package.

If you have an Android device, try connecting it to Flash Builder via USB and then use the export
release function to install the application onto the device. Figure 3-14 shows the app installed on the
home screen.

FIGURE 3-13: Package Explorer

highlighting the HelloWorldApp

.apk fi le generated for the Hello

World App project targeting

Google Android

FIGURE 3-14: Hello World App

on the home screen of a Google

Nexus One running Android 2.3.4

Packaging for Apple iOS

The native application fi le package for the Apple iOS platform is an .ipa fi le. At the end of this
section, you should be able to install the Hello World App onto an iPhone 4.

Follow the next steps to create a release version of Hello World App using Flash Builder:

 1. Returning to the HelloWorldApp-app.xml fi le, ensure that only the image paths required for
displaying application icons on devices running the Apple iOS platform are set (Listing 3-13).

CH003.indd 88CH003.indd 88 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 89

LISTING 3-13: Setting the Icon properties in the Hello World App AIR application descriptor fi le

targeting the Apple iOS platform

<icon>
 <image57x57>assets/air57x57.png</image57x57>
 <image72x72>assets/air72x72.png</image72x72>
 <image114x114>assets/air114x114.png</image114x114>
</icon>

 2. Ensure the Hello World App project is highlighted. Select Project ➪ Export Release Build…,
to open the Export Release Build panel. Then select Apple iOS as the Target Platform, and
ensure the Signed packages for each target platform option is selected in the Export as
list (Figure 3-15). Click Next.

FIGURE 3-15: Setting the details of the Export Release Build for the Hello World App project

targeting Apple iOS

 3. In the Digital Signature tab, ensure the Certifi cate, accompanying Password and
Provisioning fi le have been specifi ed correctly. Then in the Package type fi eld you have the
option of Ad hoc package for limited distribution, or Final Release Package for Apple App
store. Select Ad hoc (Figure 3-16).

CH003.indd 89CH003.indd 89 09/09/11 3:12 PM09/09/11 3:12 PM

90 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

 4. Select the Package Contents tab and ensure each of the required project fi les are selected,
including each of the application icons specifi ed for iOS, and then click Finish to create the
.ipa fi le (Figure 3-17).

FIGURE 3-16: Displaying the completed Digital Signature tab in the Export Release

Build panel for the Hello World App project targeting Apple iOS

FIGURE 3-17: Displaying the package contents in the Export Release Build panel for

the Hello World App project targeting Apple iOS

CH003.indd 90CH003.indd 90 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 91

 5. In the Package Explorer, you should see the
.ipa fi le located in the root project folder.
This should be named HelloWorldApp.ipa
(Figure 3-18).

 6. Double-click the newly created .ipa fi le. This should
open iTunes and install the application into the local
library (Figure 3-19).

WARNING The process of exporting a release build when targeting the Apple
iOS platform may take several minutes.

FIGURE 3-18: Package Explorer

highlighting the HelloWorldApp.ipa

fi le generated for the Hello World

App project targeting Apple iOS

FIGURE 3-19: iTunes displaying the Hello World App installed in the Library

NOTE At this stage, you will probably notice that the application icon for ITunes
doesn’t have an icon. In the AIR application descriptor fi le, you will need to
specify an image that is 512x512 for the <image512x512> property.

 7. Before transferring the application to an iPhone 4, you will need to connect the device
to the computer via USB. Then simply drag and drop the application from the Library to
your iPhone (Figure 3-20). The iPhone will display a “sync in progress” status while the
application is installing on the device, before revealing the Home screens.

CH003.indd 91CH003.indd 91 09/09/11 3:12 PM09/09/11 3:12 PM

92 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

FIGURE 3-20: Transferring the Hello World App to the iPhone

FIGURE 3-21: Hello World App

on the home screen of an

iPhone 4 running iOS 4.3.3

FIGURE 3-22: Spotlight search

screen listing the Hello World App

on an iPhone 4 running iOS 4.3.3

 8. Navigate through your Home screen on the device to fi nd the Hello World App is installed,
with the correct application icon displayed, ready for launch (Figure 3-21).

You can also navigate to the Spotlight screen and search for the Hello World App and
fi nd the application there, too (Figure 3-22).

At this point, realize that the settings defi ned in the AIR application descriptor fi le for iOS, while
subtle, are signifi cant. If you remember setting the <UIPrerenderedIcon> to YES earlier, then take
notice of the gloss that was removed from the default setting, as shown in Figure 3-23.

CH003.indd 92CH003.indd 92 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 93

Also, if you have already run the application on the iPhone 4 without making the changes in this chapter,
you will see the difference from the previous chapter — that the <requiredDisplayResolution> setting
has made in fully utilizing the screen resolution. Figures 3-24 through 3-26 show the Hello World App
in action.

FIGURE 3-23: Default Hello World

App icon with no gloss removed

on an iPhone 4 running iOS 4.3.3

FIGURE 3-24: Hello World App

on an iPhone 4 with iOS 4.3.3

FIGURE 3-25: Entering information

using the native keyboard in the

Hello World App, running on an

iPhone 4 with iOS 4.3.3

FIGURE 3-26: Message screen

in the Hello World App running

on an iPhone 4 with iOS 4.3.3

CH003.indd 93CH003.indd 93 09/09/11 3:12 PM09/09/11 3:12 PM

94 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

For the remaining chapters, you will need to repeat the steps learned here to package applications
for iOS devices.

Packaging for BlackBerry Tablet OS

The native application fi le package for BlackBerry Tablet OS is a .bar fi le. At the end of this section,
you should be able to create a release package for the Hello World App onto a BlackBerry PlayBook.

Follow the next steps to create a release version of Hello World App for the BlackBerry PlayBook
using Flash Builder:

 1. In HelloWorldApp-app.xml, remove any image references for the application icon. This
should be set in the blackberry-tablet.xml fi le (Listing 3-14).

LISTING 3-14: The Icon property setting in the Hello World App AIR application descriptor fi le

targeting the BlackBerry Tablet OS platform

<icon/>

 2. Ensure the Hello World App project is highlighted, then select Project ➪ Export Release
Build…, to open the Export Release Build panel. Select BlackBerry Tablet OS as the Target
Platform, and ensure the Export as a signed packages for each target platform option is
selected. Click next (Figure 3-27).

FIGURE 3-27: Setting the details of the Export Release Build for the Hello World App

project targeting BlackBerry Tablet OS

CH003.indd 94CH003.indd 94 09/09/11 3:12 PM09/09/11 3:12 PM

AIR Application Descriptor Files ❘ 95

 3. In the Digital Signature tab, ensure the Enabling digital signing option has been selected.
You will need to have created a debug token and a BlackBerry Tablet OS certifi cate, as
highlighted in Chapter 2 (Figure 3-28).

FIGURE 3-28: Enabling the digital signing for the Hello World App project targeting

BlackBerry Tablet OS

 4. In the Package Contents tab, ensure each of the required project fi les are selected. These
should include the BlackBerry Tablet OS confi guration fi le and the 86 x 86 application icon.

 5. For the Permissions tab and the Advance tab, leave the
default settings untouched. Here you would need to
specify the permissions, as covered earlier. For the Hello
World App, there are no permissions that need to be
specifi ed, so leave all the options unselected.

 6. Click Finish to create the .bar fi le. In the Package
Explorer, you should see the .bar fi le located in the root
of the project folder, named HelloWorldApp
.bar (Figure 3-29).

Figure 3-30 shows the Hello World App installed on the
BlackBerry PlayBook under the Media category.

FIGURE 3-29: Package Explorer

highlighting the HelloWorldApp.bar

fi le generated for the Hello World

App project targeting BlackBerry

Tablet OS

CH003.indd 95CH003.indd 95 09/09/11 3:12 PM09/09/11 3:12 PM

96 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

FIGURE 3-30: Hello World App on the home screen of a BlackBerry PlayBook running

BlackBerry Tablet OS 1.0.6.2390

UPDATING AIR APPLICATIONS

In this chapter, you’ve explored targeting each of the platforms supporting AIR mobile applications.
For more information, I recommend visiting each platform’s Mobile and Devices Developer Center
page on Adobe’s website:

 ➤ Google Android: www.adobe.com/devnet/devices/android.html

 ➤ Apple iOS: www.adobe.com/devnet/devices/ios.html

 ➤ BlackBerry Tablet OS: www.adobe.com/devnet/devices/blackberry.html

Updating your application involves your amending the <versionNumber> value in the application
descriptor fi le, repackaging the application to the native platform, and uploading the new version
of the application to the target marketplace. For Android, this is the Android Market or Amazon
Appstore; for BlackBerry, it’s AppWorld; and for Apple, it’s App Store.

The process of updating an application installed on a device is simple enough for marketplaces
and usually the process is automatic. However, when you download a mobile application from the
Android marketplace, you can select whether or not to have automatic updates, where you will
be notifi ed when an updated version is available. The user could potentially decide to avoid using the
marketplace to grab the update, choosing to manually check for new versions. In this scenario, there
is a way you can notify users within an application that there is an upgrade available, when they
haven’t requested automatic updates.

CH003.indd 96CH003.indd 96 09/09/11 3:12 PM09/09/11 3:12 PM

Updating AIR applications ❘ 97

Retrieving Details from the Application Descriptor File

Presenting a user with an update notifi cation in the mobile app involves adding code to your
application that uses namespaces to retrieve the descriptor fi le details and then compares those
details with a reference to the new version.

The fi rst step is to programmatically retrieve the version number from the application descriptor fi le. The
following snippet shows how to use the NativeApplication class to retrieve an AIR application’s
descriptor fi le and assign the applicationDescriptor property to a variable called xmlObj of XML type:

var xmlObj:XML = NativeApplication.nativeApplication.applicationDescriptor;

Once the application descriptor’s XML has been assigned to the variable, the Namespace class can be used
to retrieve particular values in the XML fi le, as shown in the following snippet, where the application id
and version number are retrieved and assigned to variables id and currentVersion respectively:

var xmlObj:XML = NativeApplication.nativeApplication.applicationDescriptor;
var ns:Namespace = xmlObj.namespace();
var appId:String = xmlObj.ns::id;
var currentVersion:String = xmlObj.ns::versionNumber;

As previously mentioned, to create an updated release version of your mobile application you will
need to update the version number in the application descriptor fi le.

Using the Version Number

Using the preceding code snippet, the application can check the value of the version number and
present the user with a message to indicate there is an update available.

In the following snippet the variable newVersion is assigned the value 1.0.1, a number that
represents the new version number for an application. This should be different from the value
retrieved from the one present in the application descriptor; you’ll recall that earlier, the
<versionNumber> property was set to 0.9.0:

var xmlObj:XML = NativeApplication.nativeApplication.applicationDescriptor;
var ns:Namespace = xmlObj.namespace();
var appId:String = xmlObj.ns::id;
var currentVersion:String = xmlObj.ns::versionNumber;
var newVersion:String = “1.0.1”;

if(currentVersion != newVersion)
{
 // The version numbers are not the same...
 // Present the user with an update...

} else {

 // The version numbers are the same...
 // No need to present the user with an update...
}

CH003.indd 97CH003.indd 97 09/09/11 3:12 PM09/09/11 3:12 PM

98 ❘ CHAPTER 3 BUILDING AIR APPLICATIONS FOR ANDROID, BLACKBERRY, AND IOS DEVICES

Here the if statement uses the currentVersion value, retrieved from the descriptor fi le, and checks
that number against the value held by the newVersion variable.

The code within the if statement is simply a comment which indicates what can be done.

Essentially the newVersion number should be retrieved from a fi le residing on a server which can be
updated whenever a new release of the application is available.

For this you would have to use the URLLoader class to load in the data from a fi le on the server.
Working with data is covered in detail in Chapter 8.

SUMMARY

This chapter took a detailed look at building applications that target the Google Android,
BlackBerry Tablet OS, and Apple iOS platforms, noting the contents of the AIR application
descriptor fi le, specifying the image icons, setting Android and BlackBerry permissions, and
packaging applications.

In the next chapter, you will look at touch, multitouch, and gestures, some of the key features
introduced in Flash Player 10.1.

Once you have completed some of the following chapters, you may want to return here to package
some of the example applications using the steps listed in the walk-through.

EXERCISES

 1. Package another AIR Android application using the Flash Builder, this time changing some of the

initial viewing options. For example, instead of using portrait for the <aspectRatio> try using

landscape to see the eff ect.

 2. Create and package your own .png fi le icon for the Hello World App application.

 3. Try packaging each of the examples found in the later chapters.

CH003.indd 98CH003.indd 98 09/09/11 3:12 PM09/09/11 3:12 PM

Summary ❘ 99

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

AIR application

descriptor fi les

Be aware of each of the required elements in the AIR application

descriptor fi le.

Application IDs Use reverse-DNS style strings to uniquely identify your application via

the Application ID — for example, com.wrox.ch3.HelloWorldApp.

Application’s initial

appearance

To defi ne the initial appearance of the application when it launches,

defi ne the <initialWindow> element.

Use the <content>, <visible>, <fullScreen>, <aspectRatio>,

<initialOrientation>, and <autoOrients> elements to set the

initial appearance of the application.

Launch icons To set an application’s icons, defi ne the <icon> element.

Three image sizes are used on Android: 36x36, 48x48, and 72x72.

Five image sizes are used across Apple iOS devices: 29x29, 57x57,

72x72, and 114x114, and 512x512.

One image size is used on BlackBerry Tablet OS: 86x86.

Platform confi gurations For the Google Android platform, defi ne the confi guration settings

within the <android> element of the AIR application descriptor fi le.

For the Apple iOS platform, defi ne the confi guration settings within the

<iphone> element.

For the BlackBerry Tablet OS platform, defi ne the confi guration settings

within the <qnx> element of the blackberry-tablet.xml fi le.

Setting permissions For Google Android, defi ne the <uses-permission> element to

manually defi ne each permission that your application uses.

For BlackBerry Tablet OS, defi ne the <permissions> element in the

blackberry-tablet.xml fi le to manually defi ne each permission that

your application uses.

For Apple iOS, no permissions are defi ned.

Packaging applications In Flash Builder, use the Export Release Build Panel to generate release

packages.

The Google Android platform uses an .apk fi le package.

The Apple iOS platform uses an .ipa fi le package.

The BlackBerry Tablet OS uses a .bar fi le package.

Updating AIR mobile

applications

Use the NativeApplication class to retrieve details from the AIR

application descriptor fi le.

Use the <versionNumber> property as an indicator to decipher

whether the user needs to be informed of an upgrade.

CH003.indd 99CH003.indd 99 09/09/11 3:12 PM09/09/11 3:12 PM

CH003.indd 100CH003.indd 100 09/09/11 3:12 PM09/09/11 3:12 PM

Touch, Multitouch, and Gestures

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Determining mobile device support for touch points and

gesture input

 ➤ Setting the input mode in an application to detect touch points

or gestures

 ➤ Understanding touch and gesture event object types

 ➤ Handling touch and gesture events

 ➤ Utilizing touch input to draw shapes

 ➤ Implementing gestures to interact with shapes

 ➤ Using the Multitouch panel in Device Central

Many original equipment manufacturers (OEMs) now opt for user interfaces on their devices
that are designed specifi cally for touch screens, which gives end users a visual display of
information. In addition, these give users the whole area of the display to contact and navigate
around various screens within the OS and applications. Usually this is with a fi nger, or an
accompanying device accessory such as a stylus.

The alternative to the touch screen of course is the more traditional mobile device, which
provides the visual display but without touch support. These mobile devices tend to receive
end-user input through a combination of trackball, 4-way D-pad, soft keys, qwerty keyboard,
and alphanumeric keypads.

Mobile devices with touch screen interfaces have been at their height of popularity since the
introduction of the fi rst iPhone, which had a capacitive touch screen implementation, meaning
even the most sensitive of touches will be recognized by a user. The success of the iPhone, in part,
can be attributed to the integration of multitouch and gesture support, which when implemented
in the right way can provide a fun and satisfying end-user experience for mobile applications.

4

CH004.indd 101CH004.indd 101 09/09/11 10:01 AM09/09/11 10:01 AM

102 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

Flash Player 10.1 introduced native support for multitouch and gesture support, and in this chapter
you’ll take a look at these features and how you can implement them as part of your mobile applications.

Over the course of the chapter you’ll construct an example that highlights some of the multitouch
features, beginning with single touch point interactions.

MULTITOUCH INTERACTIONS

As the name indicates, in the context of mobile applications, multitouch is an interaction defi ning
when a user uses two or more fi ngers to make contact and interact with a touch-enabled mobile
device screen that is capable of receiving multiple points of input.

With the touch of a single fi nger being the absolute basic requirement for touch-enabled mobile
devices, multitouch-enabled screens can potentially offer a more natural way for a user to interact
with the device and its applications, by using two, three, four, or even more fi ngers simultaneously.
And they provide an alternative to menu- or key-driven interactions on a device.

In this section you’ll examine how you can apply multitouch within Flash mobile applications.

NOTE While the Flash Player from version 10.1 supports multitouch natively, not
all devices can receive multiple points of touch input. You should therefore take
into consideration non-multitouch user interactions.

Determining Touch Input Support

Not every mobile device on the market will support multiple touch interactions, so when you are
implementing multitouch features, or should you need to ensure that you are able to develop and
target applications for devices that do not support multitouch, it is best practice to determine
whether a device supports touch input in the fi rst instance.

Next take a look at how to determine support for touch input. You can detect touch support with
AS3 by retrieving the value returned by Multitouch.supportsTouchEvents.

In Listing 4-1 you will see the early stages of the MultitouchAndGestures.as fi le.
You’ll build on this example throughout the chapter. This class makes four initial imports:
flash.display.Sprite for drawing shapes; flash.text.TextField for rendering
text; flash.text.TextFieldAutoSize for setting the autoSize property on text fi elds;
and the flash.ui.Multitouch class.

Above the class declaration four properties are defi ned for the creation of the swf application: the
backgroundColor property, which is set to 0xFFFFFF (white); frameRate, which is set to 25
frames per second; width, which is set to 320; and height, which is set to 480.

In MultitouchAndGestures you see two Textfield objects declared. The fi rst is called
coordinates, which will be referenced later. The second is called multitouch, which is added to
the stage after it has been populated with the result of Multitouch.supportsTouchEvents via a
switch statement in the class constructor (Listing 4-1).

CH004.indd 102CH004.indd 102 09/09/11 10:01 AM09/09/11 10:01 AM

Multitouch Interactions ❘ 103

LISTING 4-1: Determining support for touch point events in MultitouchAndGestures.as

package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.ui.Multitouch;

 [SWF(backgroundColor=”0xFFFFFF”,
 frameRate=”25”,
 width=”320”,
 height=”480”)]

 public class MultitouchAndGestures extends Sprite
 {
 private var coordinates:TextField;
 private var multitouch:TextField;

 public function MultitouchAndGestures()
 {
 multitouch = new TextField();
 multitouch.autoSize = TextFieldAutoSize.LEFT;

 switch(Multitouch.supportsTouchEvents)
 {
 case true:
 {
 multitouch.text = “Touch Supported”;
 }
 break;
 case false:
 {
 multitouch.text = “Not Supported”;
 }
 break;
 }

 stage.addChild(multitouch);
 }
 }
}

The supportsTouchEvents property has a return type of Boolean, so will return true should the
device be capable of receiving touch screen input, and false if it isn’t.

Creating a Multitouch and Gestures App Example

You will need to set up a new ActionScript Project in Flash Builder, taking the following steps:

 1. From the main menu select File ➪ New ➪ ActionScript Project. Set the Project name
to MultitouchAndGestures, set the Project location to use the default location, set the
Application type to Web, and then use the default SDK version (Figure 4-1). Click Next
before moving to the next step.

CH004.indd 103CH004.indd 103 09/09/11 10:01 AM09/09/11 10:01 AM

104 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

 2. Next confi rm the build path for the project. Ensure the Main source folder is set to src, that
the Main application fi le is set to MultitouchAndGestures.as, and the output folder is set to
bin-debug (Figure 4-2).

FIGURE 4-1 The New ActionScript Project panel in Flash Builder

for the creation of the Multitouch and Gestures App project

NOTE Take note here that the example project is neither created from either
a Flex Mobile project or an ActionScript Mobile project, nor does it use the
desktop AIR application type. The approach used in this chapter is to create
a .swf fi le that can be used in Device Central to simulate multitouch and
gestures through the emulator. Unfortunately, there is no such emulator if you
run the application via Flash Builder alone. The only other option is to run
the example project fi rst hand on a device, which you can do on each of the
mobile platforms supporting AIR, including Apple iOS, Google Android, and
BlackBerry Tablet OS.

CH004.indd 104CH004.indd 104 09/09/11 10:01 AM09/09/11 10:01 AM

Multitouch Interactions ❘ 105

 3. Once you’ve clicked Finish, the project and its
associated fi les should be generated. Now open the
MultitouchAndGestures.as fi le from the src folder,
adding the code from Listing 4-1.

 4. Run the project using a Web application
run confi guration. Select Run ➪ Run as ➪
Web application. This should launch the application
in a browser window, generating the
.swf fi le for the project.

 5. In Device Central, add the
MultitouchAndGestures.swf fi le generated to the Files tab. At the bottom of the
tab select Add ➪ Add Files, then browse for the MultitouchAndGestures.swf fi le.
Once selected it should appear in the Files tab (Figure 4-3).

FIGURE 4-2 Defi ning the build path for the creation of the

Multitouch and Gestures App project

FIGURE 4-3 The Files tab in

Device Central displaying the

MultitouchAndGestures.swf fi le

CH004.indd 105CH004.indd 105 09/09/11 10:01 AM09/09/11 10:01 AM

106 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

 6. While still in Device Central, select the Generic Multitouch device from the Devices panel
and then run the fi rst example by double-clicking the MultitouchAndGestures.swf fi le.
Ensure that in the Info panel the Embedded in HTML option is selected.

In Device Central, attempting to interact with an application
that isn’t capable of dispatching touch events will result in the
output window’s displaying a warning message indicating no
touch support for the emulated device, as shown in Figure 4-4.

Try running the example in Listing 4-1 using other devices
that support Flash Player from version 10.1 to determine
whether multitouch input events can be handled.

Touch Event Handling

Once support for touch input has been established, you need to set the input mode for multitouch. Touch
point events are not exclusive multitouch interactions that the Flash player can detect; so you will need to
decide whether the events dispatched in your applications are touch events, gesture events, or neither.

Setting the Input Mode for Touch Events

To handle touch events, you need to set the Multitouch.inputMode property to TOUCH_POINT.
This is one of the three static values held by the flash.ui.MultitouchInputMode class.

Follow the next few steps to set the input mode:

 1. Add the MultitouchInputMode class to the list of import statements (Listing 4-2).

LISTING 4-2: Importing the MultitouchInputMode class in MultitouchAndGestures.as

package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;

 2. Within the true case of the switch statement in the class constructor, set the input mode to
TOUCH_POINT (Listing 4-3).

LISTING 4-3: Setting the input mode for touch events via the class constructor method in

MultitouchAndGestures.as

switch(Multitouch.supportsTouchEvents)
{
 case true:
 {

FIGURE 4-4 The output window in

Device Central displaying the warning

message for no touch support

CH004.indd 106CH004.indd 106 09/09/11 10:01 AM09/09/11 10:01 AM

Multitouch Interactions ❘ 107

 Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

 multitouch.text = “Touch events - Supported”;
 }
 break;
 case false:
 {
 multitouch.text = “Touch events - Not Supported”;
 }
 break;
}

Touch Event Types and Properties

After determining the input mode for multitouch, the next step is to register the application’s interest
in a particular touch event. When selecting TOUCH_POINT as the input mode, the events returned
will be of the event type flash.events.TouchEvent.

Eight event-type values are associated with the TouchEvent class, each essentially being treated as a
different phase of a single touch event interaction:

 ➤ TouchEvent.TOUCH_BEGIN: A string with the value touchBegin, signaling when the touch
event begins

 ➤ TouchEvent.TOUCH_END: A string with the value touchEnd, signaling when the touch event has
ended

 ➤ TouchEvent.TOUCH_MOVE: A string with the value touchMove, signaling when the touch event
has moved

 ➤ TouchEvent.TOUCH_OUT: A string with the value touchOut, signaling when the touch event is out

 ➤ TouchEvent.TOUCH_OVER: A string with the value touchOver, signaling when the touch event
is over

 ➤ TouchEvent.TOUCH_ROLL_OUT: A string with the value touchRollOut, signaling when the
touch event is a roll out

 ➤ TouchEvent.TOUCH_ROLL_OVER: A string with the value touchRollOver, signaling when the
touch event is a roll over

 ➤ TouchEvent.TOUCH_TAP: A string with the value touchTap, signaling when the touch event is a tap

To register one of the touch events, you need to supply one of the event types as the fi rst argument to
the addEventListener() method; then for the second argument you supply a reference to an event
handler, which you need to defi ne.

Follow the next few steps to register touch events:

 1. First add the TouchEvent class to the list of import statements (Listing 4-4).

CH004.indd 107CH004.indd 107 09/09/11 10:01 AM09/09/11 10:01 AM

108 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

LISTING 4-4: Importing the TouchEvent class in MultitouchAndGestures.as

package
{
 import flash.display.Sprite;
 import flash.events.TouchEvent;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;

 2. Under the constructor for the class, create an event handler function called onTouch().
This event handler should have one parameter defi ned, e, which should be of the type
TouchEvent (Listing 4-5).

LISTING 4-5: Creating the touch event handler in MultitouchAndGestures.as

private function onTouch(e:TouchEvent):void {}

 3. In onTouch() add a switch statement that detects the three touch event types,
TOUCH_BEGIN, TOUCH_MOVE and TOUCH_END via the e.type property on the TouchEvent
object (Listing 4-6).

LISTING 4-6: Detecting the TOUCH_BEGIN, TOUCH_MOVE, and TOUCH_END event

types via the onTouch() method in MultitouchAndGestures.as

private function onTouch(e:TouchEvent):void
{
 switch(e.type)
 {
 case TouchEvent.TOUCH_BEGIN:
 {
 }
 break;
 case TouchEvent.TOUCH_MOVE:
 {
 }
 break;
 case TouchEvent.TOUCH_END:
 {
 }
 break;
 }
}

Here the value of the type property returned on the e touch event object is used to distinguish
between the three event types.

CH004.indd 108CH004.indd 108 09/09/11 10:01 AM09/09/11 10:01 AM

Multitouch Interactions ❘ 109

Each touch event type represents a unique value, so for every touch interaction you have an interest
in responding to, you have to register it using addEventListener().

 4. Returning to the constructor, register the three touch event types on the stage, referencing
onTouch() as the event handler (Listing 4-7).

LISTING 4-7: Registering touch events with the stage via the class constructor method

in MultitouchAndGestures.as

case true:
{
 Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
 multitouch.text = “Touch events - Supported”;

 stage.addEventListener(TouchEvent.TOUCH_BEGIN, onTouch);
 stage.addEventListener(TouchEvent.TOUCH_MOVE, onTouch);
 stage.addEventListener(TouchEvent.TOUCH_END, onTouch);
}
break;
case false:
{
 multitouch.text = “Touch events - Not Supported”;
}
break;

Here the TOUCH_BEGIN, TOUCH_MOVE, and TOUCH_END events are all handled via the generically
defi ned event handler called onTouch(). Registering the events with the stage means that the full
stage will listen to any touch input.

The TouchEvent object returned by the event handler has the following core properties associated
with it:

 ➤ type: A string value representing one of the eight touch event types

 ➤ touchPointID: An integer representing the touch point, which is unique for each touch
point generated

 ➤ localX: A number representing the horizontal coordinate of the touch point, along
an x-axis

 ➤ localY: A number representing the vertical coordinate of the touch point, along a y-axis

 ➤ sizeX: A number indicating the width of the touch point along the x-axis

 ➤ sizeY: A number indicating the height of the touch point along the y-axis

Next take a look at how some of the object properties returned by the three touch event types
are used.

CH004.indd 109CH004.indd 109 09/09/11 10:01 AM09/09/11 10:01 AM

110 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

TRY IT OUT Tracking Multiple Touch Points in an Application

 1. In onTouch(), assign properties of the e touch event object to three new variables. The value of
the touchPointID property should be assigned to the variable id, stageX to the variable x, and
stageY to y (Listing 4-8).

LISTING 4-8: Assigning properties of the touch point event via the onTouch() method in

MultitouchAndGestures.as

private function onTouch(e:TouchEvent):void
{
 var id:Number = e.touchPointID;
 var x:Number = e.stageX;
 var y:Number = e.stageY;

 switch(e.type)
 {
 case TouchEvent.TOUCH_BEGIN:
 {
 }
 break;
 case TouchEvent.TOUCH_MOVE:
 {
 }
 break;
 case TouchEvent.TOUCH_END:
 {
 }
 break;
 }
}

 2. After the onTouch() method, create four empty method stubs called drawLines(),
moveLines(), removeLines(), and setCoordinates() (Listing 4-9).

LISTING 4-9: Creating stub functions to draw, move, remove, and set coordinates

private function onTouch(e:TouchEvent):void
{
 var id:Number = e.touchPointID;
 var x:Number = e.stageX;
 var y:Number = e.stageY;

 switch(e.type)
 {
 case TouchEvent.TOUCH_BEGIN:
 {
 }
 break;
 case TouchEvent.TOUCH_MOVE:
 {
 }

CH004.indd 110CH004.indd 110 09/09/11 10:01 AM09/09/11 10:01 AM

Multitouch Interactions ❘ 111

 break;
 case TouchEvent.TOUCH_END:
 {
 }
 break;
 }
}

private function drawLines(id:Number, x:Number, y:Number):void {}

private function moveLines(id:Number, x:Number, y:Number):void {}

private function removeLines(id:Number):void {}

private function setCoordinates(x:Number, y:Number):void {}

 3. Returning to onTouch(), call each of the newly created functions within the switch statement.
For the TOUCH_BEGIN case call drawLines(), for TOUCH_MOVE call moveLines(), and for
TOUCH_END call removeLines(). Each of the methods called should have the appropriate
parameters supplied (Listing 4-10).

LISTING 4-10: Assigning the functions to each touch event type via the onTouch() method in

MultitouchAndGestures.as

private function onTouch(e:TouchEvent):void
{
 var id:Number = e.touchPointID;
 var x:Number = e.localX;
 var y:Number = e.localY;

 switch(e.type)
 {
 case TouchEvent.TOUCH_BEGIN:
 {
 drawLines(id, x, y);
 }
 break;
 case TouchEvent.TOUCH_MOVE:
 {
 moveLines(id, x, y);
 }
 break;
 case TouchEvent.TOUCH_END:
 {
 removeLines(id);
 }
 break;
 }
}

 4. Within setCoordinates(), set the x and y values on the coordinates.text property so they
can be displayed. First check whether the TextField object, coordinates has been created;

CH004.indd 111CH004.indd 111 09/09/11 10:01 AM09/09/11 10:01 AM

112 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

if it hasn’t been, instantiate a new TextField object and add it to the stage. Finally, position
the text fi eld along the x and y, reducing the position of the y by 15 pixels, while adding 2 pixels
to x (Listing 4-11).

LISTING 4-11: Displaying the x and y coordinates of the touch point via the setCoordinates()

method in MultitouchAndGestures.as

private function setCoordinates(x:Number, y:Number):void
{
 if(!coordinates)
 {
 coordinates = new TextField();
 stage.addChild(coordinates);
 }

 coordinates.text = “(“ + x + “, “ + y + “)”;
 coordinates.x = x + 2;
 coordinates.y = y - 15;
}

 5. In the private variable declarations add two new variables, offsetX and offsetY (Listing 4-12).

LISTING 4-12: Declaring new class variables in MultitouchAndGestures.as

public class MultitouchAndGestures extends Sprite
{
 private var coordinates:TextField;
 private var multitouch:TextField;
 private var offsetX:Number;
 private var offsetY:Number;

 6. Within drawLines() add two lines to the stage. Use the x and y values to position them along
with the stage.stageWidth and stage.stageHeight to defi ne the length of each line. One
line should be positioned vertically, the other horizontally, and both sprites should be named with
reference to the id value. Then assign values to offsetX and offsetY before fi nally making a
call to setCoordinates() (Listing 4-13).

LISTING 4-13: Drawing the vertical and horizontal lines via the drawLines() method in

MultitouchAndGestures.as

private function drawLines(id:Number, x:Number, y:Number):void
{
 offsetX = x;
 offsetY = y;

 var vertical:Sprite = new Sprite();
 vertical.name = id + “v”;
 vertical.graphics.lineStyle(2, 0x000000);

CH004.indd 112CH004.indd 112 09/09/11 10:01 AM09/09/11 10:01 AM

Multitouch Interactions ❘ 113

 vertical.graphics.moveTo(x, 0);
 vertical.graphics.lineTo(x, stage.stageHeight);
 stage.addChild(vertical);

 var horizontal:Sprite = new Sprite();
 horizontal.name = id + “h”;
 horizontal.graphics.lineStyle(2, 0x000000);
 horizontal.graphics.moveTo(0, y);
 horizontal.graphics.lineTo(stage.stageWidth, y);
 stage.addChild(horizontal);
 setCoordinates(x, y);
}

 7. Within moveLines() reset the positions of the horizontal and vertical lines. Set the x property of
the vertical line and the y property of the horizontal line, adjusting with offsetX and offsetY,
respectively. Then call setCoordinates(), passing a reference to the x and y (Listing 4-14).

LISTING 4-14: Moving the vertical and horizontal lines, while displaying the x and y coordinates

of the touch point via the moveLines() method in MultitouchAndGestures.as

private function moveLines(id:Number, x:Number, y:Number):void
{
 var child1:Sprite = Sprite(stage.getChildByName((id + “v”)));
 var child2:Sprite = Sprite(stage.getChildByName((id + “h”)));

 var vertical:Sprite = child1;
 vertical.x = x - offsetX;

 var horizontal:Sprite = child2;
 horizontal.y = y - offsetY;

 setCoordinates(x, y);
}

 8. Within removeLines() remove both the vertical and horizontal lines from stage via
removeChild(), using the id as a reference to retrieve the display object. The coordinates Text
fi eld should also be removed at this stage (Listing 4-15).

LISTING 4-15: Removing the vertical and horizontal lines via the removeLines() method in

MultitouchAndGestures.as

private function removeLines(id:Number):void
{
 stage.removeChild(Sprite(stage.getChildByName((id + “h”))));
 stage.removeChild(Sprite(stage.getChildByName((id + “v”))));
 stage.removeChild(coordinates);

 coordinates = null;
}

CH004.indd 113CH004.indd 113 09/09/11 10:01 AM09/09/11 10:01 AM

114 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

How It Works

The TOUCH_BEGIN event responds to a user’s touch by initiating the drawing of horizontal and vertical
lines, using the stageX and stageY of the touch event to defi ne where those lines should be drawn.
These values are supplied as parameters to a method called drawLines(), which creates two sprites
representing each line. The touchPointID property is also passed onto the method. This is used to
reference the sprite drawing of each in the lines array as seen in Listing 4-12.

For the TOUCH_MOVE event, the vertical and horizontal line sprites are retrieved using the
getChildByName() function and then re-positioned along new x and y coordinates. Each time
the TOUCH_MOVE event is dispatched, moveLines() is called, responding to the user’s touch point
movement. The key thing to note here is the id value, which
should be the same number passed to the drawLines()
method in order for the lines to move. The id is also required as
the sole parameter for removeLines(), which is called when the
TOUCH_END event has been dispatched. This time the line sprites
are removed from the screen by a call to removeChild().

If you trace touchPointID in Device Central, you can see in the
output window that every time a touch event has been created
with one fi nger, a unique touchPointID value is generated
(Figure 4-5).

At this point you should deduce that the touchPointID is a pretty signifi cant property of the
TouchEvent object.

While up to now you have created an example that handles one touch event at a time, next
you’ll take a look at how you can handle multiple touch events, taking full advantage of the
touchPointID value.

Registering Touch Events on Interactive Objects

Multitouch is best served in an application when users can visually see the benefi ts of their input,
like scrolling a list of contacts, increasing the size of an image, or moving on to the next picture
in an image gallery. The lines and coordinates give a pretty accurate indication of a user’s fi nger
position on a device screen. Next let’s examine using touch data to draw shapes to the screen:

 1. First create a function called drawShape(). The function requires three parameters: id,
x, and y. The function should create a Sprite object called shape, and then add it to the
stage of the application, but only if the shape does not already exist (Listing 4-16).

LISTING 4-16: Creating a new shape sprite via the drawShape() method in

MultitouchAndGestures.as

private function setCoordinates(x:Number, y:Number):void
{
 if(!coordinates)

FIGURE 4-5 The output window in

Device Central, displaying the unique

touchPointID values

CH004.indd 114CH004.indd 114 09/09/11 10:01 AM09/09/11 10:01 AM

Multitouch Interactions ❘ 115

 {
 coordinates = new TextField();
 stage.addChild(coordinates);
 }

 coordinates.text = “(“ + x + “, “ + y + “)”;
 coordinates.x = x + 2;
 coordinates.y = y - 15;
}

private function drawShape(id:Number, x:Number, y:Number):void
{
 var shape:Sprite;
 var shapeId:String = id.toString();

 if(!stage.getChildByName(shapeId))
 {
 shape = new Sprite();
 shape.name = shapeId;

 stage.addChild(shape);

 } else {

 shape = stage.getChildByName(shapeId) as Sprite;
 }

}

In Listing 4-16, the id is used to defi ne the name of each newly created shape object. Using
stage.getChildByName(), you can retrieve any display object that has been added to the stage. Here
this method is used to check that a shape with the same id, that is, fi nger touch, hasn’t already been
added to the stage. If getChildByName() returns a DisplayObject, a new shape doesn’t have to be
added to the stage. The object returned by the method can simply be cast as a Sprite. At present the
shape doesn’t have any properties, so if you run the example nothing will be visible on stage. You’ll
take a look at this shortly.

 2. Next use the shape object to draw a rectangle. Calling the graphics.drawRect() method,
the fi rst two parameters should be offsetX and offsetY, representing the starting x and y
position of the rectangle. The third and fourth parameters are the width and height of the
rectangle, and are calculated by the x and y of the current touch point and the offset values
defi ned when you fi rst touch the screen (Listing 4-17).

LISTING 4-17: Defi ning the graphic properties of the shape sprite via the drawShape() method

in MultitouchAndGestures.as

private function drawShape(id:Number, x:Number, y:Number):void
{
 var shape:Sprite;
 var shapeId:String = id.toString();

continues

CH004.indd 115CH004.indd 115 09/09/11 10:01 AM09/09/11 10:01 AM

116 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

LISTING 4-17 (continued)

 if(!stage.getChildByName(shapeId))
 {
 shape = new Sprite();
 shape.name = shapeId;

 stage.addChild(shape);

 } else {

 shape = stage.getChildByName(shapeId) as Sprite;
 }

 var width:Number = x-offsetX;
 var height:Number = y-offsetY;

 shape.graphics.clear();
 shape.graphics.lineStyle(2, 0x000000, 1.0);
 shape.graphics.beginFill(0x000000, 0.0);
 shape.graphics.drawRect(offsetX, offsetY, width, height);
 shape.graphics.endFill();

}

 3. Finally, within the TOUCH_BEGIN and TOUCH_MOVE events of onTouch(), call the
drawShape() method (Listing 4-18).

LISTING 4-18: Drawing a shape when a fi nger touches the screen and when it moves via the

onTouch() method in MultitouchAndGestures.as

private function onTouch(e:TouchEvent):void
{
 var id:Number = e.touchPointID;
 var x:Number = e.stageX;
 var y:Number = e.stageY;

 switch(e.type)
 {
 case TouchEvent.TOUCH_BEGIN:
 {
 drawLines(id, x, y);
 drawShape(id, x, y);
 }
 break;
 case TouchEvent.TOUCH_MOVE:
 {
 moveLines(id, x, y);
 drawShape(id, x, y);
 }
 break;
 case TouchEvent.TOUCH_END:

CH004.indd 116CH004.indd 116 09/09/11 10:01 AM09/09/11 10:01 AM

Gesture Interactions ❘ 117

 {
 removeLines(id);
 }
 break;
 }
}

Determining the Supported Touch Points

Once you have set the input mode to TOUCH_POINT, you can also determine the number of touch
points for an application by referencing Multitouch.maxTouchPoints.

This is another property of the Multitouch class that should give you the total number of touch
points that can be handled by the device running your application. For instance, if maxTouchPoints
returns 3, then only three fi ngers would be detectable on the device; if maxTouchPoints returns 1,
then only one touch point, one fi nger, would be detectable.

The exact number of touch points recognized by a particular device may not always be the same
as on another. The maxTouchPoints property is potentially useful for cross-device multitouch
support. The Google Nexus One running Android 2.3.4 supports two touch points, whereas the
Apple iPhone 4, running iOS 4, supports no fewer than fi ve.

WARNING At the time of writing, the value returned by
Multitouch.maxTouchPoints has not always been reported accurately and, in
some instances, has returned inaccurate readings, depending on the device
the application was running on. So, be careful if you decide you want to use the
property for key logic in your applications.

Now let’s take a look at gestures.

GESTURE INTERACTIONS

Gestures are an extension of multitouch input, characterized more explicitly by specifi c movement
and direction of the touch point interactions. Their defi nitive natures are encapsulated in a given
term, like “zoom,” “pan,” or “swipe.”

Determining Which Gestures Are Supported on a Device

Support for various gesture input types should be determined within an application before they are
utilized, similarly to touch points.

You need to use Multitouch.supportsGestureEvents to detect gesture support. In addition,
you can retrieve exactly which types of gestures are supported by calling the
Multitouch.supportedGestures property, as in the following snippet:

if(Multitouch.supportsGestureEvents)
{

CH004.indd 117CH004.indd 117 09/09/11 10:01 AM09/09/11 10:01 AM

118 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

 var gestures:Vector.<String> = Multitouch.supportedGestures;

 for(var i:int=0; i < gestures.length; i++)
 {
 trace(gestures[i]);
 }
}

In the preceding snippet the Multitouch.supportedGestures property returns a Vector of strings.

A vector is simply an array with a specifi ed data type to signify that all the elements in the array are of
that same data type. In the following snippet the data type String is specifi ed in anchors (< and >)
after the Vector declaration, preceded by a period (.):

var gestures:Vector.<String>;

 Each supported gesture is then traced to the output console.

Gesture Events and Event Handling

Via the Flash Player, the simple touch of a fi nger on a device’s screen will trigger an event to be
dispatched, which can be detected in AS3.

Setting the Input Mode for Gesture Events

To handle gesture events, you need to set the Multitouch.inputMode property to
MultitouchInputMode.GESTURE. This will allow you to handle gestures recognized by the device,
as in the following snippet:

if(Multitouch.supportsGestureEvents)
{
 Multitouch.inputMode = MultitouchInputMode.GESTURE;

 var gestures:Vector.<String> = Multitouch.supportedGestures;

 for(var i:int=0; i < gestures.length; i++)
 {
 trace(gestures[i]);
 }
}

Gesture Event Types and Properties

Once you’ve selected MultitouchInputMode.GESTURE as the input mode, three main gesture
events can be dispatched depending on what gesture the user has initiated:

 ➤ GestureEvent: This gesture event consists of one
event-type property, which is dispatched as
GestureEvent.GESTURE_TWO_FINGER_TAP and represents
a user-initiated two-fi nger tap. Figure 4-6 shows the
two-fi nger-tap gesture; here fi ngers on each hand tap
simultaneously.

FIGURE 4-6 The two-fi nger-tap

gesture

CH004.indd 118CH004.indd 118 09/09/11 10:01 AM09/09/11 10:01 AM

Gesture Interactions ❘ 119

 ➤ PressAndTapGestureEvent: This gesture event also has
one event-type property, which is referenced as
PressAndTapGestureEvent.GESTURE_PRESS_AND_TAP and
represents the user-initiated press and tap. Figure 4-7 shows the
press-and-tap gesture; here the left hand presses while the right hand
taps simultaneously.

 ➤ TransformGestureEvent: This gesture event has four event-type
properties, which can be referenced as:

 ➤ TransformGestureEvent.GESTURE_PAN to represent the
user-initiated pan gesture

 ➤ TransformGestureEvent.GESTURE_ROTATE to represent the user-initiated rotate gesture

 ➤ TransformGestureEvent.GESTURE_SWIPE to represent the user-initiated swipe gesture

 ➤ TransformGestureEvent.GESTURE_ZOOM to represent the user-initiated zoom gesture.

Figure 4-8 shows the rotate gesture. Here a fi nger on the right hand presses
the screen, while a fi nger on the left hand simulates drawing an arc around the
stationary fi nger on the right hand.

As with the touch events, each gesture event must be registered through
addEventListener(). The following snippet shows how to handle a
GESTURE_TWO_FINGER_TAP event:

if(Multitouch.supportsGestureEvents)
{
 Multitouch.inputMode = MultitouchInputMode.GESTURE;

 var g:Vector.<String> = Multitouch.supportedGestures;

 for(var i:int=0; i < g.length; i++)
 {
 if(gestures[i] == GestureEvent.GESTURE_TWO_FINGER_TAP)
 {
 this.addEventListener(g[i], onTwoFingerTap);
 }
 }
}

Each of the three gesture event types returns objects that have properties setting them apart from
single touch events.

Registering Gesture Events on Interactive Objects

Up to now the MultitouchAndGestures.as example tracks a single touch point and draws a shape
to the screen when a single fi nger moves. Next, you look at how the pan gesture can be used to move
each of the shapes drawn in the application, and in the following steps you combine the use of a
timer with gesture events:

 1. Begin by importing fi ve new classes, Stage, GesturePhase, TransformGestureEvent,
Timer, and TimerEvent classes (Listing 4-19).

FIGURE 4-7 The press

and tap gesture

FIGURE 4-8 The

rotate gesture

CH004.indd 119CH004.indd 119 09/09/11 10:01 AM09/09/11 10:01 AM

120 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

LISTING 4-19: Importing the Timer and TimerEvent classes

package
{
 import flash.display.Sprite;
 import flash.display.Stage;
 import flash.events.GesturePhase;
 import flash.events.TimerEvent;
 import flash.events.TouchEvent;
 import flash.events.TransformGestureEvent;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;
 import flash.utils.Timer;

 2. Next, in the private variable declarations, defi ne a Timer object called idleTimer, and a
String variable called currentTarget (Listing 4-20).

LISTING 4-20: Declaring new class variables

public class MultitouchAndGestures extends Sprite
{
 private var coordinates:TextField;
 private var currentTarget:String;
 private var idleTimer:Timer;
 private var offsetX:Number;
 private var offsetY:Number;
 private var multitouch:TextField;

The purpose of the timer is to reset idle gesture movement, hence the name idleTimer. While
the user’s fi nger touch is currently handled as a touch point, the aim will be to use the pan
gesture when a shape is touched, allowing it to be moved around. This will mean that the input
mode will need to change from touch to gesture, and then revert back to touch after a period
of inactivity, to allow more shapes to be drawn. The currentTarget is defi ned to hold the last
shape touched.

 3. In MultitouchAndGestures() instantiate idleTimer. The class constructor for Timer
takes milliseconds as the fi rst parameter and here should be set to 1000, representing 1
second. You also need to add an event listener to the object that triggers an event handler
called onTimer() when the timer has completed a cycle (Listing 4-21).

LISTING 4-21: Registering timer events via the class constructor in MultitouchAndGestures.as

public function MultitouchAndGestures()
{
 multitouch = new TextField();
 multitouch.autoSize = TextFieldAutoSize.LEFT;

 idleTimer = new Timer(1000);

CH004.indd 120CH004.indd 120 09/09/11 10:02 AM09/09/11 10:02 AM

Gesture Interactions ❘ 121

 idleTimer.addEventListener(TimerEvent.TIMER, onTimer);

 switch(Multitouch.supportsTouchEvents)
 {

 4. Underneath the class constructor create four new stubs: onTimer(),
initializeGestures(), initializeTimer(), and initializeTouch(). The
onTimer() event handler should retrieve the TimerEvent object e; none of the other
functions require parameters to be defi ned (Listing 4-22).

LISTING 4-22: Adding the onTimer(), initializeGestures(), initializeTimer(), and initializeTouch()

method stubs in MultitouchAndGestures.as

private function onTimer(e:TimerEvent):void {}

private function initializeGestures():void {}

private function initializeTimer():void {}

private function initializeTouch():void {}

 5. In onTimer(), to prevent further timer event calls from being made once the timer fi nishes
a cycle, call the stop() method on idleTimer (Listing 4-23).

LISTING 4-23: Stopping the timer via the onTimer() method in MultitouchAndGestures.as

private function onTimer(e:TimerEvent):void
{
 idleTimer.stop();
}

 6. Next, in initializeTimer(), set the delay property of idleTimer to 1000. This will
effectively reset the countdown back to the beginning. Also check whether the timer is still
counting down at all; if it is not running, restart it using the start() method (Listing 4-24).

LISTING 4-24: Starting the timer via the initializeTimer() method in MultitouchAndGestures.as

private function initializeTimer():void
{
 idleTimer.delay = 1000;

 if(!idleTimer.running)
 idleTimer.start();
}

Note that once stop() has been called on idleTimer the timer should no longer
be running.

 7. In the initializeTouch() function, set the input mode to touch point (Listing 4-25).

CH004.indd 121CH004.indd 121 09/09/11 10:02 AM09/09/11 10:02 AM

122 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

LISTING 4-25: Setting the input mode to touch point via the initializeTouch() method in

MultitouchAndGestures.as

private function initializeTouch():void
{
 if(Multitouch.supportsTouchEvents)
 Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
}

 8. Returning to the onTimer() function after the timer has been stopped, make a call to
initializeTouch() (Listing 4-26).

LISTING 4-26: Initializing touch points via the onTimer() method in MultitouchAndGestures.as

private function onTimer(e:TimerEvent):void
{
 idleTimer.stop();
 initializeTouch();
}

 9. In the initializeGestures() function, set the input mode to gesture, then make a call to
initializeTimer() (Listing 4-27).

LISTING 4-27: Setting the input mode to support gestures and initializing the timer via the

initializeGestures() method in MultitouchAndGestures.as

private function initializeGestures():void
{
 if(Multitouch.supportsGestureEvents)
 {
 Multitouch.inputMode = MultitouchInputMode.GESTURE;
 initializeTimer();
 }
}

 10. Returning to onTouch(), for the TOUCH_BEGIN event use the e.target property to
determine whether a user’s touch event is dispatched from the stage. Save the reference of
the target e.target.name to currentTarget and then call initializeGestures() to
set the input mode to gestures (Listing 4-28).

LISTING 4-28: Initializing gestures via the onTouch() method in MultitouchAndGestures.as

private function onTouch(e:TouchEvent):void
{
 var id:Number = e.touchPointID;
 var x:Number = e.stageX;

CH004.indd 122CH004.indd 122 09/09/11 10:02 AM09/09/11 10:02 AM

Gesture Interactions ❘ 123

 var y:Number = e.stageY;

 switch(e.type)
 {
 case TouchEvent.TOUCH_BEGIN:
 {
 if(e.target is Stage)
 {
 drawLines(id, x, y);
 drawShape(id, x, y);

 } else {

 currentTarget = e.target.name;
 initializeGestures();
 }
 }
 break;
 case TouchEvent.TOUCH_MOVE:
 {
 moveLines(id, x, y);
 drawShape(id, x, y);
 }
 break;
 case TouchEvent.TOUCH_END:
 {
 removeLines(id);
 }
 break;
 }
}

 11. In drawShape(), after the shape sprite been instantiated, use
Multitouch.supportedGestures to check whether the gesture pan is supported. Then call
addEventListener(), supplying the TransformGestureEvent.GESTURE_PAN event type
g as the fi rst parameter and an event handler called onPan() as the second parameter. The
onPan() event handler should be added below the drawShape() function (Listing 4-29).

LISTING 4-29: Adding the pan gesture event to a shape via the drawShape() method in

MultitouchAndGestures.as

private function drawShape(id:Number, x:Number, y:Number):void
{
 var shape:Sprite;
 var shapeId:String = id.toString();

 if(!"stage.getChildByName(shapeId))
 {
 shape = new Sprite();
 shape.name = shapeId;

 for each(var g:String in Multitouch.supportedGestures)
continues

CH004.indd 123CH004.indd 123 09/09/11 10:02 AM09/09/11 10:02 AM

124 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

LISTING 4-29 (continued)

 {
 switch(g)
 {
 case TransformGestureEvent.GESTURE_PAN:
 {
 shape.addEventListener(g, onPan);
 }
 break;
 }
 }

 stage.addChild(shape);

 } else {

 shape = child as Sprite;
 }

 var width:Number = x-offsetX;
 var height:Number = y-offsetY;

 shape.graphics.clear();
 shape.graphics.lineStyle(2, 0x000000, 1.0);
 shape.graphics.beginFill(0x000000, 0.0);
 shape.graphics.drawRect(offsetX, offsetY, width, height);
 shape.graphics.endFill();
}

private function onPan(e:TransformGestureEvent):void {}

Handling Gesture Events

Lastly, take a look at how to use the data in a dispatched gesture event:

 1. In the onPan() function use the GesturePhase.UPDATE event phase to reposition the
shape that is currently in focus. You need to retrieve the shape using the currentTarget
variable and the getChildByName() function. Then use the offsetX and offsetY
properties of the TransformGestureEvent object e to reposition the shape, before calling
initializeTimer() (Listing 4-30).

LISTING 4-30: Assigning the off setX and off setY properties to the shape via the onPan()

method in MultitouchAndGestures.as

private function onPan(e:TransformGestureEvent):void
{
 var shape:Sprite = stage.getChildByName(currentTarget);

 switch(e.phase)

CH004.indd 124CH004.indd 124 09/09/11 10:02 AM09/09/11 10:02 AM

Gesture Interactions ❘ 125

 {
 case GesturePhase.UPDATE:
 {
 shape.x = shape.x + e.offsetX;
 shape.y = shape.y + e.offsetY;

 initializeTimer();
 }
 break;
 }
}

NOTE All the changes to the MultitouchAndGesture.as fi le from Listing 4-1 to
Listing 4-30 should now have been saved to fi le. Returning to Device Central,
you should now be able to emulate the pan gesture.

 2. In Device Central open the MultitouchAndGestures.swf fi le in the emulator.

 3. Next draw a shape on screen. Press the Alt key and simultaneously left-click the mouse.
You should see your fi rst touch point, along with the coordinates at which the shape will
be drawn (Figure 4-9). If you are using a Trackpad, you can simply create a touch point by
pressing the Alt key on the keyboard while pressing on the Trackpad.

FIGURE 4-9 Adding the fi rst touch point to the Multitouch and Gestures App in Device Central

 4. With the Alt key and mouse button still pressed, drag the mouse to a new position on the
stage. You should now have a shape drawn on the stage (Figure 4-10).

CH004.indd 125CH004.indd 125 09/09/11 10:02 AM09/09/11 10:02 AM

126 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

 5. Once the shape is drawn, with the cursor over the shape press the Alt key and simultaneously
left-click the mouse to simulate another fi nger touch as before (Figure 4-11).

FIGURE 4-10 Drawing a shape in the Multitouch and Gestures App

FIGURE 4-11 Adding the fi rst touch point to the shape in the Multitouch and Gestures App

 6. While the Alt key is still pressed and the fi rst touch point is still visible, add a second touch
point somewhere else on the shape, this time holding the Shift key (Figure 4-12).

CH004.indd 126CH004.indd 126 09/09/11 10:02 AM09/09/11 10:02 AM

Gesture Interactions ❘ 127

 7. Finally, move the shape to the bottom right of the screen (Figure 4-13).

FIGURE 4-12 Adding the second touch point to the shape in the Multitouch and Gestures App

FIGURE 4-13 Using the pan gesture to move the shape to the bottom right corner of the

stage in the Multitouch and Gestures App

CH004.indd 127CH004.indd 127 09/09/11 10:02 AM09/09/11 10:02 AM

128 ❘ CHAPTER 4 TOUCH, MULTITOUCH, AND GESTURES

UTILIZING THE MULTITOUCH PANEL IN DEVICE CENTRAL

In Device Central the Multitouch panel provides three settings
that can be used to simulate touch points, including a user’s
fi nger coverage and the pressure applied by a fi nger when it
interacts with the screen (Figure 4-14).

These properties directly correlate to the properties briefl y
mentioned for each of the event types covered in this chapter.
The width and height can be changed along with the pressure.

I recommend experimenting with these properties in the
MultitouchAndGestures.as example. For instance, you
could try changing the line style properties of the horizontal and vertical lines according to the size
of the touch point. You could also try changing the alpha property of the shapes depending on the
pressure applied to the screen.

SUMMARY

Implementing multitouch requires paying a little more attention to how your applications will work
when compared to using button-press events simply because there is more data to handle.

Over the course of the chapter you have created an example that demonstrates the new multitouch
features of the Flash player. First you learned how to determine support for multitouch and the need
to set the input mode for touch and gesture separately.

You also learned how to handle touch and gesture events, using the properties of touch events to
generate shapes and the data returned by the pan gesture to interact with those shapes.

In the next chapter you’ll take a closer look at developing for multiple devices and various screen sizes.

