
Peter Ondrejka Douglas Silas Martin Prpič
Rüdiger Landmann

Red Hat Enterprise Linux 7
Resource Management and Linux
Containers Guide

Managing system resources and administering Linux Containers on Red
Hat Enterprise Linux 7

Red Hat Enterprise Linux 7 Resource Management and Linux
Containers Guide

Managing system resources and administering Linux Containers on Red
Hat Enterprise Linux 7

Peter Ondrejka
Red Hat Engineering Content Services
pondrejk@redhat.com

Douglas Silas
Red Hat Engineering Content Services
dhensley@redhat.com

Martin Prpič
Red Hat Security Response Team
mprpic@redhat.com

Rüdiger Landmann
Red Hat Engineering Content Services
r.landmann@redhat.com

Legal Notice

Copyright © 2013 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. If you distribute this document, or a modified version of it, you must provide attribution to Red
Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be
removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or
endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service marks or
trademarks/service marks of the OpenStack Foundation, in the United States and other countries and
are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Managing system resources, administering Linux Containers, and using Docker on Red Hat Enterprise
Linux 7.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

⁠Part I. Resource Management With Control Groups

⁠Chapter 1. Introduction to Control Groups (Cgroups)
⁠1.1. What are Control Groups
⁠1.2. Default Cgroup Hierarchies
⁠1.3. Resource Controllers in Linux Kernel
⁠1.4. Additional Resources

⁠Chapter 2. Using Control Groups
⁠2.1. Creating Control Groups
⁠2.2. Removing Control Groups
⁠2.3. Modifying Control Groups
⁠2.4. Obtaining Information About Control Groups
⁠2.5. Additional Resources

⁠Chapter 3. Using libcgroup Tools
⁠3.1. Mounting a Hierarchy
⁠3.2. Unmounting a Hierarchy
⁠3.3. Creating Control Groups
⁠3.4. Removing Control Groups
⁠3.5. Setting Cgroup Parameters
⁠3.6. Moving a Process to a Control Group
⁠3.7. Starting a Process in a Control Group
⁠3.8. Obtaining Information About Control Groups
⁠3.9. Additional Resources

⁠Chapter 4 . Control Group Application Examples
⁠4.1. Prioritizing Database I/O
⁠4.2. Prioritizing Network Traffic

⁠Part II. Linux Containers

⁠Chapter 5. Introduction to Linux Containers
⁠5.1. Linux Containers Architecture
⁠5.2. Secure Containers with SELinux
⁠5.3. Container Use Cases
⁠5.4. Application Packaging with Docker
⁠5.5. Linux Containers Compared to KVM Virtualization
⁠5.6. Additional Resources

⁠Chapter 6. Using Docker
⁠6.1. Working with Docker Images
⁠6.2. Managing Containers
⁠6.3. Monitoring Images and Containers
⁠6.4. Using Dockerfiles
⁠6.5. Networking
⁠6.6. Sharing Data Across Containers
⁠6.7. Publishing Images
⁠6.8. Additional Resources

⁠Chapter 7. Using virsh
⁠7.1. Connecting to the LXC Driver
⁠7.2. The virsh Utility
⁠7.3. Creating a Container
⁠7.4. Starting, Connecting to, and Stopping a Container
⁠7.5. Modifying a Container

3

4
4
4
6
7

9
9

10
11
15
18

20
20
22
22
23
24
25
26
27
28

29
29
30

32

33
33
35
35
38
38
39

4 0
40
42
45
50
52
53
56
57

58
58
59
59
60
61

Table of Contents

1

. .

⁠7.6. Automatically Starting a Container on Boot
⁠7.7. Removing a Container
⁠7.8. Monitoring a Container
⁠7.9. Networking with Linux Containers
⁠7.10. Mounting Devices to a Container
⁠7.11. Additional Resources

Revision History

62
63
63
65
69
70

71

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

2

⁠Part I. Resource Management With Control Groups
This part covers the concepts of resource management with use of kernel control groups, describing
common tasks such as creating, modifying and monitoring control groups, as well as assigning system
resources to these groups.

⁠Part I. Resource Management With Control Groups

3

Chapter 1. Introduction to Control Groups (Cgroups)

1.1. What are Control Groups
The control groups, abbreviated as cgroups in this guide, are a Linux kernel feature that allows you to
allocate resources — such as CPU time, system memory, network bandwidth, or combinations of these
resources — among hierarchically ordered groups of processes running on a system. By using cgroups,
system administrators gain fine-grained control over allocating, prioritizing, denying, managing, and
monitoring system resources. Hardware resources can be smartly divided up among applications and
users, increasing overall efficiency.

Control Groups provide a way to hierarchically group and label processes, and to apply resource limits to
them. Traditionally, all processes received similar amount of system resources that administrator could
modulate with the process niceness value. With this approach, applications that involved a large number of
processes got more resources than applications with few processes, regardless of the relative importance
of these applications.

Red Hat Enterprise Linux 7 moves the resource management settings from the process level to the
application level by binding the system of cgroup hierarchies with the systemd unit tree. Therefore, you
can manage system resources with systemctl commands, see Chapter 2, Using Control Groups for
more information on how to use it.

In previous versions of Red Hat Enterprise Linux, system administrators built custom cgroup hierarchies
with use of the cgconfig command from the libcgroup package. This package is now deprecated and it
is not recommended to use it since it can easily create conflicts with the default cgroup hierarchy.
However, libcgroup is still available to cover for certain specific cases, where systemd is not yet
applicable, most notably for using the net-prio subsystem. See Chapter 3, Using libcgroup Tools.

The aforementioned tools provide a high-level interface to interact with cgroup controllers (also known as
subsystems) in Linux kernel. The main cgroup controllers for resource management are cpu, memory and
blkio, see Available Controllers in Red Hat Enterprise Linux 7 for the list of controllers enabled by default.
For detailed description of resource controllers and their configurable parameters, refer to Controller-
Specific Kernel Documentation.

1.2. Default Cgroup Hierarchies
By default, systemd automatically creates a hierarchy of slices, scopes and services to provide a unified
structure for the cgroup tree. With the systemctl command, you can further modify this structure by
creating custom slices, as shown in Section 2.1, “Creating Control Groups”. Also, systemd automatically
mounts hierarchies for important kernel resource controllers (see Available Controllers in Red Hat
Enterprise Linux 7) in the /sys/fs/cgroups/ directory.

Warning

The deprecated cgconfig tool from the libcgroup package is available to mount and handle
hierarchies for controllers not yet supported by systemd (most notably the net-prio controller).
Never use libcgropup tools to modify the default hierarchies mounted by systemd since it would
lead to unexpected behavior. The libcgroup library will be removed in the future versions of Red
Hat Enterprise Linux. For more information on how to use cgconfig, see Chapter 3, Using
libcgroup Tools.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

4

Systemd Unit Types

All processes running on your system are child processes of the systemd init process. Systemd provides
three unit types that are used for the purpose of resource control (for a complete list of systemd's unit
types, see the chapter called Managing Services with systemd in Red Hat Enterprise Linux 7 System
Administrators Guide):

Service — A group of processes, which systemd started based on unit configuration file. Services
encapsulate the specified processes so that they can be started and stopped as a one set. Services
are named in the following way:

name.service

Where name stands for the name of service.

Scope — A group of externally created processes. Scopes encapsulate processes that are started
and stopped by arbitrary processes via the fork() function and then registered at runtime with PID1.
For instance, user sessions, containers, and virtual machines are exposed as scopes. Scopes are
named in the following form:

name.scope

Here, name stands for the name of scope.

Slice — A group of hierarchically organized units that manage system processes. Slices do not
contain processes, they organize a hierarchy in which scopes and services are placed. The actual
processes are contained in scopes or in services. In this hierarchical tree, every name of a slice unit
corresponds with the path to the location in the hierarchy. The dash ("-") character acts as a
separator the path components. For example, if the name of a slice looks as follows:

parent-name.slice

it means that a slice called parent-name.slice is a subslice of the parent.slice. This slice can have
its own subslice named parent-name-name2.slice, and so on.

There is one root slice of all slices denoted as:

-.slice

Service, scope and slice units directly map to objects in the cgroup tree. When these units are activated,
they each map directly to cgroup paths built from the unit names. For example, a service ex.service
contained in a test-waldo.slice is found in the cgroup test.slice/test-waldo.slice/ex.service/.

Services, scopes and slices may be created freely by the administrator and also dynamically by programs.
By default, the operating system defines a number of built-in services that are necessary to start-up the
system. Also, there are four slices defined by default:

- .slice — the root slice

system.slice — the default place for all system services

user.slice — the default place for all user sessions

machine.slice — the default place for all virtual machines and containers

⁠Chapter 1. Introduction to Control Groups (Cgroups)

5

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7-Beta/html/System_Administrators_Guide

The above is the default configuration, the administrator may define new slices and assign services and
scopes to them. Also note that all login sessions are automatically placed in an individual scope unit, same
as virtual machines and container processes. Furthermore, all users logging in are assigned with an
implicit slice.

The following is a simplified example of a cgroup tree. This output was generated with the systemd-cgls
command (see Section 2.4, “Obtaining Information About Control Groups”):

├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 20
├─user.slice
│ └─user-1000.slice
│ └─session-1.scope
│ ├─11459 gdm-session-worker [pam/gdm-password]
│ ├─11471 gnome-session --session gnome-classic
│ ├─11479 dbus-launch --sh-syntax --exit-with-session
│ ├─11480 /bin/dbus-daemon --fork --print-pid 4 --print-address 6 --session
│ ...
│
└─system.slice
 ├─systemd-journald.service
 │ └─422 /usr/lib/systemd/systemd-journald
 ├─bluetooth.service
 │ └─11691 /usr/sbin/bluetoothd -n
 ├─systemd-localed.service
 │ └─5328 /usr/lib/systemd/systemd-localed
 ├─colord.service
 │ └─5001 /usr/libexec/colord
 ├─sshd.service
 │ └─1191 /usr/sbin/sshd -D
 │
 ...

As you can see, services and scopes contain process and are placed in slices that do not contain
processes of their own. The only exception is PID 1 that is located in the special systemd.slice. Also note
that - .slice is not shown as it is implicitly identified with the root of the entire tree.

Service and slice units may be configured via unit files on disk (see Section 2.3.2, “Modifying Unit Files”), or
alternatively be created dynamically at runtime via API calls to PID 1 (see Section 1.4, “Online
Documentation” for API reference). Scope units may only be created at runtime via API calls to PID 1, but
not from unit files on disk. Units that are created dynamically at runtime via API calls are called transient
units. Transient units exist only during runtime and are released automatically as soon as they finished or
they got deactivated or the system is rebooted.

1.3. Resource Controllers in Linux Kernel
A resource controller, also called cgroup subsystem, represents a single resource, such as CPU time or
memory. The Linux kernel provides a range of resource controllers, that are mounted automatically by
systemd. Find the list of currently mounted resource controllers in /proc/cgroups, or use the lssubsys
monitoring tool. In Red Hat Enterprise Linux 7, systemd mounts the following controllers by default:

Available Controllers in Red Hat Enterprise Linux 7

blkio — sets limits on input/output access to and from block devices such as physical drives (disk,
solid state, USB, etc.).

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

6

cpu — uses the scheduler to provide cgroup tasks access to the CPU. It is mounted together with
cpuacct on the same mount.

cpuacct — automatic reports on CPU resources used by tasks in a cgroup. It is mounted together
with cpu on the same mount.

cpuset — assigns individual CPUs (on a multicore system) and memory nodes to tasks in a cgroup.

devices — allows or denies access to devices by tasks in a cgroup.

freezer — suspends or resumes tasks in a cgroup.

memory — sets limits on memory use by tasks in a cgroup, and generates automatic reports on
memory resources used by those tasks.

net_cls — tags network packets with a class identifier (classid) that allows the Linux traffic controller
(tc) to identify packets originating from a particular cgroup task.

perf_event — allows to monitor cgroups with the perf tool.

hugetlb — allows to use virtual memory pages of large sizes, and to enforce resource limits on these
pages.

The Linux Kernel exposes a wide range of tunable parameters for resource controllers that can be
configured with systemd. See the kernel documentation (list of references in Controller-Specific Kernel
Documentation) for detailed description of these parameters.

1.4. Additional Resources
To find more information about resource control under systemd, the unit hierarchy, as well as the kernel
resource controllers, refer to the materials listed below:

Installed Documentation

Cgroup-Related Systemd Documentation

The following man pages contain general information unified cgroup hierarchy under systemd:

systemd.resource-control(5) — describes the configuration options for resource control shared
by system units.

systemd.unit(5) — describes common options of all unit configuration files.

systemd.slice(5) — provides general information about .slice units.

systemd.scope(5) — provides general information about .scope units.

systemd.service(5) — provides general information about .service units.

Controller-Specific Kernel Documentation

The kernel-doc package provides a detailed documentation of all resource controllers. This package is
included in the optional *subscription* channel, to install it, type as root:

⁠Chapter 1. Introduction to Control Groups (Cgroups)

7

yum install kernel-doc

After the installation, the following files will appear under the /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/cgroups/ directory:

blkio subsystem — blkio-controller.txt

cpuacct subsystem — cpuacct.txt

cpuset subsystem — cpusets.txt

devices subsystem — devices.txt

freezer subsystem — freezer-subsystem.txt

memory subsystem — memory.txt

net_cls subsystem — net_cls.txt

Additionally, refer to the following files on further information about the cpu subsystem:

Real-T ime scheduling — /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/scheduler/sched-rt-group.txt

CFS scheduling — /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/scheduler/sched-bwc.txt

Online Documentation

Red Hat Enterprise Linux 7 System Administrators Guide — The System Administrator's Guide
documents relevant information regarding the deployment, configuration and administration of Red Hat
Enterprise Linux 7. It is oriented towards system administrators with a basic understanding of the
system.

The D-Bus API of systemd — The reference for D-Bus API commands for accessing systemd.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

8

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide
http://www.freedesktop.org/wiki/Software/systemd/dbus/

Chapter 2. Using Control Groups
The following sections provide an overview of tasks related to creation and management of control groups.
This guide focuses on utilities provided by systemd that are preferred as a way of cgroup management
and will be supported in the future. Previous versions of Red Hat Enterprise Linux used the libcgroup
package for the same purpose. This package is still available to assure backward compatibility (see
Warning), but it will not be supported in the future versions of Red Hat Enterprise Linux.

2.1. Creating Control Groups
From the systemd's perspective, a cgroup is bound to a system unit configurable with a unit file and
manageable with systemd's command-line utilities. Depending on the type of application, your resource
management settings can be transient or persistent.

You can create a transient cgroup for a service by starting this service with the systemd-run
command. This way, you can set limits on resources consumed by the service during its runtime.
Applications can create transient cgroups dynamically by using API calls to systemd. See Section 2.5,
“Online Documentation” for API reference. Transient unit is removed automatically as soon as the service
is stopped.

To assign a persistent cgroup to a service, edit its unit configuration file. This configuration is preserved
after the system reboot, so it can be used to manage services that are started automatically. Note that
scope units can not be created this way.

2.1.1. Creating Transient Cgroups with systemd-run

The systemd-run command is used to create and start a transient service or scope unit and run a
custom command in this unit. Commands executed in service units are started asynchronously in the
background, where they are invoked from the systemd process. Commands run in scope units are started
directly from the systemd-run process and thus inherit the execution environment of the caller. Execution
in this case is synchronous.

