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Preface

A
university professor of mine once mentioned that there was no danger that the computer

science community would ever run out of interesting problems to solve. As a community,

computer scientists try to understand the nature of computation by forming theories and

attempting to prove their validity. We try to answer questions. Those theories which correctly cap-

ture the nature of computing problems contribute to the common pool of academic knowledge.

Previously unanswered questions receive answers—some more complete, some less complete.

The less complete answers raise new questions for further research; the more complete answers

are eventually adopted by industry practitioners.

3D graphics is a field that illustrates this phenomenon well. In the early days, 3D graphics was

mostly confined to academic research labs. The mathematics and geometry of 3D graphics were

questioned and explored, and the field grew as a result. Today, research in 3D graphics is still very

active, but at the same time, 3D graphics has also become mainstream. A number of graphics tech-

niques from academia have established themselves as efficient and effective enough for

widespread use. A 3D programmer should be familiar with these techniques. The purpose of this

book is to communicate these important 3D techniques to the intermediate 3D programmer in a

clear and intuitive way, using geometrical explanations supported with numerous working code

examples.

This book uses Linux as the implementation platform. The free operating system has a num-

ber of advantages which make it ideal for learning and programming 3D graphics. The most

important advantage is accessibility: the free, open source nature of Linux makes it possible for

any programmer to have access to a top-quality operating system and development environment.

This open nature has encouraged the development of massive amounts of free software (where

free refers not only to cost, but mainly to the freedom to study and modify the source code), includ-

ing software important for 3D graphics. Therefore, Linux offers any programmer the chance to get

involved with 3D graphics programming today, at no cost, without forcing the programmer to

either pay thousands of dollars in software licensing fees or to spend literally man-years of soft-

ware development time creating customized tools. Linux already offers the tools you need to do

serious 3D programming—and the freedom to use, learn from, and modify these tools.

This book builds upon the foundation laid in the introductory companion volume Linux 3D

Graphics Programming. It is assumed that you have an understanding of all of the material pre-

sented in the introductory volume; the first chapter provides a quick review of this material.

Therefore, this book is not suited for the complete beginner to 3D graphics. Such readers should

work through the introductory companion book before attempting to read this book.
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Introduction

W
elcome, reader! I am glad to have you along and hope that you are as excited as I am

about Linux and interactive 3D graphics programming. Take your time and enjoy the

following few pages as we leisurely discuss the goals and contents of this book.

This book is the second volume of a two-volume work on interactive 3D graphics program-

ming under Linux. First, let’s look at the two-volume work as a whole, then we’ll look more

specifically at the contents of this volume.

Taken as a whole, the two-volume work aims to provide you with the knowledge, code, and

tools to program top-notch, object-oriented, real-time 3D games and interactive graphics applica-

tions for Linux, which can also easily be ported to other platforms. By working through both

volumes, you will learn to use the most important techniques, tools, and libraries for Linux 3D

graphics: portals, OpenGL/Mesa, Xlib, 3D hardware acceleration, collision detection, shadows,

object-oriented techniques, and more. We also cover the often neglected topic of 3D modeling,

illustrating in detail how to use the professional 3D modeling package Blender, which is included

on the CD-ROM, to create animated 3D models and portal worlds for use in our interactive 3D

programs.

This second volume, titled Advanced Linux 3D Graphics Programming, covers more

advanced techniques needed for realistic display of larger datasets often used in interactive 3D

environments. Topics covered include: rendering and animation techniques for 3D polygons (3D

morphing, texture mapping, light mapping, fog), the creation of more sophisticated 3D models

with Blender (including jointed figures animated with inverse kinematics), importing such models

from Blender into our programs, hidden surface removal (portals, BSP trees, octrees, z buffers),

non-graphical issues relevant to interactive environments (special effects, collision detection, dig-

ital sound, TCP/IP networking, particle systems), and tutorials on using advanced 3D content

development systems under Linux (Game Blender and World Foundry). Sample programs are

provided, both in text form and on the CD-ROM, illustrating the concepts.

This book builds on the foundation laid by the introductory companion volume, Linux 3D

Graphics Programming. The first chapter of this book serves as a brief review of the earlier

material.

Goals of This Text
This text has several objectives. A primary goal of this text is to give you a solid understanding of

the fundamental concepts involved in interactive 3D graphics programming at the intermediate to

advanced level. Such an understanding not only enables you to write your own 3D programs,

libraries, and games under Linux, but also gives you the knowledge and confidence you need to

xii



analyze and use other 3D graphics texts and programs. In the open source world of Linux, under-

standing fundamental concepts is indeed important so that you can understand and possibly

contribute to the common pool of knowledge and code. Furthermore, learning fundamental 3D

graphics concepts also enables you to understand and effectively use sophisticated 3D applica-

tions and libraries such as 3D modelers and OpenGL.

A second goal of this text is to give you plenty of hands-on experience programming 3D

graphics applications under Linux. It is one thing to understand the theoretical mechanics of an

algorithm; it is another to actually implement, debug, and optimize that same algorithm using a

particular set of programming tools. Small standalone programs are scattered throughout this text

to demonstrate key 3D graphics concepts. It is often easy to lose sight of the forest for the trees,

particularly in the complicated world of 3D graphics. Standalone sample programs address this

problem by concisely illustrating how all the necessary components of a 3D program “fit

together.” They reduce the intimidation that often accompanies the study of large, complicated

programs, and give you confidence in developing and modifying complete 3D programs under

Linux.

A third goal of this text is to help you develop and understand the techniques for developing a

reusable 3D application framework or library. In addition to the standalone programs mentioned

above, the book also develops a series of generally reusable C++ library classes for 3D graphics,

called the l3d library. This library was introduced in the introductory companion book Linux 3D

Graphics Programming and is developed further in this book. This C++ library code follows an

object-oriented approach, relying heavily on virtual functions, (multiple) inheritance, and design

patterns. In this manner, the developed library classes are usable as is but still open for extension

through subclassing. Each chapter builds upon the library classes developed in previous chapters,

either adding new classes or combining existing classes in new ways. Through subclassing, the

library classes can be adapted to work with virtually any hardware or software platform or API;

currently, the code runs under Linux and Microsoft Windows, with or without hardware accelera-

tion. The techniques used to develop the 3D library classes illustrate both valuable 3D abstractions

and generally applicable object-oriented techniques.

A fourth goal of this text is to demonstrate the excellence of the Linux platform as a graphics

programming environment. For a programmer, Linux is a dream come true. All of the source code

is available, all of the operating system features are enabled, a large number of excellent first-rate

software development tools exist, and it is all freely available, being constantly tested and

improved by thousands of programmers around the world. Linux empowers the programmer with

open source, open information, and open standards. Given this outstanding basis for development,

it is no wonder that programmers in every conceivable application area (including 3D graphics)

have flocked to Linux. This has created a wealth of 3D libraries, tools, and applications for Linux.

Linux is, therefore, an outstanding software development platform with powerful 3D tools and

software—an ideal environment for learning and practicing 3D graphics programming.

A final, personal goal of this text, and the main reason I am writing this book, is to impart to

you a sense of the excitement that 3D graphics programming offers. You, the 3D programmer,

have the power to model reality. You control every single z-buffered, Gourad-shaded, tex-

ture-mapped, perspective-correct, dynamically morphed, 24-bit, real-time pixel on the flat 2D

screen, and amazingly, your painstakingly coded bits and bytes merge to form a believable 3D
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world. By working under Linux, you are no longer held back by a lack of tools or software. It’s all

out there—free for download and top quality. Linux software gives you the tools you need to real-

ize your 3D ideas.

Organization of the Book and the Code
This text follows a bottom-up organization for the presentation order of both concepts and pro-

gram code. This bottom-up organization serves two purposes: pedagogical and practical.

Seen pedagogically, a bottom-up approach means first covering fundamental concepts before

proceeding to more complex subjects. This is a fully natural progression which deals with com-

puter graphics at ever-increasing levels of abstraction. Seen practically, a bottom-up approach

means that simple C++ classes are developed first, with later, more complicated examples literally

“building upon” the foundation developed earlier through the object-oriented mechanism of

inheritance. This ensures compilable, executable code at each level of abstraction which is

incrementally understandable and extensible. Every chapter has complete, executable sample pro-

grams illustrating the concepts presented.

The bottom-up organization has a rather far-reaching impact on the structure of the code in

general. The principal goal I had in mind when structuring the code for the book was that all parts

of a class presented in a chapter should be explained within that same chapter. I tried very dili-

gently to achieve a code structure which allows me to avoid statements like “ignore this part of the

code for now; it will be explained in the next chapter.” When a class is presented, you should be

able to understand it fully within the context of the current chapter. The second most important

goal for the code was to reuse as much code as possible from previous chapters, typically through

subclassing, thus truly illustrating how more complex 3D concepts literally, at the code level,

build upon simpler concepts. To achieve these goals, the overall design of the code relies heavily

on indirection through virtual functions, even in fairly time-critical low-level routines such as

accessing elements of a list. The presence of so many virtual functions allows for a rather clean,

step-by-step, bottom-up, incrementally understandable presentation of the code. The design is

also very flexible; new concepts can be implemented through new subclasses, and behavior can be

swapped out at run time by plugging in new concrete classes. But as is always the case in computer

science, there is a tradeoff between flexibility and performance. The code design chosen for the

book is not as fast as it could be if all the virtual function calls were eliminated; of course, elimi-

nating virtual function calls leads to reduced flexibility and increased difficulty extending the

code later. Still, the code performs well: it achieves over 30 frames per second with software ren-

dering on a Pentium II 366 in a 320� 240 window with 24-bit color, and over 30 frames per second

in 1024� 768 with Voodoo3 hardware acceleration. In spite of its definite educational slant, it is

fast enough for real use. Again, this is one of the great things about 3D programming in the 21st

century: a straightforward, educationally biased code structure can still be executed fast enough

by consumer hardware for real-time, interactive 3D environments. Real-time 3D no longer forces

you to wrestle with assembly or to have access to expensive dedicated graphics workstations. If

you know how to program in C++ and you understand the geometrical concepts behind 3D graph-

ics, you can program real-time 3D graphics applications using free tools under Linux.
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Let’s now look at the organization of the text itself.

Chapter 1 reviews the essentials of Linux 3D graphics, as covered in the introductory com-

panion volume Linux 3D Graphics Programming. We cover the fundamentals of 2D graphics, 3D

coordinate systems, perspective projection, vectors, matrices, and the C++ library classes—the

l3d library—used to implement these basic ideas. We also review the most important commands

for the 3D modeling package Blender. The information in this chapter is a prerequisite for under-

standing the rest of the book.

Chapter 2 explores some important techniques which greatly increase the visual realism of

polygonal models: texture mapping, lighting, light mapping, and morphing. All of these tech-

niques are implemented in C++ classes. We also take a tour of the symbolic algebra package Calc,

available as an extension to the Emacs editor. Calc helps us solve the tedious sets of equations

which arise when performing texture mapping.

Chapter 3 is the first of two chapters dealing with Blender, a free and powerful 3D modeling

and animation package for Linux (included on the CD-ROM). In two step-by-step tutorials, we

walk through the creation of a set of textured and compatible morph targets suitable for 3D

morphing, and a human-like figure animated with inverse kinematics. These 3D models are then

imported and displayed in a 3D program.

Chapter 4 deals with the correct and efficient drawing of visible surfaces, which becomes

especially important when polygon counts increase. Surfaces which are obscured by other sur-

faces or which are completely outside of the field of vision should be discarded from unnecessary

processing as early and as cheaply as possible. We discuss a number of generally applicable tech-

niques, each illustrated with a sample program: back-face culling, the painter’s algorithm, view

volume culling, and z-buffering.

Chapter 5 discusses special visible-surface algorithms based on space-partitioning tech-

niques. The techniques discussed include BSP trees, octrees, regular spatial partitioning, and

portals. We discuss the use of portals for special techniques such as mirrors, refraction, transpar-

ency, and volumetric shadows. A portal engine is implemented as a natural extension of the

existing polygon and object classes.

Chapter 6 continues the discussion of portals from a practical point of view. We explore how

we can use Blender’s powerful modeling features to create portal-based worlds, using a combina-

tion of an edge-coding technique, to encode arbitrary data within a 3D mesh, and postprocessing

scripts written in the Perl language. This system, using both Blender and custom-written tools,

allows us to create 3D worlds which may be used by the portal engine developed in the previous

chapter. A complete example world is constructed step by step, with practical tips on efficiently

working in Blender: using layers, hiding geometry, aligning objects and portals, and executing

interactive fly-throughs.

Chapter 7 covers some special 3D graphics techniques or “tricks”: billboards, lens flare, parti-

cle systems, fractal landscapes, dynamic level-of-detail, environment mapping, atmospheric

effects, curved surfaces, multi-pass techniques, and camera tracking in 3D.

Chapter 8 discusses non-graphical techniques that can greatly enhance the reality of 3D

graphics programs, such as games. Techniques discussed and implemented include: collision

detection, digital sound and music with the RPlay sound server, TCP/IP network communications,

physics, and artificial intelligence.
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Chapter 9 takes a look at the possible future direction of Linux and 3D graphics. We begin

with a look at two existing and exciting 3D content development systems under Linux: Game

Blender and World Foundry. We go through a brief tutorial of 3D game creation with each of these

systems. Some speculation about the future of Linux 3D graphics follows. We close by relating the

contents of the book to the field of 3D graphics as a whole.

The Appendix provides installation instructions for the CD-ROM, information on porting the

graphics code to Windows, and a list of useful references, both in electronic (WWW) and in print

form. Notations in brackets, such as [MEYE97], are detailed in the “References” section of the

Appendix.

The CD-ROM contains all sample code from the book, the Blender 3D modeling and anima-

tion suite, the World Foundry game development kit, freely available Linux 3D libraries and

applications, and a series of animated videos illustrating some of the more difficult-to-visualize

3D concepts discussed in the text.

Reader and System Requirements
This book requires you to have a working Linux installation up and running with the XFree86

server for the X Window System on an IBM PC or compatible system with a Pentium or better

processor. If you don’t yet have Linux installed, you can download Linux for free from the

Internet, or obtain a CD-ROM containing a ready-to-install Linux distribution. Installing Linux is

no more difficult than installing other common PC operating systems, such as Microsoft Win-

dows. A 3D graphics card with Mesa drivers is recommended for optimum performance, but the

code will run acceptably fast without hardware acceleration through a custom software renderer.

If your graphics card is supported by the new XFree86 4.0 Direct Rendering Infrastructure or by

the Utah GLX project, you can also link the code with the appropriate OpenGL library (from the

DRI or from Utah GLX) to achieve hardware-accelerated rendering in a window.

Typographical Conventions
Used in This Book

The following typographical conventions are used in this book.

� Program code, class names, variable names, function names, filenames, and any other text

identifiers referenced by program code or the operating system are printed in a fixed-
width font.

� Commands or text to be typed in exactly as shown are printed in boldface.

� Key sequences connected by a plus (+) sign (such as Ctrl+C) mean to hold the first key while

typing the second key.
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C h a p t e r 1

Basic Linux 3DBasic Linux 3D
Graphics ConceptsGraphics Concepts

L
inux 3D graphics is a young and exciting field. The purpose of this chapter is to review the

basic concepts of Linux 3D graphics programming in order to lay a groundwork for the more

involved material in the following chapters. This book was written based on the assumption

that you already know everything in this chapter; therefore, this chapter is intentionally terse. This

chapter is meant to serve as a review, not as an introduction.

If you find some of these topics unfamiliar, I suggest that you take the time to read the com-

panion volume to this book, Linux 3D Graphics Programming. The companion book is aimed at

the beginning 3D graphics programmer with little or no 3D experience. Essentially, this chapter is

a brief review of the most important concepts in the introductory companion volume.

2D Graphics Fundamentals
2D raster graphics consist of plotted pixels on a display. The pixels are arranged in a rectangular

grid, typically accessible in memory as a linear sequence of bytes. Though we specify pixels by

their addresses in memory at the lowest level, it is better to specify pixels in terms of a 2D coordi-

nate system, with horizontal x and vertical y axes. In this book, we define the origin of the 2D pixel

coordinate system to be the upper-left corner of the screen, with the x axis increasing to the right

and the y axis increasing downward.

Under Linux, we display our graphics under the X Window System. Specifically, the

approach chosen for this book is to use XImages in ZPixmap format to display 2D graphics. This

allows us direct access to the bytes (and thus the pixels) forming the image. Each pixel can have a

particular color. Exactly how this color is specified depends on the bit depth and color model of the

X server. The bit depth determines the total number of available colors and is usually 8, 15, 16, 24,

or 32 bits. The color model is typically either indexed color (meaning that colors are specified as

indices into a fixed-size palette of colors) or true color (meaning that colors are specified directly

as a combination of red, green, blue, and possibly alpha intensities). For maximum flexibility, we

must query at run time the bit depth and color model, and dynamically determine the exact bit for-

mat required to specify pixel colors.
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Drawing lines can be done by an incremental algorithm, stepping along one axis by whole

pixels and using the line’s slope to determine how many pixels to step in the other axis. Drawing

polygons can be done by rasterizing the lines belonging to the left and right edges of the polygon,

and drawing horizontal lines, or spans, between the left and right edges.

Animation can be achieved through double buffering. With this technique, we have one

off-screen buffer and one on-screen buffer. We draw graphics in the off-screen buffer. When we

are finished, we copy the off-screen buffer into the on-screen buffer, at which point the graphics

become visible. Then, we draw the next frame of animation in the off-screen buffer, and repeat the

process. In this way, the on-screen buffer is continually updated with new and completed images

from the off-screen buffer, thus creating the illusion of animation.

Hardware acceleration allows us to send compact instructions to dedicated hardware, with

higher-level commands such as “draw a line” or “draw a polygon.” By sending such higher-level

commands to the hardware, and by letting the dedicated hardware then do the actual lower-level

pixel operations, a great speed-up can be achieved. Under Linux, we use the 3D library Mesa to

achieve hardware acceleration. Mesa has a syntax essentially identical to OpenGL and supports

hardware acceleration. The XFree86 4.0 project uses Mesa as part of its Direct Rendering Infra-

structure (DRI), providing for hardware-accelerated 3D graphics within a window under the X

Window System. We use the terms Mesa and OpenGL essentially interchangeably in this book.
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3D Graphics Fundamentals
3D graphics is the creation of a two-dimensional image or series of images on a flat computer

screen such that the visual interpretation of the image or series of images is that of a three-dimen-

sional image or series of images.

The visual interpretation of an image depends on the optics of light rays striking the retina.

Points emit light radially in all directions along straight lines, called light rays. Some subset of all

light rays enters the eye; we call this subset seen light rays. Seen light rays are refracted by the

eye’s lens, and focus onto the retina. The biochemical reactions within the retina produce the sen-

sation of vision.

If a 2D image causes the same light rays to strike the retina as those coming from a 3D object,

then the 2D image can be interpreted as a 3D object.

In 3D graphics, we want the seen light rays coming from the flat computer screen to corre-

spond to the seen light rays which would be seen if we were looking at a real 3D object located

behind the computer screen. To accomplish this, we compute intersections between the seen light

rays and the flat plane of the computer screen. These intersection points, since they lie along the

straight light rays going from the original 3D points to the eye, emit the same seen light rays as the
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original points. Therefore, the projected points can be visually interpreted to be the original 3D

object.

Computing an intersection between a seen light ray (coming from a point) and a flat plane is

called projecting the point onto the plane. In particular, this is a planar geometric perspective pro-

jection. The important term is “perspective.” The fact that the projection is perspective implies

that the resulting images appear realistically foreshortened, just as would be perceived by our own

eyes or by a physical camera taking a 2D snapshot of a 3D scene.

3D Coordinate Systems and Vectors
Before we can perform a perspective projection on points, we need a coordinate system to specify

the points in 3D. We can use a left-handed or a right-handed coordinate system. Define a coordi-

nate system such that x� y=z, where the symbol � represents the vector cross product. In a

right-handed system, the vector cross product is computed using the right-handed convention,

implying that in Figure 1-5, the z axis points out of the page. In a left-handed system, the vector

cross product is computed using the left-handed convention, implying that in Figure 1-6, the z axis

points into the page.

In this book, we use the left-handed coordinate system, and the left-handed convention for

computing our vector cross products. By using both a left-handed coordinate system and a

left-handed rule for computing cross products, the results we obtain and the equations we use are

identical to those which would be used with a right-handed coordinate system and a right-handed

rule for computing cross products.

Within a coordinate system, we can specify points and vectors. Points are locations in the

coordinate space; vectors are directed displacements between points in the coordinate space. Be

careful not to confuse points and vectors. One way to specify points and vectors is to use the nota-

tion (x,y,z). (Another way is homogeneous notation; see the next section.) In this notation, the

point (x,y,z) is the point located at a distance of x units from the origin along the x axis, y units from

the origin along the y axis, and z units from the origin along the z axis. On the other hand, the vec-

tor (x,y,z) specifies the displacement of x units along the x axis, y units along the y axis, and z units

along the z axis. Since it is a directed displacement, we can add the vector (x,y,z) to any point to

arrive at a new, displaced point.
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A number of standard operations are defined on vectors. Important for this book are compo-

nent-wise vector addition, scalar-vector multiplication, the vector dot product, and the vector

cross product.

Perspective Projection
Given a coordinate system in which to specify (x,y,z) points, we can then apply a perspective pro-

jection to these points to obtain the projected points, for which the seen light rays are identical to

those of the original non-projected points. In its simplest form, the perspective projection of a

point (x,y,z) is:

This formula is derived by computing the intersection between the seen light ray, coming from the

point, and a flat 2D projection plane. The d term is essentially a scaling factor. A more complete

formulation of the perspective projection is:

This form of the equation explicitly specifies the use of the d term as a field of view angle theta.

Also, it reverses the y axis orientation because it maps the projected points to the 2D pixel
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coordinate system. As we have seen, the 2D pixel coordinate system has y increasing downwards,

while the 3D coordinate system has y increasing upwards.

Matrices

In this book, we use 4� 4 matrices to effect transformations on points. We can also then use 4� 1

column vectors to represent 3D points and 3D vectors. Do not confuse the terms “column vector”

and “3D vector.” The former refers to a notational convention; the latter, to a directed displace-

ment in 3D space. The latter can be expressed by using the notation provided by the former. A 3D

point expressed in column vector notation is [x,y,z,1]T. A 3D vector expressed in column vector

notation is [x,y,z,0]T. The superscripted “T” indicates that the vectors should actually be written

transposed, in a vertical format. The fourth coordinate is w, the homogeneous coordinate; points

and vectors expressed in this notation are said to be in homogeneous coordinates. The homoge-

neous w coordinate typically has a value of 1 for points and 0 for vectors. In general, for any

arbitrary non-zero value of w, the homogeneous point [x,y,z,w]T, corresponds to the location in 3D

space given by [x/w,y/w,z/w,1]T. In other words, we divide by w.

We multiply two matrices A and B, with a result called C, as follows. Treat each column of B

as a four-element vector. Treat each row of A as a four-element vector. Then, compute the value of

each element in resultant matrix C located at row i and column j as the dot product of row i in A and

column j in B. Not all matrices may be multiplied with one another; the definition of matrix multi-

plication implies that the matrices to be multiplied must be size-compatible. Also, in general,

matrix multiplication is not commutative; AB is generally not the same as BA—the multiplication

BA might not even be possible.

Multiplying a 4� 4 matrix by a second 4� 4 matrix yields a resulting 4� 4 matrix whose trans-

formation is the concatenation of the transformations represented by the first two matrices. The

resulting composite transformation applies the transformation of the original right-hand matrix

first, followed by the transformation of the original left-hand matrix. (An alternative interpreta-

tion, using a changing-coordinate system view rather than a changing-point view, allows for a

left-to-right interpretation of the transformation order.) Multiplying a 4� 4 matrix by a 4� 1 matrix

(in other words, by a column vector representing a 3D point or a 3D vector) yields another 4� 1

matrix which represents the 3D point or 3D vector transformed by the 4� 4 matrix.

Specific Matrix Transformations
The matrix forms of several important 3D transformations follow.
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In the equation above, the camera is located at (VRPx,VRPy,VRPz) and is oriented with its

right-vector along (VRIx,VRIy,VRIz), its up-vector along (VUPx,VUPy,VUPz), and its for-

ward-vector along (VFWx,VFWy,VFWz).

Other Matrix Properties
The inverse of a matrix is the matrix which, when multiplied with the original matrix, yields the

identity matrix I. The identity matrix is a square matrix with all zero entries except for a series of

entries with value 1 located along the main diagonal of the matrix, from the upper-left to the

lower-right corner. When viewing matrices as transformations, the inverse of a matrix then repre-

sents the opposite of the transformation represented by the original matrix. We denote the inverse

of a matrix M as M–1.

A 4� 4 matrix can be viewed as a specification of a coordinate system. The first three columns

of the matrix represent the x, y, and z axes of the coordinate system. The last column of the matrix

represents the origin point of the coordinate system. By multiplying a point with this matrix, we

obtain the world coordinates of the point as seen relative to the coordinate system of the matrix. In

other words, if we have a matrix M and a point P, then in the matrix product MP, the matrix M rep-

resents the coordinate system in which P is specified. The product MP yields the location of the P
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in the world coordinate system. By inverting a matrix representing a coordinate system, we obtain

the reverse transformation. Therefore, the matrix product M–1P yields the coordinates relative to

M of the point as specified in the world coordinate system.

When you see the matrix product MP, think of this as answering the question “P, which has

been specified relative to M, is at what location in world coordinates?” When you see M–1P, think

of this as answering the question “P, which has been specified in world coordinates, is at what

location relative to M?”

The l3d Library Classes
This book relies on the use of a series of C++ library classes implementing all of the 2D and 3D

graphics concepts described in the previous sections. This library is called the l3d library. It is

developed incrementally in the introductory companion book, Linux 3D Graphics Programming.

In this book, we use the classes presented in the first book, and continue to build on these classes

to illustrate newer and more advanced concepts. The l3d classes are on the CD-ROM and are

also available for download from the Internet at http://www.linux3dgraphics-
programming.org.

Sample l3d Program
Before looking at the l3d classes themselves, let’s first look at a sample program which uses l3d.

This will give you a practical perspective on l3d before looking at the following sections, which go

into more detail on the specific l3d classes.

The following sample program is called drawdot and illustrates usage of the l3d library

classes in order to move a green dot around the screen, thereby forming a simple drawing pro-

gram. This program works with visuals of any color depth and in both TrueColor or indexed color

modes. Notice that this program is rather short and declares only one class. This is because the l3d

library has already declared several useful classes to simplify application programs.
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Listing 1-1: drawdot.cc
#include <stdlib.h>
#include <stdio.h>

#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/system/factorys.h"

//------------------------------------------------------------------------
//-
//- STEP 1: CHOOSE THE FACTORIES
//-
//------------------------------------------------------------------------

void choose_factories(void) {
factory_manager_v_0_1.choose_factories();

}

//------------------------------------------------------------------------
//-
//- STEP 2: DECLARE A PIPELINE SUBCLASS
//-
//------------------------------------------------------------------------

class my_pipeline : public l3d_pipeline {
protected:
l3d_rasterizer_2d_imp *ri;
l3d_rasterizer_2d *r;

int x, y, dx, dy;
unsigned long color;

public:
l3d_screen *s;
my_pipeline(void);
virtual ~my_pipeline(void);

void key_event(int ch); //- from dispatcher
void update_event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

};

my_pipeline::my_pipeline(void) {
s = factory_manager_v_0_1.screen_factory->create(320,200);
ri = factory_manager_v_0_1.ras_2d_imp_factory->create(320,200,s->sinfo);
r = new l3d_rasterizer_2d(ri);

s->sinfo->ext_max_red =
s->sinfo->ext_max_green =
s->sinfo->ext_max_blue = 255;

s->sinfo->ext_to_native(0, 0, 0); //- allocate background color
color = s->sinfo->ext_to_native(0, 255, 128);
s->refresh_palette();

x = y = dx = dy = 0;
}
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my_pipeline::~my_pipeline(void) {
delete s;
delete ri;
delete r;

}

void my_pipeline::key_event(int ch) {
switch(ch) {
case 'h': dx=-1; dy=0; break;
case 'l': dx=1; dy=0; break;
case 'j': dx=0; dy=1; break;
case 'k': dx=0; dy=-1; break;
case ' ': dx=0;dy=0; break;
case 'q': {

exit(0);
}

}
}

void my_pipeline::update_event() {
x += dx;
y += dy;

if(x < 0) x = 0;
if(x > s->xsize-1) x = s->xsize-1;
if(y < 0) y = 0;
if(y > s->ysize-1) y = s->size-1;

}

void my_pipeline::draw_event(void) {
r->draw_point(x,y, color);
s->blit_screen();

}

main() {
choose_factories();

l3d_dispatcher *d;
my_pipeline *p;

//------------------------------------------------------------------------
//-
//- STEP 3: CREATE A DISPATCHER
//-
//------------------------------------------------------------------------

d = factory_manager_v_0_1.dispatcher_factory->create();

//------------------------------------------------------------------------
//-
//- STEP 4: CREATE A PIPELINE
//-
//------------------------------------------------------------------------

//- plug our custom behavior pipeline into the dispatcher
p = new my_pipeline();

//------------------------------------------------------------------------
//-
//- STEP 5: START DISPATCHER
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//-
//------------------------------------------------------------------------

d->pipeline = p; //- polymorphic assignment
d->event_source = p->s;
d->start();

delete d;
delete p;

}

NOTE The following instructions assume you have already installed the source code as
described in the Appendix. In particular, the installation instructions require you to set the
$L3D environment variable to point to the installation directory. Also, you should execute
these commands in a shell window under the X Window System. See the Appendix for details
on initial installation and configuration of the source code.

First, let’s look at compiling the program. Then, we look at the structure of the program itself.

Finally, we discuss the l3d classes.

The source code for the sample program is located in directory $L3D/source/app/
drawdot. The source and binary files are located in different directory trees; the next section dis-

cusses this in detail. For now, compile and run the program as follows:

1. To compile the l3d library, type cd $L3D/source/app/lib, press Enter, type make -f

makeall.lnx, and press Enter. Notice that this makefile has a different filename than the stan-

dard name of Makefile; therefore, we specify the -f flag to tell the make command which

file is the makefile.

2. Change to the source directory for drawdot by typing cd $L3D/source/app/drawdot and

press Enter. Compile drawdot: type make -f makeall.lnx and press Enter.

3. Type cd $L3D/binaries/linux_x/float/app/drawdot to change to the binaries directory and

press Enter.

4. Notice the object and executable files from the compilation process are placed in the corre-

sponding binary directory. Type drawdot and press Enter to run the program.

5. Notice the question “which configuration?” Type 1 for now to select a normal X11 window,

and press Enter.

6. Notice the empty black window which appears. Type l. Notice the green line which moves

from left to right across the very top of the display, and that the line continues moving after

you release the key.

7. Type j. Notice that the green line moves downward.

8. Control the movement of the line with the following keys: h to move left, l to move right, j to

move down, k to move up, and Space to stop movement.

9. Type q to end the program.

Having now successfully executed the program, let’s now take a look at the organization of the l3d

directory structure, then examine the drawdot program itself.
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l3d Directory Structure

The library classes and the applications using the library classes are split into separate source and

binary directory trees. The reason we split the source files and binary files into two separate trees

is that the same source code can be compiled on a number of different platforms. Keeping the

binary files, which vary from platform to platform, in the same directory as the source files, which

remain the same, leads to a rather chaotic organization. While chaos theory is a rich and fascinat-

ing field of scientific study, we don’t necessarily want to organize our directory structure on this

basis. Splitting source and binary directories allows for a neater multi-platform directory

structure.

Specifically, the following directory structure is used:

� $L3D/source: All source files.

� $L3D/source/util: Non-C++ source files (preprocessing scripts, etc.)

� $L3D/source/app: C++ source files related directly to 3D applications.

� $L3D/source/app/lib: C++ source for the l3d library classes.

� $L3D/source/app/[program_name]: C++ source for example programs. A few sim-

ple programs place the binary files in source directory, but most programs place them in the

binary directory.

� $L3D/binaries/linux_x: Linux binary files compiled for the X Window System.

� $L3D/binaries/linux_x/fixed: Linux binary files compiled with fixed-point math.

Fixed-point executable are currently not very well supported and do not always function cor-

rectly. Subdirectory structure is the same as that under the float subdirectory.

� $L3D/binaries/linux_x/float: Linux binary files compiled with floating-point

math. This is the primary output directory for binary files.

� $L3D/binaries/linux_x/float/app/lib: Linux floating-point binary files for

the l3d library.

� $L3D/binaries/linux_x/float/app/[program name]: Linux floating-point

binary files for example programs.

The makefiles automatically place the binary files in the corresponding binary directory. You typi-

cally invoke make -f makeall.lnx in the source directory for an application program, which then

compiles all of the Linux binaries and places them in the appropriate binaries directories.

NOTE Remember, the Appendix provides instructions on how to compile all of the sample
programs at once. The preceding discussion is primarily to give you an idea of the directory
structure and the reasoning behind it.

To summarize, then, the source files for the l3d library are in $L3D/source/app/lib, and the

source files for the sample programs are all in $L3D/source/app. The primary binaries are in

$L3D/binaries/linux_x/float/app.
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The Five-Step Process of l3d Programs

The drawdot program can be broken up into five steps, which are representative of program-

ming with l3d. In fact, these steps are representative of event-based programming in general, on a

variety of platforms, as evidenced by the fact that the following scheme also can be applied to

event-driven programs under various operating systems.

The five steps are as follows.

1. Choose the proper factories for three classes: the screen, the rasterizer implementation, and

the event dispatcher.

2. Declare a pipeline subclass. The pipeline must directly or indirectly ask the factory to create a

screen and a rasterizer implementation (typically in the pipeline constructor). Override the

abstract pipeline methods to allow your program to respond to events, to update itself, and to

draw to the screen using the rasterizer implementation.