Before moving on to the next chapter, there are a few gesture events and properties not covered by
the code examples in this chapter. The following set of exercises should allow you to explore these
event types in more detail applying them to the example project.

EXERCISES

 1. Apply the rotate gesture event TransformGestureEvent.GESTURE_ROTATE to rotate a shape once it

has been drawn.

 2. Add the press and tap gesture event PressAndTapGestureEvent.GESTURE_PRESS_AND_TAP to

randomly change the color of a selected shape when the gesture is detected.

 3. Use the swipe gesture event TransformGestureEvent.GESTURE_SWIPE to remove a shape from view.

 4. Use the zoom gesture event TransformGestureEvent.GESTURE_ZOOM to increase the size of a shape.

FIGURE 4-14 The Multitouch panel in

Device Central

CH004.indd 128CH004.indd 128 09/09/11 10:02 AM09/09/11 10:02 AM

Summary ❘ 129

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Multitouch input Two categories of multitouch input can be detected in mobile fl ash

applications: touch input and gesture input.

Determining

touch input

support

Use Multitouch.supportsTouchEvents to determine touch input support on

a mobile device. This should return true when supported.

Setting the input

mode for touch

support

Use MultitouchInputMode.TOUCH_POINT to defi ne the input mode for touch.

Set the Multitouch.inputMode to MultitouchInputMode.TOUCH_POINT to

initialize touch input.

Handling touch

events

Register a TouchEvent type to handle touch input, using addEventListener()

to register an interest in one of eight TouchEvent types.

Determining

gesture input

support

Use Multitouch.supportsGestureEvents to determine gesture support on

a mobile device. Then use Multitouch.supportedGestures to determine

exactly which gestures are supported.

Setting the input

mode for touch

support

Use MultitouchInputMode.GESTURE to defi ne the input mode for gestures.

Set the Multitouch.inputMode to MultitouchInputMode.GESTURE to initialize

gestures.

Handling gesture

events

Three distinct types of gesture event objects can be dispatched:

GestureEvent, PressAndTapGestureEvent, and TransformGestureEvent.

Each gesture event object has several event type properties.

Register a particular gesture event type using addEventListener() to

respond to gesture movements.

Using the

Multitouch

panel

In Device Central use the Multitouch panel to emulate a user’s fi nger touch.

Modify the size of a user’s fi nger by setting the width and height of touch points.

Set the degree of weight applied by the fi nger touch, by altering the pressure.

CH004.indd 129CH004.indd 129 09/09/11 10:02 AM09/09/11 10:02 AM

CH004.indd 130CH004.indd 130 09/09/11 10:02 AM09/09/11 10:02 AM

5
Developing for Multiple
Screen Sizes

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding screen size and screen resolution

 ➤ Automatically scaling applications

 ➤ Adapting content to diff erent stage sizes

 ➤ Handling changes in device orientation

 ➤ Utilizing MXML group containers

 ➤ Using states in a Flex mobile application

In this chapter you’ll take a look at how to approach developing mobile applications that will
adapt to more than one screen size.

In essence, the chapter focuses mainly on the design of the mobile application within the
viewing window. For the majority of apps the logic and core should be the same, and so giving
applications a consistent look is the order of the day.

First you’ll get an understanding of screen resolution and the difference between measuring
screen size by the number of pixels and measuring the screen size by physical distances.

Then you’ll take a look at utilizing the stage to handle size changes in an application. You’ll
also examine how to determine the relative dimensions and sizes of assets, components, and
fonts.

This chapter guides you through how to update an application when the device changes
orientation between portrait and landscape. You’ll then go through a series of techniques to
position assets in the application using Flash Builder.

CH005.indd 131CH005.indd 131 09/09/11 9:31 AM09/09/11 9:31 AM

132 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

CONSIDERATIONS FOR MULTIPLE SCREEN SIZES

The screen size on a mobile handset is pretty much what determines the space available to you,
and the viewing window for an application. Not all mobile devices have the same screen size, which
poses potential issues in presenting a consistent look-and-feel across multiple devices.

The main goal of this chapter is to outline the techniques that will help you target and deploy
applications to multiple devices. When coding for different screen sizes, the two main things you
have to take into consideration are:

 ➤ Screen resolution: The total number of pixels a screen contains

 ➤ Screen aspect ratio: The measured width of a screen in relation to the height

In tackling the fi rst point, you should consider whether an application will need to look different if
it runs on a device with a higher or lower pixel density.

And with the screen aspect ratio, you must consider whether the application will need to run on a
device where the full width of the screen needs to be longer or shorter than its measured height.

Both these factors affect the design or layout of a mobile application.

Pixel Density

Although pixels give a computational measurement of screen size, they don’t represent the
real physical measurements directly, in the way that centimeters or inches do. The number of
dots per inch (DPI) or pixels per inch (PPI) is used to provide a way by which the number
of inches on a screen can be calculated.

Table 5-1 lists some screen resolutions for comparison across different devices.

TABLE 5-1: A Comparison of Mobile Devices with Diff erent Screen Resolutions

DEVICE

DISPLAY SIZE

(INCHES)

SCREEN RESOLUTION

(PIXELS)

PRIMARY

ORIENTATION DPI

Google Nexus

One

3.7" 480w x 800h Portrait 254

Google Nexus S 4" 480w x 800h Portrait 235

Apple iPhone 4 3.5" 640w x 960h Portrait 326

Apple iPad 9.7" 768w x 1024h Portrait 132

BlackBerry

PlayBook

7" 1024w x 600h Landscape 170

Motorola Xoom 10.1" 1280w x 800h Landscape 160

CH005.indd 132CH005.indd 132 09/09/11 9:31 AM09/09/11 9:31 AM

Considerations for Multiple Screen Sizes ❘ 133

Take a look at the DPI column in Table 5-1. The fi rst thing you should notice is the difference in
screen display size, which varies depending on whether the mobile device is a tablet or smartphone.

Smartphone devices like the Google Nexus One, which has a screen resolution of 480 × 800 pixels,
have a pixel density of 254 DPI, whereas the Apple iPhone 4 has a resolution of 640 × 960 pixels,
with a pixel density of 326 DPI.

A tablet device like the BlackBerry PlayBook has a screen resolution of 1024 × 600 pixels, with a
pixel density of 170 DPI, whereas the Apple iPad has a resolution of 768 × 1024 pixels, with a pixel
density of 132 DPI.

What you can also take from the table is the fact that just because a device has a larger screen size
doesn’t mean it has a higher pixel density.

In Flash Builder you can view a number of device confi gurations and properties, including pixel
density, in the Preferences panel (see Figure 5-1). To open this panel, select Flash Builder ➪
Preferences . . . from the main menu.

FIGURE 5-1: Flash Builder Preferences panel displaying numerous device confi gurations

Utilizing Device DPI

The device DPI can be utilized in a number of ways. You can let an application detect and handle
differences in DPI across devices automatically, or you can programmatically code for those
differences.

CH005.indd 133CH005.indd 133 09/09/11 9:31 AM09/09/11 9:31 AM

134 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

Scaling Applications with the Application DPI

When you create a Flex-based mobile application, you have the option of scaling the application to
automatically address potential differences in pixel density when your application runs on different
devices.

You do this by setting the applicationDPI property of the main application container, either inside
your <s:ViewNavigatorApplication> or the <s:TabbedViewNavigatorApplication> tag, as
shown in the following snippet:

<?xml version=”1.0” encoding=”utf-8”?>
<s:TabbedViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 applicationDPI=”240”>

</s:TabbedViewNavigatorApplication>

This property can be set to one of three values: 160, 240 or 320. These three values are
known as DPI Classifi cation constants and are defi ned by three static properties of the
mx.core.DPIClassification class:

 ➤ DPIClassification.DPI_160: A number equal to 160 representing a density value for
low-density devices

 ➤ DPIClassification.DPI_240: A number equal to 240 representing a density value
for medium-density devices

 ➤ DPIClassidication.DPI_320: A number equal to 320 representing a density value for
high-density devices

As shown by the comparison in Table 5-1, many popular devices don’t have the same screen
resolution. Setting the applicationDPI means you are effectively targeting your development at a
device that has a resolution at the value defi ned for applicationDPI.

When the applicationDPI property is set, Flex scales everything in the application in relation to
another property, known as the runtimeDPI. This is the screen resolution of the device in which
the application is currently running; it is read-only and retrieves its value from the flash.system
.Capabilities.screenDPI property. We’ll discuss this in more detail shortly.

When an app runs on a device that has a different runtimeDPI from the target applicationDPI
value, it scales the content automatically. If the applicationDPI property is not set, no scaling
occurs.

Consider the following scenarios:

If the applicationDPI is set to 160 and the target device has a DPI of 160, no scaling occurs.
The scale is deemed to be a factor of 1, or 100%. If the target device has a DPI of 320, a scale
factor of 2, or 200%, is applied. If a target device has a DPI of 240, a scale factor of 1.5, or 150%,
is applied.

CH005.indd 134CH005.indd 134 09/09/11 9:31 AM09/09/11 9:31 AM

Considerations for Multiple Screen Sizes ❘ 135

Scale factors can go up as well as down. So, if the applicationDPI is set to 320 and the target
device has a DPI of 160, then a scale factor of 0.5, or 50%, is applicable.

Note that when you run an application in Flash Builder, the debug window uses a DPI of 240.

A device’s runtimeDPI value will fall into one of three DPI Classifi cation constants, which are
mapped by default in Flash Builder to one of three associated ranges, as shown in Table 5-2.

TABLE 5-2: Device DPI to DPI Classifi cation Constant Mappings

DEVICE DPI DPI CLASSIFICATION

Less than 200 dpi 160 dpi

Between 201 dpi and 279 dpi 240 dpi

280 dpi and above 320 dpi

Using Table 5-2 as a guide, you can expect that when the applicationDPI property is set to 240,
content running on a Google Nexus One won’t scale, as its runtimeDPI, a value of 254, will fall
into the 240 dpi classifi cation, and hence a scale factor of 1.

From Table 5-2 and Table 5-1, you can also determine that the Apple iPad, BlackBerry
PlayBook, and Motorola Zoom, each with DPI values of less than 200 dpi, will fall into the
160 dpi classifi cation, whereas only the Apple iPhone 4 will fall into the high-density 320 dpi
classifi cation.

Setting Styles with the Application DPI

Using the Flex framework there is also support for applying styles based on the target OS and
application DPI in CSS, by setting a @media rule in the <fx:Styles> declaration.

To do this, you can use a combination of the application-dpi and os-platform properties to
selectively apply styles based on the device DPI and the target platform on which the application is
running.

Like the applicationDPI property, the supported values for the application-dpi CSS property
are 160, 240, and 320.

The os-platform CSS property is matched to the value of the fi rst three letters of the flash
.system.Capabilities.version property returned by the application running in Flash Player.

Set the os-platform property to one of the supported values:

 ➤ AND: To reference the Google Android platform

 ➤ IOS: To reference the Apple iOS platform

 ➤ QNX: To reference the BlackBerry Tablet OS platform

CH005.indd 135CH005.indd 135 09/09/11 9:31 AM09/09/11 9:31 AM

136 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

 ➤ MAC: To reference the Apple Macintosh platform

 ➤ WIN: To reference the Windows platform

 ➤ LNX: To reference the Linux platform

The @media rule supports the common operators and, or, and not.

The following code snippet shows how to set the default fontSize style property to 12 for the
<s:Label> control, and also uses the @media rule to determine whether the application is running
on an Apple iOS device and whether it uses 240 DPI to set the fontSize property to 10:

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 applicationDPI=”160”>
 <fx:Style>

 @namespace s “library://ns.adobe.com/flex/spark”;

 s|Label
 {
 fontSize:12;
 }

 @media (os-platform: “IOS”) and (application-dpi: 240)
 {
 s|Label
 {
 fontSize:10;
 }
 }

 </fx:Style>

</s:ViewNavigatorApplication>

The following code snippet sets the backgroundColor property of an application running on
the BlackBerry Tablet OS platform to #000000, when the device DPI is 160, but not on Android,
nor iOS:

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 applicationDPI=”160”>
 <fx:Style>

 @namespace s “library://ns.adobe.com/flex/spark”;

 @media (os-platform: “QNX”) and (application-dpi: 160),
 not (os-platform: “AND”),
 not (os-platform: “IOS”)

CH005.indd 136CH005.indd 136 09/09/11 9:31 AM09/09/11 9:31 AM

Considerations for Multiple Screen Sizes ❘ 137

 {
 s|ViewNavigatorApplication
 {
 backgroundColor:#000000;
 }
 }

 </fx:Style>

</s:ViewNavigatorApplication>

When setting styles, you can essentially override the scale factor applied to the application once you
have set the applicationDPI.

Using the Screen DPI to Calculate Physical Measurements

Let’s now turn to the Capabilities.screenDPI property, which you can use to retrieve the device’s
screen DPI and calculate the number of pixels for a particular physical measurement.

The screen size and DPI prove to be important factors when developing for multiple screens, because
components’ assets could in essence work perfectly on one device but be too small to read or tap on
devices with higher resolutions.

When we refer to physical measurements, essentially what this means is that for the Google
Nexus One, one inch is represented by 254 pixels, and on the BlackBerry PlayBook, one inch is
170 pixels.

Use the following import statement to use the Capabilities class:

import flash.system.Capabilities;

The following snippet draws a 2-inch × 1-inch rectangle on the stage. Targeting the Nexus One
device, this is done by multiplying 254 by 2 to get the width at 508 pixels, and then using 267 pixels
for the height of the rectangle.

var rectangle:Sprite = new Sprite();
rectangle.graphics.beginFill(0x000000);
rectangle.graphics.drawRect(0, 0, 508, 267)
rectangle.graphics.endFill();

addChild(rectangle);

For the BlackBerry PlayBook, however, the rectangle would actually be rendered as 3.14 × 3 inches,
which is larger than the physical dimensions specifi ed for the application. Also, if the application
were to run on the Apple iPhone 4, the rectangle would be rendered as 1.64 inches.

If you were to put each of these values in order, you would expect to fi nd that the higher resolution
should display a bigger rectangle, with an increasing DPI number.

CH005.indd 137CH005.indd 137 09/09/11 9:31 AM09/09/11 9:31 AM

138 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

With the Capabilities.screenDPI property, you can ensure that the size of the rectangle is rendered
to an exact size, regardless of the screen it’s being drawn on, as shown by example in the following
snippet:

var width:unit = Capabilities.screenDPI * 2;
var height:unit = width;

var rectangle:Sprite = new Sprite();
rectangle.graphics.beginFill(0x000000);
rectangle.graphics.drawRect(0, 0, width, height)
rectangle.graphics.endFill();

addChild(rectangle);

This code would now render a 2- × 1-inch rectangle on each device. Next let’s take a look at how to
adapt content to the stage size.

ADAPTING CONTENT TO STAGE SIZE

One of the main aims of multiple screen development is to enable an application to adapt itself to
different screen sizes. This doesn’t necessarily need to include every part of the application but some
assets will have to be resized to make them more visible.

Using the StageScaleMode and StageAlign Classes

The StageScaleMode and StageAlign classes can be used together to provide values to set the scale
mode property stage.scaleMode and the alignment property stage.align on the Stage object of
an application.

The StageScaleMode class has the following static constants:

 ➤ StageScaleMode.EXACT_FIT: To specify that content in the application fi lls the visible area
of the stage

 ➤ StageScaleMode.NO_BORDER: To ensure that content in the application fi lls the entire stage
when the stage is scaled

 ➤ StageScaleMode.NO_SCALE: To prevent the content in the application from resizing and
fi lling the entire stage when the stage is scaled

 ➤ StageScaleMode.SHOW_ALL: To maintain the aspect ratio of the content in the application
when the stage is scaled

From the list, you see three settings that would at fi rst glance appear to be ideal options for
targeting multiple screen sizes. These are the StageScaleMode.EXACT_FIT, StageScaleMode
.SHOW_ALL, and StageScaleMode.NO_BORDER constants, which would automatically resize content
to fi t the stage.

However, using StageScaleMode.EXACT_FIT can potentially distort content in the application,
because the content isn’t resized to maintain its aspect ratio.

CH005.indd 138CH005.indd 138 09/09/11 9:31 AM09/09/11 9:31 AM

Adapting Content to Stage Size ❘ 139

With StageScaleMode.NO_BORDER, cropping may occur because the setting will maintain the aspect
ratio. You can be sure that all content will be displayed only if the aspect ratio fi ts the size of the stage.

When using StageScaleMode.SHOW_ALL, borders can appear at either side of the application, which
is done to maintain the aspect ratio of the content in the application while fi lling the area that the
resized stage occupies.

None of the three options discussed are really viable for resizing content on mobile devices because
each has constraints that programmatically are impractical to implement in an application. The
only downside to using StageScaleMode.NO_SCALE is that the application will not resize any of
the content when the stage is scaled. Scaling the stage down from the initial application means
that cropping will occur if the application window is smaller than the content, whereas scaling up
from the initial application content means that the stage of the application will get larger without
adjusting the content, hence the content would look small.

These problems both can be rectifi ed through listening to events triggered from the stage, for
instance detecting when it resizes. This will be covered a little later.

The StageAlign class has the following static constants:

 ➤ StageAlign.BOTTOM: To align content in the application relative to the bottom of the stage

 ➤ StageAlign.BOTTOM_LEFT: To align content in the application relative to the bottom-left
corner of the stage

 ➤ StageAlign.BOTTOM_RIGHT: To align content in the application relative to the bottom-right
corner of the stage

 ➤ StageAlign.LEFT: To align content in the application relative to the left of the stage

 ➤ StageAlign.RIGHT: To align content in the application relative to the right of the stage

 ➤ StageAlign.TOP: To align content in the application relative to the top of the stage

 ➤ StageAlign.TOP_LEFT: To align content in the application relative to the top-left corner
of the stage

 ➤ StageAlign.TOP_RIGHT: To align content in the application relative to the top-right corner
of the stage

You need to set the stage.scaleMode property to StageScaleMode.NO_SCALE and the stage
.align property to StageAlign.TOP_LEFT as shown in the following code snippet:

stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;

This will actually prevent automatically scaling the application, allowing you to specify code to
scale and lay out content in the application dynamically.

To dynamically scale and lay out content you need a mechanism by which the application recognizes
the area which it occupies, so that in turn it can apply its own dimensions and position itself
correctly. This can be achieved through the stage by handling the resize event.

CH005.indd 139CH005.indd 139 09/09/11 9:31 AM09/09/11 9:31 AM

140 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

Handling Stage Resize Events

The stage dispatches the Event.RESIZE event when the mobile application fi rst initializes, and also
when the device orientation changes. On the desktop and with Flash embedded in the browser the
Event.RESIZE event is also dispatched when the window or embed container is resized.

Using addEventListener() you can assign Event.RESIZE to an event handler, as shown in the
following code snippet:

stage.addEventListener(Event.RESIZE, onResize);

The stage object has two properties to return the width and height of the stage, through the
stage.stageWidth and stage.stageHeight properties, respectively.

For the event.target property for the Event.RESIZE event is the Stage object where you can
retrieve the width and height values. The onResize() event handler would need to include the code
to perform the dynamic changes to the layout. When laying out content it’s important to have a
preconception of what assets may need to be resized and positioned.

You’ll explore handling the stage resize event in more detail shortly.

Creating the Sprite Layout App Example

In this section you’ll simply render the layout for an application using sprites to represent different
proportions of the screen, and use portrait and landscape layouts to arrange and resize each sprite.

In Flash Builder you will need to create a new ActionScript Mobile Project called Sprite Layout App.
This example will use AS3.

The two layouts for the application are shown in Figures 5-2 and 5-3.

FIGURE 5-2: The portrait layout

design for Sprite Layout App

FIGURE 5-3: The landscape layout design for Sprite

Layout App

CH005.indd 140CH005.indd 140 09/09/11 9:31 AM09/09/11 9:31 AM

Adapting Content to Stage Size ❘ 141

Each layout contains four distinct parts, which will be referred to as a, b, c, and d. Referring to the
diagram, a is the blue sprite, b is the green sprite, c is the yellow sprite, and d is the red sprite.

In the portrait layout (Figure 5-1) you can see that a and b are aligned together horizontally, both
occupying half of the screen width, while c and d are vertically aligned underneath a and b
and occupy the full width of the screen.

In the landscape layout (Figure 5-2) you see that a and b still occupy the screen width, but this time
they are vertically aligned. Also in the landscape layout, c now occupies half the screen width and is
aligned to the top right of the stage, while d still occupies the full width of the screen at the bottom.

Defi ning the ActionScript Mobile Project Settings

Following are a few of the settings that you will need to ensure are defi ned for the project:

 ➤ Name: Set the Name for the project to SpriteLayoutApp.

 ➤ Application ID: Set the Application ID to com.wrox.ch5.SpriteLayoutApp.

Building Sprite Layout App

The following steps will guide you through
creating the example that changes the
arrangement of items depending on whether
it’s in a portrait layout or landscape layout.

 1. In Flash Builder create the Sprite
Layout App project (Figure 5-4).

 2. In SpriteLayoutApp.as, defi ne four
private static constants of type int to
represent a color for each of the blocks,
and also add four private variables to
represent each of the sprites a, b, c, and d.
Then in the class constructor, set the
stage.align property to StageAlign
.TOP_LEFT and the stage.scaleMode
to StageScaleMode.NO_SCALE, to
ensure that the StageAlign and
StageScaleMode classes are imported
(Listing 5-1).

LISTING 5-1: Declaring static variables for the colors blue, green, red, and yellow, and private

variables for the sprites a, b, c, and d in SpriteLayoutApp.as

package
{
 import flash.display.Sprite;
 import flash.display.StageAlign;

continues

FIGURE 5-4: The New ActionScript Mobile Project

dialog for Sprite Layout App

CH005.indd 141CH005.indd 141 09/09/11 9:31 AM09/09/11 9:31 AM

142 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-1 (continued)

 import flash.display.StageScaleMode;

 public class SpriteLayoutApp extends Sprite
 {
 private static const BLUE:int = 0x3399FF;
 private static const GREEN:int = 0x99CC00;
 private static const YELLOW:int = 0xFFCC00;
 private static const RED:int = 0xFF3333;

 private var a:Sprite;
 private var b:Sprite;
 private var c:Sprite;
 private var d:Sprite;

 public function SpriteLayoutApp()
 {
 super();

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;
 }
 }
}

 3. Next add two protected functions called drawSprites() and drawRectangle(). For
drawRectangle() defi ne four parameters for the method. The fi rst parameter should be id,
a string representing the sprite object’s id and name properties. The second should be width,
an integer to represent the width of the sprite. The third parameter should be height, an
integer to set the height of the sprite object, and then lastly color, also an integer to set
the color of the sprite. Then in drawRectangle() create a new sprite object using the
parameters defi ned, and add it to the application (Listing 5-2).

LISTING 5-2: Adding the drawSprite() and drawRectangle() function calls in

SpriteLayoutApp.as

public function SpriteLayoutApp()
{
 super();

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;
}

protected function drawSprites():void {}

protected function drawRectangle(id:String, w:int, h:int, color:int):void

CH005.indd 142CH005.indd 142 09/09/11 9:31 AM09/09/11 9:31 AM

Adapting Content to Stage Size ❘ 143

{
 var sprite:Sprite = new Sprite();
 sprite.name = id;
 sprite.graphics.beginFill(color);
 sprite.graphics.drawRect(0, 0, w, h);
 sprite.graphics.endFill();

 addChild(sprite);
}

 4. In drawSprites() make four calls to drawRectangle(), one for each sprite, assigning
a different color for each. Then in the constructor of SpriteLayoutApp, make a call to
drawSprites() (Listing 5-3).

LISTING 5-3: Initializing sprites a, b, c, and d through the drawSprites() and drawRectangle()

functions in SpriteLayoutApp.as

public function SpriteLayoutApp()
{
 super();

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 drawSprites();
}

protected function drawSprites():void
{
 drawRectangle(“a”, 1, 1, BLUE);
 drawRectangle(“b”, 1, 1, GREEN);
 drawRectangle(“c”, 1, 1, RED);
 drawRectangle(“d”, 1, 1, YELLOW);
}

protected function drawRectangle(id:String, w:int, h:int, color:int):void
{
 var sprite:Sprite = new Sprite();
 sprite.name = id;
 sprite.graphics.beginFill(color);
 sprite.graphics.drawRect(0, 0, w, h);
 sprite.graphics.endFill();

 addChild(sprite);
}

 5. Next register the Event.RESIZE event with stage, and defi ne the private function called
onResize() as the event handler (Listing 5-4).

CH005.indd 143CH005.indd 143 09/09/11 9:31 AM09/09/11 9:31 AM

144 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-4: Assigning Event.RESIZE to the event handler function onResize() in SpriteLayoutApp.as

public function SpriteLayoutApp()
{
 super();

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.addEventListener(Event.RESIZE, onResize);

 drawSprites();
}

private function onResize(e:Event):void {}

 6. In onResize() use a reference to the stage called stageObj to assign the Stage
.stageWidth and the Stage.stageHeight properties from the Event object to two new
functions, sizeComponents() and layoutComponents() (Listing 5-5).

LISTING 5-5: Supplying the stageWidth and stageHeight properties as arguments to the

sizeComponents() and layoutComponents() functions via onResize() in SpriteLayoutApp.as

private function onResize(e:Event):void
{
 var w:int = Stage(e.target).stageWidth;
 var h:int = Stage(e.target).stageHeight;

 sizeComponents(w, h);
 layoutComponents(w, h);
}

private function sizeComponents(stageWidth:int, stageHeight:int):void {}

private function layoutComponents(stageWidth:int, stageHeight:int):void {}

 7. Under the onResize() method add a new function called getSprite() to return one of the
sprites based on its id property (Listing 5-6).

LISTING 5-6: Adding the getSprite() function to retrieve a sprite in SpriteLayoutApp.as

private function onResize(e:Event):void
{
 var w:int = Stage(e.target).stageWidth;
 var h:int = Stage(e.target).stageHeight;

 sizeComponents(w, h);
 layoutComponents(w, h);
}

public function getSprite(id:String):Sprite
{
 return this.getChildByName(id) as Sprite;
}

CH005.indd 144CH005.indd 144 09/09/11 9:31 AM09/09/11 9:31 AM

Adapting Content to Stage Size ❘ 145

 8. In sizeComponents() set the width of sprites a and b to half the stage width. Then set the
height property on both sprites to one third (1/3) of the full screen height (Listing 5-7).

LISTING 5-7: Setting the width and height of sprites a and b via the sizeComponents() function

in SpriteLayoutApp.as

protected function sizeComponents(stageWidth:int, stageHeight:int):void
{
 a = this.getSprite(“a”);
 a.width = stageWidth/2;
 a.height = 1/3 * stageHeight;

 b = this.getSprite(“b”);
 b.width = stageWidth/2;
 b.height = 1/3 * stageHeight;
}

 9. In layoutComponent(), set the x and y coordinates of sprite a to 0. And then set the y
position of sprite b to 0 and the x position to where sprite a ends. This should be calculated
by retrieving the x and width properties of sprite a (Listing 5-8).

LISTING 5-8: Setting the x and y positions of sprites a and b via the layoutComponents()

function in SpriteLayoutApp.as

protected function layoutComponents(stageWidth:int, stageHeight:int):void
{
 a = this.getSprite(“a”);
 a.x = 0;
 a.y = 0;

 b = this.getSprite(“b”);
 b.x = a.x + a.width;
 b.y = 0;
}

 10. If you run the application you should now see the two
sprites adjacent to each other (Figure 5-5).

 11. Next, in sizeComponents(), set the width property
on sprites c and d to be equal to the full width of the
stage. Then for sprite d set the height equal to
one-sixth of the stage height and exactly half the height
of sprites a and b. Then for sprite c set the height
property to be the remainder of the space available in
view (Listing 5-9).

FIGURE 5-5: Spr ites a and

b in the portrait layout for

SpriteLayoutApp

CH005.indd 145CH005.indd 145 09/09/11 9:31 AM09/09/11 9:31 AM

146 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-9: Setting the width and height of sprites c and d via the sizeComponents() function

in SpriteLayoutApp.as

protected function sizeComponents(stageWidth:int, stageHeight:int):void
{
 a = this.getSprite(“a”);
 a.width = stageWidth/2;
 a.height = 1/3 * stageHeight;

 b = this.getSprite(“b”);
 b.width = stageWidth/2;
 b.height = 1/3 * stageHeight;

 c = this.getSprite(“c”);
 c.width = stageWidth;
 c.height = stageHeight - (1/3 * stageHeight) - (1/6 * stageHeight);

 d = this.getSprite(“d”);
 d.width = stageWidth;
 d.height = 1/6 * stageHeight;
 }

 12. In layoutComponents() set the x property of sprites c and d to 0. Set the y property of
sprite c to where sprite b ends. Then set the y property of sprite d to the full height of the
stage, less the height of the sprite (Listing 5-10).

LISTING 5-10: Setting the x and y positions of sprites c and d via the layoutComponents()

function in SpriteLayoutApp.as

protected function layoutComponents(stageWidth:int, stageHeight:int):void
{
 a = this.getSprite(“a”);
 a.x = 0;
 a.y = 0;

 b = this.getSprite(“b”);
 b.x = a.x + a.width;
 b.y = 0;

 c = this.getSprite(“c”);
 c.x = 0;
 c.y = b.y + b.height;

 d = this.getSprite(“d”);
 d.x = 0;
 d.y = stageHeight - d.height;
}

 13. If you run the application you should now see each of the
sprites arranged correctly as shown earlier in the Portrait
view (Figure 5-6).

FIGURE 5-6: Sprites a, b, c, and

d in the portrait layout for Sprite

Layout App

CH005.indd 146CH005.indd 146 09/09/11 9:31 AM09/09/11 9:31 AM

Adapting Content to Stage Size ❘ 147

Next take a look at how the code will change for a landscape mode.

 14. In sizeComponents() wrap the current code in an if statement to ensure that the code
executes when stageHeight is greater than stageWidth (Listing 5-11).

LISTING 5-11: Determining whether the stageWidth property is less or greater than the

stageHeight property via the sizeComponents() function in SpriteLayoutApp.as

protected function sizeComponents(stageWidth:int, stageHeight:int):void
{
 if(stageWidth < stageHeight)
 {
 a = this.getSprite(“a”);
 a.width = stageWidth/2;
 a.height = 1/3 * stageHeight;

 b = this.getSprite(“b”);
 b.width = stageWidth/2;
 b.height = 1/3 * stageHeight;

 c = this.getSprite(“c”);
 c.width = stageWidth;
 c.height = stageHeight - (1/3 * stageHeight) - (1/6 * stageHeight);

 d = this.getSprite(“d”);
 d.width = stageWidth;
 d.height = 1/6 * stageHeight;

 } else if(stageWidth > stageHeight) {

 }
}

 15. Next determine what happens when stageWidth is greater than stageHeight. Set the
width property on sprites a, b, and c to equal half the width of the stage, and then for
sprite d set the width to the full stage width. For sprite d set the height property to
one-sixth of the full stage. Then for sprites a and b set the height property to equal half
the stage height minus the height of sprite d. For sprite d set the height to equal one-sixth
of the stage height. And then for sprite c set the height to be the remainder of the space
available in view (Listing 5-12).

LISTING 5-12: Setting the width and height of sprites a, b, c, and d when the stageWidth property is

greater than the stageHeight property via the sizeComponents() function in SpriteLayoutApp.as

protected function sizeComponents(stageWidth:int, stageHeight:int):void
{
 if(stageWidth < stageHeight)
 {

continues

CH005.indd 147CH005.indd 147 09/09/11 9:31 AM09/09/11 9:31 AM

148 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-12 (continued)

 a = this.getSprite(“a”);
 a.width = stageWidth/2;
 a.height = 1/3 * stageHeight;

 b = this.getSprite(“b”);
 b.width = stageWidth/2;
 b.height = 1/3 * stageHeight;

 c = this.getSprite(“c”);
 c.width = stageWidth;
 c.height = stageHeight - (1/3 * stageHeight) - (1/6 * stageHeight);

 d = this.getSprite(“d”);
 d.width = stageWidth;
 d.height = 1/6 * stageHeight;

 } else if(stageWidth > stageHeight) {

 a = this.getSprite(“a”);
 a.width = stageWidth/2;
 a.height = stageHeight/2 - (1/6 * stageHeight)/2;

 b = this.getSprite(“b”);
 b.width = stageWidth/2;
 b.height = stageHeight/2 - (1/6 * stageHeight)/2;

 c = this.getSprite(“c”);
 c.width = stageWidth/2;
 c.height = stageHeight - (1/6 * stageHeight);

 d = this.getSprite(“d”);
 d.width = stageWidth;
 d.height = 1/6 * stageHeight;
 }
}

 16. Similarly in layoutComponents() wrap the current code in an if statement to ensure
that the code executes when stageHeight is greater than stageWidth. Then add the
else if portion of the if() statement to determine what happens when stageWidth is
greater than stageHeight. Here set the x property on sprites a, b, and d to 0. For
sprite c set the x property to half the stageWidth. Then set the y property on sprites
a and c to 0. Then for sprite b set the y property to where the height of sprite b ends.
For sprite d set the y property to the full height of the stage, less the height of the
sprite (Listing 5-13).

CH005.indd 148CH005.indd 148 09/09/11 9:31 AM09/09/11 9:31 AM

Adapting Content to Stage Size ❘ 149

LISTING 5-13: Setting the x and y positions for sprites a, b, c, and d when the stageWidth property is

greater than the stageHeight property via the layoutComponents() function in SpriteLayoutApp.as

protected function layoutComponents(stageWidth:int, stageHeight:int):void
{
 if(stageWidth < stageHeight)
 {
 a = this.getSprite(“a”);
 a.x = 0;
 a.y = 0;

 b = this.getSprite(“b”);
 b.x = a.x + a.width;
 b.y = 0;

 c = this.getSprite(“c”);
 c.x = 0;
 c.y = b.y + b.height;

 d = this.getSprite(“d”);
 d.x = 0;
 d.y = stageHeight - d.height;

 } else if(stageWidth > stageHeight) {

 a = this.getSprite(“a”);
 a.x = 0;
 a.y = 0;

 b = this.getSprite(“b”);
 b.x = 0
 b.y = a.y + a.height;

 c = this.getSprite(“c”);
 c.x = a.x + a.width;
 c.y = 0;

 d = this.getSprite(“d”);
 d.x = 0;
 d.y = stageHeight - d.height;
 }
}

 17. Run the project once again. You will see the portrait layout when it launches in the adl
window.

To see the landscape layout, use the adl menu and select Device ➪ Rotate Right (Figure 5-7).

The Landscape view should now be displayed (Figure 5-8).

CH005.indd 149CH005.indd 149 09/09/11 9:31 AM09/09/11 9:31 AM

150 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

There are a number of things going on in this project. First, to give an appreciation of the differences
in layout, the app simply draws four sprites to the screen, then uses two functions to address resizing
and aligning assets.

Resizing Assets

When the stage initializes, the resize event handler onResize() calls two functions, sizeComponents()
followed by layoutComponents(). Each method is passed two arguments from the Stage object,
Stage.stageWidth and Stage.stageHeight.

Both arguments are used to calculate the sizes of each of the sprites added to the view in
SpriteLayoutApp.

 Of course, the sizing of each sprite in this case is totally dependent on the design of the layout. For
instance, both sprites a and b needed to occupy half the full width of the stage, and their heights
are calculated to be a third of the height of the stage. Sprite c occupies the full stage width and
calculates the vertical space left, taking into consideration the height of sprite d, which in turn
occupies one-sixth of the full height of the stage.

When the screen is resized, all the measurements will be relative to the Stage object’s stageWidth
and stageHeight properties. And so on different screens with various pixel densities, the sprites
will occupy the same space.

When creating Flex mobile applications, it is recommended that you use the systemManager
.screen.width and systemManager.screen.height properties to retrieve the device’s width and

FIGURE 5-7: Using the adl menu

to rotate the device in Sprite

Layout App

FIGURE 5-8: Sprites a, b, c, and d in the landscape

layout for Sprite Layout App

CH005.indd 150CH005.indd 150 09/09/11 9:31 AM09/09/11 9:31 AM

Handling Device Orientation ❘ 151

height, respectively, while an application is running. This method is employed when you build the
Flex example later.

Aligning Assets

To align the sprites correctly a number of techniques have been employed.

First, sprite a is absolutely positioned. Because sprite a will always be in the top left-hand corner
of the screen, its x and y properties are set to 0. Sprites b and c both apply absolute and relative
positioning, as their positioning can be calculated by using the positions of other assets, in
particular sprite a. So the position is relative with respect to setting the y properties, and absolute
with respect to setting the x properties.

For sprite b, the y position is hard-coded to 0, while its x position is calculated based on the position
and width of sprite a. For sprite c, the x position is hard-coded to 0, while its y position is calculated
based on the height of sprite a.

Finally, for sprite d a slightly different approach was taken to calculate its y position. In the design
for the layout the sprite is sitting at the very bottom of the stage. Thus, the y value for sprite d is
calculated by subtracting the height of the actual sprite from the full stage height.

HANDLING DEVICE ORIENTATION

Next take a look at how you can receive notifi cations for an update in device orientation. These
events are triggered when a user manually changes the orientation of a device, between landscape
and portrait.

In the AIR Application Descriptor fi le, one of the settings found in the <initialWindow> node is
the <autoOrients> property, as shown in the following snippet:

<autoOrients>true</autoOrients>

This tells the mobile application whether to allow auto orientation. Here it is set to true, and so the
application’s content can rotate. When this is set to false, the application will be prevented from
rotating its content, and, in turn, will stay in its initial aspect ratio. So, if an application is initialized
with the stage width set less than the stage height, that is, portrait, it will remain like this even when
a user rotates the device.

When the <autoOrient> setting is set to true, the user can rotate a device, which will have an
impact on the application’s design. Retrieving the device’s width and height, you have the best
option for laying out items precisely, especially when the stage resizes.

Some applications may also need to know what the device’s screen orientation is to determine how
the application needs to lay out the particular assets it contains.

Two classes must be used to detect device orientation changes: StageOrientation and
StageOrientationEvent.

CH005.indd 151CH005.indd 151 09/09/11 9:31 AM09/09/11 9:31 AM

152 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

Using the StageOrientation Class

The StageOrientation class has several constants that contain possible values that describe a
device’s orientation. The following list details the possible options:

 ➤ StageOrientation.DEFAULT: The default stage orientation.

 ➤ StageOrientation.ROTATED_LEFT: The stage has been rotated left.

 ➤ StageOrientation.ROTATED_RIGHT: The stage has been rotated right.

 ➤ StageOrientation.UNKNOWN: An unknown stage orientation.

 ➤ StageOrientation.UPSIDE_DOWN: The stage has been turned upside down.

The device’s orientation can be retrieved from the Stage object’s read-only property
deviceOrientation, and when an application launches, this will be set to StageOrientation
.DEFAULT.

Using the StageOrientationEvent Class

The StageOrientationEvent class has two event types:

 ➤ StageOrientationEvent.ORIENTATION_CHANGE: The stage orientation has changed.

 ➤ StageOrientationEVENT.ORIENTATION_CHANGING: The stage is in the process of changing
orientation.

To detect when the deviceOrientation property is updated, you need to register an event listener
for the StageOrientationEvent.ORIENTATION_CHANGE event type on the Stage object.

TRY IT OUT Handling Device Orientation Changes

The following steps will guide you through how to display device orientation changes in the Sprite
Layout App.

 1. Above the constructor for SpriteLayoutApp.as, add a new private variable called
spriteOrientation of TextField type (Listing 5-14).

LISTING 5-14: Adding a TextField component to display the stage orientation in

SpriteLayoutApp.as

private static const BLUE:int = 0x3399FF;
private static const GREEN:int = 0x99CC00;
private static const YELLOW:int = 0xFFCC00;
private static const RED:int = 0xFF3333;

private var a:Sprite;
private var b:Sprite;
private var c:Sprite;
private var d:Sprite;

private var stageOrientation:TextField;

CH005.indd 152CH005.indd 152 09/09/11 9:31 AM09/09/11 9:31 AM

Handling Device Orientation ❘ 153

 2. Under drawSprites() add a protected function called addTxt(), to initialize stageOrientation.
Assign it a new TextFormat and then add it to the stage (Listing 5-15).

LISTING 5-15: Adding the addTxt() method in SpriteLayoutApp.as

protected function drawSprites():void
{
 drawRectangle(“a”, 1, 1, BLUE);
 drawRectangle(“b”, 1, 1, GREEN);
 drawRectangle(“c”, 1, 1, RED);
 drawRectangle(“d”, 1, 1, YELLOW);
}

protected function addTxt():void
{
 var tF:TextFormat = new TextFormat();

 stageOrientation = new TextField();
 stageOrientation.setTextFormat(tF);
 stageOrientation.text = “”;

 addChild(stageOrientation);
}

 3. In the constructor for SpriteLayoutApp.as following the drawSprites(), make a call to
addTxt() (Listing 5-16).

LISTING 5-16: Calling addTxt() via the SpriteLayoutApp class constructor in SpriteLayoutApp.as

public function SpriteLayoutApp()
{
 super();

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.addEventListener(Event.RESIZE, onResize);

 drawSprites();
 addTxt();
}

 4. Next add an event listener for the StageOrientationEvent.ORIENTATION_CHANGE event
type, and assign it to a new private function called onOrientationChange(). Then in
onOrientationChange(), assign the StageOrientationEvent object’s deviceOrientation
property to the text property on stageOrientation (Listing 5-17).

CH005.indd 153CH005.indd 153 09/09/11 9:31 AM09/09/11 9:31 AM

154 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-17: Assigning StageOrientationEvent.ORIENTATION_CHANGE to the event handler

function onOrientationChange() in SpriteLayoutApp.as

public function SpriteLayoutApp()
{
 super();

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.addEventListener(Event.RESIZE, onResize);
 stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,
 onOrientationChange);

 drawSprites();
 addTxt();
}

private function onOrientationChange(e:StageOrientationEvent):void
{
 stageOrientation.text = e.target.deviceOrientation;
}

 5. Run the project using either a device or
desktop run confi guration. When the Sprite
Layout App is initialized you see each of the
sprites arranged as before.

When you use a device run confi guration,
rotate the device and you will see the
deviceOrientation property displayed.

When you use a desktop run confi guration
you can use the adl menu to simulate rotating
the device physically. Select Device ➪ Rotate
Left to rotate the device to the left, or select
Device ➪ Rotate Right to rotate the device to
the right.

The result of rotating the device right is
shown in Figure 5-9.

USING LAYOUTS IN FLEX

As mentioned in Chapter 1, the Flex framework provides a lot of functionality when it comes to
laying out components and resizing elements in an application.

In this section you’ll take a look at applying the design of the layout in portrait and landscape using
elements of the Flex framework, and create a second project in Flash Builder called Sprite Layout
Flex App.

FIGURE 5-9: The deviceOrientation property being

displayed in the landscape layout design for Sprite

Layout App

CH005.indd 154CH005.indd 154 09/09/11 9:31 AM09/09/11 9:31 AM

Using Layouts in Flex ❘ 155

The layout created in the Sprite Layout App project can quite easily be replicated using a
combination of the MXML declarations, containers, and components, including <s:layout>,
<s:VerticalLayout>, <s:HorizontalLayout>, <s:HGroup>, <s:VGroup>, and <s:Group>.

Aligning Items in Group Containers

As mentioned earlier, each of the group containers <s:Group>, <s:HGroup>, and <s:VGroup> allows
nesting of visual assets within an application and effectively designating the fl ow of items.

Nesting items in a <s:HGroup> container allows items to be aligned horizontally, and in the
following snippet you will see two sprites, represented by the <s:Graphic> tags, horizontally
aligned:

<s:HGroup>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x3399FF”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x99CC00”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:HGroup>

Each sprite is rendered with a width and height of 150 pixels. The <s:Graphic> element nests a
series of elements. The fi rst <s:Rect> draws a rectangle and is the equivalent of the Graphics
.drawRectangle() method used for rendering the sprites earlier. Within the <s:Rect> a number of
style properties can be defi ned; here the <s:fill> declaration nests a <s:solidColor>, the color
of the sprite.

When nesting items in a <s:VGroup> container you can place items vertically, and in the following
snippet you’ll see an example of the same two sprites, each with a different color assigned, aligned
vertically:

<s:VGroup>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x3399FF”>
 </s:fill>

CH005.indd 155CH005.indd 155 09/09/11 9:31 AM09/09/11 9:31 AM

156 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x99CC00”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:VGroup>

A number of attributes in the <s:HGroup> and <s:VGroup> containers can affect the layout
rendering, including:

 ➤ direction: Sets the directional fl ow of items in a container

 ➤ gap: Assigns spacing between each item

 ➤ paddingBottom: Assigns padding to the bottom of the container

 ➤ paddingLeft: Assigns padding to the left of the container

 ➤ paddingRight: Assigns padding to the right of the container

 ➤ paddingTop: Assigns padding to the top of the container

 ➤ verticalAlign: Vertically aligns items within the container

 ➤ horizontalAlign: Horizontally aligns items within the container.

Setting the direction property allows you to defi ne how the items in the containers should be
rendered. Specifying ltr means that the container will render items from left to right; specifying
rtl means items will be rendered from right to left. The following snippet demonstrates reversing
the default fl ow of items in the <s:HGroup> container, which by default renders items from left
to right:

<s:HGroup direction=”rtl”>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x3399FF”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x99CC00”>
 </s:fill>

CH005.indd 156CH005.indd 156 09/09/11 9:31 AM09/09/11 9:31 AM

Using Layouts in Flex ❘ 157

 </s:Rect>
 </s:Graphic>

</s:HGroup>

Setting the gap property on the container allows you to set the spacing between each item. This is a
pixel measurement. The gap property represents the vertical gap set between items in a <s:VGroup>
container, and the horizontal gap for items in a <s:HGroup> container.

In the following snippet the vertical gap for <s:VGroup> is set to 10 pixels:

<s:VGroup gap=”10”>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x3399FF”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x99CC00”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:VGroup>

Applying the <s:HGroup> and <s:VGroup> Containers in the Portrait

Layout of Sprite Layout App

Returning to the Sprite Layout App, remember that both sprites a and b in the Portrait view need
to be horizontally aligned, and so they can be placed in a <s:HGroup> container, as shown in the
following snippet:

<s:HGroup gap=”10”>

 <s:Graphic>
 <s:Rect id=”a” width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x3399FF”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect id=”b” width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x99CC00”>

CH005.indd 157CH005.indd 157 09/09/11 9:31 AM09/09/11 9:31 AM

158 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:HGroup>

Because sprite c needs to be placed underneath sprites a and b, these items can all be placed in
a <s:VGroup> container, nesting the <s:HGroup> containing sprites a and b, as shown in the
following snippet:

<s:VGroup gap=”10”>

 <s:HGroup gap=”10”>

 <s:Graphic>
 <s:Rect id=”a” width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x3399FF”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect id=”b” width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x99CC00”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 </s:HGroup>

 <s:Graphic>
 <s:Rect id=”c” width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0xFFCC00”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:VGroup>

Both sprites c and d also are vertically aligned in the Portrait view, and so they can be aligned in the
same <s:VGroup> container:

<s:VGroup gap=”10”>

 <s:HGroup gap=”10”>

 <s:Graphic>
 <s:Rect id=”a” width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x3399FF”>
 </s:fill>

CH005.indd 158CH005.indd 158 09/09/11 9:31 AM09/09/11 9:31 AM

Using Layouts in Flex ❘ 159

 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect id=”b” width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x99CC00”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 </s:HGroup>

 <s:Graphic>
 <s:Rect id=”c” width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0xFFCC00”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect id=”d” width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0xFF3333”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:VGroup>

The main problem with nesting the items in <s:HGroup> and <s:VGroup> containers is that if and
when the layout needs to change, whether it is through resizing or changes in device orientation,
each of the items will be aligned incorrectly. When using the group containers there’s no easy way to
change the alignment at run time.

For instance sprites a and b, which are nested in the <s:HGroup>, will not be vertically aligned when
the orientation changes to the Landscape view. Also, sprite c will remain nested in the <s:VGroup>
and so will not be horizontally aligned in the Landscape view. For this you will need to utilize the
<s:layout> declaration.

Using Layout Declarations within Containers

An alternative approach to laying out items in a view is to use <s:Group> containers and specify a
<s:layout> declaration.

The following snippet demonstrates how you can use the <s:HorizontalLayout> declaration to
specify that elements should be arranged horizontally, without using a <s:HGroup> container:

<s:Group>

 <s:layout>
 <s:HorizontalLayout/>

CH005.indd 159CH005.indd 159 09/09/11 9:31 AM09/09/11 9:31 AM

160 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

 </s:layout>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x3399FF”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x99CC00”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:Group>

In the following snippet, the <s:VerticalLayout> declaration is being applied to a <s:Group>
container:

<s:Group>

 <s:layout>
 <s:VerticalLayout/>
 </s:layout>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x3399FF”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x99CC00”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:Group>

Using States to Change the Layout of a Container at Run Time

Different layouts can be applied in applications with the help of states, and using the <s:State>
declaration. Consider the portrait and Landscape views of Sprite Layout App. To defi ne these as
individual states you specify them in the <fx:Declarations> block of a view, as shown in the
following snippet:

CH005.indd 160CH005.indd 160 09/09/11 9:31 AM09/09/11 9:31 AM

Using Layouts in Flex ❘ 161

<fx:Declarations>
 <s:State name=”portrait”>
 <s:State name=”landscape”>
</fx:Declarations>

In the context of layouts, the <s:State> declaration allows you to apply a state for any particular
<s:layout> declaration in a view. In the following snippet the items nested in the <s:Group>
container will be vertically aligned when the portrait state is active in the view, but horizontally
aligned when the landscape state is active:

<s:Group>

 <s:layout.portrait>
 <s:VerticalLayout/>
 </s:layout.portrait>

 <s:layout.landscape>
 <s:HorizontalLayout/>
 </s:layout.landscape>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x3399FF”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect width=”150” height=”150”>
 <s:fill>
 <s:solidColor color=”0x99CC00”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:Group>

Notice here that in order to specify the state in which a layout should be applied, the state
name, preceded by a period (.), is added after the layout. Thus, referring to the preceding code
snippet, <s:layout.portrait> allows rendering the <s:VerticalLayout> container in the
portrait state, and <s:layout.landscape> allows rendering the <s:HorizontalLayout> in
the landscape state.

To set the state of the application you need to set the currentState property of the view. In the
following snippet you see that the landscape state is set for the application:

currentState = “landscape”;

In the next section you’ll take a look at creating the Sprite Layout Flex App, which demonstrates the
use of states in this context.

CH005.indd 161CH005.indd 161 09/09/11 9:31 AM09/09/11 9:31 AM

162 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

TRY IT OUT Using Group Containers to Create the Sprite Layout Flex App

The following steps will guide you through re-creating the Sprite Layout App, this time using Flex
and the Flash Debug Perspective. First take a look at utilizing breakpoints in the Source view:

 1. In Flash Builder create a new Flex Mobile project and call it SpriteLayoutFlexApp (Figure 5-10).

FIGURE 5-10: Defi ning the Sprite Layout Flex App project in

Flash Builder

 2. In SpriteLayoutFlexAppHome.mxml, set the actionBarVisible property of the view to false
and the tabBarVisible property to false. Then assign the onCreationComplete() stub to the
creationComplete property. Also defi ne each of the colors for the sprites (Listing 5-18).

LISTING 5-18: Setting the actionBarVisible and tabBarVisible properties, defi ning variables for

the colors in SpriteLayoutFlexAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 actionBarVisible=”false”
 tabBarVisible=”false”

CH005.indd 162CH005.indd 162 09/09/11 9:31 AM09/09/11 9:31 AM

Using Layouts in Flex ❘ 163

 creationComplete=”onCreationComplete()”
 title=”Home”>

 <fx:Script>
 <![CDATA[

 private static const BLUE:int = 0x3399FF;

 private static const GREEN:int = 0x99CC00;

 private static const YELLOW:int = 0xFFCC00;

 private static const RED:int = 0xFF3333;

 protected function onCreationComplete():void {}

]]>
 </fx:Script>
</s:View>

 3. In onCreationComplete() add an event listener for the Event.ADDED_TO_STAGE event,
assigning onAddedToStage() as the event handler. Then in onAddedToStage() assign the
StageOrientationEvent.ORIENTATION_CHANGE event to the stage, with the method stub
onOrientationChange() as the event handler (Listing 5-19).

LISTING 5-19: Adding event handlers for the ADDED_TO_STAGE and the

ORIENTATION_CHANGE events in SpriteLayoutFlexAppHome.mxml

protected function onCreationComplete():void
{
 this.addEventListener(Event.ADDED_TO_STAGE, onAddedToStage);
}

private function onAddedToStage(e:Event):void
{
 e.target.stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,
 onOrientationChange);
}

private function onOrientationChange(e:StageOrientationEvent):void {}

 4. Following the closing <fx:Script> tag, add a <s:Group> container with the two <s:Rect>
sprites for a and b (Listing 5-20).

LISTING 5-20: Defi ning <s:Rect> a and b components and adding them to a <s: Group>

container in SpriteLayoutFlexAppHome.mxml

<fx:Script>
 <![CDATA[

continues

CH005.indd 163CH005.indd 163 09/09/11 9:31 AM09/09/11 9:31 AM

164 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-20 (continued)

 private static const BLUE:int = 0x3399FF;

 private static const GREEN:int = 0x99CC00;

 private static const YELLOW:int = 0xFFCC00;

 private static const RED:int = 0xFF3333;

 private function onCreationComplete():void {}

]]>
</fx:Script>

<s:Group>

 <s:Graphic>
 <s:Rect id=”a”>
 <s:fill>
 <s:solidColor color=”{BLUE}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect id=”b”>
 <s:fill>
 <s:solidColor color=”{GREEN}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:Group>

 5. Add the <s:Rect> for sprite c to the view and nest it within a <s:Group> container (Listing 5-21).

LISTING 5-21: Defi ning <s:Rect> c and adding it to a <s:Group> container in

SpriteLaypoutFlexAppHome.mxml

<s:Group>

 <s:Group>

 <s:Graphic>
 <s:Rect id=”a”>
 <s:fill>
 <s:solidColor color=”{BLUE}”>
 </s:fill>
 </s:Rect>

CH005.indd 164CH005.indd 164 09/09/11 9:31 AM09/09/11 9:31 AM

Using Layouts in Flex ❘ 165

 </s:Graphic>

 <s:Graphic>
 <s:Rect id=”b”>
 <s:fill>
 <s:solidColor color=”{GREEN}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 </s:Group>

 <s:Graphic>
 <s:Rect id=”c”>
 <s:fill>
 <s:solidColor color=”{YELLOW}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:Group>

 6. Add the <s:Rect> for sprite d to the view and nest it within a <s:Group> container (Listing 5-22).

LISTING 5-22: Defi ning <s:Rect> d and adding it to a <s:Group> container in

SpriteLaypoutFlexAppHome.mxml

<s:Group>

 <s:Group>

 <s:Group>

 <s:Graphic>
 <s:Rect id=”a”>
 <s:fill>
 <s:solidColor color=”{BLUE}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect id=”b”>
 <s:fill>
 <s:solidColor color=”{GREEN}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 </s:Group>

 <s:Graphic>

continues

CH005.indd 165CH005.indd 165 09/09/11 9:31 AM09/09/11 9:31 AM

166 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-22 (continued)

 <s:Rect id=”c”>
 <s:fill>
 <s:solidColor color=”{YELLOW}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 </s:Group>

 <s:Graphic>
 <s:Rect id=”d”>
 <s:fill>
 <s:solidColor color=”{RED}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:Group>

 7. Underneath each opening <s:Group> tag, add a <s:layout> declaration with a nesting
<s:VerticalLyout>. Set the gap property on the <s:VerticalLayout> to 0 (Listing 5-23).

LISTING 5-23: Adding <s:layout> declarations to the view in SpriteLayoutFlexAppHome.mxml

<s:Group>

 <s:layout>
 <s:VerticalLayout gap=”0”/>
 </s:layout>

 <s:Group>

 <s:layout>
 <s:VerticalLayout gap=”0”/>
 </s:layout>

 <s:Group>

 <s:layout>
 <s:VerticalLayout gap=”0”/>
 </s:layout>

 <s:Graphic>
 <s:Rect id=”a”>
 <s:fill>
 <s:solidColor color=”{BLUE}”>
 </s:fill>
 </s:Rect>

CH005.indd 166CH005.indd 166 09/09/11 9:31 AM09/09/11 9:31 AM

Using Layouts in Flex ❘ 167

 </s:Graphic>

 <s:Graphic>
 <s:Rect id=”b”>
 <s:fill>
 <s:solidColor color=”{GREEN}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 </s:Group>

 <s:Graphic>
 <s:Rect id=”c”>
 <s:fill>
 <s:solidColor color=”{YELLOW}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 </s:Group>

 <s:Graphic>
 <s:Rect id=”d”>
 <s:fill>
 <s:solidColor color=”{RED}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

</s:Group>

 8. Next add two <s:State> declarations to the view within the <fx:Declarations> blocks called
portrait and landscape (Listing 5-24).