To run a command in a specified cgroup, type as root:

systemd-run --unit=name --scope --slice=slice_name command

The name stands for the name you want this unit to be known under. If --unit is not specified, a unit
name will be generated automatically. It is recommended to choose a descriptive name, since it will
represent the unit in the systemctl output. This name must be unique during runtime of the unit.

Use the optional --scope parameter to create a transient scope unit instead of service unit that is
created by default.

With the --slice option, you can make your newly created service or scope unit a member of a
specified slice. Replace slice_name with the name of an existing slice (as shown in the output of
systemctl -t slice), or create a new slice by passing a unique name. By default, services and
scopes are created as members of the system.slice .

Replace command with the command you wish to execute in the service unit. Place this command at
the very end of the systemd-run syntax, so that the parameters of this command are not confused
for parameters of systemd-run.

Besides the above options, there are several other parameters you can specify for systemd-run. With --
description, you can add a description to the unit, --remain-after-exit lets you to collect runtime

⁠Chapter 2. Using Control Groups

9

information after terminating the service's process. The --machine option executes the command in a
confined container. See the systemd-run man page to learn more.

Example 2.1. Starting a New Service with systemd-run

Use the following command to run the top utility in a service unit in a new slice called test. Type as
root:

~]# systemd-run --unit=toptest --slice=test top -b

The following message is displayed to confirm that you started the service successfully:

Running as unit toptest.service

Now, you can use the name toptest.service to monitor or to modify the cgroup with systemctl
commands.

2.1.2. Creating Persistent Cgroups

You can configure a unit to be started automatically on system boot by executing the systemctl
enable command (see the chapter called Managing Services with systemd in Red Hat Enterprise Linux 7
System Administrators Guide). Running this command automatically creates a unit file in the
/usr/lib/systemd/system/ directory. To make persistent changes to the cgroup, add or modify
configuration parameters in its unit file. For more information, see Section 2.3.2, “Modifying Unit Files”.

2.2. Removing Control Groups
Transient cgroups are released automatically as soon as the processes they contain finish. By passing
the --remain-after-exit option to systemd-run you can keep the unit running after its processes
finished to collect runtime information. To stop the unit gracefully, type:

systemctl stop name.service

Replace name with the name of the service you wish to stop. To terminate one or more of the unit's
processes, type as root:

systemctl kill name.service --kill-who=PID,... --signal=signal

Replace name with a name of the unit, for example httpd.service. Use --kill-who to select which
processes from the cgroup you wish to terminate. To kill more processes at the same time, pass a
comma-separated list of PIDs. Replace signal with the type of POSIX signal you wish to send to specified
processes. Default is SIGTERM. For more information, see the systemd.kill manual page.

Persistent cgroups are released when the unit is disabled and its configuration file is deleted by running:

systemctl disable name.service

where name stands for the name of the service to be disabled.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

10

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide

2.3. Modifying Control Groups
Each unit supervised by systemd has a unit configuration file in the /usr/lib/systemd/system/
directory. To change parameters of a service unit, modify this configuration file. You can do that manually
or from the command-line interface by using the systemctl set-property command.

2.3.1. Setting Parameters from the Command-Line Interface

The systemctl set-property command allows you to change resource control settings during the
application runtime. To do so, use the following syntax as root:

systemctl set-property name parameter=value

Replace name with the name of the systemd unit you wish to modify, parameter with a name of the
parameter to be changed, and value with a new value you want to assign to this parameter.

Not all unit parameters may be changed at runtime, but most of those related to resource control may, see
Section 2.3.2, “Modifying Unit Files” for a list. Note that systemctl set-property allows you to change
multiple properties at once, which is preferable over setting them individually.

The changes are applied instantly, and written into unit file so that they are preserved after reboot. You
can change this behavior by passing the --runtime option that makes your settings transient:

systemctl set-property --runtime name property=value

Example 2.2. Using systemctl set-property

To limit the CPU and memory usage of httpd.service from the command line, type:

~]# systemctl set-property httpd.service CPUShares=600 MemoryLimit=500M

To make this a temporary change, add the --runtime option:

~]# systemctl set-property --runtime httpd.service CPUShares=600
MemoryLimit=500M

2.3.2. Modifying Unit Files

Systemd service unit files, by default stored in the /usr/lib/systemd/system/ directory, provide a
number of high-level configuration parameters useful for resource management. These parameters
communicate with Linux cgroup controllers, that must be enabled in the kernel. With these parameters, you
can manage CPU, memory consumption, block IO, as well as some more fine-grained unit properties.

Managing CPU

The cpu controller is enabled by default in kernel, and consequently every system service receives the
same amount of CPU, regardless of how many processes it contains. This default behavior can be
changed with the DefaultControllers parameter in the /etc/systemd/system.conf configuration
file. To manage the CPU allocation, use the following directive in the [Service] section of the unit
configuration file:

CPUShares=value

⁠Chapter 2. Using Control Groups

11

Replace value with a number of CPU shares. The default value is 1024, by increasing this
number you assign more CPU to the unit. This parameter implies that CPUAccounting is turned
on in the unit file.

The CPUShares parameter controls the cpu.shares control group parameter. See the description of the
cpu controller in Controller-Specific Kernel Documentation to see other CPU-related control parameters.

Example 2.3. Limiting CPU Consumption of a Unit

Imagine you wish to assign the Apache service 1500 CPU shares instead of the default 1024. To do
so, modify the CPUShares setting in the /usr/lib/systemd/system/httpd.service unit file:

[Service]
CPUShares=1500

To apply your changes, reload systemd's configuration and restart Apache so that the modified service
file is taken into account:

~]# systemctl daemon-reload

~]# systemctl restart httpd.service

Managing Memory

To enforce limits on memory the unit's memory consumption, use the following directives in the [Service]
section of the unit configuration file:

MemoryLimit=value

Replace value with a limit on maximum memory usage of the processes executed in the cgroup.
Use K, M, G, T suffixes to identify Kilobyte, Megabyte, Gigabyte, or Terabyte as a unit of
measurement. Also, the MemoryAccounting parameter must be enabled for the same unit.

The MemoryLimit parameter controls the memory.limit_in_bytes control group parameter. For more
information, see the description of the memory controller in Controller-Specific Kernel Documentation.

Example 2.4 . Limiting Memory Consumption of a Unit

Imagine you wish to assign a 1GB memory limit to the Apache service. To do so, modify the
MemoryLimit setting in the /usr/lib/systemd/system/httpd.service unit file:

[Service]
MemoryLimit=1G

To apply your changes, you must reload systemd's configuration and restart Apache so that the
modified service file is taken into account:

~]# systemctl daemon-reload

~]# systemctl restart httpd.service

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

12

Managing Block IO

To manage the Block IO, use the following directives in the [Service] section of the unit configuration file.
Directives listed below assume that the BlockIOAccounting parameter is enabled:

BlockIOWeight=value

Replace value with a new overall block IO weight for the executed processes. You can choose a
single value between 10 and 1000, the default setting is 1000.

BlockIODeviceWeight=device_name value

Replace value with a block IO weight for a device specified with device_name. Replace
device_name either with a name or with a path to a device. As with BlockIOWeight, you can set
a single weight value between 10 and 1000.

BlockIOReadBandwidth=device_name value

This directive allows you to limit a specific bandwidth for a unit. Replace device_name with the
name of a device or with a path to a block device node, value stands for a bandwidth rate. Use K,
M, G, T suffixes to specify units of measurement, value with no suffix is interpreted as bytes per
second.

BlockIOWriteBandwidth=device_name value

Limits the write bandwidth for a specified device. Accepts the same arguments as
BlockIOReadBandwidth.

Each of the aforementioned directives control a corresponding cgroup parameter. See the description of
the blkio controller in Controller-Specific Kernel Documentation.

Note

Currently, the blkio resource controller does not support buffered write operations. It is primarily
targeted at direct I/O, so the services that use buffered write will ignore the limits set with
BlockIOWriteBandwidth. On the other hand, buffered read operations are supported, and
BlockIOReadBandwidth limits will be applied correctly both on direct and buffered read.

⁠Chapter 2. Using Control Groups

13

Example 2.5. Limiting Block IO of a Unit

To lower the block IO weight for the Apache service accessing the /home/jdoe/ directory add the
following text into the /usr/lib/systemd/system/httpd.service unit file:

[Service]
BlockIODeviceWeight=/home/jdoe 750

To set the maximum bandwidth for Apache reading from the /var/log/ directory to 5MB per second,
use the following syntax:

[Service]
BlockIOReadBandwith=/var/log 5M

To apply your changes, you must reload systemd's configuration and restart Apache so that the
modified service file is taken into account:

~]# systemctl daemon-reload

~]# systemctl restart httpd.service

Managing Other System Resources

There are several other directives you can use in the unit file to facilitate resource management:

DeviceAllow=device_name options

With this option, you can control access to specific device nodes. Here, device_name stands for a
path to a device node or a device group name as specified in /proc/devices. Replace
options with a combination of r, w, and m to allow the unit to read, write, or create device nodes.

DevicePolicy=value

Here, value is one of: strict (only allows the types of access explicitly specified with
DeviceAllow), closed (allows access to standard pseudo devices including /dev/null, /dev/zero,
/dev/full, /dev/random, and /dev/urandom) or auto (allows access to all devices if no explicit
DeviceAllow is present, which is default behavior)

Slice=slice_name

Replace slice_name with the name of the slice to place the unit in. The default is system.slice.
Scope units can not be arranged this way, since they are tied to their parent slices.

ControlGroupAttribute=attribute value

With this option, you can set various control group parameters exposed by Linux cgroup
controllers. Replace attribute with a low-level cgroup parameter you wish to modify and value with
a new value for this parameter. Refer to Controller-Specific Kernel Documentation for more
information on cgroup controllers.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

14

Example 2.6. Changing Low-level Cgroup Attributes

Imagine that you wish change the memory.swappiness setting that sets the tendency of the kernel to
swap out process memory used by tasks in the cgroup. For more information on this setting, see the
description of the memory controller in Controller-Specific Kernel Documentation. To set
memory.swappiness to 70 for the Apache service, add the following text to
/usr/lib/systemd/system/httpd.service:

[Service]
ControlGroupAttribute=memory.swappiness 70

To apply your changes, you must reload systemd's configuration and restart Apache so that the
modified service file is taken into account:

~]# systemctl daemon-reload

~]# systemctl restart httpd.service

2.4. Obtaining Information About Control Groups
You can use the systemctl command to list system units and to view their status. Systemd also
provides systemd-cgls to view the hierarchy of control groups and systemd-cgtop to monitor their
resource consumption in real time.

2.4.1. Listing Units

Use the following command to list all active units on the system:

systemctl list-units

This command lists all active units on the system. The list-units option is executed by default, which
means that you will receive the same output when you omit this option and execute just:

systemctl
UNIT LOAD ACTIVE SUB DESCRIPTION
abrt-ccpp.service loaded active exited Install ABRT coredump hook
abrt-oops.service loaded active running ABRT kernel log watcher
abrt-vmcore.service loaded active exited Harvest vmcores for ABRT
abrt-xorg.service loaded active running ABRT Xorg log watcher
...

The output contains four rows:

UNIT — the name of unit that also reflects the unit's position in the cgroup tree. As mentioned in
Section 1.2, “Systemd Unit Types”, three unit types are relevant for resource control: slice, scope and
service. For a complete list of systemd's unit types, see the chapter called Managing Services with
systemd in Red Hat Enterprise Linux 7 System Administrators Guide.

LOAD — reflects whether the unit configuration file was properly loaded. If the unit file failed to load, the
field will contain error instead of loaded. Other unit load states are: stub, merged, and masked.

ACTIVE — the high-level unit activation state, which is a generalization of SUB.

⁠Chapter 2. Using Control Groups

15

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide

SUB — the low-level unit activation state. The range of possible values depends on the unit type.

DESCRIPTION — the description of the unit's content and functionality.

By default, systemctl lists only active units (in terms of high-level activations state — the ACTIVE field).
Use the --all option to see inactive units too. To limit the amount of information in the output list, use the
--type (-t) parameter that requires a comma-separated list of unit types such as service and slice, or
unit load states such as loaded and masked.

Example 2.7. Using systemctl list-units

To view a list of all slices used on the system, type:

~]$ systemctl -t slice

To list all active masked services, type:

~]$ systemctl -t service,masked

To list all unit files installed on your system and their status, type:

systemctl list-unit-files

2.4.2. Viewing the Control Group Hierarchy

The aforementioned listing commands do not let you go beyond the unit level to see the actual processes
running in cgroups. Also, the output of systemctl does not show the hierarchy of units. You can achieve
both by using the systemd-cgls command that groups the running process according to cgroups. To
display the whole cgroup hierarchy on your system, type:

systemd-cgls

When systemd-cgls is issued without parameters, it returns the entire cgroup hierarchy. The highest
level of the cgroup tree is formed by slices and can look as follows:

├─system
│ ├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 20
│ ...
│
├─user
│ ├─user-1000
│ │ └─ ...
│ ├─user-2000
│ │ └─ ...
│ ...
│
└─machine
 ├─machine-1000
 │ └─ ...
 ...

Note that machine slice is present only if you are running a virtual machine or container. For more info on
the cgroup tree see Section 1.2, “Systemd Unit Types”.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

16

To reduce the output of systemd-cgls, and to view a specified part of the hierarchy, type:

systemd-cgls name

Replace name with a name of the resource controller you wish to inspect.

As an alternative, use the systemctl status to display detailed information about a system unit. A
cgroup subtree is a part of the output of this command.

systemctl status name

To learn more about systemctl status, see the chapter called Managing Services with systemd in Red
Hat Enterprise Linux 7 System Administrators Guide.

Example 2.8. Viewing the Control Group Hierarchy

To see a cgroup tree of the memory resource controller, execute:

~]$ systemd-cgls memory
memory:
├─ 1 /usr/lib/systemd/systemd --switched-root --system --deserialize 23
├─ 475 /usr/lib/systemd/systemd-journald
...

The output of the above command lists the services that interact with the selected controller. A different
approach is to view a part of the cgroup tree for a certain service, slice, or scope unit:

~]# systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled)
 Active: active (running) since Sun 2014-03-23 08:01:14 MDT; 33min ago
 Process: 3385 ExecReload=/usr/sbin/httpd $OPTIONS -k graceful (code=exited,
status=0/SUCCESS)
 Main PID: 1205 (httpd)
 Status: "Total requests: 0; Current requests/sec: 0; Current traffic: 0 B/sec"
 CGroup: /system.slice/httpd.service
 ├─1205 /usr/sbin/httpd -DFOREGROUND
 ├─3387 /usr/sbin/httpd -DFOREGROUND
 ├─3388 /usr/sbin/httpd -DFOREGROUND
 ├─3389 /usr/sbin/httpd -DFOREGROUND
 ├─3390 /usr/sbin/httpd -DFOREGROUND
 └─3391 /usr/sbin/httpd -DFOREGROUND

...

Beides the aforementioned tools, there is also the machinectl command dedicated to Linux
containers. See Section 7.8, “Monitoring a Container” for more information on monitoring Linux
containers.