3. Create a dispatcher by using the factory.

4. Create a pipeline. Your pipeline should in its constructor ask the factory to create a screen and

a rasterizer implementation, and store these objects locally. Connect the pipeline and the

screen to the dispatcher.

5. Start the dispatcher. The dispatcher enters an event loop, extracts events from the screen, and

calls your pipeline periodically to allow your pipeline to do its work, respond to input, and

draw to the screen.

Let’s examine each step in detail to understand the general l3d structure within the context of the

sample drawdot program. This serves two goals: first, to understand the general l3d structure,

and second, to understand the specific functions called by drawdot in order to draw to the

screen. Then, we will take a look at the l3d classes themselves, which we build upon throughout

the book to incorporate increasingly advanced and reusable 3D graphics concepts.

Step 1. Choose the Proper Factories

The first step in writing an l3d application is to choose the proper factories for the program. This is

done by calling the choose_factories function defined in the so-called factory manager. To

localize object creation and free applications from needing to know specific details of concrete

classes, we use the factory design pattern. The factory manager is the central location where all

concrete factories, which are globally visible to the entire program, are accessible. The following

line chooses the factories within the factory manager:

factory_manager_v_0_1.choose_factories();

NOTE The class name has the suffix v_0_1 to represent the fact that this is the first version
of the factory manager. Later versions of the factory manager class manage more factories.
This is an example of how subclassing can provide a historical record of program develop-
ment, within the source code itself.
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Choosing the factories essentially means customizing, at run time, all customizable behavior,

which then takes effect for the duration of the program. In particular, the l3d factory manager man-

ages three factories:

1. A screen factory, producing objects corresponding to the abstract interface l3d_screen.

Class l3d_screen represents the physical output device—a window under X11, a

full-screen hardware-accelerated window using Mesa, or even a DIBSection under Microsoft

Windows.

2. A rasterizer implementation factory, producing objects corresponding to the abstract interface

l3d_rasterizer_2d_imp. Class l3d_rasterizer_2d_imp represents a particu-

lar implementation of 2D rasterization concepts. We use the term “rasterizer” to denote a

software interface to a rasterizer implementation. A rasterizer implementation is a particular

hardware or software component that draws 2D graphics primitives (triangles, lines, dots)

into a frame buffer. Two important types of rasterizer implementations are software rasterizer

implementations, which write directly into an off-screen buffer, and hardware rasterizer

implementations, which use specialized, faster functions for hardware-accelerated pixel

operations.

3. A dispatcher factory, producing objects corresponding to the abstract interface l3d_dis-
patcher. Class l3d_dispatcher represents a generalized event dispatcher in a

particular operating system environment. Under X, the dispatcher intercepts X events within

a window’s event loop and passes them on transparently to our application. Using hardware

acceleration with Mesa, the dispatcher works within the event framework provided by Mesa

and GLUT, again forwarding events in a transparent way to our application. Under another

operating system, the dispatcher would need to call any OS-specific routines necessary to

capture and forward events.

All of these factories represent system-specific information: the output device, the rasterizer

implementation, and the event dispatcher. Therefore, by choosing the factories, we are essentially

dynamically configuring the program to use the desired run-time environment. In our case, the

factory manager simply asks the user which factories should be used, but more sophisticated solu-

tions are also possible. We could, for instance, have an auto-detect routine that searches for the

existence of particular hardware, and that, depending on whether or not it finds it, configures the

factory to create the appropriate software component accordingly.

Step 2. Declare a Pipeline Subclass

The second step in writing an l3d application is to declare a pipeline subclass. A pipeline is simply

a sequence of operations on data. The main loop in a game or graphics program is typically called

the pipeline. Therefore, the pipeline contains, directly or indirectly, your application’s main data

and functionality.

We say “directly or indirectly” because the pipeline might do nothing other than create

another object, to which it then delegates the main program’s responsibility. In such a case, the

pipeline is not directly responsible for the application’s data and functionality, but instead merely

serves as an interface between the dispatcher and the object actually doing the real work.
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The pipeline does not control execution of the program. Instead, it responds to events. The

abstract l3d_pipeline class provides a set of virtual event functions, which are automatically

called by an event dispatcher (class l3d_dispatcher, covered in the next section). By declar-

ing a subclass of l3d_pipeline, you can override the virtual event functions to provide

specific responses to specific events, without needing to know how or when these functions are

invoked.

In particular, an l3d_pipeline subclass should do three things:

1. Directly or indirectly create and store a screen object, a rasterizer implementation object, and

a rasterizer object. This is typically done in the constructor. The first two objects, the screen

and rasterizer implementation, must be created by using the already chosen factories (section

“Step 1: Choose the Proper Factories”). The third object, the rasterizer itself, is directly cre-

ated via the C++ operator new, since the rasterizer itself contains no platform-specific

dependencies. (Such dependencies are all in the rasterizer implementation, not the rasterizer.)

2. Declare internal variables, functions, and objects to store the current state of the virtual world.

3. Override the l3d_pipeline virtual event functions to handle input, update internal

objects, and draw output to the screen. Handling input and updating internal objects are both

done by using data structures specific to the application program. Drawing output to the

screen is done by using the screen, rasterizer, and rasterizer implementation objects created in

the constructor.

The first responsibility of an l3d_pipeline subclass is easy to understand. The pipeline repre-

sents the application. The application should display interactive graphics on the screen. We

therefore create and store a screen object, representing the output device, and a rasterizer imple-

mentation, representing a strategy for drawing graphics to the screen. The rasterizer itself presents

a high-level interface to rasterization functionality, implemented by the low-level tools offered by

a rasterizer implementation. Again, remember that a rasterizer implementation can be either a

software rasterizer implementation, directly manipulating bytes in an off-screen frame buffer, or a

hardware rasterizer implementation, calling hardware API functions to instruct the hardware to

draw the graphics for us. Therefore, through the rasterizer, rasterizer implementation, and screen,

our program has an interface to screen and screen-drawing functionality.

NOTE Theoretically, the screen object could also be created outside of the pipeline. (The
following discussion also applies to the rasterizer and rasterizer implementation objects.)
There is no technical reason why the screen absolutely must be created within the pipeline
constructor. In practice, though, this would make little sense. Consider that the pipeline repre-
sents the entire application logic. Creating a screen outside of the pipeline would also mean
needing to destroy the screen outside of the pipeline. This would imply some sort of a
“higher-level” layer of functionality which creates and destroys objects the pipeline needs in
order to function. This would only make sense if the screen object often needed to be used
outside of the context of the pipeline, at this “higher-level” layer. Given the current premise
that the pipeline is the application, a higher-level layer makes no sense. Therefore, in the cur-
rent architecture, there is no reason to move management of the screen object outside of the
pipeline.
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The second responsibility of an l3d_pipeline subclass, declaring data, is also intuitive. Since

it represents the application, the pipeline subclass must contain all data necessary for maintaining

and updating the current state of everything within the virtual world. This might include such

things as the current positions and velocities for objects of interest, energy levels for spaceships,

the prevailing wind velocity, or anything else being modeled. All of this data is stored within the

l3d_pipeline subclass in the form of member variables or objects.

The third and final responsibility of an l3d_pipeline subclass is to override virtual event

functions to respond to events. An l3d_pipeline subclass can override any of the following

virtual functions declared in l3d_pipeline:

void key_event(int ch); //- from dispatcher
void update_event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

The key_event function is automatically called whenever a key is pressed in the application

window. The function is called with a parameter indicating the ASCII value of the key pressed,

thereby allowing the application to respond to the particular key pressed.

Theupdate_event function is automatically called whenever the application is allowed to

update itself. You can think of your program as being a giant clockwork, with everything happen-

ing at each “tick” of the clock. This event function represents one “tick” in your program. At this

point you update the internal variables storing the positions of various objects, update velocities,

check for collisions, and so on.

TIP The calling frequency of update_event is not necessarily guaranteed to be constant.
That is to say, the amount of physical time which elapses between successive calls may be
slightly different. For accurate physical simulations, where velocities or other physical quanti-
ties should be updated based on time, we can store an internal variable recording the value
of the system clock the last time that update_event was called. We can then compare the
current system clock to the value of the variable to determine how much physical time has
elapsed, and update the time-dependent quantities accordingly. The particle system program
later in this book presents one example of such code.

The draw_event function is called whenever the application is allowed to draw its output to the

screen. This function typically will be called immediately after update_event, but this does

not necessarily have to be the case. In other words, the updating of the virtual world and the draw-

ing of the virtual world can be thought of as two separate threads of control, which are usually but

not necessarily synchronized.

With this general understanding of a pipeline’s structure (creation of screen, storage of vari-

ables, and response to events), we can take a closer look at the particular details of the pipeline in

the drawdot program.

The constructor for the drawdot pipeline takes care of the first responsibility of an

l3d_pipeline subclass: creation of screen, rasterizer implementation, and rasterizer objects.

In the constructor, we first ask the screen factory to create a screen and the rasterizer implementa-

tion factory to create a rasterizer implementation. We then create a rasterizer which uses the

created rasterizer implementation. The member variables s, ri, and r represent the screen,

rasterizer implementation, and rasterizer, respectively.
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The constructor also takes care of the second responsibility of an l3d_pipeline subclass:

management of data representing our virtual world. In our case, our virtual world consists of a sin-

gle pixel (a humble start). The following member variables are declared and initialized to keep

track of the dot’s status: color, x, y, dx, and dy. Variables x, y, dx, and dy represent the dot’s

current horizontal and vertical positions and velocities, and are all initialized to zero. The variable

color represents the dot’s current color, and is specified as follows. First, we logically define the

maximum red, green, and blue values to be 255. Then, we specify a color of (0, 255, 128), which

means a red intensity of 0, a green intensity of 255, and a blue intensity of 128, all being measured

in relation to the logical maximum of 255 which we just set. Finally, we convert this RGB color to

a “native” color appropriate for the current screen’s color depth and color model. The conversion

is done via an object of type l3d_screen_info, which encapsulates the complicated color

calculation discussed earlier. The color conversion function is called ext_to_native, as it

changes a color from an “external” RGB format into a format “native” to the XImage.

The drawdot pipeline then overrides the key_event, update_event, and draw_
event methods to respond to events. This fulfills the third and final responsibility of an

l3d_pipeline subclass, responding to events.

The key_event for the drawdot pipeline checks to see if any one of the directional keys

was pressed, and updates the dx and dy variables, representing the horizontal and vertical veloci-

ties, accordingly.

The update_event for the drawdot pipeline adds the velocities to the positional vari-

ables, and makes sure the position stays within the bounds of the screen. In other words, x += dx
and y += dy.

The draw_event for the drawdot pipeline first calls the draw_point routine of the

rasterizer, which then forwards the request to the rasterizer implementation to draw a pixel at a

particular point in a particular color. Remember that the drawing occurs off-screen (double buffer-

ing). The pixel color must be specified in “native” format for the current color depth and color

model. We already computed and stored this color earlier by using the function l3d_screen_
info::ext_to_native. After plotting the point, we call blit_screen to cause the

off-screen graphics to be copied to the screen.

Let us summarize the main idea behind the pipeline. A pipeline represents the main function-

ality of an application and is subclassed from l3d_pipeline. An l3d_pipeline subclass

has three responsibilities: creating screen-access objects, declaring world data, and responding to

events. Creating screen-access objects (screen, rasterizer implementation, and rasterizer) allows

access to the screen and screen-drawing functions. Declaring world data allows the program to

keep track of the state of all objects in the virtual world. Responding to events is how the pipeline

responds to input (through key_event), updates the virtual world (through update_event),

and draws to the screen (through draw_event, using the previously created screen-access

objects).

The pipeline does not need to worry about how or when events occur; it merely responds to

them. The pipeline’s virtual event functions are thus called from an outside source. This outside

source is the dispatcher.
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Step 3. Create a Dispatcher

The third step in writing an l3d application is to create an event dispatcher object. The event dis-

patcher serves as an interface between an event source and an event receiver. The event receiver in

our case is the pipeline. The event source is a window created under a specific event-driven win-

dowing system. The role of the dispatcher is to receive events from the system-specific window,

and to call the appropriate pipeline functions to allow the pipeline to respond to the events.

The whole idea is to isolate the pipeline (i.e., your application logic) from the details of the

underlying event-generating mechanism. This way, the pipeline’s logic can focus exclusively on

application-specific responses to events, without needing to know exactly how the windowing

system generates and transmits events. The dispatcher handles all the messy details of event cap-

turing and translates this into a clean, simple, virtual function call to the pipeline. This allows your

pipeline to work on a variety of platforms, with a variety of event-generating mechanisms.

The event dispatcher must be created using the factory chosen in step 1. This is because the

dispatcher represents system-specific code, and should thus be created through an abstract factory.

Step 4. Create a Pipeline

The fourth step in creating an l3d application is to create your pipeline object. This step is easy.

Having already declared and defined an l3d_pipeline subclass, which fulfills the three pipe-

line responsibilities (creating screen-access objects, declaring world data, and overriding

event-handling functions), we simply create the pipeline directly with the C++ new operator.

This, in turn, invokes the pipeline’s constructor, which creates the screen, rasterizer implementa-

tion, and rasterizer objects.

At this point, the application is ready to respond to events. We just need to pump events to the

pipeline in order to allow it to respond to input, update itself internally, and draw to the screen. To

start the entire event process, we start the dispatcher.

Step 5. Start the Dispatcher

The fifth step in writing an l3d application is to start the dispatcher. We must do three things:

1. Assign a pipeline to the dispatcher.

2. Assign an event source to the dispatcher.

3. Call start.

A moment’s reflection makes it clear why the two assignments are necessary. The dispatcher takes

events from the event source, interprets them minimally, and calls the appropriate pipeline virtual

event function to allow the pipeline to respond. The pipeline member of the dispatcher object

is set to the pipeline we just created. The event_sourcemember of the dispatcher object is set

to the screen object created in the pipeline’s constructor—in other words, the screen (in our case,

the X window) is the source of events. With these two member variables set, the dispatcher can

then begin to extract events from event_source and pass them on to pipeline—a process

set in motion by calling start.

18 Chapter 1: Basic Linux 3D Graphics Concepts



Summary of Fundamental l3d Concepts

The five-step process presented above is typical of l3d programs. First, you choose the proper fac-

tories to configure the program to its environment. Then, you declare a pipeline representing your

application and its data. You create an instance of the pipeline, which in turn creates screen,

rasterizer implementation, and rasterizer objects. You “plug” this pipeline into an event dis-

patcher. Your application pipeline responds to events from the dispatcher by filling in the blanks

left by the virtual functionskey_event,update_event, anddraw_event. The application

pipeline draws to the screen by using the screen, rasterizer implementation, and rasterizer objects

it created within its constructor. This forms a complete, interactive, event-driven, hardware-inde-

pendent graphics program.

Overview of l3d Classes
We are now ready to look at the specific l3d classes. A much more detailed development of the fol-

lowing l3d classes appears in the introductory companion book Linux 3D Graphics Programming.

The descriptions below are more of a reference, but suffice for a high-level understanding of the

structure of the library classes.

TIP Although the descriptions of the l3d classes presented here are not as detailed as the
full-blown development in the companion book, all of the sample programs and library code
from the introductory companion book are also included on the CD-ROM. Therefore, you
can study the provided code to understand more precisely the library concepts summarized in
the following sections.

Applications and Events

Applications written with l3d are event-driven. The classes described in the following sections

deal with applications, events, and event handling.

An Event-driven Graphics Application: l3d_pipeline

The class l3d_pipeline, in file pipeline.cc, is an abstract class representing your appli-

cation. As we saw earlier, you subclass from l3d_pipeline to create your application, and

must fulfill three responsibilities: creating the screen-access objects, declaring world data, and

responding to events.

Event Generation: l3d_event_source

Class l3d_event_source, in file ev_src.h, is an empty class whose sole purpose is to

indicate that any class derived from this class is capable of serving as an event source for

an l3d_dispatcher object. A class will inherit, possibly multiply inherit, from l3d_
event_source if it is usable as a source of events. Class l3d_screen inherits from

l3d_event_source.
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The Event Dispatching Loop: l3d_dispatcher

The class l3d_dispatcher, in file dispatch.h, is an abstract class representing an event-

dispatching mechanism. It extracts events from an underlying event-generating mechanism and

translates these into virtual function calls on a pipeline, thereby allowing the pipeline to respond to

events. Class l3d_dispatcher is a recognition of the general concept of an event dispatching

mechanism, which can be subclassed to provide support for event dispatching on a variety of plat-

forms other than Linux and X (e.g., Linux and Mesa, or Microsoft Windows and a Windows

window). This is an example of the strategy design pattern, where an algorithm (in this case, the

event loop) is turned into a class of its own.

Figure 1-8 illustrates the relationship among the abstract classes l3d_pipeline,

l3d_dispatcher, and l3d_event_source.

The class l3d_dispatcher_x11, subclassed from l3d_dispatcher, represents a

dispatcher specific to the X Window System. The source file is dis_x11.cc. The class

l3d_dispatcher_mesa (file dis_mesa.cc) represents a dispatcher working within the

GLUT framework provided for OpenGL and Mesa.

2D Graphics

Current mainstream display hardware for personal computers is for all practical purposes flat and

two-dimensional. The classes described in the following section deal with accessing 2D screen

and drawing 2D raster graphics.

Control of the Screen: l3d_screen

The classes l3d_screen (file screen.cc) and l3d_screen_info (file scrinfo.h)

work closely together to control and provide access to the display hardware.

The class l3d_screen is an abstract interface to a display device. A screen is responsible

for the creation, setup, and display of the data which has been plotted to the screen. However, the

screen is not responsible for doing the plotting itself. In other words, the screen is a “dumb” dis-

play device. It can show itself, initialize a color palette, and so forth, but it does not know how to

draw polygons, lines, dots, or anything else. The screen is simply a passive display device which

other objects can use as a target to draw into. In particular, the l3d_rasterizer class handles

plotting (rasterization) tasks, manipulating data within the screen. Classl3d_screen is a recog-

nition of the general concept of a screen as a generalized output device—not just an X Window
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with an XImage. The application program uses a screen through the abstract l3d_screen inter-

face, and is therefore not tied to any particular display device.

The class l3d_screen_x11, subclassed from l3d_screen, represents a screen under

the X Window System, in the form of a window using an XImage for graphics display. The source

file is sc_x11.cc. The class l3d_screen_mesa (file sc_mesa.cc) represents a screen

created using GLUT and Mesa.

Relevant Screen Attributes: l3d_screen_info

The class l3d_screen_info (file scrinfo.h) is an abstract interface to screen information.

We define screen information as follows: any information which an external class needs to know

about a screen object in order to be able to work with that screen. Class l3d_screen_info
encapsulates the vital statistics about a screen and makes them available through a clean, easy

interface.

In particular, when dealing with colors and XImages, the bytes making up a pixel and their

interpretation depend on the color depth and color model of the underlying X server. Class

l3d_screen_info is a recognition of the more general concept that external users of a screen

need to access such “screen information” in order to do anything useful with the screen.

Such screen information includes:

� Maximum ranges for the specification of red, green, and blue (RGB) values

� A conversion function to convert colors specified in RGB values into native color format (i.e.,

the exact bit format) needed by the underlying screen

� Number of bytes per pixel

� A pointer to the memory of the off-screen buffer (not applicable for hardware-accelerated dis-

play devices, where such access is usually not possible)

� A method for setting internal color state (needed for OpenGL)

� Methods for computing lighting and fog tables for gradual fading of colors, needed for light

and fog effects

� Methods for applying lighting and fog tables to a particular color to obtain the resulting lit or

fogged color

NOTE It might appear tempting to merge l3d_screen_info into the l3d_screen class
itself. After all, isn’t screen information part of the screen itself? The problem appears when
we try to subclass the screen. Screen information can be handled fundamentally in two differ-
ent ways: as RGB (TrueColor) or as indexed color. Similarly, screens themselves come in a
variety of sorts: X11 screens, Mesa screens, Windows screens, DOS screens. If screen infor-
mation and the screen were merged into one class, we would have the unpleasant situation of
having several sorts of each screen: an X11 RGB screen, an X11 indexed screen, a Mesa RGB
screen, a Mesa indexed screen, a Windows RGB screen, a Windows indexed screen, a DOS
RGB screen, a DOS indexed screen. Extending the class hierarchy with a new information
type or a new screen type becomes a major headache. This situation is sometimes called a
nested generalization and indicates that the class should be split into two. For this reason, we
keep the screen information separate, in its own l3d_screen_info class hierarchy. The
l3d_screen is also separate, in its own l3d_screen class hierarchy. We can then, at run
time, mix and match screen information types and screen types freely, without the
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multiplicative explosion of classes which would have resulted had we combined
l3d_screen_info and l3d_screen into one class.

The class l3d_screen_info_rgb, subclassed from l3d_screen_info, represents

screen information for X TrueColor visuals or other color models based upon a direct specifica-

tion of red, green, and blue pixel values. The source file is si_rgb.cc. The class

l3d_screen_info_indexed (file si_idx.cc) represents screen information for X

PseudoColor visuals or other color models based upon an indexed or paletted color model.

Figure 1-9 illustrates the class diagram for the screen-related classes.
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The Rasterizer: l3d_rasterizer_2d

The class l3d_rasterizer_2d (file rasteriz.cc) represents a 2D, double-buffered

rasterizer—a subsystem capable of drawing 2D geometric primitives on a double-buffered raster

output device. The class does not do any of the rasterization work itself, but instead relies on a

rasterizer implementation (covered in the next section) to provide a “toolkit” of functions that the

rasterizer calls. Class l3d_rasterizer_2d is a recognition of the general concept of a

rasterizer interface, which allows access to abstract rasterization concepts. The rasterizer interface

allows drawing not only of individual pixels, but also of groups of pixels forming geometric prim-

itives, such as lines and polygons.

NOTE Separating the rasterizer and the rasterizer implementation is an example of the
generally applicable bridge design pattern, where an abstraction and its implementation are
two separate classes. This allows for the class hierarchies for the abstraction and the imple-
mentation thereof to vary and be refined independently, avoiding the multiplicative explosion
of classes discussed earlier (nested generalizations). This technique is also referred to as
using a handle.

The class l3d_rasterizer_2d_imp (file rasteriz.cc) represents an implementation of

the tools necessary for a 2D rasterizer to do its work, and is called a rasterizer implementation. A

rasterizer implementation is an abstract class, and is subclassed to provide concrete rasterizer

implementations for specific software or hardware platforms. While the related class

l3d_rasterizer_2d represents an interface to 2D rasterizer functionality, the class

l3d_rasterizer_2d_imp represents an interface to an implementation of 2D rasterizer

functionality. This rasterizer implementation can (in subclasses) be based upon either hand-coded

software algorithms, or an API to hardware-accelerated rasterization functions.

The class l3d_rasterizer_2d_sw_imp, derived from class l3d_rasterizer_
2d_imp, represents a rasterizer implementation implemented in software (as opposed to hard-

ware). The source file is ras_sw.cc. The calculation of the bytes corresponding to a pixel and

setting these bytes in order to display geometric primitives are all operations typical of software

rasterization implementations, but not necessarily of hardware rasterizer implementations. This

is the reason that such byte and pixel calculations take place only in the concrete

l3d_rasterizer_2d_sw_imp subclass, which represents a software rasterizer implementa-

tion, and not in the abstract ancestor class l3d_rasterizer_2d_imp, which represents a

more abstract concept of a software or hardware rasterizer implementation.

Class l3d_rasterizer_2d_mesa_imp (file ras_mesa.cc) represents a rasterizer

implementation implemented using OpenGL/Mesa calls. Through hardware support in the Mesa

library, or through the Direct Rendering Interface, this rasterizer implementation can take advan-

tage of hardware acceleration.

Figure 1-10 illustrates the class diagram for rasterization-related classes.
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Concrete Factory Management

The class l3d_factory_manager (file factorys.cc) represents the factory manager

which contains all factories which any class might need in the entire program. Whenever an object

requests object creation through a “factory,” this factory is to be found in the central factory

manager.

Global variable factory_manager_v_0_1 is a global instance of the factory manager.

An application chooses its factories at startup through the global variable factory_man-
ager_v_0_1. Thus, the factory manager class is a singleton class, which is instantiated only

once in the entire program.

Notice that this is the only l3d class which directly manipulates the concrete factories by their

class name, and which includes the header files for the concrete factories. All other users of the

factories always go through an abstract factory interface, and do not include the header files for the

concrete factories. This is the whole point of the abstract factory: to completely isolate the
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application from the underlying concrete types to allow for future extension of code without any

change of original code.

Specifying Geometry and Behavior

The classes described in the following sections allow l3d programs to specify objects in 3D and to

manipulate them.

Points

Specifying points is done through two classes: l3d_point (file point.cc) and l3d_coor-
dinate (file coord.h).

The class l3d_point represents a set of four numbers, of the form (x, y, z, w). These num-

bers represent a location in space in terms of displacements along coordinate axes.

The class l3d_coordinate represents a transformable coordinate location in space. It

stores two variables of type l3d_point, named original and transformed. The trans-

formed coordinate is always initialized to equal the original coordinate at the beginning of each

frame (method reset), after which it may be transformed by zero or more transformations

(method transform). After any number of transformations, the application may choose to save

the current location in one of the intermediate storage locations (member transformed_
intermediates), so that the old location may be referenced later. In the end, the transformed

coordinate must represent a point in 2D pixel space, since ultimately the points must be used to

plot images on-screen. The whole idea is that an l3d_coordinate is more than just a single

location in space: it is an original location, a number of optional intermediate locations, and a final

location.

The most important thing to remember about the original and transformed members

is that the transformed coordinate is the one that is finally used to display the pixels on the screen.

An application must at some point put the final pixel coordinates in the transformed member

variable.

Lists

Specifying more complex geometry (as we see in the coming section on polygons) requires us to

store lists of vertices. For this, we use a combination of two data structures: l3d_list and

l3d_two_part_list (both in file list.h). Class l3d_list is a dynamically growable

list that is like an array, but which automatically expands and allocates more space as necessary.

The elements are accessed as normal through the array index operator [ ]. Class l3d_two_
part_list is an extension of l3d_list and partitions the list of items into two parts: a fixed

part and a varying part. The fixed part is fixed in size and never changes; the varying part is based

on some dynamic calculation and changes often in size. However—and this is the whole point of

the l3d_two_part_list—both the fixed and the varying parts are accessed identically. If we

stored the fixed and varying parts in two separate lists, any references to list items would need to

specify if the item comes out of the fixed or the varying list, which makes for rather inconvenient

code. With the l3d_two_part_list, external users don’t need to worry about whether

the referenced item is fixed or varying. This uniformity of access is primarily of use in polygon
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clipping. Clipping can create temporary (varying) vertices which must be accessible exactly like

normal (fixed) vertices, but which may vary wildly in number from frame to frame.

Using these list classes is easy. They are declared as template classes, so that they work with

any data type. Let’s first begin with the l3d_list class.

To use l3d_list, do the following:

1. Declare an instance of the list, providing the data type as the template parameter and passing

the initial size of the list to the constructor. The initial size must be greater than zero.

2. Call next_index before storing any new element into the list, to obtain the next free index

within the list. This also causes the list to grow if you exceed the current size of the list.

3. Store and access elements in the list using the array index operator [ ]. Never attempt to access

an element you have not already allocated by having called next_index.

4. Query the number of items via the num_items member. Valid indices range from 0 to

num_items –1.

5. Effectively empty or reduce the size of the list by setting num_items to zero or a smaller

number. Never set num_items to a larger number; use next_index to increase the size of

the list.

6. Copy the list by assigning it to another l3d_list object. This makes a full copy of the list

and its contents. The two copies are completely independent of one another and contain no

pointers to common objects (unless the contents of the list themselves are pointers, in which

case the two lists contain separate copies of pointer objects, which point to the same locations

in memory).

NOTE The creation of the list elements occurs through an abstract factory; the copying of
list elements, through a possibly virtual assignment operator; the access of list elements,
through an abstract class pointer in the overloaded array index operator [ ]. This means that
by providing a new factory (via the l3d_list constructor) and overriding a virtual assign-
ment operator =, an existing l3d_list in already existing code can be extended after the
fact to work with new subclasses, and the original code is still guaranteed to work because the
internal access to the list elements is done through an abstract class pointer. A detailed exam-
ple of this technique appears in Chapter 2, when we extend the existing polygon class to store
texture coordinate information with each vertex, without needing to change any of the already
existing code. By default, an abstract factory is automatically created and destroyed if you do
not provide one; the flexibility is there if you need it, but does not burden you if you do not.

The other list class is the l3d_two_part_list. Again, a two-part list consists of a fixed part,

whose size never changes, and a varying part, whose size may change greatly over time. The list

elements in both the fixed part and the varying part are accessed identically (with the array opera-

tor [ ]). To use an l3d_two_part_list, do the following:

1. Declare an instance of the list, providing the data type as the template parameter and passing

the initial fixed size of the list to the constructor. The initial size must be greater than zero.

2. Store and access fixed items in the list by using the array index operator [ ]. Valid indices for

fixed items range from 0 to num_fixed_items –1. Do not store fixed items outside of this

range. Do not change the num_fixed_items variable.
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3. Call next_varying_index before storing any element in the varying part of the list, to

obtain the next free index within the varying part. This also causes the varying part of the list

to grow if you exceed the current size of the list.

4. Store and access elements into the varying part of the list using the array index operator [ ].

Never attempt to access an element in the varying part which you have not already allocated

by having called next_varying_index.

5. Query the number of varying items via the num_varying_items member. Valid indices

for varying items range from num_fixed_items to num_fixed_items + num_
varying_items – 1.

6. Effectively empty or reduce the size of the varying part of the list by setting num_vary-
ing_items to zero or a smaller number. Never set num_varying_items to a larger

number; use next_varying_index to increase the size of the varying part of the list.

7. Copy the list by assigning it to another l3d_two_part_list object. This makes a full

copy of the fixed and varying parts of the list and its contents; the two copies are completely

independent of one another and contain no pointers to common objects (unless, again, the

contents are themselves pointers).

Notice that access to both fixed and varying items is done uniformly through the array access

operator [ ].

NOTE The earlier comments about factory creation, virtual assignment, and polymorphic
access all apply to l3d_two_part_list as well. This is because l3d_two_part_list
internally uses an l3d_list to store the items.

We use two-part lists for storing vertices (i.e., objects of type l3d_coordinate) which are

later used to define polygons. A typical creation of a vertex list looks like the following:

vlist = new l3d_two_part_list<l3d_coordinate> ( 4 );
(*vlist)[0].original.X_ = float_to_l3d_real(100.0);
(*vlist)[0].original.Y_ = float_to_l3d_real(100.0);

(*vlist)[1].original.X_ = float_to_l3d_real(200.0);
(*vlist)[1].original.Y_ = float_to_l3d_real(150.0);

(*vlist)[2].original.X_ = float_to_l3d_real(150.0);
(*vlist)[2].original.Y_ = float_to_l3d_real(200.0);

(*vlist)[3].original.X_ = float_to_l3d_real( 50.0);
(*vlist)[3].original.Y_ = float_to_l3d_real(120.0);

First, we create an object of type l3d_two_part_list with a data type of l3d_coordi-
nate. The constructor parameter 4 indicates the size of the fixed part of the two-part list. We then

initialize the first four elements, with indices 0 through 3, simply by using the array access opera-

tor [ ]. Each element of the list is an object of type l3d_coordinate, which we can manipulate

directly. In the code snippet above, we initialize the original member of the l3d_coordi-
nate, which is what an application program does to initially define a vertex list. The varying part

of the two-part list is not used above, but is used during polygon clipping operations.
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Vectors and Matrices

In addition to specifying points in 3D space, we also need to specify vectors, which are displace-

ments, and matrices, which represent transformations. Class l3d_vector (file vector.cc)

represents vectors; class l3d_matrix (file matrix.cc) represents matrices.

The l3d source code defines various operators allowing the appropriate mathematical opera-

tions among scalars, points, vectors, and matrices. For instance, we can multiply two matrices

together, multiply a matrix and a point, add a point and a vector, and so forth. Note that the pipe

character (the vertical bar “|”) is used to specify matrix multiplication.

Polygons

The l3d classes make a distinction between the geometry and the appearance of a polygon. The

base classes l3d_polygon_2d and l3d_polygon_3d describe the geometry of a polygon

in 2D or 3D, respectively. Some typical geometric operations on polygons are clipping, transfor-

mation, or surface normal computation. We subclass the geometric polygon classes to obtain

drawable polygon classes. For instance, l3d_polygon_3d_flatshaded inherits the attrib-

utes and methods used for describing the geometry of a 3D polygon, and adds new attributes and

methods necessary to draw the polygon on-screen.

A polygon requires two lists for its definition: an external vertex list, and an internal list of

indices into the external vertex list. The external vertex list can be shared among several polygons,

as is the case when we combine several polygons to make an object. The internal list of indices

specifies the polygon in terms of the external vertices, specified in clockwise order when looking

at the front of the polygon (the left-handed rule). During an analytic clipping operation, new verti-

ces can be created; this requires addition of new vertices to the external list, and temporary

redefinition of the internal vertex index list to use the new clipped vertices.

The source code for the polygon classes is located on the companion CD-ROM in the direc-

tory $L3D/source/app/lib/geom/polygon.

Objects

Class l3d_object (file object3d.h) represents a 3D polygonal object. It declares a list of

vertices and a list of polygons. The vertices are shared among all polygons. Each polygon is

defined in terms of a list of indices into the shared vertex list of the object.

The class l3d_object stores a list of matrices representing transformations on the object.