LISTING 5-24: Defi ning the portrait and landscape states for the view in

SpriteLayoutFlexAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 actionBarVisible=”false”
 tabBarVisible=”false”
 creationComplete=”onCreationComplete()”
 title=”Home”>

 <fx:Declarations>
 <s:State name=”portrait”/>
 <s:State name=”landscape”/>
 </fx:Declarations>

CH005.indd 167CH005.indd 167 09/09/11 9:31 AM09/09/11 9:31 AM

168 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

 9. For each of the <s:layout> defi nitions specify the portrait state, updating the MXML tags to
<s:layout.landscape> (Listing 5-25).

LISTING 5-25: Updating the <s:layout> declaration in SpriteLayoutFlexAppHome.mxml

<s:Group>

 <s:layout.portrait>
 <s:VerticalLayout gap=”0”/>
 </s:layout.portrait>

 <s:Group>

 <s:layout.portrait>
 <s:VerticalLayout gap=”0”/>
 </s:layout.portrait>

 <s:Group>

 <s:layout.portrait>
 <s:VerticalLayout gap=”0”/>
 </s:layout.portrait>

 <s:Graphic>
 <s:Rect id=”a”>
 <s:fill>
 <s:solidColor color=”{BLUE}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 10. Copy the sizeComponents() function that was completed in Listing 5-12, the earlier project,
into SpriteLayoutFlexAppHome.mxml. You will need to remove each of the getSprite() calls
(Listing 5-26).

LISTING 5-26: Adding the sizeComponents() method in SpriteLayoutFlexAppHome.mxml

protected function sizeComponents(stageWidth:int, stageHeight:int):void
{
 if(stageWidth < stageHeight)
 {
 a.width = stageWidth/2;
 a.height = 1/3 * stageHeight;

 b.width = stageWidth/2;
 b.height = 1/3 * stageHeight;

 c.width = stageWidth;

CH005.indd 168CH005.indd 168 09/09/11 9:31 AM09/09/11 9:31 AM

Using Layouts in Flex ❘ 169

 c.height = stageHeight - (1/3 * stageHeight) - (1/6 * stageHeight);

 d.width = stageWidth;
 d.height = 1/6 * stageHeight;

 } else if(stageWidth > stageHeight) {

 a.width = stageWidth/2;
 a.height = stageHeight/2 - (1/6 * stageHeight)/2;

 b.width = stageWidth/2;
 b.height = stageHeight/2 - (1/6 * stageHeight)/2;

 c.width = stageWidth/2;
 c.height = stageHeight - (1/6 * stageHeight);

 d.width = stageWidth;
 d.height = 1/6 * stageHeight;
 }
}

 11. In the onAddedToStage() and onOrientationChange() methods, make a call to sizeComponents(),
supplying the systemManager.screen.width and systemManager.screen.height properties as
arguments (Listing 5-27).

LISTING 5-27: Calling the sizeComponents() method from within onAddedToStage()

and onOrientationChange() in SpriteLayoutFlexAppHome.mxml

private function onAddedToStage(e:Event):void
{
 e.target.stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,
 onOrientationChange);

 sizeComponents(systemManager.screen.width, systemManager.screen.height);
}

private function onOrientationChange(e:StageOrientationEvent):void
{
 sizeComponents(systemManager.screen.width, systemManager.screen.height);
}

 12. Next add three more <s:layout> declarations to the view for when the application state
changes to landscape. Underneath each of the existing <s:layout.portrait> declarations,
add a <s:layout.landscape> declaration. In the outermost <s:Group> container, the
layout should be defi ned as a <s:VerticalLayout>. The other two declarations should be
<s:HorizontalLayout>. Again set the gap property to 0 (Listing 5-28).

CH005.indd 169CH005.indd 169 09/09/11 9:31 AM09/09/11 9:31 AM

170 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

LISTING 5-28: Adding <s:layout.landscape> layout declarations in

SpriteLayoutFlexAppHome.mxml

<s:Group>

 <s:layout.portrait>
 <s:VerticalLayout gap=”0”/>
 </s:layout.portrait>

 <s:layout.landscape>
 <s:VerticalLayout gap=”0”/>
 </s:layout.landscape>

 <s:Group>

 <s:layout.portrait>
 <s:VerticalLayout gap=”0”/>
 </s:layout.portrait>

 <s:layout.landscape>
 <s:HorizontalLayout gap=”0”/>
 </s:layout.landscape>

 <s:Group>

 <s:layout.portrait>
 <s:VerticalLayout gap=”0”/>
 </s:layout.portrait>

 <s:layout.landscape>
 <s:HorizontalLayout gap=”0”/>
 </s:layout.landscape>

 <s:Graphic>
 <s:Rect id=”a”>
 <s:fill>
 <s:solidColor color=”{BLUE}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 <s:Graphic>
 <s:Rect id=”b”>
 <s:fill>
 <s:solidColor color=”{GREEN}”>
 </s:fill>
 </s:Rect>
 </s:Graphic>

 </s:Group>

CH005.indd 170CH005.indd 170 09/09/11 9:31 AM09/09/11 9:31 AM

Using Layouts in Flex ❘ 171

 13. Last, set the currentState property of the view to portrait when the stageWidth is less than
the stageHeight, and set it to landscape when the stageWidth is more than the stageHeight
(Listing 5-29).

LISTING 5-29: Setting the currentState property on the view via the sizeComponents() method

in SpriteLayoutFlexAppHome.mxml

protected function sizeComponents(stageWidth:int, stageHeight:int):void
{
 if(stageWidth < stageHeight)
 {
 currentState = “portrait”;

 a.width = stageWidth/2;
 a.height = 1/3 * stageHeight;

 b.width = stageWidth/2;
 b.height = 1/3 * stageHeight;

 c.width = stageWidth;
 c.height = stageHeight - (1/3 * stageHeight) - (1/6 * stageHeight);

 d.width = stageWidth;
 d.height = 1/6 * stageHeight;

 } else if(stageWidth > stageHeight) {

 currentState = “landscape”;

 a.width = stageWidth/2;
 a.height = stageHeight/2 - (1/6 * stageHeight)/2;

 b.width = stageWidth/2;
 b.height = stageHeight/2 - (1/6 * stageHeight)/2;

 c.width = stageWidth/2;
 c.height = stageHeight - (1/6 * stageHeight);

 d.width = stageWidth;
 d.height = 1/6 * stageHeight;
 }
}

 14. Run the Sprite Layout Flex App using the desktop run confi guration.

You should see the Portrait view (Figure 5-11) and Landscape view (Figure 5-12) exactly as
defi ned in the design of the application.

CH005.indd 171CH005.indd 171 09/09/11 9:31 AM09/09/11 9:31 AM

172 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

The main benefi t to using the state approach with the <s:layout> declaration and the <s:Group>
containers is that less ActionScript code is required to make the changes to the arrangement of items.

You can also visually see what items should be visible and in which state when you view the States
view in the Source view of the Flash Perspective in Flash Builder. In Figure 5-13 you will see the
default Source view, which displays the code for all states.

FIGURE 5-11: Sprites a, b, c, and

d in the portrait layout for Sprite

Layout Flex App

FIGURE 5-12: Sprites a, b, c, and d in the landscape

layout for Sprite Layout Flex App

FIGURE 5-13: Displaying all states in the Source view of Sprite Layout Flex App

CH005.indd 172CH005.indd 172 09/09/11 9:31 AM09/09/11 9:31 AM

Using Layouts in Flex ❘ 173

In Figure 5-14 you will see the Portrait view source, which displays only the MXML that is
applicable to the Portrait view.

FIGURE 5-14: Displaying the portrait state in the Source view of Sprite Layout Flex App

Lastly in Figure 5-15 you will see the Landscape Source view, which displays only the MXML that
is applicable to the application when the landscape state is active.

FIGURE 5-15: Displaying the landscape state in the Source view of Sprite Layout

Flex App

All in all, states provide a neat feature in the Flash Builder IDE to allow you to develop for multiple
screen sizes without the need to provide excessive code.

CH005.indd 173CH005.indd 173 09/09/11 9:31 AM09/09/11 9:31 AM

174 ❘ CHAPTER 5 DEVELOPING FOR MULTIPLE SCREEN SIZES

SUMMARY

In this chapter you explored a number of topics relating to how you can develop for multiple screen
sizes using both ActionScript and Flex.

First you took a look at understanding the differences between screen size and screen resolution,
and how the screen DPI can affect how assets are drawn to the screen.

You also examined aspects of the stage and in particular how content can be affected by changes in
device orientation and stage resizing.

Finally the chapter covered how to combine states with layouts to arrange sprites based on the width
and height of the screen using the Flex framework.

In the next chapter you take a look at using Flash Builder to debug applications. Before you move on
to the next chapter, try the following exercises, which are designed to help further your knowledge
of debugging applications.

EXERCISES

 1. List the scale factors for a Flex mobile application running on each of the devices found in the

Flash Builder preferences, using applicationDPI of 240.

 2. In an ActionScript Mobile Project, create a new layout for a project and implement it using sprites.

 3. Replicate your design using a Flex Mobile Project, substituting each of the sprites in your layout

for a Flex-based MXML component.

 4. Use the @media rule to style one of the example applications found in the later chapters.

CH005.indd 174CH005.indd 174 09/09/11 9:31 AM09/09/11 9:31 AM

Summary ❘ 175

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Using the stage Use StageScaleMode.NO_SCALE and StageAlign.TOP_LEFT to defi ne the

scale mode and alignment of content in the mobile application.

Use Stage.stageWidth and Stage.stageHeight to retrieve the width and

height of the device’s screen in pixels.

Utilizing

Application DPI

Use the applicationDPI property to automatically scale an application,

using one of three DPI Classifi cation constants: 160, 240, or 320.

Setting styles

based on

Application DPI

Use the @media rule, application-dpi, and os-platform properties to set

styles based on a device’s DPI.

Use AND for Android, IOS for Apple iOS, and QNX for BlackBerry PlayBook,

when styling against mobile platforms.

Utilizing

capabilities

Use Capabilities.ScreenDPI to retrieve the number of dots per inch

available across multiple devices.

Detecting stage

resize

Use StateOrientationEvent.CHANGE to detect when the stage has

resized.

Using application

states

Defi ne states for a view using the <s:State name=”STATE_NAME”> within

the <fx:Declarations>, where STATE_NAME is the name of the state being

defi ned.

Defi ning states on

layouts

Use <s:layout.STATE_NAME> to defi ne the state of a <s:layout>

declaration.

CH005.indd 175CH005.indd 175 09/09/11 9:31 AM09/09/11 9:31 AM

CH005.indd 176CH005.indd 176 09/09/11 9:31 AM09/09/11 9:31 AM

Debugging Applications

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Setting breakpoints in source code and using the Breakpoints panel

 ➤ Using the Flash Debug Perspective in Flash Builder

 ➤ Utilizing the Variables panel

 ➤ Global error handling

 ➤ Handling uncaught errors

 ➤ Using Try...Catch statements

 ➤ Stepping through source code

In this chapter you’ll take a closer look at using Flash Builder to debug applications using the
Flash Debug Perspective.

Flash Builder offers debugging capabilities that allow you to fi nd bugs within your application.
The Debug panel allows you to stop and start the mobile application to fi nd problems, or to
examine or substitute values for variables.

This chapter covers example code that intentionally introduces a bug from the outset. You
then go through a series of tools and techniques to identify and fi x the issue using the Debug
Perspective in Flash Builder.

SETTING BREAKPOINTS

In this section you create the Debugging App project in Flash Builder and take a look at
setting breakpoints for specifi c lines in source code.

6

CH006.indd 177CH006.indd 177 09/09/11 10:02 AM09/09/11 10:02 AM

178 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

TRY IT OUT Setting Breakpoints

The following steps will guide you through using the Flash Debug Perspective. First take a look at
utilizing breakpoints in the Source view.

1. In Flash Builder create a new Flex Mobile project and call it Debugging App (Figure 6-1).

FIGURE 6-1: New Flex Mobile Project panel for the

Debugging App in Flash Builder

2. In DebuggingAppHome.mxml, set the title property of the view to Debugging App. Add a
<s:VGroup> container with the paddingLeft, paddingRight, and paddingTop properties set
to 20. Within the container add a <s:Label> and <s:Button> component to the view, setting the
id property on the <s:Label> component to testLabel, and the id property on the <s:Button>
component to testButton. Also set the label property on the <s:Button> component to
Test onClick() (Listing 6-1).

LISTING 6-1: Adding the <s:Button> and <s:Label> components to a <s:VGroup> container in

DebuggingAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Debugging App”>

 <s:VGroup paddingLeft=”20”
 paddingRight=”20”
 paddingTop=”20”>

 <s:Label id=”testLabel”/>

 <s:Button id=”testButton”

CH006.indd 178CH006.indd 178 09/09/11 10:02 AM09/09/11 10:02 AM

Setting Breakpoints ❘ 179

 label=”Test onClick()”/>

 </s:VGroup>

</s:View>

3. Next add a <fx:Script> block with a new protected function defi ned called onClick(). Then
assign the function to the <s:Button> component’s click property (Listing 6-2).

LISTING 6-2: Adding the onClick() method to the <fx:Script> declaration in

DebuggingAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Debugging App”>

 <fx:Script>
 <![CDATA[

 protected function onClick():void {}

]]>
 </fx:Script>

 <s:VGroup>

 <s:Label id=”testLabel”/>

 <s:Button id=”testButton”
 label=”Test onClick()”
 click=”onClick()”/>

 </s:VGroup>

</s:View>

4. Within onClick() add a local variable called labelStr of String type. Then create a for
loop that increments the variable i. Within the loop add an if statement to set labelStr to
label text is set when i is equal to 5. Following the for loop, assign the labelStr variable
to the text property on the <s:Label> component, using the String.toLowerCase() method
(Listing 6-3).

LISTING 6-3: Creating the for loop and if statement within the onClick() in

DebuggingAppHome.mxml

protected function onClick():void
{
 var labelStr:String;
 var i:int;

 for(i=0; i<=4; i++)
continues

CH006.indd 179CH006.indd 179 09/09/11 10:02 AM09/09/11 10:02 AM

180 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

LISTING 6-3 (continued)

 {
 if(i==5)
 {
 labelStr = “label text is set.”;
 }
 }

 testLabel.text = labelStr.toLowerCase();
}

Note here that the for loop is only incremented to 4.

5. Next add two breakpoints. Add the fi rst breakpoint on the fi rst line of the for loop declaration, by
double-clicking the space next to the line number. Then add the second breakpoint on the line that
assigns the text to labelStr. The breakpoints should be set on lines 14 and 18 (Figure 6-2).

6. Next run the project using a Debug confi guration. Select Run ➪ Debug (Figure 6-3).

FIGURE 6-2: Setting breakpoints in DebuggingAppHome.mxml

NOTE By default Flash Builder doesn’t display line numbers. If there are no
line numbers displayed in the IDE, to view them you must enable them in the
Text Editor Preferences panel. Bring up the context menu in the source view
of DebuggingAppHome.mxml, then Select ➪ Preferences . . . to display the
Preferences panel. Finally toggle the Show Line Numbers checkbox, click Apply,
then OK.

CH006.indd 180CH006.indd 180 09/09/11 10:02 AM09/09/11 10:02 AM

Setting Breakpoints ❘ 181

FIGURE 6-3: Launching the project with a Debug confi guration

7. In the Debug Confi gurations panel that opens, create a confi guration for launching the application
called Debugging App on Desktop. Enter Debugging App as the project, leave src/DebuggingApp
.mxml as the application fi le, choose Google Android as the target platform, and select Desktop
and Google Nexus One as the launch method. Click Apply, and then click Debug to launch the
project in a debugging session (Figure 6-4).

FIGURE 6-4: Creating a Debug Confi guration for the Debugging App project

CH006.indd 181CH006.indd 181 09/09/11 10:02 AM09/09/11 10:02 AM

182 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

FIGURE 6-6: Confi rm Perspective Switch dialog in Flash Builder

When you click the button you will be asked to switch to the Flash Debug Perspective. This is
automatically opened when a breakpoint has been reached. Click Yes to continue (Figure 6-6).

FIGURE 6-5: The Debugging

App project

8. In the adl window that opens, click the Test onClick() button (Figure 6-5).

CH006.indd 182CH006.indd 182 09/09/11 10:02 AM09/09/11 10:02 AM

Setting Breakpoints ❘ 183

The debugging session will pause the current thread of the application at this stage, which is focused on
the onClick() function (Figure 6-7).

FIGURE 6-7: The current thread of the application being displayed in the Debug panel. Note

the Step Over and other buttons.

s
s

9. Take a look at the Variables panel in the Flash Debug panel. In the list of variable names, look for
the labelStr. The value of the labelStr should be set to null. Also look for the variable i; this
value should be set to 0 (Figure 6-8).

NOTE When the application reaches a breakpoint, the application is paused,
and the current line highlighted in the source code is the line that is about to be
executed by the compiler. You can use the Step Over button in the Debug panel
(Figure 6-7) to progress through the app and move onto the next line. Some of
the other buttons shown on the panel will be referred to later in this chapter.

CH006.indd 183CH006.indd 183 09/09/11 10:02 AM09/09/11 10:02 AM

184 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

Note that the fi rst breakpoint is only reached because of the conditional if statement. One lesson to learn is
that breakpoints are reached only when the line of code that the breakpoint is set on is about to be executed.

10. The application is currently paused in this debugging session. Resume the application by clicking
the Resume button in the Debug panel or pressing F8.

Notice that the breakpoint on the conditional for loop statement is reached again. Look at the value of
variable i in the Variables panel; this should now be highlighted in yellow, and the value should be set
to 1 (Figure 6-9).

FIGURE 6-8: The list of variables available in the current thread of the application,

displayed in the Variables panel

FIGURE 6-9: Checking the value of variable i in the Variables panel for the fi rst time

CH006.indd 184CH006.indd 184 09/09/11 10:02 AM09/09/11 10:02 AM

Setting Breakpoints ❘ 185

11. Next click the Step Over button in the Debug panel or press F6, twice, to increment through the
for loop. Check the value of variable i in the Variables panel once again. This time the value set
for i will be 2 (Figure 6-10).

FIGURE 6-10: Checking the value of variable i in the Variables panel for the second time

12. Next disable the fi rst breakpoint. Select the Breakpoints panel in the Flash Debug perspective,
which should be next to the Variables panel. Then select the breakpoint that references the
conditional if statement and unselect the checkbox (Figure 6-11).

FIGURE 6-11: Disabling the fi rst breakpoint in the Breakpoints panel

CH006.indd 185CH006.indd 185 09/09/11 10:02 AM09/09/11 10:02 AM

186 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

Once you have disabled the fi rst breakpoint, the line in the source code that assigns the text to the variable
labelStr should still have a breakpoint in place and enabled. If you double-click one of the breakpoints
in the Breakpoints panel you should see the line of code highlighted in the Source view (Figure 6-12).

FIGURE 6-12: Selecting a line of code in Source view that has the breakpoint, from

within the Breakpoints panel

FIGURE 6-13: Using the context menu to toggle a breakpoint

You can toggle the breakpoint by double-clicking it in the Breakpoints panel or via the context menu
(Figure 6-13).

CH006.indd 186CH006.indd 186 09/09/11 10:02 AM09/09/11 10:02 AM

Setting Breakpoints ❘ 187

13. Next resume the application once more.

You will notice that the application throws an error on the line that assigns the labelStr variable
to the text property on the <s:Label> component. This error is highlighted in both the Debug and
Console panels (Figure 6-14).

FIGURE 6-14: An application error being displayed in the Debug and Console panels

FIGURE 6-15: Checking the value of variable i in the Variables panel for the third time

14. If you take a look in the Variables panel, you should see that variable i is set to 5 (Figure 6-15).

CH006.indd 187CH006.indd 187 09/09/11 10:02 AM09/09/11 10:02 AM

188 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

Note that because the conditional statement within the for loop is only set to execute when i is less
than or equal to 4, the last iteration it makes is incrementing the variable i from 4 to 5.

How It Works

You’ve reached a point where there is a minor error in the source code. Using the current logic, the
application throws an error on the line that assigns the labelStr variable to the text property on
the <s:Label> component.

If you remember, the for loop defi ned reaches only a count of 4 on the variable i and never reaches
5. Thus the line within the conditional if statement that requires i to equal 5 is never executed, and
labelStr remains as null. You cannot assign a null value to the text property of a <s:Label>
component, because it is expecting a String object.

Knowing the reason for the error at this stage shouldn’t distract you from the underlying exercise,
which is to teach you how to use breakpoints and the Debug panel.

GLOBAL ERROR HANDLING

The Flash Player 10.1 runtime API introduced a new class that handles errors at a global level. Here
you’ll take a brief look at how to handle errors using the UncaughtErrorEvent class.

The UncaughtErrorEvent class has just one event type constant, UncaughtErrorEvent
.UNCAUGHT_ERROR.

To capture errors on a global level you need to retrieve the loaderInfo object. This is accessible
only when the mobile application has fully loaded, and so using the Flex framework loaderInfo
is obtainable only when the applicationComplete event has been dispatched at the root of the
application <s:ViewNavigatorApplication>.

Once you’ve retrieved the loaderInfo object, you use the following code to capture an error:

var err:UncaughtErrorEvents = loaderInfo.uncaughtErrorEvents;
err.addEventListener(UncaughtErrorEvent.UNCAUGHT_ERROR, onUncaughtError);

In the next section you’ll take a look at implementing the UncaughtErrorEvent in the Debugging
App project.

HANDLING UNCAUGHT ERRORS

So far you have learned how to set breakpoints, and how to read variables during the debugging
session. Now take a look at handling the error introduced to the project using Watch expressions.

CH006.indd 188CH006.indd 188 09/09/11 10:02 AM09/09/11 10:02 AM

Handling Uncaught Errors ❘ 189

TRY IT OUT Handling Uncaught Errors

The following steps will take you through handling the error introduced in the Debugging App project
using the UncaughtErrorEvent class.

1. Return to the Flash Perspective in the Debugging App project. In DebuggingApp.mxml, add a protected
function called onAppComplete(), and then assign the function to the applicationComplete
property in the attributes for opening the <s:ViewNavigatorApplication> tag (Listing 6-4).

LISTING 6-4: Adding the onAppComplete() method to the <fx:Script> declaration in

DebuggingApp.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 firstView="views.DebuggingAppHome"
 applicationComplete="onAppComplete()">

 <fx:Script>
 <![CDATA[

 protected function onAppComplete():void {}

]]>
 </fx:Script>

</s:ViewNavigatorApplication>

2. In onAppComplete() add the code to handle any uncaught errors in the application, using the
loaderInfo object. Add a stub for the private function called onUncaughtError(), defi ning
the parameter e as an UncaughtErrorEvent type, and assign it to the UncaughtErrorEvent
.UNCAUGHT_ERROR event type via addEventListener() (Listing 6-5).

LISTING 6-5: Assigning the UncaughtErrorEvent.UNCAUGHT_ERROR event to the

onUncaughtError() method in DebuggingApp.mxml

protected function onAppComplete():void
{
 var err:UncaughtErrorEvents = loaderInfo.uncaughtErrorEvents;
 err.addEventListener(UncaughtErrorEvent.UNCAUGHT_ERROR, onUncaughtError);
}

private function onUncaughtError(e:UncaughtErrorEvent):void {}

3. In onUncaughtError() assign the error message on the UncaughtErrorEvent object to the text
property on testLabel. Use the UncaughtErrorEvent.error property to determine the object
type; if the error is an Error object, assign the Error.message property to msg (Listing 6-6).

CH006.indd 189CH006.indd 189 09/09/11 10:02 AM09/09/11 10:02 AM

190 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

LISTING 6-6: Retrieving the Error.message property via the onUncaughtError() method in

DebuggingApp.mxml

private function onUncaughtError(e:UncaughtErrorEvent):void
{
 var msg:String;

 if(e.error is Error)
 {
 msg = Error(e.error).message;
 }
}

4. Launch the DebuggingApp project, again using the Debug confi guration. Set a breakpoint on the
opening if statement in onUncaughtError() on line 20, and then step through. You should see
the error message caught by the unhandled error assigned to the msg variable in the Variables panel
(Figure 6-16).

FIGURE 6-16: Handling an uncaught error and assigning the Error.message property

to the msg variable in the Variables panel

How It Works

In this example you are simply writing the code to determine what happens should your application
throw a runtime error.

If you recall, the line within the conditional if statement, which requires i to equal 5, is never
executed, and labelStr remains null, so when it is assigned to the text property on the <s:Label>
component, the application will show an error.

The error invoked bubbles up to the root of the application, and because it doesn’t have any
listeners assigned to it to handle the error, it effectively becomes an uncaught error, dispatching the
UncaughtErrorEvent_UNCAUGHT_ERROR event.

CH006.indd 190CH006.indd 190 09/09/11 10:02 AM09/09/11 10:02 AM

Try…Catch Statements ❘ 191

In onUncaughtError() you see one type of error event being handled. This could have been an
IOErrorEvent that failed to load an image, in which case onUncaughtError() would need to be
modifi ed to look like the following:

private function onUncaughtError(e:UncaughtErrorEvent):void
{
 var msg:String;

 if(e.error is Error)
 {
 msg = Error(e.error).message;

 } else if(e.error is IOErrorEvent) {

 msg = IOErrorEvent(e.error).text;
 }
}

Note here that IOErrorEvent details its error message via the IOErrorEvent.text property.

While the DebuggingApp project now demonstrates handling an uncaught error at the global level,
the line of code with the potential error should ideally be wrapped in a Try…Catch block.

Next, you’ll take a look at how you use Try…Catch statements.

TRY…CATCH STATEMENTS

To aid in preventing your mobile applications from either crashing or presenting runtime errors to
users, a Try…Catch block should be used in source code where possible.

Try…Catch statements effectively test a block of code to see if it contains errors at run time.

For developers it is not always explicit where or when a Try…Catch block should be used, but in
general these statements can be applied to code wherever there is an uncertainty about a particular
variable assignment or a particular function call. The structure of the Try…Catch statement means
that you can provide an alternative outcome in the catch portion of the Try…Catch block.

Now take a look at using a Try…Catch block in the Debugging App project.

TRY IT OUT Using a Try…Catch Statement

The following steps will take you through using the Try…Catch statement in the Debugging
App project.

1. In DebuggingAppHome.mxml, wrap the assignment of the labelStr variable to testLabel.text
in a Try…Catch statement to handle when the application throws an Error object (Listing 6-7).

CH006.indd 191CH006.indd 191 09/09/11 10:02 AM09/09/11 10:02 AM

192 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

LISTING 6-7: Adding the Try…Catch statement to the onClick() method in

DebuggingAppHome.mxml

protected function onClick():void
{
 var labelStr:String;
 var i:int;

 for(i=0; i<=4; i++)
 {
 if(i==5)
 {
 labelStr = “label text is set.”;
 }
 }

 try
 {
 testLabel.text = labelStr.toLowerCase();

 } catch(e:Error)
 {

 }
}

2. In the Catch block, simply assign the text Error was caught! to the text property on the
<s:Label> component testLabel (Listing 6-8).

LISTING 6-8: Defi ning the code to execute in the Catch block in the onClick() method in

DebuggingAppHome.mxml

protected function onClick():void
{
 var labelStr:String;
 var i:int;

 for(i=0; i<=4; i++)
 {
 if(i==5)
 {
 labelStr = “label text is set.”;
 }
 }

 try
 {
 testLabel.text = labelStr.toLowerCase();

 } catch(e:Error)

CH006.indd 192CH006.indd 192 09/09/11 10:02 AM09/09/11 10:02 AM

Stepping through Code ❘ 193

 {

 testLabel.text = “Error was caught!”;
 }
}

3. Launch the Debugging App project, once again using the Run
confi guration.

This time when the application launches and you click the Test
onClick() button, you’ll see the text Error was caught! written in
the <s:Label> component (Figure 6-17).

How It Works

Having established exactly where the application error occurs through
using the breakpoints earlier, the Try…Catch block was strategically
placed to handle the null exception on the assignment to the text
property on <s:Label>. The application will still attempt to assign
labelStr even though it is still null; however, if an error is thrown,
it will be caught in the Catch portion of the Try…Catch statement.
Here the Catch statement simply defi nes what should be done if this
error is caught.

STEPPING THROUGH CODE

In this section you’ll fi nally take a look at how to fi x the error in the Debugging App project.

If you recall, an error occurs because the conditional if statement, which requires i to equal 5, is
never executed, and labelStr remains null. So when it is assigned to the text property on the
<s:Label> component the application errors.

Step through code is a term used to describe examining source code, usually line by line. In Flash
Builder the Debug panel provides the tools to step through each line of code, allowing you to see
what happens before and after a line of code has been executed.

TRY IT OUT Stepping through Code in the Debugging Session

The following steps will take you through fi xing the error in the code example about handling the
error introduced in the Debugging App project, using the UncaughtErrorEvent class.

1. First, return to the for loop in onClick() and increase the number of iterations from 4 to 5
(Listing 6-9).

FIGURE 6-17: Catching an error

using the Try…Catch statement

in the Debugging App project

CH006.indd 193CH006.indd 193 09/09/11 10:02 AM09/09/11 10:02 AM

194 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

LISTING 6-9: Updating the number of iterations in the for loop in the onClick() method in

DebuggingAppHome.mxml

protected function onClick():void
{
 var labelStr:String;
 var i:int;

 for(i=0; i<=5; i++)
 {
 if(i==5)
 {
 labelStr = “label text is set.”;
 }
 }

 try
 {
 testLabel.text = labelStr.toLowerCase();

 } catch(e:Error)
 {

 testLabel.text = “The Error was caught!”;
 }
}

2. Launch the Debugging App project again, this time using the Debug confi guration. Ensure that
only a single breakpoint is in place in the application, where the text is assigned to the labelStr
variable in DebuggingAppHome.mxml.

NOTE When you add additional lines of code, breakpoints will move with the
line of code that has the breakpoint assigned. In this example the breakpoint
should remain on line 18.

This time when the application launches it will pause at the breakpoint. If you take a look in the
Variables panel, you will see that the variable i is set to 5, and the labelStr variable is set to null.
What is more signifi cant here is that now the breakpoint has reached the line where the text is assigned
to the labelStr variable within the if statement (Figure 6-18).

CH006.indd 194CH006.indd 194 09/09/11 10:02 AM09/09/11 10:02 AM

Stepping through Code ❘ 195

3. Move off the current line in the code by clicking the Step Over button. Look in the Variables
panel once again, and you will now see that the labelStr variable is set to label text is
set (Figure 6-19).

FIGURE 6-18: Checking the value of variable i and labelStr in the Variables panel

FIGURE 6-19: Checking the value of variable labelStr in the Variables panel

CH006.indd 195CH006.indd 195 09/09/11 10:02 AM09/09/11 10:02 AM

196 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

4. Move out of the for loop in onClick() by clicking the Step
Return button. Then click the Step Over button. The next line
highlighted is the opening bracket of the try declaration. Click
the Step Over button once again, and the application should fall
on the line where labelStr is assigned to testLabel.text,
inside the try statement. Click the Step Over button again. The
next line highlighted is where the catch statement is defi ned.
Click the Step Over button for the fi nal time, and you will notice
that the debugger skips the line assigning the text Error was
caught! to testLabel.text.

5. Resume the application by clicking the Resume button in the
Debug panel. When the application launches, you should see that
the <s:Label> component is assigned the text label text is
set. Eureka! The bug is now fi xed (Figure 6-20).

How It Works

The aim of this exercise was to fi x the bug that was introduced when
the Debugging App was created.

Stepping through code allows you to see what you’re looking for in the
application at a granular level by examining each line of code and also to monitor the variables in the
application.

The hard work was actually fi nding the bug. That was done through a combination of techniques that
included using breakpoints, watching variables, and stepping through code. The UncaughtErrorEvent
class and the Try…Catch statement helped to ensure there won’t be any unpleasant surprises for end
users if they run the project on their mobile handsets.

SUMMARY

Software bugs can be a real headache. And it can be both time-consuming and challenging to fi nd
them in source code. The art of catching errors, whether major or minor, lies within the Debug
Perspective of Flash Builder, where setting breakpoints and stepping through code allow you to
perform precise debugging sessions while the application is running.

While the Debugging App project only introduced one error, one could argue that with more careful
coding the error would probably not have been introduced. However, you should have gained
an appreciation for the armory of tools and perspectives at your disposal in Flash Builder, which
ultimately helped to isolate and fi x the error.

The UncaughtErrorEvent object is useful in situations where you simply cannot locate an error in
the code; unfortunately it doesn’t give you the exact line where the error occurred, which would be
useful.

FIGURE 6-20: Debugging App

now displaying “label text is set”

CH006.indd 196CH006.indd 196 09/09/11 10:02 AM09/09/11 10:02 AM

Also, the Try…Catch statement proves to be vital in wrapping code in blocks to catch potential
errors, also allowing you to defi ne an alternative track through the code when an error is caught.

In the next chapter you’ll take a look at working with fi les and the fi lesystem. But before you move
on to that chapter, try the following exercises, which are designed to help further your knowledge of
debugging applications.

EXERCISES

 1. Set another breakpoint in the Debugging App project, this time at the line where the loaderInfo

object is used in DebuggingApp.mxml. Launch the project using the Debug confi guration and take

note of the values for each property in the object.

 2. Introduce another error in the code that concerns loading an image, and see if you can use the

techniques delivered in this chapter to isolate and handle the IOErrorEvent.

 3. Revisit Chapter 5 and pick out three areas in which to apply the Try…Catch statement.

 Summary ❘ 197

CH006.indd 197CH006.indd 197 09/09/11 10:02 AM09/09/11 10:02 AM

198 ❘ CHAPTER 6 DEBUGGING APPLICATIONS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Setting breakpoints in

source code

Set a line breakpoint in the Source view of Flash Builder by double-

clicking the space next to the line number or right-clicking to use

the context menu.

Using the Breakpoints

panel

Use the Breakpoints panel to see the lists of all line breakpoints

that have been set across all fi les in the application.

Enable a breakpoint by selecting a checkbox or disable a

breakpoint by unselecting a checkbox.

Double-click a breakpoint to automatically go to that line in the

Source view.

Using the Variables panel Use the Variables panel to see a list of all the variable names and

assigned values while the application is running.

Using the Debug panel Use the Debug panel to see where the current thread of the

application is paused.

Use the Step Into, Step Over, and Step Return buttons to navigate your

way in, around, out, and over lines of code and functions while the

application is running in the debugging session (see Figure 6-7).

Stepping through source

code

To examine each line of code as the application is running, step

through code using the Debug panel.

Global error handling Use the UncaughtErrorEvents object on loaderInfo to register

an interest in the UncaughtErrorEvent.UNCAUGHT_ERROR event.

Add the event listener for

UncaughtErrorEvent.UNCAUGHT_ERROR in the main application

<s:ViewNavigatorApplication> once the

applicationComplete event is triggered.

Adding Try…Catch Blocks Write AS3 code within the Try block to catch potential errors.

Code within the Catch block executes when the code in the Try

block throws an error.

CH006.indd 198CH006.indd 198 09/09/11 10:03 AM09/09/11 10:03 AM

Over the course of this chapter you’ll construct a simple example running the majority of features.

Working with the Filesystem

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Creating File and FileStream objects

 ➤ Resolving fi le object paths

 ➤ Modifying fi les and directories

 ➤ Using browse dialogs

This chapter takes a look at the AIR File System API in depth, again using Flash Builder to
take you through related examples. These will help you to build applications that can create
or utilize existing data on a user's mobile device, whether that data is an MP3 fi le found in the
device's native media library, or an image fi le referenced from the photo gallery.

The key aspect of the API is getting to understand the fi lesystem, learning how to resolve paths
to fi les, and containing folders on the device. This chapter looks at all this in depth.

7

WARNING For security reasons the AIR File System API is restricted for use
in non-browser Flash applications. Bear this in mind if you intend to create
browser-based Flash mobile applications. In addition, Google Android and
BlackBerry Tablet OS devices require users to grant usage of certain security
levels when using the API.

CH007.indd 199CH007.indd 199 09/09/11 10:03 AM09/09/11 10:03 AM

200 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

READING FROM THE FILESYSTEM

To utilize the fi lesystem within your Flash mobile applications on a mobile device using AIR,
you fi rst need to familiarize yourself with the core classes involved in the API, and pay particular
attention to how one points to fi les and directories in the fi lesystem.

The File and FileStream Classes

The File and FileStream classes are the key classes that you can use to gain access to the fi lesystem
data on the mobile device using AIR. Both fi les are located in the flash.filesystem package.

To use the File class in an ActionScript Mobile project, you need to import the class using the
following statement:

import flash.filesystem.File;

Similarly, to use the FileStream class in an AS project, you need to import the class using the
following statement:

import flash.filesystem.FileStream;

Using Flash Builder with the Flex framework and AIR doesn’t require you to import the class in this
way. The Files Explorer project therefore doesn’t have either of these statements. Bear this in mind
when you create your other projects.

The File class provides reference points to information about fi les and fi le directories, also giving you
the methods to create, modify, and delete fi les or fi le directories. The FileStream class provides
you with the methods to open, read, write, and modify fi les on the fi lesystem.

The File Object

A File object has a number of properties that should uniquely distinguish it from another fi le object
on the fi lesystem. These properties include:

 ➤ url: An absolute reference to a fi le object on the device

 ➤ nativePath: A reference to the fi le object’s path on the device

 ➤ name: A string representing the fi le object’s name

 ➤ creationDate: A string containing the creation date of the fi le object, relative to GMT

 ➤ modificationDate: A string detailing the last time the fi le object was modifi ed

 ➤ exists: A Boolean that indicates whether the fi le object exists

 ➤ size: A number returning the actual size of the fi le object

 ➤ spaceAvailable: A string representing the total space available on the fi lesystem in which
the fi le object resides

 ➤ creator: A string representing the creator of the fi le object

 ➤ type: A string returning the type of fi le object

CH007.indd 200CH007.indd 200 09/09/11 10:03 AM09/09/11 10:03 AM

Reading from the Filesystem ❘ 201

 ➤ extension: A string returning the fi le extension of the fi le object

 ➤ isDirectory: A Boolean that indicates whether or not the fi le object reference is a directory

 ➤ isHidden: A Boolean that indicates whether or not the fi le object is hidden

 ➤ isPackage: A Boolean that indicates whether or not the fi le object is a package

 ➤ parent: Returns a reference to a fi le object in which the current fi le or directory resides

You should be familiar with the majority of these properties as entities on your home computer. The
modifi cation date is a property of a fi le used frequently to see when a fi le was last saved. Looking at
the properties, you can easily identify a fi le object by its name, whether it is a fi le or a directory, its
size, the creation or modifi cation dates, and URL paths.

Next take a look at the different ways in which you can create fi le objects using AIR.

Creating File Objects from the URL Path

The nativePath and url properties of the fi le object are references that point to a fi le object’s
location on the mobile device.

There are three URL schemes that are supported which can be used to create fi le objects via the
File class constructor: app:/; app-storage:/; and file://.

In the following code snippet the file:// URL scheme is used to create a File object fi leObj that
attempts to point to Notes, a folder contained in the Documents directory on the fi lesystem:

var fileObj:File = new File(“file:///documents/notes”);

The way this fi le object is created could potentially pose a few problems for cross-platform
compatibility and running the app on devices with different mobile operating systems. How does the
mobile application know that the Documents or Notes directories exist on a device? And is the fi le
path URL format recognized by the device?

If you don’t know whether the fi le object created is present on the device, you can use the File.exists
property of the File object to determine whether a particular fi le or directory exists — but this is only
once the URL path of the fi le object has been set, again pointing to a potential issue with the URL
format. To address differences in URL formats, you can use static properties of the fi le class to retrieve
generic locations on devices, and as you’ll see it provides an alternative way to create a fi le object by
referencing a specifi c location on the device.

Creating File Objects from Static Locations

On a laptop or PC you may be familiar with commonly used fi le spaces such as Documents and
Applications for Mac OS, or My Documents and Programs on a Windows machine. Simply put,
these are quick access references to fi le directories that have certain document types. In essence
these are familiar short names given to potentially complex fi lesystem references.

On mobile devices, users are less familiar with locations such as these, and generally come across
physical fi le directory paths only when using applications designed for this. Applications such as

CH007.indd 201CH007.indd 201 09/09/11 10:03 AM09/09/11 10:03 AM

202 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

Finder for Mac OS and File Explorer on Windows are designed for large screens, allowing a user to
explore whole fi lesystems, which on mobile devices would be harder to navigate.

The File class has fi ve static properties that you can use to reference commonly used fi le locations:

 ➤ File.applicationStorageDirectory: Returns a fi le object pointing to a storage directory
that is unique to the AIR application installed on a device

 ➤ File.applicationDirectory: Returns a fi le object pointing to the location where the
application is installed on the device

 ➤ File.desktopDirectory: Returns a fi le object pointing to an equivalent of the Desktop
directory found on Mac OS and Windows machines

 ➤ File.documentsDirectory: Returns a fi le object pointing to an equivalent of a user’s
Documents directory found on Mac OS and Windows machines

 ➤ File.userDirectory: Returns a fi le object pointing to an equivalent of the Users directory
found on Mac OS and Windows machines

The fi le objects returned by these properties can be used to avoid potential issues like the ones
encountered when specifying a hard-coded fi le-path URL. Each of the fi le references is pretty much
static and can be referenced universally across different platforms using AIR.

Table 7-1 lists example url values returned by each static property on an Android mobile device
running Gingerbread 2.3.4

TABLE 7-1: Example URL Property Values Returned on an Android Device

PROPERTY VALUE

File.applicationDirectory.url app:/

File.applicationStorageDirectory.url app-storage:/

File.desktopDirectory.url file:///mnt/sdcard

File.documentsDirectory.url file:///mnt/sdcard

File.userDirectory.url file:///mnt/sdcard

From the table you’ll see that the Android device returns three distinct fi le object url values.

WARNING Note that you cannot write to fi les or directories that have paths that
use the app: URL scheme. Nor can you delete or create fi les or folders that have
paths that use the scheme, as modifying content in the application directory is
considered a bad practice, and for security reasons, it is usually blocked by the OS.

CH007.indd 202CH007.indd 202 09/09/11 10:03 AM09/09/11 10:03 AM

Reading from the Filesystem ❘ 203

Resolving the Reference Path of a File Object

On Google Nexus One, an Android device running Gingerbread 2.3.4, the File.desktopDirectory,
File.documentsDirectory, and File.userDirectory each returns a fi le object that points to the
file:///mnt/sdcard location. To ensure that a fi le object points to a particular location, you must
use the resolvePath() method to refi ne the target path.

In the following snippet the fi le object is pointing to the file:///mnt/sdcard/notes directory
using the File.documentsDirectory as the initial reference point:

var fileObj:File = File.documentsDirectory.resolvePath(“notes”);

For the fi le object created, fileObj, if the Notes directory existed, then fileObj.exists would
be set to true. Using the resolvePath() method essentially sets the target path for the fi le object,
whether it exists or not. This is important for creating new fi les and folders, as you’ll see later.

While the url property of a fi le object gives a precise value to a location, the nativePath property
gives the full path to the fi le object as represented in the host operating system.

Next take a look at using the nativePath property of the fi le object in the example project.

Creating a Files Explorer App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defi ning the Flex Mobile Project Settings

The following lists a few of the familiar settings you will need to ensure are defi ned for the project:

 ➤ Name: Set the Name for the project to FilesExplorerApp.

 ➤ Application ID: Set the Application ID to com.wrox.ch7.FilesExplorerApp.

 ➤ Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to FilesExplorerAppHome.

Targeting Mobile Devices on Diff erent Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple
iOS, Google Android, and BlackBerry Tablet OS. For Google Android and BlackBerry Tablet OS,
a number of permissions need to be set to allow the application to utilize the device’s fi lesystem,
whereas for Apple iOS, no permissions need to be defi ned specifi cally.

Defi ning Google Android Permissions

For the AIR Application Descriptor fi le generated with the project in Flash Builder,
FilesExplorerApp-app.xml, ensure the android.permission.WRITE_EXTERNAL_STORAGE
permission is included as a manifest addition for the Google Android platform, as shown in the
following code snippet:

<android>
 <manifestAdditions>
 <![CDATA[

CH007.indd 203CH007.indd 203 09/09/11 10:03 AM09/09/11 10:03 AM

204 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

 <manifest>
 <uses-permission android:name=”android.permission.WRITE_EXTERNAL_STORAGE”/>
 </manifest>
]]>
 </manifestAdditions>
</android>

Defi ning BlackBerry Tablet OS Permissions

For BlackBerry Tablet OS applications, you need to specify the access_shared permission, to allow
the application to write to the mobile device. Ensure this is set in the blackberry-tablet.xml fi le,
as shown in the following code snippet:

<?xml version=”1.0” encoding=”UTF-8”?>
<qnx>
 <author>jganderson</author>
 <authorId>gYAAgFbt6rihu</authorId>
 <category>core.media</category>
 <buildId>1</buildId>
 <platformVersion>1.0.0.0</platformVersion>
 <permission>access_shared</permission>
</qnx>

Defi ning Apple iOS Settings

There are no permissions that need to be defi ned for the Apple iOS platform.

Creating Run and Debug Confi gurations

You can elect to run this project on the desktop or directly on your mobile device. For consistency,
this chapter uses a Google Nexus One as the connected device.

Building the Files Explorer App

In this section, you begin building the Files Explorer App project in Flash Builder, fi rst taking a look
at the nativePath property of the File object.

 TRY IT OUT Displaying the Native Path of a File Object

For the Files Explorer App project, follow the next steps to add a label to the main view that shows the
current fi lesystem directory.

 1. As shown in Listing 7-1, the main application fi le, FilesExplorerApp.mxml, has a similar
MXML markup as covered in earlier chapters, with the exception of the firstView attribute’s
value, which is set to views.FilesExplorerAppHome (Listing 7-1).

LISTING 7-1: The FilesExplorerApp.mxml application fi le for the Files Explorer project

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 firstView=”views.FilesExplorerAppHome”>

CH007.indd 204CH007.indd 204 09/09/11 10:03 AM09/09/11 10:03 AM

Reading from the Filesystem ❘ 205

 <fx:Declarations>
 <!-- Non-visual elements (e.g., services, value objects) -->
 </fx:Declarations>

</s:ViewNavigatorApplication>

 2. Replace the <fx:Declarations> with an <fx:Style> declaration. Inside the <fx:Style>
declaration, specify s as the spark namespace. Then defi ne three style declarations for the View,
Label, and List components that will be used in the application. For the <s:View> components,
defi ne the backgroundColor property as #999999, and color property as #393839. For the
<s:Label> components, defi ne the fontSize as 18. Then for the <s:List> components, defi ne
the alternativeItemColors property as #CCCCCC and #EEEEEE, defi ne the selectionColor
property as yellow, fontSize property as 22, and color property as #393839 (Listing 7-2).

LISTING 7-2: Setting the styles via the <fx:Style> declaration in FilesExplorerApp.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 firstView=”views.FilesExplorerAppHome”>
 <fx:Style>

 @namespace s “library://ns.adobe.com/flex/spark”;

 s|View
 {
 backgroundColor:#999999;
 color:#393839;
 }

 s|Label
 {
 fontSize:22;
 }

 s|List
 {
 alternatingItemColors: #CCCCCC, #EEEEEE;
 selectionColor:yellow;
 fontSize:22;
 color:#393839;
 }

 </fx:Style>

</s:ViewNavigatorApplication>

 3. Modify the FilesExplorerAppHome.mxml fi le, setting the title property to Files Explorer.
Then within a <fx:Script> declaration, add a private method called exit() to quit the
application, calling NativeApplication.nativeApplication.exit(). Add a protected method
stub called readDir() and assign it to the view’s creationComplete attribute. Finally, add an
<s:layout> declaration container for the view, defi ning the <s:VerticalLayout> (Listing 7-3).

CH007.indd 205CH007.indd 205 09/09/11 10:03 AM09/09/11 10:03 AM

206 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

LISTING 7-3: The FilesExplorerAppHome.mxml view for the Files Explorer project

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”readDir()”
 title=”Files Explorer”>

 <fx:Script>
 <![CDATA[
 protected function readDir():void {}

 private function exit():void
 {
 NativeApplication.nativeApplication.exit();
 }
]]>
 </fx:Script>

 <s:layout>
 <s:VerticalLayout/>
 </s:layout>

</s:View>

 4. Add a <s:Button> component with the label Quit to a <s:navigationContent> declaration.
Assign the view’s exit() method to the click property on the <s:Button> component. Under
the <s:navigationContent> defi nition add a new <s:Label> component to the main view in
FilesExplorerAppHome.mxml. Set the id property of the label to currentDir, the width property to
100%, and the height to 60. Then set the paddingLeft property to 10, the paddingTop property to 15,
and the text to read Current Directory. The vertical alignment needs to be set to Middle (Listing 7-4).

LISTING 7-4: Adding <s:Button> and <s:Label> components to the view in

FilesExplorerAppHome.mxml

<fx:Script>
 <![CDATA[
 protected function readDir():void {}

 private function exit():void
 {
 NativeApplication.nativeApplication.exit();
 }
]]>
</fx:Script>

<s:layout>
 <s:VerticalLayout/>
</s:layout>

<s:navigationContent>

CH007.indd 206CH007.indd 206 09/09/11 10:03 AM09/09/11 10:03 AM

Reading from the Filesystem ❘ 207

 <s:Button label=”Quit”
 click=”exit()”/>
</s:navigationContent>

<s:Label id=”currentDirectory”
 text=”Current Directory”
 paddingLeft=”10”
 paddingTop=”15”
 width=”100%”
 height=”60”
 verticalAlign=”middle”/>

 5. Next, above the readDir() stub, declare a private variable called selectedDir that has the File
type (Listing 7-5).

LISTING 7-5: Defi ning the private variable to reference the selected directory in

FilesExplorerAppHome.mxml

<fx:Script>
 <![CDATA[
 private var selectedDirectory:File;

 protected function readDir():void {}

 private function exit():void
 {
 NativeApplication.nativeApplication.exit();
 }
]]>
</fx:Script>

 6. Within the onCreationComplete() method, assign the documentsDirectory property of the
File class to selectedDirectory. Then using the selectedDirectory fi le object, set the text
property of the new label to the nativePath (Listing 7-6).

LISTING 7-6: Setting the text to the native path in FilesExplorerAppHome.mxml

<fx:Script>
 <![CDATA[
 private var selectedDirectory:File;

 protected function readDir():void
 {
 selectedDirectory = File.documentsDirectory;
 currentDirectory.text = selectedDirectory.nativePath;
 }

 private function exit():void
 {
 NativeApplication.nativeApplication.exit();
 }

]]>
</fx:Script>

CH007.indd 207CH007.indd 207 09/09/11 10:03 AM09/09/11 10:03 AM

208 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

 7. Run the project using the device run confi guration. Using an Android device you should see the
native path of the fi le object device displayed in the application beneath the header (Figure 7-1).

FIGURE 7-1: Displaying the

current directory in the Files

Explorer App running on

Android 2.3.4

TRY IT OUT Listing the Files of a Directory

Next take a look at how to display the contents of a directory.

 1. First add a new <s:List> component to the directories view in FilesExplorerAppHome.mxml,
directly beneath the <s:Label> component. Set the id property to dirList, set the width
property to 100%, the height property to 85%, the fontFamily property to Arial, and the
contentBackgroundColor to #B6B3B3 (Listing 7-7).

LISTING 7-7: Adding a <s:List> component to the view in FilesExplorerAppHome.mxml

<s:Label id=”currentDirectory”
 text=”Current Directory”
 paddingLeft=”10”
 paddingTop=”15”
 width=”100%”
 height=”60”

CH007.indd 208CH007.indd 208 09/09/11 10:03 AM09/09/11 10:03 AM

Reading from the Filesystem ❘ 209

 verticalAlign=”middle”/>

<s:List id=”dirList”
 width=”100%”
 height=”85%”
 fontFamily=”Arial”
 contentBackgroundColor=”#B6B3B3”/>

 2. Within the readDir() method, declare a new array called docsDirectory, then assign the
getDirectoryListing() method on the selectedDirectory fi le object to the array (Listing 7-8).

LISTING 7-8: Retrieving the directory listing in FilesExplorerAppHome.mxml

protected function readDir():void
{
 selectedDirectory = File.documentsDirectory;
 currentDirectory.text = selectedDirectory.nativePath;

 var docsDirectory:Array = selectedDirectory.getDirectoryListing();
}

 3. Next populate the List component with the fi le objects retrieved in docsDirectory using the name
property for the label of each row. You will need to instantiate the dataProvider on the List component
and then use the addItem() function to defi ne the label representing each fi le object (Listing 7-9).

LISTING 7-9: Populating the <s:List> component with the fi le object name property in

FilesExplorerAppHome.mxml

protected function readDir():void
{
 selectedDirectory = File.documentsDirectory;
 currentDirectory.text = selectedDir.nativePath;

 var docsDirectory:Array = selectedDirectory.getDirectoryListing();

 var fileObj:File;
 dirList.dataProvider = new ArrayCollection();

 for(var i:int = 0; i < docsDirectory.length; i++)
 {
 fileObj = docsDirectory[i];
 dirList.dataProvider.addItem({ label: fileObj.name });
 }
}

 4. Run the project using the device confi guration. Using an Android device, you should now see
the contents of the Documents directory for the device displayed beneath its native path as in
Figure 7-2.

CH007.indd 209CH007.indd 209 09/09/11 10:03 AM09/09/11 10:03 AM

210 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

Next modify the list so that only folders are displayed.

 5. In the for loop, use the isDirectory property on the fi le object to determine whether the
reference is an actual directory and not a fi le (Listing 7-10).

LISTING 7-10: Filtering the List component with directories only in FilesExplorerAppHome.mxml

for(var i:int = 0; i < docsDirectory.length; i++)
{
 fileObj = docsDirectory[i];

 if(fileObj.isDirectory)
 dirList.dataProvider.addItem({ label: fileObj.name });

}

 6. Run the project again using the device confi guration. Using an Android device, you should now
see that only folders are visible in the list (Figure 7-3).

FIGURE 7-2: Displaying the

contents of the Documents

directory in the Files Explorer

App running on Android 2.3.4

CH007.indd 210CH007.indd 210 09/09/11 10:03 AM09/09/11 10:03 AM

Reading from the Filesystem ❘ 211

How It Works

Within readDir() the getDirectoryListing() method is what provides the array of fi le objects from
the selectedDirectory fi le object to the docsDirectory array. This object points to the reference
Documents Directory on the mobile device. The length property on docsDirectory returns the
number of fi le objects in the array. This is used in the for loop to iterate through each fi le object and
display its name property in the List component dirList.

The dirData is used to hold only fi le objects that are known to be directories; using the isDirectory
property all the fi les are fi ltered out of the array.

Next take a look at navigating between each directory.

 7. Add an array called dirData to the private variable list (Listing 7-11).

LISTING 7-11: Defi ning a new private Array object to store fi le objects in FilesExplorerHome.mxml

<fx:Script>
 <![CDATA[
 private var dirData:Array;
 private var selectedDirectory:File;

 8. Within the readDir() method ensure dirData gets populated with each of the fi le objects
retrieved (Listing 7-12).

FIGURE 7-3: Displaying only

folders contained in the

Documents directory in the

Files Explorer App running on

Android 2.3.4

CH007.indd 211CH007.indd 211 09/09/11 10:03 AM09/09/11 10:03 AM

212 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

LISTING 7-12: Storing data in the Array object in FilesExplorerAppHome.mxml

protected function readDir():void
{
 selectedDirectory = File.documentsDirectory;
 currentDirectory.text = selectedDirectory.nativePath;

 var docsDirectory:Array = selectedDirectory.getDirectoryListing();

 var fileObj:File;
 dirData = [];
 dirList.dataProvider = new ArrayCollection();

 for(var i:int = 0; i < docsDirectory.length; i++)
 {
 fileObj = docsDirectory[i];

 if(fileObj.isDirectory)
 {
 dirData.push(fileObj);
 dirList.dataProvider.addItem({ label: fileObj.name });
 }
 }
}

 9. Next update the <s:List> component. Set the selectionColor property to #00A2FF, the
selectedIndex property to a default of 0, and the click property to the readDir() event
(Listing 7-13).

LISTING 7-13: Setting a selection color, the selected index, and click event handler for the

<s:List> component in FilesExplorerAppHome.mxml

<s:List id=”dirList”
 width=”100%”
 height=”85%”
 fontFamily=”Arial”
 contentBackgroundColor=”#B6B3B3”
 selectionColor=”#00A2FF”
 selectedIndex=”0”
 click=”readDir()”/>

 10. Next modify the readDir() method to allow for other fi le directories to be read. You need to
utilize the selectedIndex property of the List component (Listing 7-14.)