2.4.3. Viewing Resource Controllers

The aforementioned systemctl commands let you monitor the higher-level unit hierarchy, but do not
show which resource controllers in Linux kernel are actually used by which processes. This information is
stored in dedicated proces file, to view it, type as root:

⁠Chapter 2. Using Control Groups

17

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7-Beta/html/System_Administrators_Guide

cat proc/PID/cgroup

Where PID stands for the ID of the process you wish to examine. By default, the list is the same for all
units started by systemd, since it automatically mounts all default controllers. See the following example:

~]# cat proc/27/cgroup
10:hugetlb:/
9:perf_event:/
8:blkio:/
7:net_cls:/
6:freezer:/
5:devices:/
4:memory:/
3:cpuacct,cpu:/
2:cpuset:/
1:name=systemd:/

By checking this file, you can determine if the process has been placed in the desired cgroups as defined
by the systemd unit file specifications.

2.4.4. Monitoring Resource Consumption

The systemd-cgls command provides a static snapshot of the cgroup hierarchy. To see a dynamic
account of currently running cgroups ordered by their resource usage (CPU, Memory, and IO), use:

systemd-cgtop

The behavior, provided statistics, and control options of systemd-cgtop are akin of those of the top
utility. See systemd-cgtop man page for more information.

2.5. Additional Resources
For more information on how to use systemd and related tools to manage system resources on Red Hat
Enterprise Linux, refer to the sources listed below:

Installed Documentation

Man Pages of Cgroup-Related Systemd Tools

systemd-run(1) — The manual page lists all command-line options of the systemd-run utiltiy.

systemctl(1) — The manual page of the systemctl utility that lists available options and commands.

systemd-cgls(1) — This manual page lists all command-line options of the systemd-cgls utiltiy.

systemd-cgtop(1) — The manual page contains the list of all command-line options of the
systemd-cgtop utiltiy.

machinectl(1) — This manual page lists all command-line options of the machinectl utility.

systemd.kill(5) — This manual page provides an overview of kill configuration options for system
units.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

18

Controller-Specific Kernel Documentation

The kernel-doc package provides a detailed documentation of all resource controllers. This package is
included in the optional *subscription* channel, to install it, type as root:

yum install kernel-doc

After the installation, the following files will appear under the /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/cgroups/ directory:

blkio subsystem — blkio-controller.txt

cpuacct subsystem — cpuacct.txt

cpuset subsystem — cpusets.txt

devices subsystem — devices.txt

freezer subsystem — freezer-subsystem.txt

memory subsystem — memory.txt

net_cls subsystem — net_cls.txt

Additionally, refer to the following files on further information about the cpu subsystem:

Real-T ime scheduling — /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/scheduler/sched-rt-group.txt

CFS scheduling — /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/scheduler/sched-bwc.txt

Online Documentation

Red Hat Enterprise Linux 7 System Administrators Guide — The System Administrator's Guide
documents relevant information regarding the deployment, configuration and administration of Red Hat
Enterprise Linux 7. It is oriented towards system administrators with a basic understanding of the
system.

The D-Bus API of systemd — The reference for D-Bus API commands for accessing systemd.

⁠Chapter 2. Using Control Groups

19

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7-Beta/html/System_Administrators_Guide
http://www.freedesktop.org/wiki/Software/systemd/dbus/

Chapter 3. Using libcgroup Tools
As mentioned above, the libcgroup package, which was the main tool for cgroup management in previous
versions of Red Hat Enterprise Linux, is now deprecated. To avoid conflicts, do not use libcgroup tools for
default resource controllers (listed in Available Controllers in Red Hat Enterprise Linux 7) that are now an
exclusive domain of systemd. This leaves a limited space for applying libcgroup tools, use it only when
you need to manage controllers not currently supported by systemd, such as net_prio.

The following sections describe how to use libcgroup tools in relevant scenarios without conflicting with
the default system of hierarchi.

Note

In order to use libcgroup tools, first ensure the libcgroup and libcgroup-tools packages are installed
on your system. To install them, run as root:

~]# yum install libcgroup
~]# yum install libcgroup-tools

Note

The net_prio controller is not compiled in the kernel like the rest of the controllers, rather it is a
module that has to be loaded before attempting to mount it. To load this module, type as root:

modprobe netprio_cgroup

3.1. Mounting a Hierarchy
To use a kernel resource controller that is not mounted automatically, you have to create a hierarchy that
will contain this controller. You can add or detach a hierarchy by editing the mount section of the
/etc/cgconfig.conf. This method makes the controller attachment persistent, which means your
settings will be preserved after system reboot. As an alternative, you can use the mount command to
create a transient mount established only for the current session.

Using the cgconfig Service

The cgconfig service installed with the libcgroup-tools package provides a way to mount hierarchies for
additional resource controllers. By default, this service is not started automatically. When you start
cgconfig, it applies the settings from the /etc/cgconfig.conf configuration file. The configuration is
therefore recreated from session to session and becomes persistent. Note that if you stop cgconfig, it
unmounts all the hierarchies that it mounted.

The default /etc/cgconfig.conf file installed with the libcgroup package does not contain any
configuration settings, just an information that systemd mounts the main resource controllers
automatically.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

20

You can create three types of entry in /etc/cgconfig.conf — mount, group, and template. Mount
entries are used to create and mount hierarchies as virtual file systems, and attach controllers to those
hierarchies. In Red Hat Enterprise Linux 7, default hierarchies are mounted automatically to the
/sys/fs/cgroup/ directory, cgconfig is therefore used solely to attach non-default controllers. Mount
entries are defined using the following syntax:

mount {
 controller_name = /sys/fs/cgroup/controller_name;
 …
}

Replace controller_name with a name of the kernel resource controller you wish to mount to the hierarchy.
See Example 3.1, “Creating a mount entry” for an example.

Example 3.1. Creating a mount entry

To attach the net_prio controller to the default cgroup tree, add the following text to the
/etc/cgconfig.conf configuration file:

mount {
 net_prio = /sys/fs/cgroup/net_prio;
}

Then restart the cgconfig service to apply the setting:

systemctl restart cgconfig.service

Group entries in /etc/cgconfig.conf can be used to set the parameters of resource controllers. See
Section 3.5, “Setting Cgroup Parameters” for more information about group entries.

Template entries in /etc/cgconfig.conf can be used to create a group definition applied to all
processes.

Using the mount Command

You can also use the mount command to temporarily mount a hierarchy. To do so, first create a mount
point in the /sys/fs/cgroup/ directory where systemd mounts the main resource controllers. Type as
root:

mkdir /sys/fs/cgroup/name

Replace name with a name of the new mount destination, usually the name of the controller is used. Next,
use the mount command to mount the hierarchy and simultaneously attach one or more subsystems.
Type as root:

mount -t cgroup -o controller_name none /sys/fs/cgroup/controller_name

Where controller_name with a name of the controller to specify both the device to be mounted as well as
the destination folder. The -t cgroup parameter specifies the type of mount.

⁠Chapter 3. Using libcgroup Tools

21

Example 3.2. Using the mount command to attach controllers

To mount a hierarchy for the net_prio controller with use of the mount command, first create the
mount point:

~]# mkdir /sys/fs/cgroup/net_prio

Then mount net_prio to the destination you created in the previous step:

~]# mount -t cgroup -o net_prio none /sys/fs/cgroup/net_prio

You can verify if you attached the hierarchy correctly by listing all available hierarchies along with their
current mount points with the lssubsys command (see Section 3.8, “Listing Controllers”):

~]# lssubsys -am
cpuset /sys/fs/cgroup/cpuset
cpu,cpuacct /sys/fs/cgroup/cpu,cpuacct
memory /sys/fs/cgroup/memory
devices /sys/fs/cgroup/devices
freezer /sys/fs/cgroup/freezer
net_cls /sys/fs/cgroup/net_cls
blkio /sys/fs/cgroup/blkio
perf_event /sys/fs/cgroup/perf_event
hugetlb /sys/fs/cgroup/hugetlb
net_prio /sys/fs/cgroup/net_prio

3.2. Unmounting a Hierarchy
If you mounted a hierarchy by editing the /etc/cgconfig.conf configuration file, you can unmount it
simply by removing the configuration directive from the mount section of this configuration file. Then restart
the service to apply the new configuration.

Similarly, you can unmount a hierarchy by executing the following command as root:

~]# umount /sys/fs/cgroups/controller_name

Replace controller_name with the name of the hierarchy that contains the resource controller you wish to
detach.

Warning

Make sure that you use umount to remove only hierarchies that you mounted yourself. Detaching a
hierarchy that contains a default controller (listed in Available Controllers in Red Hat Enterprise
Linux 7) will most probably lead to complications requiring system reboot.

3.3. Creating Control Groups
Use the cgcreate command to create transient cgroups in hierarchies you created yourself. The syntax
for cgcreate is:

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

22

cgcreate -t uid:gid -a uid:gid -g controllers:path

where:

-t (optional) — specifies a user (by user ID, uid) and a group (by group ID, gid) to own the tasks
pseudo-file for this cgroup. This user can add tasks to the cgroup.

Removing processes

Note that the only way to remove a process from a cgroup is to move it to a different cgroup. To
move a process, the user must have write access to the destination cgroup; write access to the
source cgroup is not important.

-a (optional) — specifies a user (by user ID, uid) and a group (by group ID, gid) to own all pseudo-files
other than tasks for this cgroup. This user can modify the access to system resources for tasks in
this cgroup.

-g — specifies the hierarchy in which the cgroup should be created, as a comma-separated list of the
controllers associated with those hierarchies. The list of controllers is followed by a colon and the path
to the child group relative to the hierarchy. Do not include the hierarchy mount point in the path.

Because all cgroups in the same hierarchy have the same controllers, the child group has the same
controllers as its parent.

As an alternative, you can create a child of the cgroup directly, use the mkdir command:

~]# mkdir /sys/fs/cgroup/controller/name/child_name

For example:

~]# mkdir /sys/fs/cgroup/net_prio/lab1/group1

3.4. Removing Control Groups
Remove cgroups with the cgdelete command that has a syntax similar to that of cgcreate. Run the
following command as root:

cgdelete controllers:path

where:

controllers is a comma-separated list of controllers.

path is the path to the cgroup relative to the root of the hierarchy.

For example:

~]# cgdelete net_prio:/test-subgroup

cgdelete can also recursively remove all subgroups when the -r option is specified.

Note that when you delete a cgroup, all its processes move to its parent group.

⁠Chapter 3. Using libcgroup Tools

23

3.5. Setting Cgroup Parameters
Modify the parameters of the control groups by editing the /etc/cgconfig.conf, or by using the
cgset command. Changes made to /etc/cgconfig.conf are preserved after reboot, while cgset
changes the cgroup parameters only for the current session.

Modifying /etc/cgconfig.conf

You can set the controller parameters in the Groups section of /etc/cgconfig.conf. Group entries
are defined using the following syntax:

group name {
[permissions]
 controller {
 param_name = param_value;
 …
 }
 …
}

Replace name with the name of your cgroup, controller stands for the name of the controller you wish to
modify. This should be a controller you mounted yourself, not any of the default controllers mounted
automatically by systemd. Replace param_name and param_value with the controller parameter you wish
to change and its new value. Note that the permissions section is optional. To define permissions for a
group entry, use the following syntax:

perm {
 task {
 uid = task_user;
 gid = task_group;
 }
 admin {
 uid = admin_name;
 gid = admin_group;
 }
}

Restart the cgconfig service for the changes to take effect

You must restart the cgconfig service for the changes in the /etc/cgconfig.conf to take
effect. Restarting this service rebuilds hierarchies specified in the configuration file but does not
affect all mounted hierarchies. You can restart a service by executing the systemctl restart
command, however, it is recommended to first stop the cgconfig service:

~]# systemctl stop cgconfig

then edit the configuration file. After saving your changes, you can start cgconfig again with the
following command:

~]# systemctl start cgconfig

Using the cgset Command

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

24

Set controller parameters by running the cgset command from a user account with permission to modify
the relevant cgroup. Use this only for controllers you mounted manually.

The syntax for cgset is:

cgset -r parameter=value path_to_cgroup

where:

parameter is the parameter to be set, which corresponds to the file in the directory of the given cgroup

value is the value for the parameter

path_to_cgroup is the path to the cgroup relative to the root of the hierarchy.

The values that you can set with cgset might depend on values set higher in a particular hierarchy. For
example, if group1 is limited to use only CPU 0 on a system, you cannot set group1/subgroup1 to use
CPUs 0 and 1, or to use only CPU 1.

You can also use cgset to copy the parameters of one cgroup into another, existing cgroup. The syntax
to copy parameters with cgset is:

cgset --copy-from path_to_source_cgroup path_to_target_cgroup

where:

path_to_source_cgroup is the path to the cgroup whose parameters are to be copied, relative to the
root group of the hierarchy

path_to_target_cgroup is the path to the destination cgroup, relative to the root group of the hierarchy

3.6. Moving a Process to a Control Group
Move a process into a cgroup by running the cgclassify command:

cgclassify -g controllers:path_to_cgroup pidlist

where:

controllers is a comma-separated list of resource controllers, or * to launch the process in the
hierarchies associated with all available subsystems. Note that if there are multiple cgroups of the
same name, the -g option moves the processes in each of those groups.

path_to_cgroup is the path to the cgroup within the hierarchy

pidlist is a space-separated list of process identifier (PIDs)

You can also add the --sticky option before the pid to keep any child processes in the same cgroup. If
you do not set this option and the cgred service is running, child processes will be allocated to cgroups
based on the settings found in /etc/cgrules.conf. The process itself, however, will remain in the
cgroup in which you started it.

You can also use the cgred service (which starts the cgrulesengd daemon) that moves tasks into
cgroups according to parameters set in the /etc/cgrules.conf file. Use cgred only to manage
manually attached controllers. Entries in the /etc/cgrules.conf file can take one of the two forms:

⁠Chapter 3. Using libcgroup Tools

25

user subsystems control_group

user:command subsystems control_group

For example:

maria net_prio /usergroup/staff

This entry specifies that any processes that belong to the user named maria access the devices
subsystem according to the parameters specified in the /usergroup/staff cgroup. To associate
particular commands with particular cgroups, add the command parameter, as follows:

maria:ftp devices /usergroup/staff/ftp

The entry now specifies that when the user named maria uses the ftp command, the process is
automatically moved to the /usergroup/staff/ftp cgroup in the hierarchy that contains the devices
subsystem. Note, however, that the daemon moves the process to the cgroup only after the appropriate
condition is fulfilled. Therefore, the ftp process might run for a short time in the wrong group.
Furthermore, if the process quickly spawns children while in the wrong group, these children might not be
moved.

Entries in the /etc/cgrules.conf file can include the following extra notation:

@ — when prefixed to user, indicates a group instead of an individual user. For example, @admins are
all users in the admins group.

* — represents "all". For example, * in the subsystem field represents all subsystems.

% — represents an item the same as the item in the line above. For example:

@adminstaff net_prio /admingroup
@labstaff % %

3.7. Starting a Process in a Control Group
Launch processes in a manually created cgroup by running the cgexec command. The syntax for
cgexec is:

cgexec -g controllers:path_to_cgroup command arguments

where:

controllers is a comma-separated list of controllers, or * to launch the process in the hierarchies
associated with all available subsystems. Note that, as with the cgset command described in
Section 3.5, “Setting Cgroup Parameters”, if cgroups of the same name exist, the -g option creates
processes in each of those groups.

path_to_cgroup is the path to the cgroup relative to the hierarchy.

command is the command to run in the cgroup.

arguments are any arguments for the command.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

26

You can also add the --sticky option before the command to keep any child processes in the same
cgroup. If you do not set this option and the cgred daemon is running, child processes will be allocated to
cgroups based on the settings found in /etc/cgrules.conf. The process itself, however, will remain in
the cgroup in which you started it.