The method reset sets all vertices of the polygon back to their original positions in object coor-

dinates; the method transform then applies a transformation to the vertices, so that the vertices

may be moved into world space, camera space, and finally, screen space. The method cam-
era_transform is identical to the method transform, except that it calls a user-definable

routine after the transformation. This allows us to save the camera-space coordinates, which we

need for texture mapping (see Chapter 2). Although the perspective projection could be handled

with a matrix, the class l3d_object implements a specialized routine apply_perspec-
tive_projection, which projects the vertices of the polygon from 3D into 2D.

Polygon culling is done with the help of the linked list nonculled_polygon_nodes.

Initially, at the beginning of each frame, the list contains all polygons in the object. Through vari-

ous culling processes, we can remove polygons from the list if we determine them to be not visible
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for the current viewpoint (see Chapter 4). Then, for each frame, we only need to draw the polygons

that remain in the list.

Each object can update itself. This allows construction of 3D worlds in a modular fashion,

with a number of “intelligent” objects capable of acting on their own. An object can update itself

by changing its geometry (i.e., altering the vertices in the vertex list), or by applying a transforma-

tion matrix to its geometry. Such updates can take place either through subclassing or through

plug-ins. Wíth subclassing, a new object subclass overrides the virtual method update, which

updates the object as needed. With a plug-in, we write a dyamic shared library file which is loaded

at run time and which then updates the object.

Worlds

Just as groups of 3D polygons form a 3D object, groups of 3D objects form a world. Class

l3d_world (file world.h) is the class we use for storing worlds. A world is a displayable,

interactive 3D environment. It contains 3D objects to populate the world, a camera to see the

world, a rasterizer to plot pixels, and a screen to display the output.

A simple world as implemented by l3d_world is really little more than a simple list of

objects displayed with the painter’s algorithm. Later, we subclass from l3d_world to perform

more advanced visibility operations on our 3D objects, leading to a graph-like structure of objects

connected via portals. See Chapter 5 for details.

For interaction with the external events (such as the user pressing a key on the keyboard), the

world class relies on a corresponding pipeline class l3d_pipeline_world (filepi_wor.h).

The world pipeline class merely forwards events on to the world to be handled.

Fixed- and Floating-Point Math

In 3D graphics, we generally need to be able to store and manipulate fractional values. For this, we

introduce the type l3d_real. The purpose of the l3d_real type is to allow all computations

using real values to be performed using either floating-point or fixed-point arithmetic.

Floating-point arithmetic is done by using the C type float, and for good real-time performance

requires a hardware floating-point unit. Fixed-point arithmetic requires no floating-point unit in

hardware, and simulates fractional values with integers by multiplying the fractional value so that

the fractional part moves into the integer part.

By using l3d_real any time we want a real value, we can configure our code at compile

time to use either fixed- or floating-point math. There are four functions you need to know for

using variables of type l3d_real:
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� Type conversions. A variable of type l3d_real can be converted to and from an integer or

floating-point value through the macros l3d_real_to_float, l3d_real_to_int,

float_to_l3d_real, and int_to_l3d_real. Furthermore, a variable of type l3d_
real can be converted to and from a fixed-point number through the macros l3d_real_
to_fixed and fixed_to_l3d_real.

� Addition and subtraction. Variables of type l3d_realmay be added to and subtracted from

other variables of type l3d_real with the normal plus (+) and minus (–) operators. Addi-

tion and subtraction with variables of any other type must first use one of the type conversion

macros to convert the variable of the other type to l3d_real.

� Multiplication and division. Variables of type l3d_real can be multiplied or divided by

variables of type l3d_real or of type int only. Such multiplications or divisions must use

one of the following macros, all of which return a type of l3d_real: l3d_mulrr (multi-

plies an l3d_real by an l3d_real), l3d_mulri (multiplies an l3d_real by an

int), l3d_divrr (divides an l3d_real by an l3d_real), and l3d_divri (divides

an l3d_real by an int).

� Other functions. The iceil function returns the integer ceiling of (i.e., the smallest integer

larger than) an l3d_real. ifloor returns the integer floor of (the largest integer smaller

than) an l3d_real. The function l3d_sqrt returns an l3d_real representing the

square root of the given l3d_real argument.

NOTE The reasons for not making l3d_real a class are discussed in the Appendix of the
introductory companion book, Linux 3D Graphics Programming.

If we choose to use floating-point math (at compile time via a #define), then the l3d_real
macros do nothing other than call the ordinary cast, multiplication, or division operators. If we

choose to use fixed-point math (again, at compile time via a #define), the l3d_real macros

are defined quite differently, applying the somewhat arcane rules for fixed-point math to simulate

real-valued computations using purely integer arithmetic.

An unfortunate consequence of using the l3d_real macros for multiplication and division

is that this leads to somewhat awkward code. For instance, the following computation with float-

ing-point values:

x = a * ( ( b + c ) / d )

would need to be expressed with l3d_real types as:

x = l3d_mulrr( a , l3d_divrr( b + c , d ) )

The multiplication and division must therefore be realized as nested macro invocations. Notice,

however, that no macro invocation is necessary for the addition of b and c, since addition and

subtraction ofl3d_real types can be done with the normal addition and subtraction operators.
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Summary of l3d Classes

Figure 1-11 illustrates the major l3d classes covered up to this point. Study the previously pre-

sented drawdot program to keep a practical perspective on the use of the l3d classes, and

remember the five-step process for creating l3d applications. Also, remember that the CD-ROM

contains complete source code listings for all of these classes, and the introductory companion

book Linux 3D Graphics Programming develops the classes in detail, with several example

programs.
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TIP See the source code for the sample program fltsim on the CD-ROM (taken from the
introductory companion book Linux 3D Graphics Programming) for a typical example of cre-
ating an animated world populated with polygonal objects and a user-controllable camera.

Linux Programming Tools
This book assumes you are already fairly comfortable programming on a Linux system. I won’t

spend any time explaining how to change directories, start the X Window System, set environ-

ment variables, or bring up a command shell. The following list, while not complete, mentions a

number of important Linux programming tools with which you should be familiar. You don’t have

to be an expert with all of these tools, but it is important to know of their existence, to be able to

perform basic operations with these tools, and to know how to find out more about these tools.

� man: The online manual. Use this command to find information about other commands.

� info: The online info documentation, often used for GNU projects or for very large documen-

tation. Use this command to find information about other programs not documented with

“man.”

� Emacs: The most powerful editor around. We use an Emacs module in Chapter 2 to perform

symbolic algebra. You should be comfortable editing files and executing commands in Emacs

in order to be able to carry out the symbolic algebra exercises in Chapter 2.

� gcc: The GNU C/C++ compiler.

� gdb: The GNU debugger. It is text-based, but several graphical front ends exist.

� make: The project-compiling utility. You should have a basic understanding of what

Makefiles are and how they are interpreted, since practically every non-trivial Linux project

uses “make” to direct the actual compilation of the source code files.

� binutils: A collective term for the GNU binary utilities. Use these tools to find out information

about system libraries and object files. This can help in finding out which library file contains

a particular function with which you need to link your program.

� find: A powerful file-finding program. Use “find” to look for files (such as C++ header files)

containing a particular string or matching some criteria.

Linux 3D Modeling
The introductory companion book Linux 3D Graphics Programming covered basic usage of the

Blender 3D modeling package for creating 3D models. We continue the coverage in this book.

Blender is zero-cost software; a fully functional version of Blender, with no artificially imposed

restrictions, is included on the CD-ROM.
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NOTE The term “zero-cost software” means that you can use the software without having to
pay for the software. The difference between “zero-cost software” and “free software” is that
free software comes with source code, and can be freely modified. “Free software” refers to
freedom, not price. Free software by its open nature is usually zero-cost software, but the
reverse is not true. The GNU/Linux operating system is free software, as is the source code
included with this book. See http://www.gnu.org for a full definition of “free software.”
Remember, your freedom as a professional programmer is literally at stake here.

The rest of this section briefly goes over the most important features of Blender as discussed in the

introductory companion book.

Blender Interface and Commands
The Blender interface consists of a number of non-overlapping windows. Each window has a

header and a type. You may choose to display the window header either at the top or the bottom of

a window by right-clicking on the header. Change the type of the window by clicking and drag-

ging the button on the left side of the window header. You can change the type of a window at any

time. The types of windows are:

� InfoWindow: Contains global settings for the entire program, such as directory names.

� 3DWindow: Displays 3D objects and allows creation, positioning, and editing of these

objects.

� ButtonsWindow: Edits properties of the current selection in the 3D window, or of global edit-

ing or rendering parameters.

� FileWindow: Selects files for loading and saving.

� OopsWindow: Displays the internal object-oriented programming structure (OOPS) of the

currently selected scene in a tree format. Editing is not allowed in this window.

� SoundWindow: Allows integration of sounds into interactive 3D environments created with

Blender. In Blender 2.0 beta, this window type is not yet fully functional.

� IpoWindow: Displays and edits interpolators (IPOs), which are used for interpolating various

object parameters over time. Blender has a very flexible interpolation system where many

parameters can be interpolated and thus animated over time; interpolators can animate

objects, vertices, textures, lamps, or sequences.

� SequenceWindow: Combines and mixes among various animation sequences. This window

type is essentially a post-production video studio, where each animation sequence is repre-

sented as a horizontal strip with the length indicating the duration. Strips can be blended or

combined with one another, allowing, for instance, smooth fades between different parts of a

3D animation. Another exciting possibility is the combination of Blender rendered anima-

tions with existing video footage from another source, such as a video camera.

� TextWindow: Edits a text file. Used primarily for creating script files for the built-in Python

extension language.

� ImageWindow: Displays an image. Useful for previewing texture image files; also used for

assigning specific texture coordinates to specific faces of a mesh.
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� ImageSelectWindow: Selects an image file for loading or saving, displaying a thumbnail pre-

view of each image file for easy differentiation.

The majority of the modeling work in Blender is done in the 3DWindow, where geometry is inter-

actively created in 3D, and the ButtonsWindow, where various properties and parameters can be

set. See Chapters 3 and 6 for further discussion of Blender and some of the other window types.

New windows in the Blender user interface are created by splitting existing windows. A bor-

der separates each window header from the window contents. Middle-click the border to split the

window. Right-click a border to join two adjacent windows.

A window can receive keyboard input only when the mouse cursor is positioned over that

window. As mentioned earlier, the actual 3D modeling work in Blender is done in the 3DWindow.

During modeling, the most important Blender commands can be executed by an appropriate sin-

gle-keystroke command within the 3DWindow. The following list summarizes the most important

single-keystroke commands in the 3DWindow:
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� Ctrl+Up Arrow: Toggle maximization of window.

� 1, 3, 7 on the numeric keypad: Display front, side, or top view.

� 5 on the numeric keypad: Toggle between perspective and orthogonal viewing.

� Tab: Toggle EditMode. In EditMode, you edit and move individual vertices within one single

object; outside of EditMode, you position and move complete objects.

� Shift+middle-click+drag: Translate viewpoint.

� Ctrl+middle-click+drag: Zoom view.

� Middle-click+drag: Rotate view.

� Left-click: Position 3D cursor.

� Right-click: Select object (outside of EditMode) or vertex (in EditMode). Use Shift to extend

the selection.

� SPACE: Display the ToolBox, a menu for creating and performing some common operations

on objects.

� b: Begin border selection mode; end with left-click.

� x: Delete selection.

� g: Grab (translate) selection.

� r: Rotate selection.

� s: Scale selection.

� Shift+s: Snap (align). This operation can snap vertices or objects to the grid or cursor, or snap

the cursor to objects or the grid.

� h: Hide selection (only in EditMode). This is useful for temporarily hiding parts of a large,

complex object to allow interior parts to be more easily seen and edited.

� Shift+d: Create a separate duplicate copy of an object.

� Alt+d: Create a linked duplicate copy of an object. Changes to the geometry of one object are

mirrored automatically in the other object.

� Ctrl+p: Create a hierarchical parent relationship between selected objects.

� Alt+p: Clear the hierarchical parent relationship between the selected objects.

� 1 through 0: Switch the currently visible layer to be a layer between 1 and 10.

� Alt+1 through Alt+0: Switch the current layer between layers 11 and 20.

� Shift+1 through Shift+0: Toggle visibility of layers 1 through 10, allowing multiple selection

of layers.

� Shift+Alt+1 through Shift+Alt+0: Toggle visibility of layers 11 through 20.

� m: Move the currently selected objects to another layer.

� F1: Load file.

� F2: Save file.

� Alt+w: Export file as Videoscape, a simple ASCII format without textures.

� q: Quit Blender.
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Exporting and Importing Blender Models
Models created in Blender can be imported into l3d programs. The Blender file format is very

complex and not documented for external users. For this reason, we need to export the Blender

models in a different file format in order to import them into l3d programs.

The simplest export format offered by Blender is the Videoscape format. This file format is

simple and straightforward; it contains vertices and polygons defined in terms of indices into a

common vertex list. Conveniently, this is exactly the same way that l3d stores polygonal objects.

We use a plug-in (file vidflat.h) to read the Videoscape file into l3d. The plug-in con-

structor is of particular interest. The data parameter passed to the constructor is a plug-in

environment object of type l3d_plugin_environment, so that the plug-in knows some-

thing about its calling environment. The environment object, in turn, stores another data
parameter. In the case of the Videoscape plug-in, this data parameter is a pointer to a character

string containing a list of additional parameters needed to load the Videoscape file.

The Videoscape parameter string in the environment object has the following form:

x y z A B C D E F G H I mesh.obj

The entries are interpreted as follows:

� x y z: Floating-point numbers indicating the origin of the object’s local coordinate system.

In other words, this is the location of the object.

� A B C D E F G H I: Nine floating-point numbers representing the object’s orientation as a

3� 3 rotation matrix. The numbers are in row-major order (i.e., A B C is the first row of the

matrix, D E F the second row, G H I the last row). Recall the relationship between matrices

and coordinate systems, (as explained in the introductory companion book Linux 3D Graph-

ics Programming). This relationship implies that the vector (A,D,G)—the first row of the

matrix—is the x axis of the object’s local coordinate system, (B,E,H) is the y axis, and (C,F,I)

is the z axis.

� mesh.obj: The filename of the Videoscape file containing the geometry of the object.

The plug-in constructor first parses the parameter string to get the position, orientation, and

required filename for the Videoscape object to be loaded. Next, it opens the mesh file and reads in

the vertices and faces. The Videoscape format stores coordinates in a right-handed system, with

the z axis going up; l3d uses a left-handed system with the y axis going up. To convert between

these two systems, we need to do two things: swap the y and the z values as we read them from the

Videoscape file, and reverse the ordering of the vertices in a face definition to preserve the

front/back orientation of the face after the vertex swap. After converting the coordinates in this

manner, the constructor then initializes each polygon by computing its center, surface normal, and

containing plane. At this point, the polygon is also assigned a random color.

After reading in all vertices and faces, the constructor then defines two transformation matri-

ces, one for rotating the object according to the rotation matrix specified within the parameter

string, and a second matrix for translating the object to the specified position. These matrices are

concatenated together and stored in the object as a composite transformation.
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TIP See sample program vidflat on the CD-ROM for an example of using the
Videoscape plug-in.

Summary
This chapter flew through the basics of Linux 3D graphics programming, as covered in depth in

the introductory companion book Linux 3D Graphics Programming. We looked at:

� 2D graphics, theory, and practice under Linux and X

� Definition of 3D graphics

� 3D coordinate systems, vectors, and matrices

� Perspective projection

� Storing points, polygons, objects, and worlds in computer memory

� l3d library classes in C++ for implementing event-driven, object-oriented 3D graphics

� 3D modeling, export, and import with Blender

In a nutshell, that is the prerequisite knowledge for effectively reading the coming chapters. Don’t

worry if you are rusty on one or two concepts—the important thing to ensure, before proceeding

with the rest of the book, is that you are fairly comfortable with all or almost all of the topics dis-

cussed in this chapter.

With the basics of polygonal 3D graphics now firmly in mind, we can proceed to the next

chapter, which discusses rendering and animation techniques for 3D polygons.
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C h a p t e r 2

Rendering andRendering and
Animation TechniquesAnimation Techniques
for 3Dfor 3D Polygons

T
his chapter examines rendering and animation techniques for 3D polygons. In Chapter 1, we

saw that the l3d library classes provide facilities for storing, grouping, and manipulating 3D

polygons, objects, and worlds. We also saw that l3d classes can rasterize flat-shaded poly-

gons by stepping along the polygon’s edges from top to bottom, and drawing horizontal spans of

pixels between the left and right edges. In this chapter, we extend these basic polygonal tech-

niques to achieve more interesting and realistic visual effects.

We cover the following topics in this chapter:

� 3D morphing (allowing a 3D object to smoothly change shape into another)

� Adding surface detail through texture mapping

� Using the symbolic algebra package Calc to derive the texture mapping equations

� Mathematical models for computing light intensities

� Rendering computed light intensities with light mapping

� Shadows

This chapter presents the following sample programs:morph3d illustrating vertex animation and

morphing in 3D, textest illustrating texture mapping, and lightmap illustrating light

mapping.

Vertex Animation and 3D Morphing
The program morph2d from the companion book Linux 3D Graphics Programming already

explained and illustrated the concept of morphing in 2D. As we used the term earlier, morphing

referred to the change in shape of a polygon by interpolating the vertices in its vertex list between

certain key frames or morph targets.

Here, we wish to extend the concept of morphing to 3D, and also to groups of polygons

instead of single polygons. As it turns out, this is extremely easy. First of all, the vertex
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interpolator class we used in 2D, l3d_vertex_interpolator, can be reused for the 3D

morphing case. Second, all polygons in a 3D object share a common vertex list; therefore, chang-

ing the vertex list in the object automatically redefines the geometry of all polygons in the object.

Note that in order to be completely correct, we would have to recompute the surface normal

vector for all affected polygons any time we made any change to the vertex list. If we change one

vertex in the vertex list, we would need to recompute the surface normals for all polygons using

that vertex. If we change all vertices in the vertex list, as is usually the case with morphing, then

we would need to recompute the surface normals for all polygons in the object. Also, any other

geometry-specific information stored with the polygons or the object would need to be recom-

puted whenever we change the vertex list, because changing the vertex list is equivalent to

changing the underlying geometry of the object.

In the following sample program morph3d, however, we won’t be recomputing the normals,

but rather just changing the vertex list. This leads to simpler and faster code, but is actually incor-

rect since the surface normals are no longer normal to the morphed geometry. Since we don’t use

the surface normal in this sample program, the fact that the post-morphing normals are incorrect is

actually not noticeable.

Sample Program: morph3d
Sample program morph3d displays a number of morphing pyramid objects in an interactive

scene. Each pyramid slowly changes shape from a compact pyramid to a more elongated shape,

then back again. You can interactively fly though the scene with the standard keyboard controls

used in l3d library:
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Figure 2-1: Morphing in 3D is a simple extension of the same concept
in 2D. We need only interpolate the vertex list, shared by all
polygons, from one key frame to another. Here, we have a cube
defined by vertices c1-c8, and a pyramid defined by vertices p1-p8.
Each vertex c1-c8 is morphed to the corresponding vertex p1-p8,
which morphs the cube into the pyramid.

Figure 2-2: Surface normals or other additional 3D
geometrical attributes are no longer accurate after
morphing.



j: Rotate left (rotates around the VUP axis)

l: Rotate right (rotates around the VUP axis)

i: Thrust forward (translates along the VFW axis)

k: Thrust backward (translates along the VFW axis)

J: Roll left (rotates around the VFW axis)

L: Roll right (rotates around the VFW axis)

I: Pitch forward (rotates around the VRI axis)

K: Pitch backward (rotates around the VRI axis)

s: Thrust left (translates along the VRI axis)

f: Thrust right (translates along the VRI axis)

e: Thrust up (translates along the VUP axis)

d: Thrust down (translates along the VUP axis)

v: Cycle through to the next thrust level

NOTE The VFW axis is the forward axis along which the camera is looking. The VUP axis is
the axis pointing straight up from the camera. The VRI axis is the axis pointing straight to the
right of the camera. Taken as a set, the vectors VRI, VUP, and VFW form a left-handed camera
coordinate system.

Listing 2-1: main.cc, the main file for program morph3d
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p3_flat.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rast3.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
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#include "../lib/system/fact0_2.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/dynamics/plugins/plugenv.h"
#include "shapes.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

class my_world:public l3d_world {
public:
my_world(void);

};

my_world::my_world(void)
: l3d_world(640,400)

{
l3d_screen_info *si = screen->sinfo;

camera->VRP.set(0,0,–50,0);
camera->near_z = float_to_l3d_real(5.5);
camera->far_z = int_to_l3d_real(500);

int i,j,k,onum=0;

i=10; j=0; k=20;
k=0;

//- create some pyramid objects
for(i=1; i<100; i+=20) {
objects[onum=objects.next_index()] = new pyramid();
l3d_screen_info_indexed *si_idx;
l3d_screen_info_rgb *si_rgb;

l3d_polygon_3d_flatshaded *p;
for(int pnum=0; pnum<objects[onum]->polygons.num_items; pnum++) {
p = dynamic_cast<l3d_polygon_3d_flatshaded *>(objects[onum]->polygons[pnum]);
if(p) {
p->final_color = si->ext_to_native

(rand()%si->ext_max_red,
rand()%si->ext_max_green,
rand()%si->ext_max_blue);

}
}

if (objects[onum]==NULL) exit;
objects[onum]->modeling_xforms[1].set
( int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(i),
int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1) );

objects[onum]->modeling_xform =
objects[onum]->modeling_xforms[1] |
objects[onum]->modeling_xforms[0] ;

}

screen->refresh_palette();
}
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main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;

factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete d;
delete p;
delete w;

}

Listing 2-2: shapes.h, the header file for the 3D objects for program morph3d
#include "../lib/geom/object/object3d.h"
#include "geom/vertex/verint.h"

class pyramid:public l3d_object {
static const int num_keyframes = 2;
int keyframe_no;
l3d_two_part_list<l3d_coordinate> *keyframes[2];
l3d_vertex_interpolator interp;
bool currently_interpolating;

public:
pyramid(void);
virtual ~pyramid(void);
int update(void);

};

Listing 2-3: shapes.cc, the implementation file for the 3D objects for program morph3d
#include "shapes.h"

#include <stdlib.h>
#include <string.h>

pyramid::pyramid(void) :
l3d_object(4)

{
keyframes[0] = new l3d_two_part_list<l3d_coordinate>(4);
(*keyframes[0])[0].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*keyframes[0])[1].original.set
(float_to_l3d_real(10.0),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*keyframes[0])[2].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(10.),
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float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*keyframes[0])[3].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(10.),
float_to_l3d_real(1.));

keyframes[1] = new l3d_two_part_list<l3d_coordinate>(4);
(*keyframes[1])[0].original.set
(float_to_l3d_real(5.),
float_to_l3d_real(5.),
float_to_l3d_real(5.),
float_to_l3d_real(1.));
(*keyframes[1])[1].original.set
(float_to_l3d_real(–10.),
float_to_l3d_real(10.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*keyframes[1])[2].original.set
(float_to_l3d_real(10.),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*keyframes[1])[3].original.set
(float_to_l3d_real(10.0),
float_to_l3d_real(15.0),
float_to_l3d_real(0.),
float_to_l3d_real(1.));

int pi;
pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
printf("before: %p", polygons[pi]->vlist);
polygons[pi]->vlist = &vertices;
printf("after: %p", polygons[pi]->vlist);
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
polygons[pi]->vlist = &vertices;
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(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

num_xforms = 2;
modeling_xforms[0] = l3d_mat_rotx(0);
modeling_xforms[1].set
( float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.) );

modeling_xform=
modeling_xforms[1] | modeling_xforms[0];

currently_interpolating = false;
keyframe_no=0;
vertices = keyframes[keyframe_no];

}

pyramid::~pyramid(void) {
for(register int i=0; i<polygons.num_items; i++) {delete polygons[i]; }
for(int i=0; i<num_keyframes; i++) {
delete keyframes[i];

}
}

int pyramid::update(void) {
if(currently_interpolating) {
vertices = interp.list;
if(! interp.step()) {
currently_interpolating = false;

}
}else {
keyframe_no++;
if(keyframe_no >= num_keyframes) {keyframe_no = 0; }
int next_keyframe = keyframe_no + 1;
if(next_keyframe >= num_keyframes) {next_keyframe = 0; }

vertices = keyframes[keyframe_no];
interp.start( *keyframes[keyframe_no], *keyframes[next_keyframe],

rand()%100 + 50, 3);

currently_interpolating = true;
}

}

The program morph3d uses the l3d_world and l3d_object classes to store the virtual

world. The file main.cc is very simple: it declares a world subclass which creates some pyra-
mid objects.

The pyramid class is a morphing 3D pyramid. It changes its shape between a compact and

an elongated pyramid. To accomplish this, we added the following lines to the pyramid class:

class pyramid:public l3d_object {
static const int num_keyframes = 2;
int keyframe_no;
l3d_two_part_list<l3d_coordinate> *keyframes[2];
l3d_vertex_interpolator interp;
bool currently_interpolating;
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The keyframes variable holds two separate, different vertex lists. Each list is one complete set

of vertex positions defining a shape for the 3D object. We create and fill these lists within the

pyramid constructor.

keyframes[0] = new l3d_two_part_list<l3d_coordinate>(4);
(*keyframes[0])[0].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*keyframes[0])[1].original.set
(float_to_l3d_real(10.0),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*keyframes[0])[2].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(10.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*keyframes[0])[3].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(10.),
float_to_l3d_real(1.));

keyframes[1] = new l3d_two_part_list<l3d_coordinate>(4);
(*keyframes[1])[0].original.set
(float_to_l3d_real(5.),
float_to_l3d_real(5.),
float_to_l3d_real(5.),
float_to_l3d_real(1.));
(*keyframes[1])[1].original.set
(float_to_l3d_real(–10.),
float_to_l3d_real(10.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*keyframes[1])[2].original.set
(float_to_l3d_real(10.),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*keyframes[1])[3].original.set
(float_to_l3d_real(10.0),
float_to_l3d_real(15.0),
float_to_l3d_real(0.),
float_to_l3d_real(1.));

Now, given two different shapes of the object stored in two separate vertex lists, we use the class

l3d_vertex_interpolator, exactly as we did in the earlier program morph2d, to inter-

polate the positions of the vertices between the two vertex lists. This takes place in the method

pyramid::update. The usage of the vertex interpolator is exactly the same as before: we

specify a starting vertex list, an ending vertex list, a total count of interpolation steps, and a dimen-

sion (2D or 3D) determining which elements of the vertex are interpolated. The vertex interpolator

has its own internal, separate vertex list, which contains the interpolated “in-between” positions

between the specified starting vertex list and ending vertex list. We interpolate between vertex

lists by callinginterp.step, and assign the interpolated vertex list to the pyramid’s vertex list.
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if(currently_interpolating) {
vertices = interp.list;
if(! interp.step()) {
currently_interpolating = false;

}

Once the interpolation has finished, after the specified number of steps have been taken and the

positions of the vertices in the vertex list have reached the positions in the target vertex list, we

then proceed to interpolate between the next two pairs of vertex lists in the array keyframes. In

this program, since we only have two vertex lists, this simply has the effect of morphing back from

the second to the first vertex list again. Notice that we pass to the vertex interpolator a random

parameter for the number of interpolation steps, so that each pyramid always morphs at a different

speed.

}else {
keyframe_no++;
if(keyframe_no >= num_keyframes) {keyframe_no = 0; }
int next_keyframe = keyframe_no + 1;
if(next_keyframe >= num_keyframes) {next_keyframe = 0; }

vertices = keyframes[keyframe_no];
interp.start( *keyframes[keyframe_no], *keyframes[next_keyframe],

rand()%100 + 50, 3);

currently_interpolating = true;
}

That’s all there is to morphing in 3D. It’s nothing more than a step-by-step interpolation of all ver-

tex positions from a starting list to an ending list, just as with the 2D case.

NOTE When morphing more complicated shapes, you will want to use a 3D modeling pro-
gram (also called a 3D modeler) to create the 3D objects. Chapter 3 covers using Blender to
do exactly this. To create models which morph into one another, it is vital that both models
have the same number of vertices and faces in the same order. The best way to ensure this is
simply to start with the first model and modify it within the 3D modeler to become the second,
target model. If you create the target model from scratch, it is almost certain that the number
or order of the vertices and faces will be different from those of the first model, which would
make morphing impossible or visually disturbing. See Chapter 3 for more details.

NOTE It is actually not “impossible” to morph between two objects with different numbers
of vertices or faces, but doing so is much more complicated than the case described above
(where a 1:1 correspondence does exist between the vertices of the two objects). You would
have to define some function to automatically map vertices to “reasonable” in-between posi-
tions, based on the shapes of the source and target objects, a topic which goes beyond the
scope of this book.
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Lighting
Polygons, as we have treated them until now, have all been single-colored. We’ll now look at some

methods of combining color and light so that our polygons look more realistic.

For our purposes, we model light as a single, integer intensity value which changes the bright-

ness of a particular color. Therefore, we combine light and color to arrive at a final lighted color.

This is accomplished by means of lighting tables. In the lighting table, we simply look up the color

along one axis, and the light intensity along the other axis, and find an entry in the table that tells us

the final color with the specified intensity. For colors specified directly with red, green, and blue

values (as opposed to through a palette), we split the lighting tables into three separate red, green,

and blue tables, solely for the reason of saving memory.

We define intensities as going from 0 to a certain predefined maximum integer light level,

MAX_LIGHT_LEVELS. A light intensity of 0 combined with any color yields black; a light inten-

sity of MAX_LIGHT_LEVELS combined with a color yields the original color at full intensity.
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Figure 2-4: Red, green, and
blue lighting tables in use.



The light model just described assumes that the light itself has a color of white. It is also possi-

ble to model colored light sources, which not only change the intensity of the color in question, but

also change the color itself by introducing new color components contained within the light itself.

For instance, shining a red light on a white surface yields a final color of red. This can be imple-

mented most easily using an RGB color model. The color of the light is represented as a red

intensity, a green intensity, and a blue intensity. The color of the surface is represented as a red

color, a green color, and a blue color. The color of the final, lighted surface is the red color lighted

by the red intensity, combined with the green color lighted by the green intensity, combined with

the blue color lighted by the blue intensity.

We can view the lighting problem as two separate issues. The first issue is computing the light

intensity itself. The second issue is deciding where to compute and draw the light intensities (once

per polygon, once per vertex, once per pixel, and so forth). We now cover each of these topics sep-

arately, starting with the computation of light intensities.

Mathematical Models for Computing Light
We are physically able to see objects because they emit or reflect light energy. There are various

mathematical models we can use to model the amount of light emitted by or reflected from a

surface.

The lighting models presented in the next few sections attempt to approximate the effects of

light by computing the amount of light we see from a surface. Note that these lighting models do

not necessarily represent a realistic modeling of the physical phenomena underlying the emission

and reflection of light, but nevertheless provide adequate results in practice and are widely used in

interactive 3D graphics.

The lighting equations presented below all assume that light intensities are real values which

go from 0 to 1. We can then multiply these with a scaling factor to change them into integer values

to use as lookup indices into the light table. In the l3d library, the scaling factor is called

MAX_LIGHT_LEVELS and has a value of 255.

Self Lighting

One simple lighting model is to assume that each object emits its own light energy and reflects no

light energy. In this case, each object’s light intensity is determined solely by its own inherent

brightness; it does not depend on any external factors. We can express the equation for self light-

ing as follows:

In this equation, Iself represents the computed intensity based on the self lighting model, and Io
represents the inherent brightness of the object itself.

While self intensity is an easy lighting model to represent, it is more interesting to model the

reflection of light off of surfaces, since reflected light is the majority of light we see in a typical

real-world scene.
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Ambient Lighting

The term ambient light refers to light which has been scattered and reflected so many times, off of

so many objects, that its original direction cannot be determined. Ambient light, therefore, is

nondirectional light which equally reflects off of and equally illuminates all objects. It also pro-

vides a convenient way within a scene of modeling a global minimum light level whose exact

source is unimportant. We can express ambient lighting as a simple global constant for the entire

scene:

We could also multiply the ambient light intensity by a scaling factor, ranging from 0 to 1, repre-

senting the reflectiveness of the surface to which the ambient light is applied. This can have the

effect of reducing the effect of the ambient light if the surface is less reflective. The ambient scal-

ing factor would be stored with each object or with each polygon.

Such parameters particular to a surface which affect the incident light are called material

parameters.

Diffuse Reflection

Ambient light is still not a very satisfying light model because it affects all surfaces identically. We

may obtain a better result by modeling the diffuse reflection of light off of a surface. Matte sur-

faces, also called diffuse surfaces, scatter light rays with equal probability in all directions,

resulting in a diffuse illumination of the surface.

Mathematically, let us assume that we have a point light source and a surface for which we

wish to compute the diffuse illumination. A point light source is an infinitely small emitter of light

energy located at a single point some finite distance from the surface, which casts rays of light

energy (consisting of photons) equally in all directions. To compute the diffuse illumination of the

surface from the point light source, we must compute two quantities. The first is the amount of
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Equation 2-3

Figure 2-5: Diffuse reflection of light rays.



light striking the surface. The second is the amount of light that the viewer sees reflected off of the

surface.

We compute the amount of light striking the surface by considering an infinitesimally small

beam of light energy striking a surface. For a constant light intensity, this light beam imparts a cer-

tain fixed amount of light energy to the surface it strikes. It turns out that the angle that the light

beam forms with the surface normal vector is important. If the light beam strikes the surface

directly head-on, then the resulting light intensity on the surface is at its maximum. If the light

beam strikes the surface at an angle, the light intensity on the surface decreases. This is because

the amount of surface area covered by the light beam is greater when it strikes the surface at an

angle, and thus the fixed quantity of light energy from the light beam is divided across a larger sur-

face area, yielding an overall lesser intensity per unit area of surface.