LISTING 7-14: Setting the selected directory from the data stored in the data array in

FilesExplorerAppHome.mxml

protected function readDir():void
{
 if(dirData)
 {
 selectedDirectory = dirData[dirList.selectedIndex];

CH007.indd 212CH007.indd 212 09/09/11 10:03 AM09/09/11 10:03 AM

Reading from the Filesystem ❘ 213

 } else {

 selectedDirectory = File.documentsDirectory;
 }

 currentDirectory.text = selectedDirectory.nativePath;

 var docsDirectory:Array = selectedDirectory.getDirectoryListing();

 var fileObj:File;
 dirData = [];
 dirList.dataProvider = new ArrayCollection();

 for(var i:int = 0; i < docsDirectory.length; i++)
 {
 fileObj = docsDirectory[i];

 if(fileObj.isDirectory)
 {
 dirData.push(fileObj);
 dirList.dataProvider.addItem({ label: fileObj.name });
 }
 }
}

 11. Run the project as it is. You will now be able to select a directory view showing any subfolders it
contains. Figure 7-4 shows a folder being highlighted.

Figure 7-5 shows the screen on the device when the folder has been selected. You will also notice that
the native path is updated in the display.

FIGURE 7-4: Navigating to sub-

folders in the Files Explorer App

running on Android 2.3.4

FIGURE 7-5: Displaying the

contents of the Images directory

in the Files Explorer App

running on Android 2.3.4

CH007.indd 213CH007.indd 213 09/09/11 10:03 AM09/09/11 10:03 AM

214 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

Next take a look at navigating back to the previous directory. For this you need to use the parent
property of the fi le object.

12. After the readDir() method, add an empty stub for a new protected method called
setParentDir(). Then above the for loop statement in readDir(), make a call
to setParentDir() as shown in Listing 7-15.

LISTING 7-15: Adding a method to call the parent directory in FilesExplorerAppHome.mxml

protected function readDir():void
{
 if(dirData)
 {
 selectedDirectory = dirData[dirList.selectedIndex];

 } else {

 selectedDirectory = File.documentsDirectory;

RUNNING THE FILES EXPLORER APP ON APPLE IOS

AND BLACKBERRY TABLET OS DEVICES

For the Files Explorer App running on an Apple iPhone 4, the initial fi le directory
opened by the application will consist of the following URL path:

/var/mobile/Applications/<ID>/Documents

Here the <ID> value represents a unique value generated for the application by the
device and could vary from iPhone to iPhone.

For the Files Explorer App running on a BlackBerry PlayBook, the initial fi le
directory will consist of the following path:

/accounts/1000/appdata/com.wrox.ch7.FilesExplorerApp.debug.test<ID>/
shared/documents

Similarly, the <ID> value here also represents a value generated for the application
by the device and could vary from PlayBook to PlayBook.

CH007.indd 214CH007.indd 214 09/09/11 10:03 AM09/09/11 10:03 AM

Reading from the Filesystem ❘ 215

 }

 currentDirectory.text = selectedDirectory.nativePath;

 var docsDirectory:Array = selectedDirectory.getDirectoryListing();

 var fileObj:File;
 dirData = [];
 dirList.dataProvider = new ArrayCollection();

 setParentDir();

 for(var i:int = 0; i < docsDirectory.length; i++)
 {
 fileObj = docsDirectory[i];

 if(fileObj.isDirectory)
 {
 dirData.push(fileObj);
 dirList.dataProvider.addItem({ label: fileObj.name });
 }
 }
}

protected function setParentDir():void {}

 13. In setParentDir() add the parent fi le object to the List component using the addItem()
method. Use square brackets and two dots [..] to denote the parent directory. You also need to
ensure that the parent is saved to the directory data array (Listing 7-6).

LISTING 7-16: Adding the parent fi le directory to the <s:List> component in

FilesExplorerAppHome.mxml

protected function setParentDir():void
{
 var fileObj:File = selectedDirectory.parent;

 if(fileObj)
 {
 dirData.push(fileObj);
 dirList.dataProvider.addItem({label:”[..]”});
 }
}

 14. Run the project as it is. You will now be able to select a directory and return to the parent
directory by selecting [..] (Figure 7-6).

CH007.indd 215CH007.indd 215 09/09/11 10:03 AM09/09/11 10:03 AM

216 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

MODIFYING FILES AND FILESYSTEMS

So far you’ve learned how to read the fi lesystem of a mobile device using AIR. In this section you
take a look at modifying the fi lesystem objects.

Creating New Files and Directories

To create fi les and folders on the mobile device, you need to use a combination of the File,
FileStream, and FileMode classes.

Using the FileMode Class

The FileMode class is found in the flash.filesystem package. When creating ActionScript Mobile
projects, you need to import the class through the following statement:

import flash.filesystem.FileMode;

When creating a Flex Mobile project in Flash Builder, you don’t need to import the class.

The FileMode class provides four static constants. These are fl ags to defi ne what a FileStream
object should do with a File object it receives via the FileStream.open() method. At least one of
these properties needs to be supplied as the second parameter in the open() method:

FIGURE 7-6: Navigating to

the parent directory in the

Files Explorer App running on

Android 2.3.4

CH007.indd 216CH007.indd 216 09/09/11 10:03 AM09/09/11 10:03 AM

Modifying Files and Filesystems ❘ 217

 ➤ FileMode.WRITE: To write new data to a fi le object instance

 ➤ FileMode.UPDATE: To update an existing fi le object instance

 ➤ FileMode.APPEND: To append data to a fi le object instance

 ➤ FileMode.READ: To read data from a fi le object instance

The following sections demonstrate how each of the FileMode properties can be used to read
and write strings to a text fi le using the FileStream.readUTFBytes() and FileStream
.writeUTFBytes() methods.

Writing to a File

To write, update, and append a fi le, you use the writeUTFBytes() method on a FileStream object,
supplying the text you want to add to the fi le as an argument.

In the following code snippet the FileStream object fs opens a text File object called story.txt,
resolving a path located in the documents directory. The fi le stream opens the fi le and then writes
the string “A long time ago,” which is 15 characters, and then closes the fi le stream:

var fileObj:File = File.documentsDirectory.resolvePath(“story.txt”);

var fs:FileStream = new FileStream();
fs.open(fileObj, FileMode.WRITE);
fs.writeUTFBytes(“A long time ago“);
fs.close();

Updating the Contents of a File

In the following code snippet the story.txt fi le is updated:

var fileObj:File = File.documentsDirectory.resolvePath(“story.txt”);

var fs:FileStream = new FileStream();
fs.open(fileObj, FileMode.UPDATE);
fs.position = 15;
fs.writeUTFBytes(“ in a galaxy far, far away.... “);
fs.close();

Notice that the FileStream.position property on the FileStream object is set to 15. This property
represents the current position in the fi le stream, and has been set so that the existing text in the fi le is
kept and isn’t overridden when new text is supplied to the FileStream.writeUTFBytes() method.
Following on from the previous code snippet the fi le should read “A long time ago.” When the
update is applied the fi le should now read “A long time ago in a galaxy far, far away….”

Similarly, appending to a fi le using the FileMode.APPEND fl ag in FileStream.open() updates the
fi le, but adds whatever is supplied to the FileStream.writeUTFBytes() method to the end of
the fi le. The following code snippet appends the string “STAR WARS” to the story.txt fi le:

var fileObj:File = File.documentsDirectory.resolvePath(“story.txt”);

var fs:FileStream = new FileStream();

CH007.indd 217CH007.indd 217 09/09/11 10:03 AM09/09/11 10:03 AM

218 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

fs.open(fileObj, FileMode.APPEND);
fs.writeUTFBytes(“STAR WARS”);
fs.close();

Reading the Contents of a File

To read the contents of an existing text fi le, you need to use the FileStream.readUTFBtyes()
method by supplying a reference to the bytesAvailable property on the fi le stream object.

In the following snippet the story.txt fi le is read:

var fileObj:File = File.documentsDirectory.resolvePath(“story.txt”);

var fs:FileStream = new FileStream();
fs.open(fileObj, FileMode.READ);
fs.readUTFBytes(fs.bytesAvailable);
fs.close();

Here the FileStream object fs is again passed a reference to the File object fileObj, which points
to the story.txt fi le. The FileMode.READ fl ag is also passed to the FileStream.open() method.

If you’ve followed each of the previous code snippets, the story.txt fi le should read “A long time
ago, in a galaxy far, far away. . . . STAR WARS.”

Creating a New File Directory

Creating a new fi le directory simply requires calling the createDirectory() method on the fi le
object. The path to the new folder needs to be resolved using the resolvePath() method, as shown
in the following snippet:

var fileDir:File = File.desktopDirectory.resolvePath(“untitled folder”);
fileDir.createDirectory();

In this snippet the “untitled folder” is created in the Desktop directory.

Moving Files from One Directory to Another

To move a fi le from one location on the device to another, you need to utilize two fi le objects. The
fi rst fi le object should point to the originating location, and the second should point to where you
want to move the fi le. You call the moveTo() method on the fi rst fi le object, supplying the second fi le
object as the parameter as shown in the following snippet:

var originalFile:File = File.documentsDirectory.resolvePath(“story.txt”);

var newDir:File = File.applicationStorageDirectory.resolvePath(“story.txt”);

originalFile.moveTo(newDir);

Here the story.txt fi le is moved from the documents directory to the application’s storage directory
on the device.

CH007.indd 218CH007.indd 218 09/09/11 10:03 AM09/09/11 10:03 AM

Modifying Files and Filesystems ❘ 219

The text supplied to resolvePath() for the second fi le object is what defi nes either the new
fi lename if you are moving a fi le, or the directory.

Moving a Folder

To move a fi le directory also requires the use of the moveTo() method on the fi le object. In the following
snippet the originalDir fi le object, which points to the “untitled folder” on the desktop, is moved
to the destinationDir fi le object, which points to a folder called “shapes” in the documents directory.

var originalDir:File = File.desktopDirectory.resolvePath(“untitled folder”);

var destinationDir:File = File.documentsDirectory.resolvePath(“shapes”);

originalDir.moveTo(destinationDir);

Here the moveTo() method is called on originalDir, which is the fi le object representing the
directory that you want to move. The destinationDir fi le object is supplied as the parameter for
the moveTo() method.

Copying Files and Directories

Copying a fi le or a directory also requires two fi le objects. To copy a fi le, you need to call the
copyTo() method, as shown in the following snippet:

var file:File = File.applicationStorageDirectory.resolvePath(“story.txt”);

var newFile:File = File.documentsDirectory.resolvePath(“story copy.txt”);

file.copyTo(newFile);

In the following snippet the originalDir fi le object, which now points to the “shapes” folder in the
documents directory, is copied and a new fi le directory newDir is created called “shapes copy” via
the copyTo() method.

var originalDir:File = File.documentsDirectory.resolvePath(“shapes”);

var newDir:File = File.documentsDirectory.resolvePath(“shapes copy”);

originalDir.copyTo(newDir);

The copyTo() method is called on originalDir, which is the fi le object representing the directory
that you want to copy. The newDir fi le object is supplied as the parameter for copyTo().

Deleting a File from a Location

Removing a fi le from the fi lesystem on the mobile device fi rst requires that a fi le exists. In the following
snippet the story copy.txt fi le is removed from the documents directory via the deleteFile() method:

var fileObj:File = File.documentsDirectory.resolvePath(“story copy.txt“);

if(fileObj.exists)
 fileObj.deleteFile();

CH007.indd 219CH007.indd 219 09/09/11 10:03 AM09/09/11 10:03 AM

220 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

Deleting File Directories

To remove a directory from the fi lesystem, you call the File.deleteDirectory() method on a
File object. Again, you need to ensure that the resolvePath() returns the correct fi le directory
location.

var fileDir:File = File.documentsDirectory.resolvePath(“stories”);

if(fileDir.exists)
 fileDir.deleteDirectory();

TRY IT OUT Creating New Files and Folders

Returning to the Files Explorer project, add two new options to the main view, new folder and
new fi le. These options will be created to demonstrate exactly how the functions perform.

1. First update the view in FilesExplorerAppHome.mxml to include the horizontal group layout
component <s:HGroup>, placing it directly beneath the List component dirList. Set the id
property of the component to buttonContainer, set the width to 100%, set the horizontalAlign
to center, and then set paddingLeft and paddingTop to 10 (Listing 7-17).

LISTING 7-17: Adding a horizontal group component to the view in FilesExplorerAppHome.mxml

<s:List id=”dirList”
 width=”100%”
 height=”85%”
 fontFamily=”Arial”
 contentBackgroundColor=”#B6B3B3”
 selectionColor=”#00A2FF”
 selectedIndex=”0”
 click=”readDir()”/>

<s:HGroup id=”buttonContainer”
 width=”100%”
 horizontalAlign=”center”
 paddingTop=”10”
 paddingBottom=”10”>

</s:HGroup>

2. Next add two new <s:Button> components. Set the id property to folderBtn and the label
property to New Folder on the fi rst button. Then on the second button set the id property to
fileBtn and label to New File. Both height properties of the components should be set to 55
and their fontSize properties should be set to 24, (Listing 7-18).

CH007.indd 220CH007.indd 220 09/09/11 10:03 AM09/09/11 10:03 AM

Modifying Files and Filesystems ❘ 221

LISTING 7-18: Adding two new <s:Button> components to the horizontal group component in

FilesExplorerAppHome.mxml

<s:HGroup id=”buttonContainer”
 width=”100%”
 horizontalAlign=”center”
 paddingTop=”10”
 paddingBottom=”10”>

 <s:Button id=”folderBtn”
 label=”New Folder”
 height=”55”
 fontSize=”24”/>

 <s:Button id=”fileBtn”
 label=”New File”
 height=”55”
 fontSize=”24”/>

</s:HGroup>

3. Next create the FolderView.mxml view. In the Package Explorer panel highlight the Views
Package folder. Then select File ➪ New ➪ MXML Component. In the New MXML Component
pop-up window that opens, before clicking the Finish button, ensure that the Package fi eld is set to
views, the Name fi eld to Folder, the Layout fi eld to spark.layouts.VerticalLayout, and the
Based On fi eld to spark.components.View (Figure 7-7). After clicking Finish, the FolderView
.mxml fi le is created in the Views folder of the Package Explorer panel.

FIGURE 7-7: Creating the FolderView MXML component for the

Files Explorer App

CH007.indd 221CH007.indd 221 09/09/11 10:03 AM09/09/11 10:03 AM

222 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

4. Next modify the FolderView.mxml to include four new components. In FolderView.mxml
modify the title property of the view component to read Create a new Folder... and set the
creationComplete property to onCreationComplete. In the <s:VerticalLayout> container
set the paddingLeft and paddingTop to 10. The <fx:Script> declaration should be added to
include the onCreationComplete() stub. Directly beneath the <s:layout> declaration add two
<s:Label> components. On the fi rst label, set the id to currentDirectory and the text property
to Current Directory. On the second <sLabel>, set the text property to Folder name:, and
set the width and height on both labels to 100% and 60, respectively. Add a <s:TextInput>
component to the view, setting the id property on the component to directoryName, width to
450, and contentBackgroundColor to #605E5E. Finally, add a <s:Button> component setting
the label to Create Folder, height to 55, and fontSize to 24 (Listing 7-19).

LISTING 7-19: Creating the FolderView.mxml view for the Files Explorer App project

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”onCreationComplete()”
 title=”Create a new Folder...”>

 <fx:Script>
 <![CDATA[
 protected function onCreationComplete():void {}
]]>
 </fx:Script>

 <s:layout>
 <s:VerticalLayout paddingLeft=”10”
 paddingTop=”10”/>
 </s:layout>

 <s:Label id=”currentDirectory”
 text=”Current Directory”
 width=”100%”
 height=”58”
 verticalAlign=”middle”/>

 <s:Label width=”152”
 height=”55”
 text=”Folder name:”
 textAlign=”left”
 verticalAlign=”middle”/>

 <s:TextInput id=”directoryName”
 width=”450”
 contentBackgroundColor=”#605E5E”/>

 <s:Button label=”Create Folder”
 height=”55”
 fontSize=”24”/>

</s:View>

CH007.indd 222CH007.indd 222 09/09/11 10:03 AM09/09/11 10:03 AM

Modifying Files and Filesystems ❘ 223

5. Next create the FileView.mxml component for the project. Add a new MXML component, this
time setting the Name fi eld to FileView. After clicking the Finish button, the FileView.mxml fi le
should appear in the Package Explorer panel.

6. Next modify the File view to include four new components. In FileView.mxml modify the
title property of the view to read Create a new File... and set the creationComplete
property to onCreationComplete. The <fx:Script> declaration should be added to include
the onCreationComplete() stub. In the <s:VerticalLayout> container set the paddingLeft
and paddingTop to 10. Directly beneath the <s:layout/> component add two <s:Label>
components. On the fi rst label set the id to currentDirectory and the text property to
Current Directory; on the second label set the text property to File name: and set
the width and height on both labels to 100% and 60, respectively. Add a <s:TextInput>
component to the view, setting the id property of the component to fileName, width to 450, and
contentBackgroundColor to #605E5E. Add a second label component with the text property set
to File Content: and then a <s:TextArea> component with an id property set to fileContent.
Then fi nally add a <s:Button> component setting the label to Create File, the height to 55,
and the fontSize property to 24. The basic structure for the File view is very similar to the Folder
view. Listing 7-20 highlights the subtle differences.

LISTING 7-20: Creating the FileView.mxml fi le for the Files Explorer App project

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”onCreationComplete()”
 title=”Create a new File...”>

 <fx:Script>
 <![CDATA[
 protected function onCreationComplete():void {}
]]>
 </fx:Script>

 <s:layout>
 <s:VerticalLayout paddingLeft=”10”
 paddingTop=”10”/>
 </s:layout>

 <s:Label id=”currentDirectory”
 text=”Current Directory”
 width=”100%”
 height=”58”
 verticalAlign=”middle”/>

 <s:Label width=”152”
 height=”55”
 text=”File name:”
 textAlign=”left”

continues

CH007.indd 223CH007.indd 223 09/09/11 10:03 AM09/09/11 10:03 AM

224 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

LISTING 7-20 (continued)

 verticalAlign=”middle”/>

 <s:TextInput id=”fileName”
 width=”450”
 contentBackgroundColor=”#605E5E”/>

 <s:Label width=”203”
 height=”55”
 text=”File Content:”
 textAlign=”left”
 verticalAlign=”middle”/>

 <s:TextArea id=”fileContent”
 width=”450”
 height=”209”
 contentBackgroundColor=”#605E5E”
 verticalAlign=”top”/>

 <s:Button label=”Create File”
 height=”55”
 fontSize=”24”/>

</s:View>

7. Next modify the FolderView.mxml and FileView.mxml fi les. Add a private File type variable
called selectedDirectory, then in the onCreationComplete() function, set the text property
on the currentDirectory label component to the nativePath property on selectedDirectory.
Under the closing <fx:Script> tag, add a <s:Button> component to the <s:navigationContent>
declaration, to navigate back to the FilesExplorerAppHome.mxml view. Add a private function
called back() that calls the navigator.pushView() method of the view, passing a reference to
views.FilesExplorerAppHome and the selectedDirectory fi le object (Listing 7-21).

LISTING 7-21: Displaying the nativePath and adding a back button in FolderView.mxml and

FileView.mxml

<fx:Script>
 <![CDATA[
 private var selectedDirectory:File;

 protected function onCreationComplete():void
 {
 selectedDirectory = data as File;
 currentDirectory.text = selectedDirectory.nativePath;
 }

 private function back():void
 {
 navigator.pushView(views.FilesExplorerAppHome,
 selectedDirectory);

CH007.indd 224CH007.indd 224 09/09/11 10:03 AM09/09/11 10:03 AM

Modifying Files and Filesystems ❘ 225

 }
]]>
</fx:Script>

<s:navigationContent>
 <s:Button label=”Back”
 click=”back()”/>
</s:navigationContent>

8. In FolderView.mxml add a protected function called createFolder() under
onCreationComplete(). In this method use the selectedDirectory fi le object to create a
new fi le object with the resolvePath() method. First retrieve the value set on the text input
component directoryName. If the text doesn’t return a value or is left blank, create a directory
with the path of untitled folder. Should text be set on the Text Input fi eld, use the text
returned. Create the new folder by calling the createDirectory() method on the newDir fi le
object (Listing 7-22).

LISTING 7-22: Adding a method to create a new directory in the FolderView.mxml fi le

protected function onCreationComplete():void
{
 selectedDirectory = data as File;
 currentDirectory.text = selectedDirectory.nativePath;
}

protected function createFolder():void
{
 var directoryName:String = directoryName.text;
 var newDir:File;

 if(!directoryName || directoryName == “”)
 {
 newDir = selectedDirectory.resolvePath(“untitled folder”);

 } else {

 newDir = selectedDirectory.resolvePath(directoryName);
 }

 newDir.createDirectory();
}

9. Next make a call to the createFolder() method via the Create Folder button (Listing 7-23).

LISTING 7-23: Assigning the createFolder() method to a click event in FolderView.mxml

<s:Button label=”Create Folder”
 click=”createFolder()”
 height=”55”
 fontSize=”24”/>

CH007.indd 225CH007.indd 225 09/09/11 10:03 AM09/09/11 10:03 AM

226 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

10. Next return to the File view. In FileView.mxml add a protected function called createFile()
below onCreationComplete(). Use the text property on the Text Input fi eld fileName
along with .txt to generate a fi lename string. Then use the resolvePath() method on the
selectedDirectory to generate a new fi le object fileObj (Listing 7-24).

LISTING 7-24: Adding the createFile() method to create a new fi le in FileView.mxml

protected function onCreationComplete():void
{
 selectedDirectory = data as File;
 currentDirectory.text = selectedDirectory.nativePath;
}

protected function createFile():void
{
 var nameStr:String = fileName.text + “.txt”;
 var fileObj:File = selectedDirectory.resolvePath(nameStr);
}

11. Next use the newly created fi le object to create the new fi le through a FileStream object called fs.
Use FileMode.WRITE as the fi le mode to pass to the open() method of the fi le stream object along
with the fi le object. Then use the text property on the fileContent component to write
to the fi le via writeUTFBytes(). Finally call the close() method on the fi le stream object
(Listing 7-25).

LISTING 7-25: Creating the fi le stream in FileView.mxml

protected function createFile():void
{
 var nameStr:String = fileName.text + “.txt”;
 var fileObj:File = selectedDirectory.resolvePath(nameStr);

 var fs:FileStream = new FileStream();
 fs.open(fileObj, FileMode.WRITE);
 fs.writeUTFBytes(fileContent.text);
 fs.close();
}

12. Next make a call to the createFile() method via the Create Folder button (Listing 7-26).

LISTING 7-26: Assigning the createFile() method to a click event in FileView.mxml

<s:Button label=”Create File”
 click=”createFile()”
 height=”55”
 fontSize=”24”/>

CH007.indd 226CH007.indd 226 09/09/11 10:03 AM09/09/11 10:03 AM

Modifying Files and Filesystems ❘ 227

13. Finally update the FilesExplorerAppHome.mxml view. Above the exit() method create two
new functions to display the new views. Add the private folderView() method to show the
Folder view, then the fileView() method to show the File view. You need to call the
pushView() method on the navigator property in each of the methods, supplying the respective
view component along with the selectedDirectory fi le object as the data for the view
(Listing 7-27).

LISTING 7-27: Navigating to the new views in FilesExplorerAppHome.mxml

private function fileView():void
{
 navigator.pushView(views.FileView, selectedDirectory);
}

private function folderView():void
{
 navigator.pushView(views.FolderView, selectedDirectory);
}

private function exit():void
{
 NativeApplication.nativeApplication.exit();
}

14. Next make a call to each of the view methods from their respective buttons. Set the click event on
folderBtn to folderView() and for fileBtn set it to fileView() (Listing 7-28).

LISTING 7-28: Assigning folderView() and fi leView() methods to click events in

FilesExplorerAppHome.mxml

<s:HGroup id=”buttonContainer”
 width=”100%”
 horizontalAlign=”center”>

 <s:Button id=”folderBtn”
 label=”New Folder”
 click=”folderView()”
 height=”55”
 fontSize=”24”/>

 <s:Button id=”fileBtn”
 label=”New File”
 click=”fileView()”
 height=”55”
 fontSize=”24”/>

</s:HGroup>

CH007.indd 227CH007.indd 227 09/09/11 10:03 AM09/09/11 10:03 AM

228 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

15. Run the project. You will now see two buttons defi ned underneath the current directory label and the
List component — the fi rst to create a new folder and the second to create a new fi le (Figure 7-8).

16. Click the New Folder button. This takes you to the Folder view and displays the directory
selected from the main view and a Text fi eld that allows you to specify a name for the new
folder (Figure 7-9).

FIGURE 7-8: The New Folder

and New File buttons in the

Files Explorer App running on

Android 2.3.4

FIGURE 7-9: Creating a new

folder called “archive” in the

Files Explorer App running on

Android 2.3.4

17. Enter a name for the folder, then click the Create Folder button. This should generate the new folder
in the directory selected from the original list. Then click the Back button in the action bar to go
back to the main view. In the main view you now should see the new folder created (Figure 7-10).

18. Next select the new folder you have just created, then click the New File button. This takes you to
the File view and displays the directory selected from the main view. It also displays a Text fi eld
that allows you to specify a name for the new fi le and a Text fi eld that allows you to enter text for
the fi le. Enter a name for the fi le, then add some content to the text area. Then click the Create File
button. This should generate the new fi le in the directory selected from the original list. Figure 7-11
shows the FileView.mxml fi le.

CH007.indd 228CH007.indd 228 09/09/11 10:03 AM09/09/11 10:03 AM

Utilizing Browse Dialogs ❘ 229

UTILIZING BROWSE DIALOGS

For AIR on Android, three browse methods on the File object
allow you to reference image, video, and audio fi les using the mobile
device’s native window dialog:

 ➤ browseForOpen(): To select a single fi le

 ➤ browseForOpenMultiple(): To select multiple fi les

 ➤ browseForSave(): To select a fi le to save to

On an Android mobile device, the browse dialog allows the
user to select only from audio, image, and video fi les, as shown in
Figure 7-12.

FIGURE 7-10: Displaying the

new “archive” folder in the

Files Explorer App running on

Android 2.3.4

FIGURE 7-11: Creating a new fi le

in the Files Explorer App running

on Android 2.3.4

FIGURE 7-12: Displaying the

browse dialog to open fi les in

the Files Explorer App running

on Android 2.3.4

CH007.indd 229CH007.indd 229 09/09/11 10:03 AM09/09/11 10:03 AM

230 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

Opening a Single File

Using the browseForOpen() method on a File object, you can present the user with a browse for
open fi le dialog on the mobile device, which will allow you to reference a fi le in the application.

The browseForOpen() method takes two parameters. The fi rst parameter is a title to be displayed
in the dialog, and the second is an optional fi le fi lter that can be used to fi lter the types of fi les a user
can select for opening.

The following snippet shows how a FileFilter object called audioFilter is defi ned to display all
MP3 fi le types, before the browseForOpen() method is called on the File object fileDir:

var audioFilter:FileFilter;
audioFilter = new FileFilter(“audio”, “*.mp3”);

var fileDir:File = File.applicationStorageDirectory;
fileDir.addEventListener(Event.SELECT, onSelect);
fileDir.browseForOpen(“Select a file...”, [audioFilter]);

In the constructor of the fi le fi lter the string audio is supplied as a description along with *.mp3, a
string representing the MP3 fi le extension. The browseForOpen() method is given two parameters.
The fi rst is the string Select a file..., and the second is an array of FileFilter objects, though
here only the mediaFilter object is supplied.

In the example, addEventListener() is called on fileDir to register Event.SELECT, an event that is
fi red when a user selects an item in the browse dialog. The handler for the event defi ned as onSelect()
returns a fi le object reference to the fi le selected in the target property of the Event object e.

Opening Multiple Files

Using the browseForOpenMultiple() method on a File object, you can present the user with a
browse fi le dialog to open and save fi les. Instead of Event.SELECT being fi red when a user selects a
media fi le from the browse dialog, the FileListEvent.SELECT_MULTIPLE event is triggered. The
handler for the event returns an array of File objects in the target property instead of just a single fi le.

The following code snippet demonstrates how to use a browse dialog to select multiple fi les:

var fileDir:File = File.documentsDirectory;
fileDir.addEventListener(FileListEvent.SELECT_MULTIPLE, onSelect);
fileDir.addEventListener(Event.CANCEL, onCancel);
fileDir.browseForOpenMultiple(“Select files...”);

In this example addEventListener() is called on the File object fileDir to handle the SELECT_
MULTIPLE event. In addition, the Event.CANCEL event is also handled by an onCancel() when the
user clicks Cancel.

Take a look at browse dialogs in more detail.

WARNING On iOS, the browse APIs are not supported.

CH007.indd 230CH007.indd 230 09/09/11 10:03 AM09/09/11 10:03 AM

Utilizing Browse Dialogs ❘ 231

TRY IT OUT Opening Multiple Image Files

Over the next few steps you’ll try utilizing browseForOpenMultiple() by loading multiple images
selected from a browse dialog directly into a mobile application.

1. Under the exit() method in FilesExplorerAppHome.mxml, add another protected function
called selectMedia() that takes a single File object called fileObj as a parameter. In
selectMedia() defi ne a FileFilter object called jpgFilter, which fi lters the jpeg extension
*.jpg (Listing 7-29).

LISTING 7-29: Defi ning a FileFilter object for selectMedia() in FilesExplorerAppHome.mxml

private function exit():void
{
 NativeApplication.nativeApplication.exit();
}

protected function selectMedia(fileObj:File):void
{
 var jpgFilter:FileFilter;
 jpgFilter = new FileFilter(“JPEG Files”, “*.jpg”);
}

2. Add an empty stub method called onSelect() that takes a single parameter, Event object e. In
selectMedia() register an interest for the FileListEvent.SELECT_MULTIPLE event on fileObj,
using onSelect() as the event handler. Then fi nally call the browseForOpenMultiple() method,
supplying a title for the browse dialog and jpgFilter as the single fi le fi lter (Listing 7-30).

LISTING 7-30: Adding the SELECT_MULTIPLE event to the File object and calling the

browseForOpenMultiple() method in FilesExplorerAppHome.mxml

private function exit():void
{
 NativeApplication.nativeApplication.exit();
}

protected function selectMedia(fileObj:File):void
{
 var jpgFilter:FileFilter;
 jpgFilter = new FileFilter(“JPEG Files”, “*.jpg”);

 fileObj.addEventListener(FileListEvent.SELECT_MULTIPLE, onSelect);
 fileObj.browseForOpenMultiple(“Select 2 image files...”, [jpgFilter]);
}

private function onSelect(e:Event):void {}

3. In the onSelect() event handler, the event object triggered by the SELECT_MULTIPLE event type
is passed to the method. Navigate to the ImagesView view using the navigator.pushView()
method, but only when the event object is of the FileListEvent type. The fi rst parameter of

CH007.indd 231CH007.indd 231 09/09/11 10:03 AM09/09/11 10:03 AM

232 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

the pushView() method should be the Images view; the second parameter should be the files
property returned by the event e, (Listing 7-31).

LISTING 7-31: Navigating to the Images view in onSelect() in FilesExplorerAppHome.mxml

private function onSelect(e:Event):void
{
 if(e is FileListEvent)
 {
 navigator.pushView(views.ImagesView, FileListEvent(e).files);
 }
}

4. Add a <s:Button> to the view in FilesExplorerAppHome.mxml to call the selectMedia()
method (Listing 7-32).

LISTING 7-32: Adding a horizontal group component containing the Open multiple media

button in FilesExplorerAppHome.mxml

<s:HGroup id=”buttonContainer”
 width=”100%”
 horizontalAlign=”center”>

 <s:Button height=”55”
 label=”Open multiple media”
 click=”selectMedia(selectedDirectory)”
 fontSize=”24”/>

</s:HGroup>

<s:HGroup id=”buttonContainer”
 width=”100%”
 horizontalAlign=”center”>

 <s:Button id=”folderBtn”
 label=”New Folder”
 height=”55”
 fontSize=”24”/>

 <s:Button id=”fileBtn”
 label=”New File”
 height=”55”
 fontSize=”24”/>

</s:HGroup>

5. Next create a new view for the project called ImagesView in the Views package. Add an
onCreationComplete() event handler method stub in the <fx:Script/> declaration and assign it
to the creationComplete property of the view component. Then add a title to the View Selected
Files (Listing 7-33).

CH007.indd 232CH007.indd 232 09/09/11 10:03 AM09/09/11 10:03 AM

Utilizing Browse Dialogs ❘ 233

LISTING 7-33: Assigning values to the title and creationComplete in ImagesView.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Selected files...”
 creationComplete=”onCreationComplete()”>

 <fx:Script>
 <![CDATA[
 protected function onCreationComplete():void {}
]]>
 </fx:Script>

</s:View>

6. Next under onCreationComplete() add a private method called back() to return to the
FilesExplorerAppHome view, and add the call to a button in the <s:navigationContent>
declaration (Listing 7-34).

LISTING 7-34: Adding a <s:Button> to navigate back in ImagesView.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Selected files...”
 creationComplete=”onCreationComplete()”>

 <fx:Script>
 <![CDATA[
 protected function onCreationComplete():void {}

 private function back():void
 {
 navigator.pushView(views.FilesExplorerAppHome);
 }
]]>
 </fx:Script>

 <s:navigationContent>
 <s:Button label=”Back”
 click=”back()”/>
 </s:navigationContent>

</s:View>

7. Under the <s:navigationContent> component add a vertical group component <s:VGroup>,
with paddingLeft and paddingTop set to 10. Within the vertical group add two <s:Image>
components, with their id properties set to img0 and img1 (Listing 7-35).

CH007.indd 233CH007.indd 233 09/09/11 10:03 AM09/09/11 10:03 AM

234 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

LISTING 7-35: Adding a vertical group of <s:Image> components to the view in

ImagesView.mxml

<s:navigationContent>
 <s:Button label=”Back”
 click=”back()”/>
</s:navigationContent>

<s:VGroup paddingTop=”10”
 paddingLeft=”10”>

 <s:Image id=”img0”/>

 <s:Image id=”img1”/>

</s:VGroup>

8. After onCreationComplete(), add another private method stub called displayImage() that
accepts two parameters: url, a string representing the path to the image; and img, an Image
type referencing the image component in which to display. Set the source property of the image
object img to the url value passed to the method (Listing 7-36).

LISTING 7-36: Setting the source on the image object in ImagesView.mxml

protected function onCreationComplete():void {}

protected function displayImage(url:String, img:Image):void
{
 img.source = url;
}

9. Lastly in onCreationComplete() cast the data object retrieved in the view to an Array
variable called selectedFiles. Add a File type variable fileObj. Then iterate through the
selectedFiles array and call the displayImage() method supplying fileObj.url, and a
reference to the image component id using this[“img” + i] (Listing 7-37).

LISTING 7-37: Calling the displayImage() method via onCreationComplete() in

ImagesView.mxml

protected function onCreationComplete():void
{
 var selectedFiles:Array = data as Array;
 var fileObj:File;

 for (var i:int = 0; i < 2; i++)
 {

CH007.indd 234CH007.indd 234 09/09/11 10:03 AM09/09/11 10:03 AM

Utilizing Browse Dialogs ❘ 235

 fileObj = selectedFiles[i];

 if(fileObj.exists)
 displayImage(fileObj.url, this[“img” + i]);
 }
}

10. Now run the project as it is. Click the Open Multiple Media button. You will see the browse dialog
appear, as shown in Figure 7-13.

FIGURE 7-13: Browsing for

multiple image fi les in the

Files Explorer App running on

Android 2.3.4

11. In the browse dialog, select Image Files, then choose two image fi les (Figure 7-14).

12. Click OK. The ImagesView.mxml view will open and show the images you selected (Figure 7-15).

 NOTE The text supplied as the title parameter for the browseForOpenMultiple()
and browseForOpen() methods does not appear in the browse dialog on a
Google Nexus One running Android 2.3.4. In Figure 7-13 and Figure 7-14 you will
see Upload appear as the title.

CH007.indd 235CH007.indd 235 09/09/11 10:03 AM09/09/11 10:03 AM

236 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

FIGURE 7-14: Selecting the

fl ash.jpg and air.jpg fi les in the

Files Explorer App running on

Android 2.3.4

FIGURE 7-15: Displaying the

selecting images in the Files

Explorer App running on

Android 2.3.4

Saving a Single File to a Location

The browseForSave() method presents a dialog containing a list
of fi les, and allows a user to save a fi le to a location on the mobile
device.

The following snippet shows how to call browseForSave():

var fileDir:File = File.applicationStorageDirectory;
fileDir.addEventListener(Event.SELECT, onSelect);
fileDir.browseForSave(“Save file...”);

As with browseForOpen(), Event.SELECT needs to be registered
with the fi le object to handle when the user selects the OK button to
confi rm saving the fi le (Figure 7-16).

FIGURE 7-16: Saving to a

directory using the browse

dialog in the Files Explorer App

running on Android 2.3.4

CH007.indd 236CH007.indd 236 09/09/11 10:03 AM09/09/11 10:03 AM

Summary ❘ 237

SUMMARY

Over the course of this chapter you have learned how to utilize the AIR File System API using a
combination of Flash, Flex, and AIR to build the Files Explorer project.

The File and FileStream classes are the key aspects of the AIR File System API, and can be
used in a number of ways to read, write, and modify aspects of any existing fi lesystem via a Flash
application, including: listing the fi les and folders of a directory; creating text fi les; and selecting
media fi les to open on the device.

In the next chapter you’ll use aspects of the AIR File System API to work with app data, focusing
more on the application storage directory.

Before moving on to the next chapter, you can integrate a number of functions covered in this
chapter into the Files Explorer project. The following set of exercises should allow you to explore
these event types and appreciate gestures in more detail.

EXERCISES

 1. Use a checkbox in the FilesExplorerAppHome.mxml view to toggle between displaying fi les and

folders in the List component.

 2. Use a button in FilesExplorerAppHome.mxml to read a .txt text fi le highlighted in the List

component.

3. In the FileView.mxml add an option to delete a fi le.

4. In the FolderView.mxml add an option to move a folder to another directory.

5. Modify the List component used in FilesExplorerAppHome.mxml to display the creation date,

size, space available, and (for a fi le) the fi le extension.

 NOTE The text supplied as the title parameter for the browseForSave()
method doesn’t appear in the browse dialog on a Google Nexus One running
Android 2.3.4. In Figure 7-16 you will see Download appear as the title, and not
Save File as highlighted in the snippet.

CH007.indd 237CH007.indd 237 09/09/11 10:03 AM09/09/11 10:03 AM

238 ❘ CHAPTER 7 WORKING WITH THE FILESYSTEM

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Creating fi le objects Use one of three URL schemes to create a fi le object: app:/;

app-storage:/; and file://.

Creating fi le objects from

static locations

Use one of fi ve static properties to reference a fi le object, including:

File.applicationDirectory

File.applicationStorageDirectory

File.documentsDirectory

File.desktopDirectory, and File.userDirectory

Resolving fi le object

paths

Use resolvePath() on a fi le object to refi ne a target path.

Writing to fi les Use the FileStream and FileMode objects to write to a fi le.

Set the fi le mode to FileMode.WRITE when opening a fi le stream to

write to a fi le.

Use writeUTFBytes() to write content to a fi le.

Modifying fi les and

directories

Use moveTo() on the fi le object to move to a fi le path.

Use copyTo() on the fi le object to make a duplicate of the fi le object.

Use deleteFile() to remove a fi le.

Use deleteDirectory() to remove a folder.

Using browse dialogs Use browseForOpen() to open a single fi le and use

browseForOpenMultiple() to open multiple fi les.

Use browseForSave() to save a fi le object to the mobile device.

CH007.indd 238CH007.indd 238 09/09/11 10:03 AM09/09/11 10:03 AM

Working with Data

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Implementing network detection

 ➤ Handling changes in network availability

 ➤ Monitoring URL requests

 ➤ Exploring SQLite operations

 ➤ Utilizing databases and tables

In this chapter you’ll build a Flex mobile example utilizing SQLite, and incorporate the
concept of saving Formula 1 racing team data to a database. If you don’t know much about
Formula 1, don’t worry; you’ll just be referencing a database of basic team data.

The data created by the application will be modifi able on the mobile device, so you will be
able to create a team and add drivers, update the values, and remove them from the database,
directly from the app.

SQL provides an avenue for creating mobile applications with self-contained data using Adobe
AIR. You need to take a number of steps to open a database stored on the device and you
should take a look at these fi rst.

You’ll begin in this chapter by implementing network detection, and learning how you can
retrieve data over an available Internet network.

DETECTING CHANGES IN NETWORK AVAILABILITY

It’s important to have a backup when working with online data services. It’s also useful for the
user to know what the status is when a network service changes.

8

CH008.indd 239CH008.indd 239 09/09/11 10:04 AM09/09/11 10:04 AM

240 ❘ CHAPTER 8 WORKING WITH DATA

Retrieving Data with URLRequest

You request remote data via an HTTP URL path through using the URLRequest and URLLoader
classes. Both classes are found in the flash.net package and need to be imported in ActionScript
mobile projects, as shown in the following snippet:

import flash.net.URLRequest;
import flash.net.URLLoader;

Because they are part of the same package, they can also be imported using the star notation,
indicating that all classes within that package should be imported into the document:

import flash.net.*;

The following snippet shows a request for remote data, using two variables — a URLRequest object
called urlRequest, and a URLLoader object called urlLoader:

var urlRequest:URLRequest;
urlRequest = new URLRequest(“http://localhost/wrox/ch8/data.txt”);

var urlLoader:URLLoader;
urlLoader.load(urlRequest);

In this example the HTTP URL path http://localhost/wrox/ch8/data.txt is supplied as a
parameter in the constructor of the URLRequest object. Instead of passing the URL to the class
constructor function, you can set the URLRequest.url property to reference the path:

urlRequest.url = “http://localhost/wrox/ch8/data.txt”;

The URLLoader.load() method is what triggers the data load request. To handle the loading of
data the Event.COMPLETE event should be handled on the urlLoader object.

NOTE You will need to set up a local host or use a remote server to run the
initial examples in this section.

Monitoring the URLRequest Object

When a network connection is available on a mobile device, the data retrieved by an application
can be presented to a user. Should the network become unavailable, online data cannot be utilized by
an application.

This poses potential problems for data-centric applications that rely on network connectivity, and
so one of the roles of the URLMonitor class is to provide a solution that allows you to monitor a
particular URL request and then notify the application if there are any changes in being able to
execute that request.

The URLMonitor class is found in the air.net package and needs to be added to the import
declarations, as shown in the following snippet:

import air.net.URLMonitor;

CH008.indd 240CH008.indd 240 09/09/11 10:04 AM09/09/11 10:04 AM

Detecting Changes in Network Availability ❘ 241

In the following snippet you see that the URLMonitor object, called urlMonitor, is initialized via
the URLMonitor.start() method:

var urlRequest:URLRequest;
urlRequest = new URLRequest(“http://localhost/wrox/ch8/data.txt”);

var urlMonitor:URLMonitor = new URLMonitor(urlRequest);
urlMonitor.start();

The constructor for the new URLMonitor object takes a URLRequest object as a parameter, and in
this example this is the same URLRequest object being used to reference the data fi le.

The StatusEvent Object

The StatusEvent class has a single event-type value called StatusEvent.STATUS, which should be
used by the URLMonitor object to register an interest in status changes in network service availability.
Whenever a change in network availability occurs in the mobile application, the StatusEvent object
is dispatched.

Each StatusEvent object has a StatusEvent.code property that will return one of the following
two values in an event handler that listens for the StatusEvent.STATUS event:

 ➤ “Service.available”: This is the String value indicating that there is network availability.

 ➤ “Service.unavailable”: This is the String value indicating that there is no network
availability.

Both these values can therefore be used to determine whether an application should be online or offl ine.

To retrieve the code property, the URLMonitor object needs to register an interest in the StatusEvent
.STATUS event using the URLMonitor.addEventListener() method, as shown in the following snippet:

var urlMonitor:URLMonitor = new URLMonitor(urlRequest);
urlMonitor.addEventListener(StatusEvent.STATUS, onStatus);
urlMonitor.start();

The event handler for the StatusEvent.STATUS event in this example is onStatus(), and this is
where you should be able to handle the changes in network connectivity.

Next, try out displaying the change in status.

Creating the Maintaining Data App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defi ning the Flex Mobile Project Settings

The following lists a few of the familiar settings that you will need to ensure are defi ned for the project:

 ➤ Name: Set the Name for the project to MaintainingDataApp.

 ➤ Application ID: Set the Application ID to com.wrox.ch8.MaintainingDataApp.

CH008.indd 241CH008.indd 241 09/09/11 10:04 AM09/09/11 10:04 AM

242 ❘ CHAPTER 8 WORKING WITH DATA

 ➤ Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to MaintainingDataAppHome.

Targeting Mobile Devices on Diff erent Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple iOS,
Google Android, and BlackBerry Tablet OS. No permissions need to be specifi ed for either of the
target platforms.

Creating Run and Debug Confi gurations

You can elect to run this project on the desktop or directly on your mobile device. For consistency,
this chapter uses a Google Nexus One as the connected device.

 TRY IT OUT Displaying the Change in Status of Network Availability

In the following steps, you’ll begin to create Maintaining Data App, a Flex mobile project that will
initially display the change in the network availability on a device. Later this application will be
developed into an app that allows you to create data via the app, retrieve it, delete or update it — hence
a “maintaining data” theme:

 1. In the Package Explorer, navigate to the default package, open the MaintainingDataApp.mxml fi le,
and then add a new style declaration for each of the <s:View> components in the project, setting
the backgroundColor property to #999999 and the color property to #454545 (Listing 8-1).

LISTING 8-1: Setting style properties on the application’s <s:View> components in

MaintainingDataApp.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 firstView=”views.MaintainingDataAppHome”
 applicationDPI=”160”>

 <fx:Style>

 @namespace s “library://ns.adobe.com/flex/spark”;

 s|View
 {
 backgroundColor:#999999;
 color:#454545;
 }

 </fx:Style>

</s:ViewNavigatorApplication>

 2. In the Package Explorer, navigate to the Views package, open the MaintainingDataAppHome.mxml
fi le, and replace the generated code with that shown in Listing 8-2.

CH008.indd 242CH008.indd 242 09/09/11 10:04 AM09/09/11 10:04 AM

Detecting Changes in Network Availability ❘ 243

LISTING 8-2: The initial starting point for MaintainingDataAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Maintaining Data App”
 creationComplete=”onCreationComplete”>

 <fx:Script>
 <![CDATA[

 private function onCreationComplete():void {}

]]>
 </fx:Script>

 <s:layout>

 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingTop=”20”
 paddingBottom=”20”/>

 </s:layout>

</s:View>

 3. Note that the <s:Label> component with the id property is set to urlStatus; the width is set
to 100%; the height is set to 30; the fontSize is set to 18; and the text is set to URL Status
(Listing 8-3).

LISTING 8-3: Adding a <s:Label> component to the <s:VGroup> layout to display URL status in

MaintainingDataAppHome.mxml

<s:layout>

 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingTop=”20”
 paddingBottom=”20”/>

</s:layout>

<s:VGroup width=”100%” height=”150”>

 <s:Label id=”urlStatus”
 width=”100%”
 height=”30”
 paddingLeft=”5”
 fontSize=”18”
 text=”URL Status”/>

</s:VGroup>

CH008.indd 243CH008.indd 243 09/09/11 10:04 AM09/09/11 10:04 AM

244 ❘ CHAPTER 8 WORKING WITH DATA

Here the MaintainingDataAppHome.mxml fi le contains a single label that is going to display the status
of the network availability. The text property of the label should display the StatusEvent.code value.

 4. Within the <fx:Script> declaration, import the URLRequest and URLMonitor classes (Listing 8-4).

LISTING 8-4: Importing the URLMonitor and URLRequest classes in

MaintainingDataAppHome.mxml

<fx:Script>
 <![CDATA[

 import air.net.URLMonitor;
 import flash.net.URLRequest;

 private function onCreationComplete():void {}

]]>
</fx:Script>

 5. Defi ne two URLMonitor and URLRequest object variables called urlMonitor and urlRequest,
respectively. Then in onCreationComplete() instantiate urlMonitor with the URLRequest
object, which should be created from the data fi le data.txt, located on a local host (Listing 8-5).

LISTING 8-5: Creating urlRequest and urlMonitor in MaintainingDataAppHome.mxml

import air.net.URLMonitor;
import flash.net.URLRequest;

private var urlMonitor:URLMonitor;
private var urlRequest:URLRequest;

private function onCreationComplete():void
{
 urlRequest = new URLRequest(“http://localhost/wrox/ch8/data.txt”);
 urlMonitor = new URLMonitor(urlRequest);
}

 6. Next, under onCreationComplete() add a new private function called onStatus().
Register the StatusEvent.STATUS event type and onStatus() with the urlMonitor via
addEventListener(), then call start() to initialize the URLMonitor object. Finally, in
onStatus() set the text property on the urlStatus label to the e.code value (Listing 8-6).

LISTING 8-6: Initializing urlMonitor and displaying the updated status code in

MaintainingDataAppHome.mxml

private function onCreationComplete():void
{
 urlRequest = new URLRequest(“http://localhost/wrox/ch8/data.txt”);

 urlMonitor = new URLMonitor(urlRequest);

CH008.indd 244CH008.indd 244 09/09/11 10:04 AM09/09/11 10:04 AM

Detecting Changes in Network Availability ❘ 245

 urlMonitor.addEventListener(StatusEvent.STATUS, onStatus);
 urlMonitor.start();
}

private function onStatus(e:StatusEvent):void
{
 urlStatus.text = e.code;
}

The data.txt fi le contains a number of name-value pairs representing a number of teams and drivers
from Formula 1, as shown in Listing 8-7.

LISTING 8-7: The contents of the data.txt fi le

t1=Mclaren&t2=Red Bull&d1=L. Hamilton&d2=J. Button&d3=S. Vettel&d4=M. Webber

 7. Next run the example using a desktop run confi guration for
Google Nexus One. To demonstrate the change in network
availability, turn your computer’s Internet connection on and
off. Figure 8-1 shows what is displayed when the service is
unavailable.

At this point you can see that the application displays the status of the
network service availability.

To utilize the network when the service is available you can use a
conditional statement to invoke the URLLoader class and load the data.
Follow the next steps to do just that:

 8. Under the urlStatus <s:Label> component add a
<s:TextArea> component with an id property set to
dataResult, the width property set to 100%, the height set
to 66, the fontSize set to 18 and prompt property set to
No data yet (Listing 8-8).

LISTING 8-8: Adding the dataResult Text Area component to display data returned in

MaintainingDataAppHome.mxml

<s:VGroup width=”100%” height=”150”>

 <s:Label id=”urlStatus”
 width=”100%”
 height=”50”
 paddingLeft=”5”
 fontSize=”18”

continues

FIGURE 8-1: Displaying the

Service.unavailable message in

Maintaining Data App running on

the desktop

CH008.indd 245CH008.indd 245 09/09/11 10:04 AM09/09/11 10:04 AM

246 ❘ CHAPTER 8 WORKING WITH DATA

LISTING 8-8 (continued)

 text=”URL Status”/>

 <s:TextArea id=”dataResult”
 width=”100%”
 height=”66”
 fontSize=”18”
 prompt=”No data yet.”/>

</s:VGroup>

 9. Next import the URLLoader, adding another private variable called urlLoader of the same type.
Then in onStatus() use the e.code value to load the urlRequest when the Service.available
status is returned (Listing 8-9).

LISTING 8-9: Initializing urlLoader using the URLRequest object in

MaintainingDataAppHome.mxml

import air.net.URLMonitor;
import flash.net.URLLoader;
import flash.net.URLRequest;

private var urlMonitor:URLMonitor;
private var urlLoader:URLLoader;
private var urlRequest:URLRequest;

private function onCreationComplete():void
{
 urlRequest = new URLRequest(“http://localhost/wrox/ch8/data.txt”);

 urlMonitor = new URLMonitor(urlRequest);
 urlMonitor.addEventListener(StatusEvent.STATUS, onStatus);
 urlMonitor.start();
}

private function onStatus(e:StatusEvent):void
{
 urlStatus.text = e.code;

 if(e.code == “Service.available”)
 {
 urlLoader = new URLLoader();
 urlLoader.addEventListener(Event.COMPLETE, onLoadComplete);
 urlLoader.load(urlRequest);
 }
}

private function onLoadComplete(e:Event):void
{
 dataResult.text = urlLoader.data;
}

CH008.indd 246CH008.indd 246 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 247

When the data.txt fi le is loaded via the URLLoader into the application, its contents are displayed
(Figure 8-2).

The aim of the network connection is to retrieve data that the application can use directly when the
request has been successful. This data could potentially be stored on the mobile device once loaded so
the user can use it in an offl ine mode.

Of course, when the service is unavailable you get the “No data yet” message, as shown in Figure 8-3.
If you recall, in Listing 8-8 this value is set on the prompt property of the <s:TextInput> component,
and so is there by default when the application launches.

FIGURE 8-2: Displaying the

contents of the data.txt fi le

when the service is available in

Maintaining Data App running

on the desktop

FIGURE 8-3: Displaying the

Service.unavailable message in

Maintaining Data App running

on the desktop

In the next section you’ll take a look at one of the ways in which you can store data offl ine, using
SQLite.

USING SQLITE FOR STORING DATA

AIR for mobile devices has the support for SQLite (www.sqlite.org), which is a database local
to the mobile application. SQLite is a software library that implements a SQL (Structured Query
Language) database engine, allowing you to store and use complex data as part of your Flash-based

CH008.indd 247CH008.indd 247 09/09/11 10:04 AM09/09/11 10:04 AM

248 ❘ CHAPTER 8 WORKING WITH DATA

mobile applications. SQL is a language for accessing and manipulating databases, and with it you
can perform a number of operations, including:

 ➤ Executing queries against a database

 ➤ Retrieving data from a database

 ➤ Inserting records into a database

 ➤ Updating records in a database

 ➤ Deleting records from a database

In the following subsections you’ll take a look at each of these core operations and learn how to use
SQLite, starting with creating a SQLite database.

Creating a SQLite Database

To create a database, you need to asynchronously resolve a fi le path pointing to a database fi le
(.db fi le), and then open the fi le via a SQL connection using the SQLConnection class.

To create a database connection, you need to import the SQLConnection and the SQLEvent classes:

import flash.data.SQLConnection;
import flash.events.SQLEvent;

To handle errors that may arise in connecting to a database, you should also import the
SQLErrorEvent class:

import flash.events.SQLErrorEvent;

To open a connection to the database:

 1. Create a File object reference pointing to the database fi le (.db fi le) in the loadData()
method.

 2. Instantiate a new SQLConnection object.

 3. Defi ne a new private function called onOpen(). Then use addEventListener() to register
the SQLEvent.OPEN event on the SQLConnection object and assign it onOpen() as the event
handler.

 4. Use the openAsync() method on the SQLConnection object, passing the File object
reference as a parameter.

You’ll take a more in-depth look at these steps in the next activity.

The SQLConnection object used to create and open the connection to the database is returned on
the SQLEvent.target value in the event handler. You can use the SQLConnection.connected
property on target to determine whether or not a successful connection to the database was made.

Database Tables

Tables are where data is created and stored in a database fi le. Tables are essentially made up of rows
and columns, with each row representing a single data object entry and each column representing a

CH008.indd 248CH008.indd 248 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 249

property assigned to that data object. Then within the row itself a value is assigned to that column.
In each table one column is designated as the primary key, a property of the data object that must
have a unique value to distinguish it from all other data object entries in the table. This is typically
an ID and is automatically generated when a new entry is added.

When you interact with a database to add new data or update existing data, you always reference
the table name and a unique key value to reference a data object entity.

SQLite databases can hold any number of tables depending on fi le-size restrictions for the individual
database. Tables can also be linked to other tables when a column or fi eld in one table matches a
column or fi eld in the other.

To create a table and populate it with data, you need to use a sequence of SQL statements using the
flash.data.SQLStatement class. A number of SQL statement operations will allow you to carry
out various functions on the data contained within the database. The core ones are highlighted in
Table 8-1.

TABLE 8-1: Core SQL Statement Operations

SQL STATEMENT DESCRIPTION

CREATE Creates a table in a database, using the following syntax:

CREATE TABLE tableName (column1 dataType, column2 dataType,...)

INSERT Inserts a new row in a table, using the following syntax:

INSERT INTO tableName (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

SELECT Selects data from a database, using the following syntax:

SELECT columnName(s)

FROM tableName and SELECT * FROM tableName

UPDATE Updates existing records in a table, using the following syntax:

UPDATE tableName

SET column1=value, column2=value2,...

WHERE someColumn=someValue

DELETE Deletes rows from a table, using the following syntax:

DELETE FROM tableName

WHERE columnName=someValue

JOIN Selects data matching in multiple tables, using the following syntax:

SELECT columnName(s)

FROM someTable

JOIN ON tableName1.columnName=tableName2.columnName

CH008.indd 249CH008.indd 249 09/09/11 10:04 AM09/09/11 10:04 AM

250 ❘ CHAPTER 8 WORKING WITH DATA

The SQLStatement Object

To execute a SQL statement using ActionScript 3.0, the SQLStatement class needs to be imported:

import flash.data.SQLStatement;

The class has a number of properties and methods that you will need to use to interact with
databases:

 ➤ SQLStatement.sqlConnection: A SQLConnection property representing the SQL
connection assigned to the SQL statement

 ➤ SQLStatement.text: A string representing the SQL text

 ➤ SQLStatement.parameters: An array of strings, each string representing a parameter
associated with a table column referenced in the SQL text

 ➤ SQLStatement.execute(): A method to run the SQL statement

Following the creation of a new SQLConnection object, the use of SQL statements essentially
involves the following defi nitive steps:

 1. Instantiate a new SQLStatement object.

 2. Assign the SQLConnection object to the SQLStatement.sqlConnection property.

 3. Defi ne event handlers for SQLEvent.RESULT and SQLError.Event.ERROR.

 4. Pass a SQL query to the SQLStatement.text property.

 5. Call the SQLStatement.execute() method.

Over the next few sections you’ll take a more in-depth look at Step 4, which involves using SQL
statements and each of the commands outlined in Table 8-1.