3.8. Obtaining Information About Control Groups
The libcgroup-tools package contains several utilities for obtaining information about controllers, control
groups, and their parameters.

Listing Controllers

To find the controllers that are available in your kernel and how are they mounted together to hierarchies,
run:

cat /proc/cgroups

Or, to find the mount points of particular subsystems, run:

lssubsys -m controllers

where controllers is a list of the subsystems in which you are interested. Note that the lssubsys -m
command returns only the top-level mount point per each hierarchy.

Finding Control Groups

To list the cgroups on a system, run as root:

lscgroup

You can restrict the output to a specific hierarchy by specifying a controller and path in the format
controller:path. For example:

~]$ lscgroup cpuset:adminusers

lists only subgroups of the adminusers cgroup in the hierarchy to which the cpuset subsystem is
attached.

Displaying Parameters of Control Groups

To display the parameters of specific cgroups, run:

~]$ cgget -r parameter list_of_cgroups

where parameter is a pseudo-file that contains values for a subsystem, and list_of_cgroups is a list of
cgroups separated with spaces.

If you do not know the names of the parameters themselves, use a command like:

~]$ cgget -g cpuset /

⁠Chapter 3. Using libcgroup Tools

27

3.9. Additional Resources
The definitive documentation for cgroup commands are the manual pages provided with the libcgroup
package. The section numbers are specified in the list of man pages below.

Installed Documentation

The libcgroup-related Man Pages

cgclassify(1) — the cgclassify command is used to move running tasks to one or more cgroups.

cgclear(1) — the cgclear command is used to delete all cgroups in a hierarchy.

cgconfig.conf(5) — cgroups are defined in the cgconfig.conf file.

cgconfigparser(8) — the cgconfigparser command parses the cgconfig.conf file and
mounts hierarchies.

cgcreate(1) — the cgcreate command creates new cgroups in hierarchies.

cgdelete(1) — the cgdelete command removes specified cgroups.

cgexec(1) — the cgexec command runs tasks in specified cgroups.

cgget(1) — the cgget command displays cgroup parameters.

cgsnapshot(1) — the cgsnapshot command generates a configuration file from existing
subsystems.

cgred.conf(5) — cgred.conf is the configuration file for the cgred service.

cgrules.conf(5) — cgrules.conf contains the rules used for determining when tasks belong to
certain cgroups.

cgrulesengd(8) — the cgrulesengd service distributes tasks to cgroups.

cgset(1) — the cgset command sets parameters for a cgroup.

lscgroup(1) — the lscgroup command lists the cgroups in a hierarchy.

lssubsys(1) — the lssubsys command lists the hierarchies containing the specified subsystems.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

28

Chapter 4. Control Group Application Examples
This chapter provides application examples that take advantage of the cgroup functionality.

4.1. Prioritizing Database I/O
Running each instance of a database server inside its own dedicated virtual guest allows you to allocate
resources per database based on their priority. Consider the following example: a system is running two
database servers inside two KVM guests. One of the databases is a high priority database and the other
one a low priority database. When both database servers are run simultaneously, the I/O throughput is
decreased to accommodate requests from both databases equally; Figure 4.1, “I/O throughput without
resource allocation” indicates this scenario — once the low priority database is started (around time 45),
I/O throughput is the same for both database servers.

Figure 4 .1. I/O throughput without resource allocation

To prioritize the high priority database server, it can be assigned to a cgroup with a high number of
reserved I/O operations, whereas the low priority database server can be assigned to a cgroup with a low
number of reserved I/O operations. To achieve this, follow the steps in Procedure 4.1, “I/O Throughput
Prioritization”, all of which are performed on the host system.

Procedure 4 .1. I/O Throughput Priorit ization

1. Make sure resource accounting is on for both services:

~]# systemctl set-property db1.service BlockIOAccounting=true
~]# systemctl set-property db2.service BlockIOAccounting=true

2. Set a ratio of 10:1 for the high and low priority services. Processes running in those service units
will use only the resources made available to them

~]# systemctl set-property db1.service BlockIOWeight=1000
~]# systemctl set-property db2.service BlockIOWeight=100

Figure 4.2, “I/O throughput with resource allocation” illustrates the outcome of limiting the low priority
database and prioritizing the high priority database. As soon as the database servers are moved to their
appropriate cgroups (around time 75), I/O throughput is divided among both servers with the ratio of 10:1.

⁠Chapter 4. Control Group Application Examples

29

Figure 4 .2. I/O throughput with resource allocation

Alternatively, block device I/O throttling can be used for the low priority database to limit its number of read
and write operation. For more information refer to the description of the blkio controller in Controller-
Specific Kernel Documentation.

4.2. Prioritizing Network Traffic
When running multiple network-related services on a single server system, it is important to define network
priorities between these services. Defining these priorities ensures that packets originating from certain
services have a higher priority than packets originating from other services. For example, such priorities
are useful when a server system simultaneously functions as an NFS and Samba server. The NFS traffic
must be of high priority as users expect high throughput. The Samba traffic can be deprioritized to allow
better performance of the NFS server.

The net_prio controller can be used to set network priorities for processes in cgroups. These priorities
are then translated into Type Of Service (TOS) bits and embedded into every packet. Follow the steps in
Procedure 4.2, “Setting Network Priorities for File Sharing Services” to configure prioritization of two file
sharing services (NFS and Samba).

Procedure 4 .2. Sett ing Network Priorit ies for File Sharing Services

1. The net_prio controller is not compiled in the kernel, it is a module that must be loaded manually.
To do so, type:

~]# modprobe netprio_cgroup

2. Attach the net_prio subsystem to the /cgroup/net_prio cgroup:

~]# mkdir sys/fs/cgroup/net_prio
~]# mount -t cgroup -o net_prio none sys/fs/cgroup/net_prio

3. Create two cgroups, one for each service:

~]# mkdir sys/fs/cgroup/net_prio/nfs_high
~]# mkdir sys/fs/cgroup/net_prio/samba_low

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

30

4. To automatically move the nfs services to the nfs_high cgroup, add the following line to the
/etc/sysconfig/nfs file:

CGROUP_DAEMON="net_prio:nfs_high"

This configuration ensures that nfs service processes are moved to the nfs_high cgroup when
the nfs service is started or restarted.

5. The smbd daemon does not have a configuration file in the /etc/sysconfig directory. To
automatically move the smbd daemon to the samba_low cgroup, add the following line to the
/etc/cgrules.conf file:

*:smbd net_prio samba_low

Note that this rule moves every smbd daemon, not only /usr/sbin/smbd, into the samba_low
cgroup.

You can define rules for the nmbd and winbindd daemons to be moved to the samba_low cgroup
in a similar way.

6. Start the cgred service to load the configuration from the previous step:

~]# systemctl start cgred
Starting CGroup Rules Engine Daemon: [OK]

7. For the purposes of this example, let us assume both services use the eth1 network interface.
Define network priorities for each cgroup, where 1 denotes low priority and 10 denotes high priority:

~]# echo "eth1 1" > /sys/fs/cgroup/net_prio/samba_low/net_prio.ifpriomap
~]# echo "eth1 10" > /sys/fs/cgroup/net_prio/nfs_high/net_prio.ifpriomap

8. Start the nfs and smb services and check whether their processes have been moved into the
correct cgroups:

~]# systemctl start smb
Starting SMB services: [OK]
~]# cat /sys/fs/cgroup/net_prio/samba_low/tasks
16122
16124
~]# systemctl start nfs
Starting NFS services: [OK]
Starting NFS quotas: [OK]
Starting NFS mountd: [OK]
Stopping RPC idmapd: [OK]
Starting RPC idmapd: [OK]
Starting NFS daemon: [OK]
~]# cat sys/fs/cgroup/net_prio/nfs_high/tasks
16321
16325
16376

Network traffic originating from NFS now has higher priority than traffic originating from Samba.

Similar to Procedure 4.2, “Setting Network Priorities for File Sharing Services”, the net_prio subsystem
can be used to set network priorities for client applications, for example, Firefox.

⁠Chapter 4. Control Group Application Examples

31

⁠Part II. Linux Containers
This part provides an overview of general Linux Containers concepts and their current capabilities
implemented in Red Hat Enterprise Linux 7.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

32

Chapter 5. Introduction to Linux Containers
Linux Containers have emerged as a key open source application packaging and delivery technology,
combining lightweight application isolation with the flexibility of image-based deployment methods.

Red Hat Enterprise Linux 7 implements Linux Containers using core technologies such as Control Groups
(Cgroups) for Resource Management, Namespaces for Process Isolation, SELinux for Security, enabling
secure multi-tenancy and reducing the potential for security exploits

5.1. Linux Containers Architecture
Several components are needed for Linux Containers to function correctly, most of is them provided by the
Linux kernel. Kernel namespaces ensure process isolation and cgroups are employed to control the
system resources. SELinux is used to assure separation between the host and the container and also
between the individual containers. Management interface forms a higher layer that interacts with the
aforementioned kernel components and provides tools for construction and management of containers.

The following scheme illustrates the architecture of Linux Containers in Red Hat Enterprise Linux 7:

Figure 5.1. Linux Containers Architecture

Namespaces

The kernel provides process isolation by creating separate namespaces for containers. Namespaces
allow you to create an abstraction of a particular global system resource and make it appear as a
separated instance to processes within a namespace. Consequently, several containers can use the
same resource simultaneously without creating a conflict. There are several types of namespaces:

Mount namespaces isolate the set of file system mount points seen by a group of processes so that
processes in different mount namespaces can have different views of the file system hierarchy. With
mount namespaces, the mount() and umount() system calls cease to operate on a global set of
mount points (visible to all processes) and instead perform operations that affect just the mount

⁠Chapter 5. Introduction to Linux Containers

33

namespace associated with the container process. For example, each container can have its own
/tmp or /var directory or even have an entirely different userspace.

UTS namespaces isolate two system identifiers – nodename and domainname, returned by the
uname() system call. This allows each container to have its own hostname and NIS domain name,
which is useful for initialization and configuration scripts based on these names. You can test this
isolation by executing the hostname command on the host system and a container – the results will
differ.

IPC namespaces isolate certain interprocess communication (IPC) resources, such as System V IPC
objects and POSIX message queues. This means that two containers can create shared memory
segments and semaphores with the same name, but are not able to interact with other containers
memory segments or shared memory.

PID namespaces allow processes in different containers to have the same PID, so each container
can have its own init (PID1) process that manages various system initialization tasks as well as
containers life cycle. Also, each container has its unique /proc directory. Note that from within the
container you can monitor only processes running inside this container. In other words, the container is
only aware of its native processes and can not "see" the processes running in different parts of the
system. On the other hand, the host operating system is aware of processes running inside of the
container, but assigns them different PID numbers. For example, run the ps -eZ | grep systemd$
command on host to see all instances of systemd including those running inside of containers.

Network namespaces provide isolation of network controllers, system resources associated with
networking, firewall and routing tables. This allows container to use separate virtual network stack,
loopback device and process space. You can add virtual or real devices to the container, assign them
their own IP Addresses and even full iptables rules. You can view the different network settings by
executing the ip addr command on the host and inside the container.

Note

There is another type of namespace called user namespace . User namespaces are similar to PID
namespaces, they allow you to specify a range of host UIDs dedicated to the container.
Consequently, a process can have full root privileges for operations inside the container, and at the
same time be unprivileged for operations outside the container. For compatibility reasons, user
namespaces are turned off in the current version of Red Hat Enterprise Linux 7, but will be enabled
in the near future.

Control Groups (cgroups)

The kernel uses cgroups to group processes for the purpose of system resource management. Cgroups
let you allocate CPU time, system memory, network bandwidth, or combinations of these among user-
defined groups of tasks. In Red Hat Enterprise Linux 7, cgroups are managed with systemd slice, scope,
and service units. For more information on cgroups, see Part I, “Resource Management With Control
Groups”.

SELinux

SELinux provides secure separation of containers by applying SELinux policy and labels. It integrates with
virtual devices by using the sVirt technology. For more information see Section 5.2, “Secure Containers
with SELinux”

Management Interface

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

34

Red Hat Enterprise Linux 7 provides the Docker application as a main management tool for Linux
Containers. Docker builds on the aforementioned kernel capabilities, adding several enhancement
features, such as portability or version control. To learn more, see Chapter 6, Using Docker.

As an alternative, you can use the virsh utility from the Libvirt toolkit, which provides a basic interface for
launching and management of Linux Containers. See Chapter 7, Using virsh for more information on using
virsh.

5.2. Secure Containers with SELinux
From the security point of view, there is a need to isolate the host system from a container and to isolate
containers from each other. The kernel features used by containers, namely cgoups and namespaces, by
itself provide a certain level of security. Cgroups ensure that a single container cannot exhaust a large
amount of system resources, thus preventing some denial-of-service attacks. By virtue of namespaces,
the /dev directory created within a container is private to each container, and therefore unaffected by the
host changes. However, this can not prevent a hostile process from breaking out of the container since the
entire system is not namespaced or containerized. Another level of separation, provided by SELinux, is
therefore needed.

Security-Enhanced Linux (SELinux) is an implementation of a mandatory access control (MAC)
mechanism, multi-level security (MLS), and multi-category security (MCS) in the Linux kernel. The sVirt
project builds upon SELinux and integrates with Libvirt to provide a MAC framework for virtual machines
and containers. This architecture provides a secure separation for containers as it prevents root
processes within the container from interfering with other processes running outside this container. The
containers created with Docker or virsh are automatically assigned with an SELinux context specified in
the SELinux policy.

By default, containers created with libvirt tools are assigned with the virtd_lxc_t label (execute ps -
eZ | grep virtd_lxc_t). You can apply sVirt by setting static or dynamic labeling for processes
inside the container.

Note

You might notice that SELinux appears to be disabled inside the container even though it is running
in enforcing mode on host system – you can verify this by executing the getenforce command on
host and in the container. This is to prevent utilities that have SELinux awareness, such as
setenforce, to perform any SELinux activity inside the container.

Note that if SELinux is disabled or running in permissive mode on the host machine, containers are not
separated securely enough. For more information about SELinux, refer to Red Hat Enterprise Linux 7
SELinux Users and Administrators Guide, sVirt is described in Red Hat Enterprise Linux 7 Virtualization
Security Guide.

5.3. Container Use Cases
There are two general scenarios for using Linux containers in Red Hat Enterprise Linux 7. You can work
with host containers as a tool for application sandboxing, or you can utilize the extended features of
image-based containers.

5.3.1. Host Containers

⁠Chapter 5. Introduction to Linux Containers

35

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Security_Guide

The Red Hat Enterprise Linux 7 host operating system with Linux container feature allows you to carve out
containers as lightweight application sandboxes. All host containers launched are identical – each runs the
same user space as the host system, so all applications running in in host containers are based on Red
Hat Enterprise Linux 7 user space and run time. The advantage of this approach is that security erratas
and other updates can be applied to these containers easily with the yum update command. You can
create and manage host based containers with the virsh application, see Chapter 7, Using virsh.