Chapter 2: Rendering and Animation Techniques for 3D Polygons 51

Figure 2-6: A point light source, a
surface, and the viewer. We are
interested in two quantities: how much
the light illuminates the surface, and
how much of the light the viewer sees
reflected off of the surface.

Figure 2-7: A light beam covers the
least surface area when striking the
surface directly along its normal vector;
as the angle to the normal vector
increases, the beam must cover a
larger surface area, resulting in
decreased overall intensity.



Mathematically, we can express this relationship as follows.

Ip is the intensity of the point light source, ranging from the darkest value of 0 to the brightest

value of 1. The angle theta is the angle between the incident light ray and the surface normal. If the

angle is zero, then the light strikes the surface head-on, the cosine of the angle is 1, and the inten-

sity is maximum. As the angle approaches 90 or –90 degrees, the cosine approaches zero, causing

the light intensity to decrease.

We can also formulate the diffuse lighting equation as follows.

Here, N is the surface normal vector, and L is the vector from the surface to the light source. Note

that both vectors must be normalized. Recall that the dot product of these two normalized vectors

is exactly the same as computing the cosine of the angle between them.

We can also multiply the computed light by a diffuse scaling factor Md, ranging from 0 to 1

depending on the diffuse reflectiveness of the material, to reduce the effect of the light for less

reflective materials.

Finally, we can also multiply the light intensity by an attenuation factor fatt between 0 and 1, so

that the computed light decreases with its distance from the light source, in accordance with the

physical reality that the amount of light energy reaching a surface decreases with distance.

It is suggested in Computer Graphics: Principles and Practice that this distance-based falloff fac-

tor be computed as follows [FOLE92].

Term dL represents the distance between the light source and the surface being illuminated, and

the terms c1, c2, and c3 are user-defined constants for the light source. The attenuation factor is

therefore inversely proportional to the distance, but is never greater than one (otherwise it would

increase, not decrease, the effect of the light). The constant c1 is chosen to prevent the denomina-

tor from being too small when dL is very small, and the constants c2 and c3 allow us to control

whether the light falls off proportional to the inverse square of the distance, or to the inverse dis-

tance, or to a combination of both. Physically, for a single point light source, the energy falls off as

the inverse square of the distance, but typical objects in real-world scenes receive light from more

than just a single point light source. This means that the inverse square energy falloff is much too

sudden, which is the reason that we introduce the c1 and c2dL terms in the denominator, allowing

for a more gradual light falloff.

Now, given the computed light intensity that reaches a surface from a point light source, the

second question we would like to answer is how much of this light a viewer sees from a particular
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viewing position relative to the surface. This depends on how much light is reflected from the

surface.

As it turns out, the viewing position ends up having no effect on the final light intensity seen

off of a diffuse surface. This means that the diffuse light intensity as computed above represents

the amount of light seen reflected off of the surface, from any viewing angle or position. Let us

examine why this is so.

TIP Diffuse illumination depends only on the positions and orientations of the light source
and the surface. It does not depend on the position of the camera.

As we mentioned earlier, the amount of light the viewer sees from a surface depends on the

amount of light reflected by the surface. Matte surfaces, also referred to as Lambertian surfaces,

obey a law of physics called Lambert’s law. Lambert’s law states that, ideally, diffuse surfaces

reflect light, per unit area, directly proportional to the cosine between the surface normal vector

and the vector going from the surface to the viewer (call this last vector the view vector). This

means that if we consider a particular fixed amount of the surface, the greater the angle between

the normal vector and the view vector, the less reflected light we see. This would at first seem to

imply that the light intensity should decrease as the angle increases. But this is not the case,

because as the angle between the normal vector and the view vector increases, we also see more of

the surface—in particular, we see proportionally more of the surface according to the reciprocal of

the cosine of the angle between the normal and the view vector. The increase in seen surface area

exactly cancels out the decrease in light intensity per unit area. In other words, as the angle

increases, the reflected light energy per unit area decreases, but the amount of area we see

increases by exactly the same proportion, meaning that the amount of reflected light stays the

same regardless of the viewer’s position, for Lambertian surfaces.
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Figure 2-8: As the angle between the
viewer and the diffuse surface
increases (from viewpoint v1 to v2),
the reflected light decreases according
to the cosine of the angle (Lambert’s
law). But geometrically, we
simultaneously see more of the surface,
according to the reciprocal of the
cosine of the angle (dS2 > dS1). The
two factors cancel, yielding a
viewpoint-independent light intensity.



A few comments about the fundamental assumptions of the preceding light model are in

order. The light model we just described works by computing the diffuse illumination from all

light sources off of all surfaces. This implies a strict separation between light sources and the sur-

faces being illuminated. This model is not complete because it does not account for the

inter-object reflections that take place in the real world. An object reflecting light then also

becomes a light source, further illuminating other objects, which again reflect light. One way to

simulate the effect of this complex inter-object illumination is simply to add an ambient term to

the overall lighting; since the inter-object light reflection is so complex, the resulting illumination

can be considered as without direction and ambient. A more accurate, though much more

computationally intensive, means of accounting for inter-object illumination is radiosity, which is

covered below.

Another assumption we made was that our light sources were point light sources, which are

located at a particular point in space and radiate light energy equally in all directions. Alternative

models of light sources are also possible. Sunlight illuminating objects on Earth, for instance, is

not really accurately modeled by a point light source, because the distance of the sun from the

earth is practically infinite in comparison to the dimensions of the objects being illuminated.

Because of the great distance separating the sun and the earth, all the light rays coming from the

sun are practically parallel to one another. This means that in the lighting equations presented

above, the vector L from the surface to the light source always points in the same direction for all

polygons, in the direction of the parallel rays of sunlight.

Finally, it is also possible to model spotlights, which have only an exactly defined area of

influence, such as a cone. Outside of the area of influence the light does not affect the surface’s

intensity at all. This allows for creating illumination effects on the surface with sharply defined

edges, much as a real-world spotlight only illuminates within a certain elliptical area on the

ground.
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Figure 2-9: For a point light
source, the vector L points from
the surface to the light source;
each different surface orientation
yields a different vector L (left).
For sunlight, which can be
thought of as an infinitely distant
point light source, the vector L is
the same for all surface
orientations (right).

Figure 2-10: Spotlights clearly delineate
the area of influence of the light. The left
surface is illuminated with a point light;
the right, with a spotlight.
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Specular Reflection

Specular reflection refers to the bright highlights which appear when a shiny surface is illumi-

nated. Such effects are not accounted for by the preceding lighting equations.

There are a number of ways of computing the specular reflection. One which we examine here

is the so-called Phong illumination model. Do not confuse Phong illumination, which deals with

the computation of specular light intensities, with Phong shading, which refers to a rendering

method (covered in the next section) for drawing already computed light intensities.

Phong illumination assumes the surface is shiny and reflective. Therefore, with Phong illumi-

nation, we compute a reflection vector, which is the reflection of the light vector L (going from the

surface to the light source) around the surface normal vector N.

The idea is that as the orientation of this reflection vector R comes nearer to the orientation of

the view vector V (going from the surface to the viewer), the amount of reflected light should

increase exponentially, causing a sudden, bright highlight to appear.

Mathematically, we can express Phong illumination as follows. Note that all vector quantities

are normalized.

Thus, the specular intensity increases exponentially as the angle alpha between the reflection vec-

tor and the view vector decreases. The exponential cosine term has this effect; if the vectors lie on

top of one another, the cosine is one, and the intensity is at a maximum. As the cosine decreases,

the intensity falls off rapidly. The cosine of the angle can be computed by dotting the reflection

vector with the view vector. The exponential factor n is a parameter describing the shininess of the

surface; the greater the value of n, the shinier the surface appears because of an exponentially

faster increase and decrease of light intensity around the highlight.

Chapter 2: Rendering and Animation Techniques for 3D Polygons 55

Figure 2-12: The reflection vector R for Phong
illumination.

Equation 2-9

Figure 2-11: The left sphere has been rendered with
a specular highlight; the right, only with diffuse
lighting.



The only issue which remains is how to find the reflection vector. We can calculate the reflec-

tion vector by the following equation.

The easiest way to derive this is to use the rotation matrix for rotation about an arbitrary axis. Here,

we wish to rotate the vector L by 180 degrees about vector N. Recall the rotation matrix for rota-

tion about an arbitrary axis:

The elements of the matrix are the components of the vector about which the rotation is to take

place, in this case N. Replacing all u entries with corresponding N entries, multiplying the matrix

with the vector L to be rotated, and realizing that the cosine of 180 degrees is –1 and the sine of 180

degrees is 0, gives the following expression:

Simplifying further yields:

Performing the matrix multiplication gives us:

Notice that each row contains a subtraction with an isolated L term; thus, we can we can pull out

the entire vector [L1,L2,L3,0]T and express this as a vector subtraction. We can also isolate the

vector [N1,N2,N3,0]T. Rearranging the equation to be the difference of these two vectors yields

the following expression:
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which simplifies to:

For a geometrical derivation of the reflection vector, see Computer Graphics: Principles and

Practice [FOLE92].

Note that unlike diffuse reflection, the effect of which was independent of the viewer position,

specular lighting depends on the viewer position, because the position of the highlight changes as

the viewer looks at the object from a different angle or position.

NOTE Specular lighting, when it is unwanted, can cause some odd lighting artifacts. I
encountered this once while programming a virtual reality application for the CAVE environ-
ment (an immersive 3D environment which surrounds the viewer on all sides with four huge
screens and provides for true stereoscopic perception and head tracking through special
shutter glasses). One odd problem that cropped up was with the floor of a room we had mod-
eled. The surface of the floor appeared to change intensity suddenly when the viewer was
located at particular positions within the world. Changing the position, number, and type of
light sources did not eliminate the problem. It turned out that the problem was the 3D model
exported by the 3D artist included a specular lighting component, which then caused the
undesired camera-dependent specular “flashes” of light on the floor. These were particularly
problematic because the floor, which was not intended to be specular, was not highly tessel-
lated, meaning that the specular light computation was applied to very large triangles. This
caused very large and intermittent white flashes. The solution was to remove the specification
of the specular component in the exported 3D model.

Multiple Light Sources and Components

If we wish to compute the contributions of several light sources to a surface’s illumination, we

merely need to compute the light contribution of each light source, then add all the contributions

together. Similarly, if we wish to compute lighting based on several light components (for

instance, a combination of self-emitted light energy, diffuse reflected light, specular reflection,

and ambient light) we also merely need to compute each light contribution separately, then add

them all together to arrive at the final light intensity.

One practical problem which may arise is that after summing the light contributions from var-

ious sources, the resulting light value may be greater than the maximum allowable intensity of 1.0,

which, when multiplied with the integer scaling factor mentioned at the beginning of the discus-

sion on lighting, would yield a lighting table index that would be greater than the maximum

allowable index of MAX_LIGHT_LEVELS. In such a case, we can clamp the light intensity to the

maximum value, at the cost of some inaccuracy (the intensity should actually be brighter than the

maximum possible value). You can see an example of such clamping in Figure 2-11; there, the

specular highlight should not be a circle of equal white intensity, instead getting brighter towards

its center, but it is impossible for the color on the printed page to increase brighter than pure white.

The human eye also has a physically limited maximum input level, so clipping of input light levels

also occurs naturally.
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Radiosity and Ray Tracing

Radiosity is a very realistic technique for computing light intensities, based on a physical model of

light energy. It works by modeling the physical interaction of light with surfaces, and by ensuring

that all of the light energy in a scene is accounted for. Key to the radiosity method is the fact that it

also accounts for the illumination resulting from the reflection of light off of surfaces; the previous

methods all consider light sources separately from the illuminated surfaces. Radiosity generally

works by dividing an entire environment into a number of small patches, each of which is charac-

terized by the amount of light energy it emits or reflects. This implies that all parts of the model

can potentially emit light, providing for correct inter-object lighting. The difficult part about

radiosity is that the entire lighting solution across all patches must be consistent, meaning that for

a large number of patches, a large number of lighting equations must be simultaneously solved to

arrive at the correct intensity for each patch. This only makes sense; if each patch can emit light

and affect all other patches, which then also emit different amounts of light, a consistent solution

requires satisfying the lighting equation for every patch simultaneously. A popular method of

computing radiosity is a progressive refinement method, where the original model is subdivided

into patches only as necessary; if a large change in light intensity is observed for a particular patch,

then the patch is subdivided, and the light is recomputed for each smaller patch.

As realistic as radiosity is, it is slow to compute. Therefore, its role in interactive 3D graphics

is more of a preprocessing step. Radiosity can be used in an offline manner to compute light levels,

which are then saved along with the 3D geometry. Then, at run time, we simply draw the light

using the precomputed light levels.

Ray tracing is a rendering technique that can be used to model both reflection and refraction

of light. The technique works by tracing the paths of “reverse” light rays from the eye, through

each pixel in the image, and to an object in the scene (ordinarily light travels in the other direction,

from the objects to the eye). The reverse light rays, like real light rays, are allowed to bounce

among objects, and to be refracted after traveling through objects. This means that ray tracing can

also create very realistic lighting effects. Ray tracing is currently too slow for real-time applica-

tions. See Chapter 7 for more information on ray tracing, and a way of simulating some of the

effects of ray tracing through environment mapping.

Dynamic or Static Lighting Computations

One question we have not addressed is exactly when we carry out the lighting calculations. This

answer is partially dependent on the rendering technique we use for drawing the polygons (cov-

ered in the next section); it is also partially dependent on whether we want static lighting or

dynamic lighting. Static lighting is lighting which does not change throughout the course of a

user’s interaction with the virtual environment. In such a case, we compute light intensities in a

preprocessing stage and store these light intensities in some format needed by our rendering tech-

nique; storing one color per polygon, or one color per vertex, or one color per lumel in a light map

are all possible means of saving the computed light intensities. Then, when drawing the interactive

3D scene, we do not need to worry about computing any light intensities; the light has already

been “burned into” or “painted onto” our geometry, and only needs to be drawn using an appropri-

ate rendering technique.
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Dynamic lighting is lighting that changes while a user is interacting with the 3D environment.

Dynamic lighting implies a change in any factor affecting any of the lighting equations used. Such

factors include surface geometry, surface orientation, surface attributes, light position, light attrib-

utes, and lighting parameters. Based on the new parameters, we dynamically recompute the

illumination for all affected parts of all geometry, and store the new illumination values with the

geometry for later use by the light rendering process. By defining lights to only have a certain area

of influence (such as a sphere), we can limit the amount of geometry that dynamic light affects and

therefore limit the amount of computation that needs to be done when this dynamic light changes

intensity.

Fog

Fog is not really a lighting effect, but it affects the intensity of the surface being viewed, so we con-

sider it here as well. Fog simply blends an original color with a certain fog color, where the amount

of the blending is based on the distance of the surface to the viewer. Objects very far away from the

viewer fade into the fog and are thus displayed with the fog color itself. Near the viewer, the effect

of fog is negligible, and thus the surface should be displayed with its original color. From near to

far the colors should fade gradually into the fog.

Mathematically, we can express the effect of fog on a particular surface color as follows.

Here, c represents the final color of the surface with the effect of fog, cs is the original, unfogged

color of the surface, cf is the color of the fog, and f is the fog factor, which ranges from 0 to 1. If f is

0, no fog is applied and we see the original color. If f is 1, we see only the fogged color. Between 0

and 1 are varying amounts of fog. The way we actually implement this in the C++ code in the l3d

library is to scale the real-valued fog factor to lie within the integer range from zero to

MAX_LIGHT_LEVELS. We then use the integer scaled fog factor as a lookup index into a

precomputed fog table which slowly fades each color or color component (red, green, or blue)

from its original value into the fog color of white.

CAUTION The OpenGL definition of the fog factor reverses the sense of 0 and 1: a fog fac-
tor of 0 in OpenGL means that we see only the fog color; a fog factor of 1 means that we see
only the original color.

The question remains as to how to compute the fog factor f. The most correct way would be to use

radial fog, which computes the distance of each fogged surface to the viewer and uses this actual

distance as the basis of some blending function going from 0 to 1. But distance computations

require a time-consuming square root operation, and since fog is typically computed per pixel, this

can be slow. A simpler fog computation, which is less accurate, is based on the z values of each

pixel after the perspective transformation. The z values are then mapped to the range 0 to 1. See

Figure 2-13 for a comparison of radial fog versus z depth fog.
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Having decided on a distance to use (radial distance or z depth distance), we then need to map

this distance into a fog value from 0 to 1. We can choose to map the fog linearly or exponentially.

A linear mapping causes colors to fade out at a constant rate as they move into the fog. An expo-

nential mapping causes colors to fade out more quickly as they recede into the fog. We can even

use a discontinuous fog function to cause fog only to appear at certain distances from the viewer.

NOTE An option somewhere between z depth fog and radial fog is to approximate radial
fog by taking the z depth value, then subtracting a percentage of x and y deviation from the
center of the screen. This is more accurate than z depth fog, but still faster than true radial fog.

Notice that regardless of the means of computing fog, the computation is done in camera coordi-

nates because fog is an effect which depends on distance from the camera. This is another example

of why we need the camera_transform method in classes l3d_object and l3d_poly-
gon_3d, which allows us to save the camera space coordinates for later use. The fog computation

is typically done just before polygons are about to be drawn to the screen in the rasterizer; at this

point, however, the polygons have already undergone the perspective transformation, meaning

that we must have previously saved the camera space coordinates in order to perform this late fog

computation.

Rendering Techniques for Drawing Light
The previous sections dealt with the mathematical computation of light intensities based on the

properties and orientations of the light sources and the surfaces. We haven’t yet addressed the

issue of how often and exactly at which points in 3D space we need to evaluate the lighting equa-

tions. It turns out that this issue depends on the rendering technique we use for drawing light on

our polygons. Such rendering techniques are also called shading techniques.

Let’s now look at a number of rendering techniques for light, and also at the implications that

each technique has on the frequency and location of lighting computations.

TIP The rendering or shading technique influences how many lighting calculations we per-
form and at which points in 3D space.
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Figure 2-13: Correct radial fog
versus simpler z depth fog.



Flat Shading

Flat shading is the rendering technique we have been using so far: each polygon has one color.

With flat shading, we perform the lighting computations once per polygon, typically for the

center point of the polygon. This computed light intensity is then used for the entire polygon.

Flat shading leads to a faceted appearance of the model, because the light intensity changes

abruptly from one face to another. See Figure 2-14.

Gouraud Shading

Gouraud shading is a simple technique for combating the faceted appearance of flat-shaded poly-

gons. With Gouraud shading, we perform the lighting computations once per vertex for each

polygon. This means that we need to store and transform vertex normals along with the geometry.

Given the light values at each vertex of the polygon, Gouraud shading then interpolates these light

values while the polygon is being drawn to arrive at a separate light intensity for each pixel. After

arriving at the light intensity for the pixel being drawn, this light intensity is combined with the

color of the polygon, using a lighting table. The final, lighted color is then drawn.

The effect of Gouraud shading is to smooth out over the entire polygon the changes in light

intensity which occur among the polygon’s vertices. Also, since light intensities are computed at

the vertices of the polygon, and since all polygons in an object share vertices, the light changes

over the entire 3D object are also smoothed out, resulting in an overall smooth appearance of the

surface. See Figure 2-16.
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Figure 2-15:
Gouraud shading
computes light
intensity at each
vertex, then
interpolates these
precomputed
intensities as the
polygon is being
drawn, giving a
unique light intensity
to every pixel.

Figure 2-14: Flat shading.



Note that Gouraud shading is not always desirable, because it “washes out” all the sharp

changes in light intensity which occur over the entire 3D object. If the object being modeled is

supposed to appear round, then this is fine. But, if the object is supposed to have some sharp cor-

ners or edges, then the light intensity should indeed change suddenly from one face to the next

because of the physical properties of the surface. But simple Gouraud shading would smooth over

all sharp changes in light intensity, including the desired ones.

Solving this problem would require storing vertex normals per polygon instead of per object;

this would effectively allow each shared vertex to have several vertex normals, one for each face

touching the vertex. All vertex normals for one vertex would be the same if the surface is supposed

to appear rounded at that point; the vertex normals would be different if an edge should appear

between the adjacent faces.

A popular technique for allowing smooth edged polygons and sharp edged polygons in the

same model is to use smoothing groups. With this technique, we assign a 32-bit long integer to

each polygon, which is then treated as 32 Boolean flags. During the creation of a 3D model, the 3D

artist can turn each of these on or off. When determining each vertex normal for a polygon, the

long value is subjected to a logical AND operation with the long value of each neighbor. If the

result is not zero, the neighbor’s normal is included in the calculation; if it is zero, that neighbor is

excluded. This means that each vertex can have more than one vertex normal depending on which

polygon it is being considered for. By carefully setting the bits, the artist can specify which poly-

gons affect which adjacent polygons, and thereby control smoothing (or lack thereof) on each

edge.
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Figure 2-17: Gouraud shading eliminates all sharp
edges, even if these edges should actually appear.

Figure 2-16: Gouraud shading makes a surface appear smooth and round.



Phong Shading

Phong shading takes Gouraud shading one step further. With Gouraud shading, we evaluated the

lighting equation once per vertex, then we interpolated the precomputed intensities while drawing

the polygon, giving an interpolated light value per pixel.

With Phong shading, we actually re-evaluate the entire lighting equation at each pixel. To do

this, we again use vertex normals, and interpolate the normal vector itself while we are drawing

the polygon. We use the interpolated normal vector in the lighting equation, and recompute the

light for each pixel. Naturally, this requires a large amount of computation for each pixel.

Light Maps

A light map is a special form of a texture map (covered in the next section). Essentially, the idea is

to associate a square grid, called the light map, with each polygon. The entire light map covers the

whole polygon, and thus each element in the light map covers a certain small area of the polygon.

We call each element in the light map a lumel, short for luminance element. To compute the light

intensities, we evaluate the lighting equation once for each lumel, meaning that we evaluate the

lighting equation several times for one polygon. The finer the grid, the more times the light equa-

tion needs to be evaluated, but also the greater the quality of the final result.
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Figure 2-18: Phong shading
interpolates the vertex normals
themselves while the polygon is
being drawn, and re-evaluates
the entire lighting equation for
each pixel using the interpolated
normal vector.

Figure 2-19: Light mapping.



Although we evaluate the lighting equation at several points on the polygon (at each lumel),

this is only a one-time preprocessing step (assuming static and not dynamic lighting). After com-

puting and saving the intensities in the light map, we simply store the precomputed light map with

the polygon. Then, when drawing the polygon, for each pixel we determine the corresponding

lumel in the light map (a non-trivial computation, as we see in the next section), combine the

intensity in the light map with the polygon’s color by using the lighting table, and finally draw the

lighted pixel to the screen.

Light mapping can be seen as being somewhere between Gouraud and Phong shading. With

Gouraud shading, we only computed the light at the vertices of the polygon; with Phong shading,

we computed light at every single pixel. With light mapping, we define an arbitrary grid of lumels

on top of the polygon, and compute the light intensities at every grid element.

The most difficult part of light mapping is the determination, during the rasterization of a par-

ticular polygon, of which lumel in the light map corresponds to the current pixel on-screen which

we are drawing. When rasterizing a polygon, we know that all pixels we draw do correspond to

(i.e., result from the perspective projection of) some point on the polygon and thus to some point in

the light map, but we do not immediately know which point exactly. If you have a super-human

memory, you may recall that we briefly mentioned this problem in passing in the introductory

companion book Linux 3D Graphics Programming. To summarize, it is not exactly easy or intu-

itive to calculate which lumel on the polygon corresponds to the current pixel of the polygon being

drawn, but it is possible, as we will see in grueling detail in the next section. This calculation is

actually one particular application of the technique called texture mapping, which allows us to

associate arbitrary images with a polygon. Therefore, let us now turn to the topic of texture map-

ping, returning to light mapping again afterwards.

Texture Mapping
As recently as the mid-1990s, an interactive 3D graphics application with texture mapping was

quite a sensation for personal computers. Today, end users expect texture mapping even in simple

3D graphics applications. Therefore, it is important to understand this technique.

The goal of texture mapping is to draw the pixels of a polygon with colors coming from a sep-

arate 2D image. (The image can also be 3D, but for now assume the image is 2D.) The image is

called the texture; the individual pixels within the texture image are often called texels. Seen this

way, the next question is: given a pixel of a polygon on-screen, which texel from the texture

should be drawn?

The answer to this question requires us to map the image onto the polygon. For instance, we

might want to draw the pixels of the polygon so that it appears that the image were “glued on” to

the surface of the polygon. This is by far the most common application of texture mapping. To

“glue” an image onto a polygon, we need to consider the coordinate space of the polygon, and we

also need to define a new coordinate space to contain the image. This new coordinate space con-

taining the image is texture space, which we look at in more detail in the next section.
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Texture mapping requires us to perform the following steps:

1. Define a texture. The texture is simply a 2D image from which the colors of the polygon will

be taken, pixel by pixel, during rasterization.

2. Define a texture space. This is a coordinate system to specify the location, orientation, and

size of the image in 3D world coordinates.

3. Define a mapping between texture space and the world space coordinates of the polygon’s

vertices.

4. Reverse project screen coordinates into texture coordinates during rasterization. This means

we must determine, based on a 2D (x,y) pixel coordinate obtained while rasterizing a polygon,

the corresponding coordinates (u,v) in texture space, given the texture space of step 2 and

world-to-texture-space mapping of step 3.

5. Map the computed texture space coordinates to integer (u',v') coordinates in the 2D texture

image, and draw the pixel using the color at the (u',v') coordinates in the texture image.

This is a correct but somewhat slow means of performing texture mapping. First of all, let’s look at

each step to make sure we understand the basic procedure. Then, we’ll look at an optimized ver-

sion of the texture mapping process, based on the u/z, v/z, and 1/z terms. Based on this optimized

procedure, we’ll develop the C++ classes necessary to implement texture mapping.

Step 1: Define a Texture
The step which requires the least mathematical trickery is the first step: defining the texture itself.
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Figure 2-21: The fundamental
question of texture mapping.
Given a pixel coordinate of a
polygon we are drawing, which
pixel from the texture image
should we draw?

Figure 2-20: A texture, a non-texture-mapped polygon,
and the same polygon with the texture map applied, in
several different orientations. Notice that regardless of the
orientation of the polygon, the texture map appears to be
glued onto the surface of the polygon.



Storing Texture Data

The class l3d_texture defines a texture in the l3d library. It inherits a texture orientation from

class l3d_texture_space, which is covered in the next section. It also manages an object

actually containing the texture image data, stored in variable tex_data and of type l3d_tex-
ture_data. The member variable owns_tex_data specifies whether this texture object

actually “owns” the texture data or not. Several textures, with different orientations or sizes, can

share the same texture data to save memory, but only one texture can actually own the data. The

owner of the data is the one responsible for freeing the memory of the texture data when it is no

longer needed.

The class l3d_texture_data actually stores the texture data. One l3d_texture_
data object may be referenced by several l3d_texture objects. Member variable id is an

integer variable used to uniquely identify the texture data. We’ll need this identifier when we write

Mesa routines to draw texture-mapped polygons. The member variables width and height are

the width and height of the texture data, in pixels. Note that the width and height must be powers of

two, solely for performance reasons: performing an arithmetic modulo operation (the operator %

in the C language) can be implemented as a bit-wise logical AND operation when using powers of

two, which is faster than the general purpose modulo operator. For instance, the expression

2335%256 in C can be rewritten as 2335&255, because 256 is a power of two, but 2335%17 can-

not be rewritten as a bit-wise logical AND operation because 17 is not a power of two.

The member variable data is a linear array of unsigned char. It contains the image data

and is of size width� height� bytes-per-pixel. The image data is stored linearly in left-to-right and

top-to-bottom order within the data array. Each pixel in the array is stored in the same format as

required by the screen. For example, if a pixel on-screen requires four bytes, one pixel in the tex-

ture is also stored using four bytes. Storing the textures in the native screen format means that the

rasterizer can directly copy pixels from the texture into the buffer without needing to do any pixel

format translation.
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Figure 2-22: The storage in memory of the texture data: left to right and top to bottom.
The textures are internally stored in the same pixel format as required by the screen; this
means that each texel block may represent more than one byte.



Listing 2-4 presents the texture classes discussed so far. It also declares two classes, l3d_
texture_space and l3d_texture_computer, which we cover in the coming sections.

Listing 2-4: texture.h
#ifndef __TEXTURE_H
#define __TEXTURE_H
#include "../../tool_os/memman.h"

#include <stdlib.h>
#include <stdio.h>
#include "../vertex/coord.h"

class l3d_texture_data {
public:
int id;
l3d_texture_data(void) {id=0; data = NULL; }
virtual ~l3d_texture_data(void) {if(data) delete [] data; }
int width, height;
unsigned char *data;

};

class l3d_texture_space {
public:
l3d_coordinate O, U, V;

};

class l3d_texture : public l3d_texture_space
{
public:
bool owns_tex_data;
l3d_texture_data *tex_data;
l3d_texture(void) {owns_tex_data = false; }
~l3d_texture(void) {if (owns_tex_data) delete tex_data; }

};

class l3d_texture_computer {

private:
l3d_matrix _world_to_tex_matrix;

public:
static const l3d_real EPSILON_VECTOR = float_to_l3d_real(0.0001);
l3d_point O; l3d_vector U, V;
l3d_real *fovx,*fovy;
int *screen_xsize, *screen_ysize;

l3d_real u, v;

const l3d_matrix& world_to_tex_matrix(const l3d_texture_space &tex_space) {
l3d_vector
U_vector = tex_space.U.original - tex_space.O.original,

V_vector = tex_space.V.original - tex_space.O.original,
U_cross_V_vector = cross(U_vector, V_vector);

l3d_vector w = U_cross_V_vector;
l3d_vector v_x_u = cross(V_vector,U_vector),

u_x_w = cross(U_vector, w),
w_x_v = cross(w, V_vector),

o_vec(tex_space.O.original.X_,
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tex_space.O.original.Y_,
tex_space.O.original.Z_,
int_to_l3d_real(0));

_world_to_tex_matrix.set(
w_x_v.X_, w_x_v.Y_, w_x_v.Z_, dot(o_vec,w_x_v)*int_to_l3d_real(–1),
u_x_w.X_, u_x_w.Y_, u_x_w.Z_, dot(o_vec,u_x_w)*int_to_l3d_real(–1),
v_x_u.X_, v_x_u.Y_, v_x_u.Z_, dot(o_vec,v_x_u)*int_to_l3d_real(–1),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
dot(U_vector,w_x_v));

return _world_to_tex_matrix;
}

};

#endif

Classes for Loading Textures from Disk

Now we know how to store texture data in memory, but what about creating the texture image data

in the first place? Typically, textures are created with a bitmap paint program, such as the GIMP

program under Linux. The textures should be created with dimensions that are powers of two, for

instance, 64 by 64 pixels. The textures need to be saved to disk in a file format which we can then

read in and place into our l3d_texture_data class.

The l3d classes for loading textures support the portable pixmap (PPM) file format developed

by Jef Poskanzer. Converters exist (under Linux and other operating systems) which convert most

graphics formats to and from PPM format, and the better bitmap graphics programs also directly

support loading and saving PPM files.

The main reason for using PPM files is simplicity: parsing PPM files is extremely easy. The

bytes in the file consist of an identifying header, a width specification, a height specification, a

maximum color value, and then the pixel image data in left-to-right and top-to-bottom order, with

three decimal values for each pixel corresponding to red, green, and blue intensities for the pixel.

All fields are separated by white space (blanks, tabs, carriage returns, or line feeds). The exact

specifications for the PPM format are in the online manual under the keyword “ppm.”

Class l3d_texture_loader is an abstract class that loads a texture from disk into mem-

ory. See Listing 2-5. The constructor requires a parameter of type l3d_screen_info, because

the texture loader needs to know the pixel format of the screen in order to convert the texture data,

during the loading process, into the pixel format needed by the screen. The virtual method load
loads the image file stored in the given filename. The width and height of the image file are read

from the file by the texture loader and are stored in member variables width and height. Mem-

ber variable data then holds the actual image data from the image file, in the proper pixel format

for the screen. This data then eventually gets assigned to an l3d_texture_data object, where

it can then be referenced by an l3d_texture object.

Listing 2-5: texload.h
#ifndef __TEXLOAD_H
#define __TEXLOAD_H
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#include "../../tool_os/memman.h"

#include "../../tool_2d/scrinfo.h"
#include <stdio.h>

class l3d_texture_loader {
protected:
l3d_screen_info *si;

public:
l3d_texture_loader(l3d_screen_info *si) {
this->si = si;
data = NULL;

}
virtual ~l3d_texture_loader(void) {};

virtual void load(const char *fname) = 0;
unsigned char *data;
int width, height;

};

#endif

Class l3d_texture_loader_ppm is a texture loader specialized for loading PPM images

from disk. See Listings 2-6 and 2-7. The overridden loadmethod loads a PPM file by calling the

protected routine process_tok. The process_tok method is a finite state machine which

moves from state to state. In a particular state, there are only a certain fixed number of valid inputs.

Each input causes a certain action to occur and a change to another state. By studying the manual

page for the PPM file format, it should be quite easy to follow the logic of the file parsing code.

The most important part of the code takes place in states 6 and 15 (for ASCII or binary format

PPM files, respectively). Here, we convert the RGB value we just read from the PPM file into

the native color format needed by the screen, by using the ext_to_native method of the

l3d_screen_info object. Remember that ext_to_native also conveniently automati-

cally allocates a new palette entry if we are using a palette color model.