Creating a SQLite Table

In the following snippet you see that the table Teams is created with two columns, the ID column
and TNAME column:

var sqlText:String = “CREATE TABLE Teams(“
 + “ID INTEGER PRIMARY KEY, “
 + “TNAME TEXT)”;

Each value supplied in the parentheses for the CREATE TABLE SQL statement is in a particular order.
Following the column name is the ID column. The next value is the column type, which is defi ned
as an INTEGER; for TNAME the column type is TEXT. The ID is also defi ned as the PRIMARY KEY. Each
new column defi ned for a table is separated by a comma (,).

Saving Data to Tables

Saving to a SQLite database involves inserting data into a table. To insert data into a table the
SQLStatement.parameters property needs to be defi ned before executing the SQL statement.

CH008.indd 250CH008.indd 250 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 251

For each value you want to insert you need to specify the table column it corresponds to, using the
INSERT INTO query. You specify the table name followed by an opening bracket and the column
names separated by commas after the closing bracket and a space; you then use the VALUES operator
followed by the values you want to insert into the columns you’ve specifi ed.

In the following snippet you see that the value Ferrari is supplied as a new team name for the
TNAME column:

insertStatement = new SQLStatement();
insertStatement.text = “INSERT INTO Teams(TNAME) VALUES(Ferrari)”;
insertStatement.execute();

Here this is done directly in the SQL text.

Using parameters that are defi ned on the SQLStatement.parameters property, you can dynamically
insert data into tables using values from your mobile application.

var sqlText:String = “INSERT INTO Teams(TNAME) VALUES(:tname)”;
insertStatement = new SQLStatement();
insertStatement.text = sqlText;
insertStatement.parameters[“:tname”] = “Ferrari”;
insertStatement.execute();

Notice here that the parameter for VALUES in the SQL text tname is preceded by a colon (:) in
parentheses. This denotes that the text :tname is actually a parameter. To set a value for tname, the
parameter’s object references :tname.

Retrieving Data from a Table

To retrieve all the data entries in the table called Teams, you would use the SQL text highlighted in
the following snippet:

var sqlText:String = “SELECT * FROM Teams”;

The SELECT operation followed by an asterisk (*) denotes that all the data objects, that is, all rows,
should be retrieved from the table.

To retrieve a single data row entry you need to reference the primary key and use the WHERE
operator, as shown in the following snippet:

var sqlText:String = “SELECT * FROM Teams WHERE ID = 2”;

Here the table row entry that has an ID value of 2 would be retrieved from the database.

NOTE The SQLResult class has a data property containing an array of objects
returned from the SQL request. Each row returned via a SQL operation represents
an index of the array, where data[0] is the fi rst result to be returned.

CH008.indd 251CH008.indd 251 09/09/11 10:04 AM09/09/11 10:04 AM

252 ❘ CHAPTER 8 WORKING WITH DATA

Instead of retrieving all data objects from a table, you can specify a table column property after the
SELECT operator to retrieve a specifi c value from the table. The following snippet shows how you
would retrieve the value of the property TNAME from the table row that has an ID value of 3:

var sqlText:String = “SELECT TNAME FROM Teams WHERE ID = 3”;

The result of executing this SQL statement should return only one row from the database as long as
the ID column was a primary key.

Updating Table Data

To update data already stored in the database, you need to use the UPDATE SQL statement. The
UPDATE statement requires you to reference the primary key, along with values for each of the
properties you want to update in a table.

The following code snippet shows how you would update the property TNAME in the Teams table,
which corresponds to the row that has an ID value of 1:

var sqlText:String = “UPDATE Teams SET TNAME = McLaren WHERE ID = 1”;

Notice that you need to defi ne the name of the table you want to update; immediately after the table
name the SET operator is used.

Deleting Data from Tables

To remove data from a table, you need to use the DELETE FROM SQL statement. The following snippet
demonstrates how you would defi ne the SQL to remove a team that has an ID value equal to 1:

var sqlText:String = “DELETE FROM Teams WHERE ID = 1”;

With a well-structured table, you should need to supply the value only for your primary key to
delete a single row.

You can also provide a number of values to remove from the database:

var sqlText:String = “DELETE FROM Teams WHERE ID = 1 OR 2”;

Having covered the key SQL elements, you can now apply what you have learned in the next activity.

 TRY IT OUT Using SQLite to Create, Save, Update, and Delete Data

Begin by modifying the Maintaining Data App project to open a connection to a database. This fi le
should have the onCreationComplete(), onStatus(), and onLoadComplete() methods covered
previously. In this section you may assign a few functions that haven’t been covered. Don’t worry; these
will be explained in due course.

 1. Add a <s:Label> and <s:TextArea> component to a <s:VGroup> container. Set the id
property on the components to dbStatus and dbPath, respectively, the width property on both
components to 100%, and the fontSize to 18. Then set the height of the label to 25, and text
area to 80. Set the value of the text property on the label to Database Status, and the prompt
property on the text area to Database Path (Listing 8-10).

CH008.indd 252CH008.indd 252 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 253

LISTING 8-10: Adding a label and text area to display the native path and status of team.db in

MaintainingDataAppHome.mxml

<s:layout>
 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingTop=”20”
 paddingBottom=”20”/>
</s:layout>

<s:VGroup width=”100%”>

 <s:Label id=”dbStatus”
 width=”100%”
 height=”25”
 paddingLeft=”5”
 fontSize=”18”
 text=”Database Status”/>

 <s:TextArea id=”dbPath”
 width=”100%”
 height=”80”
 fontSize=”18”
 prompt=”Database Path”/>

</s:VGroup>

 2. Within a <s:HGroup> container, add a <s:Button> component with the label property set to
Open Database, the height property to 50, and its click property set to openDb(). Also set the
id property to dbBtn (Listing 8-11).

LISTING 8-11: Adding a <s:Button> to open the database in MaintainingDataAppHome.mxml

<s:VGroup width=”100%”>

 <s:Label id=”dbStatus”
 width=”100%”
 height=”25”
 paddingLeft=”5”
 fontSize=”18”
 text=”Database Status”/>

 <s:TextArea id=”dbPath”
 width=”100%”
 height=”80”
 fontSize=”18”
 prompt=”Database Path”/>

 <s:HGroup width=”100%”
 height=”65”

continues

CH008.indd 253CH008.indd 253 09/09/11 10:04 AM09/09/11 10:04 AM

254 ❘ CHAPTER 8 WORKING WITH DATA

LISTING 8-11 (continued)

 verticalAlign=”middle”>

 <s:Button id=”dbBtn”
 label=”Open Database”
 height=”50”
 click=”openDb()”/>

 </s:HGroup>

</s:VGroup>

 3. Under the fi rst <s:HGroup> component add a second <s:HGroup> component that contains
a single button with the label property set to View Teams and its click event set to the
viewTeams() method, which you defi ne later (Listing 8-12).

LISTING 8-12: Adding a <s:Button> to view teams in MaintainingDataAppHome.mxml

<s:HGroup width=”100%”
 height=”65”
 verticalAlign=”middle”>

 <s:Button id=”dbBtn”
 label=”Open Database”
 height=”50”
 click=”openDb()”/>

</s:HGroup>

<s:HGroup width=”100%”
 height=”50”>

 <s:Button id=”viewBtn”
 height=”50”
 visible=”false”
 label=”View Teams”
 click=”viewTeams()”/>

</s:HGroup>

With the View components and layout defi ned, let’s take a look at the plumbing.

 4. Import the File class and declare a File object variable called db in the project (Listing 8-13).

LISTING 8-13: Updating the import statements and declaring the database File object in

MaintainingDataAppHome.mxml

import air.net.URLMonitor;

import flash.filesystem.File;
import flash.net.URLLoader;
import flash.net.URLRequest;

private var urlMonitor:URLMonitor;

CH008.indd 254CH008.indd 254 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 255

private var urlLoader:URLLoader;
private var urlRequest:URLRequest;
private var db:File;

 5. Next add a private method called openDb() within the <fx:Script> declaration. Ensure the File
object reference db resolves to a database fi le in the application storage directory called teams.db
in openDB() (Listing 8-14).

LISTING 8-14: Resolving a fi le path to the database via openDb() in

MaintainingDataAppHome.mxml

private function onLoadComplete(e:Event):void
{
 dataResult.text = urlLoader.data;
}

private function openDb():void
{
 db = File.applicationStorageDirectory.resolvePath(“teams.db”);
}

 6. Next create a new SQLConnection object called sqlConnection and use the openAsync()
method to open the database fi le. Use addEventListener() to register an interest in the
SQLErrorEvent.ERROR and SQLEvent.OPEN event types, assigning onSQLError() to the ERROR
event, then use an if statement to determine whether the database fi le already exists to assign
the SQLEvent.OPEN event. If the database doesn’t exist, assign the event to onCreateDb().
If the database does exist, assign the SQLEvent.OPEN event to onOpenDb(), while also displaying
the nativePath value in the <s:TextField> component dbPath. There should be three method
stubs, one for each event. (Listing 8-15.)

LISTING 8-15: Opening a connection to the database in MaintainingDataAppHome.mxml

import flash.data.SQLConnection;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;
import flash.net.URLLoader;
import flash.net.URLRequest;

private var urlMonitor:URLMonitor;
private var urlLoader:URLLoader;
private var urlRequest:URLRequest;
private var sqlConnection:SQLConnection;
private var db:File;

private function openDb():void
{
 db = File.applicationStorageDirectory.resolvePath(“teams.db”);

 sqlConnection = new SQLConnection();

continues

CH008.indd 255CH008.indd 255 09/09/11 10:04 AM09/09/11 10:04 AM

256 ❘ CHAPTER 8 WORKING WITH DATA

LISTING 8-15 (continued)

 sqlConnection.addEventListener(SQLErrorEvent.ERROR, onSQLError);

 if(db.exists)
 {
 sqlConnection.addEventListener(SQLEvent.OPEN, onOpenDb);
 dbPath.text = db.nativePath;

 } else {

 sqlConnection.addEventListener(SQLEvent.OPEN, onCreateDb);
 }

 sqlConnection.openAsync(db);
}

private function onCreateDb(event:SQLEvent):void {}

private function onOpenDb(e:SQLEvent):void {}

private function onSQLError(e:SQLErrorEvent):void {}

There isn’t exactly a listener for creating a new database, so remember that you have to determine
whether the database fi le exists. If the database doesn’t exist, assign the SQLEvent.OPEN event to an
onCreateDb() event handler, and if it does, assign the SQLEvent.OPEN event to an onOpenDb() event
handler. Here when the openAsync() method is called on the database fi le, it will automatically create
the database on a valid fi le path. In onCreateDb() you can then call the openAsync() to open the
database. We’ll take a look at this next.

 7. Next modify onCreateDb() and onOpenDb() to update the database status text fi eld dbStatus.
When the database is opened, check to see whether the SQLConnection object returned is still
connected via the SQLConnection.connection property; if it is, ensure the visible property on
the viewBtn is set to true (Listing 8-16).

LISTING 8-16: Displaying the database creation, opening, and connection statuses in

MaintainingDataAppHome.mxml

private function onCreateDb(e:SQLEvent):void
{
 dbStatus.text = “The database was created...”;
 createTeamsTable();
}

private function onOpenDb(e:SQLEvent):void
{
 dbStatus.text = “The database was opened...”;

 if(SQLConnection(e.target).connected)

CH008.indd 256CH008.indd 256 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 257

 {
 viewBtn.visible = true;
 }

 dbBtn.enabled = false;
}

 8. Next update the onSQLError() method, using the SQLErrorEvent object returned, e, to display
the errorID and the details values (Listing 8-17).

LISTING 8-17: Displaying the SQL error status in MaintainingDataAppHome.mxml

private function onSQLError(e:SQLErrorEvent):void
{
 var err:String = ”Error id:”
 + e.error.errorID
 + ”\nDetails:”
 + e.error.details;

 dbStatus.text = err + = ”Error”;

 dbBtn.enabled = false;

}

Several errors can trigger the SQLErrorEvent.ERROR event type. For instance if you attempt to insert
or update data into a table that hasn’t been created yet, you are returned a SQLErrorEvent object
with the errorID value set to 3115 and details property set to a No Such Table TableName, where
TableName is the name of the table with the error.

 9. Next complete the import statements by adding the SQLStatement class to the list of imports
(Listing 8-18).

LISTING 8-18: Updating the import statements in MaintainingDataAppHome.mxml

import air.net.URLMonitor;

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;
import flash.net.URLLoader;
import flash.net.URLRequest;

 10. Underneath onSQLError(), defi ne a new private function to create the Teams table in teams
.db called createTeamsTable(). In createTeamsTable() execute the SQL statement to create
the Teams table using sqlConnection as the SQLConnection object for the SQLStatement

CH008.indd 257CH008.indd 257 09/09/11 10:04 AM09/09/11 10:04 AM

258 ❘ CHAPTER 8 WORKING WITH DATA

object createTableSQL, defi ning the integer TEAM_ID as the primary key and the text TNAME as
the second column of data. Assign the SQLEvent.RESULT event to a new event handler called
onTeamsTable() (Listing 8-19).

LISTING 8-19: Executing the Create Table SQL statement for Teams in

MaintainingDataAppHome.mxml

private function createTeamsTable():void
{
 var sqlText:String = “CREATE TABLE “
 + “Teams(TEAM_ID INTEGER PRIMARY KEY, “
 + “TNAME TEXT)”;

 var createTableSQL:SQLStatement = new SQLStatement();
 createTableSQL.addEventListener(SQLEvent.RESULT, onTeamsTable);
 createTableSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 createTableSQL.sqlConnection = sqlConnection;
 createTableSQL.text = sqlText;
 createTableSQL.execute();
}

private function onTeamsTable(e:SQLEvent):void {}

 11. In onTeamsTable(), update the text representing the database status. Then under onTeamsTable(),
defi ne a new private function to create the Drivers table in teams.db called createDriversTable(),
making a call to the function in onTeamsTable(). In createDriversTable() execute the SQL
statement to create the Drivers table using sqlConnection as the SQLConnection object for the
SQLStatement object createTableSQL, defi ning the integer TEAM_ID as the primary key and the
text TNAME as the second column of data. Assign the SQLEvent.RESULT event to a new event handler
called onDriversTable() that updates the database status text notifying that the Drivers table was
created (Listing 8-20).

LISTING 8-20: Executing the Create Table SQL statement for Drivers in

MaintainingDataAppHome.mxml

private function onTeamsTable(e:SQLEvent):void
{
 dbStatus.text = “The Teams table was created”;
 createDriversTable();
}

private function createDriversTable():void
{
 var sqlText:String = “CREATE TABLE “
 + “Drivers(ID INTEGER PRIMARY KEY, “
 + “DNAME TEXT, “

CH008.indd 258CH008.indd 258 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 259

 + “TEAM_ID INTEGER)”;

 var createTableSQL:SQLStatement = new SQLStatement();
 createTableSQL.addEventListener(SQLEvent.RESULT, onDriversTable);
 createTableSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 createTableSQL.sqlConnection = sqlConnection;
 createTableSQL.text = sqlText;
 createTableSQL.execute();
}

private function onDriversTable(e:SQLEvent):void
{
 dbStatus.text = “The Drivers table was created”;
 dbBtn.setStyle(‘chromeColor’,’#51B22F’);
}

 12. Now run the example, and you’ll be able to see the mobile
application as it is (Figure 8-4).

At this stage the View Teams button is still inactive.
Its usage will simply navigate the user to another view in the
application, the Teams View, which will display each of the teams
in the database.

 13. Next add the viewTeams() function, using navigator
.pushView() to pass a new view, called view.TeamsView,
as the fi rst parameter, and sqlConnection as the second
(Listing 8-21).

LISTING 8-21: Navigating to the TeamsView via the viewTeams() function in

MaintainingDataAppHome.mxml

private function viewTeams():void
{
 navigator.pushView(views.TeamsView, sqlConnection);
}

If the connection to the teams.db fi le is successful, passing the sqlConnection variable to the view
will allow the application to execute additional SQL statements on the SQLConnection object.

Before you can interact with the database in the application, you will need to press the
Open db button fi rst, and then press the Create Teams Table button. Once the database and tables
have been created, you press the View Teams button to move to the Teams View, which you’ll
create next.

FIGURE 8-4: Displaying the

MaintainingDataAppHome view

in Maintaining Data App running

on Android 2.3.4

CH008.indd 259CH008.indd 259 09/09/11 10:04 AM09/09/11 10:04 AM

260 ❘ CHAPTER 8 WORKING WITH DATA

Creating the Teams View

Next you’ll follow how to create a working view for
displaying each of the teams found in the SQLite database.
The fi rst milestone for the view looks like the one shown in
Figure 8-5.

Here you see there are only a few View components: two labels, a
list, and a single button. The title of the view is also set. The view
will later be revisited to complete the Add Team, Delete Team, and
Update Team functions. But for now start with getting this view
implemented.

 1. In Flash Builder, create a new View component called
TeamsView, and add it to the views package.

 2. In TeamsView.mxml, add a private function called
onViewActivate() within the <fx:Script> block,
then set the viewActivate property on the view to
onViewActivate(). Also set the title property
to Teams View (Listing 8-22).

LISTING 8-22: Assigning viewActivate to onViewActivate() and setting the title in

TeamsView.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 title=”Teams View”
 viewActivate=”onViewActivate()”>

 <fx:Script>
 <![CDATA[

 private function onViewActivate():void {}

]]>
 </fx:Script>

 <s:layout>
 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingTop=”20”
 paddingBottom=”20”/>
 </s:layout>

</s:View>

 3. Add two <s:Label> components, both with width properties set to 100%, height set to 40,
and their verticalAlign properties set to middle. Both of these labels are for descriptive

FIGURE 8-5: A preview of the

Teams view in Maintaining Data

App running on Android 2.3.4

CH008.indd 260CH008.indd 260 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 261

purposes only — that is, they describe what the view is actually doing. For the fi rst label,
set the color property to #454545 and the text property to Teams retrieved from the
database...; then for the second label, set the text property to SELECT * FROM TEAMS
INNER JOIN Drivers ON Teams.TEAM_ID = DRIVERS.Team_ID (Listing 8-23).

LISTING 8-23: Adding descriptive labels in TeamsView.mxml

<s:layout>
 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingTop=”20”
 paddingBottom=”20”/>
</s:layout>

<s:Label id=”dbStatus”
 width=”100%”
 height=”40”
 color=”#454545”
 text=”Teams retrieved from the database...”
 verticalAlign=”middle”/>

<s:Label width=”100%”
 height=”50”
 fontSize=”14”
 text=”SELECT * FROM Teams INNER JOIN Drivers ON Teams.TEAM_ID = Drivers.
TEAM_ID”
 verticalAlign=”middle”/>

 4. Add a <s:List> component. Set the id property to teamsList, with the width set to 100%,
the height set to 60%, and its enabled property state set to true, and the selectedIndex
property to 0 (Listing 8-24).

LISTING 8-24: Adding the List component teamsList in TeamsView.mxml

<s:layout>
 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingTop=”20”
 paddingBottom=”20”/>
</s:layout>

<s:Label id=”dbStatus”
 width=”100%”
 height=”40”
 color=”#454545”
 text=”Teams retrieved from the database...”
 verticalAlign=”middle”/>

<s:Label width=”100%”
 height=”50”

continues

CH008.indd 261CH008.indd 261 09/09/11 10:04 AM09/09/11 10:04 AM

262 ❘ CHAPTER 8 WORKING WITH DATA

LISTING 8-24 (continued)

 fontSize=”14”
 text=”SELECT * FROM Teams INNER JOIN Drivers ON Teams.TEAM_ID = Drivers.
TEAM_ID”
 verticalAlign=”middle”/>

<s:List id=”teamsList”
 width=”100%”
 height=”60%”
 enabled=”true”
 selectedIndex=”0”/>

 5. Add fi ve new empty method stubs in the script section: selectTeams(), addTeam(),
updateTeam(), deleteTeam(), and deleteDrivers(). Then in onViewActive(), make a
call to the selectTeams() (Listing 8-25).

LISTING 8-25: Declaring the private functions selectTeams(), addTeam(), updateTeam(),

deleteTeam(), and deleteDrivers() in TeamsView.mxml

<fx:Script>
 <![CDATA[

 private function onViewActive():void
 {
 selectTeams();
 }

 private function selectTeams():void {}

 private function addTeam():void {}

 private function updateTeam():void {}

 private function deleteTeam():void {}

 private function deleteDrivers():void {}
]]>
</fx:Script>

 6. Declare a SQLConnection object, and then in selectTeams(), cast the data object of the
view as a SQLConnection object to the sqlConnection variable (Listing 8-26).

LISTING 8-26: Setting the SQL Connection object in TeamsView.mxml

private var sqlConnection:SQLConnection;

private function onViewActive():void
{
 selectTeams();

CH008.indd 262CH008.indd 262 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 263

}

private function selectTeams():void
{
 sqlConnection = SQLConnection(data);
}

 7. In selectTeams() defi ne two variables, the fi rst a string called sqlText with the value
SELECT * FROM Teams INNER JOIN Drivers ON Teams.TEAM_ID = Drivers.TEAM_ID,
and the second variable a SQLStatement object called selectAllSQL. Instantiate the
SQLStatement, and then register the SQLStatement object’s interest in the SQLEvent
.RESULT and SQLErrorEvent.ERROR event. These events need to be handled by two new
event handler methods, onSQLError() and onSelectTeams(). Assign onSelectTeams() to
SQLEvent.RESULT and onSQLError() to the SQLErrorEvent.ERROR (Listing 8-27).

LISTING 8-27: Defi ning the Select teams SQL statement in TeamsView.mxml

private function selectTeams():void
{
 sqlConnection = SQLConnection(data);

var sqlText:String = “SELECT * FROM Teams “
 + “INNER JOIN Drivers “
 + “ON Teams.TEAM_ID = Drivers.TEAM_ID”;

 var selectAllSQL:SQLStatement = new SQLStatement();
 selectAllSQL.addEventListener(SQLEvent.RESULT, onSelectTeams);
 selectAllSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
}

private function onSelectTeams(e:SQLEvent):void {}

private function onSQLError(e:SQLErrorEvent):void {}

 8. Next assign the selectAllSQL.sqlConnection property and sqlText to the selectAllSQL
.text property. Finally, call the selectAllSQL.execute() method (Listing 8-28).

LISTING 8-28: Executing the Select teams SQL statement in TeamsView.mxml

private function selectTeams():void
{
 sqlConnection = SQLConnection(data);

 var sqlText:String = “SELECT * FROM Teams”;

 var selectAllSQL:SQLStatement = new SQLStatement();
 selectAllSQL.addEventListener(SQLEvent.RESULT, onSelectTeams);
 selectAllSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 selectAllSQL.sqlConnection = sqlConnection;
 selectAllSQL.text = sqlText;
 selectAllSQL.execute();
}

CH008.indd 263CH008.indd 263 09/09/11 10:04 AM09/09/11 10:04 AM

264 ❘ CHAPTER 8 WORKING WITH DATA

 9. In onSelectTeams(), add two new variables, the fi rst a SQLStatement called
selectTeamsSQL, which needs to have the SQLEvent.target property assigned. Cast the
e.target to selectTeamsSQL. The second variable is a SQLResult object called result. Use
selectTeamsSQL.getResult() to assign the SQLResult object to result (Listing 8-29).

LISTING 8-29: Assigning the getResult() method to a SQLResult object in TeamsView.mxml

private function onSelectTeams(e:SQLEvent):void
{
 var selectTeamsSQL:SQLStatement = SQLStatement(e.target);
 var result:SQLResult = selectTeamsSQL.getResult();
}

 10. Use result.complete and the result.data.length to determine whether data has
been returned from the database. Then use an if statement to instantiate the teamList
.dataProvider, which is an ArrayCollection object. Use a for each statement to
iterate through the number of team objects found in result.data. Using the team objects
found, create a new object obj with two properties, teamName and teamId. The value for
teamName should be retrieved from the team object using team[“TNAME”], while the teamId
should be retrieved from the team object using team[“TEAM_ID”]. Also retrieve the driver
names from team[“DNAME”] and assign this to the driver property on obj. Finally, use the
ArrayCollection.addItem() method on the teamsList object’s dataProvider property
to add the new object obj to the list (Listing 8-30).

LISTING 8-30: Adding the driver names to the list in TeamsView.mxml

private function onSelectTeams(e:SQLEvent):void
{
 var selectTeamsSQL:SQLStatement = SQLStatement(e.target);
 var result:SQLResult = selectTeamsSQL.getResult();

 if(result.complete)
 {
 if(result.data)
 {
 teamsList.dataProvider = new ArrayCollection();

 var tStr:String;
 var dStr:String;

 for each(var team:Object in result.data)
 {
 var obj:Object =
 {
 teamName:team[“TNAME”],
 teamId:team[“TEAM_ID”]
 };

 if(tStr == obj.teamName)

CH008.indd 264CH008.indd 264 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 265

 {
 obj.drivers = dStr + “, “ + team[“DNAME”];
 teamsList.dataProvider.addItem(obj);

 } else {

 dStr = team[“DNAME”];
 tStr = obj.teamName;
 }
 }
 }
 }
}

 11. Next complete the onSQLError() event handler. Simply update the dbStatus label to
display the error code (Listing 8-31).

LISTING 8-31: Handling SQLErrorEvents via the onSQLError() method in TeamsView.mxml

private function onSQLError(e:SQLErrorEvent):void
{
 dbStatus.text = e.error.errorID.toString();
}

Up to now you’ve defi ned two of the six methods created for TeamsView.mxml, onViewActivate(),
and selectTeams(), including their associated event handlers for the SQLEvent.RESULT event
onSelectTeams() and SQLErrorEvent.ERROR event onSQLError().

Next take a look at creating an item renderer for the List component.

Creating an Item Renderer for the List Component

Creating an item renderer allows you to customize and control the default look and feel of a data
item. In Chapter 7 the <s:List> component used for listing fi les simply consisted of a <s:Label>
component. If you want to display the folder or fi le title as well as the creation date and fi le size, you
should include other <s:Label> components.

In this section you’ll take a look at how you can customize the <s:List> component to include
subcomponents and dispatch the custom event types created.

 1. In Flash Builder, create a new item renderer. Select File ➪ New ➪ Item Renderer
(Figure 8-6).

 2. In the pop-up that opens, set the Package fi eld to views.components.renderers, set the
Name fi eld to TeamItemRenderer, and set the Select Template fi eld to Icon item renderer for
mobile list (MXML) (Figure 8-7).

CH008.indd 265CH008.indd 265 09/09/11 10:04 AM09/09/11 10:04 AM

266 ❘ CHAPTER 8 WORKING WITH DATA

Flash Builder automatically generates the default code for the new fi le in the view.components
.renderers package (Listing 8-32).

LISTING 8-32: The code automatically generated for TeamItemRenderer.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:IconItemRenderer xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 labelField=”teamName”
 messageField =”drivers”>

</s:IconItemRenderer>

Figure 8-8 shows the location of the new item renderer.

FIGURE 8-6: Selecting MXML Item

Renderer from the Flash Builder fi le

menu

FIGURE 8-7: Creating a new Item Renderer in Maintaining

Data App

CH008.indd 266CH008.indd 266 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 267

 3. In TeamItemRenderer.mxml, set the selection color to #68BAFA and the row colors for the
List to alternate between #CCCCC and #EEEEEE (Listing 8-33).

LISTING 8-33: Adding selection color and alternatingItemColor attributes for the <s:List>

component in TeamItemRenderer.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:IconItemRenderer xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 labelField=”teamName”
 messageField=”drivers”
 alternatingItemColors=”[#CCCCCC, #EEEEEE]”
 selectionColor=”#68BAFA”>

</s:IconItemRenderer>

FIGURE 8-8: Highlighting the

TeamItemRenderer.mxml fi le

in the Package Explorer in

Maintaining Data App running on

Android 2.3.4

CH008.indd 267CH008.indd 267 09/09/11 10:04 AM09/09/11 10:04 AM

268 ❘ CHAPTER 8 WORKING WITH DATA

Completing the Teams View

Using the TeamItemRenderer, you will now complete the Teams
view. The view will look something like that shown in Figure 8-9.

Here you update the view to include a view menu that allows the
user to update or delete the selected item in the team list.

Next follow these steps:

 1. Declare an integer i as the parameter for the updateTeam()
method. In updateTeam(), create two new objects. The
fi rst is called teamObj, which references the selected item
using the getItemAt() method on the dataProvider of
teamList. The index is the value supplied to the method.
The second object you need to create, called dataObj,
should have four properties: sqlConnection, teamId,
teamName, and sqlType. Assign the sqlConnection
variable to dataObj.sqlConnection; then, using the
TeamsSQLEvent object, assign teamObj.teamId to the
teamId property and teamObj.teamName to teamName.
The SQL query will be an update, so this should be set on
sqlType. Finally, use the navigator.pushView() method
to navigate to a new view you’ll defi ne shortly called UpdateTeamsView.mxml, passing the
data object dataObj (Listing 8-34).

 LISTING 8-34: Defi ning a data object to pass to UpdateTeamView.mxml via the updateTeam()

method in TeamsView.mxml

private function updateTeam(i:int):void
{
 var teamObj:Object = teamsList.dataProvider.getItemAt(i);

 var dataObj:Object =
 {
 sqlConnection:sqlConnection,
 teamId:teamObj.teamId,
 teamName:teamObj.teamName,
 sqlType:”UPDATE”
 };

 navigator.pushView(views.UpdateTeamView, dataObj);
}

 2. Next declare an integer i as the parameter for the deleteTeam() method. In deleteTeam()
defi ne three new variables — the fi rst, an object called teamObj; the second, a string called
sqlText, with the value “DELETE FROM Teams WHERE TEAM_ID = :teamId”; then the
third, a SQLStatement object called deleteTeamSQL. Using the deleteTeamsSQL object,

FIGURE 8-9: A preview of the

Teams view in Maintaining Data

App running on Android 2.3.4

CH008.indd 268CH008.indd 268 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 269

register an interest in the SQLEvent.Result and SQLErrorEvent.Error events,
assigning a new handler method called onDeleteTeam() to the SQLEvent.Result event
and the onSQLError() method (as defi ned earlier) to the SQLErrorEvent.ERROR event
(Listing 8-35).

LISTING 8-35: Defi ning the SQL to remove a team from the Teams table via the deleteTeam()

method in TeamsView.mxml

private function deleteTeam(i:int):void
{
 var teamObj:Object = teamsList.dataProvider.getItemAt(i);

 var sqlText:String = “DELETE FROM Teams WHERE TEAM_ID = :teamId”;

 var deleteTeamSQL:SQLStatement = new SQLStatement();
 deleteTeamSQL.addEventListener(SQLEvent.RESULT, onDeleteTeam);
 deleteTeamSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
}

private function onDeleteTeam(e:SQLEvent):void {}

 3. Complete the deleteTeam() method by assigning the sqlConnection object to the
deleteTeamsSQL.sqlConnection property, and the sqlText string to the deleteTeamSQL
.text property. Then set the teamObj.teamId value to the deleteTeamsSQL.parameters
property, specifying :teamId as the key. Finally, call the SQLStatement.execute() method
on the deleteTeamSQL object (Listing 8-36).

LISTING 8-36: Executing the SQL to remove a team from the Teams table via the deleteTeam()

method in TeamsView.mxml

private function deleteTeam(i:int):void
{
 var teamObj:Object = teamsList.dataProvider.getItemAt(i);

 var sqlText:String = “DELETE FROM Teams WHERE TEAM_ID = :teamId”;

 var deleteTeamSQL:SQLStatement = new SQLStatement();
 deleteTeamSQL.addEventListener(SQLEvent.RESULT, onDeleteTeam);
 deleteTeamSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 deleteTeamSQL.sqlConnection = sqlConnection;
 deleteTeamSQL.text = sqlText;
 deleteTeamSQL.parameters[“:teamId”] = teamObj.teamId;
 deleteTeamSQL.execute();
}

 4. In onDeleteTeam(), call the deleteDrivers() method, supplying the teamId property
returned in the parameters on the SQLEvent object’s target property (Listing 8-37).

CH008.indd 269CH008.indd 269 09/09/11 10:04 AM09/09/11 10:04 AM

270 ❘ CHAPTER 8 WORKING WITH DATA

LISTING 8-37: Handling the SQL to remove a team from the Teams table via the onDeleteTeam()

method in TeamsView.mxml

private function onDeleteTeam(e:SQLEvent):void
{
 deleteDrivers(e.target.parameters[“:teamId”]);
}

 5. For deleteDrivers(), add two new variables, the fi rst a string called sqlText with the
value DELETE FROM Driver WHERE TEAM_ID = :teamId, then the second a SQLStatement
object called deleteDriverSQL. Using the deleteDriverSQL object, register an interest in
the SQLEvent.Result and SQLErrorEvent.Error events, assigning a new handler method
called onDeleteDrivers() to the SQLEvent.Result event and the onSQLError() method
(as defi ned earlier) to the SQLErrorEvent.ERROR event. In the deleteDrivers() method,
assign the sqlConnection object to the deleteDriversSQL.sqlConnection property and
the sqlText string to the deleteDriversSQL.text property. Then pass the teamId as a
value to the deleteDriversSQL.parameters property, specifying :teamId as the key. Then
call the SQLStatement.execute() method on the deleteDriversSQL object (Listing 8-38).

LISTING 8-38: Executing the SQL to delete a driver from teams.db in TeamsView.mxml

private function deleteDrivers(teamId:Number):void
{
 var sqlText:String = “DELETE FROM Driver WHERE TEAM_ID = :teamId”;

 var deleteDriversSQL:SQLStatement = new SQLStatement();
 deleteDriversSQL.addEventListener(SQLEvent.RESULT, onDeleteDrivers);
 deleteDriversSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 deleteDriversSQL.sqlConnection = sqlConnection;
 deleteDriversSQL.text = sqlText;
 deleteDriversSQL.parameters[“:teamId”] = teamId;
 deleteDriversSQL.execute();
}

private function onDeleteDrivers(e:SQLEvent):void {}

 6. In onDeleteDrivers(), set the text property on dbStatus to “The record was deleted
successfully”. Then call the selectTeams() method (Listing 8-39).

LISTING 8-39: Handling the SQL to remove a driver from the driver’s table via the

onDeleteDrivers() method in TeamsView.mxml

private function onDeleteDrivers(e:SQLEvent):void
{
 dbStatus.text = “The record was deleted successfully”;
 selectTeams();
}

CH008.indd 270CH008.indd 270 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 271

 7. Returning to the MXML portion of the document, add a new button under the list
component in a horizontal group with the label property set to Add new Team and the
click event property set to addTeam() (Listing 8-40).

LISTING 8-40: Adding the Add Team button to the view in TeamsView.mxml

<s:List id=”teamsList”
 width=”100%”
 height=”55%”
 enabled=”true”
 selectedIndex=”0”/>

<s:HGroup width=”100%”
 height=”50”
 gap=”16”>

 <s:Button click=”addTeam()”
 height=”50”
 label=”Add new Team”/>

</s:HGroup>

 8. Next, for the list component teamsList, set the itemRenderer property to the path to
TeamItemRenderer (Listing 8-41).

LISTING 8-41: Setting the item renderer on the List component in TeamsView.mxml

<s:List id=”teamsList”
 itemRenderer=”views.components.renderers.TeamItemRenderer”
 width=”100%”
 height=”55%”
 enabled=”true”
 selectedIndex=”0”/>

 9. In the addTeam() method, navigate to the UpdateTeamsView.mxml view passing a new
dataObj variable as data for the view. Defi ne two properties on the object sqlConnection
and sqlType. Set the sqlType property to INSERT (Listing 8-42).

LISTING 8-42: Navigating to the UpdateTeamsView.mxml via addTeam() in TeamsView.mxml

private function addTeam():void
{
 var dataObj:Object =
 {
 sqlConnection:sqlConnection,
 sqlType:”INSERT”
 };

 navigator.pushView(views.UpdateTeamsView, dataObj);
}

CH008.indd 271CH008.indd 271 09/09/11 10:04 AM09/09/11 10:04 AM

272 ❘ CHAPTER 8 WORKING WITH DATA

 10. Under addTeam(), add a new private function called toggleMenu() to the view, which
takes the Boolean toggle as a parameter. This should be passed onto the viewMenuOpen
property on the FlexGlobals.topLevelApplication object (Listing 8-43).

LISTING 8-43: in TeamsView.mxml

private function addTeam():void
{
 var dataObj:Object =
 {
 sqlConnection:sqlConnection,
 sqlType:”INSERT”
 };

 navigator.pushView(views.UpdateTeamView, dataObj);
}

private function toggleMenu(toggle:Boolean):void
{
 mx.core.FlexGlobals.topLevelApplication.viewMenuOpen = toggle;
}

 11. Assign the toggleMenu() method to the click property on the <s:List>, passing the value
true as an argument (Listing 8-44).

LISTING 8-44: in TeamsView.mxml

<s:List id=”teamsList”
 itemRenderer=”views.components.renderers.TeamItemRenderer”
 click=”toggleMenu(true)”
 width=”100%”
 height=”55%”
 enabled=”true”
 selectedIndex=”0”/>

 12. Finally, under the <s:HGroup> containing the Add new Team button, declare a set of three
<s:ViewMenuItem> components, setting the label properties to Update, Cancel, and
Delete, respectively. For the update menu item, set the focusColor property to #51B22F,
and for the delete menu item, set the focusColor property to #CB0909 (Listing 8-45).

LISTING 8-45: Defi ning the <s:ViewMenuItem> component for the view in TeamsView.mxml

<s:HGroup width=”100%”
 height=”50”
 gap=”16”>

 <s:Button click=”addTeam()”
 height=”50”

CH008.indd 272CH008.indd 272 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 273

 label=”Add new Team”/>

</s:HGroup>

<s:viewMenuItems>

 <s:ViewMenuItem label=”Update”
 focusColor=”#51B22F”
 click=”updateTeam(teamsList.selectedIndex)”/>

 <s:ViewMenuItem label=”Cancel”
 click=”toggleMenu(false)”/>

 <s:ViewMenuItem label=”Delete”
 focusColor=”#CB0909”
 click=”deleteTeam(teamsList.selectedIndex)”/>

</s:viewMenuItems>

Creating the Insert and Update Views

To complete the application, in this section you’ll take a look at creating the last view called
UpdateTeamsView.mxml. In TeamView.mxml are two methods, addTeam() and updateTeam(),
both of which will present the user with the update view. The update view will actually encompass
two views, Insert and Update. Both addTeam() and updateTeam() have been created to pass the
sqlType property as part of a data object for the view. Follow the next steps to learn how this is
utilized.

 1. In Flash Builder, create a new View component called UpdateTeamsView in the views
package.

 2. In UpdateTeamsView.mxml, modify the <s:VerticalLayout> attributes, setting the
padding properties paddingLeft, paddingRight, paddingTop, and paddingBottom to
20. Then underneath the <s:layout> declaration, add a <s:Button> component to the
<s:navigationContent> component with its label property set to Back and the click
property to navigator.popView() to navigate content (Listing 8-46).

LISTING 8-46: Setting the padding and back button navigation in UpdateTeamsView.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:mx=”library://ns.adobe.com/flex/mx”
 creationComplete=”onCreationComplete()”>

 <fx:Script>
 <![CDATA[
 private function onCreationComplete():void {}
]]>

continues

CH008.indd 273CH008.indd 273 09/09/11 10:04 AM09/09/11 10:04 AM

274 ❘ CHAPTER 8 WORKING WITH DATA

LISTING 8-46 (continued)

 </fx:Script>

 <s:layout>
 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingTop=”20”
 paddingBottom=”20”/>
 </s:layout>

 <s:navigationContent>
 <s:Button label=”Back”
 click=”navigator.popView()”/>
 </s:navigationContent>

</s:View>

 3. Next declare two new objects to represent each driver, d1 and d2 (Listing 8-47).

LISTING 8-47: Declaring two new objects, d1 and d2, in UpdateTeamsView.mxml

<fx:Script>
 <![CDATA[

 private var d1:Object={};
 private var d2:Object={};

 private function onCreationComplete():void {}
]]>
</fx:Script>

 4. Under onCreationComplete(), add a new function addTeam() to create the SQL statement
addTeamSQL, which should insert a new team name to the database. Use a single parameter
called teamName to set the team name, and assign onAddTeam() as the handler for the
SQLEvent.RESULT event. Use the sqlConnection property on the view’s data object to
set the SQL connection on addTeamSQL. Then in onAddTeam() create an additional SQL
statement called teamIdSQL that retrieves the TEAM_ID value from the team name. Finally,
add a new stub called onTeamId() and assign it to the SQLEvent.RESULT event dispatched
for teamIdSQL (Listing 8-48).

LISTING 8-48: Executing the SQL to insert a team into the Teams table via the addTeam()

method in UpdateTeamView.mxml

private function onCreationComplete():void {}

private function addTeam(teamName:String):void
{
 var sqlText:String = “INSERT INTO Teams(TNAME) VALUES(:tname)”;

 var addTeamSQL:SQLStatement = new SQLStatement();

CH008.indd 274CH008.indd 274 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 275

 addTeamSQL.addEventListener(SQLEvent.RESULT, onAddTeam);
 addTeamSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 addTeamSQL.sqlConnection = data.sqlConnection;
 addTeamSQL.text = sqlText;
 addTeamSQL.parameters[“:tname”] = teamName;
 addTeamSQL.execute();
}

private function onAddTeam(e:SQLEvent):void
{
 var addTeamSQL:SQLStatement = SQLStatement(e.target);
 addTeamSQL.removeEventListener(SQLEvent.RESULT, onAddTeam);
 addTeamSQL.removeEventListener(SQLErrorEvent.ERROR, onSQLError);

 if(addTeamSQL.getResult().lastInsertRowID != 0)
 {
 var sqlText:String = “SELECT TEAM_ID FROM Teams “
 + “WHERE Teams.TNAME = (:tname)”;

 var teamIdSQL:SQLStatement = new SQLStatement();
 teamIdSQL.addEventListener(SQLEvent.RESULT, onTeamId);
 teamIdSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 teamIdSQL.sqlConnection = data.sqlConnection;
 teamIdSQL.parameters[“:tname”] = teamTxt.text;
 teamIdSQL.text = sqlText;
 teamIdSQL.execute();
 }
}

private function onTeamId(e:SQLEvent):void {}

private function onSQLError(e:SQLEvent):void {}

Notice in onAddTeam() that the last generated row identifi er property, lastInsertRowID,
is used to determine whether or not to execute the SQLStatement object teamIdSQL in an
if statement. The value is retrieved by calling getResult().lastInsertRowID on the
SQLStatement object, and returns 0 if the SQL executed is not an INSERT statement.
The row identifi er can be used to identify a row of a table within the database, uniquely.

 5. Returning to the MXML, add a <s:Label> component to display a description for the view
(Listing 8-49).

LISTING 8-49: Adding a descriptive label to the view in UpdateTeamsView.mxml

<s:layout>
 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingTop=”20”
 paddingBottom=”20”/>

continues

CH008.indd 275CH008.indd 275 09/09/11 10:04 AM09/09/11 10:04 AM

276 ❘ CHAPTER 8 WORKING WITH DATA

LISTING 8-49 (continued)

</s:layout>

<s:navigationContent>
 <s:Button label=”Back”
 click=”navigator.popView()”/>
</s:navigationContent>

<s:Label id=”description”
 width=”100%”
 height=”40”
 verticalAlign=”middle”/>

 6. Under the descriptive <s:Label> component, create three sets of <s:HGroup> containers
vertically stacked in a single <s:VGroup> container, each containing a <s:Label>
component and an associated <s:TextInput> component. Set the width property
of <s:VGroup> to 100%, height to 212, paddingTop to 20, paddingLeft to 25, and
paddingRight to 50. In the fi rst <s:HGroup>, set the id property on the <s:TextInput>
component to teamTxt and the text property on the <s:Label> component to Team. In the
second <s:HGroup>, set the id property on the <s:TextInput> component to driverOne,
and the text property of the <s:Label> component to Driver No. 1. Then in the
third <s:HGroup> component, set the text property on the <s:Label> component to
Driver No. 2 and the id property on the <s:TextInput> component to driverTwo.
Set each of the height properties on the components within the <s:VGroup> to 50, and for
each of the <s:HGroup> components, additionally set the width to 100 and the horizontal
align to right. For the <s:TextInput> components, set the width property to 50, and for
the <s:Label> components, set the verticalAlign property to middle and paddingRight
to 10 (Listing 8-50).

LISTING 8-50: Adding label and Text Input components for the Team, Driver 1, and Driver 2 in

UpdateTeamsView.mxml

<s:Label id=”description”
 width=”100%”
 height=”40”
 verticalAlign=”middle”/>

<s:VGroup width=”100%”
 height=”212”
 paddingTop=”20”
 paddingLeft=”25”
 paddingRight=”50”>

 <s:HGroup width=”100”
 height=”50”
 horizontalAlign=”right”>

 <s:Label height=”50”

CH008.indd 276CH008.indd 276 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 277

 text=”Team”
 verticalAlign=”middle”
 paddingRight=”10”/>

 <s:TextInput id=”teamTxt”
 width=”50”
 height=”50”/>

 </s:HGroup>

 <s:HGroup width=”100”
 height=”50”
 horizontalAlign=”right”>

 <s:Label height=”50”
 text=”Driver No. 1”
 verticalAlign=”middle”
 paddingRight=”10”/>

 <s:TextInput id=”driverOne”
 width=”50”
 height=”50”/>
 </s:HGroup>

 <s:HGroup width=”100”
 height=”50”
 horizontalAlign=”right”>

 <s:Label height=”50”
 text=”Driver No. 2”
 verticalAlign=”middle”
 paddingRight=”10”/>

 <s:TextInput id=”driverTwo”
 width=”50”
 height=”50”/>
 </s:HGroup>

</s:VGroup>

 7. Under the <s:VGroup> block, add one more <s:HGroup> component that contains two
button components, button1 and button2 (Listing 8-51).

LISTING 8-51: Adding button1 and button2 to UpdateTeamsView.mxml

 <s:HGroup width=”100”
 height=”50”
 horizontalAlign=”right”>

 <s:Label height=”50”
 text=”Driver No. 2”
 verticalAlign=”middle”

continues

CH008.indd 277CH008.indd 277 09/09/11 10:04 AM09/09/11 10:04 AM

278 ❘ CHAPTER 8 WORKING WITH DATA

LISTING 8-51 (continued)

 paddingRight=”10”/>

 <s:TextInput id=”driverTwo”
 width=”50”
 height=”50”/>
 </s:HGroup>

</s:VGroup>

<s:HGroup width=”100%”
 height=”50”
 gap=”16”
 horizontalAlign=”center”
 verticalAlign=”bottom”>

 <s:Button id=”button1”
 height=”50”/>

 <s:Button id=”button2”
 click=”navigator.popView()”
 height=”50”
 label=”Cancel”/>

</s:HGroup>

 8. Next, in onTeamId(), retrieve the result of the SQL query and assign the TEAM_ID value
to the variable tID. Then make two calls to a method called addDriver(), supplying two
parameters, the value of the text property on the <s:TextInput> component for each
driver, and tId (Listing 8-52).

LISTING 8-52: Assigning the team ID to addDriver() via the onTeamId() method in

UpdateTeamView.mxml

private function onTeamId(e:SQLEvent):void
{
 var teamIdSQL:SQLStatement = SQLStatement(e.target);
 var result:SQLResult = teamIdSQL.getResult();

 var tId:Number = result.data[0][“TEAM_ID”];

 addDriver(driverOne.text, tId);
 addDriver(driverTwo.text, tId);
}

private function addDriver(driverName:String, teamId:Number):void {}

private function onSQLError(e:SQLEvent):void {}

CH008.indd 278CH008.indd 278 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 279

 9. In addDriver(), create the SQL statement to insert a new driver. Use two parameters
that identify the driver, a string called driverName and a number called teamId. Assign
onAddDriver() as the handler for the SQLEvent.RESULT event. In onAddDriver(), update
the description.text to let the user know the record was inserted successfully (Listing 8-53).

LISTING 8-53: Executing the SQL to insert a driver via the addDriver() method in

UpdateTeamView.mxml

private function addDriver(driverName:String, teamId:Number):void
{
 var sqlText:String = “INSERT INTO Drivers(DNAME, TEAM_ID) “
 + “VALUES(:dname, :teamId)”;

 var addDriverSQL:SQLStatement = new SQLStatement();
 addDriverSQL.addEventListener(SQLEvent.RESULT, onAddDriver);
 addDriverSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 addDriverSQL.sqlConnection = data.sqlConnection;
 addDriverSQL.text = sqlText;
 addDriverSQL.parameters[“:dname”] = driverName;
 addDriverSQL.parameters[“:teamId”] = teamId;
 addDriverSQL.execute();
}

private function onAddDriver(e:SQLEvent):void
{

var sqlStatement:SQLStatement = SQLStatement(e.target);
 sqlStatement.removeEventListener(SQLEvent.RESULT, onAddDriver);
 sqlStatement.removeEventListener(SQLErrorEvent.ERROR, onSQLError);

 if(sqlStatement.getResult().lastInsertRowID != 0)
 {
 description.text = “The record was inserted successfully”;
 }
}

private function onSQLError(e:SQLEvent):void {}

As the view changes from TeamsView.mxml to EditTeamView.mxml, the teamName will
be forwarded, but the drivers’ names will not. To update the drivers, the user needs to be
presented with the drivers from the associated team. So these need to be retrieved from the
database.

 10. Above onSQLError(), add two new stubs, selectDrivers() and onSelectDrivers()
(Listing 8-54).

LISTING 8-54: Declaring selectDrivers() and onSelectDrivers() in UpdateTeamsView.mxml

private function selectDrivers():void {}

private function onSelectDrivers(e:SQLEvent):void {}

CH008.indd 279CH008.indd 279 09/09/11 10:04 AM09/09/11 10:04 AM

280 ❘ CHAPTER 8 WORKING WITH DATA

 11. In selectDrivers(), create the SQL statement to select all the drivers from the database
with a specifi c teamId called selectDriversSQL. Assign onSelectDrivers() as the
handler for the SQLEvent.RESULT event. Then in onSelectDrivers(), set the properties
of the driver objects d1 and d2, and fi nally update the text properties on each of the driver
<s:TextInput> components (Listing 8-55).

LISTING 8-55: Executing the SQL statement to select a driver in UpdateTeamsView.mxml

private function selectDrivers():void
{
 var sqlText:String = “SELECT * FROM Drivers “
 + “WHERE TEAM_ID = (:teamId)”;

 var selectDriversSQL:SQLStatement = new SQLStatement();
 selectDriversSQL.addEventListener(SQLEvent.RESULT, onSelectDrivers);
 selectDriversSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 selectDriversSQL.sqlConnection = data.sqlConnection;
 selectDriversSQL.text = sqlText;
 selectDriversSQL.parameters[“:teamId”] = Number(data.teamId);
 selectDriversSQL.execute();
}

private function onSelectDrivers(e:SQLEvent):void
{
 var result:SQLResult = SQLStatement(e.target).getResult();

 d1.name = result.data[0][“DNAME”];
 d1.id = result.data[0][“ID”];
 d1.teamId = result.data[0][“TEAM_ID”];

 d2.name = result.data[1][“DNAME”];
 d2.id = result.data[1][“ID”];
 d2.teamId = result.data[1][“TEAM_ID”];

 driverOne.text = d1.name;
 driverTwo.text = d2.name;
}

 12. Above the onSQLError() event handler, add four new method stubs: updateTeam(),
onUpdateTeam(), updateDriver(), and onUpdateDriver(). The updateDriver() method
should take two arguments: driverName and driverId, while onUpdateTeam() and
onUpdateDriver() should have SQLEvent objects defi ned (Listing 8-56).

LISTING 8-56: Declaring the updateTeam(), onUpdateTeam(), updateDriver(), and

onUpdateDriver() methods in UpdateTeamsView.mxml

private function updateTeam():void {}

private function onUpdateTeam(e:SQLEvent):void {}

CH008.indd 280CH008.indd 280 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 281

private function updateDriver(driverName:String, driverId:Number):void {}

private function onUpdateDriver(e:SQLEvent):void {}

private function onSQLError(e:SQLErrorEvent):void {}

 13. In updateTeam(), create the SQL statement that updates the TNAME based on the teamId set
on the view (Listing 8-57).

LISTING 8-57: Executing the SQL statement to update a team in UpdateTeamsView.mxml

private function updateTeam():void
{
 var sqlText:String = “UPDATE Teams SET TNAME = (:tname) “
 + “WHERE TEAM_ID = (:teamId)”;

 var updateTeamSQL:SQLStatement = new SQLStatement();
 updateTeamSQL.addEventListener(SQLEvent.RESULT, onUpdateTeam);
 updateTeamSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 updateTeamSQL.sqlConnection = data.sqlConnection;
 updateTeamSQL.text = sqlText;
 updateTeamSQL.parameters[“:tname”] = teamTxt.text;
 updateTeamSQL.parameters[“:teamId”] = Number(data.teamId);
 updateTeamSQL.execute();
}

 14. In onUpdateTeam(), make two calls to updateDriver(). The fi rst call should supply
the driverOne.text property value as the fi rst parameter, then d1.id as the second
parameter. The second call should supply driverTwo.text and d2.id. After the second
updateDriver() call, remove the view from the application by calling navigator
.popview(). In updateDriver(), create the SQL statement that updates the driver name
with the assigned driverId (Listing 8-58).

LISTING 8-58: Executing the SQL statement to update a driver via the updateDriver() method in

UpdateTeamsView.mxml

private function onUpdateTeam(e:SQLEvent):void
{
 updateDriver(driverOne.text, d1.id);
 updateDriver(driverTwo.text, d2.id);

 navigator.popView();
}

private function updateDriver(driverName:String, driverId:Number):void
{
 var sqlText:String = “UPDATE Drivers SET DNAME = (:driverName) “
 + “WHERE ID = (:driverId)”;

 var updateTeamSQL:SQLStatement = new SQLStatement();

continues

CH008.indd 281CH008.indd 281 09/09/11 10:04 AM09/09/11 10:04 AM

282 ❘ CHAPTER 8 WORKING WITH DATA

LISTING 8-58 (continued)

 updateTeamSQL.addEventListener(SQLEvent.RESULT, onUpdateDriver);
 updateTeamSQL.addEventListener(SQLErrorEvent.ERROR, onSQLError);
 updateTeamSQL.sqlConnection = data.sqlConnection;
 updateTeamSQL.text = sqlText;
 updateTeamSQL.parameters[“:driverName”] = driverName;
 updateTeamSQL.parameters[“:driverId”] = driverId;
 updateTeamSQL.execute();
}

private function onUpdateDriver(e:SQLEvent):void {}

 15. In onUpdateDrivers(), set the text property on description to “The record was
updated successfully” (Listing 8-59).

LISTING 8-59: Displaying the record update status via the onUpdateDriver() method in

UpdateTeamView.mxml

private function onUpdateDriver(e:SQLEvent):void
{
 description.text = “The record was updated successfully”;
}

 16. Next update the onSQLError() method, setting the text property on description to
“Unable to execute SQL command.” (Listing 8-60).

LISTING 8-60: Displaying the SQL error status in UpdateTeamView.mxml

private function onSQLError(e:SQLEvent):void
{
 description.text = “Unable to execute SQL command.”;
}

 17. Modify the onCreationComplete() method to determine what to set on the view’s title
property, as well as the text property on the <s:Label> component for the description,
and the label property for button1. Use the sqlType property on the view’s data object
to distinguish between UPDATE and INSERT, setting the visibility on button2 to false for
INSERT and true for UPDATE (Listing 8-61).

LISTING 8-61: Initializing the view via onCreationComplete() in UpdateTeamsView.mxml

private function onCreationComplete():void
{
 if(data.sqlType == “UPDATE“)
 {
 title = “Update Team View“;

CH008.indd 282CH008.indd 282 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 283

 description.text = “Make changes to the team...“;

 teamTxt.text = data.teamName;

 button1.label = “Save changes”;
 button2.visible = true;

 selectDrivers();

 } else if (data.sqlType == “INSERT“)
 {
 title = “Add Team View”;
 description.text = “Add a new team to the database...“;

 button1.label = “Insert Team”;
 button2.visible = true;
 }
}

 18. Add the onBtnOne() method to call updateTeam() when the view is in Update mode, and
call addTeam() when the view is in Insert mode, supplying the team name set on the text
property of teamTxt (Listing 8-62).