Figure 5.2. Host Containers

5.3.2. Image-based Containers

With image-based containers, an application is packaged with individual runtime stack, which makes it
independent from the host operating system. This way, you can run several instances of an application,
each developed for a different platform. This is possible because the container run time and the
application run time are deployed in the form of an image. For example, Runtime A in Figure 5.3, “Image-
based Containers” can stand for Red Hat Enterprise Linux 6.5, Runtime B could refer to version 6.6 and so
on.

Figure 5.3. Image-based Containers

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

36

Image-based containers allow you to host multiple instances and versions of an application, with minimal
overhead and increased flexibility. Such containers are not tied to the host-specific configuration, which
makes them portable. These features are enabled by the Docker format for application packaging
described in Section 5.4, “Application Packaging with Docker”

Docker format relies on the device mapper thin provisioning technology that is an advanced variation of
LVM snapshots to implement copy-on-write in Red Hat Enterprise Linux 7.

Figure 5.4 . Image Layering Using Docker Format

The above image shows the fundamental components of any image-based container:

Container – (in the narrow sense of the word) an active component in which you can run an
application. Each container is based on an image that holds necessary configuration data. When you
launch a container from an image, a writable layer is added on top of this image. Every time you commit
a container (using the docker commit command), a new image layer is added to store your
changes. To learn more about containers, see Section 6.2, “Managing Containers”.

Image – a static snapshot of the containers' configuration. Image is a read-only layer that is never
modified, all changes are made in top-most writable layer, and can be saved only by creating a new
image. Each image depends on one more parent images. See Section 6.1, “Working with Docker
Images”, for description of image-related command-line tools.

Platform Image – an image that has no parent. Platform images define the runtime environment,
packages and utilities necessary for containerized application to run. Your work with Docker usually
starts by pulling the platform image. The platform image is read-only, so any changes are reflected in
the copied images stacked on top of it. .

The images piled on top of the platform image create an application layer that contains software
dependencies for the containerized application. For example, the layered images in Figure 5.4, “Image
Layering Using Docker Format” could have added software dependencies required by the containerized
application.

The whole container can be very large or it could be made really small depending on how many packages
are included in the application layer. Further layering of the images is possible, such as software from 3rd
party ISVs. From a user point of view there is still one container, but from an operational point of view there
can be many layers behind it.

⁠Chapter 5. Introduction to Linux Containers

37

5.4. Application Packaging with Docker
Docker is a technology behind image-based containers. It is a tool and a format designed for shipping
applications as self-contained units. Docker builds on the core capabilities of Linux containers, such as
cgroups, namespaces and SeLinux (see Section 5.1, “Linux Containers Architecture”). It also depends to
certain extent on the underlying operating system, namely on device mapper thin provisioning and on
systemd for resource management.

Docker brings in an API for container management, an image format and a possibility to use a remote
registry for sharing containers. The following advantages come from this scheme:

Portability across machines – you can bundle an application and all its dependencies into a single
container that is independent from the host version of Linux kernel, platform distribution, or deployment
model. This container can be transfered to another machine that runs Docker, and executed there
without compatibility issues.

Version control and component reuse – you can track successive versions of a container, inspect
differences, or roll-back to previous versions. As mentioned above, containers reuse components from
the precessing layers, which makes them noticeably lightweight (see Figure 5.4, “Image Layering Using
Docker Format”).

Sharing – you can use a remote repository to share your container with others. Red Hat provides a
registry () for this purpose, it is also possible to configure your own private repository .

Docker also provides a configuration template called Dockerfile that contains a list of instructions for
building images. Dockerfiles let you automate and share procedures you would otherwise have to repeat
manually. To learn more about Dockerfile instructions, see Section 6.4, “Using Dockerfiles”.

The aforementioned features of Docker address the problem of multiple software stacks in a variety of
hardware environments, which highly improves application packaging and delivery. A rich tool ecosystem
already embraced Docker, see

5.5. Linux Containers Compared to KVM Virtualization
The main difference between the KVM virtualization and Linux Containers is that virtual machines require a
separate kernel instance to run on, while containers can be deployed from the host operating system. This
significantly reduces the complexity of container creation and maintenance. Also, the reduced overhead
lets you create a large number of containers with faster startup and shutdown speeds.

Both Linux Containers and KVM virtualization have certain advantages and drawbacks that influence the
use cases in which these technologies are typically applied:

KVM virtualization:

KVM virtualization lets you boot full operating systems of different kinds, even non-Linux systems.
However, a complex setup is sometimes needed. Virtual machines are resource-intensive so you can
run only a limited number of them on your host machine.

Running separate kernel instances generally means better separation and security. If one of the
kernels terminates unexpectedly, it does not disable the whole system. On the other hand, this isolation
makes it harder for virtual machines to communicate with the rest of the system, and therefore several
interpretation mechanisms must be used.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

38

Guest virtual machine is isolated from host changes, which lets you run different versions of the same
application on the host and virtual machine. KVM also provides many useful features such as live
migration. For more information on these capabilities, see Red Hat Enterprise Linux 7 Virtualization
Deployment and Administration Guide.

Linux Containers:

Linux Containers are designed to support isolation of one or more applications. You can create or
destroy containers very easily and they are convenient to maintain.

System-wide changes are visible in each container. For example, if you upgrade an application on the
host machine, this change will apply to all sandboxes that run instances of this application.

Since containers are lightweight, a large number of them can run simultaneously on a host machine.
The theoretical maximum is 6000 containers and 12,000 bind mounts of root file system directories.
Also, containers are faster to create and have low startup times.

5.6. Additional Resources
To learn more about general principles and architecture of Linux Containers, refer to the following
resources.

Installed Documentation

docker(1) — The manual page of the docker command.

virsh(1) — The manual page of the virsh command.

Online Documentation

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide — This guide instructs
how to configure a Red Hat Enterprise Linux 7 host physical machine and how to install and configure
guest virtual machines with different distributions, using the KVM hypervisor. Also included PCI device
configuration, SR-IOV, networking, storage, device and guest virtual machine management, as well as
troubleshooting, compatibility and restrictions.

Red Hat Enterprise Linux 7 SELinux Users and Administrators Guide — The SELinux Users and
Administrators Guide for Red Hat Enterprise Linux 7 documents the basics and principles upon which
SELinux functions, as well as practical tasks to set up and configure various services.

Get Started with RHEL 7 Containers in Docker — This quick start guide describes the essential
Docker-related tasks along with a number of examples.

Documentation on the Docker Project Site — The official documentation of the Docker project.

⁠Chapter 5. Introduction to Linux Containers

39

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/
https://access.redhat.com/site/articles/881893
http://docs.docker.io/

Chapter 6. Using Docker
The following sections provide a description of Docker command-line and configuration options that allow
you to package and share your applications.

First ensure that the docker package is installed on your system, if that is not the case, execute the
following command as root:

~]# yum install docker

After you successfully installed the application, use the usual systemctl commands to start docker and
to make it run automatically at boot time:

~]# systemctl start docker.service
~]# systemctl enable docker.service

For detailed instructions on how to set up Docker on Red Hat Enterprise Linux 7, see the Get Started with
RHEL 7 Containers in Docker article on Red Hat Customer Portal.

To list all available command-line options provided by Docker, type:

docker

which is an equivalent of executing the docker help command without arguments. To find the version
number of the docker package that is currently installed on your system, type:

docker version

6.1. Working with Docker Images
As mentioned in Section 5.3.2, “Image-based Containers”, a Docker image is a read-only snapshot of a
container. Images are static layers that store information on processes started in the container. By
committing a container, you add a new layer on top of the parent image. An image with no parent is called a
platform image that also constitutes the environment for containers running on top of this image.

There are two approaches to image building, either you can create them interactively from the command-
line interface or you can define a template called Dockerfile to hold image parameters necessary for build.
Interactive approach is useful for troubleshooting and prototyping, while Dockerfiles are designed for
sharing stable image configurations. The following sections focus on Docker CLI tools, to learn more about
Dockerfiles, see Section 6.4, “Using Dockerfiles”.

6.1.1. Searching for Images

To search for existing images, type as root:

docker search name

Replace name with the name of the image you are looking for. You can type just a part of the whole name.
This command searches the Docker.io Index, which is currently the main public registry for sharing
repositories of images. Some repositories in docker index are marked as trusted, which means they are
officially checked. By using the --trusted (or -t) option, you can limit your search to trusted builds only.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

40

https://access.redhat.com/site/articles/881893#get

Users of docker index can reward repositories with stars, to search for images that achieves certain
amount of stars, use the --stars (or -s) option.

Image name is preceded by the name of its containing repository to provide a unique identification of the
image in docker index:

repository_name/image_name

Example 6.1. Searching for Public Images

Use the following command to search for fedora-related trusted images with at least one star ranking:

~]# docker search --stars=1 --trusted fedora
NAME DESCRIPTION STARS
OFFICIAL TRUSTED
goldmann/wildfly A WildFly application server running on a ... 3
[OK]
tutum/fedora-20 Fedora 20 image with SSH access. For the r... 1
[OK]
...

Apart from the public repository in Docker.io Index, there is also a storage space enabled on the Red Hat
Customer portal to allow you to view images in a Red Hat registry. See the Working with Docker registries
section of the Get Started with RHEL 7 Containers in Docker article on Red Hat Customer Portal for more
information.

6.1.2. Pulling Images

To download a selected image from the remote registry to your local machine, type as root:

docker pull repository_name/image_name

Where repository_name/image_name identifies the image you wish to pull from the docker index. The
Getting images from outside Docker registries section in the Get Started with RHEL 7 Containers in Docker
article shows how to pull Red Hat Enterprise Linux platform image.

6.1.3. Listing Images

To list all locally installed images, execute the following command as root:

docker images

Use the following command-line options to modify the output of docker images:

-a — returns verbose output including all intermediate images. By default, this option is set to false,
so the intermediate images are filtered out from the output list.

-t — creates output in a form of a hierarchical tree depicting relationships between images.

-v — returns a graph of the commit tree in the Graphviz format. You can use the dot utility to convert
the graph to PNG or another image format.

6.1.4. Modifying Images

⁠Chapter 6. Using Docker

41

https://access.redhat.com/site/articles/881893#working
https://access.redhat.com/site/articles/881893#images

Modify the image configuration by committing the changes you made in the container running on top of the
image, as shown in Section 6.2.3, “Committing a Container”. This adds a new layered image that can serve
as a base for other containers. Run docker images to confirm that you created the image successfully.

6.1.5. Sharing Images

To copy the image or the repository to a remote location, execute the following command as root:

docker push name

Here, name stands for the name or the id of the image or the repository. Default Docker commands push
to the default index.docker.io registry. Note that it is not possible to push Red Hat Enterprise Linux images
to the public registry. A specialized registry for that purpose is provided by Red Hat, refer to the Creating a
private Docker registry section of the Get Started with RHEL 7 Containers in Docker article on Red Hat
Customer Portal.

For more information on sharing images and repositories, refer to Section 6.7, “Publishing Images”

6.1.6. Removing Images

To remove one or more images from your system, use to following syntax as root:

docker rmi image_name

Replace image_name with the name or ID of the image you want to remove. This command removes image
from the host node, but it will not affect images in the remote registry until you push the changes with
docker push. By default, you can not remove an image base of a running container, use the -f option to
suppress this. Use the docker images command to make sure you removed the image successfully.

6.2. Managing Containers
Containers provide an environment for running applications that is securely isolated from the rest of the
system. For more information on the principles of Linux Containers, see Part II, “Linux Containers”.

6.2.1. Starting a Container

To create a new container, run the following command as root:

docker run --name=container_name image_name command

Replace command with a command you want to execute in the container, replace container_name with a
name for the new container, and image_name to specify an image on top of which will the container run.

There are several other command-line options you can use with docker run to set the parameters of
the new container (see Table 6.1, “Command-line options for docker run”) or to modify the default
parameters configured in the Dockerfile (refer to Section 6.2.1, “Overriding Image Defaults”).

Table 6.1. Command-line options for docker run

Usage Option Description

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

42

https://access.redhat.com/site/articles/881893#private

run mode -d, --detach Run the container in the background. Disabled by default.
In this mode, the container is no longer listening to input
from command line, so all communication is limited to
network connections (see Section 6.5, “Networking”) and
shared volumes (see Section 6.6.2, “Using Data Volume
Containers”). Use the docker attach command to
change the container to forward mode.

-a, --attach Attach the container to stdin, stdout or stderr.

-i, --
interactive

Keep stdin open even if not the container is not
attached. Disabled by default.

-t, --tty Allocates a pseudo terminal to the container. Disabled by
default.

container
identification and
privileges

--name Assign the specified name or UUID to the container. If no
name is set, Docker generates a random one.

--privileged Grant extended privileges to the container, including
access to devices. Disabled by default.

networking -n, --networking Enable networking for the container (see Section 6.5,
“Networking”). This option is enabled by default.

--dns Set custom DNS servers for the container.

resource constraints -c, --cpu-shares Set the cpu priority for the container.

-m , --memory Set the maximum amount of memory the container can
use, specify units with b, k, m or g.

persistence -rm Automatically remove the container's file system when it
exits. Disabled by default.

Usage Option Description

Overriding Image Defaults

Dockerfiles let you specify default configuration for images. This is convenient, since it helps you to share
the configuration and automate image creation. In certain cases, you may need to override these default
settings when starting a container. See Table 6.2, “Dockerfile Instructions” for a complete list of directives.

By executing a command with docker run you override the COMMAND directive set in Dockerfile. Not all
parameters can be altered at runtime, docker run accepts the following options to modify preset
Dockerfile instructions:

--entrypoint overrides the ENTRYPOINT directive

--expose overrides the EXPOSE directive

-e, --env overrides to the ENV directive

-v, --volume overrides the VOLUME directive. See Section 6.6.2, “Using Data Volume Containers” for
more information on using volumes

-u, --user overrides the USER directive

-w, --workdir overrides the WORKDIR directive

Refer to Section 6.8, “Installed Documentation” for more information on docker run. The Running Docker
containers section of the Get Started with RHEL 7 Containers in Docker article on Red Hat Customer Portal
provides examples of docker run in action.

⁠Chapter 6. Using Docker

43

https://access.redhat.com/site/articles/881893#run

6.2.2. Connecting to a Running Container

To execute commands inside of a running container, you need to connect to it through a command-line
interface. The docker attach command is not suitable for this, since it only lets you observe the
standard output of the application currently running in the container. Instead, use the nsenter command
to enter the container namespace. This command requires the ID of the container as it appears on the
host system, not the ID that appears in the output of docker ps. You can find this ID for example by
executing:

docker inspect -f {{.State.Pid}} container_id

Here, container_id stands for the container name or its ID from the docker ps output. See Section 6.3.2,
“Viewing Container Parameters” for more information on the docker inspect command. With the correct
host ID, execute the following command as root:

nsenter -m -u -n -i -p -t container_host_id /bin/sh

Once you are connected to the container, you can execute commands affecting the container's isolated
environment. To break out from the dedicated shell, type exit. See the Investigating within a running
Docker container procedure in the Get Started with RHEL 7 Containers in Docker article on Red Hat
Customer Portal. You can learn more about the nsenter command from its man page.

6.2.3. Committing a Container

To create a new image from changes made in the running container, type as root:

docker commit container_name [repository_name:tag]

Where container_name represents the name or ID of the container. Use docker ps to find the container
ID. Optionally, set repository_name and tag to identify the image. The following command-line options are
provided to help you to organize your commits:

-a, --author – the name and contact information of the creator

-m , --message – a commit message

Refer to the Creating an image from a container section of the Get Started with RHEL 7 Containers in
Docker article on Red Hat Customer Portal for example of docker commit usage.