Listing 2-6: tl_ppm.h
#ifndef __TL_PPM_H
#define __TL_PPM_H
#include "../../tool_os/memman.h"

#include "texload.h"

class l3d_texture_loader_ppm : public l3d_texture_loader {
protected:
int process_tok(char *tok);
unsigned char *cur_pdata;
int state;
int cur_r, cur_g, cur_b;

public:
l3d_texture_loader_ppm(l3d_screen_info *si) :
l3d_texture_loader(si) {};
void load(const char *fname);

};

#endif
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Listing 2-7: tl_ppm.cc
#include "tl_ppm.h"
#include "../../system/sys_dep.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../../tool_os/memman.h"

int l3d_texture_loader_ppm::process_tok(char *tok) {
switch(state) {
case 0: {

if(strcmp(tok,"P3")==0) {
state=1;
return 1;

}
else if (strcmp(tok,"P6")==0) {
state=10;
return 1;

}
else return 0;

}

case 1: {
sscanf(tok,"%d",&width);
state=2;
return 1;

}

case 2: {
sscanf(tok,"%d",&height);
data = new unsigned char [width*height*si->bytes_per_pixel];

cur_pdata = data;

state = 3;
return 1;

}

case 3: {
int maxcol=0;
sscanf(tok,"%d",&maxcol);
si->ext_max_red = si->ext_max_green = si->ext_max_blue = maxcol;
state = 4;
return 1;

}

case 4: {
sscanf(tok,"%d",&cur_r);
state = 5;
return 1;

}

case 5: {
sscanf(tok,"%d",&cur_g);
state = 6;
return 1;

}

case 6: {
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int blue=0;
sscanf(tok,"%d",&cur_b);

unsigned long native_col = si->ext_to_native(cur_r, cur_g, cur_b);

register int i;
unsigned long mask = MAX_BYTE;
char shift = 0;

for(i=0; i<si->bytes_per_pixel; i++) {
*cur_pdata++ = (native_col & mask) >> shift;
mask <<= BITS_PER_BYTE;
shift += BITS_PER_BYTE;

}

state = 4;
return 1;

}

case 10: {
sscanf(tok,"%d",&width);
state = 11;
return 1;

}

case 11: {
sscanf(tok,"%d",&height);
data = new unsigned char [width*height*si->bytes_per_pixel] ;

cur_pdata = data;

state = 12;
return 1;

}

case 12: {
int maxcol=0;
sscanf(tok,"%d",&maxcol);
si->ext_max_red = si->ext_max_green = si->ext_max_blue = maxcol;
state = 13;
return 2;

}

case 13: {
unsigned char c;
sscanf(tok,"%c",&c);
cur_r = c;
state = 14;
return 1;

}

case 14: {
unsigned char c;
sscanf(tok,"%c",&c);
cur_g = c;
state = 15;
return 1;

}

case 15: {
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unsigned char c;
sscanf(tok,"%c",&c);
cur_b = c;

unsigned long native_col = si->ext_to_native(cur_r, cur_g, cur_b);

register int i;
unsigned long mask = MAX_BYTE;
char shift = 0;

for(i=0; i<si->bytes_per_pixel; i++) {
*cur_pdata++ = (native_col & mask) >> shift;
mask <<= BITS_PER_BYTE;
shift += BITS_PER_BYTE;

}

state = 13;
return 1;

}

default: fprintf(stderr,"unknown error parsing ppm file");
return –1;

}
}

void l3d_texture_loader_ppm::load(const char *fname) {
FILE *fp;
char *tok;
char s[256]="";
int result;

fp=fopen(fname, "r");
if(!fp) {
fprintf(stderr,"Error opening texture ppm file %s", fname);
return;

}

state = 0;
fgets(s, 256, fp);
while (!feof(fp)) {
tok = strtok(s," ");
while(tok) {
if(tok[0]=='#') break;

result = process_tok(tok);
tok = strtok(NULL," ");

}
if (result==2) break;
fgets(s, 256, fp);

}

if(!feof(fp) && result==2) { //- P6 binary ppm file
s[1] = 0;
s[0] = fgetc(fp);

//- skip comment lines before begin of binary image data
while (s[0] == '#') {
s[0] = fgetc(fp);
while(s[0] != '') {
s[0] = fgetc(fp);
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}
}

//- process binary image data
while(!feof(fp)) {
process_tok(s);
s[0] = fgetc(fp);

}
}

}

Practical Issues in Dealing with Texture Image Files

You may have some existing image data that you wish to convert into a PPM file for use as a tex-

ture. The PPM utilities, available for many operating systems and included on the CD-ROM, offer

several command-line utilities for converting to and from various file formats. You can find these

by typing man -k ppm and man -k pnm. (PNM stands for portable anymap, meaning either a

bitmap with two colors or a pixmap with arbitrary colors.) Some of the more important utilities are

giftopnm and djpeg –pnm., which convert GIF or JPEG files to PPMs. Don’t forget that the

dimensions of the texture should be powers of two.

Another issue arises when using an indexed or palette color model. A single PPM file can

have more colors than the maximum number of entries in the palette, which would cause palette

overflow in the call to ext_to_native. A further problem is that we usually don’t have just

one texture, but instead have several texture files, each with many colors. Even if the palette is big

enough to hold the colors for one texture, the total number of colors in all texture files is probably

greater than the maximum palette size. If we are working with a palette, it is therefore essential to

generate a common palette for all textures. Conceptually, this works by examining all colors in all

input files and finding a palette with colors that most closely match most of the colors in most of

the textures—a perfect match for all colors in all textures is, of course, impossible. The program

ppmquantall generates a common palette of a specified size for a given set of input images,

maps the original colors in the images to the new images in the common palette, and overwrites

the original input files. For instance, to generate a common palette consisting of 128 colors for all

PPM files in the current directory, you would type ppmquantall 128 *.ppm. Remember, this

overwrites the original input files, so make sure you have backups before you execute this com-

mand. Also, you might want to artificially make the common palette size smaller than the actual

palette size. By doing this, you slightly reduce the overall color quality for all textures, but also

leave a certain number of entries in the actual palette free for later use. Then, when we are comput-

ing the lighting and fog tables, we have some custom colors we can allocate in case no existing

color can be found that closely matches the desired light or fog level. If you generate a common

palette that uses up all of the entries in the actual palette, then you have no entries left over to com-

pensate for poor matches when computing the lighting and fog tables. This may or may not be a

problem. If the original common palette contains a wide variety of colors and a wide variety of

intensities, then maybe there will be a lot of good color matches when computing the lighting and

fog tables. The sad fact of life with a palette is that you quite simply have a limited number of col-

ors available for use; either you risk poor lighting and fog tables if you want the best possible
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texture quality, or you sacrifice color resolution in the textures in exchange for more freedom

when computing the lighting and fog tables.

There are also a number of other useful PPM utilities for performing image processing opera-

tions on image files—smoothing, scaling, rotating, brightening, and so forth. (See the online

manual.) Also, the GIMP bitmap editing program under Linux offers many powerful image

manipulation functions in a graphical interface, allowing you to immediately preview and try out a

number of visual effects.

Step 2: Define a Texture Space
Having defined a 2D texture image, we need to somehow position this texture image in our 3D

world. This is because the 2D texture image is supposed to affect the colors of the 3D polygons

comprising our virtual world; it only makes sense, then, that the texture image must also be posi-

tioned within the 3D world.

Positioning the texture image in our 3D world first requires us to define a texture space con-

taining the texture image. Texture space is simply a normal coordinate system with three axes and

an origin. We name the three texture space axes the u axis, v axis, and w axis, corresponding to the

x, y, and z axes in our normal left-handed world coordinate system.

CAUTION Do not confuse the w axis, the third dimension of texture space, with the homo-
geneous w coordinate. These two terms have nothing to do with one another!

The special thing about texture space is that we associate a color with each point in the space.

Thus, you can think of texture space as a solid, colored, infinitely large cube, where each point in

the volume of the solid cube may be assigned a separate color. The convention we define for tex-

ture space is that the 2D texture image we defined in step 1 is located in the 2D square in texture

space defined by the corner points (0,0,0), (0,1,0), (1,1,0), (1,0,0). Thus, the texture image occu-

pies exactly one square unit, starting at the origin, and located in the uv plane of texture space.

Outside of this single square unit, but still in the uv plane, we can think of the texture as being

duplicated, meaning that each square unit in texture space, starting and ending on whole numbers,

contains the colors of the 2D texture image. As for the w axis, for 2D textures we impose the

restriction that the colors in texture space do not depend on w; they only depend on the (u,v) val-

ues. (3D textures also allow for color variation along the w axis.) Graphically, you can imagine

that the 2D uv plane is simply duplicated infinitely up and down the entire length of the w axis.
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Figure 2-23: Texture space is a normal 3D space, with
the extension that each point contains a color. The 2D
texture image occupies the square area in texture
coordinate points located from (0,0,0) to (1,1,0).
Outside of this square area, the texture image is
typically repeated.
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It is important to understand that a coordinate in texture space (also often called a (u,v) coordi-

nate) is essentially equivalent to a pixel in the texture image. Texture space is a colored space; the

texture image defines the colors in the space. Therefore, each point in the texture space corre-

sponds to a pixel in the texture image. Here are some examples: the (0,0,0) coordinate in texture

space corresponds to the first pixel in the texture image; (0.5, 0.5, 0) is the pixel in the middle of

the image; (0.999, 0.999, 0) is the last pixel in the image; and (1,1,0) is again the first pixel in the

image, because the texture repeats itself.

Since texture space is a normal 3D space, we can define it in terms of three vectors, defining

the axes, and an origin point. We name the origin point O, and the three axis vectors U, V, and W.

Since we have said that for 2D textures, which is all we use in this book, the w texture coordinate

does not affect the color in texture space, it turns out that we rarely need the W axis. When we do

need the W axis vector, we can compute it as U� V.

NOTE Computing the W vector as U� V has one disadvantage: the size of the resulting vec-
tor is then arbitrary. We could simply normalize the W vector after the cross product, but the
problem is that the sizes of the texture space axis vectors define the scaling of the texture in
world space. We look at this more closely in the next section. This means that by computing
the W vector dynamically, we lose the freedom to specify a custom scaling of the texture along
the w axis. Since for 2D textures, we ignore the w axis anyway, this is unimportant. But with
true 3D textures, where the w axis may be important, we should define our own W axis to have
full control over the entire specification of the 3D texture space.

This means that to store a texture space, we just need to store O, U, and V. Instead of storing the

vectors U and V, we instead store the tip points of these vectors; the base point of these vectors is

then O. As usual, we subtract base from tip to obtain the vector. We store the tip points to allow for

consistent transformation using the l3d_coordinate class, as mentioned earlier in this chap-

ter in the discussion about surface normal vectors.

Class l3d_texture_space, presented earlier in Listing 2-4, stores a texture space in this

manner. It simply has three member variables, all of type l3d_coordinate: O, U, and V. Class

l3d_texture, as we saw earlier, inherits from l3d_texture_space. This means that a

texture also has a texture space associated with it.
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correspond to colors in the texture
image.



Step 3: Map Between Texture Space and World Space
Defining a texture space in terms of a texture coordinate system actually has the effect of position-

ing, orienting, and scaling the texture within 3D space. Recall that texture space is a colored space.

Our colored 2D texture image is located in the uv plane of texture space, in the unit square going

from (0,0,0) to (1,1,0). By positioning the origin point of the texture coordinate system, we are

also effectively positioning the first pixel of the texture image. By orienting the axes of the texture

coordinate system, we are also effectively orienting the texture image. By scaling the axes of the

texture coordinate system, we scale the size of the texture image.

The purpose of the texture coordinate system, then, is to define the position, orientation, and

scaling of the texture image within the 3D world coordinate system.

Given a texture space, we should then define a mapping between texture space and world

space. This is nothing more than a change in coordinate system. This means that given a particular

coordinate in texture space, we should be able to find out the coordinate in world space. Con-

versely, and more commonly, we must also be able to determine, given a coordinate in world

space, what its coordinates are in texture space.

Let’s now look at each of these mappings separately.
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Figure 2-25: Changing the position
of the origin of the texture
coordinate system has the effect of
positioning the texture image.

Figure 2-27: Changing the size of the texture
coordinate axes has the effect of scaling the texture
image.

Figure 2-26: Changing the
orientation of the texture space
axes has the effect of orienting
the texture image.



The mapping from texture space to world space is very easy to compute. Recalling the rela-

tionship between matrices and coordinate systems, we can simply write the texture coordinate

system as a matrix, using the first three columns as the axis vectors and the last column as the ori-

gin point. This matrix, when multiplied with a column vector representing a location in texture

space, then converts the texture space coordinates to world space coordinates, for the reasons dis-

cussed in the introductory companion book Linux 3D Graphics Programming.

The mapping from world space to texture space is more difficult, but it is the mapping which we

more often need. Why do we need it more often? The reason is that the final texture mapping strat-

egy we implement needs texture coordinates for each world space polygon vertex. The idea is that

we ultimately wish to associate texture coordinates—and thus colors from the texture image—

with every pixel we draw on-screen for a particular polygon. There are two ways of attacking the

problem. The first is the direct pixel-level approach, covered in the next section, where we explic-

itly compute a texture coordinate for every pixel as it is being drawn. The second is a vertex-level

approach, covered in the section titled “An Optimized Texture Mapping Strategy,” where we only

explicitly compute texture coordinates for each world space vertex of a polygon, and interpolate

these precomputed values to arrive at the texture coordinates for each pixel. For the second, ver-

tex-level approach, we know the world space coordinates of each polygon vertex, and need to

compute the texture coordinates for each vertex. In other words, given the world space coordinates

of a vertex, what are its coordinates in texture space?

So, how do we compute the matrix that maps from world space to texture space? Concep-

tually, the answer is simple: invert the matrix that converts texture space to world space. It is

tempting, but incorrect, to use the same strategy we used (in the introductory companion book

Linux 3D Graphics Programming) for deriving the camera transformation matrix. In that case, we

Chapter 2: Rendering and Animation Techniques for 3D Polygons 77

Equation 2-18

Figure 2-28: Mapping between texture coordinates
and world coordinates. If we know the coordinates of
a point P in one of the coordinate systems, we should
be able to find the coordinates of the point in the
other coordinate system.



simply took the transpose of the matrix to find its inverse. But recall why this works: the vectors

for camera space are all mutually orthogonal, and are all of unit size. While our texture space vec-

tors are probably orthogonal, they are not always of unit size. This is because, as we said earlier,

we must allow for different-sized texture space axis vectors to allow for scaling of the texture.

Therefore, since the U, V, and W vectors are not of unit size, we cannot invert the matrix simply by

taking its transpose.

In this case, we need to perform a bit of tedious algebra to invert the matrix. We need to

express the matrix as a set of simultaneous equations, solve these equations algebraically, then

recast the expression into matrix form. We are going to go through every step of the algebra in

excruciating detail because it is important that you understand how to find the solution to such

mathematical problems, which arise often in 3D graphics. But don’t worry—we are going to use

the computer to do most of the algebra for us; specifically, we are going to use the symbolic alge-

bra package Calc, which is an extension to the Emacs editor. Calc is included on the CD-ROM.

The important thing is to understand what the problem is, how to cast it in a form that can be

solved by Calc, and how to use Calc.

Our problem is to invert a matrix. First of all, let’s rewrite the problem as a set of linear equa-

tions. Then, we’ll see how we can use Calc to solve the set of linear equations.

The matrix presented earlier converts from texture space to world space. This means that mul-

tiplying texture space coordinates (u,v,w) with this matrix gives us world space coordinates (x,y,z).

Mathematically, this can be expressed as:

Performing the matrix multiplication yields the following system of equations.

This system of linear equations is merely a different representation for the same information con-

tained within the matrix equation. Given u, v, and z in texture space, the equations tell us how to

find x, y, and z in world space.

We now want to solve this system of equations for u, v, and w, based on known values of x, y,

and z. This takes us from world space to texture space. Solving this system of linear equations is

exactly the same as inverting the equivalent matrix.

The system of equations is solvable; there are three equations and three unknowns. You may

wish to try to solve the system of equations by hand, using the normal techniques of grade school

algebra. If your patience level is the same as mine, you will notice that this system is rather tedious

to solve. Scores of terms need to be copied from one step to the next, some terms cancel out sur-

prisingly, and others look like they will cancel out but actually do not. The danger of making a tiny

sign error somewhere is great, leading to incorrect results and wasted hours of scribbling, not to
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mention a cramped hand. Most of the work involved in solving this system of equations seems

tedious, repetitive, manual, and error-prone. It seems like a perfect job for the computer. The Calc

package can help us here. So, let’s now take a detour to look at how to use the Calc package to

solve this system of equations.

NOTE If you are uninterested in understanding how to solve the system of equations, you
can skip this section and just use the results. However, I sincerely hope that you take the time
to learn to use Calc and to understand how to solve such problems using Calc as a tool.
Sooner or later, every 3D programmer will be confronted with solving systems of equations. A
technique as ubiquitous as texture mapping cannot be fully understood without understand-
ing the solutions to the equations.

Calc: A Symbolic Algebra Package

Calc is a free (zero cost and open source) mathematical tool which runs as part of the Emacs envi-

ronment. It can perform numeric and symbolic mathematical manipulations. Its ability to perform

numeric math operations means that Calc can compute quantities specified as numbers, just as

with a normal desk calculator—for instance, (37–140)/15.3. Its ability to perform symbolic math

operations means that Calc can solve systems of equations specified algebraically in terms of

known and unknown variables. For the problem at hand—converting from world space to texture

space—we are mostly interested in the symbolic capabilities of Calc.

Here is an example of Calc’s symbolic capabilities. If we have the system of equations:

then Calc can automatically solve this system of equations for x and y to give us the solution:

Internally, therefore, Calc has performed the typical grade school algebraic manipulations for

solving systems of equations. For this example, the equations are very easy to solve by hand, but in

the case of inverting the texture space to world space matrix, the system of equations is quite sim-

ply tedious to solve by hand. The symbolic algebra capabilities of Calc relieve us of exactly this

burden. Let’s first take a brief tour of how to use Calc, then focus on using the symbolic algebra

capabilities to solve the texture mapping equations.

NOTE Calc has excellent online info documentation, including many hands-on tutorials.
Alternatively, within Calc, press ? and type i to display the info documentation from within
Calc. Since we don’t have enough space here to describe all of Calc’s features—many of
which are very interesting and useful for solving the types of problems which arise in 3D
graphics—I encourage you to have a look at Calc’s info documentation.

Starting and Exiting Calc

To use Calc, you must have both Emacs and the Calc package installed, and you must know how to

do basic editing in Emacs. See the Appendix for instructions on installing Calc.
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With Emacs and Calc installed, you can get started as follows.

1. Type emacs and press Enter. The Emacs window appears.

2. In the Emacs window, press Alt+x to run an extended command. Notice the text “M–x” which

appears at the bottom of the screen. Type calc and press Enter. Two new small windows

appear at the bottom part of the existing Emacs window. See Figure 2-29. Notice that the cur-

sor is now located within the leftmost Calc window.

3. Press Ctrl+x, 1. This maximizes the Calc window to occupy the entire Emacs window.

To exit Calc, simply kill the Calc buffer. When the cursor is in the Calc window, press Ctrl+x,

Ctrl+k, Enter.

Next, let’s enter some simple expressions and let Calc evaluate them.

Stack-Based Computation

Fundamentally, Calc operates with a stack of mathematical expressions. The typical flow of oper-

ations in Calc is to enter entries on the stack, then to perform operations with the entries on the

stack. Some operations, such as negation, operate only on the topmost element of the stack. Other

operations, such as addition, operate on the top two elements of the stack, removing these and

replacing them with one new element, the result of the operation. This style of operation is also

called reverse Polish notation or RPN; some desk calculators operate in this mode.

Let’s now perform some basic computations to see the stack in action and to learn some typi-

cal Calc commands.
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at the bottom are the Calc
windows.



1. Press ', a single quote character. This tells Calc that you are about to input an algebraic expres-

sion, and that this expression should be placed on top of the stack. Notice the prompt

“Algebraic:” which appears at the bottom of the screen.

2. Type 125 and press Enter. Notice the text “1: 125” which appears within the Calc window.

This means that entry number 1 of the stack has just been set to value 125.

3. Type n. This negates the top entry on the stack. Notice the number 125 changes to –125.

4. Press ', type 25, and press Enter. This enters a new entry on the top of the stack. The existing

entries on the stack are pushed down by one position. Notice that the entry number next to the

number –125 has changed to 2, indicating that it is now entry number 2 on the stack. Notice

the new line “1: 25” which appears, indicating that the top entry of the stack is the number 25.

5. Press +. This adds the top two entries on the stack and replaces them with a new entry on the

top of the stack representing the result. Notice that the entries –125 and 25 on the stack disap-

pear and are replaced by a new entry with a value of –100, the result of adding –125 and 25.

6. Press Shift+u to undo the last operation. Notice that the original two entries reappear.

7. Press / to divide the second entry on the stack (–125) by the first entry (25). Notice that the

result (–5) appears on top of the stack.

8. Press Shift+u to undo the last operation.

9. Press Tab. This exchanges the top two entries on the stack.

10. Press / to divide the second entry on the stack (25) by the first entry (–125). Notice that the

result (0.2) is different than before, because the order of the stack entries was different; we

have exchanged dividend and divisor.

11. Press Shift+u to undo the last operation.

12. Press Space. Notice that the top entry of the stack is duplicated. Press Space three more times

to duplicate the top entry three more times.

13. Press Backspace. Notice that the top entry of the stack disappears. Press Backspace three

more times to delete the next three entries from the top of the stack.

14. Press Ctrl+u. This allows you to enter a numerical argument to an upcoming command. Type

2 as a numerical argument. Now, enter the command to be executed with the argument of 2.

Press Space, the “duplicate entry” command.

15. Notice that the top two entries of the stack have been duplicated, because of the numerical

argument 2 which we entered earlier.

Now we know how to enter items onto the stack, how to duplicate and delete them, and how to per-

form basic arithmetic operations on them. Here is a summary of the most important Calc

commands:

� Press ' (single quote) to enter an algebraic expression.

� Press +, –, /, or * to add, subtract, divide, or multiply the top two entries of the stack, replacing

them with a new entry containing the result.

� Type n to negate the top entry on the stack.

� Press Space to duplicate the entry on top of the stack.
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� Press Ctrl+u, type number n, and press Space to duplicate the top n entries on the stack.

� Press Tab to exchange the top two entries on the stack.

� Press Shift+u to undo operations.

� Press Backspace to delete the entry on top of the stack.

Entering and Editing Mathematical Entities

We’ve now seen how to use Calc to manipulate numbers. Calc’s real attraction for us, though, is its

symbolic algebra facility. We can enter variables in Calc simply by using alphanumeric identifiers

in our expressions. Let’s try entering some symbolic equations for Calc to solve.

1. Press ' to allow algebraic entry.

2. Type x + y = 10 and press Enter. Notice that the formula, with variables, appears on the Calc

stack.

3. Press ', type x – y = 5, and press Enter. This second formula appears on the stack.

4. Press Ctrl+u and type 2. This enters an argument of two for the next command to come.

5. Type v, then press Shift+p to pack the top two entries on the stack into a vector of equations.

Notice that the two equations are placed into one list of equations, separated by commas and

surrounded by square brackets.

NOTE It would also have been possible to enter the vector of equations directly in one step,
instead of entering two separate equations then packing them. To enter both equations in one
step, simply separate the equations with a comma and place square brackets around the
entire list of equations during the entry of the expression.

6. Type a, then press Shift+s to solve the system of equations on the top of the stack. Notice the

prompt that appears at the bottom of the screen, “Variable to solve for:”

7. Type [x,y] and press Enter. This tells Calc that we want to solve the system of equations for

two variables, x and y. Do not forget to type the square brackets.

8. Notice that Calc solves the system and displays the solution x=7.5, y=2.5.

Note that when entering expressions containing terms that should be multiplied, you can either

explicitly specify the multiplication with the * (asterisk) character, as in “a*b”, or you can simply

separate the terms with a space, as in “a b”. You should not write the terms directly next to one

another, as in “ab”, because in this case, Calc interprets this as one term instead of two terms multi-

plied together.

Although we now know how to use Calc to solve systems of equations, we should not try just

yet to solve the texture mapping equations. Instead, we should continue to look at some other edit-

ing features of Calc. Later, when we actually solve the texture mapping equations, we will be

confronted face to face with the full complexity of the solutions, and will need all tools at our dis-

posal to reduce the solutions to the simplest form possible.

The following list summarizes the features of Calc that we use in the following sections to

solve and simplify the texture mapping equations.
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� Editing expressions. Calc allows you to edit the top expression on the stack. This is extremely

useful for performing manual simplifications or rearranging an existing formula so that Calc

can more easily recognize and simplify expressions. Edit the top expression on the stack as

follows. Press ', a single straight quote character. A new window, with the title “Calc Edit

Mode,” opens, containing the top expression of the stack. Use the normal Emacs editing com-

mands to edit the text of the expression. Press Ctrl+c twice to accept your changes, or Alt+#,

x to cancel your changes.

� Display modes. Calc offers different ways of displaying algebraic expressions. The Normal

mode is a compact, straight-line representation, where two variables next to one another are

understood to be multiplied together, as with standard algebraic notation. The Big mode is an

easy-to-read ASCII representation, where fractions are displayed vertically instead of hori-

zontally. The C mode is a representation using the syntax and operators of C language expres-

sions. The TeX mode is a representation suitable for inclusion in the typesetting program TeX,

which is often used in academic circles for publishing documents with large amounts of math.

(The equations in this book were all typeset using the LyX front end to the LaTeX macro

extension to the TeX program.) Change the display mode in Calc as follows. Type d. Then, for

Normal mode, press Shift+n. For Big mode, press Shift+b. For C mode, press Shift+c. For

Tex Mode, press Shift+t.

� Vector entry. Calc has facilities for dealing with row and column vectors of numbers or vari-

ables. To enter a row vector, first press ' to allow algebraic entry. Then, press [ to begin the

vector. Enter each element of the vector, separated by the comma (,) character. Press ] to end
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the vector, and press Enter to finish the input. To enter a column vector, follow the same pro-

cedure, but separate the elements of the vector with the semicolon (;) character.

� Matrix entry. Calc also allows entry and computation with matrices of numbers or variables.

To enter a matrix, begin as if you were entering a vector: press ' then [. Enter the first row of

elements in the matrix, separating the elements of the matrix with the comma (,) character. To

finish a row, enter a semicolon (;) character, and continue typing the elements of the next row.

Continue until the matrix is complete. Then press ] and Enter.

� Simplifying equations. Calc offers many commands to simplify algebraic expressions. The

most important commands are the simplify and normalize-rational commands. The simplify

command tries to simplify the expression, using rules which ordinarily might be too slow to

apply. For instance, simplify combines non-adjacent sums of terms: a+b+2a is simplified to

b+3a. The normalize-rational command attempts to rearrange a formula to be the quotient of

two polynomials. For instance, a+b/c+d/e is simplified to (ace+be+cd)/(ce). Invoke these

commands as follows. Type a to begin entering an algebraic command. Then, to apply the

simplify command, type S; to apply the normalize-rational command, type n. The simplifica-

tion occurs on the topmost element of the stack.

� Collecting terms. The collect command of Calc rearranges a formula as a polynomial in a

given variable. For instance, if we have the expression ax+bx+cx, then collecting the x terms

yields the expression (a+b+c)x. Invoke the collect command as follows. Type a to begin

entering an algebraic command, then type c. Notice the prompt “Collect terms involving:”

which appears at the bottom of the screen. Type the name of the term which should be col-

lected, and press Enter.

� Selections. Often, it is useful to operate on just one small part of an expression, rather than the

expression as a whole. Calc allows us to define a selection, which is simply a smaller portion

of an expression. After defining a selection, most Calc commands then operate only on the

selection. Most commonly, after a selection you will apply one of the simplification com-

mands (a, S or a, n) or the edit command (', the straight quote character). This allows you to

simplify or edit a smaller portion of the entire expression. Apply a selection within Calc as

follows. Move the cursor to be on top of the beginning of the subexpression that you want to

select. Type j to enter selection mode. Then, type one of the following keys to define a
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and a column vector
entered within Calc.
The matrix was entered
with the key sequence
'[a,b,c,d;e,f,g,h;i,j,k,l;m
,n,o,p] followed by
Enter. The vector was
entered with the key
sequence '[x;y;z;w]
followed by Enter.
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selection: s for the smallest subexpression at the cursor position, m for more of the current

subexpression, n for the next subexpression after the current selection, or c to cancel selection

mode and select the entire formula. After defining a selection, notice that the rest of the equa-

tion is replaced with dot characters to indicate that these parts of the expression are tempo-

rarily inactive.

Now that we know some of the more important tools that Calc offers for editing and simplifying

expressions, let’s move on to the actual practical reality of solving systems of equations within

Calc.

Solving Systems of Equations

Recall, we want to use Calc to solve a system of equations. The last hurdle standing in our way is

an unfortunate quirk of Calc’s method of solving systems of equations. The quirk is that when

solving a system of equations for many variables, only one variable—usually the last variable

solved for—tends to have a reasonably simple form. The other variables tend to have incredibly

complicated, non-simplified forms, spanning ten lines or more and defying human comprehension.

For instance, say we have a system of three equations with three unknown variables u, v, and

w, and we ask Calc to solve this system by using the a, S command described earlier. But when

entering which variables to solve for, we can enter them in any order: we can enter [u,v,w],

[v,w,u], or [w,u,v] (among other permutations). In the first case, variable w would typically have

the simplest form; in the second case, u; in the third case, v.

This may sound unimportant, but in practice it is very important. You might think that the

complicated expressions for the non-last variables could be simplified with the simplify and nor-

malize-rational commands described in the previous section. Unfortunately, this is not the case.

The problem is that many common subexpressions differ only by a sign—for instance, a/(b–c) +

a(c–b). In this case, the subexpression (c–b) is actually the same as the denominator (b–c) of the

first expression, only negated. When this same situation of identical-but-negated subexpressions

is expanded to expressions containing ten or more terms, Calc is not always able to recognize the

commonality among the subexpressions, and is thus often not able to simplify the expressions fur-

ther. If you notice such expressions, it is possible for you to edit the offending expression

manually, negating both numerator and denominator, so that both terms then have truly identical

denominators, which would make it explicitly clear to Calc that the expression can be simplified.

However, with extremely long expressions, even the human capability for pattern recognition can

begin to reach its limits.

Therefore, the best way to solve systems of equations in Calc is to solve the system repeat-

edly, each time allowing a different variable to be last in the solution vector, and therefore the

simplest. Assuming our system has the three unknown variables u, v, and w, we would proceed as

follows.

1. Enter the system of equations to be solved, within square brackets and separated by commas.

2. Duplicate the system of equations before solving it: press Space. In this way, you still have a

copy of the original equations, even after solving it (which replaces the original system of

equations with its solution).
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3. Solve the duplicated system with one particular variable, say u, as the last one. Type a, S, type

[v,w,u] and press Enter.

4. The solution for all three variables appears, but only the solution for the last variable u is suffi-

ciently simple to be understandable. Edit the solution: press ' (straight quote). Delete

everything before and after the last solution. Press Ctrl+c twice to accept your changes. Now,

only the solution for the last variable remains on top of the stack.

5. Press Tab to exchange the top two entries of the stack. The system of equations now appears

on top of the stack, and the solution for one variable beneath it.

6. Repeat again starting at step 2, but with a different variable, say v, as the last one. Continue

until all variables have been solved for as the last variable in the solution vector.

This procedure gives you the best results from the equation solver. But often, even if a variable

was solved for as the last variable in the solution vector, the resulting equation can still be simpli-

fied further with the simplify and/or normalize-rational commands. In particular, it is often helpful

to simplify only parts of the equations at a time. Do this with the selection command. Select a rea-

sonably small subexpression, consisting of, say, four to five terms. First simplify the expression by

typing a, S, then apply the normalize-rational command by typing a, n. Then, select more of the

expression with j, m, and continue to simplify. If Calc ever fails to simplify, simply undo the oper-

ation, select a smaller subexpression, and try again. If even that fails, and you are convinced that

the solution can be simplified further, you need to help Calc out by making common terms easier

to recognize. Most often, common-but-negated terms will appear scattered throughout the expres-

sion. By editing the expression and judiciously negating terms so that no mathematical change in

value is effected (for instance, by negating both numerator and denominator of a fractional expres-

sion), it is often possible to make similar-but-negated terms exactly identical. After doing this, try

simplifying again; Calc will then usually recognize the common terms which you made explicit,

and simplify further.

To summarize, when solving systems of equations in Calc, you should solve the system multi-

ple times, each time with a different variable as the last one in the solution vector. Use the

duplicate command to avoid needing to enter the system of equations multiple times. Simplify the

resulting solutions a piece at a time by using selections, the simplify command, and the normal-

ize-rational command.

Solving the Texture Mapping Equations with Calc

Now, at long last, we have enough information to solve the texture mapping equations in Calc. We

solve the system with the procedure described in the previous section: duplicate, solve with one

variable as the last variable, repeat for other variables. Simplify each solution piece by piece by

using selections.

Immediately after entering the system of equations from Equation 2-20 into Calc, the Calc

window appears as in Figure 2-32.
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After solving the system with a, S followed by [v,w,u], the Calc window appears as in Figure

2-33. Notice the complexity of the solutions for v and w, and the relative simplicity of the solution

for u.

We then edit the expression to remove everything but the solution for the last variable, u. After

doing this, the Calc window appears as in Figure 2-34.
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Figure 2-33: The system solved
for [v,w,u].

Figure 2-32: The texture
space to world space
equations in Calc.

Figure 2-34: The
solution for u has
been isolated.



We can simplify the solution for u further. A naive attempt to apply the simplify and normal-

ize-rational commands to the entire expression at once results in Calc reporting a “division by 0”

error. But the expression can be simplified. By simplifying and normalizing the equation piece for

piece using selections, and by collecting terms for x, y, z, ux, uy, and uz, the expression finally sim-

plifies to the form shown in Figure 2-35. I encourage you to try to arrive at the same result yourself

by using Calc.

By repeating the solution procedure for variables v and w, we arrive at the following simpli-

fied solutions for u, v, and w.