LISTING 8-62: Creating the button1 click handler in UpdateTeamsView.mxml

private function onBtnOne():void
{
 if(data.sqlType == “UPDATE”)
 {
 updateTeam();

 } else {

 addTeam(teamTxt.text);

 }
}

 19. Lastly, assign the onBtnOne() method to the click property on button1 (Listing 8-63).

LISTING 8-63: Assigning the onBtnOne() method to the button1 click property in

UpdateTeamsView.mxml

<s:HGroup width=”100%”
 height=”50”
 gap=”16”
 horizontalAlign=”center”

continues

CH008.indd 283CH008.indd 283 09/09/11 10:04 AM09/09/11 10:04 AM

284 ❘ CHAPTER 8 WORKING WITH DATA

LISTING 8-63 (continued)

 verticalAlign=”bottom”>

 <s:Button id=”button1”
 click=”onBtnOne()”
 height=”50”/>

 <s:Button id=”button2”
 click=”navigator.popView()”
 height=”50”
 label=”Cancel”/>

</s:HGroup>

 20. Now it’s time to run the application. Use either the desktop or device profi le.

 21. Navigate to the Add Team view. As well as the clearly set title Add New Team, you
should also be able to see the three labels alongside their corresponding input fi elds
(Figure 8-10).

Start entering data in each fi eld. In the fi rst fi eld, set the team to McLaren; for Driver 1 set
the driver to L. Hamilton; and for Driver 2 set the driver to J. Button (Figure 8-11).

FIGURE 8-10: Displaying the Add

Team view in Maintaining Data

App running on Android 2.3.4

FIGURE 8-11: Adding the

McLaren team and drivers to

the database via the Add Team

view in Maintaining Data App

running on Android 2.3.4

CH008.indd 284CH008.indd 284 09/09/11 10:04 AM09/09/11 10:04 AM

Using SQLite for Storing Data ❘ 285

 24. Next click the Update button for Red Bull. This should take you to the Update view. When
the view is initialized, notice that the database doesn’t return the values for Driver 1 or
Driver 2. This is because these fi elds were left blank when the original insertion for the team
was made (Figure 8-14).

 25. Next enter the drivers for Red Bull. For Driver 1, set the text fi eld to S. Vettel. Then for
Driver 2, set the text fi eld to M. Webber (Figure 8-15).

 22. Click Insert Team. This should bring you back to the Teams view. Add another team to the
database, this time just setting the team name to Red Bull (Figure 8-12).

 23. Next return to the Teams view where you should see both teams McLaren and Red Bull.
If you close the application both teams will be displayed without having to re-enter their
information (Figure 8-13).

FIGURE 8-12: Adding the Red

Bull team name to the database

via the Add Team view in

Maintaining Data App running

on Android 2.3.4

FIGURE 8-13: Displaying

the team names from the

database via the Teams View in

Maintaining Data App running

on Android 2.3.4

CH008.indd 285CH008.indd 285 09/09/11 10:04 AM09/09/11 10:04 AM

286 ❘ CHAPTER 8 WORKING WITH DATA

 26. If you click Save Changes and then return to update the Red Bull team, you will see that all
the details are correctly saved.

SUMMARY

With a simple concept this chapter demonstrated many of the features of SQLite, and highlighted how
effective SQLite can be to store data in a database that mobile applications can rely on, using AIR.

When compared with ActionScript, SQL is an entirely different language, but its fundamental
structure and operations are relatively easy to grasp. It helps if you learn the different operators used
in SQL to leverage the interaction between the client-facing view and underlying services.

In the next chapter you will learn more about using video and audio in mobile applications, where
you will create an example media player linked to a series of media items.

Before moving onto the next chapter, take a look at the following exercises, aimed at building on
your working knowledge of utilizing data in applications.

FIGURE 8-14: Displaying the

Update Team view for Red Bull

in Maintaining Data App running

on Android 2.3.4

FIGURE 8-15: Adding new

drivers to the Red Bull team in

Maintaining Data App running

on Android 2.3.4

CH008.indd 286CH008.indd 286 09/09/11 10:04 AM09/09/11 10:04 AM

Summary ❘ 287

EXERCISES

 1. Display a country fl ag next to each driver, which represents the driver’s nationality in the Update

Teams view (views.UpdateTeamsView.mxml).

 Hint: Create a new table of nationalities that stores the nationality name and a path to
the image fi le.

 2. Implement a data synchronizing solution that updates the information in both the Teams and

Drivers tables from server-side data.

 Hint: Add a new column in the Teams table that references the last modifi ed date for each of the
teams held server-side. Team and driver data should be updated only if the last modifi ed date on
the server side is more recent than that stored for the teams.

CH008.indd 287CH008.indd 287 09/09/11 10:04 AM09/09/11 10:04 AM

288 ❘ CHAPTER 8 WORKING WITH DATA

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Working with data

offl ine

The ServiceMonitor and URLMonitor can be used to establish whether an

application needs to work offl ine.

Use the StatusEvent.STATUS to determine network availability.

Creating a SQLite

database

Use the File and SQLCOnnection classes to initialize the creation of a new

database.

Creating a

database table

Use the CREATE SQL statement to create a new table in a database,

specifying the table name, data properties columns, and a unique identifi er

known as the primary key.

Saving data to a

table

Use the INSERT SQL statement to add new data to a table, specifying

the name of the table you want to insert data into, accompanied by the

associated column names and data values.

Retrieving data

from a table

Use the SELECT SQL statement to retrieve existing data from a table,

specifying the table name and any properties you want to retrieve.

The asterisk * represents retrieving all data.

Use the WHERE SQL statement to pass any number of query arguments to the

database to isolate values you want to retrieve.

Updating data in

a table

Use the UPDATE SQL statement to update data in a table, specifying the

table name and the properties and values you want to update.

Use the WHERE SQL statement to pass any number of query arguments to the

database to isolate values you want to update.

Deleting data from

a table

Use the DELETE SQL statement to remove data from a table.

Use the WHERE SQL statement to pass any number of query arguments to the

database to isolate values you want to delete.

CH008.indd 288CH008.indd 288 09/09/11 10:04 AM09/09/11 10:04 AM

Working wit h Audio and Video

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Introduction to the Open Source Media Framework

 ➤ Creating media resources and elements

 ➤ Accessing media traits

 ➤ Handling media trait events

 ➤ Using Media Player classes to play media

 ➤ Utilizing the Video Player component to play video

This chapter introduces you to aspects of the Open Source Media Framework (OSMF,
www.osmf.org) and explores the core classes found in the framework that are used to work
with audio and video.

You’ll also build a media player example demonstrating the capabilities of OSMF, and using
the Flex <s:VideoPlayer> component to examine how you can use video within your mobile
applications.

INTRODUCING THE OPEN SOURCE MEDIA FRAMEWORK

The Open Source Media Framework is an open source development
framework for Flash-based media players, aimed
at simplifying the build of media based applications, in particular
utilizing audio and video.

Figure 9-1 shows the OSMF logo.

The open nature of OSMF and its pluggable architecture facilitates
a collaborative development effort in the Flash community, with

9

FIGURE 9-1: The OSMF logo

CH009.indd 289CH009.indd 289 09/09/11 9:55 AM09/09/11 9:55 AM

290 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

Adobe and many third parties developing plug-ins that can swap in and out of media players.
In addition, the core OSMF source code is updated at periodic intervals.

However, you should note that at the time of writing the release version of OSMF is version 1.5,
while the latest working version is sprint 1.6.

You will need to download a copy of the OSMF source code to include as part of your mobile
projects. Download the release version from the Source Forge website at http://sourceforge.net/
projects/osmf.adobe/files/.

Over the next few sections you take a look at the fundamentals of OSMF, including:

 ➤ Using media resources

 ➤ Working with media elements

 ➤ Handling media traits

 ➤ Utilizing the media player

Many of the OSMF core concepts are explained purely from an AS3 perspective. Using the Flex
framework, you fi nd that the features are wrapped in a single video component <s:VideoPlayer>,
which is covered later.

Creating a URLResource Object

In OSMF media resources are essentially used to reference the physical path of a media object. They
are used by media elements to process the media.

The URLResource class is one type of media resource that holds a reference to a URL property. To create
a URLResource object you fi rst need to import the class, which is found in the org.osmf.media package:

import org.osmf.media.URLResource;

In the following snippet you see the creation of a new URLResource object:

var urlResource:URLResource;
urlResource = new URLResource(“http://localhost/wrox/ch9/sound.mp3”);

Here the URL path to the .mp3 fi le sound.mp3 is supplied as an argument to the constructor of the
URLResource class, generating a resource that can be utilized by the framework.

In addition to URLResource, a number of different types of media resources can be created, including:

 ➤ DynamicStreamingResource: To create a media resource that references multiple representations
of a single item, allowing a media player to dynamically switch from one representation to
another, for instance different bit rates

 ➤ MulticastResource: To create a media resource that is able of carrying multicast
streaming information

 ➤ StreamingURLResource: To create a media resource that can be streamed

After creating a media resource, it needs to be assigned to a media element; the next section takes a
look at creating media elements and the generic MediaElement class.

CH009.indd 290CH009.indd 290 09/09/11 9:55 AM09/09/11 9:55 AM

Introducing the Open Source Media Framework ❘ 291

Creating a MediaElement Object

OSMF includes a number of media element types, each representing a specifi c type of media object
to be interpreted by the framework:

 ➤ AudioElement: This is used for streaming and progressive audio playback of MP3 and AAC
fi les. It also supports audio-only streams from Flash Media Server.

 ➤ DurationElement: This is used for wrapping a media object to give it temporal (time-based)
capabilities.

 ➤ F4MElement: This is used for loading media from XML documents that adhere to the Flash
Media Manifest format via F4M fi les.

 ➤ ImageElement: This is used for loading and presenting any PNG, GIF, or JPG image.

 ➤ LightWeightVideoElement: This is used for simple RTMP streaming and progressive
video playback.

 ➤ ParallelElement: This is used for concurrently presenting a number of media elements
in a single media composition.

 ➤ ProxyElement: This is used for controlling access to a wrapped media element.

 ➤ SerialElement: This is used for sequentially presenting a number of media elements
in a single media composition.

 ➤ VideoElement: This is used for streaming and progressive video playback of Flash Video
(FLV) and MP4 fi les, and it also supports streaming from Flash Media Server.

These media elements represent a particular media implementation. The ParallelElement
and SerialElement objects both represent media compositions, while the AudioElement and
VideoElement are representations of elements of specifi c media types.

Each implementation is derived from the generic MediaElement class, a generic media element that
can represent any particular type of simplifi ed or complex media entity.

To create a MediaElement object, you need to import the class, which is found in the org.osmf.media
package:

import org.osmf.media.MediaElement;

You then assign a resource to the resource property on the MediaElement object:

var mediaElement:MediaElement = new MediaElement();
mediaElement.resource = urlResource;

The following sections take a look at the creation of AudioElement and VideoElement objects.

Creating an AudioElement Object

An AudioElement is a media element specifi cally created for audio playback, supporting streaming
and progressive formats.

CH009.indd 291CH009.indd 291 09/09/11 9:55 AM09/09/11 9:55 AM

292 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

When using OSMF to play audio, you will need to import the AudioElement class found in the
org.osmf.elements package:

import org.osmf.elements.AudioElement;

To create an AudioElement, you fi rst need to create a new URLResource object that references an
audio fi le or stream, and then assign that URLResource object to the resource property in the
AudioElement object, as shown in the following snippet:

var urlResource:URLResource;
urlResource = new URLResource(“http://localhost/wrox/ch9/sound.mp3”);

var audioElement:AudioElement = new AudioElement();
audioElement.resource = urlResource;

Creating a VideoElement Object

The VideoElement is another media element type; this is specifi cally used for video playback,
supporting all streaming and progressive formats.

When using OSMF to play video, you need to import the VideoElement class, found in the
org.osmf.elements package:

import org.osmf.elements.VideoElement;

You then create a URLResource object to a video and assign it to the resource property on the
VideoElement object:

var urlResource:URLResource;
urlResource = new URLResource(“http://localhost/wrox/ch9/video.mp4”);

var videoElement:VideoElement = new VideoElement();
videoElement.resource = urlResource;

To actually play audio using an AudioElement or video using the VideoElement, it needs to be
assigned to a MediaPlayer object; this will be covered shortly.

The next section covers another concept in OSMF that all media elements can expose, media traits.

Media Traits

Media traits essentially defi ne a media element’s characteristics and are dynamic in nature, so
depending on the resource assigned to a media element the framework will effectively generate a
trait for the media element, if it is possible to do so.

Consider an audio fi le, a video fi le, and a still image resource, and when they are loaded into an
application. You would probably expect to be able play the audio and video fi les, but not the still
image, because an image is not playable. You would also expect to be able to alter the volume
of the audio and video fi les, but again not the image, because, of course, an image doesn’t have a
sound track.

CH009.indd 292CH009.indd 292 09/09/11 9:55 AM09/09/11 9:55 AM

Introducing the Open Source Media Framework ❘ 293

In OSMF, audible and playable characteristics, like the ones described, are two of a number of
characteristics that provide features and defi ne how you can interact with different media types.
These characteristics are known as traits.

A trait is a particular characteristic that defi nes a capability exhibited by a media element type.

In some scenarios you will need to access the traits of media elements to determine whether
certain tasks can be carried out on the media. For instance, does a VideoElement have a playable
characteristic so that it can be played?

OSMF has a number of traits, some of which are listed here:

 ➤ AudioTrait: A trait that exposes properties that indicate the left-to-right panning of sound,
whether sound is muted, and also the volume level of the sound

 ➤ TimeTrait: A trait that exposes properties that indicate the duration and current time
properties of a media type in seconds

 ➤ PlayTrait: A trait that exposes properties that indicate whether media playback can be
stopped and started

 ➤ SeekTrait: A trait that exposes properties that indicate whether the media is currently
seeking, and exposes the canSeekTo() and seek() methods

One of the tricks to using traits is learning what properties and features you want or need to use in
your applications, then refer to each of the trait classes to see which ones are appropriate. Another
useful class is the MediaTraitType class, which is used primarily to identify traits.

Using the MediaTraitType Class to Identify Traits

Up to now you’ve learned how you create media resource objects and assign them to media elements.
During the playback of those media elements you may want to be able to seek a position of an audio
fi le, or simply display the full duration of a video.

Furthermore, in the previous section you saw how each trait type had particular properties, but
how do you know whether a media element has a particular trait? You can determine whether
a media element type has a particular trait by using the MediaTraitType class found in the
org.osmf.traits package.

This class has a number of static properties that defi ne particular traits, including:

 ➤ MediaTraitType.AUDIO: To identify and reference AudioTrait instances

 ➤ MediaTraitType.BUFFER: To identify and reference BufferTrait instances

 ➤ MediaTraitType.DISPLAY_OBJECT: To identify and reference DisplayObjectTrait instances

 ➤ MediaTraitType.LOAD: To identify and reference LoadTrait instances

 ➤ MediaTraitType.PLAY: To identify and reference PlayTrait instances

 ➤ MediaTraitType.SEEK: To identify and reference SeekTrait instances

 ➤ MediaTraitType.TIME: To identify and reference TimeTrait instances

CH009.indd 293CH009.indd 293 09/09/11 9:55 AM09/09/11 9:55 AM

294 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

To determine whether a MediaElement object has a particular trait, you can use the hasTrait()
method, supplying the name of the trait via one of the static constants on the MediaTraitType class.

The following snippet shows how to determine whether a MediaElement object has the AudioTrait,
using the MediaTraitType.AUDIO constant as the argument for hasTrait():

var mediaElement:MediaElement = new MediaElement();

if(mediaElement.hasTrait(MediaTraitType.AUDIO))
{
 // Media has the audio trait
}

Retrieving a trait allows you to access the properties and invoke the methods on MediaElement objects.

To actually retrieve and use a trait, again you use the MediaTraitType class, this time supplying
one of the static constants to the getTrait() property on the MediaElement object:

var mediaElement:MediaElement = new MediaElement();

if(mediaElement.hasTrait(MediaTraitType.AUDIO))
{
 var audioTrait:AudioTrait;
 audioTrait = mediaElement.getTrait(MediaTraitType.AUDIO);
}

In the following example you see that once the AudioTrait object has been retrieved, you can
use it to set the volume property to 5 on the MediaElement object:

var mediaElement:MediaElement = new MediaElement();

if(mediaElement.hasTrait(MediaTraitType.AUDIO))
{
 var audioTrait:AudioTrait;
 audioTrait = mediaElement.getTrait(MediaTraitType.AUDIO);
 audioTrait.volume = 5;
}

This is just one example of how to utilize media traits in the framework.

Using the MediaPlayer to Play Media Elements

The MediaPlayer class is essentially a controller that can be used to play any of the media element
types that are supported in OSMF.

So, for example, if you supply a MediaPlayer object an ImageElement, it can generate an image, and
if you pass a MediaPlayer object a VideoElement, it can render a video.

The following lists each of the public properties exposed by a MediaPlayer object:

 ➤ audioPan: A number representing the pan property of the media

 ➤ autoDynamicStreamSwitch: A Boolean indicating whether the media will automatically
switch between dynamic streams

CH009.indd 294CH009.indd 294 09/09/11 9:55 AM09/09/11 9:55 AM

Introducing the Open Source Media Framework ❘ 295

 ➤ autoPlay: A Boolean defi ning whether the media starts playing as soon as its load operation
has successfully completed

 ➤ autoRewind: A Boolean defi ning whether the media is returned to the beginning of playback
after playback of the media completes

 ➤ buffering: A Boolean indicating whether the media is currently buffering

 ➤ bufferLength: A number returning the length, measured in seconds, of the content currently
in the media’s buffer

 ➤ bufferTime: A number that indicates the desired length of the media’s buffer, in seconds

 ➤ bytesLoaded: A number that returns the bytes of the media that have been loaded

 ➤ bytesLoadedUpdateInterval: A number representing the interval between the dispatch of
change events for the bytesLoaded property

 ➤ bytesTotal: A number representing the total number of bytes of the media that will be loaded

 ➤ canBuffer: A Boolean to indicate whether the media can buffer

 ➤ canLoad: A Boolean to indicate whether the media can be loaded

 ➤ canPause: A Boolean to indicate whether the media can be paused

 ➤ canPlay: A Boolean to indicate whether the media can be played

 ➤ canSeek: A Boolean to indicate whether the media is seekable

 ➤ currentDynamicStreamIndex: An integer representing the index of the dynamic stream
currently rendering

 ➤ currentTime: A number returning the current time of the playhead in seconds

 ➤ currentTimeUpdateInterval: A number to defi ne the interval between the dispatch of change
events for the current time in milliseconds

 ➤ displayObject: The DisplayObject for the media

 ➤ drmEndDate: A date representing the end date for the playback window

 ➤ drmPeriod: A number returning the length of the playback window, in seconds

 ➤ drmStartDate: A date representing the start date for the playback window

 ➤ drmState: A string indicating the current state of the DRM for this media

 ➤ duration: A number representing the duration of the media’s playback, in seconds

 ➤ dynamicStreamSwitching: A Boolean to indicate whether a dynamic stream switch is
currently in progress

 ➤ hasAudio: A Boolean to indicate whether the media has audio

 ➤ hasDRM: A Boolean to indicate whether the media element has the DRMTrait

 ➤ isDVRRecording: A Boolean to indicate whether the media is DVR-enabled and currently
recording

CH009.indd 295CH009.indd 295 09/09/11 9:55 AM09/09/11 9:55 AM

296 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

 ➤ isDynamicStream: A Boolean to indicate whether the media consists of a dynamic stream

 ➤ loop: A Boolean to indicate whether the media should play again after playback
has completed

 ➤ maxAllowedDynamicStreamIndex: An integer representing the maximum allowed dynamic
stream index

 ➤ media: A MediaElement defi ning the source media element being controlled by the
media player

 ➤ mediaHeight: A number defi ning the height of the media, in pixels

 ➤ mediaWidth: A number defi ning the width of the media, in pixels

 ➤ muted: A Boolean to indicate whether the media is currently muted

 ➤ numDynamicStreams: An integer representing the total number of dynamic stream indices

 ➤ paused: A Boolean to indicate whether the media is currently paused

 ➤ playing: A Boolean to indicate whether the media is currently playing

 ➤ seeking: A Boolean to indicate whether the media is currently seeking

 ➤ state: A string representing the current state of the media

 ➤ temporal: A Boolean to indicate whether the media is temporal

 ➤ volume: A number representing the volume of the media

The MediaPlayer class also provides many convenient functions to control media, including:

 ➤ authenticate(username:String = null, password:String = null): To authenticate the media

 ➤ authenticateWithToken(token:Object): To authenticate the media using an object that
serves as a token

 ➤ canSeekTo(seconds:Number): To determine whether the media is capable of seeking to the
specifi ed time, measured in seconds

 ➤ getBitrateForDynamicStreamIndex(index:int): To retrieve the bit rate in kilobytes for a
specifi ed dynamic stream index

 ➤ pause(): To pause the media, if it is not already paused

 ➤ play(): To play the media, if it is not already playing

 ➤ seek(time:Number): To jump to the specifi ed time in the media fi le

 ➤ stop(): To stop playback and return to the beginning of the media fi le

 ➤ switchDynamicStreamIndex(index:int): To switch to a specifi c dynamic stream index

For your OSMF project you will need to import the MediaPlayer class; this can be found in the
org.osmf.media package:

import org.osmf.media.MediaPlayer;

CH009.indd 296CH009.indd 296 09/09/11 9:55 AM09/09/11 9:55 AM

Introducing the Open Source Media Framework ❘ 297

To utilize an AudioElement object, you need to create a MediaPlayer object, and then assign the
AudioElement object to the MediaPlayer object’s media property:

var urlResource:URLResource;
urlResource = new URLResource(“http://localhost/wrox/ch9/sound.mp3”);

var audioElement:AudioElement = new AudioElement();
audioElement.resource = urlResource;

var mediaPlayer:MediaPlayer = new MediaPlayer();
mediaPlayer.media = audioElement;

To play audio, you simply call the MediaPlayer object’s play() method:

var mediaPlayer:MediaPlayer = new MediaPlayer();
mediaPlayer.media = audioElement;
mediaPlayer.play();

Using the MediaPlayerSprite Class to Play Media Resources

The MediaPlayerSprite class allows you to assign a resource object to the resource property
on a MediaPlayerSprite object. The MediaPlayerSprite extends MediaPlayer, but also contains
instances of the MediaContainer and MediaFactory classes, which allow you to set the scale mode
of the media and automatically generate the appropriate MediaElement object, which will be passed
to the MediaPlayer.

To use the MediaPlayerSprite class in your projects, you need to use the following import statement:

import org.osmf.media.MediaPlayerSprite;

The following snippet demonstrates how to use a MediaPlayerSprite object and play an audio fi le:

var urlResource:URLResource;
urlResource = new URLResource(“http://localhost/wrox/ch9/sound.mp3”);

var mediaPlayerSprite:MediaPlayerSprite = new MediaPlayerSprite();

addChild(mediaPlayerSprite);

mediaPlayerSprite.resource = urlResource;

Alternatively, you could assign a media element type to the media property on the
MediaPlayerSprite object. For example, in the following snippet an AudioElement object is created
from a path to the sound.mp3 fi le. This is then assigned to a MediaPlayerSprite object’s media
property. Here’s how you would assign an AudioElement:

var urlResource:URLResource;
urlResource = new URLResource(“http://localhost/wrox/ch9/sound.mp3”);

var audioElement:AudioElement = new AudioElement();

CH009.indd 297CH009.indd 297 09/09/11 9:55 AM09/09/11 9:55 AM

298 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

audioElement.resource = urlResource;

var mediaPlayerSprite:MediaPlayerSprite = new MediaPlayerSprite();

addChild(mediaPlayerSprite);
mediaPlayerSprite.media = audioElement;

Handling Trait Events

Let’s say you wanted to display a visual message to the user in your application when a video needs
to “buffer” content, or when a sound clip has been “paused” rather than “stopped.” There are trait
events that are intrinsic to OSMF, which help to present a particular response for media elements,
like the ones just highlighted.

The TraitEventDispatcher class, which we’ll cover shortly, is able to monitor a media element to
check when a trait has been added, and is subsequently able to handle dispatched trait events. But
before you look at how to use the dispatcher, you’ll need to know a little more about the events you
want to handle.

In this section you’ll take a brief look at the AudioEvent, PlayEvent, and TimeEvent objects.

Using an AudioEvent Object

An AudioEvent object is dispatched when the properties of an audio trait have changed for a media
element; hence, a derived MediaElement object needs to have an AudioTrait object.

The AudioEvent class can be found in the org.osmf.events package:

import org.osmf.events.AudioEvent;

The class itself has three static event-type properties:

 ➤ AudioEvent.MUTED_CHANGE: A string “mutedChange”, dispatched when the muted property of
the media has changed

 ➤ AudioEvent.PAN_CHANGE: A string “panChange”, dispatched when the pan property of the
media has changed

 ➤ AudioEvent.VOLUME_CHANGE: A string “volumeChange”, dispatched when the volume property
of the media has changed

Three read-only public properties for the AudioEvent object also can be accessed via an event
handler for each of the event types:

 ➤ muted: A Boolean indicating whether the audio for the media element is muted

 ➤ pan: A number representing the pan

 ➤ volume: A number representing the volume level of the audio for the media element

The audio of a MediaElement object that has an AudioTrait can be changed through a volume
property, which should trigger an AudioEvent.VOLUME_CHANGE event to be dispatched.

CH009.indd 298CH009.indd 298 09/09/11 9:55 AM09/09/11 9:55 AM

Introducing the Open Source Media Framework ❘ 299

Using the PlayEvent and PlayState Objects

A PlayEvent object is an OSMF event that is dispatched when the properties of a play trait have
changed for a media element. A derived MediaElement object needs to have a PlayTrait object in
order for PlayEvent objects to be dispatched.

When a PlayEvent is triggered, you can detect changes to the play state of a media element, or
detect whether a media element can be paused.

You have to import the PlayEvent, which can be found in the org.osmf.events package:

import org.osmf.events.PlayEvent;

This class has two static event-type properties:

 ➤ PlayEvent.CAN_PAUSE_CHANGE: A string “canPauseChange”, dispatched when the canPause
property has changed

 ➤ PlayEvent.PLAY_STATE_CHANGE: A string “playStateChange”, dispatched when the playing or
paused property of the media has changed

A PlayEvent object also exposes two public properties:

 ➤ canPause: A Boolean indicating whether the PlayTrait can be paused

 ➤ playState: A string defi ning the current PlayState of the media element

The playState property returned on the PlayEvent object is actually tied to a static constant held by
the org.osmf.traits.PlayState class. This has three static constants:

 ➤ PlayState.PAUSED: A string defi ning the play state as paused

 ➤ PlayState.PLAYING: A string defi ning the play state as playing

 ➤ PlayState.STOPPED: A string defi ning the play state as stopped

Using a TimeEvent Object

A TimeEvent object is dispatched when there is a change in the properties of a media element object
that has a time/temporal trait:

import org.osmf.events.TimeEvent;

The class itself has three static event types:

 ➤ TimeEvent.COMPLETE: A string “complete”, dispatched when the media has completed playback

 ➤ TimeEvent.CURRENT_TIME_CHANGE: A string “currentTimeChange”, dispatched when the time
property of the media has changed

 ➤ TimeEvent.DURATION_CHANGE: A string “durationChange”, dispatched when the duration
property of the media has changed

A TimeEvent object exposes a public time property, which holds the value represented by the change
in the media’s TimeTrait.

CH009.indd 299CH009.indd 299 09/09/11 9:55 AM09/09/11 9:55 AM

300 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

Using the TraitEventDispatcher Class

A TraitEventDispatcher object allows you to receive trait events from a MediaElement object, and
thus utilize updates and changes to media properties. In addition to dispatching the trait events of
a MediaElement object, the TraitEventDispatcher has an added bonus with its ability to monitor a
MediaElement object to tell when traits have been added or removed.

To utilize this functionality, you need to import the TraitEventDispatcher class found in the
org.osmf.traits package:

import org.osmf.traits.TraitEventDispatcher;

The TraitEventDispatcher object is one way in which you can listen for OSMF events. First you
need to create a TraitEventDispatcher object, and then assign each of the events you want to listen
to via the addEventListener() method to the TraitEventDispatcher object. You then need to
assign a media element to the media property on the TraitEventDispatcher object.

The following snippet shows how an AudioElement object is added to a TraitEventDispatcher
object called traitDispatcher, where the AudioEvent.VOLUME_CHANGE and TimeEvent.COMPLETE
events are listened for and handled by the onVolumeChange(), onPlayStateChange(), and
onComplete() event handlers, respectively:

var traitDispatcher:TraitEventDispatcher = new TraitEventDispatcher();
traitDispatcher.media = audioElement;

traitDispatcher.addEventListener(AudioEvent.VOLUME_CHANGE, onVolumeChange);
traitDispatcher.addEventListener(TimeEvent.COMPLETE, onComplete);

Another way in which you can listen for OSMF events is by using a MediaPlayer object, as shown
in the following snippet, which shows how the TimeEvent.COMPLETE event type is registered with a
MediaPlayer object:

mediaPlayer.addEventListener(TimeEvent.COMPLETE, onComplete);

USING THE FLEX OSMF WRAPPER

In addition to the OSMF classes that can be utilized to render video, two components can be used to
accomplish video playback, the <s:VideoDisplay> and <s:VideoPlayer> components. Both are Flex
wrappers for OSMF-based AS3 classes.

The <s:VideoDisplay> component is a basic renderer for video playback, without media controls to
interact with the video. Here you’ll explore how to use the <s:VideoPlayer> component, allowing
you to render videos in your mobile applications and control playback.

Using the VideoPlayer Component

This section takes you through some of the properties and methods of the <s:VideoPlayer> component,
a skinnable component that also exposes some familiar properties of OSMF, covered earlier.

CH009.indd 300CH009.indd 300 09/09/11 9:55 AM09/09/11 9:55 AM

Using the Flex OSMF Wrapper ❘ 301

In total, 14 public properties are exposed with the <s:VideoPlayer> component:

 ➤ autoDisplayFirstFrame: A Boolean used to defi ne whether to display the fi rst frame of a video

 ➤ autoPlay: A Boolean used to defi ne whether a video automatically plays when it fi rst loads

 ➤ autoRewind: A Boolean to defi ne whether a video automatically rewinds when it reaches its end

 ➤ bytesLoaded: A number representing the bytes of data that have been loaded

 ➤ bytesTotal: A number representing the total bytes of data that will be loaded

 ➤ currentTime: A number indicating the current position of the video

 ➤ duration: A number representing the full running time of the video

 ➤ loop: A Boolean to defi ne whether a video restarts once it has ended

 ➤ mediaPlayerState: A static string indicating the current state of the video player; the values
include UNINITIALIZED, READY, PLAYING, PAUSED, BUFFERING, and PLAYBACK_ERROR

 ➤ muted: A Boolean indicating whether the video player’s volume is set to zero

 ➤ pauseWhenHidden: A Boolean to pause the video when it is hidden

 ➤ playing: A Boolean indicating whether the video is currently playing

 ➤ scaleMode: A string defi ning how to size the video content; the values “none,” “stretched,”
“letterbox,” or “zoom” can be assigned

 ➤ source: A string that defi nes the path to the video content

In addition to these properties are four public methods that are associated with the <s:VideoPlayer>
component:

 ➤ pause(): To pause a video

 ➤ play(): To play a video

 ➤ seek(seconds:Number): To seek to a specifi ed time in a video

 ➤ stop(): To stop a video

These methods are exactly the same ones exposed by the MediaPlayer and MediaPlayerSprite
classes, covered earlier.

Creating a MediaPlayer Example

You will now need to set up a new Flex Mobile Project in Flash Builder.

Defi ning the Flex Mobile Project Settings

The following lists a few of the familiar settings you will need to ensure are defi ned for the project:

 ➤ Name: Set the Name for the project as MediaPlayerApp.

 ➤ Application ID: Set the Application ID as com.wrox.ch9.MediaPlayerApp.

 ➤ Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to MediaPlayerAppHome.

CH009.indd 301CH009.indd 301 09/09/11 9:55 AM09/09/11 9:55 AM

302 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

Targeting Mobile Devices on Diff erent Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple
iOS, Google Android, and BlackBerry Tablet OS. No permissions need to be specifi ed for any of the
target platforms.

Creating Run and Debug Confi gurations

You can elect to run this project on the desktop or directly on your mobile device. This chapter
focuses on running the app on the desktop; however, both approaches can be employed.

Building the Media Player App

The following steps will take you through the build of a media player app targeted for mobile using
a combination of Flex and ActionScript classes:

 1. In the MediaPlayerApp project, create a new ActionScript class named MediaItemVO in a
new package called model.vo.

 2. In MediaItemVO, add four public variables of string type: title, description, url, and
duration (Listing 9-1).

LISTING 9-1: Creating MediaItemVO.as

package model.vo
{
 public class MediaItemVO
 {
 public var title:String;
 public var description:String;

 [Bindable]
 public var url:String;
 public var duration:String;

 public function MediaItemVO()
 {

 }
 }
}

 3. Create a new MXML item renderer called MediaItemRenderer.

 4. In MediaItemRenderer add a <s:VerticalLayout> declaration to the <s:layout>, setting
the gap property to 5, the paddingLeft property to 10, the paddingTop property to 20, and
paddingBottom property to 5. Next update the text property on the item renderer’s default
<s:Label> component. The value supplied to this property should be the data.title and
data.duration properties. Also set the fontSize property to 18. Add another <s:Label>
component that sets the data.description property on the text property, and also the
fontSize to 16 (Listing 9-2).

CH009.indd 302CH009.indd 302 09/09/11 9:55 AM09/09/11 9:55 AM

Using the Flex OSMF Wrapper ❘ 303

LISTING 9-2: Assigning the layout and data object properties in MediaItemRenderer.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:ItemRenderer xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 autoDrawBackground=”true”>

 <s:layout>
 <s:VerticalLayout gap=”5”
 paddingLeft=”10”
 paddingTop=”20”
 paddingBottom=”5”/>
 </s:layout>

 <s:Label text=”{data.title} ({data.duration})”
 fontSize=”18”/>

 <s:Label text=”{data.description}”
 fontSize=”16”/>

</s:ItemRenderer>

 5. In MediaPlayerAppHome.mxml add the namespace declaration xmlns:vo to the view, specifying
the model.vo.* package. Also set the title property for the view to Media Player App.
Ensure that the <fx:Declarations> and <fx:Script> tags are present (Listing 9-3).

LISTING 9-3: Setting the title and xmlns:vo namespace properties in

MediaPlayerAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:vo=”model.vo.*”
 title=”Media Player App”>

 <fx:Script>
 <![CDATA[]]>
 </fx:Script>

 <fx:Declarations>

 </fx:Declarations>

</s:View>

 6. Within the <fx:Script> block, defi ne a new bindable string called basePath to hold a
reference to a local server path, in which the videos will be stored (Listing 9-4).

CH009.indd 303CH009.indd 303 09/09/11 9:55 AM09/09/11 9:55 AM

304 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

LISTING 9-4: Setting the basePath for the videos in MediaPlayerAppHome.mxml

<fx:Script>
 <![CDATA[

 [Bindable]
 private var basePath:String = “http://localhost/video/”;
]]>
</fx:Script>

Setting the basePath to “http://localhost/video/” presumes you have a web server running on
you machine with the video folder at the root. The content used in the example can be found in the
bin-debug folder for the project. So, when you run this example, you can also set the basePath to
“”, removing the reference to the local web server.

 7. In the <fx:Declarations> tag, defi ne a new <s:ArrayList> called arrList. Defi ne
three <vo:MediaItemVO> objects. On the fi rst MediaItemVO object, set the id property
to mediaItem1, then set the title property to Sintel, the description property to
The search for a baby dragon., the url property to sintel_trailer.flv, and the duration
property to 0:52. For the second MediaItemVO object, set the id to mediaItem2, set the title
to Big Buck Bunny, and the description to Meet three bullying rodents.. Set the url to
big_buck_bunny_trailer.flv and the duration to 0:33. Then for the third MediaItemVO
object, set the id to mediaItem3, set the title to Elephants Dream, and the description to
Emo is introduced to the machine. Then set the url to elephants_dream_trailer.flv
and the duration to 1:15 (Listing 9-5).

LISTING 9-5: Declaring an <s:ArrayList> of MediaItemVO objects in

MediaPlayerAppHome.mxml

<fx:Declarations>

 <s:ArrayList id=”arrList”>

 <vo:MediaItemVO id=”mediaItem1”
 title=”Sintel”
 description=”The search for a baby dragon.”
 url=”sintel_trailer.flv”
 duration=”0:52”/>

 <vo:MediaItemVO id=”mediaItem2”
 title=”Big Buck Bunny”
 description=”Meet three bullying rodents.”
 url=”big_buck_bunny_trailer.flv”
 duration=”0:33”/>

 <vo:MediaItemVO id=”mediaItem3”
 title=”Elephants Dream”
 description=”Emo is introduced to the machine.”

CH009.indd 304CH009.indd 304 09/09/11 9:55 AM09/09/11 9:55 AM

Using the Flex OSMF Wrapper ❘ 305

 url=”elephants_dream.flv”
 duration=”1:15”/>

 </s:ArrayList>

</fx:Declarations>

You can package the video fi les used in this example project for testing on a mobile device. First you
need to ensure that the videos are included in the packaging. Select File ➪ Properties ➪ Flex Build
Packaging, and then enable your target platform. Then select the fi les you want to include. You will
need to set the basePath to “” , and this will then allow you to reference each of the videos relative
to the installation folder.

 8. Next defi ne two states, portrait and landscape (Listing 9-6).

LISTING 9-6: Declaring the portrait and landscape states in MediaPlayerAppHome.mxml

<fx:Declarations>

 <s:State name=”portrait”/>
 <s:State name=”landscape”/>

 <s:ArrayList id=”arrList”>

 <vo:MediaItemVO id=”mediaItem1”
 title=”Sintel”
 description=”The search for a baby dragon.”
 url=”sintel_trailer.flv”
 duration=”0:52”/>

 <vo:MediaItemVO id=”mediaItem2”
 title=”Big Buck Bunny”
 description=”Meet three bullying rodents.”
 url=”big_buck_bunny_trailer.flv”
 duration=”0:33”/>

 <vo:MediaItemVO id=”mediaItem3”
 title=”Elephants Dream”
 description=”Emo is introduced to the machine.”
 url=”elephants_dream.flv”
 duration=”1:15”/>

 </s:ArrayList>

</fx:Declarations>

 9. Under the closing <fx:Declarations> tag, add a <s:Group> container, setting its width
property to 100%. For the container, add two <s:layout> defi nitions, <s:layout.portrait> and
<s:layout.landscape>, adding the <s:VerticalLayout> declaration to the portrait state
and a <s:HorizontalLayout> declaration for the landscape layout. Set the gap, paddingBottom,
paddingLeft, paddingRight, and paddingTop properties to 0 for both states (Listing 9-7).

CH009.indd 305CH009.indd 305 09/09/11 9:55 AM09/09/11 9:55 AM

306 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

LISTING 9-7: Defi ning the layout properties for the <s:Group> container for portrait and

landscape states in MediaPlayerAppHome.mxml

</fx:Declarations>

<s:Group width=”100%”>

 <s:layout.portrait>
 <s:VerticalLayout gap=”0”
 paddingBottom=”0”
 paddingLeft=”0”
 paddingRight=”0”
 paddingTop=”0”/>
 </s:layout.portrait>

 <s:layout.landscape>
 <s:HorizontalLayout gap=”0”
 paddingBottom=”0”
 paddingLeft=”0”
 paddingRight=”0”
 paddingTop=”0”/>
 </s:layout.landscape>

</s:Group>

 10. Next add a <s:VideoPlayer> component to the <s:Group> container. Set the id property
on the component to mediaPlayer. Then set the autoPlay property to false and the
autoDisplayFirstFrame and autoRewind properties to true. Also set the fontSize to 16 and
fontWeight to normal. Set the scaleMode property to letterbox and the interactionMode to
touch. Lastly set the source property of the video to use the basePath property and the fi rst
video in arrList, via the mediaItem1.url property (Listing 9-8).

LISTING 9-8: Adding the <s:VideoPlayer> to the <s:Group> container

in MediaPlayerAppHome.mxml

</fx:Declarations>

<s:Group width=”100%”>

 <s:layout.portrait>
 <s:VerticalLayout gap=”0”
 paddingBottom=”0”
 paddingLeft=”0”
 paddingRight=”0”
 paddingTop=”0”/>
 </s:layout.portrait>

 <s:layout.landscape>
 <s:HorizontalLayout gap=”0”
 paddingBottom=”0”

CH009.indd 306CH009.indd 306 09/09/11 9:55 AM09/09/11 9:55 AM

Using the Flex OSMF Wrapper ❘ 307

 paddingLeft=”0”
 paddingRight=”0”
 paddingTop=”0”/>
 </s:layout.landscape>

 <s:VideoPlayer id=”mediaPlayer”
 autoDisplayFirstFrame=”true”
 autoPlay=”false”
 autoRewind=”true”
 fontSize=”16”
 fontWeight=”normal”
 interactionMode=”touch”
 scaleMode=”letterbox”
 source=”{basePath}{mediaItem1.url}”
 volume=”5”/>

</s:Group>

 11. After the <s:VideoPlayer> component, add a <s:List> component, setting the id
property to mediaPlaylist. Assign the MediaItemRenderer to the itemRenderer property.
Then set the dataProvider property to the ArrayList object, arrList. Set both the width
and height properties to 100%. Then fi nally, set the click property on the <s:List>
component to a new event handler called onClick(). You’ll take a look at that function
shortly (Listing 9-9).

LISTING 9-9: Adding the <s:List> to the <s:Group> container in MediaPlayerAppHome.mxml

<s:VideoPlayer id=”mediaPlayer”
 autoDisplayFirstFrame=”true”
 autoPlay=”false”
 autoRewind=”true”
 fontSize=”16”
 fontWeight=”normal”
 interactionMode=”touch”
 scaleMode=”letterbox”
 source=”{basePath}{mediaItem1.url}”
 volume=”5”/>

<s:List id=”mediaPlaylist”
 itemRenderer=”views.renderers.MediaItemRenderer”
 width=”100%”
 height.landscape=”100%”
 dataProvider=”{arrList}”
 click=”onClick(event)”/>

 12. In the <fx:Script> block, add a protected function called onClick() with a single parameter
e, an Event object. In the function, use the selectedIndex property on the <s:List>
component mediaPlaylist to retrieve a MediaItemVO object. Use the url property on the
MediaItemVO object to build a full path to a video, combined with the basePath. Assign this
to the mediaPlayer.source (Listing 9-10).

CH009.indd 307CH009.indd 307 09/09/11 9:55 AM09/09/11 9:55 AM

308 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

LISTING 9-10: Defi ning the onClick() method in MediaPlayerAppHome.mxml

[Bindable]
private var basePath:String = “http://localhost/video/”;

protected function onClick(e:Event):void
{
 var mediaItem:MediaItemVO;
 mediaItem = arrList.source[mediaPlaylist.selectedIndex];

 mediaPlayer.source = basePath + mediaItem.url;
}

 13. Above the onClick() method, add a protected function called onComplete() with a single
parameter e, a TimeEvent object, which should be imported above the private basePath
variable. In onComplete(), use the selected index on the <s:List> component to determine
which item to play once the current item has completed (Listing 9-11).

LISTING 9-11: Defi ning the onComplete() method in MediaPlayerAppHome.mxml

import org.osmf.events.TimeEvent;

[Bindable]
private var basePath:String = “http://localhost/videos/”;

protected function onComplete(e:TimeEvent):void
{
 var index:int = mediaPlaylist.selectedIndex;
 index++;

 if(index < arrList.source.length)
 {
 mediaPlaylist.selectedIndex = index;

 mediaPlayer.source = basePath + arrList.source[index].url;

 mediaPlayer.play();
 }
}

protected function onClick(e:Event):void
{
 var mediaItem:MediaItemVO;
 mediaItem = arrList[mediaPlaylist.selectedIndex];

 mediaPlayer.source = basePath + mediaItem.url;
}

 14. Update the <s:VideoPlayer> component so that it references the onComplete() event
handler (Listing 9-12).

CH009.indd 308CH009.indd 308 09/09/11 9:55 AM09/09/11 9:55 AM

Using the Flex OSMF Wrapper ❘ 309

LISTING 9-12: Assigning the complete method in MediaPlayerAppHome.mxml

<s:VideoPlayer id=”mediaPlayer”
 complete=”onComplete(event)”
 autoDisplayFirstFrame=”true”
 autoPlay=”false”
 autoRewind=”true”
 fontSize=”16”
 fontWeight=”normal”
 interactionMode=”touch”
 scaleMode=”letterbox”
 source=”{basePath}{mediaItem1.url}”
 volume=”5”/>

 15. Under the basePath declaration, add four new protected functions: onCreationComplete(),
onAddedToStage(), onOrientationChange(), and updateLayout(). Assign the
onCreationComplete() method to the view’s creationComplete attribute (Listing 9-13).

LISTING 9-13: Declaring the onCreationComplete(), onAddedToStage(), onOrientationChange()

and updateLayout() methods in MediaPlayerAppHome.mxml

<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:vo=”model.vo.*”
 title=”Media Player App”
 creationComplete=”onCreationComplete()”>

 <fx:Script>
 <![CDATA[

 import org.osmf.events.TimeEvent;

 [Bindable]
 private var basePath:String = “http://localhost/videos/”;

 protected function onCreationComplete():void {}

 protected function onAddedToStage():void {}

 protected function onOrientationChange():void {}

 protected function updateLayout():void {}

 16. In updateLayout(), defi ne two integers for width and height: w and h, respectively.
Add a switch statement that uses the currentState property of the view to distinguish
between the portrait and landscape layouts. When the view is in a portrait layout, set the
actionBarVisible property of the view to true, and then use the systemManager.screen.width
property to assign the full width of the device’s screen to the w variable. Use the 4:3 screen
ratio and width to calculate the height for variable h. For the landscape layout, set the
actionBarVisible property to false, and then use the systemManager.screen.width and

CH009.indd 309CH009.indd 309 09/09/11 9:55 AM09/09/11 9:55 AM

310 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

systemManager.screen.height properties to assign values to w and h, respectively. Following
the switch statement, assign the w and h variables to the width and height properties,
respectively, on mediaPlayer (Listing 9-14).

LISTING 9-14: Defi ning the width and height of media player via the updateLayout() method in

MediaPlayerAppHome.mxml

protected function updateLayout():void
{
 var w:int;
 var h:int;

 switch(currentState)
 {
 case “portrait”:
 {
 actionBarVisible = true;
 w = systemManager.screen.width;
 h = w / (4/3);
 }
 break;
 case “landscape”:
 {
 actionBarVisible = false;
 w = systemManager.screen.width;
 h = systemManager.screen.height;
 }
 break;
 }

 mediaPlayer.width = w;
 mediaPlayer.height = h;
}

 17. In onCreationComplete(), register the Event.ADDED_TO_STAGE event property with the view,
assigning the onAddedToStage() function as the event handler and at the same time defi ning
a single Event object parameter for the method, e. Then in onAddedToStage(), register the
StageOrientationEvent.ORIENTATION_CHANGE event with the stage via the e.target.stage
property, assigning onOrientationChange() as the event handler. For onOrientationChange(),
add a single StageOrientationEvent object, e, as a parameter. Lastly, call the updateLayout()
method in both onOrientationChange() and onAddedToStage() (Listing 9-15).

LISTING 9-15: Completing the onCreationComplete(), onAddedToStage(), and

onOrientationChange() methods in MediaPlayerAppHome.mxml

protected function onCreationComplete():void
{
 this.addEventListener(Event.ADDED_TO_STAGE, onAddedToStage);
}

protected function onAddedToStage(e:Event):void

CH009.indd 310CH009.indd 310 09/09/11 9:55 AM09/09/11 9:55 AM

Using the Flex OSMF Wrapper ❘ 311

{
 e.target.stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,
 onOrientationChange);
 updateLayout();
}

protected function onOrientationChange(e:StageOrientationEvent):void
{
 updateLayout();
}

 18. Finally, update the MediaPlayerApp.mxml fi le to include styles for the application.
Replace the <fx:Declarations> with an <fx:Style> declaration. Inside the <fx:Style>
declaration, specify s as the spark namespace. Then defi ne three style declarations that
will be used in the application: one for the View component, one for the List component,
and one for the Video Player component. For the <s:View> components, defi ne the
backgroundColor property as #3F3F3F, and the color property as #393839. Then for the
<s:List> component, defi ne the alternatingItemColors property as #3F3F3F, #3F3F3F,
the contentBackgroundColor property as #3F3F3F, the selectionColor property as
#B2B2B2, the fontSize property as 18, and the color property as #393839. Then for the
<s:VideoPlayer> component, set the chromeColor property to #3F3F3F and the color
property to #FFFFFF (Listing 9-16).

LISTING 9-16: Setting the styles via the <fx:Style> declaration in MediaPlayerApp.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 firstView=”views.MediaPlayerAppHome”>
 <fx:Style>

 @namespace s “library://ns.adobe.com/flex/spark”;

 s|View
 {
 backgroundColor:#3F3F3F;
 color:#393839;
 }

 s|List
 {
 fontSize:18;
 color:#FFFFFF;
 alternatingItemColors:#3F3F3F, #3F3F3F;
 selectionColor:#B2B2B2;
 contentBackgroundColor:#3F3F3F;
 }

 s|VideoPlayer

continues

CH009.indd 311CH009.indd 311 09/09/11 9:55 AM09/09/11 9:55 AM

312 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

LISTING 9-16 (continued)

 {
 chromeColor:#3F3F3F;
 color:#FFFFFF;
 }

 </fx:Style>

</s:ViewNavigatorApplication>

 19. Now run the example using a desktop run confi guration.
When the Media Player application launches in the
portrait view, underneath the Media Player App title
for the app you’ll see the video player and playlist
component populated with the media items.

You can now click Play on the video player’s controls to start
video playback (Figure 9-2).

When you rotate the device to landscape view, you’ll see that the
player occupies the full screen and the playlist is no longer visible
on screen (Figure 9-3).

FIGURE 9-2: Playing the fi rst

item in the Media Player App

FIGURE 9-3: Rotating the device to change the layout of the components in Media Player App

CH009.indd 312CH009.indd 312 09/09/11 9:55 AM09/09/11 9:55 AM

Summary ❘ 313

When you rotate the device back to the portrait view, clicking a
new item in the list will change the current video being played
(Figure 9-4).

SUMMARY

Over the course of this chapter you have explored the
key concepts of OSMF, learning from the core how to create
resources and media elements, how to handle media trait
events, and how to distinguish between different media trait
characteristics.

You also took a look at creating a rather simple media player
application that used the <s:VideoPlayer> component.

In the next chapter you take a look at using some of the device
features available to AIR mobile applications. You’ll take a look at
how to utilize the device’s camera, microphone, web browser, and
geo-location instruments.

EXERCISES

 1. Add a Settings view to the Media Player application that allows the user to change some of the

default settings on the <s:VideoPlayer> component — for example, auto play and continuous play.

 2. Include a still image of each video in the playlist.

 3. Update the playlist to include audio and image items.

 4. Package the Media Player application, selecting one of the target platforms and including

associated video items.

FIGURE 9-4: Playing the second

item in the Media Player App

CH009.indd 313CH009.indd 313 09/09/11 9:55 AM09/09/11 9:55 AM

314 ❘ CHAPTER 9 WORKING WITH AUDIO AND VIDEO

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Creating media resources Use URLResource to create a media resource to a media item that

uses an HTTP location reference.

Creating media

elements

Reference the MediaElement class to create a generic media object.

Reference the AudioElement class to create an element specifi cally

for audio playback.

Reference the VideoElement class to create an element specifi cally

for video playback.

Using media traits Traits represent the characteristics of a media object.

The AudioTrait represents audible characteristics of media and

exposes properties like AudioTrait.volume.

The PlayTrait represents playable characteristics of media and

exposes properties like PlayTrait.

The BufferTrait represents buff erable characteristics of media

and exposes properties like the BufferTrait.

The TimeTrait represents temporal characteristics of media and

exposes properties like the TimeTrait.

Handling media

trait events

Reference the AudioEvent to handle events dispatched from an

AudioTrait — for example, AudioEvent.VOLUME_CHANGE.

Reference the PlayEvent to handle events dispatched from a

media objects PlayTrait — for example, PlayEvent.PAUSED.

Reference the TimeEvent to handle events dispatched from a

media objects TimeTrait — for example, TimeEvent.COMPLETE.

Using the MediaPlayer

class

Assign a MediaElement object to the MediaPlayer.media property

to reference media.

Use the MediaPlayer.play() method to start playback.

Using the MediaPlayerSprite

class

Assign a URLResource object to the MediaPlayerSprite.resource

property, or a MediaElement object to the MediaPlayerSprite

.media property to reference media.

Using the Video Player

component

Use the <s:VideoPlayer> Flex component.

Use a URL path to assign media to the component using the

VideoPlayer.source.

Controlling media using

the Video Player

component

Use <s:VideoPlayer>.play() to play content.

Use <s:VideoPlayer>.pause() to pause content.

Use <s:VideoPlayer>.stop() to stop content.

CH009.indd 314CH009.indd 314 09/09/11 9:55 AM09/09/11 9:55 AM

Utilizing Device Features

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Launching the device’s native camera application

 ➤ Using an image taken with the camera

 ➤ Capturing audio with the device’s microphone

 ➤ Playing audio captured from the microphone

 ➤ Displaying dynamic HTML content and web pages

 ➤ Utilizing the device’s geolocation sensor

In this chapter you’ll take an in-depth look at some of the cool features of Adobe AIR that
allow you to use the functionality that is integral to most mobile devices.

First you’ll take a look at the CameraUI class, examining how you can take photos using the
device’s camera and include the images in your AIR mobile application. You’ll explore the
Microphone API, taking a close look at how you can record and play back audio streams using
the device’s microphone. You then turn your attention to integrating a device’s web control and
presenting web pages into your mobile applications using the StageWebView class. Finally, you
take a look at using the device’s Geolocation sensor to retrieve and incorporate GPS location data.

For each of the four sections, you’ll build an example demonstrating the capabilities of the
core feature.

USING THE DEVICE’S CAMERA

One of the many features of all mobile devices is the camera, and unless you’ve been living in
a cave for the past decade you can use mobile devices to take still photos and video. Although
AIR for desktop has been able to use the camera for a while, the AIR 2.5 release gave
developers their fi rst opportunity to create mobile applications incorporating the camera.

10

CH010.indd 315CH010.indd 315 09/09/11 9:54 AM09/09/11 9:54 AM

316 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

In this section you’ll examine how to use the CameraUI class to utilize photos taken with the
native camera in Flash mobile applications.

Using the CameraUI Class

Using the flash.media.CameraUI class, you can use the device camera to load an image into an
application. As you can imagine this provides many possibilities for mobile applications and a user’s
personal imagery.

For AS3-based mobile projects you will need to import the CameraUI class found in the flash
.media package:

import flash.media.CameraUI;

This class has only two API features that can be used to gain access to the native camera app on the
host device:

 ➤ CameraUI.isSupported: To determine whether the native camera application can be
launched

 ➤ CameraUI.launch(): To launch the camera app

NOTE While native camera functionality via the CameraUI class is supported
on Apple iOS and BlackBerry Tablet OS, not all devices running Google Android
support the API. You should consider implementing non-camera activity for
those devices.

In the following section you’ll take a closer look at the CameraUI class and build an example.

Creating a Camera App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defi ning the Flex Mobile Project Settings

The following lists a few of the familiar settings you will need to ensure are defi ned for the project:

 ➤ Name: Set the Name for the project to CameraApp.

 ➤ Application ID: Set the Application ID to com.wrox.ch10.CameraApp.

 ➤ Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to CameraAppHome.

Targeting Mobile Devices on Diff erent Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple
iOS, Google Android, and BlackBerry Tablet OS. For Google Android and BlackBerry Tablet OS, a
number of permissions need to be set to allow the application to use the device’s camera. For Apple
iOS, no permissions need to be defi ned specifi cally.