6.2.4. Stopping a Container

To stop the running container gracefully, execute the following command as root:

docker stop container_name

Where container_name stands for the name or ID of the container you wish to stop. By executing the
above command, you send the SIGTERM signal to the container following by SIGKILL after certain time
period. This period can be set with the -t command-line option. To send SIGKILL immediately, for
example to stop a container that is not responding, type:

docker kill container_name

You can also use the --signal option with the above command to define a custom signal to be sent to

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

44

https://access.redhat.com/site/articles/881893#inside
https://access.redhat.com/site/articles/881893#createimage

the container instead of the default SIGKILL.

6.2.5. Restarting a Container

To start a previously stopped container, execute as root:

docker start container_name

Where container_name stands for the name or ID of the container you wish to start. To restart a running
container, use:

docker restart container_name

6.2.6. Removing a Container

To remove a container, type the following command as root:

docker rm container_name

Where container_name stands for the name or ID of the container you wish to remove.

6.2.7. Automatically Starting a Container

To start a container automatically at boot time, first configure it as a systemd service by creating the unit
configuration file in the /etc/systemd/system/ directory. For example, the contents of the
/etc/systemd/system/redis-container.service can look as follows:

[Unit]
Description=Redis container
Author=Me
After=docker.service

[Service]
Restart=always
ExecStart=/usr/bin/docker start -a redis_server
ExecStop=/usr/bin/docker stop -t 2 redis_server

[Install]
WantedBy=local.target

After creating the unit file, use the systemctl enable command to start the container automatically.

To learn more about configuring services with systemd, refer to chapter called Managing Services with
systemd in Red Hat Enterprise Linux 7 System Administrators Guide.

6.3. Monitoring Images and Containers
Docker offers several ways to learn about the parameters of existing containers and images. Also, you
can track changes made to the image and monitor the resource consumption of currently running
containers.

6.3.1. Listing Containers

⁠Chapter 6. Using Docker

45

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide

To view a list of currently running containers, type as root:

docker ps

Use the following command-line options to modify the output of docker ps:

-a — returns a list of all containers. By default, this option is set to false, so only the currently
running containers are included in the output

-l — displays only the latest created container, including containers that are not running

-n — displays only n latest created containers, including containers that are not running

-s — includes container sizes into the output table

--since — limits the output on containers that were created after the specified one. You can use
name or ID to identify the oldest included container

Example 6.2. Example_Output of docker ps

Display the two latest containers by executing:

~]# docker ps -n 2
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
4c01db0b339c rhel7:12.04 bash 17 seconds ago Up 16 seconds 6379/tcp app
d7886598dbe2 fedora:latest top 3 days ago Ghost top

Note: the Ghost entry in the STATUS row that marks an unresponsive container.

6.3.2. Viewing Container Parameters

To view an overall information on how Docker is configured on your system, execute as root:

docker info

Information displayed includes the number of containers and images, pool name, paths to data and
metadata files, total data and metadata space used, and so on (see Example 6.3, “Example Output of
docker info”).

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

46

Example 6.3. Example Output of docker info

The output of docker info can look as follows:

~]# docker info
Containers: 5
Images: 2
Storage Driver: devicemapper
 Pool Name: docker-253:0-35960696-pool
 Data file: /var/lib/docker/devicemapper/devicemapper/data
 Metadata file: /var/lib/docker/devicemapper/devicemapper/metadata
 Data Space Used: 994.4 Mb
 Data Space Total: 102400.0 Mb
 Metadata Space Used: 1.3 Mb
 Metadata Space Total: 2048.0 Mb
Execution Driver: native-0.2
Kernel Version: 3.10.0-122.el7.x86_64

To display a detailed information about an image or a container, type as root:

docker inspect container_name

By default, the above command returns the output in the JSON format. With the -f option, you are able to
limit the output to a specific item of interest:

docker inspect -f {{.section.subsection}} container_name

The section and subsection values let you extract a specific value from the JSON file as shown in
Example 6.4, “Example Output of docker inspect”.

Example 6.4 . Example Output of docker inspect

Display an in-depth description of a container called test_container, type:

~]# docker inspect test_container
[2013/07/30 01:52:26 GET /v1.3/containers/efef/json
{
 "ID": "efefdc74a1d5900d7d7a74740e5261c09f5f42b6dae58ded6a1fde1cde7f4ac5",
 "Created": "2013-07-30T00:54:12.417119736Z",
 "Path": "ping",
 "Args": [
 "www.redhat.com"
],

The output of docker inspect starts with general identification data shown above, then continues
with the list of configuration parameters specified for the container:

 "Config": {
 "Hostname": "efefdc74a1d5",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 0,
 "AttachStdin": false,

⁠Chapter 6. Using Docker

47

 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "ping",
 "www.google.com"
],
 "Dns": null,
 "Image": "learn/ping",
 "Volumes": null,
 "VolumesFrom": "",
 "Entrypoint": null
 },

The current status of the container follows:

 "State": {
 "Running": true,
 "Pid": 22249,
 "ExitCode": 0,
 "StartedAt": "2013-07-30T00:54:12.424817715Z",
 "Ghost": false
 },

The platform image is identified afterwards:

 "Image": "a1dbb48ce764c6651f5af98b46ed052a5f751233d731b645a6c57f91a4cb7158",

Network settings follow:

 "NetworkSettings": {
 "IPAddress": "172.16.42.6",
 "IPPrefixLen": 24,
 "Gateway": "172.16.42.1",
 "Bridge": "docker0",
 "PortMapping": {
 "Tcp": {},
 "Udp": {}
 }
 },

The output concludes with paths to host directories and summary of data volumes.

 "SysInitPath": "/usr/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {},
 "VolumesRW": {}

Use the -f option to extract data from the output of docker inspect:

~]# docker inspect -f {{.State.Pid}} test_container
22249
~]# docker inspect -f {{.NetworkSettings.Gateway}} test_container
172.16.42.1

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

48

~]# docker inspect -f {{.Config.Hostname}} test_container
efefdc74a1d5

6.3.3. Viewing Container Logs and History

To view changes introduced by the container, type as root:

docker diff container_name

Where container_name stands for the name or ID of the inspected container. The output of docker
diff can look as follows:

~]# docker diff 7bb0e258a
C /dev
A /dev/kmsg
C /etc
D /etc/mtab
A /go
...

As you can see in the above example, there are three types of change that can be listed in the output of
docker diff:

A – the file was added.

D – the file was deleted.

C – the file was changed.

To display logs from a running container, type as root:

docker logs container_name

Replace container_name with a name of the inspected container.

Example 6.5. Sending Logs from Container to Host

To view log messages created in containers on your host system, first mount the /dev/log/ directory
on host to all containers you wish to monitor:

~]# docker run -v /dev/log:/dev/log rhel7 /bin/sh

When /dev/log/ is mounted, the container will automatically direct log messages into this directory.
For more information on mounting external directories to containers, refer to Section 6.6.3, “Mounting a
Host Directory to a Container”.

Use the following command to view the history of an image:

docker history image_name

Replace image_name with the name of the image you wish to check. The output of docker history
contains a list of precessing images together with information on image size, date of creation, and the
command of application that created the image. For example:

⁠Chapter 6. Using Docker

49

~]# docker history rhel7
IMAGE CREATED CREATED BY SIZE
105182bb5e8b 5 days ago /bin/sh -c #(nop) ADD file:71356d2 372.7 MB
eaa0d1ee1547 2 months ago /bin/sh -c #(nop) MAINTAINER Peter 0 B
...

6.3.4. Montitoring Resource Consumption of Containers

For a dynamic view of processes currently running inside of a certain container, execute the following
command as root:

docker top container_name

Replace container_name with the name or ID of a container you wish to inspect. The range of provided
statistics is akin to the top utility, includes CPU and memory consumption of individual processes. You can
limit the output with the same set of command-line options as with the docker ps command (see
Section 6.3.1, “Listing Containers”).

6.4. Using Dockerfiles
Dockerfiles provide a configuration syntax that lets you automate the image creation. Dockerfile is a simple
list of instructions that copy the steps you would otherwise perform manually. This way you can translate
whole procedures to sequences of instructions written into a reusable file. Dockerfiles are simple text files,
no file name extension is required to build them correctly.

When you build an image from a Dockerfile, the configured steps are executed one-by-one. Each
instruction is run independently and has no influence on following commands in the file. Each instruction is
committed to new container that is then used as a base for the next instruction. Whenever possible,
Docker will reuse the intermediate images, accelerating the build significantly.

Note

You can effectively utilize the Docker cache by keeping consistent structure of your Dockerfiles.
The instructions that are common for all your Dockerfiles, for example MAINTAINER, should be kept
in front. If you append new instruction at the bottom of the file, Docker will simply use cache instead
of recreating the intermediate images.

6.4.1. Dockerfile Syntax

The configuration directives used in Dockerfiles have the following syntax:

INSTRUCTION arguments

INSTRUCTION stands for a container parameter – see Table 6.2, “Dockerfile Instructions” for a complete
list of configurable directives. Replace arguments with values you want to assign to the parameter.

Table 6.2. Dockerfile Instructions

Instruction Description

FROM This instruction specifies a platform image for subsequent instructions.

MAINTAINER Contact information of the author.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

50

RUN Executes a command on the current image and commits the results,
which is an equivalent of running docker run and docker commit
commands. The resulting committed image is used by following
instructions specified later in the Dockerfile.

CMD Lets you specify default parameters for an executing container. CMD
can be used only once in a Dockerfile.

EXPOSE This instruction specifies the ports to be exposed when running a
container. Specify only private port, public ports will be assigned
automatically so that the Dockerfile stays reusable.

ENV Allows you to set environment variables for the container. ENV
instructions are persistent, and are passed to all RUN instructions
specified later in the Dockerfile.

ADD This instruction is used to copy files from a source directory on host
system to the file system of the container.

ENTRYPOINT Triggers a specified command as soon as the container starts.

VOLUME Creates a mount point the specified name and marks it as holding
externally mounted volumes from native host or other containers.

USER Sets the user name and UID to be used when running a container.

WORKDIR Sets the working directory for the RUN, CMD and ENTRYPOINT
instructions that follow in the Dockerfile.

ONBUILD Lets you specify an action that will be triggered when the image is used
as the base for another build.

Instruction Description

⁠Chapter 6. Using Docker

51

Example 6.6. Dockerfile for Apache Contianer

The following example shows a Dockerfile used for building a httpd container:

FROM registry.access.redhat.com/redhat/rhel7beta
MAINTAINER "Scott Collier" <scollier@redhat.com>

RUN yum -y update; yum clean all
RUN yum -y install httpd; yum clean all
RUN echo "Apache" >> /var/www/html/index.html

EXPOSE 80

Simple startup script to avoid some issues observed with container restart
ADD run-apache.sh /run-apache.sh
RUN chmod -v +x /run-apache.sh

CMD ["/run-apache.sh"]

The opening lines are common to most Dockerfiles, as they identify the platform image and the author.
The yum commands on following lines are necessary to ensure that application you are running is up to
date. Keep these instructions in front to boost the build performance as mentioned in Note on Docker
cache.

The EXPOSE directive exposes a private port to the container. Docker will automatically assign a public
port, so do not specify it here (for instance 80:8080), since you will only be able to run one instance of
the containerized application.

Dockerfiles let you import and execute custom scripts with ADD and CMD directives. In this case run-
apache.sh is called in to remove any incompletely-shutdown httpd contexts:

#!/bin/bash

rm -rf /run/httpd/*
exec /usr/sbin/apachectl -D FOREGROUND

6.4.2. Building an Image from Dockerfile

Use the following command to build an image from valid Dockerfile, type as root:

docker build --tag=tag path

Where path stands for the path to the Dockerfile that can be stored locally or accessed through the
network. Replace tag with a short description of an image. The --tag option is not required, but it is a
good practice to use tags whenever possible, since they help you to keep track of your builds. See the
Dockerfile in action in the Building an image from a Dockerfile section of the Get Started with RHEL 7
Containers in Docker article on Red Hat Customer Portal.

6.5. Networking
By default, each container has a networking functionality enabled. Docker uses Linux bridge capabilities to
provide network connectivity to containers. The docker0 bridge interface is managed by Docker for this
purpose. When the Docker daemon starts, it:

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

52

https://access.redhat.com/site/articles/881893#build

creates the docker0 bridge if not present,

searches for an IP address range which does not overlap with an existing route,

picks an IP in the selected range,

assigns this IP to the docker0 bridge,

To assign a public-facing port to a private port through NAT, type as root:

docker port container_name private_port

Replace container_name with the name or ID of the container, and private_port with a port you wish to
assign to the container.

To receive information about events on the server in real time, type as root:

docker events

Use the --since option to limit the output of the above command to certain time period.

Example 6.7. Displaying Server Events

Use the following syntax to track server events that appeared after selected date:

~]# docker events --since '2014-04-12'
[2014-04-12 18:14:13 -0400 EDT] 786d69800457: (from whenry/testimage:latest)
create
[2014-04-12 18:14:13 -0400 EDT] 786d69800457: (from whenry/testimage:latest)
start
[2014-04-12 18:22:44 -0400 EDT] 786d69800457: (from whenry/testimage:latest) die
[2014-04-12 18:22:44 -0400 EDT] 786d69800457: (from whenry/testimage:latest) stop
...

Warning

Changing the default network binding from Linux bridge to a TCP port or Unix docker user group will
increase your security risks by allowing non-root users to gain root access on the host. If you are
binding to a TCP port, anyone with access to that port has full Docker access; so make sure you
will not do it on an open network.

With the -H option, it is possible to make Docker listen on a specific IP and port. By default, it listens
on unix:///var/run/docker.sock to allow only local connections by the root user. It is
possible to change this default to give access to everybody, but you are strongly recommended not
to do it, because then it is trivial for remote attacker to gain root access to the host where Docker is
running.

6.6. Sharing Data Across Containers
Containers are by definition isolated from the host system and also form each other. However, many
applications require sharing persistent data across containers. Apart from networking (see Section 6.5,
“Networking”), there are several options for doing this locally. You can copy data form a container to the

⁠Chapter 6. Using Docker

53

host system, share data though volume containers, mount host directories to containers, or export data
from containers to archive files.

6.6.1. Copying Data from Container to Host

The most convenient way to move files and directories from the container file system to the host file
system is by using the following command as root:

docker cp container_name:container_path host_path

Specify the container name or ID with container_name, replace container_path with a path to the file of
directory in the container file system. Finally, host_path stands for the destination path on the host file
system.

Example 6.8. Copying Files from Container to Host

To copy the /etc/hosts file from the container called test_container to the same location on the host
file system, use:

~]# docker cp test_container:/etc/hosts .

The period (".") character means that the destination path is the same as the source. The above
command will therefore create a /etc/hosts file on the host file system.

6.6.2. Using Data Volume Containers

A data volume is a directory available to a container, but located outside of its root file system. This allows
volume to bypass image layering, which makes it ideal for sharing persistent data between containers.
Changes to a data volume are made directly and are not included in the commit tree. By default, containers
have dedicated directories in the /var/lib/docker/ directory, while volumes are stored separately in
/var/lib/docker/volumes/. Volumes persist until no containers use them.