These equations are the solution to the world-to-texture-space problem. Given variables x, y, and z

representing world space coordinates, and a texture space definition as specified by the O point

and vectors U, V, and W, these equations give us the equivalent coordinates u, v, and w in texture

space. As you can see, the solution is not completely intuitive, and would have been rather tedious

to derive by hand.

There is still more structure to be discovered in these equations. Notice the recurring pairs of

differences which appear: (vz wy – vy wz), (vx wz – vz wx), and so forth. These terms are actually

components of cross product vectors. In particular, the solution for u contains the components of

the cross product vector V� W; the solution for v contains the components of U� W; the solution for

w contains the components of V� U. The denominator in each case is U�(V� W). Making this sim-

plification, and recasting the equation into matrix form, gives us Equation 2-24. The subscripts on

each cross product expression mean to take the corresponding component of the vector after the

cross product operation. For instance, (V� W)x means to take the cross product of vectors V and W,

and to use the x component of the resulting vector.
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Verify that this matrix form of the equation, using cross products, is the same as the Calc solution

by performing the matrix multiplication, expanding the cross products, and dividing each compo-

nent of the resulting solution vector (u, v, and wtex) by the homogeneous component whom. We

have subscripted the w texture component and the homogeneous w divisor with tex and hom to dis-

tinguish their separate functions; we use the homogeneous whom component to effect a division

on all terms, since the solution equations for u, v, and w, as shown by Calc, all have a common

denominator.

Therefore, the matrix in Equation 2-24 converts from world space coordinates to texture

space coordinates; by multiplying a column vector in world coordinates with the matrix, we obtain

a new column vector with the texture coordinates. Since this is a useful operation, we have encap-

sulated it into an l3d class: class l3d_texture_computer. Any class needing the ability to

perform texture related computations inherits from this class. The method world_to_tex_
matrix takes an object of type l3d_texture_space as a parameter, and returns the matrix,

which converts coordinates from world coordinates into the texture space of the given

l3d_texture_space object. The member variables fovx, fovy, screen_xsize, and

screen_ysize are pointers to external integers specifying the horizontal and vertical screen

size and field of view terms. We need these variables later within the Mesa 3D rasterizer to per-

form a reverse projection.

Remember that with 2D textures, we generally disregard the third texture coordinate. This

means that when converting from world space to texture space, we can discard the third compo-

nent of the resulting vector; only the first two components, u and v, are relevant for 2D image

textures.

Now we know how to convert from texture space to world space, and from world space to tex-

ture space. This is an important step in texture mapping; with this understanding, the relationship

between the texture space and world space is clearly defined, and thus the relationship between the

texture image and the world space is clearly defined. The next step is to understand the relation-

ship between screen space and texture space.

Step 4: Reverse Project from Screen Coordinates into
Texture Coordinates

The practical goal of texture mapping is to determine, for each pixel of a polygon being drawn,

which pixel from the texture image should be drawn. We can see this goal as being a conversion

from screen coordinates to texture coordinates. We know the screen coordinates of each pixel we

are drawing on-screen; what we need to know are the texture coordinates in texture space, which

then give us the precise pixel coordinates within the texture image we need to display.

Given the previous section’s matrix converting world coordinates to texture coordinates, it

would seem logical to approach this problem by converting screen coordinates to world coordi-

nates, then from world coordinates to texture coordinates. In theory, this should work fine. But, as

far as I can tell, along that path lies madness, even with the help of a powerful symbolic algebra

tool like Calc. So, let’s assault the problem from a different angle—let’s convert directly from

screen space (pixel coordinates) back into texture space (texture coordinates), skipping the inter-

mediate step of world coordinates. Our strategy is to start with texture space, then convert to world
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space, then convert to screen space with a perspective projection. Then, we take the resulting sys-

tem of equations, converting from texture space to screen space, and solve it for the texture space

variables, thus resulting in equations converting from screen space to texture space. Again, we

rely heavily on Calc’s help to save us from the tedium of solving the equations by hand.

Let’s start with the texture space to world space matrix, multiplied with a column vector rep-

resenting a location in texture space. The result is a location in world space.

Carrying out the matrix multiplication, we obtain:

We have said that for 2D texture images, we don’t use the w texture component, because there is

no color variation along the W axis in texture space. Therefore, the value of w does not affect the

color we obtain from the texture image; any value of w can be used in the equation. The simplest

value of w is 0, which causes the w term to conveniently disappear. After replacing w with 0, we

obtain:

We can rewrite this from matrix form into a system of linear equations.

Now, let’s apply a simple perspective projection. We do this by dividing x and y by z to yield xp
and yp (the subscript p stands for projected), resulting in Equation 2-29. This simple projection

incorrectly ignores the effect of the field of view parameters and the reversal of the y axis orienta-

tion which actually occurs with the real perspective projection. We can use Equation 2-30 to

convert from the real screen projected coordinates xs and ys, which include the field of view and y

reversal, into the simple projected coordinates xp and yp. Since it is easy to convert between the

real and the simple projected coordinates, and since the math is less tedious if we use the simple

projected coordinates, the rest of the derivation for the texture mapping equations uses xp and yp.

Any general observations about the variables xp and yp apply equally to the variables xs and ys.
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Let’s now rearrange the first and second equations in Equation 2-29 to move the z to the left-hand

side of the equations. This yields:

This is the system of equations we want to solve. First, let us consider what the equations in their

current form tell us, before solving the equations for other variables. In their current form, this sys-

tem of equations assumes we know the texture coordinates u and v. The equations then return three

values: the screen x coordinate multiplied by the world z coordinate, the screen y coordinate multi-

plied by the world z coordinate, and the world z coordinate. Notice that the 3D world space z

coordinate affects the first two equations. The reason is the perspective projection, which divides

by z. The texture space to world space matrix, developed earlier, relates texture space to non-pro-

jected 3D world coordinates. Therefore, to relate texture space to projected 2D screen

coordinates—which is the main goal, remember—we must “reverse project” the screen coordi-

nates by multiplying them with the world space z coordinate. Thus, the 3D z coordinate, due to the

perspective projection process, plays an important role in texture mapping.

Now that we understand what this system of equations tells us, let’s solve the system for the

variables we want to know. We wish to find the texture coordinates u and v. Since the 3D z coordi-

nate also plays a role here, it is also an unknown. So we solve the system for variables u, v, and z.

Do this by using Calc as described in the previous section, solving the system multiple times, each

time with a different variable as the last variable in the solution vector. After solving the system in

this way and simplifying the results, the final equations are as follows.

This is an important equation for texture mapping. It tells us explicitly, for a given projected coor-

dinate on-screen, the corresponding (u,v) coordinates in the texture space.

Notice that the u, v, and z variables are non-linear functions of the projected coordinates xp,

and yp. Non-linear means that a change in xp or yp does not always result in the same amount of

change in the u, v, or z variables. Mathematically, you can recognize this because the independent

variables xp and yp appear in both the numerator and denominator of a fraction, meaning that a

constant change in xp or yp leads to a non-constant change in the dependent variables u, v, or z.

Changing the denominator of a fraction by a constant amount leads to a non-constant change in the

final value; the difference between 1/2 and 1/3 is much greater than the difference between

1/10002 and 1/10003, though the denominator changes by a constant amount of one in both cases.
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Geometrically, you can understand this non-linearity by examining Figure 2-36. When a polygon

is tilted away from the projection plane—which is essentially our computer screen—a movement

of one pixel on the screen corresponds to a non-constant movement on the polygon in 3D. This

non-linearity is a fundamental property of the perspective projection process and causes (or

indeed, is) the foreshortening which we observe in ordinary visual perception.

A further observation about Equation 2-32 is that the numerator and denominator of each

term, taken separately, are indeed linear with respect to xp and yp; it is the result, dividing numera-

tor by denominator, which is non-linear.

Linearity of an equation with respect to xp and yp (and therefore, also with respect to xs and

ys) is important because it allows us to compute the value at a particular screen location based on

the value at a previous screen location. We used the same idea when developing the incremental

algorithm for line drawing: the value for the next pixel could be calculated from the value of the

current pixel. With regard to the texture mapping equations, this means that we can compute an

initial value for the numerator and denominator based on the starting values of xp and yp for the

first pixel of the texture mapped polygon we are drawing. Then, we can incrementally compute

the numerator and denominator (requiring just one addition operation) for all other pixels in the

polygon. We must perform the division, however, to obtain the u and v coordinates.

Step 5: Map Texture Coordinates
to Integer Indices and Draw

After computing the (u,v) coordinates from the screen coordinates with the equation from the pre-

vious section, we map the real-valued (u,v) coordinates to integer indices within the 2D texture

map image. The coordinates u and v each go from 0 to 1, with the convention that the texture
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image exists within the square in texture space defined by corner points (0,0) and (1,1). Outside of

the square (0,0) to (1,1)—that is, for u and v values greater than one or less than zero—we simply

regard the texture as being duplicated.

The coordinates within the texture map image are integer coordinates from 0 to width–1 hori-

zontally and from 0 to height–1 vertically, where width and height are both powers of two. So to

map from the real-valued (u,v) to the indices within the texture map, we simply multiply u by

width and v by height, yielding integer coordinates (i,j) within the texture map image. If u or v

were greater than one or less than zero, this could lead to integer texture map indices lying outside

of the texture image; to correct this and allow for repetition of the texture, we simply perform a

logical bit-wise AND of i and j with width–1 and height–1. This has the effect of causing any val-

ues greater than width or height to “wrap around” back to zero again. Notice that this only works

because width and height are powers of two; with powers of two, the AND operation is essentially

a modulo operation, which gives us the value of the remainder after a division. Also, note that this

wrap-around behavior helps compensate for the fact that pixels slightly outside of the polygon

might be drawn due to numerical inaccuracy inherent to the DDA polygon drawing algorithm. If a

pixel lies outside of the polygon, then a computed texture coordinate will lie outside of the texture

image, but the wrap-around behavior allows us still to retrieve a valid texel from the texture.

Instead of wrapping around, we could also clamp the values to force them to lie within the texture

image.

Given the integer coordinates (i,j) within the texture image, we simply use the color at this

location in the image (stored within the l3d_texture_data class) for drawing the current

pixel of the texture mapped polygon being rasterized on-screen.

An Optimized Texture Mapping Strategy: u/z, v/z, 1/z
The previous sections described a pixel-level strategy for texture mapping. During rasterization of

a polygon, we directly calculate from the screen coordinates the corresponding texture coordi-

nates for each pixel.

An alternative strategy is a vertex-level approach, which we hinted at earlier. With a ver-

tex-level approach, we only explicitly compute texture coordinates for the vertices of the polygon.

We perform this computation in world space, by using the world space to texture space matrix

developed earlier. Then, when drawing the polygon, we more or less interpolate the texture coor-

dinates between the vertices. We say “more or less” because we actually do not interpolate the

texture coordinates u and v themselves, but rather the related quantities u/z and v/z. Let’s look at

the texture mapping equations again to see where these u/z and v/z terms come from.

If we look at Equation 2-32, which converts projected coordinates into texture coordinates,

we notice that the equations for u, v, and z all look similar. In particular, we can relate the equations

for u and v with the equation for z. The denominator of z is the same as the denominator of u and v;

therefore, u and v can be expressed as their numerators multiplied by z, and finally divided by the

numerator of z. This is shown in Equation 2-33.
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We can rearrange the equations as follows.

In this form, we can see that the u/z, v/z, and 1/z terms are all linear functions of xp and yp. This

means that calculating the next value of u/z, v/z, or 1/z for the next pixel location can be done with

a simple addition to the value at the current pixel location. Furthermore, by dividing u/z by 1/z, we

arrive at the desired texture coordinate u; similarly, by dividing v/z by 1/z, we arrive at v.

One relevant question is in which coordinate space z should be. Two obvious choices come to

mind: the world space z coordinate or the camera space z coordinate. The best coordinate space to

use for the z value is the camera space z coordinate. This is because the world space z coordinate

can vary wildly; its values can be extremely large, extremely small, positive, or negative; the

world z coordinate depends on the location of the object within world space, which can be com-

pletely arbitrary. On the other hand, the camera space z coordinate is a little more restrictive; it

cannot be negative, has a minimum value (the near z clipping plane), and has a maximum value

beyond which objects are too far from the camera to be seen. These additional restrictions on the

possible values of the camera space z coordinate make it more amenable for use within the texture

mapping computations.

The linearity of u/z, v/z, and 1/z suggests to us the following texture mapping strategy.

1. Define a texture and a texture space.

2. For each polygon, compute u, and v for each vertex index of the polygon, using the world

space to texture space matrix. Store these u and v values in the new tex_coord member of

the derived l3d_polygon_ivertex_textured class, covered in the next section.

3. After transforming polygons into camera space, also save the camera space z coordinate in the

tex_coord member of l3d_polygon_ivertex_textured.

4. During rasterization, compute u/z, v/z, and 1/z for each vertex index of the polygon.

5. While stepping vertically between scanlines and horizontally between pixels, interpolate the

u/z, v/z, and 1/z values. Do this by maintaining two sets of variables, one set for the left side

and one set for the right side of the polygon. The left side of the polygon is always being

drawn from a starting left vertex to an ending left vertex; the same for the right side of the

polygon. Each vertical scanline step moves the current pixel from the starting vertex closer to

the ending vertex. Thus, we also move from the starting u/z to the ending u/z; similarly for v/z

and 1/z. This means that for each scanline, we always have a current u/z, v/z, and 1/z value for

the left side and the right side of the polygon. Then, for each pixel within the scanline, we
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interpolate from the left u/z, v/z, and 1/z values to the right u/z, v/z, and 1/z values. This gives

us a u/z, v/z, and 1/z value for every pixel of the polygon we rasterize. See Figure 2-37.

6. Before drawing each pixel, divide the current u/z by 1/z, and divide v/z by 1/z. This returns the

u and v values for the current pixel. Scale these to integer texture map coordinates, extract the

appropriate pixel color from the texture map, and draw the current pixel with the color from

the texture map.

The Division Operation and Texture Mapping

Notice that regardless of whether we use the pixel-level or vertex-level approach to texture map-

ping, we must perform a divide to arrive at the u and v values. With the pixel-level approach, we

must divide the numerator by the denominator for the u and v terms; with the vertex-level

approach, we must divide u/z and v/z by 1/z. Thus, the pixel-level and the vertex-level approach

are mathematically equivalent; it is just that with the vertex-level approach, we have made the

relationship between u, v, and z more explicit.

The divide operation is time consuming. To perform texture mapping such that each pixel has

the correct u and v values, we must perform at least one division per pixel. (We say one division

and not two because we divide the u and v terms by the same denominator, meaning that we can

compute the reciprocal of the denominator with one divide operation, then multiply the u and v

terms with the precomputed reciprocal.)

It is not necessarily an absolute requirement that each and every pixel have the correct u and v

values; as long as most of the values are correct or not too far from correct, the image will still

likely be acceptable. Thus, one way of reducing the number of required divide operations, with a

slight reduction in image correctness, is only to compute the true u and v values every so many

pixels—say, every 16 pixels. Let’s call each group of 16 horizontally adjacent pixels a run of pix-

els. Then, at the beginning and end of each run, the u and v values are correct, because we compute

them as usual. For the pixels within a run, we linearly interpolate the u and v values between the

start of the run and the end of the run. The interpolated u and v values will not be the correct u and v

values as dictated by the texture mapping equations, because we cannot correctly interpolate u and
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v in screen coordinates. However, they will not be “too far” from the original values, since we

know that the endpoints of the run are correct. The smaller the runs, the less noticeable the error,

but the larger the runs, the fewer divisions we must perform and the better the overall performance

of the texture mapping code.

We’ve now covered the theory we need to perform texture mapping. The approach imple-

mented in l3d is the vertex-level approach, interpolating u/z, v/z, and 1/z. Let’s now look at the new

polygon class needed to implement this texture mapping strategy.

Associating Textures with 3D Polygons
The class l3d_polygon_3d_textured is a texture mapped polygon. It is a 3D polygon with

a texture and with texture coordinates stored with each vertex index. The class l3d_poly-
gon_ivertex_textured, inheriting from l3d_polygon_ivertex, allows us to store

the texture coordinates. It is an index to a polygon vertex with an additional member tex_coord
to store a texture coordinate. Note that we store the texture coordinates with the vertex indices and

not with the vertices themselves. The vertices themselves are shared among all polygons in an

object, but the vertex indices belong to each individual polygon. Since the texture coordinates

must be associated with each vertex of a polygon, and since adjacent polygons sharing a vertex

might nevertheless have different texture coordinates at the same vertex, we must store the texture

coordinates with the polygon’s own vertex index and not with the shared vertex. The class

l3d_polygon_ivertex_textured_items_factory is a factory returning items of the

new type l3d_polygon_ivertex_textured; recall, the l3d_list class internally

stores a factory for production of new list items during automatic expansion of the list. The factory

overrides the clonemethod to copy itself; when copying a polygon, we should also copy the ver-

tex index factory so that the copied polygon can produce the same kind of vertex indices (textured

or non-textured) as the original polygon.

Returning to the class l3d_polygon_3d_textured, the normal constructor replaces the

iv_items_factory, responsible for producing vertex index items for the (inherited) lists

ivertices, clip_ivertices, and temp_clip_ivertices, with the new factory so
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that the vertex index lists all now contain the extended vertex indices with texture coordinates.

Therefore, all vertex index lists can store texture coordinates. Only after replacing the factory does

the constructor then call the initmethod, which then creates the vertex index lists using the new

factory. This is also why the empty base class constructors are called, to prevent the base class

constructors from creating the lists before the new factory is in place. Class l3d_poly-
gon_3d_textured also declares a copy constructor and a clone method, as usual.

The member variable texture stores the texture orientation and data.

The method assign_tex_coords_from_tex_space takes a texture space as a

parameter, computes the texture coordinates based on the world space to texture space matrix, and

stores the resulting texture coordinates with each vertex index in the ivertices list. Notice that

we only use the first and second (u and v) components of the vector, since the third texture coordi-

nate is unimportant for 2D textures.

The overridden methods init_transformed and transform perform the same trans-

formation functions as in the parent class l3d_polygon_3d, but have been extended also to

initialize and transform the O, U, and Vmember variables as well. This means that any transforma-

tion of the polygon also transforms the polygon’s associated texture space, as well.

The overridden method after_camera_transform copies the current camera space z

coordinate of each vertex into the corresponding vertex index object. We store the z coordinate in

the tex_coord.Z_ element of the vertex index. This means that the tex_coord.X_ and

tex_coord.Y_ elements are the (u,v) texture coordinates for the vertex index; the

tex_coord.Z_ element is not the third texture coordinate w, which we don’t need, but is

instead the camera space z value, which we do need.

The overridden methods clip_segment_to_near_z and clip_near_z perform the

same functions as in the parent class l3d_polygon_3d, but have been extended also to clip the

u and v coordinates against the near z plane. Near z clipping has the effect of finding edges which

cross the near z plane, and clipping these edges to become shorter so that they do not recede

beyond the near z plane. This means that the 3D location of the endpoints of the clipped edges

changes. Since we have now associated texture coordinates with the endpoints of these edges,

clipping off the endpoints and replacing them with new endpoints means that we also must clip the

texture coordinates and assign them to the new clipped endpoint. This is very simple; during nor-

mal clipping of the geometry, we already compute a time parameter t indicating the “time” of the

intersection, which is a relative value indicating the percentage displacement between the starting

point and the ending point. We multiply the time parameter with the x, y, and z displacements to

find the exact location of the clipped point. To clip the u and v values, we also use the same time

parameter, and multiply it with the u displacement and v displacement to obtain the (u,v) coordi-

nates at the new clipped point.

Similarly, the overridden methods clip_segment_to_edge_2d and clip_to_
edge_2d have been extended not only to clip the polygon in 2D, but also to clip the texture coor-

dinates in 2D. The only tricky part is that we cannot clip the u and v values directly in 2D; instead,

we must compute the u/z, v/z, and 1/z values, clip these by using the same time parameter t used to

clip the geometry, then divide u/z and v/z by 1/z to recover the clipped u and v values. This is differ-

ent than the near z clipping case; near z clipping occurs in 3D, where the u and v values have a

Chapter 2: Rendering and Animation Techniques for 3D Polygons 97



linear relationship with the 3D x, y, and z values, as evidenced by the linear equations in the world

to texture space matrix. But for 2D clipping, the clipping occurs in 2D screen coordinates; the u

and v values do not have a linear relationship to the screen coordinates, but the u/z, v/z, and 1/z val-

ues are linear in screen space. This is why we clip these values, and not the original u and v values,

in 2D.

The method clip_to_plane, which clips the polygon against an arbitrary plane in 3D

(contrast with the 2D clipping of the previous paragraph), is also overridden to clip the texture

coordinates in 3D in addition to the geometry. Since there is ordinarily a linear relationship

between texture space and 3D world space (unless we manually assign texture coordinates; see

Chapter 3), we directly clip the u and v values in 3D, in contrast to the u/z, v/z, and 1/z clipping nec-

essary in 2D. As we saw earlier, after clipping the crossing polygon segments in 3D against the

clipping plane, the clipping plane stores an intersection_t parameter representing the per-

centage displacement of the new clipped point along the path from the start point in the crossing

segment to the end point. To clip the u and v values in 3D, we simply use this same intersec-
tion_t parameter to compute new u and v values as the same percentage displacement along the

path from the starting (u,v) values at the first vertex in the crossing segment to the ending (u,v) val-

ues at the end vertex in the crossing segment. In other words, to perform clipping in 3D, we simply

linearly interpolate the (u,v) values just as we do with the world coordinate locations.

The overridden method draw causes the polygon to draw itself; the polygon, in turn, asks its

rasterizer to draw the polygon. This means that all existing code which uses polygons—such as

the entire 3D object class—can handle texture mapped polygons with no change; the virtual call to

thedraw routine always gets bound at run time to the correct polygon-specific drawing routine.

Now, let’s look at the rasterization classes that actually draw the polygons on-screen.

Rasterization Classes for 3D Polygons
We’ve now seen everything we need to store the data for texture mapping. It’s now time to see the

actual texture mapping routines themselves. These are located within the rasterizer classes.

An Abstract 3D Rasterizer: l3d_rasterizer_3d

Class l3d_rasterizer_3d is a 3D rasterizer class that forwards requests for rasterization on

to a 3D rasterizer implementation. (Recall that the bridge design pattern separates the rasterizer

and its implementation.)

Listing 2-8: rast3.h
#ifndef __RAST3_H
#define __RAST3_H
#include "../tool_os/memman.h"

#include "rasteriz.h"
#include "../tool_2d/scrinfo.h"

#include "../geom/polygon/p3_flat.h"
#include "../geom/texture/texture.h"

class l3d_polygon_3d_textured;
class l3d_polygon_3d_textured_lightmapped;
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class l3d_rasterizer_3d_imp :
virtual public l3d_rasterizer_2d_imp,
virtual public l3d_texture_computer

{
public:
l3d_rasterizer_3d_imp(int xs, int ys, l3d_screen_info *si);

/* virtual */ void clear_buffer(void) {};

virtual void draw_polygon_textured(const l3d_polygon_3d_textured *p_poly);
virtual void draw_polygon_textured_lightmapped
(const l3d_polygon_3d_textured_lightmapped *p_poly);
virtual void draw_text(int x, int y, const char *string) {};
virtual void set_text_color(int red, int green, int blue) {};

};

class l3d_rasterizer_3d : public l3d_rasterizer_2d {
protected:
l3d_rasterizer_3d_imp *imp3d;

public:
l3d_rasterizer_3d(l3d_rasterizer_2d_imp *i2,

l3d_rasterizer_3d_imp *i3) :
l3d_rasterizer_2d(i2)
{
imp3d = i3;

}
virtual ~l3d_rasterizer_3d(void) {}

void draw_point( int x , int y , unsigned long col ) {
imp3d->draw_point(x,y,col);

}

/* virtual */ void draw_line( int x0 , int y0 , int x1 , int y1 , unsigned long col ) {
imp3d->draw_line(x0,y0,x1,y1,col);

}

/* virtual */ void clear_buffer(void) {
imp3d->clear_buffer();

}

/* virtual */ void draw_polygon_flatshaded( const l3d_polygon_3d_flatshaded
*p_poly )

{imp3d->draw_polygon_flatshaded(p_poly); }

virtual void draw_polygon_textured(const l3d_polygon_3d_textured *p_poly)
{imp3d->draw_polygon_textured(p_poly); }

virtual void draw_polygon_textured_lightmapped
(const l3d_polygon_3d_textured_lightmapped *p_poly)

{imp3d->draw_polygon_textured_lightmapped(p_poly); }

void draw_text(int x, int y, const char *string)
{imp3d->draw_text(x, y, string); }

};

class l3d_rasterizer_3d_imp_factory {
public:
virtual l3d_rasterizer_3d_imp *create(int xs, int ys, l3d_screen_info *si)=0;
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};

#ifndef __ACTIVE__P3_TEX_H
#ifndef __ACTIVE__P3_CLIP_H
#include "../geom/polygon/p3_tex.h"
#include "../geom/polygon/p3_ltex.h"
#endif
#endif

#endif

Listing 2-9: rast3.cc
#include "rast3.h"
#include "../tool_os/memman.h"

l3d_rasterizer_3d_imp::l3d_rasterizer_3d_imp
(int xs, int ys, l3d_screen_info *si) :

l3d_rasterizer_2d_imp(xs,ys,si)
{}

void l3d_rasterizer_3d_imp::draw_polygon_textured
(const l3d_polygon_3d_textured *p_poly)
{}

void l3d_rasterizer_3d_imp::draw_polygon_textured_lightmapped
(const l3d_polygon_3d_textured_lightmapped *p_poly)
{}

The member variable imp3d is a pointer to a 3D rasterizer implementation object, which actually

carries out the rasterizer’s drawing requests. The 3D rasterizer implementation object is of

(abstract) type l3d_rasterizer_3d_imp, and offers the new methods draw_poly-
gon_textured and draw_polygon_textured_lightmapped. These methods are

empty in the abstract l3d_rasterizer_3d_imp class; they are overridden in the actual con-

crete 3D rasterizer implementation (see next section).

NOTE The factory manager class l3d_factory_manager_v_0_2, which we saw earlier
in this chapter, creates and manages an object of type l3d_rasterizer_3d_imp. Thus, it
is through the factory manager that the application chooses which 3D rasterizer implementa-
tion (software or OpenGL/Mesa) to use.

The overridden methods draw_point, draw_line, clear_buffer, and draw_poly-
gon_flatshaded perform the same functions as in the parent class l3d_rasterizer_2d,

only the requests are forwarded to the 3D rasterizer implementation (imp3d) instead of to the 2D

rasterizer (imp2d).

The new methods draw_polygon_textured and draw_polygon_textured_
lightmapped are the new functionality offered by the 3D rasterizer interface. These methods

draw a textured and a light mapped polygon, respectively, by forwarding the request on to the

rasterizer implementation.

The new methods set_text_color and draw_text are used for drawing text strings

into the rasterizer’s buffer for display. We haven’t needed to until now, but it can be useful to dis-

play diagnostic or other messages to the screen; since the screen contents are controlled by the

rasterizer, we need an interface in the rasterizer (and in the rasterizer implementation) offering text
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drawing capabilities. This is exactly what these virtual text functions do; they are overridden in the

concrete rasterizer implementation subclasses covered below.

A Software 3D Rasterizer Implementation:
l3d_rasterizer_3d_sw_imp

The class l3d_rasterizer_3d_sw_imp is a software implementation of the rasterization

services required by class l3d_rasterizer_3d.

The main function of interest is the new function draw_polygon_textured.

Fundamentally, it draws a polygon in much the same manner as we draw flat-shaded polygons: we

proceed from top to bottom, rasterizing each edge on the left and right sides of the polygon simul-

taneously. Between the left edge and the right edge we draw a horizontal span of pixels. Figure

2-39 summarizes the idea behind rasterizing flat-shaded polygons. The current left edge and cur-

rent right edge are drawn in bold; the left edge goes horizontally from left_x_start to

left_x_end; the right edge, from right_x_start to right_x_end. The current scanline

is the horizontal line labeled with y. For the current scanline, we have the current value of the left

edge left_x, the current value of the right edge right_x, and the current horizontal position

x. Within the scanline we move from left_x to right_x by increments of one pixel. After fin-

ishing drawing the current scanline, we move down to the next scanline, labeled with y+1; at this

point, we also move the left edge horizontally by left_dx_dy and the right edge by

right_dx_dy. After finishing drawing the left edge and the right edge, the left edge reaches the

horizontal value left_x_end; the right edge reaches right_x_end.

The main difference between the previous flat-shaded rasterization code and the current tex-

ture mapping code is that now, while stepping along the edges vertically and the span horizontally,

we must also keep track of the current u/z, v/z, and 1/z values. We do this using two sets of vari-

ables, as mentioned earlier: one for the left edge of the polygon and one for the right edge of the

polygon. Recall, the polygon drawing code works by searching simultaneously for edges of

non-zero height on the left and right sides of the polygon, and by drawing horizontal spans of
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pixels from top to bottom between the left and right edges. With texture mapping, as soon as we

find an edge to be drawn for the left or the right side, we immediately make note of the u/z, v/z, and

1/z values for both the starting vertex and the ending vertex of the edge. Then, we compute three

delta values indicating how much the u/z, v/z, and 1/z values change from one scanline to the next

by dividing the total change by the height of the edge. In this manner, we always know the u/z, v/z,

and 1/z values at the left and right sides of the current scanline. Then, within the scanline, we draw

one horizontal span of pixels from the left edge to the right edge. Based on the left and right u/z,

v/z, and 1/z values, and the length of the horizontal span in pixels, we can interpolate the values

from the left edge to the right edge. This gives us a u/z, v/z, and 1/z value for each pixel. We then

simply divide u/z by 1/z and v/z by 1/z to obtain the u and v values, scale these real-valued u and v

values to integer texture map coordinates, retrieve the pixel from the texture map, and draw the

pixel on-screen. We actually divide the pixels into horizontal runs of 16 pixels, only computing the

u and v values every 16th pixel and linearly interpolating the u and v values between the ends of

the run.

See Figure 2-40 for a summary of the new variables needed while rasterizing texture mapped

polygons. Notice that this is simply an extension of the flat-shaded case; we keep track of addi-

tional variables at the starting and ending vertices of the left and right edges, interpolate these

values vertically between scanlines to obtain values for the left and right edges of the scanline, and

also interpolate these values horizontally within the scanline between the left and right values of

the current scanline.