CH010.indd 316CH010.indd 316 09/09/11 9:54 AM09/09/11 9:54 AM

Using the Device’s Camera ❘ 317

Defi ning Google Android Permissions

In the AIR application descriptor fi le generated with the project in Flash Builder, ensure the
android.permission.CAMERA permission is included as a manifest addition for the Android OS, as
shown in the following code snippet:

<android>
 <manifestAdditions>
 <![CDATA[
 <manifest>
 <uses-permission android:name=”android.permission.CAMERA”/>
 </manifest>
]]>
 </manifestAdditions>
</android>

Defi ning BlackBerry Tablet OS Permissions

For BlackBerry Tablet OS applications, you need to specify both the use_camera and access_
shared permissions, to allow the application to launch the native camera app and to allow the
application to use the image fi le written to the device, respectively. Ensure these values are set in the
blackberry-tablet.xml fi le, as shown in the following code snippet:

<?xml version=”1.0” encoding=”UTF-8”?>
<qnx>
 <author>jganderson</author>
 <authorId>gYAAgFbt6rihu</authorId>
 <buildId>101</buildId>
 <platformVersion>1.0.6.2390</platformVersion>
 <permission>use_camera</permission>
 <permission>access_shared</permission>
</qnx>

Defi ning Apple iOS Settings

Because the application will need to use the device’s camera, you can prevent the application
from being installed on an iOS device that doesn’t have a camera by specifying the
UIRequiredDeviceCapabilities key in the AIR application descriptor fi le via the <InfoAdditions>,
and setting the value to an array containing the still-camera string, as shown in the following snippet:

<iPhone>
 <InfoAdditions>
 <![CDATA[
 <key>UIDeviceFamily</key>
 <array>
 <string>1</string>
 <string>1</string>
 </array>
 <key>UIStatusBarStyle</key>
 <string>UIStatusBarStyleBlackTranslucent</string>
 <key>UIRequiredDeviceCapabilities</key>
 <array>
 <string>still-camera</string>

CH010.indd 317CH010.indd 317 09/09/11 9:54 AM09/09/11 9:54 AM

318 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

 </array>
]]>
 </InfoAdditions>
</iPhone>

Building the Camera App

In Listing 10-1 you will see the early stages of the CameraAppHome.mxml fi le.

LISTING 10-1: The initial starting point for CameraAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”onCreationComplete()”
 title=”Camera App”>

 <fx:Script>
 <![CDATA[

 private function onCreationComplete():void {}

 private function launch():void {}

]]>
 </fx:Script>

 <s:layout>

 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingBottom=”20”
 paddingTop=”20”/>
 </s:layout>

</s:View>

 1. Under the <s:layout> block, add a <s:VGroup> layout container that contains three
components: a <s:Label>, a <s:Image>, and a <s:Button>. Set the text property on the
<s:Label> component to Take a picture and view it below..., set the width to
100%, and the height to 25. For the <s:Image>, set the id property to capturedImage,
and the backgroundColor to #000000. Finally, set the label property on the <s:Button>
component to Launch Camera, set the click event property to the launch() method, and
then the width to 100% and the height to 75 (Listing 10-2).

LISTING 10-2: Adding the <s:Label>, <s:Image>, and <s:Button> components in

CameraAppHome.mxml

<s:layout>
 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”

CH010.indd 318CH010.indd 318 09/09/11 9:54 AM09/09/11 9:54 AM

Using the Device’s Camera ❘ 319

 paddingBottom=”20”
 paddingTop=”20”/>
</s:layout>

<s:VGroup horizontalAlign=”center”
 width=”100%”>

 <s:Label text=”Take a picture and view it below...”
 width=”100%”
 height=”25”/>

 <s:Image id=”capturedImage”
 backgroundColor=”#000000”/>
 <s:Button click=”launch()”
 label=”Launch Camera”
 width=”100%”
 height=”75”/>

</s:VGroup>

 2. Next add a new private variable cameraUI, which is a CameraUI object. In
onCreationComplete() check that the CameraUI is supported before instantiating a new
CameraUI object. Then assign the MediaEvent.COMPLETE event on the CameraUI object to a
new event handler called onComplete() (Listing 10-3).

LISTING 10-3: Declaring the CameraUI object and assigning the MediaEvent.COMPLETE event

in CameraAppHome.mxml

private var cameraUI:CameraUI;

private function onCreationComplete():void
{
 if(CameraUI.isSupported)
 {
 cameraUI = new CameraUI();

 cameraUI.addEventListener(MediaEvent.COMPLETE, onComplete);
 }
}

private function onComplete(e:MediaEvent):void {}

 3. In launch(), check that the CameraUI is supported before calling the CameraUI.launch()
method, supplying MediaType.IMAGE as a parameter (Listing 10-4).

LISTING 10-4: Launching the native camera application via the launch() function in

CameraAppHome.mxml

private function onCreationComplete():void
{
 if(CameraUI.isSupported)

continues

CH010.indd 319CH010.indd 319 09/09/11 9:54 AM09/09/11 9:54 AM

320 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

LISTING 10-4 (continued)

 {
 cameraUI = new CameraUI();

 cameraUI.addEventListener(MediaEvent.COMPLETE, onComplete);
 }
}

private function launch():void
{
 if(CameraUI.isSupported)
 {
 cameraUI.launch(MediaType.IMAGE);
 }
}

 4. In onComplete() use the MediaEvent object e to display the image captured in the
application. Cast the e.data object as a MediaPromise to mediaPromise, then assign the
mediaPromise.file.url property to the image component capturedImage (Listing 10-5).

LISTING 10-5: Using the MediaPromise object on the MediaEvent to set the source of image

component in CameraAppHome.mxml

private function onComplete(e:MediaEvent):void
{
 var mediaPromise:MediaPromise = e.data as MediaPromise;

 capturedImage.source = mediaPromise.file.url;
}

 5. Under onComplete() create a new private method called onImageLoadComplete(), to
handle when an image has loaded. Defi ne an Event object e as a parameter for the method,
casting the e.currentTarget property as an Image object to a new variable img. Set the
width property on the object to the full width of the view, subtracting 10 pixels. Then set
the height of the image object to half the view, subtracting 10 pixels thereafter also (Listing
10-6). This will allow you to manipulate an Image object representing the captured image
taken with the native camera, and then resize it in the application.

LISTING 10-6: Setting the width and height of the captured image via the

onImageLoadComplete() method in CameraAppHome.mxml

private function onComplete(e:MediaEvent):void
{
 var mediaPromise:MediaPromise = e.data as MediaPromise;

 capturedImage.source = mediaPromise.file.url;
}

private function onImageLoadComplete(e:Event):void
{

CH010.indd 320CH010.indd 320 09/09/11 9:54 AM09/09/11 9:54 AM

Using the Device’s Camera ❘ 321

 var img:Image = e.currentTarget as Image;
 img.width = this.width – 10;
 img.height = this.height/2 – 10;
}

 6. Defi ne the complete attribute in the <s:Image> component. Assign the
onImageLoadComplete() method, passing the default event object as the argument
(Listing 10-7).

LISTING 10-7: Defi ning the complete event attribute of the <s:Image> in

CameraAppHome.mxml

<s:Image id=”capturedImage”
 backgroundColor=”#000000”
 complete=”onImageLoadComplete(event)”/>

 7. Update the CameraApp.mxml fi le to include styles for the application. Replace the
<fx:Declarations> tag with an <fx:Style> declaration. Inside <fx:Style>, specify s as
the spark namespace. For the <s:View> components, defi ne the backgroundColor property
as #3F3F3F, and the color property as #393839. Then for the <s:Label> component,
defi ne the fontSize property as 22 (Listing 10-8).

LISTING 10-8: Setting the styles via the <fx:Style> declaration in CameraAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 firstView=”views.CameraAppHome”>
 <fx:Style>

 @namespace s “library://ns.adobe.com/flex/spark”;

 s|View
 {
 backgroundColor:#3F3F3F;
 color:#393839;
 }

 s|Label
 {
 fontSize:18;
 }

 </fx:Style>

</s:ViewNavigatorApplication>

 8. Run the application using a device profi le. You should see the screen shown in Figure 10-1.

 9. Click the Launch Camera button, and this should run the device’s native camera
application, as shown in Figure 10-2.

CH010.indd 321CH010.indd 321 09/09/11 9:54 AM09/09/11 9:54 AM

322 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

FIGURE 10-1: The Camera App

project running on Android 2.3.4

FIGURE 10-2: The native camera

running on Android 2.3.4

FIGURE 10-3: The native

camera presenting Cancel,

Retake, and OK options,

running on Android 2.3.4

FIGURE 10-4: The image taken

with the native camera app

displayed in the Camera App

project running on Android 2.3.4

 10. Take a picture. Click the OK button to confi rm you’re happy with the image (Figure 10-3).

This should return you the camera view, with the image loaded (Figure 10-4).

CH010.indd 322CH010.indd 322 09/09/11 9:54 AM09/09/11 9:54 AM

Capturing Sound Using the Device’s Microphone ❘ 323

CAPTURING SOUND USING THE DEVICE’S MICROPHONE

The microphone is another core feature of the mobile device. A mobile’s sound capture device is
commonly used in memo applications, which allow users to record a voice message and play it back later.

In this section you’ll explore how to use the Microphone class to record audio streams, using the
device’s microphone.

Using the Microphone Class

For AS3-based mobile projects, you need to import the Microphone class, found in the
flash.media package:

import flash.media.Microphone;

In total, 11 properties are associated with Microphone:

 ➤ Microphone.activityLevel: Returns a number representing the amount of sound the
microphone is detecting

 ➤ Microphone.gain: A number representing the amount by which the microphone should
multiply the signal before transmitting it

 ➤ Microphone.index: Returns the index of the microphone, represented by the array returned
by Microphone.names

 ➤ Microphone.muted: Returns a Boolean indicating whether the user has denied access to the
microphone

 ➤ Microphone.name: Returns a string representing the name of the current sound capture
device

 ➤ Microphone.names: A static property that returns an array of strings containing the names
of all the available sound capture devices

 ➤ Microphone.rate: An integer representing the rate at which the microphone captures sound,
in kHz

 ➤ Microphone.silenceLevel: Returns a number representing the amount of sound required
to activate the microphone and dispatch the activity event

 ➤ Microphone.silenceTimeout: Returns an integer representing the number of milliseconds
between the time the microphone stops detecting sound and the time the activity event is
dispatched

 ➤ Microphone.soundTransform: A SoundTransform object that controls the sound of this
microphone object when it is in loopback mode

 ➤ Microphone.useEchoSuppression: Returns a Boolean indicating whether echo suppression
is enabled

CH010.indd 323CH010.indd 323 09/09/11 9:54 AM09/09/11 9:54 AM

324 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

In addition to these properties, four methods are associated with the Microphone class:

 ➤ Microphone.getMicrophone(index:int = -1): To return a reference to a Microphone
object for capturing audio

 ➤ Microphone.setLoopBack(state:Boolean = true): To route the audio captured by the
microphone to local speakers

 ➤ Microphone.setSilenceLevel(silenceLevel:Number, timeout:int = -1): To set
the minimum input level that should be considered for sound and the amount of silent time
signifying that silence has actually begun

 ➤ Microphone.setUseEchoSuppression(useEchoSuppression:Boolean): To specify
whether to use the echo suppression feature of the audio codec

You can use the Microphone features only as long as sound capture capabilities exist on the
mobile device. Using the Microphone.names property you get a list of all the available sound capture
devices that are supported by the Microphone API. You can then use the array to determine which
microphone to use to record from by calling Microphone.getMicrophone().

In the following snippet, the Microphone object is determined through determining the number of
microphones available, and it then gets the fi rst microphone from a list using getMicrophone(0):

if(Microphone.names.length > 0)
{
 var microphone:Microphone = Microphone.getMicrophone(0);
}

Here you see that when there is at least one microphone returned, the fi rst one in the list, 0, is passed
to getMicrophone(), representing the Microphone.index property that can also be retrieved from
a Microphone instance.

Using the SampleDataEvent Class

For AS3-based mobile projects you need to import the SampleDataEvent class, found in the
flash.events package:

import flash.events.SampleDataEvent;

The SampleDataEvent is dispatched when a Microphone object has new audio data to provide. It
is also dispatched when a Sound object makes a request for new audio data, when the Sound object
hasn’t loaded an MP3 fi le. As you will see later, using a combination of both Sound and Microphone
objects, you can play back recorded audio using SampleDataEvent objects.

The SampleDataEvent class has two public properties:

 ➤ SampleDataEvent.data: A ByteArray object representing the data in an audio stream

 ➤ SampleDataEvent.position: A number representing the position of the data in an audio
stream

CH010.indd 324CH010.indd 324 09/09/11 9:54 AM09/09/11 9:54 AM

Capturing Sound Using the Device’s Microphone ❘ 325

The event has one event type, a public constant called SampleDataEvent.SAMPLE_DATA.

Capturing the Audio from a Microphone

To capture audio from the microphone on the device, you need to add an event listener for the
SampleDataEvent.SAMPLE_DATA event type and assign it an event handler, as shown in the
following snippet:

if(Microphone.names.length > 0)
{
 var microphone:Microphone = Microphone.getMicrophone(0);
 microphone.addEventListener(SampleDataEvent.SAMPLE_DATA, onSample);
}

Once an application is running and after the microphone instance has been initialized, each time
a user speaks into the microphone the onSample() event handler defi ned will be invoked. The
SampleDataEvent object returned in onSample() contains the audio stream recorded on the data
property. To play back an audio stream, this data needs to be written to a flash.utils.ByteArray
object. In the following snippet, you see a new ByteArray instance being created, and the data
property on the SampleDataEvent object being used to transfer the byte array to the new instance.
Two methods of the ByteArray object, ByteArray.readFloat() and ByteArray.writeFloat(),
are used to read data and write it, respectively.

private var soundByteArray:ByteArray;

private function onSample(e:SampleDataEvent):void
{
 soundByteArray = new ByteArray();

 while(e.data.bytesAvailable)
 {
 var audioSample:Number = e.data.readFloat();
 soundByteArray.writeFloat(audioSample);
 }
}

Playing the Audio from a ByteArray

Once you have recorded audio stream data in a ByteArray object, you can create a new Sound
object to play back that data:

private var soundObj:Sound = new Sound();

As with the Microphone object, you also need to listen for the SampleDataEvent.SAMPLE_DATA
event type as an event for the Sound object. In the following snippet the SAMPLE_DATA event handler
on the Sound object instance soundObj is assigned the function playSound(). Following the event
listener assignment, the play() method on soundObj is called, as shown in the following snippet:

soundObj.addEventListener(SampleDataEvent.SAMPLE_DATA, playSound);
soundObj.play();

CH010.indd 325CH010.indd 325 09/09/11 9:54 AM09/09/11 9:54 AM

326 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

In playSound() the aim is to effectively broadcast the sample audio data to the Sound object, which
is waiting to receive an audio stream after its play() method has been called. The following snippet
shows how this is done:

private function playSound(e:SampleDataEvent):void
{
 if (!soundByteArray.bytesAvailable > 0)
 {
 return;

 } else {

 for (var i:int=0; i < 8192; i++)
 {
 var audioSample:Number = 0;

 if (soundByteArray.bytesAvailable > 0)
 {
 audioSample = soundByteArray.readFloat();
 }

 e.data.writeFloat(audioSample);
 e.data.writeFloat(audioSample);
 }
 }
}

In this snippet, notice that the BytesArray.bytesAvailable property is used to determine whether
there is actually an audio stream of data. There is a for loop used to check that there are bytes
available on soundByteArray, and if bytes are available, that data is read and then written to the
SampleDataEvent object’s data property.

It is recommended that between 2,048 and 8,192 data samples be provided for better playback
quality. The writeFloat() method is called twice so that the audio data sample hits both the left
and right audio channels.

In the next section you take a closer look at the features of the Microphone API and build a working
mobile example.

Creating a Microphone App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defi ning the Flex Mobile Project Settings

The following lists a few of the familiar settings you will need to ensure are defi ned for the project:

 ➤ Name: Set the Name for the project to MicrophoneApp.

 ➤ Application ID: Set the Application ID to com.wrox.ch10.MicrophoneApp.

 ➤ Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to MicrophoneAppHome.

CH010.indd 326CH010.indd 326 09/09/11 9:54 AM09/09/11 9:54 AM

Capturing Sound Using the Device’s Microphone ❘ 327

Targeting Devices on Diff erent Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple
iOS, Google Android, and BlackBerry Tablet OS. For Google Android and BlackBerry Tablet OS,
a number of permissions need to be set to allow the application to record audio. For Apple iOS, no
permissions need to be defi ned specifi cally.

Defi ning Google Android Permissions

In the AIR application descriptor fi le generated with the project in Flash Builder, ensure the
android.permission.RECORD_AUDIO permission is included as a manifest addition for the Android
OS, as shown in the following code snippet:

<android>
 <manifestAdditions>
 <![CDATA[
 <manifest>
 <uses-permission android:name=”android.permission.RECORD_AUDIO”/>
 </manifest>
]]>
 </manifestAdditions>
</android>

Defi ning BlackBerry Tablet OS Permissions

For BlackBerry Tablet OS applications, you need to specify both the record_audio and play_audio
permissions to allow the application to record and play audio, respectively. Ensure these values are
set in the blackberry-tablet.xml fi le, as shown in the following code snippet:

<?xml version=”1.0” encoding=”UTF-8”?>
<qnx>
 <author>jganderson</author>
 <authorId>gYAAgFbt6rihu</authorId>
 <buildId>101</buildId>
 <platformVersion>1.0.6.2390</platformVersion>
 <permission>record_audio</permission>
 <permission>play_audio</permission>
</qnx>

Defi ning Apple iOS Settings

Because the application will need to use the device’s microphone, you can prevent the application
from being installed on a device that doesn’t have audio recording capabilities by specifying the
UIRequiredDeviceCapabilities key in the AIR application descriptor fi le via the <InfoAdditions>,
and setting the value to an array containing the microphone string, as shown in the following snippet:

<iPhone>
 <InfoAdditions>
 <![CDATA[
 <key>UIDeviceFamily</key>
 <array>
 <string>1</string>

CH010.indd 327CH010.indd 327 09/09/11 9:54 AM09/09/11 9:54 AM

328 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

 <string>1</string>
 </array>
 <key>UIStatusBarStyle</key>
 <string>UIStatusBarStyleBlackTranslucent</string>
 <key>UIRequiredDeviceCapabilities</key>
 <array>
 <string>microphone</string>
 </array>
]]>
 </InfoAdditions>
</iPhone>

Building the Microphone App

In Listing 10-9 you will see the early stages of the MicrophoneAppHome.mxml fi le. In addition to the
onCreationComplete() function, you’ll see three accompanying functions: startRecording(),
stopRecording(), and playRecording().

LISTING 10-9: The initial starting point for MicrophoneAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”onCreationComplete()”
 title=”Microphone App”>

 <fx:Script>
 <![CDATA[

 private function onCreationComplete():void {}

 private function startRecording():void {}

 private function stopRecording():void {}

 private function playRecording():void {}

]]>
 </fx:Script>

 <s:layout>

 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingBottom=”20”
 paddingTop=”20”/>

 </s:layout>

</s:View>

 1. Under the <s:layout> declaration add each of the components for the view. In a
<s:VGroup> container add a <s:Label>, a <s:ComboBox>, and <s:HGroup> containing

CH010.indd 328CH010.indd 328 09/09/11 9:54 AM09/09/11 9:54 AM

Capturing Sound Using the Device’s Microphone ❘ 329

three <s:Button> components. For the <s:Label> set the id property to description
and height to 30. For the <s:ComboBox> set the id to microphones, textAlign
to center, focusEnabled to false, the width to 397, and height to 55. The three
buttons in the <s:HGroup> should be labeled Record, Stop, and Playback, in that order,
with their respective id properties set to startBtn, stopBtn, and playBtn. Assign the
startRecording() method to the click property on startBtn and the chromeColor to
#51B22F, assign the stopRecording() method to the click property on stopButton, the
chromeColor to #CB0909, and assign the playRecording() method to the playBtn. For
both stopBtn and playBtn set the enabled states to false (Listing 10-10).

LISTING 10-10: Adding the <s:Label>, <s:ComboBox>, and <s:Button> components to the

view in MicrophoneAppHome.mxml

<s:layout>

 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingBottom=”20”
 paddingTop=”20”/>

</s:layout>

<s:VGroup width=”437”
 gap=”20”
 horizontalAlign=”center”>

 <s:Label id=”description”
 text=”Select microphone then start recording...”
 height=”30”/>

 <s:ComboBox id=”soundCaptureDevices”
 width=”397”
 height=”55”
 textAlign=”center”
 focusEnabled=”false”/>

 <s:HGroup width=”437”
 gap=”20”
 horizontalAlign=”center”>

 <s:Button id=”startBtn”
 label=”Record”
 chromeColor=”#51B22F”
 click=”startRecording()”/>

 <s:Button id=”stopBtn”
 label=”Stop”
 chromeColor=”#CB0909”
 click=”stopRecording()”

continues

CH010.indd 329CH010.indd 329 09/09/11 9:54 AM09/09/11 9:54 AM

330 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

LISTING 10-10 (continued)

 enabled=”false”/>

 <s:Button id=”playBtn”
 label=”Playback”
 click=”playRecording()”
 enabled=”false”/>

 </s:HGroup>

</s:VGroup>

 2. Above onCreationComplete() import the SampleDataEvent, Microphone, Sound,
ByteArray, and ArrayCollection classes into MicrophoneAppHome.mxml (Listing 10-11).

LISTING 10-11: Importing SampleDataEvent, Microphone, Sound, ByteArray, and

ArrayCollection classes into MicrophoneAppHome.mxml

<fx:Script>
 <![CDATA[

 import flash.events.SampleDataEvent;
 import flash.media.Microphone;
 import flash.media.Sound;
 import flash.utils.ByteArray;
 import mx.collections.ArrayCollection;

 private function onCreationComplete():void {}

 3. Next declare three private variables: microphone, soundByteArray, and soundObj
(Listing 10-12).

LISTING 10-12: Declaring the private variables microphone, soundByteArray, and

soundObj in MicrophoneAppHome.mxml

import flash.events.SampleDataEvent;
import flash.media.Microphone;
import flash.media.Sound;
import flash.utils.ByteArray;
import mx.collections.ArrayCollection;

private var microphone:Microphone;
private var soundByteArray:ByteArray;
private var soundObj:Sound;

private function onCreationComplete():void {}

 4. In onCreationComplete() retrieve the microphones available and assign them to the
dataProvider on the ComboBox component microphones. Then set the selectedIndex
property on microphones to 0 (Listing 10-13).

CH010.indd 330CH010.indd 330 09/09/11 9:54 AM09/09/11 9:54 AM

Capturing Sound Using the Device’s Microphone ❘ 331

LISTING 10-13: Assigning the microphones available on the device to the <s:ComboBox>

component in MicrophoneAppHome.mxml

private function onCreationComplete():void
{
 microphones.dataProvider = new ArrayCollection(Microphone.names);
 microphones.selectedIndex = 0;
}

 5. In startRecording(), set the enabled states for the three <s:Button> components.
For playBtn and startBtn, set the enabled property to false, and for stopBtn set
the enabled property to true. This ensures that the play and start buttons can’t be
initialized while a recording is in progress. Then instantiate the new ByteArray object,
soundByteArray, to allow for new sound data to be written (Listing 10-14).

LISTING 10-14: Setting the states for playBtn, startBtn, and stopBtn, and instantiating

soundByteArray in MicrophoneAppHome.mxml

private function startRecording():void
{
 playBtn.enabled = false;
 startBtn.enabled = false;
 stopBtn.enabled = true;

 soundByteArray = new ByteArray();
}

 6. Next assign the microphone selected in the <s:ComboBox> to the Microphone instance
microphone. Assign the SampleDataEvent.SAMPLE_DATA event type to a new event handler
called onSampleData(). Use setSilenceLevel() to set the silence level to 0, and the
associated timeout to 1000 milliseconds. (Listing 10-15). Also set the rate property to 44.

LISTING 10-15: Setting the microphone properties via the startRecording() method in

MicrophoneAppHome.mxml

private function startRecording():void
{
 playBtn.enabled = false;
 startBtn.enabled = false;
 stopBtn.enabled = true;

 soundByteArray = new ByteArray();

 var index:int = soundCaptureDevices.selectedIndex;
 microphone = Microphone.getMicrophone(index);
 microphone.addEventListener(SampleDataEvent.SAMPLE_DATA, onSampleData);
 microphone.rate = 44;
 microphone.setSilenceLevel(0, 1000);
}

private function onSampleData(e:SampleDataEvent):void {}

CH010.indd 331CH010.indd 331 09/09/11 9:54 AM09/09/11 9:54 AM

332 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

 7. In stopRecording(), also set the enabled states for the three <s:Button> components.
For playBtn and startBtn, set the enabled property to true, and for stopBtn set the
enabled property to false. This ensures that a new recording can be started once Stop has
been pressed. Then remove the SampleDataEvent.SAMPLE_DATA event from microphone to
prevent further data being written to soundByteArray through onSample() (Listing 10-16).

LISTING 10-16: Setting the microphone properties via the onCreationComplete() method in

MicrophoneAppHome.mxml

private function stopRecording():void
{
 playBtn.enabled = true;
 startBtn.enabled = true;
 stopBtn.enabled = false;

 microphone.removeEventListener(SampleDataEvent.SAMPLE_DATA, onSampleData);
}

 8. In onSample(), write the data returned in the SampleDataEvent object e to the ByteArray
object (Listing 10-17).

LISTING 10-17: Writing audio stream data to soundByteArray via onSampleData() in

MicrophoneAppHome.mxml

private function onSampleData(e:micData:SampleDataEvent):void
{
 soundByteArray.writeBytes(micData.data);
}

 9. Underneath playRecording(), add a private function called playSound(). In
playRecording() set the ByteArray object’s position property to 0, then instantiate the
Sound object, assigning the SampleDataEvent.SAMPLE_DATA event to playSound() and
calling the play() method (Listing 10-18).

LISTING 10-18: Instantiating the Sound object and initializing play via playRecording() in

MicrophoneAppHome.mxml

private function playRecording():void
{
 var trans:SoundTransform = new SoundTransform(1, -1);

 soundByteArray.position = 0;

 soundObj = new Sound();
 soundObj.addEventListener(SampleDataEvent.SAMPLE_DATA, playSound);
 soundObj.play(0, 1, trans);
}

private function playSound(e:SampleDataEvent):void {}

CH010.indd 332CH010.indd 332 09/09/11 9:54 AM09/09/11 9:54 AM

Capturing Sound Using the Device’s Microphone ❘ 333

 10. In playSound(), check that the soundByteArray has had data written to it using the
bytesAvailable property, then use the readFloat() and writeFloat() methods
(Listing 10-19).

LISTING 10-19: Reading the audio stream on soundByteArray and writing it to the Sound object

in MicrophoneAppHome.mxml

private function playSound(e:SampleDataEvent):void
{
 if(!soundByteArray.bytesAvailable > 0)
 {
 return;

 } else {

 for (var i:int = 0; i < 8192; i++)
 {
 var audioSample:Number = 0;

 if(soundByteArray.bytesAvailable > 0)
 {
 audioSample = soundByteArray.readFloat();
 }

 e.data.writeFloat(audioSample);
 e.data.writeFloat(audioSample);
 }
 }
}

 11. Update the MicrophoneApp.mxml fi le to include styles for the application. Replace the
<fx:Declarations> tag with an <fx:Style> declaration. Inside <fx:Style>, specify s as
the spark namespace. For the <s:View> components, defi ne the backgroundColor property
as #999999, and the color property as #393839. Then for the <s:Label> component,
defi ne the fontSize property as 22 (Listing 10-20).

LISTING 10-20: Setting the styles via the <fx:Style> declaration in MicrophoneAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 firstView=”views.MicrophoneAppHome”>
 <fx:Style>

 @namespace s “library://ns.adobe.com/flex/spark”;

 s|View
 {
 backgroundColor:#999999;

continues

CH010.indd 333CH010.indd 333 09/09/11 9:54 AM09/09/11 9:54 AM

334 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

LISTING 10-20 (continued)

 color:#393839;
 }

 s|Label
 {
 fontSize:18;
 }

 </fx:Style>

</s:ViewNavigatorApplication>

 12. Run the example using a device confi guration. When the Microphone application launches,
underneath the title for the app you’ll see the description <s:Label>, <s:ComboBox>, and
the three collective control <s:Button> components vertically aligned (Figure 10-5).

For Android the <s:ComboBox> component is simply populated with the text
AndroidMicrophone, as the Microphone.names property returns only one microphone
(Figure 10-6). Also notice that the Stop and Playback buttons are both disabled, while the
Record button is enabled.

FIGURE 10-5: Displaying the

microphones available on

the device in the Microphone

App running on Android 2.3.4

FIGURE 10-6: Selecting the

microphone in the Microphone

App running on Android 2.3.4

CH010.indd 334CH010.indd 334 09/09/11 9:54 AM09/09/11 9:54 AM

Capturing Sound Using the Device’s Microphone ❘ 335

On Apple iOS 4, the name of the Microphone
on the iPhone 4 is iOSMicrophone. For the
BlackBerry OS on the PlayBook, the Microphone
is QNX Microphone.

 13. Next press the Record button to use the
microphone selected in the <s:ComboBox>
component and start recording with your voice. Record a
message, saying something like “Hello, My name is Earl.”
You should notice that the Record button component
startBtn will become disabled, while stopBtn will
become enabled, and the playBtn will remain disabled
(Figure 10-7).

 14. To stop the recording in progress, press the Stop
button. Notice that both the Record and Playback buttons
become enabled, whereas stopBtn is disabled again
(Figure 10-8).

 15. Finally, to play the recording you’ve just made, press the
Playback button and you should hear the recording you
made (Figure 10-9).

FIGURE 10-7: Recording audio

using the device microphone in

the Microphone App running on

Android 2.3.4

FIGURE 10-8: Enabling the

Record and Playback buttons

after a recording has ended in

the Microphone App running on

Android 2.3.4

FIGURE 10-9: Disabling the

Record button during playback

in the Microphone App running

on Android 2.3.4

CH010.indd 335CH010.indd 335 09/09/11 9:54 AM09/09/11 9:54 AM

336 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

UTILIZING THE DEVICE’S WEB CONTROLLER

The flash.media.StageWebView class can be used to display HTML content within a Flash-based
AIR for mobile application and is an alternative to the HTMLLoader class, which isn’t supported on
mobile devices.

Using the StageWebView Class

This section looks at the StageWebView object. The StageWebView class utilizes the mobile
operating system’s web control to render HTML; so, depending on what device an app is using
StageWebView, the features experienced could vary.

For AS mobile projects you need to import the StageWebView class found in the flash.media
package:

import flash.media.StageWebView;

Seven properties are associated with StageWebView:

 ➤ StageWebView.isHistoryBackEnabled: Returns a Boolean indicating whether there is a
previous page in the web control’s browsing history

 ➤ StageWebView.isHistoryForwardEnabled: Returns a Boolean indicating whether there is a
next page in the web control’s browsing history

 ➤ StageWebView.isSupported: A static property that returns a Boolean, indicating whether
the StageWebView class is supported on the current device

 ➤ StageWebView.location: Returns a string representing a URL of the current location

 ➤ StageWebView.stage: Returns a Stage reference on which the StageWebView object is
displayed

 ➤ StageWebView.title: Returns a string defi ning the HTML title property of the web page

 ➤ StageWebView.viewPort: Returns a Rectangle object representing the area where the
StageWebView object is displayed

To use the StageWebView object, you attach it directly to a stage using the StageWebView.stage
property, as shown in the following code snippet:

var webView:StageWebView = new StageWebView();
webView.stage = stage;

Using the StageWebView.isSupported property, you can determine whether the feature is
supported:

if(StageWebView.isSupported)
{
 var webView:StageWebView = new StageWebView();
 webView.stage = stage;
}

CH010.indd 336CH010.indd 336 09/09/11 9:54 AM09/09/11 9:54 AM

Utilizing the Device’s Web Controller ❘ 337

When the StageWebView object is attached to the stage, it is displayed on top of all Flash display
objects, so you will have to take care in sizing and positioning the rendering area via a Rectangle
instance defi ned for the viewPort property. The following snippet creates a new Rectangle for the
viewPort property:

if(StageWebView.isSupported)
{
 var webView:StageWebView = new StageWebView();
 webView.stage = this.stage;
 webView.viewPort = new Rectangle(0, 0, 240, 380);
}

Here viewPort is defi ned by a rectangle whose x and y positions are both set to 0, with the width set
to 240 and the height to 380. Before taking a look at how to load a web page in the StageWebView
instance, have a look at the remaining methods and features of the StageWebView class:

 ➤ StageWebView.assignFocus(direction:String = “none”): To assign the focus of the
app to the content within the StageWebView object

 ➤ StageWebView.dispose(): To dispose of the StageWebView instance from the stage

 ➤ StageWebView.drawViewPortToBitmapData(bitmap:BitmapData): To draw what is
currently visible in the viewPort to a bitmap

 ➤ StageWebView.historyBack(): To navigate to the previous page in the web view’s
browsing history

 ➤ StageWebView.historyForward(): To navigate to the next page in the web view’s
browsing history

 ➤ StageWebView.loadString(text:String, mimeType:String = “text/html”): To load
and display a specifi ed HTML string

 ➤ StageWebView.loadURL(url:String): To load and display the page at the specifi ed URL

 ➤ StageWebView.reload(): To reload the current page

 ➤ StageWebView.stop(): To halt the current Load operation

In total, nine methods are associated with the StageWebView class. In the following snippet,
you see the StageWebView.loadString() method being used to load HTML directly into the
StageWebView instance:

if(StageWebView.isSupported)
{
 var webView:StageWebView = new StageWebView();
 webView.stage = this.stage;
 webView.viewPort = new Rectangle(0, 0, 240, 380);

 var html:String = “<html><head><title>Doc Title</title></head>”
 + “<body>Hello, world</body></html>”;

 webView.loadString(html);
}

CH010.indd 337CH010.indd 337 09/09/11 9:54 AM09/09/11 9:54 AM

338 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

The StageWebView.loadURL() method is what is used to load specifi c URLs directly into the
StageWebView instance, as shown in the following snippet:

if(StageWebView.isSupported)
{
 var webView:StageWebView = new StageWebView();
 webView.stage = this.stage;
 webView.viewPort = new Rectangle(0, 0, 240, 380);

 webView.loadURL(“http://www.google.com”);
}

NOTE The HTTP protocol string http:// has to be specifi ed in the string when
you want to load a URL via the StageWebView.loadURL() call.

Next you’ll take a closer look at utilizing some of the methods and features of StageWebView in the
Browser App example.

Creating a Browser App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defi ning the Flex Mobile Project Settings

The following lists a few of the familiar settings you will need to ensure are defi ned for the project:

 ➤ Name: Set the Name for the project to BrowserApp.

 ➤ Application ID: Set the Application ID to com.wrox.ch10.BrowserApp.

 ➤ Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to BrowserAppHome.

Targeting Devices on Diff erent Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple iOS,
Google Android, and BlackBerry Tablet OS.

Defi ning Google Android Permissions

In the AIR application descriptor fi le generated with the project in Flash Builder, ensure the
android.permission.INTERNET permission is included as a manifest addition for the Android OS,
as shown in the following code snippet:

<android>
 <manifestAdditions>
 <![CDATA[
 <manifest>
 <uses-permission android:name=”android.permission.INTERNET”/>

CH010.indd 338CH010.indd 338 09/09/11 9:54 AM09/09/11 9:54 AM

Utilizing the Device’s Web Controller ❘ 339

 </manifest>
]]>
 </manifestAdditions>
</android>

This will grant the application’s access to the use of the Internet on the device.

Defi ning BlackBerry Tablet OS Permissions

For BlackBerry Tablet OS applications, you need to specify the access_internet permission, to
allow the application to use the Internet. Ensure this value is set in the blackberry-tablet.xml
fi le, as shown in the following code snippet:

<?xml version=”1.0” encoding=”UTF-8”?>
<qnx>
 <author>jganderson</author>
 <authorId>gYAAgFbt6rihu</authorId>
 <buildId>101</buildId>
 <platformVersion>1.0.6.2390</platformVersion>
 <permission>access_internet</permission>
</qnx>

Defi ning Apple iOS Settings

Because the application will need to use an Internet connection, you can prevent the
application from being installed on a device that doesn’t have WIFI capability, by specifying
the UIRequiredDeviceCapabilities key in the AIR application descriptor fi le via the
<InfoAdditions> and setting the value to an array containing the wifi string, as shown in the
following snippet:

<iPhone>
 <InfoAdditions>
 <![CDATA[
 <key>UIDeviceFamily</key>
 <array>
 <string>1</string>
 <string>1</string>
 </array>
 <key>UIStatusBarStyle</key>
 <string>UIStatusBarStyleBlackTranslucent</string>
 <key>UIRequiredDeviceCapabilities</key>
 <array>
 <string>wifi</string>
 </array>
]]>
 </InfoAdditions>
</iPhone>

Building the Browser App

In Listing 10-21 you’ll see the early stages of the BrowserAppHome.mxml fi le. In addition to the
onCreationComplete() function, you’ll see three accompanying private functions: back(),
forward(), and go().

CH010.indd 339CH010.indd 339 09/09/11 9:54 AM09/09/11 9:54 AM

340 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

 LISTING 10-21: The initial starting point for BrowserAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”onCreationComplete()”
 title=”Browser App”>

 <fx:Script>
 <![CDATA[

 private function onCreationComplete():void {}

 private function back():void {}

 private function forward():void {}

 private function go():void {}

]]>
 </fx:Script>

 <s:layout>

 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingBottom=”20”
 paddingTop=”20”/>

 </s:layout>

</s:View>

 1. Under the <s:layout> declaration, add two <s:Button> components to the view’s
<s:NavigationContent> declaration. For the fi rst button set the label property to back,
the id property to backBtn, and the click property to back(). For the second button
set the label property to forward, the id property to forwardBtn, and the click property
to forward(). Set the enabled property on both buttons to false (Listing 10-22).

LISTING 10-22: Adding navigational <s:Button> components for the web view in

BrowserAppHome.mxml

<s:layout>

 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingBottom=”20”
 paddingTop=”20”/>

</s:layout>

<s:navigationContent>

 <s:Button id=”backBtn”
 label=”back”
 enabled=”false”

CH010.indd 340CH010.indd 340 09/09/11 9:54 AM09/09/11 9:54 AM

Utilizing the Device’s Web Controller ❘ 341

 click=”back()”/>

 <s:Button id=”forwardBtn”
 label=”forward”
 enabled=”false”
 click=”forward()”/>

</s:navigationContent>

 2. Under the <s:navigationContent> declaration, add a <s:VGroup> containing <s:Label>,
<s:TextInput>, and <s:Button> components arranged horizontally in an <s:HGroup>. For the
<s:Label> component, set the id property to pageTitle, the paddingLeft property to 5, the
fontSize property to 16, the width property to 100%, the height property to 20, and the text
property to pageTitle. For the <s:TextInput> component, set the id to pageAddress, the
width property to 100%, the height property to 50, the fontSize property to 18, and the text
property to page address. And for the <s:Button>, set the id property to goBtn, the
label property to Go, the height property to 50, and the click property to go() (Listing 10-23).

LISTING 10-23: Adding the <s:Label>, <s:TextInput>, and <s:Button> components to the view in

BrowserAppHome.mxml

<s:navigationContent>

 <s:Button id=”backBtn”
 enabled=”false”
 click=”back()”/>

 <s:Button id=”forwardBtn”
 enabled=”false”
 click=”forward()”/>

</s:navigationContent>

<s:VGroup width=”100%”
 height=”95”>

 <s:Label id=”pageTitle”
 paddingLeft=”5”
 fontSize=”16”
 width=”100%”
 height=”20”
 text=”pageTitle”/>

 <s:HGroup width=”100%”
 height=”70”
 y=”200”>

 <s:TextInput id=”pageAddress”
 width=”100%”
 height=”50”
 fontSize=”18”
 text=”page address”/>

 <s:Button id=”goBtn”
continues

CH010.indd 341CH010.indd 341 09/09/11 9:54 AM09/09/11 9:54 AM

342 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

LISTING 10-23 (continued)

 label=”Go”
 height=”50”
 click=”go()”/>

 </s:HGroup>

</s:VGroup>

 3. In onCreationComplete(), defi ne a new Rectangle object for the web view called
rectangle. Set the x property to 0 and y to 185. Set the width on rectangle to Stage
.stageWidth property and height to Stage.stageHeight minus the 185, subtracted for
the y positioning. Then create the StageWebView object webView, assigning the Event
.COMPLETE event type to a new private function called onComplete(). Assign the stage
property of the view to the StageWebView object’s stage property, webView.stage. Then
fi nally assign the rectangle to the StageWebView object’s viewPort property, before
calling the loadURL() method to load the URL http://www.bbc.co.uk (Listing 10-24).

LISTING 10-24: Defi ning the StageWebView instance webView via the onCreationComplete()

method in BrowserAppHome.mxml

private var webView:StageWebView;

private function onCreationComplete():void
{
 var rectangle:Rectangle = new Rectangle();
 rectangle.x = 0;
 rectangle.y = 185;
 rectangle.width = stage.stageWidth;
 rectangle.height = (stage.stageHeight - 185);

 webView = new StageWebView();
 webView.addEventListener(Event.COMPLETE, onComplete);
 webView.stage = stage;
 webView.viewPort = rectangle;
 webView.loadURL(“http://www.bbc.co.uk”);
}

private function onComplete(e:Event):void {}

 4. Add a black dividing line that separates webView from the other components in the view.
Create a Sprite object called divider, setting the graphics property to defi ne the object.
Assign the divider to the webView.stage property (Listing 10-25).

LISTING 10-25: Adding a horizontal dividing line to the stage in BrowserAppHome.mxml

private function onCreationComplete():void
{
 var rectangle:Rectangle = new Rectangle();
 rectangle.x = 0;

CH010.indd 342CH010.indd 342 09/09/11 9:54 AM09/09/11 9:54 AM

Utilizing the Device’s Web Controller ❘ 343

 rectangle.y = 185;
 rectangle.width = stage.stageWidth;
 rectangle.height = (stage.stageHeight - 185);

 webView = new StageWebView();
 webView.addEventListener(Event.COMPLETE, onComplete);
 webView.stage = stage;
 webView.viewPort = rectangle;
 webView.loadURL(“http://www.bbc.co.uk”);

 var divider:Sprite = new Sprite();
 divider.graphics.beginFill(0x000000);
 divider.graphics.drawRect(0, 180, stage.stageWidth, 5);
 divider.graphics.endFill();

 webView.stage.addChild(divider);
}

 5. Next complete the event handler for the Event.COMPLETE method. In onComplete() set the
text property on pageTitle to webView.title, and the text property on pageAddress
to webView.location. Then use the StageWebView.isHistoryForwardEnabled and
StageWebView.isHistoryBackEnabled to determine whether the two navigational buttons
backBtn and forwardBtn should be disabled or enabled (Listing 10-26).

LISTING 10-26: Setting the pageTitle, pageAddress, and the button states for backBtn and

forwardBtn in BrowserApp.mxml

private function onComplete(e:Event):void
{
 pageTitle.text = webView.title;
 pageAddress.text = webView.location;

 backBtn.enabled = webView.isHistoryBackEnabled;
 forwardBtn.enabled = webView.isHistoryForwardEnabled;
}

 6. In back(), use StageWebView.isHistoryBackEnabled, this time invoking the
webView.historyBack() method to go to the last visited page. Similarly, in forward(),
use the StageWebView.isHistoryForwardEnabled property to check whether the
historyForward() method can be called (Listing 10-27).

LISTING 10-27: Completing the back() and forward() methods in BrowserAppHome.mxml

private function back():void
{
 if(webView.isHistoryBackEnabled)
 {
 webView.historyBack();
 }

continues

CH010.indd 343CH010.indd 343 09/09/11 9:54 AM09/09/11 9:54 AM

344 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

LISTING 10-27 (continued)

}

private function forward():void
{
 if(webView.isHistoryForwardEnabled)
 {
 webView.historyForward();
 }
}

 7. Call the loadURL() method on webView in go(), supplying pageAddress.text as the
parameter (Listing 10-28).

LISTING 10-28: Completing the go() method in BrowserAppHome.mxml

private function go():void
{
 webView.loadURL(pageAddress.text);
}

 8. Run the project, using either a device or desktop confi guration profi le. When the view is
created the web page should load in the StageWebView object. The title of the web page is
displayed, along with the URL (Figure 10-10).

FIGURE 10-10: Title of web

page and URL are displayed

in the Browser App running on

Android 2.3.4.

CH010.indd 344CH010.indd 344 09/09/11 9:54 AM09/09/11 9:54 AM

Utilizing the Device’s Web Controller ❘ 345

Using the StageWebView object, you can interact with the web page using multitouch and
gestures.

NOTE For a recap on multitouch and gestures, please visit Chapter 4.

If you make a “pinch” gesture on the StageWebView object, you can manipulate the view by
zooming in or out of the web page. If you make the “swiping” gesture you can also scroll
through the web page (Figure 10-11).

 9. Next enter a new URL in the Address fi eld and click the Go button. You will see that the
StageWebView object is updated with the new URL and the “back” button’s enabled state is
set to true. The title of the web page is also updated (Figure 10-12).

FIGURE 10-11: Scroll enabled

StageWebView in the Browser

App running on Android 2.3.4

FIGURE 10-12: The back button

is now enabled in the Browser

App running on Android 2.3.4

 10. Click the “back” button, and you should see that the StageWebView object returned to
the previous web page. Now the “forward” button’s enabled state is set to true while the
“back” button is disabled (Figure 10-13).

If you run the project on an Android device without a network connection, then of course the web
page will not load into the StageWebView object. In this situation you should be presented with a
user-friendly message, “Web page not available” (Figure 10-14).

CH010.indd 345CH010.indd 345 09/09/11 9:54 AM09/09/11 9:54 AM

346 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

FIGURE 10-13: The forward

button is now enabled in

the Browser App running on

Android 2.3.4

FIGURE 10-14: The Web

Page Not Available message

displaying in the Browser App

running on Android 2.3.4

Using the flash.net.URLMonitor class you could implement a way to detect that the page was
unreachable due to the lack of Internet connection and provide the user with an alternative message.

NOTE You can learn more about the URLMonitor class in Chapter 8.

UTILIZING THE DEVICE’S GEOLOCATION SENSOR

In this section you’ll examine how to use the Geolocation and GeolocationEvent classes to
retrieve the location of a mobile device using AIR.

Using the Geolocation Class

Using the flash.sensors.Geolocation class, you can utilize the GPS information retrieved by a
device. This allows an application to pinpoint, with a degree of accuracy, the longitude, latitude,
and altitude coordinates.

For AS3-based mobile projects you will need to import the Geolocation class found in the flash
.sensors package:

import flash.sensors.Geolocation;

CH010.indd 346CH010.indd 346 09/09/11 9:54 AM09/09/11 9:54 AM

Utilizing the Device’s Geolocation Sensor ❘ 347

This class has only three API features that can be used to gain access to the native camera app on
the host device:

 ➤ Geolocation.isSupported: A static property of Boolean type that indicates whether the
device actually supports Geolocation and retrieving GPS data

 ➤ Geolocation.setRequestedUpdateInterval(interval:Number): A method to set a
timer to retrieve an update from the GPS

 ➤ Geolocation.muted: A property of Boolean type that indicates whether the use of GPS is
enabled on the device

Both the isSupported and muted properties should be used in combination to retrieve GPS data, as
you will see shortly.

Using the GeolocationEvent Class

The flash.events.GeolocationEvent class provides the properties that actually deliver the GPS
information through updates to the device.

For AS3-based mobile projects you will need to import the GeolocationEvent class found in the
flash.events package:

import flash.sensors.Geolocation;

Each GeolocationEvent object has the following geolocation based properties:

 ➤ Geolocation.altitude: A number defi ning the altitude in meters

 ➤ Geolocation.heading: A number defi ning the direction of movement in degrees

 ➤ Geolocation.horizontalAccuracy: A number defi ning the horizontal accuracy in meters

 ➤ Geolocation.latitude: A number defi ning the latitude in degrees

 ➤ Geolocation.longitude: A number defi ning the longitude in degrees

 ➤ Geolocation.speed: A number defi ning the speed in meters per second

 ➤ Geolocation.timestamp: A number representing the number of seconds since the
Geolocation object was initialized at run time

 ➤ Geolocation.verticalAccuracy: A number defi ning the vertical accuracy in meters

In order to use the geolocation sensor and retrieve a GeolocationEvent object, you need to add an
event listener on a Geolocation object for the GeolocationEvent.UPDATE event type, assigning it
to an event handler:

if(Geolocation.isSupported && !geolocation.muted)
{
 var geolocation:Geolocation = new Geolocation();
 geolocation.addEventListener(GeolocationEvent.UPDATE, onUpdate);
}

CH010.indd 347CH010.indd 347 09/09/11 9:54 AM09/09/11 9:54 AM

348 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

Creating a Geolocation App Example

You will need to set up a new Flex Mobile Project in Flash Builder.

Defi ning the Flex Mobile Project Settings

The following lists a few of the familiar settings you will need to ensure are defi ned for the project:

 ➤ Name: Set the Name for the project to GeolocationApp.

 ➤ Application ID: Set the Application ID to com.wrox.ch10.GeolocationApp.

 ➤ Application Template: Set the Application Template to a View-Based Application, setting the
initial view title to GeolocationAppHome.

Targeting Devices on Diff erent Platforms

This example project can run on each of the mobile platforms supporting AIR, including Apple
iOS, Google Android, and BlackBerry Tablet OS. For Google Android and BlackBerry Tablet
OS, a number of permissions need to be set to allow geolocation capabilities. For Apple iOS, no
permissions need to be defi ned specifi cally.

Defi ning Google Android Permissions

In the AIR application descriptor fi le generated with the project in Flash Builder, ensure you include
the android.permission.ACCESS_FINE_LOCATION and the android.permission.INTERNET
permission as a manifest addition for the Android OS, as shown in the following code snippet:

<android>
 <manifestAdditions>
 <![CDATA[
 <manifest>
 <uses-permission
 android:name=”android.permission.ACCESS_FINE_LOCATION”/>

 <uses-permission
 android:name=”android.permission.INTERNET”/>
 </manifest>
]]>
 </manifestAdditions>
</android>

The ACCESS_FINE_LOCATION permission will grant the application access to the device’s GPS,
allowing you to retrieve longitude and latitude coordinates. The INTERNET permission will grant the
application access to utilize a Google Maps API.

Defi ning BlackBerry Tablet OS Permissions

Similarly, for BlackBerry Tablet OS applications, you need to specify the read_geolocation and
access_internet permissions, to allow the application to use the GPS and to access the Internet,
respectively.

CH010.indd 348CH010.indd 348 09/09/11 9:54 AM09/09/11 9:54 AM

Utilizing the Device’s Geolocation Sensor ❘ 349

Ensure these values are set in the blackberry-tablet.xml fi le, as shown in the following
code snippet:

<?xml version=”1.0” encoding=”UTF-8”?>
<qnx>
 <author>jganderson</author>
 <authorId>gYAAgFbt6rihu</authorId>
 <buildId>101</buildId>
 <platformVersion>1.0.6.2390</platformVersion>
 <permission>read_geolocation</permission>
 <permission>access_internet</permission>
</qnx>

Defi ning Apple iOS Settings

Because the application will need to utilize the GPS, you can prevent the application from being installed
on a device that doesn’t have GPS capability by specifying the UIRequiredDeviceCapabilities key
in the AIR application descriptor fi le via the <InfoAdditions>, and setting the value to an array
containing the gps string, as shown in the following snippet:

<iPhone>
 <InfoAdditions>
 <![CDATA[
 <key>UIDeviceFamily</key>
 <array>
 <string>1</string>
 <string>1</string>
 </array>
 <key>UIStatusBarStyle</key>
 <string>UIStatusBarStyleBlackTranslucent</string>
 <key>UIRequiredDeviceCapabilities</key>
 <array>
 <string>gps</string>
 </array>
]]>
 </InfoAdditions>
</iPhone>

Utilizing the Google Static Maps API

In the latter part of coding the Geolocation App, you use the Google Static Maps API to load an
image map representing the longitude and latitude coordinates.

In the following snippet, you’ll see that the center is defi ned as London, UK; this basically sets the
location to be returned by the API:

http://maps.google.com/maps/api/staticmap?center=London,UK&zoom=15&size=200
x200&sensor=true&maptype=road

Alternatively, you can use the longitude and latitude values to set the location via the center
property, which you will cover when building the Geolocation App shortly.

CH010.indd 349CH010.indd 349 09/09/11 9:54 AM09/09/11 9:54 AM

350 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

In the URL you also see the zoom property set to 15, which
represents the level at which the map should be zoomed in.
The size property, here set at 200×200, determines the width
and height of the image returned from the server. The maptype
is set to road, indicating that only the road map type should be
returned. Lastly, the sensor value is set to true, which relates to
whether the request is made via a GPS call. Figure 10-15 shows the
resulting API call.

The scope of this chapter doesn’t extend to covering the full
features of the Google Static Maps API, but if you want to learn
more take a look at the Static Maps API V2 Developer Guide
found at http://code.google.com/apis/maps/documentation/
staticmaps/.

Building the Geolocation App

In Listing 10-29 you’ll see the early stages of the GeolocationAppHome.mxml fi le.

LISTING 10-29: The initial stages of GeolocationAppHome.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:View xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”onCreationComplete()”
 title=”Geolocation App”>

 <fx:Script>
 <![CDATA[

 private function onCreationComplete():void {}

 private function exit():void
 {
 NativeApplication.nativeApplication.exit();
 }

]]>
 </fx:Script>

 <s:navigationContent>

 <s:Button label=”Quit”
 click=”exit()”/>

 </s:navigationContent>

 <s:layout>

 <s:VerticalLayout paddingLeft=”20”

FIGURE 10-15: A Google static

image displaying a 200×200

road view of London

CH010.indd 350CH010.indd 350 09/09/11 9:54 AM09/09/11 9:54 AM

Utilizing the Device’s Geolocation Sensor ❘ 351

 paddingRight=”20”
 paddingBottom=”20”
 paddingTop=”20”/>
 </s:layout>

</s:View>

 1. Above the onCreationComplete() method, import the Geolocation class and defi ne a
Geolocation object (Listing 10-30).

LISTING 10-30: Defi ning a Geolocation object in GeolocationAppHome.mxml

<fx:Script>
 <![CDATA[

 import flash.sensors.Geolocation;

 private var geolocation:Geolocation;

 private function onCreationComplete():void {}

 private function exit():void
 {
 NativeApplication.nativeApplication.exit();
 }

]]>
</fx:Script>

 2. In onCreationComplete() instantiate the Geolocation object if geolocation is supported on
the device (Listing 10-31)

LISTING 10-31: Determining whether Geolocation is supported and creating a new Geolocation

object in GeolocationAppHome.mxml

private function onCreationComplete():void
{
 if(Geolocation.isSupported)
 {
 geolocation = new Geolocation();
 }
}

 3. After the Geolocation object has been created, detect whether retrieving GPS
data is disabled via the muted property. If the muted returns false, set the

CH010.indd 351CH010.indd 351 09/09/11 9:54 AM09/09/11 9:54 AM

352 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

requested update interval on the Geolocation object to 5000 milliseconds using
setRequestedUpdateInterval(). Then assign the GeolocationEvent.UPDATE on the
Geolocation object to a new event handler called onUpdate() (Listing 10-32).

LISTING 10-32: Setting the update interval and assigning the update event on the Geolocation

object in GeolocationAppHome.mxml

private function onCreationComplete():void
{
 if(Geolocation.isSupported)
 {
 geolocation = new Geolocation();

 if(!geolocation.muted)
 {
 geolocation.setRequestedUpdateInterval(5000);
 geolocation.addEventListener(GeolocationEvent.UPDATE,
 onUpdate);
 }
 }
}

private function onUpdate(e:GeolocationEvent):void {}

 4. Under the <s:layout> declaration, add a <s:Label> component and set the text
property to Geolocation data...; also add a <s:TextArea> component setting the
id property to geolocationTxt and the height property to 300 and paddingBottom to 10
(Listing 10-33).

LISTING 10-33: Adding the <s:Label> and <s:TextArea> components to the view in

GeolocationAppHome.mxml

<s:layout>
 <s:VerticalLayout paddingLeft=”20”
 paddingRight=”20”
 paddingBottom=”20”
 paddingTop=”20”/>
</s:layout>

<s:Label text=”Geolocation data...”/>

<s:TextArea id=”geolocationTxt”
 height=”300”
 paddingBottom=”10”/>

 5. In onUpdate(), use the GeolocationEvent object e to assign each of the Geolocation
object properties longitude, latitude, altitude, horitontalAccuracy,

CH010.indd 352CH010.indd 352 09/09/11 9:54 AM09/09/11 9:54 AM

Utilizing the Device’s Geolocation Sensor ❘ 353

verticalAccuracy, speed and timestamp to the text property on the <s:TextArea>
component, geolocationTxt (Listing 10-34).

LISTING 10-34: Assigning the geolocation details to the text property on the <s:TextArea>

component in GeolocationAppHome.mxml

private function onUpdate(e:GeolocationEvent):void
{
 geolocationTxt.text = “longitude: “ + e.longitude
 + “\n”
 + “latitude: “ + e.latitude
 + “\n”
 + “altitude: “ + e.altitude
 + “\n”
 + “horizontalAccuracy: “ + e.horizontalAccuracy
 + “\n”
 + “verticalAccuracy: “ + e.verticalAccuracy
 + “\n”
 + “speed: “ + e.speed
 + “\n”
 + “timestamp: “ + e.timestamp;
}

 6. Update the GeolocationApp.mxml fi le to include styles for the application. Replace the
<fx:Declarations> tag with an <fx:Style> declaration. Inside <fx:Style>, specify s as
the spark namespace. For the <s:View> components, defi ne the backgroundColor property
as #CCCCCC, and the color property as #393839. Then for the <s:Label> component,
defi ne the fontSize property as 24 (Listing 10-35).