To create a data volume to your container, execute the following command as root:

docker run --name=container_name --volume=volume_path image_name command

The above syntax creates a container based on the image specified with image_name that runs a
selected command. Replace volume_path with a directory on your host system you want to bind mount to
the container. The --volume (or -v) option can be used one or more times to add more mounts to the
container.

When creating a container, you can attach data volumes that were already mounted to another container
by executing:

docker run --name=container2 --volumes-from=container1 image_name command

This way, the newly created container2 mounts all data volumes used by container1. Note that the
volumes can be shared even if the original container is not running.

The above commands allow you to create a Data Volume Container that acts as a collection of data
volumes that other containers can access with the --volumes-from option (see Example 6.9, “Sharing
Data Volumes Between Containers”).

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

54

Example 6.9. Sharing Data Volumes Between Containers

To create a data volume container that other containers can mount from, type:

~]# docker run --name=data -v /var/volume1 -v /var/volume2 rhel7-data true

With this command, you created a data volume container called data that has two shareable volumes.
Now, you can refer to this container when creating other containers:

~]# docker run --volumes-from=data --name=container1 rhel7 bash

You can also take volumes from the container1 instead of the original data volume container. This
makes container1 an intermediary container, and hides the true source of data.

6.6.3. Mounting a Host Directory to a Container

You can also use data volumes to mount directories from your host machine to the container's file system.
In that case, the --volume syntax looks as follows:

--volume=host_dir:container_dir:access_rights

Replace:

host_dir with a path to the directory on your host system that will be mounted.

container_dir with a path to the destination directory in container file system.

access_rights either with ro for read-only mount, or with rw to allow container to write into this
directory.

The mounted directory becomes a data volume you can share with other containers by using the --
volumes-from option.

Note

Host volume settings are not portable, since they are host-dependent and might not work on any
other machine. For this reason, there is no Dockerfile equivalent for mounting host directories to the
container. Also, be aware that the host system has no knowledge of container SELinux policy.
Therefore, if SELinux policy is enforced, the mounted host directory is not writable to the container,
regardless of the rw setting. Currently, you can work around this by assigning the proper SELinux
policy type to the host directory:

~]# chcon -Rt svirt_sandbox_file_t host_dir

Where host_dir is a path to the directory on host system that is mounted to the container.

6.6.4. Using Archive Files

Archive files are useful for backing up or restoring containers and images. Note that you can not backup
data volumes this way since they are external to containers.

⁠Chapter 6. Using Docker

55

To export the contents of a container file system as an archive in tar compress format, type as root:

docker export container_name

The output is exported to STDOUT and can be redirected to an archive file. Here, container_name stands
for a name or ID of the container. Conversely, you can create a file system by importing content from an
URL or a tar archive as follows:

docker import source

Replace source with a URL or a path to the archive file. Similarly, you can store a Docker image by
executing as root:

docker save --output=file_name image_name

By default, docker save prints the output to STDOUT. Pass file_name to the --output option to export
the image to an archive. Conversely, to load an image from the archive, type:

docker load --input=archive

Where archive stands for the path to the archive file.

6.7. Publishing Images
With use of docker push command, you can synchronize your image with a remote repository. By
default, Docker uses the public registry on index.docker.io. However you cannot use this registry for
Red Hat Enterprise Linux platform images. Therefore, Red Hat provides a specialized registry, see the
Creating a private Docker registry section of the Get Started with RHEL 7 Containers in Docker article on
Red Hat Customer Portal. Also, you can create your own internal registry as shown in Section 6.7.1,
“Creating a Private Registry”.

Use the following command to log in or register to a Docker registry server:

docker login --email="email" --username="username" --password="password" server

Replace server with the URI of the registry server you wish to connect to. If no server is specified, the
default https://index.docker.io/v1/ is selected. Replace email, username, and password with your
login credentials.

Tags provide a way to mark certain images in the repository, which helps you to organize your data and
saves your time. To place a tag on a certain image, type as root:

docker tag image_ID name:tag

Here, image_ID stands for the image ID, registry/username/name for the name of the image and tag
represents the assigned tag.

6.7.1. Creating a Private Registry

A private repository is enabled for you on the Red Hat Customer portal to allow you to view images in a
Red Hat registry. See the Creating a private Docker registry section of the Get Started with RHEL 7
Containers in Docker article on Red Hat Customer Portal.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

56

https://access.redhat.com/site/articles/881893#private
https://access.redhat.com/site/articles/881893#private

However, you can host your own private registry. To push to or pull from a repository on your own registry,
first prefix the tag with the host address of your registry. For example, if you created a registry on
localhost.localdomain:5000, you can initialize a repository called new_repo by executing:

~]# docker tag 0u812deadbeef localhost.localdomain:5000/new_repo

This command binds the image 0u812deadbeef with your custom repository. Then you can push the
new repository to its home location on localhost:

~]# docker push localhost.localdomain:5000/new_repo

Once a repository has your registry's host name as part of the tag, you can use it like any other repository
to push and pull images.

6.8. Additional Resources
To learn more about using Docker in Red Hat Enterprise Linux 7, refer to the following resources.

Installed Documentation

docker(1) — The manual page of the docker command.

nsenter(1) — The manual page of the nsenter command.

Online Documentation

Get Started with RHEL 7 Containers in Docker — This article on Red Hat Customer Portal describes
the essential Docker-related tasks and provides a number of examples.

Documentation on the Docker Project Site — The official documentation of the Docker project.

Red Hat Enterprise Linux 7 System Administrators Guide — The System Administrator's Guide
documents relevant information regarding the deployment, configuration and administration of Red Hat
Enterprise Linux 7. It is oriented towards system administrators with a basic understanding of the
system.

⁠Chapter 6. Using Docker

57

https://access.redhat.com/site/articles/881893
http://docs.docker.io/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide

Chapter 7. Using virsh
The following sections provide an overview of tasks related to installation, configuration, and management
of Linux containers. The material below focuses on tools provided by the libvirt library, which are
useful for basic container-related operations. You can also use the Docker application that offers a wider
range of capabilities; for more information on Docker, see Chapter 6, Using Docker.

The libvirt library provides a necessary infrastructure for general-purpose containers together with the
virsh utility as a default command-line interface for managing guest domains, such as virtual machines
and Linux containers.

There are two kinds of Linux Containers you can create, either they are persistent or volatile. Persistent
containers are preserved after reboot, define them using an XML configuration file. Temporary containers
are deleted as soon as the contained application finishes, you can create them with the virsh create
command.

7.1. Connecting to the LXC Driver
To execute container-related commands correctly, libvirt must be connected to LXC driver. This is not done
by default as each host can only have one default libvirt URI, and the KVM driver typically takes
precedence over LXC. To temporarily change the driver to LXC, use the -c (connect) argument before a
command as follows (execute as root):

virsh -c lxc:/// command

With -c lxc:/// specified in front of the command you change the connected driver to LXC. Since this
change is temporary, the default URI is reset right after execution. All examples of container usage in this
guide assume that LXC is not the default driver and therefore, the above syntax is used when necessary.
However, you can avoid typing -c lxc:/// before every command if you explicitly override the default
URI for the libvirt session using the LIBVIRT_DEFAULT_URI environment variable as shown in
Procedure 7.1, “Changing the Default libvirt Driver”.

Procedure 7.1. Changing the Default libvirt Driver

1. To identify your default libvirt URI, type:

~]# virsh uri
qemu:///system

In this case, the qemu:///system URI is set as default, which means KVM driver is connected.

2. Change the default setting for the libvirt session by typing:

~]# export LIBVIRT_DEFAULT_URI=lxc:///

Note that this change is not preserved after system reboot.

3. To verify your new cofiguration, type:

~]# virsh uri
lxc:///

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

58

7.2. The virsh Utility
The virsh utility is a general-purpose command-line interface for administration of virtualization domains.
As such, it can be used to manage the capabilities of LXC domains. The virsh utility can be used, for
example, to create, modify, and destroy containers, display information about existing containers, or
manage resources, storage, and network connectivity of a container.

The following table describes virsh commands that are most often used in connection with Linux
containers. For a complete list of virsh commands see the virsh manual page.

Table 7.1. virsh Commands

Virsh Command Description

define Creates a new container based on parameters in supplied libvirt
configuration file in XML format.

undefine Deletes a container. If the container is running, it is converted to a
transient container which is removed with an application shutdown.

start Starts a previously-defined container. With the --console option, you
can directly connect to the newly created container. If the --
autodestroy option is specified, the container will be automatically
destroyed on virsh exit.

autostart Sets the container to start automatically on system boot.

create Defines and starts a non-persistent container in one step. The
temporary container is based on libvirt configuration file. By executing
the shutdown command you automatically destroy this container. The -
-console and --autodestroy options can be used as with the
start command.

console Connects to the virtual console of the container.

shutdown Coordinates with the domain operating system to perform a graceful
shutdown. The exact behavior can be specified with the parameter in
the container's XML definition.

destroy Immediately terminates the container. This can be used to shut down
the container forcefully if it is not responding after executing shutdown.

edit Opens the container's configuration file for editing and validates the
changes before applying them.

7.3. Creating a Container
To create a Linux Container using the virsh utility, follow these steps:

1. Create a Libvirt configuration file in the XML format with the following required parameters:

<domain type='lxc'>
 <name>container_name</name>
 <memory>mem_limit</memory>
 <os>
 <type>exe</type>
 <init>/bin/sh</init>
 </os>

⁠Chapter 7. Using virsh

59

 <devices>
 <console type='pty'/>
 </devices>
</domain>

Here, replace container_name with a name for your container, and mem_limit with an initial memory
limit for the container. In libvirt, the virtualization type for containers is defined as exe . The
<init> parameter defines a path to the binary to spawn as the container’s init (the process with PID
1). The last required parameter is the text console device, specified with the <console> parameter.

Apart from the aforementioned required parameters, there are several other settings you can apply,
see Example 7.3, “Modifying a Container” for a list of these parameters. For more information on the
syntax and formatting of a Libvirt XML configuration file, refer to Red Hat Enterprise Linux 7
Virtualization Deployment and Administration Guide.

Example 7.1. Creating Libvirt Configuration File

The following is an example of Libvirt configuration file test-container.xml:

<domain type='lxc'>
 <name>test-container</name>
 <memory>102400</memory>
 <os>
 <type>exe</type>
 <init>/bin/sh</init>
 </os>
 <devices>
 <console type='pty'/>
 </devices>
</domain>

2. To import a new container to Libvirt , use the following syntax:

~]# virsh -c lxc:/// define config_file

Here, config_file stands for the XML configuration file you created in the previous step.

Example 7.2. Defining test-container.xml

To import the test_container.xml file to to Libvirt , type:

~]# virsh -c lxc:/// define test_container.xml

The following message will be returned:

Domain test-container defined from test-container.xml

7.4. Starting, Connecting to, and Stopping a Container
To start a previously-defined container, use the following command as root:

virsh -c lxc:/// start container_name

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

60

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide

Replace container_name with a name of the container. Once a container is started, you can connect to it
using the following command:

virsh -c lxc:/// console container_name

Note

Note that if a container uses the /bin/sh process as the init process with a PID of 1, exiting the
shell will also shut down the container.

To stop a running container, execute the following command as root:

virsh -c lxc:/// shutdown container_name

If a container is not responding, it can be shut down forcefully by executing:

virsh -c lxc:/// destroy container_name

7.5. Modifying a Container
To modify any of the configuration settings of an existing container, run the following command as root:

virsh -c lxc:/// edit container_name

With container_name, specify the container whose settings you wish to modify. The above command
opens the XML configuration file of the specified container in a text editor and lets you change any of the
settings. The default editor option is vi, you can change it by changing the EDITOR environment variable to
your editor of choice.

⁠Chapter 7. Using virsh

61

Example 7.3. Modifying a Container

The following example shows how the configuration file of the test-container from Example 7.1,
“Creating Libvirt Configuration File” looks when opened by virsh edit:

<domain type='lxc'>
 <name>test-container</name>
 <uuid>a99736bb-8a7e-4fc5-99dc-bd96f6116b1c</uuid>
 <memory unit='KiB'>102400</memory>
 <currentMemory unit='KiB'>102400</currentMemory>
 <vcpu placement='static'>1</vcpu>
 <os>
 <type arch='x86_64'>exe</type>
 <init>/bin/sh</init>
 </os>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>
 <devices>
 <emulator>/usr/libexec/libvirt_lxc</emulator>
 <interface type='network'>
 <source network='default'/>
 </interface>
 <console type='pty'>
 <target type='lxc' port='0'/>
 </console>
 </devices>
</domain>

You may notice that the configuration file opened by the virsh edit differs from the original
configuration file that was used to create the container. This change is to show all possible settings that
can be configured, not only the required ones displayed in Example 7.1, “Creating Libvirt Configuration
File”. For instance, you can modify the container's behavior on reboot or on crash.

Once the file has been edited, save the file and exit the editor. After doing so, virsh edit automatically
validates your modified configuration file and in case of syntax errors, it prompts you to open the file again.
The modified configuration takes effect next time the container boots. To apply the changes immediately,
reboot the container (as root):

virsh -c lxc:/// reboot container_name

7.6. Automatically Starting a Container on Boot
To start the container automatically on boot, use the following command as root:

virsh -c lxc:/// autostart container_name

Replace container_name with a name of the container you want to start automatically on system boot. To
disable this automatic start, type as root:

virsh -c lxc:/// autostart --disable container_name

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

62

Example 7.4 . Using virsh autostart

To start the test-container domain automatically at boot time, type:

~]# virsh -c lxc:/// autostart test-container

When the command is executed successfully, the following message appears:

Domain test-container marked as autostarted

You can use the virsh dominfo command (see Example 7.6, “The Example Output of virsh
dominfo”), to verify your new setting:

~]# virsh -c lxc:/// dominfo test-container | grep Autostart
Autostart: enable

7.7. Removing a Container
To remove an existing container, run the following command as root:

virsh -c lxc:/// undefine container_name

Replace container_name with the name of the container you wish to remove. Undefining a container simply
removes its configuration file. Thus, the container can no longer be started. If the container is running and
it is undefined, it enters a transient state in which it has no configuration file on the disk. Once a transient
container is shut down, it can not be started again.

Warning

The container is removed immediately after you execute the virsh undefine command. virsh will
not prompt you for confirmation before deleting the container. Think twice before executing the
command, as the remove operation is not reversible.

7.8. Monitoring a Container
To view a simple list of all existing containers, both running and inactive, type the following command as
root:

virsh -c lxc:/// list --all

⁠Chapter 7. Using virsh

63

Example 7.5. The Example Output of virsh list

The output of the virsh list --all command can look as follows:

 Id Name State
--
 4369 httpd-container-001 running
 - test-container shut off

Once you know the name of a container, or its process ID if it is running, you can view the meta data of this
container with the following command:

virsh -c lxc:/// dominfo container_name

Replace container_name with a name or PID of the container you wish to examine.

Example 7.6. The Example Output of virsh dominfo

The following example shows meta data of the httpd-container-001 domain:

~]# virsh -c lxc:/// dominfo httpd-container-001
Id: 4369
Name: httpd-container-001
UUID: 4e96844c-2bc6-43ab-aef9-8fb93de53095
OS Type: exe
State: running
CPU(s): 1
CPU time: 0.3s
Max memory: 524288 KiB
Used memory: 8880 KiB
Persistent: yes
Autostart: enable
Managed save: unknown
Security model: selinux
Security DOI: 0
Security label: system_u:system_r:svirt_lxc_net_t:s0 (enforcing)

For a live view of currently running Linux Containers, you can use the virt-top utility that provides a variety
of statistics of virtualization systems. To use virt-top, first install it as root:

yum install virt-top

To launch the utility, type:

virt-top -c lxc:///

The range of provided statistics and operations is similar to the top utility. For more information, see the
virt-top manual page.