Listing 2-10: ras3_sw.h
#ifndef __RAS3_SW_H
#define __RAS3_SW_H
#include "../tool_os/memman.h"

#include "ras_sw.h"
#include "rast3.h"
#include "math.h"
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#include "../system/sys_dep.h"

class l3d_rasterizer_3d_sw_imp :
virtual public l3d_rasterizer_2d_sw_imp,
virtual public l3d_rasterizer_3d_imp

{
protected:
void compute_surface_orientation_and_size(void);
unsigned char *text_color;

public:
l3d_rasterizer_3d_sw_imp(int xs, int ys, l3d_screen_info *si);
virtual ~l3d_rasterizer_3d_sw_imp(void);

/* virtual */ void draw_polygon_textured(const l3d_polygon_3d_textured *p_poly);
/* virtual */ void draw_polygon_textured_lightmapped
(const l3d_polygon_3d_textured_lightmapped *p_poly);
/* virtual */ void draw_text(int x, int y, const char *text);
/* virtual */ void set_text_color(int red, int green, int blue);
/* virtual */ void clear_buffer(void);

};

class l3d_rasterizer_3d_sw_imp_factory :
public l3d_rasterizer_3d_imp_factory

{
public:
l3d_rasterizer_3d_imp *create(int xs, int ys, l3d_screen_info *si);

};

#endif

Listing 2-11: ras3_sw.cc
#include "ras3_sw.h"
#include "../system/sys_dep.h"
#include <string.h>
#include <stdlib.h>
#include "../tool_os/memman.h"

static const unsigned char period[] =
{0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

static const unsigned char space[] =
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

static const unsigned char digits[][13] = {
{0x0,0x0, 0x18,0x3C,0x66,0xC3,0xC3,0xC3,0xC3,0xC3,0x66,0x3C,0x18},
{0x0,0x0, 0x7F,0x7F,0xC,0xC,0xC,0xC,0xC,0xC,0x6C,0x3C,0xC},
{0x0,0x0, 0xFF,0xFF,0xC0,0x60,0x30,0x18,0xC,0x6,0xC6,0x66,0x3C},
{0x0,0x0, 0x7E,0xC3,0x3,0x6,0xC,0x38,0xC,0x6,0x3,0xC3,0x7E},
{0x0,0x0, 0x6,0x6,0x6,0x6,0xFF,0xFF,0xC6,0xC6,0x66,0x36,0x1E},
{0x0,0x0, 0x7E,0xFF,0xC3,0x3,0x3,0xFF,0xFE,0xC0,0xC0,0xC0,0xFE},
{0x0,0x0, 0x7E,0xFF,0xC3,0xC3,0xC3,0xFF,0xFE,0xC0,0xC0,0xC0,0x7E},
{0x0,0x0, 0x60,0x60,0x60,0x60,0x30,0x18,0xC,0x6,0x3,0x3,0xFF},
{0x0,0x0, 0x7E,0xFF,0xC3,0xC3,0xC3,0x7E,0xC3,0xC3,0xC3,0xC3,0x7E},
{0x0,0x0, 0x7E,0xFF,0xC3,0x3,0x3,0x7F,0xC3,0xC3,0xC3,0xC3,0x7E}

};

static const unsigned char letters[][13] = {
{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xff, 0xc3, 0xc3, 0xc3, 0x66, 0x3c, 0x18},
{0x00, 0x00, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
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{0x00, 0x00, 0x7e, 0xe7, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xe7, 0x7e},
{0x00, 0x00, 0xfc, 0xce, 0xc7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc7, 0xce, 0xfc},
{0x00, 0x00, 0xff, 0xc0, 0xc0, 0xc0, 0xc0, 0xfc, 0xc0, 0xc0, 0xc0, 0xc0, 0xff},
{0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xfc, 0xc0, 0xc0, 0xc0, 0xff},
{0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xcf, 0xc0, 0xc0, 0xc0, 0xc0, 0xe7, 0x7e},
{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xff, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
{0x00, 0x00, 0x7e, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x7e},
{0x00, 0x00, 0x7c, 0xee, 0xc6, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06},
{0x00, 0x00, 0xc3, 0xc6, 0xcc, 0xd8, 0xf0, 0xe0, 0xf0, 0xd8, 0xcc, 0xc6, 0xc3},
{0x00, 0x00, 0xff, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0},
{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xdb, 0xff, 0xff, 0xe7, 0xc3},
{0x00, 0x00, 0xc7, 0xc7, 0xcf, 0xcf, 0xdf, 0xdb, 0xfb, 0xf3, 0xf3, 0xe3, 0xe3},
{0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xe7, 0x7e},
{0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
{0x00, 0x00, 0x3f, 0x6e, 0xdf, 0xdb, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0x66, 0x3c},
{0x00, 0x00, 0xc3, 0xc6, 0xcc, 0xd8, 0xf0, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
{0x00, 0x00, 0x7e, 0xe7, 0x03, 0x03, 0x07, 0x7e, 0xe0, 0xc0, 0xc0, 0xe7, 0x7e},
{0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0xff},
{0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
{0x00, 0x00, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
{0x00, 0x00, 0xc3, 0xe7, 0xff, 0xff, 0xdb, 0xdb, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
{0x00, 0x00, 0xc3, 0x66, 0x66, 0x3c, 0x3c, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3},
{0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3},
{0x00, 0x00, 0xff, 0xc0, 0xc0, 0x60, 0x30, 0x7e, 0x0c, 0x06, 0x03, 0x03, 0xff}

};

unsigned char font_bitmaps[256][13];

l3d_rasterizer_3d_imp * l3d_rasterizer_3d_sw_imp_factory::create
(int xs, int ys, l3d_screen_info *si)
{
return new l3d_rasterizer_3d_sw_imp(xs,ys,si);

}

l3d_rasterizer_3d_sw_imp::l3d_rasterizer_3d_sw_imp
(int xs, int ys, l3d_screen_info *si)

: l3d_rasterizer_3d_imp(xs,ys,si),
l3d_rasterizer_2d_sw_imp(xs,ys,si),
l3d_rasterizer_2d_imp(xs,ys,si)

{

text_color = new unsigned char [si->bytes_per_pixel];
set_text_color(si->ext_max_red, si->ext_max_green, si->ext_max_blue);

//- create font bitmaps
int i,j;

for(i=0; i<26; i++) {
for(j=0; j<13; j++) {
font_bitmaps['A' + i][j] = letters[i][j];
font_bitmaps['a' + i][j] = letters[i][j];

}
}

for(i=0; i<10; i++) {
for(j=0; j<13; j++) {
font_bitmaps['0' + i][j] = digits[i][j];

}
}
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for(j=0; j<13; j++) {
font_bitmaps[' '][j] = space[j];

}

for(j=0; j<13; j++) {
font_bitmaps['.'][j] = period[j];

}

}

l3d_rasterizer_3d_sw_imp::~l3d_rasterizer_3d_sw_imp(void) {
delete [] text_color;

}

void l3d_rasterizer_3d_sw_imp::clear_buffer(void)
{
l3d_rasterizer_2d_sw_imp::clear_buffer();

}

#define Z_MULT_FACTOR 512
#define Z_ADD_FACTOR -0.42

//- convenience macro for accessing the vertex coordinates. Notice
//- that we access the clipped vertex index list (not the original),
//- and the transformed coordinate (not the original). This means
//- we draw the clipped version of the transformed polygon.
#define VTX(i) ((**(p_poly->vlist))[ (*(p_poly->clip_ivertices))[i].ivertex ].transformed)

#include "../math/fix_lowp.h"
#if 0
#define l3d_fixed float
#define l3d_real_to_fixed(x) (x)
#define fixfixdiv(a,b) ((a)/(b))
#define fixfixmul(a,b) ((a)*(b))
#define int2fix(a) ( (float)(a))
#define fix2int(a) ( (int)(a))
#define fix2float(a) (a)
#define float2fix(a) (a)
#define iceil_fix(a) ( (int)ceil((double)(a)) )

#endif

void l3d_rasterizer_3d_sw_imp::draw_polygon_textured
(const l3d_polygon_3d_textured *p_poly)
{

l3d_fixed x0,y0,x1,y1,x2,y2,x3;
l3d_fixed top_y, bottom_y;
int point_on_right=0;
int left_idx, right_idx, top_y_idx, bottom_y_idx;

int maxy_upper, iceil_fix_y0, iceil_fix_y1, iceil_fix_y2;

l3d_point *vtemp;

int i;

int scanline;

//- variables for the left edge, incremented BETWEEN scanlines
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//- (inter-scanline)

l3d_fixed volatile
left_x, left_ui, left_vi, left_zi,
left_x_start, left_y_start, left_ui_start, left_vi_start, left_zi_start,
left_x_end, left_y_end, left_ui_end, left_vi_end, left_zi_end,
left_dx_dy, left_dui_dy, left_dvi_dy, left_dzi_dy;
int
left_ceilx,
left_ceilx_start, left_ceilx_end,
left_ceily_start, left_ceily_end;

//- variables for the right edge, incremented BETWEEN scanlines
//- (inter-scanline)

l3d_fixed volatile
right_x, right_ui, right_vi, right_zi,
right_x_start,right_y_start,right_ui_start,right_vi_start,right_zi_start,
right_x_end, right_y_end, right_ui_end, right_vi_end, right_zi_end,
right_dx_dy, right_dui_dy, right_dvi_dy, right_dzi_dy;

int
right_ceilx,
right_ceilx_start, right_ceilx_end,
right_ceily_start, right_ceily_end;

//- variables incremented WITHIN one scanline (intra-scanline)

l3d_fixed volatile
u,v,z,
ui, vi, zi, dui_dx, dvi_dx, dzi_dx,

//- for linear interp. within one run
u_left, u_right, du_dx,
v_left, v_right, dv_dx, inv_dx,
denom, inv_run_dx,

run_x, run_x_start, run_x_end,
u_run_end, v_run_end, du_dx_run, dv_dx_run;

long int cur_x;

top_y = l3d_real_to_fixed(VTX(0).Y_);
top_y_idx = 0;
bottom_y = top_y;
bottom_y_idx = top_y_idx;
for(i=0; i<p_poly->clip_ivertices->num_items; i++) {
if(l3d_real_to_fixed(VTX(i).Y_) < top_y) {
top_y = l3d_real_to_fixed(VTX(i).Y_);
top_y_idx = i;

}
if(l3d_real_to_fixed(VTX(i).Y_) > bottom_y) {
bottom_y = l3d_real_to_fixed(VTX(i).Y_);
bottom_y_idx = i;

}
}

left_idx = top_y_idx;
right_idx = top_y_idx;
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left_x_start=l3d_real_to_fixed(VTX(top_y_idx).X_);
left_ceilx_start=iceil_fix(left_x_start);
left_y_start=l3d_real_to_fixed(VTX(top_y_idx).Y_);
left_ceily_start=iceil_fix(left_y_start);
left_ceily_end=left_ceily_start;
left_zi_start = fixfixdiv(int2fix(Z_MULT_FACTOR),

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Z_)

+ float2fix(Z_ADD_FACTOR));
left_zi_end = left_zi_start;
left_ui_start = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.X_),

left_zi_start);
left_ui_end = left_ui_start;
left_vi_start = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Y_),

left_zi_start);
left_vi_end = left_vi_start;

right_x_start=left_x_start;
right_y_start=left_y_start;
right_ceily_start=left_ceily_start;
right_ceily_end=right_ceily_start;
right_ui_start = left_ui_start;
right_vi_start = left_vi_start;

right_zi_start = left_zi_start;

scanline = left_ceily_start;
int oneshot=1;

while(scanline < ysize) {
//- if needed, find next left-edge whose ceily_end > current scanline
while( left_ceily_end - scanline <= 0 )
{
if (left_idx == bottom_y_idx) {
return;

}
left_idx = p_poly->next_clipidx_left(left_idx,p_poly->clip_ivertices->num_items);
left_y_end=l3d_real_to_fixed(VTX(left_idx).Y_);
left_ceily_end = iceil_fix(left_y_end);
if(left_ceily_end - scanline) {

#define MIN_EDGE_HEIGHT float2fix(0.005)
#define MIN_EDGE_WIDTH float2fix(0.005)

left_x_end=l3d_real_to_fixed(VTX(left_idx).X_);
left_ceilx_end=iceil_fix(left_x_end);

left_zi_end = fixfixdiv(int2fix(Z_MULT_FACTOR),
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Z_)
+ float2fix(Z_ADD_FACTOR));

left_ui_end = fixfixmul(
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.X_),
left_zi_end);

left_vi_end = fixfixmul(
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Y_),
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left_zi_end);

if(left_y_end - left_y_start >= MIN_EDGE_HEIGHT) {
left_dx_dy = fixfixdiv(left_x_end-left_x_start,left_y_end-left_y_start);

left_dui_dy = fixfixdiv(left_ui_end - left_ui_start,
left_y_end - left_y_start);

left_dvi_dy = fixfixdiv(left_vi_end - left_vi_start,
left_y_end - left_y_start);

left_dzi_dy = fixfixdiv(left_zi_end - left_zi_start,
left_y_end - left_y_start);

}
else
{
left_dx_dy =
left_dui_dy =
left_dvi_dy =
left_dzi_dy = int2fix(0);

}

left_x = left_x_start + //- sub-pixel correction
fixfixmul(int2fix(left_ceily_start)-left_y_start , left_dx_dy);

left_ui = left_ui_start + //- sub-pixel correction
fixfixmul(int2fix(left_ceily_start)-left_y_start,

left_dui_dy);
left_vi = left_vi_start + //- sub-pixel correction

fixfixmul(int2fix(left_ceily_start)-left_y_start,
left_dvi_dy);

left_zi = left_zi_start + //- sub-pixel correction
fixfixmul(int2fix(left_ceily_start)-left_y_start,

left_dzi_dy);
}else {
left_x_start = l3d_real_to_fixed(VTX(left_idx).X_);
left_ceilx_start=iceil_fix(left_x_start);
left_y_start = l3d_real_to_fixed(VTX(left_idx).Y_);
left_ceily_start = iceil_fix(left_y_start);
left_zi_start = fixfixdiv(int2fix(Z_MULT_FACTOR),

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Z_)

+ float2fix(Z_ADD_FACTOR));
left_ui_start = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.X_),

left_zi_start);
left_vi_start = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Y_),

left_zi_start);

}
}

//- if needed, find next right-edge whose ceily_end > current scanline
while(right_ceily_end - scanline <= 0 )
{
if (right_idx == bottom_y_idx) {
return;

}
right_idx = p_poly->next_clipidx_right(right_idx, p_poly->clip_ivertices->num_items);
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right_y_end=l3d_real_to_fixed(VTX(right_idx).Y_);
right_ceily_end = iceil_fix(right_y_end);
if(right_ceily_end - scanline) {

right_x_end=l3d_real_to_fixed(VTX(right_idx).X_);
right_ceilx_end = iceil_fix(right_x_end);
right_zi_end = fixfixdiv(int2fix(Z_MULT_FACTOR),

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.Z_)

+ float2fix(Z_ADD_FACTOR));
right_ui_end = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.X_),

right_zi_end);
right_vi_end = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.Y_),

right_zi_end);

if(right_y_end-right_y_start>=MIN_EDGE_HEIGHT) {
right_dx_dy =
fixfixdiv(right_x_end-right_x_start,right_y_end-right_y_start);

right_dui_dy = fixfixdiv(right_ui_end - right_ui_start,
right_y_end - right_y_start);

right_dvi_dy = fixfixdiv(right_vi_end - right_vi_start,
right_y_end - right_y_start);

right_dzi_dy = fixfixdiv(right_zi_end - right_zi_start,
right_y_end - right_y_start);

}
else
{
right_dx_dy =
right_dui_dy =
right_dvi_dy =
right_dzi_dy = int2fix(0);

}

right_x = right_x_start + //- sub-pixel correction
fixfixmul(int2fix(right_ceily_start)-right_y_start , right_dx_dy);

right_ui = right_ui_start + //- sub-pixel correction
fixfixmul(int2fix(right_ceily_start)-right_y_start,

right_dui_dy);
right_vi = right_vi_start + //- sub-pixel correction

fixfixmul(int2fix(right_ceily_start)-right_y_start,
right_dvi_dy);

right_zi = right_zi_start + //- sub-pixel correction
fixfixmul(int2fix(right_ceily_start)-right_y_start,

right_dzi_dy);

}else {
right_x_start = l3d_real_to_fixed(VTX(right_idx).X_);
right_ceilx_start = iceil_fix(right_x_start);
right_y_start = l3d_real_to_fixed(VTX(right_idx).Y_);
right_ceily_start = iceil_fix(right_y_start);

right_zi_start = fixfixdiv(int2fix(Z_MULT_FACTOR),
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
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& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.Z_)
+float2fix(Z_ADD_FACTOR));

right_ui_start = fixfixmul(
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.X_),
right_zi_start);

right_vi_start = fixfixmul(
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.Y_),
right_zi_start);

}
}

if (left_ceily_end > ysize) left_ceily_end = ysize;
if (right_ceily_end > ysize) right_ceily_end = ysize;

while ( (scanline < left_ceily_end) && (scanline < right_ceily_end) )
{
if (left_x > right_x) {
}
else {
left_ceilx = iceil_fix(left_x);
right_ceilx = iceil_fix(right_x);

//- if the segment is (horizontally) visible, draw it.

if(right_x - left_x > MIN_EDGE_WIDTH) {

dui_dx = fixfixdiv(right_ui - left_ui , right_x - left_x);
dvi_dx = fixfixdiv(right_vi - left_vi , right_x - left_x);
dzi_dx = fixfixdiv(right_zi - left_zi , right_x - left_x);

}else {
//- a segment exactly one pixel wide (left_x == right_x)
dui_dx =
dvi_dx =
dzi_dx = int2fix(0);

}

ui = left_ui + //- sub-pixel correction
fixfixmul(int2fix(left_ceilx) - left_x, dui_dx);

vi = left_vi + //- sub-pixel correction
fixfixmul(int2fix(left_ceilx) - left_x, dvi_dx);

zi = left_zi + //- sub-pixel correction
fixfixmul(int2fix(left_ceilx) - left_x, dzi_dx);

cur_x=left_ceilx;

#define LINEAR_RUN_SHIFT 4
#define LINEAR_RUN_SIZE (1<<LINEAR_RUN_SHIFT)

z = fixfixdiv(int2fix(1), zi);
u = fixfixmul(ui,z);
v = fixfixmul(vi,z);

for(/*register */ unsigned char *pix=sinfo->p_screenbuf+(left_ceilx + SW_RAST_Y_REVERSAL(ysize,
scanline)*xsize)*sinfo->bytes_per_pixel;

pix< sinfo->p_screenbuf+(right_ceilx+ SW_RAST_Y_REVERSAL(ysize,
scanline)*xsize)*sinfo->bytes_per_pixel;

)
{
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run_x_end = int2fix(cur_x) +
int2fix(LINEAR_RUN_SIZE);

if (run_x_end > int2fix(right_ceilx)) {
run_x_end = int2fix(right_ceilx);

}
denom = fixfixdiv

(int2fix(1) ,
zi + fixfixmul(dzi_dx, run_x_end-int2fix(cur_x)));

u_run_end=fixfixmul
(ui + fixfixmul(dui_dx,(run_x_end-int2fix(cur_x))),
denom) ;

v_run_end=fixfixmul
(vi + fixfixmul(dvi_dx,(run_x_end-int2fix(cur_x))),
denom) ;

inv_run_dx = fixfixdiv
(int2fix(1),
(run_x_end-int2fix(cur_x)));

du_dx_run = fixfixmul((u_run_end - u) ,inv_run_dx);
dv_dx_run = fixfixmul((v_run_end - v) ,inv_run_dx);

for(run_x = int2fix(cur_x);
run_x < run_x_end;
run_x+=int2fix(1))

{

unsigned char *texel =
p_poly->texture->tex_data->data +
((fix2int(l3d_mulri(v,p_poly->texture->tex_data->height-1))&
(p_poly->texture->tex_data->height-1))*(p_poly->texture->tex_data->width)
+
(fix2int(l3d_mulri(u,p_poly->texture->tex_data->width-1))&
(p_poly->texture->tex_data->width-1)) ) *
sinfo->bytes_per_pixel;

for(register int b=0; b<sinfo->bytes_per_pixel;b++) {
*pix++ = *texel++;

}
u += du_dx_run;
v += dv_dx_run;

}

cur_x += LINEAR_RUN_SIZE;
#if 0

ui += dui_dx<<LINEAR_RUN_SHIFT;
vi += dvi_dx<<LINEAR_RUN_SHIFT;
zi += dzi_dx<<LINEAR_RUN_SHIFT;

#else
ui += l3d_mulri(dui_dx, LINEAR_RUN_SIZE);

vi += l3d_mulri(dvi_dx, LINEAR_RUN_SIZE);
zi += l3d_mulri(dzi_dx, LINEAR_RUN_SIZE);

#endif
}

}

scanline++;
left_x += left_dx_dy;
right_x += right_dx_dy;

left_ui += left_dui_dy;
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left_vi += left_dvi_dy;
left_zi += left_dzi_dy;
right_ui += right_dui_dy;
right_vi += right_dvi_dy;
right_zi += right_dzi_dy;

}

//- for the left and/or right segment(s) which just completed drawing
//- initialize xxx_start = xxx_end, to begin next segment. xxx_end is
//- then searched for in the next iteration (the while() loops)
if ( left_ceily_end - scanline <= 0 ) {
left_x_start=left_x_end;
left_y_start=left_y_end;
left_ceily_start=left_ceily_end;
left_ui_start=left_ui_end;
left_vi_start=left_vi_end;
left_zi_start=left_zi_end;

}
if ( right_ceily_end - scanline <= 0 ) {
right_x_start=right_x_end;
right_y_start=right_y_end;
right_ceily_start=right_ceily_end;
right_ui_start=right_ui_end;
right_vi_start=right_vi_end;
right_zi_start=right_zi_end;

}
}

}
#include "../math/fix_prec.h"

void l3d_rasterizer_3d_sw_imp::draw_polygon_textured_lightmapped
(const l3d_polygon_3d_textured_lightmapped *p_poly)
{
l3d_texture *old_tex;

if(p_poly->surface==NULL) {
p_poly->surface = p_poly->get_scache()->combine_lightmap_and_texmap

(p_poly->surface_xsize, p_poly->surface_ysize, p_poly);
}

p_poly->surface->O = p_poly->surface_orientation.O;
p_poly->surface->U = p_poly->surface_orientation.U;
p_poly->surface->V = p_poly->surface_orientation.V;

old_tex = p_poly->texture;
p_poly->texture = p_poly->surface;
draw_polygon_textured(p_poly);
p_poly->texture = old_tex;

}

void l3d_rasterizer_3d_sw_imp::set_text_color(int red, int green, int blue) {

unsigned long native_col = sinfo->ext_to_native
(red, green, blue);

register int i;
unsigned long mask = MAX_BYTE;
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char shift = 0;

unsigned char *c = text_color;
for(i=0; i<sinfo->bytes_per_pixel; i++) {
*c++ = (native_col & mask) >> shift;
mask <<= BITS_PER_BYTE;
shift += BITS_PER_BYTE;

}
}

void l3d_rasterizer_3d_sw_imp::draw_text(int x, int y, const char *text) {

#define FONT_Y_SIZE 13
#define FONT_X_SIZE 8
#define FONT_SPACING 2

int i;
int font_y, font_x;
int x_offset;

x_offset = x * sinfo->bytes_per_pixel;
unsigned char *pix;

unsigned char *fg_color;

for(font_y=0; font_y < FONT_Y_SIZE; font_y++) {
pix=sinfo->p_screenbuf+(x_offset +

SW_RAST_Y_REVERSAL(ysize,y + font_y)*xsize)
*sinfo->bytes_per_pixel;

unsigned int c;
for(c=0; c<strlen(text); c++) {
int current_bit;
for(font_x=0, current_bit=0x80;

font_x < FONT_X_SIZE;
font_x++, current_bit >>= 1)

{
if(font_bitmaps[text[c]][FONT_Y_SIZE-font_y] & current_bit) {
fg_color = text_color;
for(register int b=0; b<sinfo->bytes_per_pixel;b++) {
*pix++ = *fg_color++;

}
}else {
pix += sinfo->bytes_per_pixel;

}
}
for(font_x=0; font_x < FONT_SPACING; font_x++) {
pix += sinfo->bytes_per_pixel;

}
}

}
}

Two other items deserve special mention in the texture mapping code. First, all of the real-valued

variables are of type l3d_fixed instead of l3d_real. This means that we explicitly force the

usage of fixed-point values within the texture mapping code. As with l3d_real values, we also

use macros to multiply and divide l3d_fixed values: fixfixmul and fixintmulmultiply

a fixed point by another fixed-point or integer value, and fixfixdiv and fixintdiv divide a

fixed-point value by another fixed-point or integer value. Addition and subtraction of l3d_
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fixed values, as with l3d_real, can be done with the normal C++ addition and subtraction

operators.

The reason we use fixed-point values in the texture mapping code is speed. Fixed-point arith-

metic represents real-valued numbers as integers (see the Appendix); therefore, the conversion

from a fixed-point number to an integer is quite fast—it is simply a bit shift operation. On the other

hand, converting a floating-point number to an integer is comparatively slow. This might seem

trivial, but we must convert the real-valued (u,v) coordinates to integer texture map indices for

every pixel. In the l3d library, for instance, simply changing from floating point to fixed point dou-

bled the performance of the texture mapping code.

The other item of note is the use of the Z_MULT_FACTOR andZ_ADD_FACTOR constants in

the code. Instead of computing 1/z, we compute Z_MULT_FACTOR/(z + Z_ADD_FACTOR). The

1/z values in camera space can be very small; for instance, if z is 1000, then 1/z is 0.001. The

Z_MULT_FACTOR has the effect of scaling the 1/z values to be slightly larger so that interpolation

between the 1/z values occurs between larger values and is thus more accurate. The

Z_ADD_FACTOR has the effect of making all z values slightly smaller before computing 1/z. The

idea is that because of the near z clipping plane, none of the z values will ever be smaller than a cer-

tain value. For instance, if the near z plane is at 5, then z will always be at least 5, meaning that 1/z

is at most 1/5, or 0.2. Even with the Z_MULT_FACTOR, there is still a certain range of larger 1/z

values which never occur due to the near z clipping. The purpose of the Z_ADD_FACTOR is to

move the clipped z values slightly closer to the origin, so that the range of possible 1/z values is

larger. These numerical range considerations are particularly important when using fixed-point

arithmetic since numerical accuracy is always a troublesome problem—troublesome because we

only have a fixed number of bits to store whole and fractional parts, and if our computations are

carelessly formulated, the resulting values will require either more or less precision than we have,

leading to incorrect results. Essentially, therefore, we use the Z_MULT_FACTOR and

Z_ADD_FACTOR to scale our computations such that the results always lie within the fixed preci-

sion of our fixed point values.

The text drawing code in the software rasterizer relies on a table of bitmaps, containing one

bitmap for each character, and the two overridden methods set_text_color and

draw_text. The constructor for the rasterizer implementation creates the table of bitmaps in

variable font_bitmaps. Each character is associated with an 8 by 13 bitmap, stored as a series

of 13 bytes. Each bit in each byte of each character’s bitmap represents one pixel forming the

shape of the character; a value of 1 for the bit means the pixel should be drawn to form the shape of

the character, while a value of 0 means the bit should not be drawn. The bits are interpreted such

that the most-significant (leftmost) bit is the leftmost pixel to be displayed. Since each bit is 8

bytes (an admittedly hard-coded assumption in the code), one byte represents the eight horizontal

pixels belonging to each character’s bitmap.
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We use the following methods to draw the text. Method set_text_color takes a red,

green, and blue color specification in external format, converts the color to native internal screen

format, then stores the color as a series of bytes in the array text_color. Then, method draw_
text draws a given string using the previously set color. It takes each character in the string to be

printed, finds the appropriate bitmap for the character by using its ASCII code, and, for each bit in

the character’s bitmap with a value of 1, draws the color stored in text_color into the

rasterizer buffer. Thus, the string is drawn character for character, pixel by pixel into the buffer.

A Mesa/OpenGL 3D Rasterizer Implementation:
l3d_rasterizer_3d_mesa_imp

Mesa can also draw texture mapped polygons for us. For a computer without hardware accelera-

tion, there is no speed benefit to be gained by using Mesa instead of a custom software texture

mapper, because Mesa must do exactly the same math. The picture looks quite different, though,

with a 3D graphics card. In this case, Mesa simply forwards the request to draw a texture mapped

polygon on to the hardware, which then draws the polygon at speeds impossible to achieve via

software alone. Therefore, let’s now take a look at a Mesa/OpenGL 3D rasterizer implementation.

As usual, the rasterizer implementation is chosen via a factory at the program start, and is plugged

into the rasterizer interface. Application code need not be modified to use either software or hard-

ware rasterizers.

Listing 2-12: ras3_mes.h
#ifndef __RAS3_MES_H
#define __RAS3_MES_H
#include "../tool_os/memman.h"

#include <GL/glut.h>
#include "rast3.h"
#include "ras_mesa.h"

class l3d_rasterizer_3d_mesa_imp :
virtual public l3d_rasterizer_2d_mesa_imp,
virtual public l3d_rasterizer_3d_imp
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right, and are the actual values stored
in the font bitmap array. We store one
such bitmap for each possible character
we want to draw (letters, numbers,
punctuation, etc.).



{
private:

GLuint fontOffset;
void make_raster_font(void);

protected:
void texture_setup(const l3d_polygon_3d_textured *p_poly);
void ogl_texturing_between_glbegin_end
(const l3d_polygon_3d_textured *p_poly);

l3d_real ui_xs, ui_ys, ui_c, vi_xs, vi_ys, vi_c, zi_xs, zi_ys, zi_c,
ui, vi, zi;

unsigned long text_color;

public:
l3d_rasterizer_3d_mesa_imp(int xs, int ys, l3d_screen_info *si);

void draw_point(int x, int y, unsigned long col);
void draw_line(int x0, int y0, int x1, int y1, unsigned long col);
void draw_polygon_flatshaded(const l3d_polygon_2d_flatshaded *p_poly);

void draw_polygon_textured(const l3d_polygon_3d_textured *p_poly);
void draw_polygon_textured_lightmapped
(const l3d_polygon_3d_textured_lightmapped *p_poly);

void draw_text(int x, int y, const char *string);
void set_text_color(int red, int green, int blue);

void clear_buffer(void);
};

class l3d_rasterizer_3d_mesa_imp_factory :
public l3d_rasterizer_3d_imp_factory {
public:
l3d_rasterizer_3d_imp *create(int xs, int ys, l3d_screen_info *si);

};

#endif

Listing 2-13: ras3_mes.cc
#include "ras3_mes.h"
#include <math.h>
#include "../tool_os/memman.h"

static const GLubyte period[] =
{0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

static const GLubyte space[] =
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

static const GLubyte digits[][13] = {
{0x0,0x0, 0x18,0x3C,0x66,0xC3,0xC3,0xC3,0xC3,0xC3,0x66,0x3C,0x18},
{0x0,0x0, 0x7F,0x7F,0xC,0xC,0xC,0xC,0xC,0xC,0x6C,0x3C,0xC},
{0x0,0x0, 0xFF,0xFF,0xC0,0x60,0x30,0x18,0xC,0x6,0xC6,0x66,0x3C},
{0x0,0x0, 0x7E,0xC3,0x3,0x6,0xC,0x38,0xC,0x6,0x3,0xC3,0x7E},
{0x0,0x0, 0x6,0x6,0x6,0x6,0xFF,0xFF,0xC6,0xC6,0x66,0x36,0x1E},
{0x0,0x0, 0x7E,0xFF,0xC3,0x3,0x3,0xFF,0xFE,0xC0,0xC0,0xC0,0xFE},
{0x0,0x0, 0x7E,0xFF,0xC3,0xC3,0xC3,0xFF,0xFE,0xC0,0xC0,0xC0,0x7E},
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{0x0,0x0, 0x60,0x60,0x60,0x60,0x30,0x18,0xC,0x6,0x3,0x3,0xFF},
{0x0,0x0, 0x7E,0xFF,0xC3,0xC3,0xC3,0x7E,0xC3,0xC3,0xC3,0xC3,0x7E},
{0x0,0x0, 0x7E,0xFF,0xC3,0x3,0x3,0x7F,0xC3,0xC3,0xC3,0xC3,0x7E}

};

static const GLubyte letters[][13] = {
{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xff, 0xc3, 0xc3, 0xc3, 0x66, 0x3c, 0x18},
{0x00, 0x00, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
{0x00, 0x00, 0x7e, 0xe7, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xe7, 0x7e},
{0x00, 0x00, 0xfc, 0xce, 0xc7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc7, 0xce, 0xfc},
{0x00, 0x00, 0xff, 0xc0, 0xc0, 0xc0, 0xc0, 0xfc, 0xc0, 0xc0, 0xc0, 0xc0, 0xff},
{0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xfc, 0xc0, 0xc0, 0xc0, 0xff},
{0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xcf, 0xc0, 0xc0, 0xc0, 0xc0, 0xe7, 0x7e},
{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xff, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
{0x00, 0x00, 0x7e, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x7e},
{0x00, 0x00, 0x7c, 0xee, 0xc6, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06},
{0x00, 0x00, 0xc3, 0xc6, 0xcc, 0xd8, 0xf0, 0xe0, 0xf0, 0xd8, 0xcc, 0xc6, 0xc3},
{0x00, 0x00, 0xff, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0},
{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xdb, 0xff, 0xff, 0xe7, 0xc3},
{0x00, 0x00, 0xc7, 0xc7, 0xcf, 0xcf, 0xdf, 0xdb, 0xfb, 0xf3, 0xf3, 0xe3, 0xe3},
{0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xe7, 0x7e},
{0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
{0x00, 0x00, 0x3f, 0x6e, 0xdf, 0xdb, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0x66, 0x3c},
{0x00, 0x00, 0xc3, 0xc6, 0xcc, 0xd8, 0xf0, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
{0x00, 0x00, 0x7e, 0xe7, 0x03, 0x03, 0x07, 0x7e, 0xe0, 0xc0, 0xc0, 0xe7, 0x7e},
{0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0xff},
{0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
{0x00, 0x00, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
{0x00, 0x00, 0xc3, 0xe7, 0xff, 0xff, 0xdb, 0xdb, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
{0x00, 0x00, 0xc3, 0x66, 0x66, 0x3c, 0x3c, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3},
{0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3},
{0x00, 0x00, 0xff, 0xc0, 0xc0, 0x60, 0x30, 0x7e, 0x0c, 0x06, 0x03, 0x03, 0xff}

};

l3d_rasterizer_3d_imp * l3d_rasterizer_3d_mesa_imp_factory::create
(int xs, int ys, l3d_screen_info *si)
{
return new l3d_rasterizer_3d_mesa_imp(xs,ys,si);

}

l3d_rasterizer_3d_mesa_imp::
l3d_rasterizer_3d_mesa_imp(int xs, int ys, l3d_screen_info *si):

l3d_rasterizer_3d_imp(xs,ys,si),
l3d_rasterizer_2d_imp(xs,ys,si),
l3d_rasterizer_2d_mesa_imp(xs,ys,si)

{
make_raster_font();
set_text_color(si->ext_max_red,

si->ext_max_green,
si->ext_max_blue);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(-xsize/2,xsize/2,-ysize/2,ysize/2);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glViewport(0,0,xsize,ysize);

//- prevent back-facing polygons - those which have a counterclockwise
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//- vertex orientation - from being drawn, to mimic the behavior of the
//- software rasterizer.
glFrontFace(GL_CW);
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);

}

void l3d_rasterizer_3d_mesa_imp::clear_buffer(void)
{
l3d_rasterizer_2d_mesa_imp::clear_buffer();

}

void l3d_rasterizer_3d_mesa_imp::draw_point(int x, int y, unsigned long col) {
glBegin(GL_POINTS);
sinfo->set_color(col);
glVertex2i(x-(xsize>>1),(ysize>>1)-y);
glEnd();

}

void l3d_rasterizer_3d_mesa_imp::draw_line(int x0, int y0, int x1, int y1,
unsigned long col)

{
glBegin(GL_LINES);
sinfo->set_color(col);
glVertex2i(x0-(xsize>>1),(ysize>>1)-y0);
glVertex2i(x1-(xsize>>1),(ysize>>1)-y1);
glEnd();

}

void l3d_rasterizer_3d_mesa_imp::draw_polygon_flatshaded
(const l3d_polygon_2d_flatshaded *p_poly)
{
int i;

glBegin(GL_POLYGON);
sinfo->set_color(p_poly->final_color);
for(i=0; i<p_poly->clip_ivertices->num_items; i++) {
glVertex2i(iceil((**(p_poly->vlist))

[(*p_poly->clip_ivertices)[i].ivertex].transformed.X_)

- (xsize>>1),

(ysize>>1) -
iceil((**(p_poly->vlist))

[(*p_poly->clip_ivertices)[i].ivertex].transformed.Y_));
}
glEnd();