LISTING 10-35: Setting the styles via the <fx:Style> declaration in GeolocationApp.mxml

<?xml version=”1.0” encoding=”utf-8”?>
<s:ViewNavigatorApplication xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 firstView=”views.GeolocationAppHome”>
 <fx:Style>

 @namespace s “library://ns.adobe.com/flex/spark”;

 s|View
 {
 backgroundColor:#CCCCCC;
 color:#393839;
 }

 s|Label
 {

continues

CH010.indd 353CH010.indd 353 09/09/11 9:54 AM09/09/11 9:54 AM

354 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

LISTING 10-35 (continued)

 fontSize:24;
 }

 </fx:Style>

</s:ViewNavigatorApplication>

 7. Run the project using a device confi guration
profi le. Ensure the GPS settings on the device are
enabled. When the view is fi rst created, the
GeolocationEvent object should return location
data, which is then displayed in the <s:TextArea>
(Figure 10-16).

 8. Under the <s:TextArea> component, add a <s:Label>
and <s:Image>. Set the text property on the <s:Label>
component to Google maps image..., and set the id
property on the <s:Image> component to googleImage
(Listing 10-36).

LISTING 10-36: Adding the <s:Label> and <s:Image> components in

GeolocationAppHome.mxml

<s:Label text=”Geolocation data...”/>

<s:TextArea id=”geolocationTxt”
 height=”300”
 paddingBottom=”15”/>

<s:Label text=”Google maps image...”/>

<s:Image id=”googleImage”/>

 9. Assign the longitude and latitude returned in the GeolocationEvent object e to the
center property on the Google image maps API URL. Also set the zoom property to 15,
the size property to 435×200, and sensor to true (Listing 10-37).

LISTING 10-37: Assigning a google image map location to the source property of the <s:Image>

component in GeolocationAppHome.mxml

private function onUpdate(e:GeolocationEvent):void
{
 geolocationTxt.text = “longitude: “ + e.longitude

FIGURE 10-16: Geolocation data

returned in the Geolocation App

running on Android 2.3.4

CH010.indd 354CH010.indd 354 09/09/11 9:54 AM09/09/11 9:54 AM

Utilizing the Device’s Geolocation Sensor ❘ 355

 + “\n”
 + “latitude: “ + e.latitude
 + “\n”
 + “altitude: “ + e.altitude
 + “\n”
 + “horizontalAccuracy: “ + e.horizontalAccuracy
 + “\n”
 + “verticalAccuracy: “ + e.verticalAccuracy
 + “\n”
 + “speed: “ + e.speed
 + “\n”
 + “timestamp: “ + e.timestamp;

 googleImage.source = “http://maps.google.com/maps/api/staticmap?”
 + “center=” + e.latitude + “,” + e.longitude
 + “&zoom=15”
 + “&size=435x200”
 + “&sensor=true”;
}

 10. Run the project once again using a device confi guration profi le. This time when the view
is created the GeolocationEvent object should return data and the image from Google
(Figure 10-17).

FIGURE 10-17: Displaying the

Google static image map in the

Geolocation App running on

Android 2.3.4

CH010.indd 355CH010.indd 355 09/09/11 9:54 AM09/09/11 9:54 AM

356 ❘ CHAPTER 10 UTILIZING DEVICE FEATURES

SUMMARY

Over the course of this chapter you have explored three of the key features available in AIR for
mobile devices.

First you learned how to utilize the device’s camera app to take an image using the handset and to
load it into the AIR application.

You then learned how to use the device’s microphone to record and play back audio streams.

Using the device’s web control you also learned how to include support for displaying web pages
within an AIR application.

Finally, you learned how to use the device’s Geolocation sensor, allowing you to use GPS data.

In the next chapter, you take a look at updating the AIR mobile applications installed on the device,
whether it would be to enhance an existing feature, add a new one, or fi x a bug.

EXERCISES

 1. Extend the Camera App example by allowing the user to add a fi lter, rendering the captured

image in black and white.

 2. For the Microphone App example, allow the user to store and reference each of the voice

messages saved.

 3. With the Browser App example, provide an option to save a URL as a bookmark and display a

snapshot image of the web page in use.

 4. In the Geolocation App, add each of the updated Google static map images to a horizontal

scrollable list.

CH010.indd 356CH010.indd 356 09/09/11 9:54 AM09/09/11 9:54 AM

Summary ❘ 357

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

Determining support for the camera Use CameraUI.isSupported to determine whether the web

interface is supported on a mobile device.

Launching the camera app Use CameraUI.launch() to launch the device’s camera app.

Determining microphone availability Use Microphone.names to retrieve a list of sound capture

devices available.

Retrieving a microphone Use Microphone.getMicrophone() to return a reference to

a Microphone object for capturing audio.

Capturing audio from a microphone Register the SampleDataEvent.SAMPLE_DATA event with

a Microphone object and write an audio data stream to a

ByteArray object using writeFloat().

Audio stream data playback Register the SampleDataEvent.SAMPLE_DATA event with a

Sound object and call the Sound.play() method.

Re-write an audio data stream to the data property on

SampleDataEvent object using writeFloat().

Determining support for web control Use StageWebView.isSupported to determine whether the

web control is supported on a mobile device.

Displaying dynamic HTML content Use StageWebView.loadString() to load HTML.

Displaying web browser content Use StageWebView.loadURL() to load a web page.

Navigating the browsing history Use StageWebView.isHistoryBackEnabled

and StageWebView.isHistoryForwardEnabled to

determine whether historical navigation of the StageWebView

instance is permitted. Call historyForward() to navigate

forward and historyBack() to navigate back.

Determining support for the

geolocation

Use Geolocation.isSupported to determine whether a

device supports retrieving geolocation data.

Retrieving geolocation information Register the GeolocationEvent.UPDATE event with a

Geolocation object to receive updates on geolocation data.

CH010.indd 357CH010.indd 357 09/09/11 9:54 AM09/09/11 9:54 AM

CH010.indd 358CH010.indd 358 09/09/11 9:54 AM09/09/11 9:54 AM

359

INDEX

A

ACCESS_FINE_LOCATION, android.permission,
75, 76, 348

access_internet, 79, 81, 339, 348
access_shared, 81, 204, 317
action bar component, 28–29
actionBarVisible, 162–163
ActionScript 3.0 (AS3). See also ECMAScript

defi ned, 2
key concepts, 3–11
SQL, 286

Add Team view, 284, 285
addDriver(), 278, 279
ADDED_TO_STAGE, 163, 310
addEventListener()

SQLEvent.OPEN, 248, 255
TouchEvent types, 107, 109, 119, 121, 123,

124, 129
TraitEventDispatcher, 300
URLMonitor, 241, 244

addTeam(), 262, 271, 272, 273
addTxt(), 153
Adobe Flash. See Flash
Adobe Integrated Runtime. See AIR
Adobe website

Flash Builder 4.5.1 updater, 35
Flash Builder requirements, 36
Mobile and Devices Developer Center page, 96

AIR (Adobe Integrated Runtime)
applications

updating, 96–98, 99
version number, 97–98

camera, 315–316
logo, 31
namespace declaration, Hello World App, 69
overview, 31–32, 34

AIR application descriptor fi les. See also
HelloWorldApp-app.xml
<autoOrients> property, 151

defi ned, 67–68
elements, 68, 99
Hello World App, editing, 69–79
retrieving details, 97, 99
setting properties, 68
UIRequiredDeviceCapabilities, 317, 327,

339, 349
AIR File System API, 199–238. See also fi lesystems

Flash Builder, 199
non-browser Flash applications, 199

air.net package, 240
Amazon Appstore, 87, 96
AND, 135, 175
Android

AIR, 31, 32, 34
.apk fi le, 68, 83, 84, 87, 88, 99
example projects, 53
Flash Player, 2
launch icons, 72, 73
Mobile and Devices Developer Center page, 96
packaging applications, 82–88, 99
permissions, 75–76, 99

Browser App project, 338–339
Camera App project, 317
Files Explorer App project, 203–204
Geolocation App project, 348
Microphone App project, 327

run confi gurations, 55–56, 66
targeting

Files Explorer App project, 203–204
Hello World App project, 42–44

URL property values returned, 202
Android Market, 87, 96
<android> element, 75, 76, 99
android.permission.ACCESS_FINE_LOCATION,

75, 76, 348
android.permission.CAMERA, 75, 76, 317
android.permission.DISABLE_KEYGUARD, 76
android.permission.INTERNET, 75, 338, 348
android.permission.READ_PHONE_STATE, 75

bindex.indd 359bindex.indd 359 12/09/11 8:08 PM12/09/11 8:08 PM

360

android.permission.RECORD_AUDIO,
75, 76, 81, 327

android.permission.WAKE_LOCK, 75
android.permission.WRITE_EXTERNAL_STORAGE,

76, 203, 204
.apk fi les, 68, 83, 84, 87, 88, 99
app:/, 201, 202, 238
App Store, 89, 96
<application>, 68, 69
application descriptor fi les. See AIR application

descriptor fi les
Application DPI, 175

scaling applications, 134–135
setting styles, 135–137, 175

Application ID
Browser App, 338
Camera App, 316
Files Explorer App, 203
Geolocation App, 348
Hello World App, 43, 69–70
Maintaining Data App, 241
Media Player App, 301
Microphone App, 326
reverse-DNS-style strings, 4, 69, 99
Sprite Layout App, 141

applicationComplete event, 188, 189, 198
applicationDPI, 134, 135, 137, 174, 175
application-dpi, 135, 136, 175
app-storage:/, 201, 202, 238
AppWorld, 96
“archive” folder, 228, 229
arguments, 7–8
array

dirData, 211
docsDirectory, 209, 211
ECMAScript 4, 3
FileFilter objects, 230
FilesExplorerAppHome.mxml, 212
instance variables, 6
selectedFiles, 234
soundByteArray, 330, 331, 332
SQLStatement.parameters, 250, 251
UIDeviceFamily, 77
UIRequiredDeviceCapabilities, 77
vector, 118

<s:ArrayList>, 17, 304–305, 307
AS3. See ActionScript 3.0
aspect ratio, 132, 138, 139, 151
<aspectRatio>, 68, 72, 98, 99
asterisk (*), 288
AudioElement object, 291–292, 314

AudioEvent object, 298–300, 314
AudioEvent.MUTED_CHANGE, 298
AudioEvent.PAN_CHANGE, 298
AudioEvent.VOLUME_CHANGE, 298, 300, 314
AudioTrait, 314
AudioTrait.volume, 314
<author>, 79
<authorId>, 79
<autoOrients>, 68, 72, 74, 76, 81, 99, 151

B

back(), 343–344
back button, 224–225
backgroundColor property, 20, 102, 136, 205, 222,

223, 242, 311, 318, 321, 333, 353
.bar fi les, 94, 95, 99
basePath, 303, 304, 306, 308, 309
<s:BasicLayout>, 18
BlackBerry Playbook

AIR, 31
launch icon, 73
screen resolutions comparison, 132

BlackBerry Tablet OS
AIR, 31, 32, 34
.bar fi les, 94, 95, 99
confi guration settings, 79–82
Files Explorer App project, 214
Flash Player, 2
launch icons, 73, 80
Mobile and Devices Developer Center page, 96
packaging applications, 94–96, 99
permissions, 80–81, 99

Browser App project, 339
Camera App project, 317
Files Explorer App project, 204
Geolocation App project, 348–349
Microphone App project, 327

run confi gurations, 56–61, 66
targeting

Files Explorer App project, 204
Hello World App project, 42–44

blackberry-tablet.xml fi le, 44, 79, 82, 94, 99,
204, 317, 329, 339, 349

breakpoints
Flash Debug perspective, 162, 178, 182, 185
setting, 177–188, 198

Breakpoints panel, 38, 177, 185, 186, 198
browse dialogs, 229–237, 238
browseForOpen(), 229, 230, 235, 236, 238

android.permission.RECORD_AUDIO – browseForOpen()

bindex.indd 360bindex.indd 360 12/09/11 8:08 PM12/09/11 8:08 PM

361

browseForOpenMultiple(), 229, 230,
231, 235, 238

browseForSave(), 229, 236, 237, 238
Browser App project

building, 339–346
exercise, 356
Flex Mobile Project settings, 338
targeting mobile devices, 338–339

BrowserAppHome.mxml
back(), 343–344
backBtn, 343
<s:Button>, 340–341
forward(), 343–344
forwardBtn, 343
go(), 344
horizontal dividing line, 342–343
initial starting point, 340
<s:Label>, 341
OnCreationComplete(), 342
<s:TextInput>, 341

BufferTrait, 314
<buildId>, 79
Button, J., 284
Button Bar component, 16
Button component, 16
<s:Button>

BrowserAppHome.mxml, 340–341
CameraAppHome.mxml, 318–319
click property, 50
DebuggingAppHome.mxml, 178, 179
FilesExplorerAppHome.mxml, 206–207, 220,

221–222, 232
FolderView.mxml, 223, 224
HelloWorldAppHome.mxml, 47–48
HelloWorldAppMessageView.mxml, 48
ImagesView.mxml, 233
MaintainingDataAppHome.mxml, 253, 254
MicrophoneAppHome.mxml, 329–330, 331,

332, 334
Submit button, 65
UpdateTeamsView.mxml, 273

ByteArray, 324, 325–326, 330, 357

C

camera, 315–322
AIR, 315–316
support, 357

CAMERA, android.permission,
75, 76, 317

Camera App project
building, 318–322
exercise, 356
Flex Mobile Project settings, 316
targeting mobile devices, 316–318

CameraAppHome.mxml
<s:Button>, 318–319
CameraUI, 319
<s:Image>, 318–319, 321
initial starting point, 318
<s:Label>, 318–319, 321
launch(), 319–320
MediaEvent.COMPLETE, 319
onImageLoadComplete(), 320–321
setting styles, 321

CameraUI, 316, 319, 357
Capabilities.screenDPI property,

134, 137, 138, 175
Catch block. See Try...Catch statements
CheckBox control, 19
classes, 3
click property, 50
<s:ComboBox>, 328, 329, 330, 331, 334, 335
Common section, Properties view, 41
conditional statements, 8–9. See also

if statement
Console view panel, 38
<s:ConstraintLayout>, 18
constructors, 5
<content>, 68, 72, 99
context menu, 180, 186, 198
copying fi les/fi le directories, 219
copyTo(), 219, 238
CREATE, 249, 288
CREATE TABLE, 249, 250, 258–259
creationComplete, 232
creationDate, 200
creator, 200
CrossFadeViewTransition, 29
cross-platform, 31, 72, 201
currentState property, 161, 171, 309

D

data. See also database tables
Formula 1, 239, 245
offl ine, 247, 288
working with, 239–288

data binding, 21–22
data synchronizing solution, 287

browseForOpenMultiple() – data synchronizing solution

bindex.indd 361bindex.indd 361 12/09/11 8:08 PM12/09/11 8:08 PM

362

database tables – fi les

database tables
creating, 250, 288
data

deleting, 252, 288
retrieving, 251–252, 288
saving, 250–251, 288
updating, 252, 288

defi ned, 248–249
databases (SQLite), 248, 288. See also

MaintainingDataAppHome.mxml
dataResult, 245–246
Data/Services, 37
data.txt, 244, 245, 247
debug confi gurations

Files Explorer App project, 204
Maintaining Data App project, 242
MediaPlayer App project, 302

Debug Confi gurations panel, 181, 204, 242, 302
Debug panel, 38, 177, 183, 184, 185, 188,

193, 196, 198
debug tokens, 59, 60, 66, 79, 82, 95
debugging, 177–198

breakpoints
Flash Debug perspective, 162, 178, 182, 185
setting, 177–188, 198

Breakpoints panel, 38, 177, 185, 186, 198
stepping through code, 193–196, 198

Debugging App project, 177
Debug Confi guration, 181
New Flex Mobile Project panel, 178

DebuggingAppHome.mxml, 178–180, 191, 192, 194
<fx:Declarations>, 175
DELETE, 249, 288
deleteDirectory(), 220, 238
deleteDriver(), 262
deleteFile(), 219, 238
deleteTeam(), 262, 268, 269
descriptive labels, TeamsView.mxml, 261
Design view

defi ned, 39
HelloWorldAppHome.mxml, 40
overview, 39–41
panels, 40

desktop
mobile applications, 12, 31
run confi gurations, 52–54

Device Central
emulating content, 35, 104, 125
Generic Multitouch device, 106
Multitouch panel, 128, 129
MultitouchAndGestures.swf, 105, 106, 125
no touch support warning, 106

output window, 114
touchPointID, 114

device DPI, 133–138
device DPI to DPI Classifi cation constant mappings, 135
device features, 315–357. See also camera;

geolocation sensor; microphone; web controller
device orientation changes, 151–154
dirData, 211
directories. See fi le directories
DISABLE_KEYGUARD, android.permission, 76
displayImage(), 234
DisplayObject, 115, 295
DisplayObjectTrait, 293
dObj, 25, 49, 50
docsDirectory, 209, 211
DPI Classifi cation constant mappings, 135
DPIClassification.DPI_160, 134
DPIClassification.DPI_240, 134
DPIClassification.DPI_320, 134
drawing shape, Multitouch and Gestures App, 126
drawLines(), 110, 111, 112, 114, 116, 123
drawRectangle(), 115, 116, 142–143, 155
drawShape(), 114, 115, 116, 123
drawSprite(), 142–143
driver names, 264–265
Drivers

CREATE TABLE, 258–259
data synchronizing solution, 287

DynamicStreamingResource, 290

E

e touch event object, 108, 110
ECMAScript, 2–3
Editor Area, 37
error handling, global, 188, 198
error status, SQL, 257, 282
Error was caught!, 192, 193
Event.RESIZE, 140, 143, 144
exists, 200
Export Release Build panel, 82, 84, 86, 87, 89, 90,

94, 99
Expression view panel, 38
extension, 201

F

file://, 201, 202, 238
fi les

contents
reading, 218
updating, 217–218

bindex.indd 362bindex.indd 362 12/09/11 8:08 PM12/09/11 8:08 PM

363

File class – Flash Lite

copying, 219
creating, 220–229
deleting, 219
moving, to other directories, 218–219
opening

multiple, 230–236
single, 230

saving, 236
writing to, 217, 238

File class, 200–203, 216, 237, 288
fi le directories

copying, 219
creating, 218
deleting, 220
fi les

listing, 208–216
moving to other directories, 218–219

File object, 200–201
fi le objects

creating, 238
from static locations, 201–202, 238
from URL path, 201

native path, 204–208
properties, 200–201
resolving reference path, 203, 238

File.applicationDirectory, 202, 238
File.applicationStorageDirectory, 202, 218,

219, 230, 236, 238, 255
File.desktopDirectory, 202, 203, 238
File.documentsDirectory, 202, 203, 238
FileFilter objects, 230, 231
FileMode, 216–217, 238
FileMode.APPEND, 217
FileMode.READ, 217, 218
FileMode.UPDATE, 217
FileMode.WRITE, 217, 238
fi lename property, Hello World App, 70
<filename>, 68, 70
Files Explorer App project

“archive” folder, 228, 229
building, 204–216
FileView.mxml fi le, 223–224

back button, 224–225
createFile(), 226–227
creating, 223–224
fi le stream, 226

Flex Mobile Project settings, 203
FolderView.mxml view, 222–223

back button, 224–225
createFolder(), 225–226
creating, 222–223
new directory, 225

Google Nexus One, 204
New File button, 228
New Folder button, 228
running, 214
targeting mobile devices, 203–204

FilesExplorerApp-app.xml, 203
FilesExplorerAppHome.mxml

<s:Button>, 206–207
exercises, 237
fileView(), 227
folderView(), 227
horizontal group components, 220–222
<s:Label> component, 206–207, 208
<s:List>, 208–210
listing fi les of directory, 208–216
navigating to new views, 227
private variable, 207
retrieving directory listing, 209
setting text to native path, 207–208
view, 206

FilesExplorerApp.mxml, 204–205
FileStream class, 200–203, 237
FileStream object, 238
fi lesystems

AIR File System API, 199–238
Flash Builder, 199
non-browser Flash applications, 199

modifying, 216–229, 238
reading, 200–216

File.userDirectory, 202, 203, 238
FileView.mxml fi le

back button, 224–225
createFile(), 226–227
creating, 223–224
fi le stream, 226

Flash
logo, 2
on mobile devices, 2
non-browser Flash applications, 199
platform, 1–2, 34

Flash Builder. See also AIR File System API
features, 36
IDE, 64
overview, 35–36
Preferences panel, 133
requirements, 36
updater, 35

Flash Debug perspective, 36
breakpoints, 162, 178, 182, 185
defi ned, 38
view panels, 38–39

Flash Lite 4.0, 2, 34

bindex.indd 363bindex.indd 363 12/09/11 8:08 PM12/09/11 8:08 PM

364

Flash perspective – Google Nexus One

Flash perspective
defi ned, 36
view panels, 37–38

Flash Player 10.x, 2, 34
gesture input support, 102
multitouch support, 102

Flex framework
logo, 11
mobile application structure, 22–31
overview, 11–12, 34

Flex Mobile Project settings
Browser App project, 338
Camera App project, 316
familiarize with steps, 44
Files Explorer App project, 203
Geolocation App project, 348
Hello World App project, 41
Maintaining Data App project, 241–242
MediaPlayer App project, 301
Microphone App project, 326

Flex OSMF wrapper, 300–311
FlipViewTransition, 29
folders

“archive,” 228, 229
creating, 220–229
moving, 219

FolderView.mxml view
back button, 224–225
createFolder(), 225–226
creating, 222–223
new directory, 225

fontSize, 20, 136, 205
for loop, 10, 179, 180, 184, 185, 188, 193, 194, 196,

210, 211, 214, 326
<s:FormItemLayout>, 18
Formula 1 data, 239, 245
forward(), 343–344
<fullScreen>, 68, 72, 74, 76, 99
functions, 4–5
fx namespace, 12–14

G

Generic Multitouch device, 106
Geolocation App project

building, 350–355
exercise, 356
Flex Mobile Project settings, 348
Google Static Maps API, 349–350
targeting devices, 348–349

Geolocation class, 346–347
API features, 347
Geolocation.isSupported, 347, 351, 352,

357
geolocation sensor, 346–355

retrieving information, 357
support, 357

GeolocationAppHome.mxml
determining support, 351–352
geolocation object, 351
Google image map location, 354–355
<s:Image>, 354
initial stages, 350–351
<s:Label> component, 352, 353, 354
setting styles, 353–354
<s:TextArea>, 352–353
update event, 352
update interval, 352

GeolocationEvent class
GeolocationEvent.UPDATE, 347, 352, 357
properties, 347

gesture events
handling, 124–127, 129
properties, 118–119
registering, on interactive objects, 119–124
setting input mode, 118
types, 118–119

gesture input support
determining, 117–118, 129
Flash Player 10.1, 102
iPhone success, 101
Multitouch.supportsGestureEvents, 117,

118, 119, 122, 129
GestureEvent, 118, 119, 129
GestureEvent.GESTURE_TWO_FINGER_TAP, 118, 119
GesturePhase, 119, 120
GesturePhase.UPDATE, 124, 125
getChildByName(), 114, 115, 124
getDirectoryListing(), 209, 211
getResult(), 264, 275
getSprite(), 144–145, 168
Gingerbread 2.3.4, 202, 203
global error handling, 188, 198
go(), 344
Google Android. See Android
Google image map location, 354–355
Google Nexus One

example projects, 53
Files Explorer App, 204
Flash Builder, 36
Hello World App, 88

bindex.indd 364bindex.indd 364 12/09/11 8:08 PM12/09/11 8:08 PM

365

Google Static Maps API – .ipa fi le

screen resolutions comparison, 132
72×72 pixel fi le image, 73
touch points, 117
USB Connected status, 56

Google Static Maps API, 349–350
group containers

attributes, 156
items aligned, 155–161
nesting items, 155
Sprite Layout App

layout declarations in, 159–160
portrait layout, 157–159
using states to change layout, 160–161

Sprite Layout Flex App created, 162–173
Group tags, 18–19

H

Hamilton, L., 284
Hello World App project

AIR application descriptor fi les, 69–79
AIR namespace declaration, 69
application ID, 69–70
fi lename property, 70
initial appearance, 71–72, 99
launch icons, 72–75, 77, 80, 99
name property, 70
supported profi le, 71
version number, 70–71
XML declaration, 69

building, 45–51
creation, 41–51
Flash Debug perspective, 39
Flash perspective, 38
Flex Mobile Project settings, 41
launch icons, 74
Package Explorer, 44, 74, 88, 91, 95
self-signed digital certifi cate, 85
targeting mobile devices, 42–44

HelloWorldApp-app.xml, 44, 68, 69, 70, 71, 72,
74, 76, 79, 83, 86, 88, 94

HelloWorldAppHome.mxml, 45, 47–48
<s:Button>, 50
Design view, 40
onSubmit(), 48–49, 50–51
Source view, 39

HelloWorldAppMessageView.mxml, 48, 50, 51
HGroup tags, 18–19
HistoryBack(), 337, 343, 357
historyForward(), 337, 343, 357
horizontal dividing line, 342–343

horizontal group components, 220–222, 232
<s:HorizontalLayout>, 18
HTTP Service component, 17

I

<icon>, 68, 73, 74, 76, 78, 79, 80, 99
id attribute, 14
<id>, 68, 69
idleTimer, 120, 121
if statement, 8, 98, 147, 148, 179, 184, 188, 190,

193, 194, 255, 264, 275
image sizes, 72, 99. See also launch icons
Image tag, 20
<s:Image>, 20, 233, 318–319, 321, 354
ImagesView.mxml, 233, 234, 235
info additions, 77
<InfoAdditions>, 77, 78, 317, 327, 339, 349
inheritance, 11
initial appearance, Hello World App, 71–72, 99
initializeGestures(), 121, 122, 123
initializeTimer(), 121, 122, 124, 125
initializeTouch(), 121, 122
<initialWindow>, 68, 72, 74, 76, 99, 151
INSERT, 249, 271, 275, 282, 288
instance variables, 5–6
instances, 3
INTERNET, android.permission,

75, 338, 348
IOErrorEvent, 191, 197
iOS

AIR, 31, 32, 34
Files Explorer App project, 214
Flash Player, 2
info additions, 77
.ipa fi le, 88, 90, 91, 99
launch icons, 72
Mobile and Devices Developer Center page, 96
packaging applications, 88–94, 99
permissions, 99
run confi gurations, 62–64, 66
settings

Browser App project, 339
Camera App project, 317–318
capabilities, 77–79
Geolocation App project, 349
Microphone App project, 327–328

targeting, Hello World App project, 42–44
IOS, 135, 175
iOS Provisioning Portal, 63
.ipa fi les, 88, 90, 91, 99

bindex.indd 365bindex.indd 365 12/09/11 8:08 PM12/09/11 8:08 PM

366

iPads – MaintainingDataAppHome.mxml

iPads
launch icons, 73
screen resolutions comparison, 132

<iphone> element, 77, 78, 99
iPhones

launch icons, 73
multitouch/gesture support, 101
screen resolutions comparison, 132
touch points, 117

iPod Touch devices, 43, 73, 77
isDirectory, 201, 210, 211
isHidden, 201
isPackage, 201
item renderer, 265–267
iTunes, 91

J

JOIN, 249

K

key concepts, AS3, 3–11
key-value pairs, 77

L

Label component, 15
label text is set, 196
<s:Label> component

BrowserAppHome.mxml, 341
CameraAppHome.mxml, 318–319, 321
DebuggingAppHome.mxml, 178
defi ned, 15
Error was caught!, 192, 193
FilesExplorerAppHome.mxml, 206–207, 208
fontSize, 20, 136, 205
GeolocationAppHome.mxml, 352, 353, 354
HelloWorldAppHome.mxml, 45, 48
label text is set, 196
labelStr, 187, 188, 190
<s:layout>, 222, 223
<s:List>, 265
MaintainingDataAppHome.mxml, 243
MediaItemRenderer.mxml, 302
MicrophoneAppHome.mxml, 328, 329, 333, 334
onCreationComplete(), 51
<fx:Script>, 14
TeamsView.mxml, 260
UpdateTeamsView.mxml, 275, 276, 282
<s:VGroup>, 252

labelStr variable, 179, 183, 186, 187, 188, 190,
191, 192, 193, 194, 195, 196

landscape
<s:layout.landscape>, 170–171
MediaPlayerAppHome.mxml, 305–306
Sprite Layout Flex App, 172, 173
SpriteLayoutFlexAppHome.mxml, 167–168

launch(), 316, 318, 319–320, 357
launch icons, 72–75, 77, 80, 99
layout declarations, 17–18
Layout section, Properties view, 41
<s:layout>, 222, 223

defi ned, 17
nesting, 18

<s:layout.STATE_NAME>, 175
layoutComponents(), 144, 145, 146, 148, 149, 150
<s:layout.landscape>, 170–171
line numbers, 180, 198
List component, 17
<s:List>

FilesExplorerAppHome.mxml, 208–210
<s:Label>, 265
MediaPlayerAppHome.mxml, 307

listing fi les, of directory, 208–216
local host, 240, 244
localX, 109
localY, 109
logo

AIR, 31
Flash, 2
Flex, 11
OSMF, 289

loop statements, 10. See also for loop

M

Maintaining Data App project
Add Team view, 284, 285
Flex Mobile Project settings, 241–242
modifying, 252
network availability changes, 242–247
targeting mobile devices, 242

MaintainingDataAppHome.mxml. See also
Drivers; Teams
<s:Button>, 253, 254
database statuses, 256–257
dataResult, 245–246
declaring database File object, 254–255
initial starting point, 243
<s:Label> component, 243–244
opening connection to database, 255–256

bindex.indd 366bindex.indd 366 12/09/11 8:08 PM12/09/11 8:08 PM

367

MaintainingDataApp.mxml – Multitouch and Gestures app project

resolving fi le path to database, 255
SQL error status, 257
updating import statements, 254–255, 257–258
urlLoader, 246
urlMonitor, 244
urlRequest, 244

MaintainingDataApp.mxml, 242
maxTouchPoints, 117
McLaren team, 284, 285
media elements

creating, 314
defi ned, 290

media resources
creating, 314
defi ned, 290

@media rule, 135, 136, 174, 175
media trait events, 298, 300, 313, 314
media traits, 292–293, 314
MediaElement object, 314

creating, 291–292
MediaPlayer.media, 314
MediaPlayerSprite.media, 314

MediaEvent.COMPLETE, 319
MediaItemRenderer.mxml, 302, 303, 307
MediaItemVO, 302, 304–305, 307
MediaItemVO.as, 302
MediaPlayer App project

building, 302–313
Flex Mobile Project settings, 301
targeting mobile devices, 302

MediaPlayer class
functions, 296
public properties, 294–296
using, 314

MediaPlayerAppHome.mxml
<s:ArrayList>, 304–305
basePath, 304
<s:List>, 307
onAddedtoStage(), 309, 310
onClick(), 308
onComplete(), 308
onCreationComplete(), 309, 310
onOrientationChange(), 309, 310
portrait/landscape states, 305–306
title, 303
updateLayout(), 309, 310
<s:VideoPlayer> added, 306–307
xmlns:vo, 303

MediaPlayerApp.mxml, 311
MediaPlayer.media, 314
MediaPlayer.play(), 314
MediaPlayerSprite class, 297–298, 314

MediaPlayerSprite.media, 314
MediaPlayerSprite.resource, 314
MediaPromise, 320
MediaTraitType class, 293–294
memory availability, 12, 31
methods, 4–5, 7
microphone, 323–335

availability, 357
capturing sound, 323, 325

Microphone App project
building, 328–335
exercise, 356
Flex Mobile Project settings, 326
targeting devices, 327–328

Microphone class, 323–324
methods, 324
Microphone.names, 323, 324, 334, 357
properties, 323

MicrophoneAppHome.mxml
audio stream data, 332, 333
<s:Button>, 329–330
<s:ComboBox>, 329, 331
declaring private variables, 330
importing classes, 330
initial starting point, 328–329
<s:Label> component, 329
microphone properties, 332
playRecording(), 332
setting styles, 333–334
startRecording(), 331

Microphone.getMicrophone(), 324, 357
Mobile and Devices Developer Center page, 96
mobile application development

considerations, 12, 31
desktop applications, 12, 31

mobile application structure, Flex
framework, 22–31

modificationDate, 200
Motorola Zoom, 132, 135
moveLines(), 110, 111, 113, 114
moveTo(), 218, 219, 238
multiple image fi les, opening, 231–236
multiple screen sizes. See screen sizes
Multitouch and Gestures App project, 103–128

build path for creation, 105
creating, 103–106
drawing shape, 126
New ActionScript Project panel, 104
pan gesture, 127
.swf fi les, 104
touch points added, 125, 126, 127

bindex.indd 367bindex.indd 367 12/09/11 8:08 PM12/09/11 8:08 PM

368

multitouch input – Outline view panel

multitouch input. See also gesture input support;
touch input support

defi ned, 102, 129
Flash Player 10.1, 102
iPhone success, 101

Multitouch panel, utilizing, 128, 129
MultitouchAndGesture(), 120
MultitouchAndGestures.as, 102

assigning properties of touch point event, 110
changes, 103–125
detecting touch event types, 108–109
input mode set for touch events, 106–107
MultitouchInputMode imported, 106
registering gesture events, 119–124
registering touch events

on interactive objects, 114–117
with stage via class constructor, 109

touch event handler, 108
TouchEvent imported, 108
tracking touch points in application, 110–114

MultitouchAndGestures.swf, 105, 106, 125
MultitouchInputMode, 106
Multitouch.inputMode property, 106, 107, 109,

118, 119, 122, 129
MultitouchInputMode.GESTURE, 118, 119, 122, 129
Multitouch.maxTouchPoints, 117
Multitouch.supportedGestures, 117, 118, 119,

123, 129
Multitouch.supportsGestureEvents, 117, 118,

119, 122, 129
Multitouch.supportsTouchEvents, 102, 103, 129
mx namespace, 12–13
MXML

New MXML Component panel, 47, 221
overview, 12–14, 34

N

name property, Hello World App, 70
<name>, 68, 70
namespaces, XML

default, 12–14
defi ned, 12

native path, of fi le object, 204–208
NativeApplication, 97, 99
nativePath, 200, 202, 203, 204, 207, 224, 255
network availability

changes, 239–247
StatusEvent.STATUS, 241, 244, 245, 246, 288

Network Monitor, 37
New ActionScript Project panel, 103, 104
New File button, 228

New Flex Mobile Project wizard, 41, 42, 43, 44, 75,
81, 178

New Folder button, 228
New MXML Component panel, 47, 221
Nexus One. See Google Nexus One
non-browser Flash applications, 199

O

objects, 3
OEMS (original equipment manufacturers), 101
offl ine data. See data
offset values, 115
offsetX, 112, 113, 115, 120, 124
offsetY, 112, 113, 115, 120, 124
onAddedtoStage(), 163, 169, 309, 310
onAppComplete(), 189
onBtnOne(), 283
onClick(), 16, 23, 179, 182, 183, 192, 193, 194,

196, 307, 308
onCreationComplete(), 50, 51, 162, 163, 207,

222, 223, 224, 225, 226, 232, 233, 234, 244,
274, 282, 309, 310, 318, 319, 328, 330, 331, 332,
339, 340, 342, 351

onDeleteTeam(), 269, 270
onImageLoadComplete(), 320–321
onOpenDb(), 255, 256
onOrientationChange(), 153, 154, 163,

169, 309, 310
onPan(), 123, 124
onResize(), 140, 143, 144, 150
onSampleData(), 331, 332
onSelect(), 230, 231, 232
onSelectDrivers(), 279, 280
onStatus(), 241, 244, 246, 252
onSubmit(), 48–49, 50, 51
onTimer(), 120, 121, 122
onTouch(), 108, 109, 110, 116, 122
onViewActivate(), 260, 265
Open Multiple Media button, 232, 235
Open Source Media Framework. See OSMF
openDb(), 253, 255
ORIENTATION_CHANGE, 152, 153, 154, 163, 310
ORIENTATION_CHANGING, 152
original equipment manufacturers (OEMs), 101
OSMF (Open Source Media Framework), 289–314

Flex OSMF wrapper, 300–311
fundamentals, 290
logo, 289

os-platform property, 135, 136, 175
Outline view panel, 37

bindex.indd 368bindex.indd 368 12/09/11 8:08 PM12/09/11 8:08 PM

369

Package Explorer – screen aspect ratio

P

Package Explorer
defi ned, 37
Hello World project, 44, 74, 88, 91, 95

packages, 3–4
packaging applications

Android, 82–88, 99
Apple iOS, 88–94, 99
BlackBerry Tablet OS, 94–96, 99

pan gesture, 119, 120, 123, 125, 127, 128
parameters, 7–8
parent, 201
permissions, 99. See also specifi c permissions

Android, 75–76, 99
Browser App project, 338–339
Camera App project, 317
Files Explorer App project, 203–204
Geolocation App project, 348
Microphone App project, 327

Apple iOS, 99
BlackBerry Tablet OS, 80–81, 99

Browser App project, 339
Camera App project, 317
Files Explorer App project, 204
Geolocation App project, 348–349
Microphone App project, 327

perspectives, 36–39. See also Flash Debug
perspective; Flash perspective

pixel density, 132–133. See also screen resolutions
play(), 296, 297, 301, 314, 325, 326, 332, 357
play_audio, 81, 327
playBtn, 329, 331, 335
PlayEvent object, 299, 314
PlayEvent.PAUSED, 314
playRecording(), 328, 329, 330, 332
playSound(), 325, 326, 332, 333
PlayState object, 299
PlayTrait, 314
portrait

MediaPlayerAppHome.mxml, 305–306
Sprite Layout App, 157–159
Sprite Layout Flex App, 172, 173
SpriteLayoutFlexAppHome.mxml, 167–168

press and tap gesture, 119, 128, 129
PressAndTapGestureEvent, 119, 128, 129
PressAndTapGestureEvent.GESTURE_PRESS_

AND_TAP, 119, 128
primary key, 249, 251, 252, 258, 288
PRIMARY KEY, 250
Problems, view panel, 37
processor performance, 12, 31

prompt property, 15, 46, 245, 247, 252
Properties view, 40, 41
pushView(), 25, 29, 30, 50, 51, 224, 227, 231, 232,

259, 268

Q

QNX, 79, 135, 175, 335
<qnx> element, 79, 82, 99

R

Radio Button control, 19
read_geolocation, 81, 348, 349
reading fi lesystems, 200–216
READ_PHONE_STATE, android.permission, 75
RECORD_AUDIO, 75, 76, 81, 327
record_audio, 81
RECORD_AUDIO, android.permission,

75, 76, 81, 327
Red Bull team, 285, 286
remote server, 240
removeChild(), 113, 114
removeLines(), 110, 114
<requestedDisplayResolution>, 78
<requiredDisplayResolution>, 93
resolution. See screen resolutions
ResolvePath(), 203, 218, 219, 220, 225, 226, 238
return types, 5
reverse-DNS-style strings, 4, 69, 99
rotate gesture, 119, 128
ROTATED_LEFT, 152
ROTATED_RIGHT, 152
run confi gurations, 51–52

Apple iOS, 62–64, 66
BlackBerry Tablet OS, 56–61, 66
desktop, 52–54
Files Explorer App project, 204
Google Android, 55–56, 66
Maintaining Data App project, 242
MediaPlayer App project, 302
mobile devices, 55–64

S

s namespace, 12–14
SampleDataEvent class, 324–326, 330, 331, 332
SampleDataEvent.SAMPLE_DATA, 325, 331, 332, 357
scaling applications, Application DPI, 134–135
scope, 4
screen aspect ratio, 132, 138, 139, 151

bindex.indd 369bindex.indd 369 12/09/11 8:08 PM12/09/11 8:08 PM

370

screen DPI – SQLErrorEvents

screen DPI, 137–138
screen resolutions

defi ned, 132
development considerations, 12, 31
iOS, 78–79
mobile devices comparison, 132–133
screen size, 132

screen sizes
defi ned, 132
screen resolution, 132

<fx:Script>, 13, 14, 16, 23, 48, 50, 163,
179, 189, 205, 222, 223, 224, 244, 255,
260, 303, 307

SELECT, 249, 251, 288
Select teams SQL statement, 263
selectDrivers(), 279, 280
selectedFiles, 234
selectMedia(), 231, 232
SELECT_MULTIPLE event, 230, 231
selectTeams(), 262, 263
self-signed digital certifi cates, 82, 83, 85
Service.available, 241, 246
ServiceMonitor, 288
Service.unavailable, 241, 245, 247
set_audio_volume, 81
setCoordinates(), 110, 111, 112, 113
setting styles. See styles
Size and Position section, Properties view, 41
sizeComponents(), 144, 145, 146, 147, 150,

168–169, 171
sizeX, 109
sizeY, 109
skins, 15, 34, 300
SlideViewTransition, 29
soundByteArray, 330, 331, 332
Sound.play(), 357. See also play()
Source Forge, 290
Source view

defi ned, 39
HelloWorldAppHome.mxml, 39

spaceAvailable, 200
Spark

architecture, 15
component library, 14–21
default layouts, 41

splash images, 65, 81–82
Spotlight and Settings screens, 73
Sprite Layout App, 140–151

ActionScript mobile project settings, 141
aligning assets, 151
building, 141–150

group containers
layout declarations in, 159–160
portrait layout, 157–159
using states to change layout, 160–161

resizing assets, 150–151
Sprite Layout Flex App, 154

all states, 172
creating, with group containers, 162–173
landscape state, 173
portrait state, 173
sprites, portrait/landscape layouts, 172

SpriteLayoutApp.as
addTxt(), 153
drawRectangle(), 142–143
drawSprite(), 142–143
getSprite(), 144–145
stageHeight, 147–150
stageWidth, 147
static variables for colors, 141–142
TextField component, 152–153

SpriteLayoutFlexAppHome.mxml
ADDED_TO_STAGE, 163
currentState property, 171
<s:layout>, 166–167, 168
<s:layout.landscape>, 170–171
ORIENTATION_CHANGE, 163
portrait/landscape views, 167–168
<s:Rect>, 163–166
sizeComponents(), 168–169

sprites
initializing, 143
private variables for, 141–142
Sprite Layout Flex App, 172
width/height, 145, 146
x/y positions, 145, 146

SQL (Structured Query Language)
AS3, 286
defi ned, 247

SQL error status, 257, 282
SQL statements

CREATE, 249, 288
DELETE, 249, 288
INSERT, 249, 271, 275, 282, 288
JOIN, 249
list, 249
SELECT, 249, 251, 288
UPDATE, 249, 252, 282, 288
WHERE, 249, 251, 288

SQLConnection, 248, 250, 255, 256, 257, 258, 259,
262, 288

SQLErrorEvents, 265

bindex.indd 370bindex.indd 370 12/09/11 8:08 PM12/09/11 8:08 PM

371

SQLEvent – teams.db

SQLEvent, 248
SQLEvent.OPEN, 248, 255, 256
SQLEvent.RESULT, 250, 258
SQLite, 247–248. See also database tables; databases
SQLStatement object, 250
SQLStatement.execute(), 250, 269, 270
SQLStatement.parameters, 250, 251
SQLStatement.sqlConnection, 250
SQLStatement.text, 250
Stage, 119
stage size

content adapted, 138–151
resize events, 140

StageAlign, 138–139
StageAlign.TOP_LEFT, 139, 142, 175
stageHeight, 147–150
StageOrientation class, 152
StageOrientationEvent class, 152
StageOrientationEvent.ORIENTATION_CHANGE,

152, 153, 154, 163, 310
StageOrientationEVENT.ORIENTATION_

CHANGING, 152
StageOrientation.ROTATED_LEFT, 152
StageOrientation.ROTATED_RIGHT, 152
StageOrientation.UNKNOWN, 152
StageOrientation.UPSIDE_DOWN, 152
StageScaleMode, 138–139, 175
StageScaleMode.EXACT_FIT, 138
StageScaleMode.NO_BORDER, 138, 139
StageScaleMode.NO_SCALE, 138, 139, 175
StageScaleMode.SHOW_ALL, 138, 139
Stage.stageHeight, 112, 113, 140, 144,

150, 175, 342
Stage.stageWidth, 112, 140, 150, 175
StageWebView class, 315, 336–338

methods, 337
properties, 336

StageWebView.isHistoryBackEnabled,
336, 343, 357

StageWebView.isHistoryForwardEnabled, 336,
343, 357

StageWebView.isSupported, 336, 357
StageWebView.loadString(), 337, 357
StageWebView.loadURL(), 338, 357
stageWidth, 147–150
stageX, 110, 114
stageY, 110, 114
start(), 121, 241, 244
startBtn, 329, 331, 335
startRecording(), 328, 331
STATE_NAME, 175
StateOrientationEvent.CHANGE, 175

static methods, 7
static variables, 7
StatusEvent object, 241
StatusEvent.STATUS, 241, 244, 245, 246, 288
Step Into button, 198
Step Over button, 183, 185, 195, 196, 198
Step Return button, 196, 198
stepping through code, 193–196, 198
stopBtn, 329, 331, 335
String object, 22, 188
Structured Query Language. See SQL
<fx:Style>, 20, 21, 205, 311, 321, 333, 353
styles

Application DPI, 135–137, 175
CameraAppHome.mxml, 321
declarations, 20–21
GeolocationAppHome.mxml, 353–354
MicrophoneAppHome.mxml, 333–334
Style section, Properties view, 41

Submit button, 54, 65
supported profi le, Hello World App, 71
<supportedProfiles>, 68, 71, 72
.swf fi les, 104. See also Multitouch and Gestures

App project
swipe gesture, 119, 128
switchOff(), 8
switchOn(), 7, 8, 9, 10

T

tabBarVisible, 162–163
tabbed view navigator application, 26–28
tables. See database tables
targeting mobile devices

Browser App project, 338–339
Camera App project, 316–318
familiarize with steps, 44
Files Explorer App project, 203–204
Geolocation App project, 348–349
Hello World App project, 42–44
Maintaining Data App project, 242
MediaPlayer App project, 302
Microphone App project, 327–328

TeamItemRenderer.mxml, 266–267
Teams

CREATE TABLE, 258
data synchronizing solution, 287

Teams View
completing, 268–273
creating, 260–265
View Teams button, 259

teams.db, 255, 258, 259, 270

bindex.indd 371bindex.indd 371 12/09/11 8:08 PM12/09/11 8:08 PM

372

teamsList – updateDriver()

teamsList, 261, 271
TeamsView.mxml, 260

Add Team button, 271
declaring private functions, 262
delete driver, 270
deleteTeam(), 269
descriptive labels, 261
driver names added, 264–265
getResult(), 264
onDeleteDrivers(), 270–271
onDeleteTeam(), 270
onViewActivate(), 260
Select teams SQL statement, 263–264
SQL Connection object, 262–263
SQLErrorEvents, 265
teamsList, 261–262
<s:ViewMenuItem>, 272–273

Text Area component, 15–16
Text Input component, 15–16
<s:TextArea>, 15, 223, 245, 252, 352, 353, 354
TextField component, 152–153
<s:TextInput> component

BrowserAppHome.mxml, 341
data binding, 21, 22
defi ned, 15, 16
FilesExplorerAppHome.mxml, 222, 223
HelloWorldAppHome.mxml, 46, 49
<s:Label>, 276
prompt property, 15, 46, 245, 247, 252

<s:TileLayout>, 18
TimeEvent object, 299–300, 314
TimeEvent.COMPLETE, 299, 314
TimeEvent.CURRENT_TIME_CHANGE, 299
TimeEvent.DURATION_CHANGE, 299
Timer, 119, 120
TimerEvent, 119, 120, 121
TimeTrait, 314
touch events

handling, 106–114, 129
properties, 107–109
registering

on interactive objects, 114–117
with stage via class constructor, 109

setting input mode, 106–107
types, 107–109

touch input support
determining, 102–103, 129
development considerations, 12, 31
Multitouch.supportsTouchEvents, 102,

103, 129
setting input mode, 129

touch points
determining, 117
events

determining support, 103
tracking, in application, 110–114

Multitouch and Gestures App project,
125, 126, 127

TOUCH_BEGIN, 107, 108, 109, 110, 114, 116, 122,
123

TOUCH_END, 107, 108, 109, 110, 111, 114, 116, 123
TouchEvent, 107–108, 109, 129
TOUCH_MOVE, 107, 108, 109, 110, 111, 114, 116, 123
TOUCH_OUT, 107
TOUCH_OVER, 107
touchPointID, 109, 110, 111, 114
TOUCH_ROLL_OUT, 107
TOUCH_ROLL_OVER, 107
TOUCH_TAP, 107
trait events. See media trait events
TraitEventDispatcher, 298, 300
TransformGestureEvent, 119, 124, 129
TransformGestureEvent.GESTURE_PAN, 119,

123, 124
TransformGestureEvent.GESTURE_ROTATE,

119, 128
TransformGestureEvent.GESTURE_SWIPE,

119, 128
TransformGestureEvent.GESTURE_ZOOM, 119, 128
Try...Catch statements, 191–193, 198
two-fi nger-tap gesture, 118
type, 200

U

UI design, 12, 31
UIApplicationExitOnSuspend, 77
UIDeviceFamily, 77
UIPrerenderedIcon, 77, 78, 92
UIRequiredDeviceCapabilities, 77, 317, 327,

328, 339, 349
UIRequiresPersistentWifi, 77
UIStatusBarStyle, 77, 78, 317, 328, 339, 349
uncaught errors, 188–191
UncaughtErrorEvent, 188, 189, 190, 193, 196, 198
UncaughtErrorEvent.UNCAUGHT_ERROR, 188, 189,

190, 198
Uniform Resource Identifi ers (URIs), 12, 13
UPDATE, 249, 252, 282, 288
Update Teams view, 287
updateDriver(), 280, 281, 282

bindex.indd 372bindex.indd 372 12/09/11 8:08 PM12/09/11 8:08 PM

373

updateLayout() – ZoomViewTransition

updateLayout(), 309, 310, 311
updateTeam(), 262, 268, 273, 280, 281, 283
UpdateTeamsView.mxml, 273–284
updating

AIR applications, 96–98, 99
contents of fi le, 217–218
database tables, 252, 288
import statements, MaintainingDataAppHome.
mxml, 254–255, 257–258

UPSIDE_DOWN, 152
URIs (Uniform Resource Identifi ers), 12, 13
url property, 200, 201
URL property values returned, 202
URLLoader, 98, 240, 245, 246, 247
urlLoader, 240, 246
URLMonitor, 240, 241, 244, 288, 346
urlMonitor, 241, 244
URLMonitor.start(), 241
URLRequest, 244, 246

monitoring, 240–241
retrieving data, 240

urlRequest, 244, 246
URLResource object, 290, 314
use_camera, 81, 317

V

variables
defi ned, 5–6
static, 7

Variables panel, 38, 183, 184, 185, 187, 190, 194,
195, 198

vector, 118
version number, 70–71, 79–80, 97–98
<versionLabel>, 68, 71
<versionNumber>, 68, 70, 71, 72, 79, 96, 97, 99
vertical group, 233, 234
<s:VerticalLayout>, 18
VGroup tags, 18–19
<s:VGroup>, 252

DebuggingAppHome.mxml, 178
defi ned, 18
ImagesView.mxml, 233
MaintainingDataAppHome.mxml, 243
Sprite Layout App, 155, 157, 158, 159

Video Player component, 300–301, 314
VideoElement object, 292, 314
<s:VideoPlayer>, 289

MediaPlayerAppHome.mxml, 306–307
methods, 301
properties, 301
Settings view, 313

view component, 23
view menu component, 24–25
view navigator, 25
view navigator application, 23. See also tabbed view

navigator application
view panels

Flash Debug perspective, 38–39
Flash Perspective, 37–38

View Teams button, 259
view transitions, 29–31
viewActivate, 50, 260
<s:ViewMenuItem>, 24, 272–273
<s:ViewNavigatorApplication>, 23, 25, 28, 45,

82, 134, 188, 189, 198
viewTeams(), 254, 259
<visible>, 68, 72, 74, 76, 99

W

W3C (World Wide Web Consortium), 12
WAKE_LOCK, android.permission, 75
web controller, 336–346, 357. See also Browser App

project; StageWebView class
Web Service component, 17
WHERE, 249, 251, 288
while loop, 10
workspaces, 36
World Wide Web Consortium (W3C), 12
wrapper. See Flex OSMF wrapper
WRITE_EXTERNAL_STORAGE, android.

permission, 76, 203, 204
writeFloat(), 325, 326, 333, 357
writeUTFBytes(), 217, 226, 238

X

XML declaration, Hello World App, 69
XML namespaces. See namespaces
xmlns:vo, 303
x/y positions, sprites, 145, 146

Y

y/x positions, sprites, 145, 146

Z

zoom gesture, 119, 128
ZoomViewTransition, 29, 30

bindex.indd 373bindex.indd 373 12/09/11 8:08 PM12/09/11 8:08 PM

	Cover
	Beginning: Flash®, Flex®, and AIR® Development for Mobile Devices
	Contents
	Introduction
	Chapter 1: An Introduction to Flash, Flex, and Air
	Adobe Flash
	Flash on Mobile Devices

	ActionScript 3.0
	ECMAScript
	Key Concepts

	The Flex Framework
	Flex 4.5.1
	MXML
	Spark Library Components
	Data Binding
	Flex Mobile Application Structure
	Considerations for Mobile Development

	Adobe AIR
	Summary

	Chapter 2: Getting Started
	Using Flash Builder 4.5.1
	Working with Workspaces
	Using the Flash Perspective
	Using the Flash Debug Perspective
	Using the Source and Design Views

	Creating a Mobile Project Using Flash Builder
	Creating a Hello World App Example

	Defining Run Configurations
	Running Mobile Applications on the Desktop
	Running Mobile Applications on the Device

	Summary

	Chapter 3: Building Air Applications for Android, Blackberry, and IOS Devices
	AIR Application Descriptor Files
	Setting Properties in the AIR Application Descriptor File
	Manually Editing the Application Descriptor File for the Hello World App
	BlackBerry Tablet OS Configuration
	Packaging for Google Android
	Packaging for Apple iOS
	Packaging for BlackBerry Tablet OS

	Updating AIR Applications
	Retrieving Details from the Application Descriptor File
	Using the Version Number

	Summary

	Chapter 4: Touch, Multitouch, and Gestures
	Multitouch Interactions
	Determining Touch Input Support
	Creating a Multitouch and Gestures App Example
	Touch Event Handling
	Registering Touch Events on Interactive Objects
	Determining the Supported Touch Points

	Gesture Interactions
	Determining Which Gestures Are Supported on a Device
	Gesture Events and Event Handling
	Registering Gesture Events on Interactive Objects
	Handling Gesture Events

	Utilizing the Multitouch Panel in Device Central
	Summary

	Chapter 5: Developing for Multiple Screen Sizes
	Considerations for Multiple Screen Sizes
	Pixel Density
	Utilizing Device DPI

	Adapting Content to Stage Size
	Using the StageScaleMode and StageAlign Classes
	Handling Stage Resize Events
	Creating the Sprite Layout App Example

	Handling Device Orientation
	Using the StageOrientation Class
	Using the StageOrientationEvent Class

	Using Layouts in Flex
	Aligning Items in Group Containers

	Summary

	Chapter 6: Debugging Applications
	Setting Breakpoints
	Global Error Handling
	Handling Uncaught Errors
	Try…Catch Statements
	Stepping through Code
	Summary

	Chapter 7: Working with The Filesystem
	Reading from the Filesystem
	The File and FileStream Classes
	Creating a Files Explorer App Example

	Modifying Files and Filesystems
	Creating New Files and Directories

	Utilizing Browse Dialogs
	Opening a Single File
	Opening Multiple Files
	Saving a Single File to a Location

	Summary

	Chapter 8: Working with Data
	Detecting Changes in Network Availability
	Retrieving Data with URLRequest
	Monitoring the URLRequest Object
	Creating the Maintaining Data App Example

	Using SQLite for Storing Data
	Creating a SQLite Database

	Summary

	Chapter 9: Working with Audio and Video
	Introducing the Open Source Media Framework
	Creating a URLResource Object
	Creating a MediaElement Object
	Media Traits
	Using the MediaTraitType Class to Identify Traits
	Using the MediaPlayer to Play Media Elements
	Using the MediaPlayerSprite Class to Play Media Resources
	Handling Trait Events
	Using an AudioEvent Object

	Using the Flex OSMF Wrapper
	Using the VideoPlayer Component
	Creating a MediaPlayer Example

	Summary

	Chapter 10: Utilizing Device Features
	Using the Device's Camera
	Using the CameraUI Class
	Creating a Camera App Example

	Capturing Sound Using the Device's Microphone
	Using the Microphone Class
	Using the SampleDataEvent Class
	Creating a Microphone App Example

	Utilizing the Device's Web Controller
	Using the StageWebView Class
	Creating a Browser App Example

	Utilizing the Device's Geolocation Sensor
	Using the Geolocation Class
	Using the GeolocationEvent Class
	Creating a Geolocation App Example

	Summary

	Index