The above commands allow you to monitor the overall status and resource consumption of your
containers. To go deeper beyond the container level to track individual applications running inside of a
container, first connect to this container with the virsh console command. Then you can execute the
usual monitoring commands such as top inside the container.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

64

However, when you are running a large number of containers simultaneously, you may want to gain an
overview of containerized processes without connecting to individual containers. In this case, you can use
the systemd-cgls command that groups all processes within a container into a cgroup, with the name of
this container. As an alternative, you can use the machinectl command to get information about
containers from the host system. First, list all running containers as shown in the following example:

~]# machinectl
MACHINE CONTAINER SERVICE
lxc-httpd-container-001 container libvirt-lxc
lxc-test-container container libvirt-lxc

2 machines listed.

Then you can view the status of one or more containers by executing:

~]# machinectl status -l container_name

Replace container_name with a name of the container you wish to inspect. This command requires the lxc-
prefix before the name as shown the output of the machinectl command in the above example. The -l
option ensures that the output is not abbreviated.

Example 7.7. The Example Output of machinectl status

Use the following command to see the status of the test-container:

~]# machinectl status -l lxc-test-container
lxc-test-container(73369262eca04dbcac288b6030b46b4c)
 Since: Wed 2014-02-05 06:46:50 MST; 1h 3min ago
 Leader: 2300
 Service: libvirt-lxc; class container
 Unit: machine-lxc\x2dtest\x2dcontainer.scope
 ├─12760 /usr/libexec/libvirt_lxc --name test-container --
console 21 --security=selinux --h
 └─12763 /bin/sh

Once you have found the PID of the containerized process, you can use standard tools on the host
system to monitor what the process is doing. See the systemd-cgls and machinectl man pages for
more information.

7.9. Networking with Linux Containers
The guests created with virsh can by default reach all network interfaces available on host. If the
container configuration file does not list any network interfaces (such as in Example 7.1, “Creating Libvirt
Configuration File”), the network namespace is not activated, allowing the containerized applications to
bind to TCP or UDP addresses and ports from the host operating system. It also allows applications to
access UNIX domain sockets associated with the host. To forbid the container an access to UNIX domains
sockets, add the <privnet/> flag to the <features> parameter of the container configuration file.

With network namespace, you can dedicate a virtual network to the container. This network has to be
previously defined with a configuration file in XML format stored in the /etc/libvirt/qemu/networks/
directory. Also, the virtual network must be started with the virsh net-start command. To find more
detailed instructions on how to create and manage virtual networks, refer to chapters Network

⁠Chapter 7. Using virsh

65

configuration and Managing virtual networks in Red Hat Enterprise Linux 7 Virtualization Deployment and
Administration Guide. To learn about general concepts and scenarios of virtual networking, see the
chapter called Virtual Networking in the aforementioned guide.

To connect your container to a predefined virtual network, type as root:

virsh attach-interface domain type source --mac mac --config

Replace domain with the name of the container that will use the network interface.

Replace type with either network to indicate a physical network interface or with bridge if using a
network bridge.

With source you specify the name of the source network interface.

Specify a mac address for your network interface with mac.

Add the --config option option if you want to make the network attachment persistent. If not
specified, your settings will not be applied after the system reboot.

Find the complete list of virsh attach-interface parameters in the virsh manual page.

To disconnect the container from the virtual network, type as root:

virsh detach-interface domain type --config

Here, domain stands for the name of the container, type identifies the type of the network as with the
virsh attach-interface command above. The --config option makes the detachment persistent.

Virtual network can either use a Dynamic Host Configuration Protocol (DHCP) that automatically assigns
TCP/IP information to client machines, or it can have manually assigned static IP address. The
httpd.service is used in examples of container usage in this section; however, you can use sshd.service in
the same manner without complications.

Note

Configuration file for a virtual network named default is installed as part of the libvirt package, and is
configured to start automatically when libvirtd is started. The default network uses dynamic IP
address assignment and operates in the NAT mode. Network Access Translation (NAT) protocol
allows only outbound connections, so the virtual machines and containers using the default network
are not directly visible from the network. Refer to Example 7.8, “Connecting httpd-container-001 to
the Default Network”

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

66

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide

Example 7.8. Connecting httpd-container-001 to the Default Network

As mentioned above, the libvirt package provides a default virtual network that is started automatically
with libvirtd. To see the exact configuration, open the
/etc/libvirt/qemu/networks/default.xml file, or use the virsh net-edit default
command. The default configuration file can look as follows:

<network>
 <name>default</name>
 <bridge name="virbr0" />
 <forward/>
 <ip address="192.168.122.1" netmask="255.255.255.0">
 <dhcp>
 <range start="192.168.122.2" end="192.168.122.254" />
 </dhcp>
 </ip>
</network>

To check if the network is running, type:

~]# virsh net-list
 Name State Autostart Persistent
--
 default active yes yes

With defined and running virtual network, use the virsh attach-interface command to connect a
container to this network. For example, to persistently connect httpd-coontainer-001 to the default virtual
network, type:

~]# virsh attach-interface httpd-container-001 network default --config

To verify if the network is working correctly, connect to the container and execute the usual network-
monitoring commands such as ping or ip route.

The default virtual network provided by libvirt operates in NAT mode, which makes it suitable mainly
for testing purposes or for hosts that have dynamically changing network connectivity switching between
ethernet, wifi and mobile connectivity. To expose your container to LAN or WAN, connect it to a network
bridge.

A network bridge is a link-layer layer device which forwards traffic between networks based on MAC
addresses. It makes forwarding decisions based on a table of MAC addresses which it builds by listening
to network traffic and thereby learning what hosts are connected to each network. A software bridge can
be used within a Linux host in order to emulate a hardware bridge, especially in virtualization applications
for sharing a NIC with one or more virtual NICs. For more information on network bridging, see the chapter
called Configure Network Bridging in Red Hat Enterprise Linux 7 Networking Guide.

⁠Chapter 7. Using virsh

67

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide

Example 7.9. Connecting httpd-container-002 to LAN

Ethernet bridging is useful for machines with permanent wired LAN connection. Once the host
networking is configured to have a bridge device, you can use this bridge for a virtual network. This
requires creating a configuration file and then loading it into libvirt .

Imagine you have prepared a network bridge device called br0 on your host operating system (see the
chapter called Configure Network Bridging in Red Hat Enterprise Linux 7 Networking Guide). To use
this device to create a virtual network, create the lan.xml file with the following content:

<network>
 <name>lan</name>
 <forward mode="bridge" />
 <bridge name="br0" />
</network>

After creating a valid configuration file, you can enable the virtual network. Type as root:

~]# virsh net-define lan.xml

If the network was successfully defined, the following message is displayed:

Network lan defined from lan.xml

Start the network and set it to be started automatically:

~]# virsh net-start lan

~]# virsh net-autostart lan

To check if the network is running type:

~]# virsh net-list
 Name State Autostart Persistent
--
 default active yes yes
 lan active yes yes

With prepared virtual network, attach it to the previously created container httpd-container-002:

~]# virsh attach-interface httpd-container-002 bridge lan --config

To verify if the network is working correctly, connect to the container and execute the usual network-
monitoring commands such as ping or ip route.

The Linux macvtap driver provides an alternative way to configure a network bridge. It does not require
any changes in network configuration on host, but on the other hand, it does not allow for connectivity
between the host and guest operating system, only between the guest and other non-local machines. To
set up the network using macvtap, follow the same steps as in the above example. The only difference is
in the network configuration file, where you need to specify an interface device.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

68

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide

Example 7.10. Bridge Connectivity with MacVTap

The network configuration file for a macvtap bridge can look as follows:

<network>
 <name>lan02</name>
 <forward mode="bridge" />
 <interface dev="eth0" />
</network>

After creating the configuration file, start the network and connect the container to it as shown in
Example 7.9, “Connecting httpd-container-002 to LAN”

You can find more information on macvtap in the section called Network interfaces in Red Hat Enterprise
Linux 7 Virtualization Deployment and Administration Guide.

7.10. Mounting Devices to a Container
To mount a device to the guest file system, use the general mounting syntax provided by virsh. The
following command requires a definition of the device in an XML format. See the section called PCI devices
in Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide to learn more about
libvirt device configuration files. Type as root:

virsh attach-device domain file --config

Replace domain with the name of the container you wish to attach the device to, file stands for a libvirt
configuration file for this device. Add --config to make this change persistent.

To detach a previously mounted device, type:

virsh detach-device domain file --config

where domain, file, and --config have the same meaning as with virsh attach-device.

In many cases, there is a need to attach an additional disk device to the container or to connect it to a
virtual network. Therefore, libvirt provides more specific commands for mounting these types of
devices. To learn about connecting the container to network interfaces see Section 7.9, “Networking with
Linux Containers”. To attach a disk to the container, type as root:

virsh attach-disk domain source target --config

Replace domain with the name of the container, source stands for the path to the device to be mounted,
while target defines how is the mounted device exposed to the guest. Add --config to make this change
persistent. There are several other parameters you can define with virsh attach-disk, to see the
complete list, refer to the virsh manual page.

To detach a previously mounted disk, type:

virsh detach-disk domain target --config

Here, domain, target, and --config have the same meaning as with virsh attach-disk described
above.

⁠Chapter 7. Using virsh

69

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide

7.11. Additional Resources
To learn more about using Linux Containers in Red Hat Enterprise Linux 7, refer to the following
resources.

Installed Documentation

virsh(1) — The manual page of the virsh command.

systemd-cgls(1) — The manual page lists options for the systemd-cgls command.

systemd-cgtop(1) — The manual page lists options for the systemd-cgtop command.

machinectl(1) — The manual page describes the capabilities of the machinectl utility.

Online Documentation

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide — This guide instructs
how to configure a Red Hat Enterprise Linux 7 host physical machine and how to install and configure
guest virtual machines with different distributions, using the KVM hypervisor. Also included PCI device
configuration, SR-IOV, networking, storage, device and guest virtual machine management, as well as
troubleshooting, compatibility and restrictions.

Red Hat Enterprise Linux 7 Networking Guide — The Networking Guide documents relevant
information regarding the configuration and administration of network interfaces, networks and network
services in Red Hat Enterprise Linux 7.

Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide

70

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide

Revision History
Revision 0.0-0.13 Mon May 13 2013 Peter Ondrejka

Version for 7.0 GA release

Revision History

71

	Table of Contents
	⁠Part I. Resource Management With Control Groups
	⁠Chapter 1. Introduction to Control Groups (Cgroups)
	⁠1.1. What are Control Groups
	⁠1.2. Default Cgroup Hierarchies
	⁠Systemd Unit Types

	⁠1.3. Resource Controllers in Linux Kernel
	⁠1.4. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation

	⁠Chapter 2. Using Control Groups
	⁠2.1. Creating Control Groups
	⁠2.1.1. Creating Transient Cgroups with systemd-run
	⁠2.1.2. Creating Persistent Cgroups

	⁠2.2. Removing Control Groups
	⁠2.3. Modifying Control Groups
	⁠2.3.1. Setting Parameters from the Command-Line Interface
	⁠2.3.2. Modifying Unit Files
	⁠Managing CPU
	⁠Managing Memory
	⁠Managing Block IO
	⁠Managing Other System Resources

	⁠2.4. Obtaining Information About Control Groups
	⁠2.4.1. Listing Units
	⁠2.4.2. Viewing the Control Group Hierarchy
	⁠2.4.3. Viewing Resource Controllers
	⁠2.4.4. Monitoring Resource Consumption

	⁠2.5. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation

	⁠Chapter 3. Using libcgroup Tools
	⁠3.1. Mounting a Hierarchy
	⁠Using the cgconfig Service
	⁠Using the mount Command

	⁠3.2. Unmounting a Hierarchy
	⁠3.3. Creating Control Groups
	⁠3.4. Removing Control Groups
	⁠3.5. Setting Cgroup Parameters
	⁠Modifying /etc/cgconfig.conf
	⁠Using the cgset Command

	⁠3.6. Moving a Process to a Control Group
	⁠3.7. Starting a Process in a Control Group
	⁠3.8. Obtaining Information About Control Groups
	⁠Listing Controllers
	⁠Finding Control Groups
	⁠Displaying Parameters of Control Groups

	⁠3.9. Additional Resources
	⁠Installed Documentation

	⁠Chapter 4. Control Group Application Examples
	⁠4.1. Prioritizing Database I/O
	⁠4.2. Prioritizing Network Traffic

	⁠Part II. Linux Containers
	⁠Chapter 5. Introduction to Linux Containers
	⁠5.1. Linux Containers Architecture
	⁠Namespaces
	⁠Control Groups (cgroups)
	⁠SELinux
	⁠Management Interface

	⁠5.2. Secure Containers with SELinux
	⁠5.3. Container Use Cases
	⁠5.3.1. Host Containers
	⁠5.3.2. Image-based Containers

	⁠5.4. Application Packaging with Docker
	⁠5.5. Linux Containers Compared to KVM Virtualization
	⁠5.6. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation

	⁠Chapter 6. Using Docker
	⁠6.1. Working with Docker Images
	⁠6.1.1. Searching for Images
	⁠6.1.2. Pulling Images
	⁠6.1.3. Listing Images
	⁠6.1.4. Modifying Images
	⁠6.1.5. Sharing Images
	⁠6.1.6. Removing Images

	⁠6.2. Managing Containers
	⁠6.2.1. Starting a Container
	⁠Overriding Image Defaults

	⁠6.2.2. Connecting to a Running Container
	⁠6.2.3. Committing a Container
	⁠6.2.4. Stopping a Container
	⁠6.2.5. Restarting a Container
	⁠6.2.6. Removing a Container
	⁠6.2.7. Automatically Starting a Container

	⁠6.3. Monitoring Images and Containers
	⁠6.3.1. Listing Containers
	⁠6.3.2. Viewing Container Parameters
	⁠6.3.3. Viewing Container Logs and History
	⁠6.3.4. Montitoring Resource Consumption of Containers

	⁠6.4. Using Dockerfiles
	⁠6.4.1. Dockerfile Syntax
	⁠6.4.2. Building an Image from Dockerfile

	⁠6.5. Networking
	⁠6.6. Sharing Data Across Containers
	⁠6.6.1. Copying Data from Container to Host
	⁠6.6.2. Using Data Volume Containers
	⁠6.6.3. Mounting a Host Directory to a Container
	⁠6.6.4. Using Archive Files

	⁠6.7. Publishing Images
	⁠6.7.1. Creating a Private Registry

	⁠6.8. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation

	⁠Chapter 7. Using virsh
	⁠7.1. Connecting to the LXC Driver
	⁠7.2. The virsh Utility
	⁠7.3. Creating a Container
	⁠7.4. Starting, Connecting to, and Stopping a Container
	⁠7.5. Modifying a Container
	⁠7.6. Automatically Starting a Container on Boot
	⁠7.7. Removing a Container
	⁠7.8. Monitoring a Container
	⁠7.9. Networking with Linux Containers
	⁠7.10. Mounting Devices to a Container
	⁠7.11. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation

	Revision History