}

void l3d_rasterizer_3d_mesa_imp::texture_setup
(const l3d_polygon_3d_textured *p_poly)
{

if (!glIsTexture(p_poly->texture->tex_data->id)) {
printf("generating texture");
GLuint glid = (GLuint) (p_poly->texture->tex_data->id);
glGenTextures(1, & glid );
p_poly->texture->tex_data->id = glid;

glBindTexture(GL_TEXTURE_2D, p_poly->texture->tex_data->id);
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glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glEnable(GL_TEXTURE_2D);

glTexImage2D(GL_TEXTURE_2D,
0,
GL_RGBA,
p_poly->texture->tex_data->width,
p_poly->texture->tex_data->height,
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
p_poly->texture->tex_data->data);

}else {
glEnable(GL_TEXTURE_2D); //- texturing may have been turned off by another

glBindTexture(GL_TEXTURE_2D,p_poly->texture->tex_data->id);
}

float texx[4] = {0.0, 0.0, 1.0, 1.0 };
float texy[4] = {0.0, 1.0, 1.0, 0.0 };

}

void l3d_rasterizer_3d_mesa_imp::draw_polygon_textured
(const l3d_polygon_3d_textured *p_poly)

{
texture_setup(p_poly);
glBegin(GL_POLYGON);
ogl_texturing_between_glbegin_end(p_poly);
glEnd();

}

void l3d_rasterizer_3d_mesa_imp::ogl_texturing_between_glbegin_end
(const l3d_polygon_3d_textured *p_poly)
{
int i;

GLfloat plane[4];
l3d_vector plane_normal;

plane_normal = normalized(p_poly->sfcnormal.transformed
- p_poly->center.transformed);

plane[0] = plane_normal.a[0];
plane[1] = plane_normal.a[1];
plane[2] = plane_normal.a[2];
plane[3] = -plane[0] * p_poly->center.transformed.X_

- plane[1] * p_poly->center.transformed.Y_
- plane[2] * p_poly->center.transformed.Z_;

for(i=0; i<p_poly->clip_ivertices->num_items; i++) {

#define SCREEN_X ((**(p_poly->vlist)) [(*(p_poly->clip_ivertices))[i].ivertex].transformed.X_)
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#define SCREEN_Y ((**(p_poly->vlist)) [(*(p_poly->clip_ivertices))[i].ivertex].transformed.Y_)

l3d_real hf=l3d_mulri(*fovx,*screen_xsize),
vf=l3d_mulri(*fovy,*screen_ysize);

float orig_z_denom =
(plane[0]*(SCREEN_X - xsize/2)/ hf -
plane[1]*(SCREEN_Y - ysize/2)/ vf +
plane[2]);

if(orig_z_denom > -0.0001) {

//- this would imply that the orig_z value is < 0.0001 ie non-positive
//- so we cancel the entire polygon drawing operation
return;

}
}

for(i=0; i<p_poly->clip_ivertices->num_items; i++) {

#define SCREEN_X ((**(p_poly->vlist)) [(*(p_poly->clip_ivertices))[i].ivertex].transformed.X_)
#define SCREEN_Y ((**(p_poly->vlist)) [(*(p_poly->clip_ivertices))[i].ivertex].transformed.Y_)

glTexCoord2f
(
((l3d_polygon_ivertex_textured *)&(*p_poly->clip_ivertices)[i])
->tex_coord.X_,
((l3d_polygon_ivertex_textured *)&(*p_poly->clip_ivertices)[i])
->tex_coord.Y_

);

l3d_real hf=l3d_mulri(*fovx,*screen_xsize),
vf=l3d_mulri(*fovy,*screen_ysize);

float orig_z = -plane[3] /
(plane[0]*(SCREEN_X - xsize/2)/ hf -
plane[1]*(SCREEN_Y - ysize/2)/ vf +
plane[2]);

GLfloat tmp[4];

tmp[0] =
(((**(p_poly->vlist))
[(*(p_poly->clip_ivertices))[i].ivertex].transformed.X_ - xsize/2)

* orig_z );

tmp[1] =
((-(**(p_poly->vlist))
[(*(p_poly->clip_ivertices))[i].ivertex].transformed.Y_ + ysize/2)

* orig_z );
tmp[2] = 1;
tmp[3] = orig_z;

glVertex4fv(tmp);
}

}

void l3d_rasterizer_3d_mesa_imp::make_raster_font(void)
{
GLuint i, j;
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glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

fontOffset = glGenLists (128);
for (i = 0,j = 'A'; i < 26; i++,j++) {
glNewList(fontOffset + j, GL_COMPILE);
glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0,

letters[i]);
glEndList();

}

for (i = 0,j = 'a'; i < 26; i++,j++) {
glNewList(fontOffset + j, GL_COMPILE);
glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0,

letters[i]);
glEndList();

}

for (i = 0,j = '0'; i < 10; i++,j++) {
glNewList(fontOffset + j, GL_COMPILE);
glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0,

digits[i]);
glEndList();

}

glNewList(fontOffset + ' ', GL_COMPILE);
glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0,

space);
glEndList();

glNewList(fontOffset + '.', GL_COMPILE);
glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0,

period);
glEndList();

}

void l3d_rasterizer_3d_mesa_imp::draw_text(int x, int y, const char *string) {
sinfo->set_color(text_color);
glDisable(GL_TEXTURE_2D); //- text should not be displayed using a texture
glRasterPos2i(x-(xsize>>1),(ysize>>1)-y - 13); //- 13 is height of 1 char

glPushAttrib (GL_LIST_BIT);
glListBase(fontOffset);
glCallLists((GLsizei) strlen(string), GL_UNSIGNED_BYTE, (GLubyte *) string);
glPopAttrib ();

}

void l3d_rasterizer_3d_mesa_imp::set_text_color(int red, int green, int blue) {
text_color = sinfo->ext_to_native(red, green, blue);

}

void l3d_rasterizer_3d_mesa_imp::draw_polygon_textured_lightmapped
(const l3d_polygon_3d_textured_lightmapped *p_poly)
{
GLuint glid = (GLuint) (p_poly->texture->tex_data->id);

l3d_list<l3d_point> old_texcoords(10);

//- try to find texture data in surface cache
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if (!p_poly->get_scache()->find_texdata(p_poly->texture->tex_data)) {

if (glIsTexture(p_poly->texture->tex_data->id)) {

glDeleteTextures(1, &glid);
}

glGenTextures(1, & glid );
p_poly->texture->tex_data->id = glid;

glBindTexture(GL_TEXTURE_2D, p_poly->texture->tex_data->id);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glEnable(GL_TEXTURE_2D);

glTexImage2D(GL_TEXTURE_2D,
0,
GL_RGBA,
p_poly->texture->tex_data->width,
p_poly->texture->tex_data->height,
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
p_poly->texture->tex_data->data);

}else {
glBindTexture(GL_TEXTURE_2D,p_poly->texture->tex_data->id);

}

//- based on texture orientation: compute uvz's for each vertex
for(int i=0; i<p_poly->clip_ivertices->num_items; i++) {

float px =
( (**p_poly->vlist) [(*p_poly->clip_ivertices)[i].ivertex].transformed.X_
- *screen_xsize/2 )

/ (*screen_xsize * *fovx);

float py =
(*screen_ysize/2
-
(**p_poly->vlist) [(*p_poly->clip_ivertices)[i].ivertex].transformed.Y_ )
/
(*screen_ysize * *fovy);

float ox = p_poly->texture->O.transformed.X_;
float oy = p_poly->texture->O.transformed.Y_;
float oz = p_poly->texture->O.transformed.Z_;
float ux = p_poly->texture->U.transformed.X_ - ox;
float uy = p_poly->texture->U.transformed.Y_ - oy;
float uz = p_poly->texture->U.transformed.Z_ - oz;
float vx = p_poly->texture->V.transformed.X_ - ox;
float vy = p_poly->texture->V.transformed.Y_ - oy;
float vz = p_poly->texture->V.transformed.Z_ - oz;

float u = (px*(oy*vz - oz*vy) + py*(oz*vx - ox*vz) - oy*vx + ox*vy)
/ (px*(uz*vy - uy*vz) + py*(ux*vz - uz*vx) + uy*vx - ux*vy);
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float v = (px*(oy*uz - oz*uy) + py*(oz*ux - ox*uz) - oy*ux + ox*uy)
/ ((uy*vz - uz*vy)*px + py*(uz*vx - ux*vz) + ux*vy - uy*vx);

float z = (ox*(uz*vy - uy*vz) + oy*(ux*vz - uz*vx) + oz*(uy*vx - ux*vy))
/ (px*(uz*vy - uy*vz) + py*(ux*vz - uz*vx) + uy*vx - ux*vy);

old_texcoords[old_texcoords.next_index()] =
((l3d_polygon_ivertex_textured *)&(*p_poly->clip_ivertices)[i])
->tex_coord;

((l3d_polygon_ivertex_textured *)&(*p_poly->clip_ivertices)[i])
->tex_coord.set(float_to_l3d_real(u),

float_to_l3d_real(v),
float_to_l3d_real(z),
float_to_l3d_real(1.0));

}

draw_polygon_textured(p_poly);

//- set up mag/min filters to make light maps smoother
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

//- set up blend function to combine light map and text map
glEnable(GL_BLEND);
glBlendFunc(GL_ZERO, GL_SRC_ALPHA);

int i;

//- try to find light map data in cache
glid = (GLuint) (p_poly->lightmap->tex_data->id);
if (!p_poly->get_scache()->find_texdata(p_poly->lightmap->tex_data)) {
if (glIsTexture(p_poly->lightmap->tex_data->id)) {

glDeleteTextures(1, &glid);
}
printf("generating texture");
glGenTextures(1, & glid );
p_poly->lightmap->tex_data->id = glid;
printf("ID was %d", p_poly->lightmap->tex_data->id);

glBindTexture(GL_TEXTURE_2D, p_poly->lightmap->tex_data->id);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glEnable(GL_TEXTURE_2D);

glPixelStorei(GL_UNPACK_ALIGNMENT,1);
glTexImage2D(GL_TEXTURE_2D,

0,
GL_RGBA,
p_poly->lightmap->tex_data->width,
p_poly->lightmap->tex_data->height,
0,
GL_ALPHA,
GL_UNSIGNED_BYTE,
p_poly->lightmap->tex_data->data);
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}else {
glBindTexture(GL_TEXTURE_2D,p_poly->lightmap->tex_data->id);

}

//- restore lumel-space uv's for each clip_ivertex

for(int i=0; i<p_poly->clip_ivertices->num_items; i++) {
((l3d_polygon_ivertex_textured *)&(*p_poly->clip_ivertices)[i])
->tex_coord = old_texcoords[i];

}

//- draw the same polygon again, but this time with the light map
glBegin(GL_POLYGON);
ogl_texturing_between_glbegin_end(p_poly);
glEnd();

glDisable(GL_BLEND);

}

The classl3d_rasterizer_3d_mesa_imp is the 3D rasterizer implementation using Mesa.

The first thing to notice is the following line in the constructor:

gluOrtho2D(-xsize/2,xsize/2,-ysize/2,ysize/2);

This line has the effect of setting the origin of the screen coordinate system to be the center of the

screen, not the top left corner as usual. Furthermore, the y axis values increase as they move

upwards, not downwards; this is the normal y axis orientation, not the reversed y orientation. The

reason we must make this change is for the texture mapping code, as we see shortly.

Because we have redefined the origin and y axis orientation, we must rewrite all of the inher-

ited drawing routines from the 2D rasterizer to use the new coordinate system. The draw_
point, draw_line, and draw_polygon_flatshaded routines perform the same func-

tion and call the same OpenGL routines as in the parent class l3d_rasterizer_
2d_mesa_imp, only here in the 3D rasterizer we offset all of the incoming x and y coordinates to

use the new screen-centered coordinate system.
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Figure 2-42: The screen coordinate system
for the Mesa 3D rasterizer implementation
class. Notice that the origin is at the center
of the screen, and that the y axis
orientation is normal.
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Like the software 3D rasterizer, the Mesa 3D rasterizer also overrides the routines

set_text_color and draw_text to draw text into the rasterizer buffer, although here we

must use OpenGL commands to draw text. Methodset_text_color converts the given exter-

nal red, green, and blue color into the native pixel format, and stores it in the variable

text_color. Method draw_text then calls the set_color routine of the screen info

object with the color text_color, which for Mesa calls glColor4f. Then, after setting the

color, method draw_text disables texture mapping, since otherwise text might be drawn using

the currently active texture map if texture mapping had been enabled earlier, and sets the raster

position at which the text is to be drawn (in 2D screen coordinates, with the screen-centered coor-

dinate system) with glRasterPos2i. Finally, the text is drawn with the calls to

glPushAttrib, glListBase, glCallLists, and glPopAttrib. The calls to

glPushAttrib and glPopAttrib save and restore the OpenGL state variables before and

after the calls to glListBase and glCallLists. The calls to glListBase and

glCallLists execute a display list. A display list is an OpenGL-specific concept; it is a collec-

tion of OpenGL commands that can be executed as a logical unit, something like a subroutine

consisting of OpenGL commands. Each display list is assigned an integer identifier by OpenGL.

Execution of a display list may be faster than individually calling the separate OpenGL com-

mands, because the commands in the display list may be cached on or optimized by the graphics

hardware. For the case of drawing text, we use a separate display list for each character, created in

the initialization routine make_raster_font. This routine first allocates space for 128 con-

secutive display lists with glGenLists, which returns the integer identifier for the first of the

lists. Then, for each display list corresponding to a character we wish to display, we enter com-

mands into the display list by executing glNewList, which begins the list, glBitmap, which

draws the bitmap data to the screen using the current color, and glEndList to finish the list.

The method draw_polygon_textured is the new routine of interest which uses

OpenGL calls to draw a texture mapped polygon, using hardware acceleration if present. It calls

texture_setup to initialize the texture, then calls glBegin(GL_POLYGON) to draw a

polygon, and calls ogl_texturing_between_glbegin_end to actually issue the

OpenGL texture mapping commands, finishing with a call to glEnd.

The methodtexture_setup has the responsibility of making the texture image data avail-

able to OpenGL. Recall, OpenGL is a state machine; issued commands are affected based on the

currently set parameters. The texture is one such parameter; to draw a texture mapped polygon, we

must first select the texture. OpenGL (version 1.1 and later) stores textures in texture objects. A

texture object is referenced by a non-zero integer identifier, which we store in the id member of

the l3d_texture_data class. In method texture_setup, we first check to see if the

OpenGL texture data has already been allocated and initialized via glIsTexture, passing the

textureid. If the texture does exist, we simply make it the current texture for the subsequent draw-

ing commands, through the call to glBindTexture. If the texture does not exist, we must

create it for OpenGL. First, we call glGenTextures to return a new, unused texture id num-

ber, and store it with the texture data. We then call glBindTexture to make this texture object

current.
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At this point we have created and bound a new texture to OpenGL, but the texture is still

empty. Therefore, we issue additional commands to make the texture image data known to

OpenGL. First, we call glTexParameteri several times to set up some parameters for the tex-

ture. The first two calls to glTexParameteri cause scaled-up (magnified) or scaled-down

(minified) textures to be drawn using the closest pixel within the texture map; the alternative

would be to use some sort of average of several pixels within the texture map, which produces a

smoother result but is slower. The second two calls to glTexParameteri cause the texture

coordinates to wrap around or repeat outside of the (0,0) to (1,1) square in texture space. Then,

we call glHint with the parameters GL_PERSPECTIVE_CORRECTION_HINT and GL_

NICEST, which causes OpenGL to try to perform the “nicest” perspective correction possible

when doing texture mapping. The perspective correction is simply the interpolation of u/z, v/z, and

1/z with a division to retrieve the mathematically correct u, v, and z values, as we already have

been doing; texture mapping without perspective correction interpolates the u, v, and z values

directly (which we did in software for short runs of 16 pixels) and is faster but leads to incorrect

and visually disturbing artifacts. The call to glEnable(GL_TEXTURE_2D) turns on the tex-

ture mapping in OpenGL.

TIP If you want to see the effect of texture mapping without perspective correction in the soft-
ware rasterizer, try setting the constant LINEAR_RUN_SHIFT in class l3d_rasterizer_
3d_sw_imp to be 16. This means that each linear run is 2^16 or 65,536 pixels long, mean-
ing that across an entire scanline, the u and v values (instead of u/z, v/z, and 1/z, which
would be correct) are linearly interpolated. This results in distortion and warping of the texture
image but faster performance because no division operations are performed within the
scanline.

Finally, and most importantly, we call glTexImage2D, which actually sends the texture image

data to OpenGL. The first parameter specifies that we are working with a 2D texture. The next

parameter is only used with multiple levels of detail, where a different texture is drawn depending

on the distance from the camera, so we set it to 0. The third parameter, which we set to GL_RGBA,

means that our texture data specifies red, green, blue, and also possibly alpha (transparency) com-

ponents for our colors. The next two parameters are the width and height of the texture; after that

comes an optional border parameter to surround the texture, which we set to 0 (no border). The

next two parameters specify the format of the texture image data: red, green, blue, and alpha com-

ponents, each as a byte—in other words, 32-bit RGBA, which is also the same pixel format

specified in the Mesa screen information class l3d_screen_info_rgb_mesa. The final

parameter is a pointer to the actual texture image data itself.

The method ogl_texturing_between_glbegin_glend issues the actual OpenGL

commands to draw the textured polygon. This routine must be called between glBegin(GL_
POLYGON) and glEnd, as the name of the routine implies. Fundamentally, the routine works as

follows: for each vertex in the polygon, we call glTexCoord2fwith the (u,v) coordinates of the

polygon, which we stored in the l3d_polygon_ivertex_textured.tex_coord mem-

ber. Then, we call glVertex4fvwith the spatial coordinates of the vertex. After specifying the

texture and spatial coordinates for all vertices of the polygon, the routine returns, glEnd is called,

and the texture mapped polygon is then drawn by OpenGL.
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There is, however, one tricky computation which must be performed within the method

ogl_texturing_between_glbegin_glend. The problem is that we must pass a

pre-projection vertex to Mesa, and must allow Mesa to perform the perspective division, in order

for the texture mapping to occur correctly. We cause Mesa to do perspective division by using

homogeneous coordinates. The last operation performed by the hardware on a coordinate is the

division by the homogeneous w component. If we set w to be the 3D z component, this division

effects the perspective projection. Our problem is that we already performed the perspective divi-

sion, in l3d_object::apply_perspective_projection, and we already know

exactly which 2D pixel location we need. So our task is, from this already known 2D pixel loca-

tion, to compute the pre-projection 3D coordinate which, when re-projected by Mesa, yields

exactly the 2D pixel location we desire. This is a form of “reverse projection,” very similar to the

way that we “reverse projected” from screen space into texture space. Here, we must reverse pro-

ject from 2D screen space back into 3D world space.

CAUTION You may be tempted to believe that we can simply save the vertex coordinates
before perspective projection, in one of the transformed intermediates within the vertex.
Then, you might think, later on within the Mesa rasterizer, we would simply retrieve the
pre-projection coordinate and pass it to Mesa. The flaw with this reasoning is that after pro-
jection, we perform an additional clipping operation in 2D, clipping the projected polygon to
the view window. This clipping can produce additional vertices, which did not directly result
from a 3D to 2D projection operation. For such vertices produced by a 2D clip, we have no a
priori knowledge of the corresponding 3D point. Therefore, we cannot just save the
pre-projection 3D coordinate ahead of time; we must dynamically compute it later as
needed.

This reverse projection from screen space into world space is quite easy and relies on the plane

equation of the polygon which we developed earlier. Consider the following system of equations:

This is a system of three equations. The first is the plane equation of the polygon, and it constrains

how the x, y, and z values in 3D relate to one another: they must lie on a plane. The a, b, and c con-

stants of the plane equation, recall, are simply the normalized x, y, and z components of the surface

normal to the plane; the d component can be calculated by substituting a known x, y, and z point on

the plane (such as the polygon center) into the plane equation and solving for d. The second two

equations are the simplified perspective projection equations ignoring field of view and y axis

reversal; as seen earlier, we can easily convert from these simple projected coordinates to the real

screen projected coordinates.
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Solving this system for x, y, and z (by using Calc) yields the following system of equations.

These equations give us the world space coordinates from the screen space coordinates—a

“reverse projection.”

As you can see here, it is very important to express a problem in terms of known and unknown

quantities. If we are only given the perspective projection equations relating x, y, and z, we do not

have enough information to perform reverse projection. Mathematically, we have two equations

(x=x/z, y=y/z) but three unknowns (x, y, and z). Geometrically, the perspective projected point

could have come from any point in 3D which lies on the light ray. But, by adding the plane equa-

tion to the system of equations, we do have enough information to perform reverse projection.

Mathematically, we now have three equations and three unknowns. Geometrically, the additional

constraint of the plane equation means that the point in 3D must not only project to the given 2D

point, but it must also lie on the plane of the polygon. The general observation here is that an addi-

tional equation relating the known quantities allowed us to solve the system of equations. The

challenge is to determine which known information might be of use in finding some unknown

quantities.

So, to use these equations, we first convert from real screen projected coordinates to the sim-

ple projected coordinates, using the earlier Equation 2-30. Notice that this conversion relies on the

horizontal and vertical field of view terms and screen size, which is why the l3d_tex-
ture_computer class, from which the Mesa rasterizer inherits, stores these values.

CAUTION The fact that the Mesa texture mapping code requires the horizontal and vertical
field of view terms and the screen size means that you must initialize these values before
attempting to perform any texture mapping operations.

The following sample program textest initializes these field of view terms in the beginning of

the world constructor. The reason we must perform this initialization is that in the rasterizer we

store pointers to the actual variables storing the field of view and screen size terms. This allows us

to change values in the external variables (e.g., to interactively change the field of view) without

needing also to propagate the updated values to the rasterizer. But the fact that the rasterizer stores

pointers to the variables means that failure to initialize these pointers followed by an attempt to

perform Mesa texture mapping results in an attempt to access memory through an uninitialized

pointer—a practice which, to put it mildly, is best avoided. Ordinarily, such initialization would be

done by including a required parameter in the class’s constructor, so that it is not possible to create

an object incorrectly, but in this case we create the rasterizer implementation indirectly through a

factory, where the factory’s original creation interface (defined in the introductory companion

book Linux 3D Graphics Programming) was defined before we even saw the notion of field of

view. Since the code philosophy in this book emphasizes a bottom-up approach, we’ll have to live

with this small inconvenience for now. In a real production 3D program, you probably would have
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no need to create 2D rasterizer implementations, only 3D rasterizer implementations, meaning

that you could just change the factory creation interface and break the old code creating 2D

rasterizer implementations. However, for pedagogical purposes, in this book we retain backward

compatibility with the code we developed earlier.

Then, having obtained the simple projected coordinates, we use the above equations to deter-

mine the 3D pre-projection coordinates. We finally pass these pre-projection 3D coordinates on to

OpenGL in the glVertex4fv command. The glVertex4fv function expects as a parameter

an array in which four x, y, z, and w components have been stored. We must specify the 3D z coor-

dinate as the fourth (homogeneous w) component, so that Mesa has the opportunity to perform the

homogeneous division by w, thus effecting the perspective division by z and therefore allowing

perspective correct texture mapping through OpenGL. It is also important that we not pass the 3D

z coordinate as the third (3D z) component to glVertex4fv, instead passing the constant 1.

What does this achieve? Remember that OpenGL divides all components by the w component.

This means that, after the division by w, which we set equal to the 3D z value, the third component

of the OpenGL vertex contains 1/z. As we see in Chapter 4, this 1/z value can be used for the z

buffer algorithm.

NOTE Note that the last operation Mesa performs on the coordinate is the division by the
homogeneous component w. This is the reason that, for the Mesa 3D rasterizer, we redefined
the origin of our screen coordinate system to be the center of the screen with a normal y axis
orientation. Since the division by w is the last operation, we have no way of telling Mesa “oh,
and after the homogeneous division, please also offset the x and y values by half the screen
size and reverse the y axis orientation.” If we want Mesa to perform the perspective
division—which should be the case for texture mapping to occur correctly—then we have no
control over the post-projection coordinates, since they are taken over by the hardware at that
point.

Sample Program: textest
Congratulations, you now understand basic texture mapping! Let’s now take a look at a sample

program using texture mapping, so that all of this mind-boggling math actually produces a visual

result. With an understanding of the basic concepts of texture mapping, using the texture mapping

classes is comparatively easy. The next sample program, textest, creates a navigable scene

with two texture mapped pyramids. One of the pyramids rotates, to provide some animation in the

scene. You can fly through the scene with the normal navigation keys of the l3d_pipe-
line_world class.

The code is in Listings 2-14 through 2-18. File shapes.cc is the most significant file,

which loads textures and creates texture-mapped polygons.

Listing 2-14: shapes.h, the textured object class declaration for program textest
#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p3_tex.h"
#include "../lib/geom/texture/texture.h"
#include "../lib/geom/texture/texload.h"

class pyramid:public l3d_object {
int xtheta;
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public:
int dx_theta;
pyramid(l3d_texture_loader *l);
virtual ~pyramid(void);
/* virtual */ int update(void);

};

Listing 2-15: shapes.cc, the textured object class implementation for program textest
#include "shapes.h"
#include "../lib/tool_os/memman.h"
#include <stdlib.h>
#include <string.h>

pyramid::pyramid(l3d_texture_loader *l) :
l3d_object(4)

{
(*vertices)[0].original.set(float_to_l3d_real(0.),float_to_l3d_real(0.),float_to_l3d_real(0.),

float_to_l3d_real(1.));
(*vertices)[1].original.set(float_to_l3d_real(10.0),float_to_l3d_real(0.),float_to_l3d_real(0.),

float_to_l3d_real(1.));
(*vertices)[2].original.set(float_to_l3d_real(0.),float_to_l3d_real(10.),float_to_l3d_real(0.),

float_to_l3d_real(1.));
(*vertices)[3].original.set(float_to_l3d_real(0.),float_to_l3d_real(0.),float_to_l3d_real(10.),

float_to_l3d_real(1.));

l3d_polygon_3d_textured *p;
int pi;

pi = polygons.next_index();
polygons[pi] = p = new l3d_polygon_3d_textured(3);

polygons[pi]->vlist = &vertices;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=0;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=1;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=3;

l->load("test.ppm");
p->texture = new l3d_texture;
p->texture->tex_data = new l3d_texture_data;
p->texture->tex_data->width = l->width;
p->texture->tex_data->height = l->height;
p->texture->tex_data->data = l->data;
p->texture->owns_tex_data = true;
p->texture->O = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[0].ivertex];
p->texture->U = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[1].ivertex];
p->texture->V = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[2].ivertex];
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();
p->assign_tex_coords_from_tex_space(*p->texture);

pi = polygons.next_index();
polygons[pi] = p = new l3d_polygon_3d_textured(3);
polygons[pi]->vlist = &vertices;

(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=2;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=3;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=1;

p->texture = new l3d_texture;
p->texture->tex_data = new l3d_texture_data;
p->texture->tex_data->width = l->width;
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p->texture->tex_data->height = l->height;
p->texture->tex_data->data = l->data;
p->texture->owns_tex_data = false;

p->texture->O = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[0].ivertex];
p->texture->U = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[1].ivertex];
p->texture->V = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[2].ivertex];

polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();
p->assign_tex_coords_from_tex_space(*p->texture);

pi = polygons.next_index();
polygons[pi] = p = new l3d_polygon_3d_textured(3);
polygons[pi]->vlist = &vertices;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=0;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=2;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=1;

p->texture = new l3d_texture;
p->texture->tex_data = new l3d_texture_data;
p->texture->tex_data->width = l->width;
p->texture->tex_data->height = l->height;
p->texture->tex_data->data = l->data;
p->texture->owns_tex_data = false;

p->texture->O = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[0].ivertex];
p->texture->U = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[1].ivertex];
p->texture->V = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[2].ivertex];

polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();
p->assign_tex_coords_from_tex_space(*p->texture);

pi = polygons.next_index();
polygons[pi] = p = new l3d_polygon_3d_textured(3);
polygons[pi]->vlist = &vertices;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=3;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=2;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=0;

p->texture = new l3d_texture;
p->texture->tex_data = new l3d_texture_data;
p->texture->tex_data->width = l->width;
p->texture->tex_data->height = l->height;
p->texture->tex_data->data = l->data;
p->texture->owns_tex_data = false;

p->texture->O = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[0].ivertex];
p->texture->U = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[1].ivertex];
p->texture->V = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[2].ivertex];

polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();
p->assign_tex_coords_from_tex_space(*p->texture);

num_xforms = 2;
xtheta=0;
modeling_xforms[0] = l3d_mat_rotx(xtheta);
modeling_xforms[1].set
( float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.),
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float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.) );

modeling_xform=
modeling_xforms[1] | modeling_xforms[0];

}

pyramid::~pyramid(void) {
}

int pyramid::update(void) {
xtheta += dx_theta; if (xtheta>359) xtheta-=360;
modeling_xforms[0]=l3d_mat_rotx(xtheta);
modeling_xform=
modeling_xforms[1] | modeling_xforms[0];

}

Listing 2-16: textest.h, the custom world class declaration for program textest
#ifndef __TEXTEST_H
#define __TEXTEST_H

#include "../lib/geom/world/world.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/geom/texture/texture.h"
#include "../lib/geom/texture/tl_ppm.h"

class my_world:public l3d_world {
public:
my_world(void);
void update_all(void);

virtual ~my_world(void) {delete texture_loader; }
l3d_texture_loader *texture_loader;

};

#endif

Listing 2-17: textest.cc, the custom world class implementation for program textest
#include "textest.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
#include "../lib/geom/texture/texture.h"
#include "../lib/geom/texture/tl_ppm.h"

#include "shapes.h"

void my_world::update_all(void) {
l3d_world::update_all();

}
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my_world::my_world(void)
: l3d_world(400,300)

{
rasterizer_3d_imp->fovx = &(camera->fovx);
rasterizer_3d_imp->fovy = &(camera->fovy);
rasterizer_3d_imp->screen_xsize = &(screen->xsize);
rasterizer_3d_imp->screen_ysize = &(screen->ysize);

l3d_screen_info *si = screen->sinfo;
texture_loader = new l3d_texture_loader_ppm(screen->sinfo);

camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(5.5);
camera->far_z = int_to_l3d_real(500);

int i,j,k,onum;

i=10; j=0; k=20;
k=0;

for(i=1; i<10; i+=5) {
pyramid *p;
objects[onum = objects.next_index()] = p = new pyramid(texture_loader);
p->dx_theta = i-1;

if (objects[onum]==NULL) exit;
objects[onum]->modeling_xforms[1].set
( int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(-i),
int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(i/2),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(i),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1) );

objects[onum]->modeling_xform =
objects[onum]->modeling_xforms[1] |
objects[onum]->modeling_xforms[0] ;

onum++;
}

screen->refresh_palette();
screen->sinfo->compute_light_table();
screen->sinfo->compute_fog_table();

}

Listing 2-18: main.cc, the main program file for program textest
#include "textest.h"
#include "../lib/system/fact0_2.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;

factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();
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w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete p;
delete d;
delete w;

}

The main program file, main.cc, begins by choosing the factories using the new l3d_fac-
tory_manager_v_0_2 class. This class chooses the 3D rasterizer implementation factory:

either software or OpenGL/Mesa. Then, the main program simply creates the world, pipeline, and

dispatcher objects, hooks them together, and starts the dispatcher.

The class my_world is our custom world class. First, it stores pointers to the field of view

and screen size variables into the 3D rasterizer, since in the case of Mesa rasterization we need

these variables to perform the reverse projection (as mentioned earlier). Next, the class creates a

texture loader, of type l3d_texture_loader_ppm, which is used by the pyramid class

(covered in the next paragraph) to load the texture images from disk. Class my_world then popu-

lates the world with a number of objects of type pyramid.

The class pyramid is the real focus of interest for this program. Class pyramid, inheriting

from class l3d_object, is a texture mapped, rotating pyramid. The member variable xtheta
is the current rotation angle; dx_theta is the change in xtheta per unit time. The constructor

requires a parameter of type l3d_texture_loader so that the pyramid can load the texture

image data from disk. In the constructor, we first define a vertex list, as usual. Then, we create a

number of polygons referencing the vertex list, but of the new type l3d_polygon_3d_
textured.

pi = polygons.next_index();
polygons[pi] = p = new l3d_polygon_3d_textured(3);

After creating the polygon and assigning its vertex indices as usual, we then load a texture image

from disk by using the texture loader, then assign the newly loaded texture to the polygon. The tex-

ture image is a 64 by 64 pixel color image saved in PPM format. Since the polygon is the only one

referencing the texture, it is responsible for freeing the data—hence, the owns_tex_data
member is set to true.

l->load("test.ppm");
p->texture = new l3d_texture;
p->texture->tex_data = new l3d_texture_data;
p->texture->tex_data->width = l->width;
p->texture->tex_data->height = l->height;
p->texture->tex_data->data = l->data;
p->texture->owns_tex_data = true;

Next, we have to define the orientation of the texture space, which places the texture in 3D space

relative to the polygon. In this case, we directly use the first vertex of the polygon as the texture

space origin, and the two edges of the polygon as the texture space axes. This has the effect of

causing the texture image to lie exactly on the face of the polygon.
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p->texture->O = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[0].ivertex];
p->texture->U = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[1].ivertex];
p->texture->V = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[2].ivertex];

Finally, we perform some last necessary computations in 3D. We compute the center and surface

normal of the polygon, and finally, based on the previous texture space definition, we assign (u,v)

texture coordinates to each of the polygon’s vertices by using the world to texture space matrix.

polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();
p->assign_tex_coords_from_tex_space(*p->texture);

Creating and initializing the texture mapped polygons in this manner is actually all we need to do

in order to make use of texture mapped polygons in our programs. Having already chosen a 3D

rasterizer implementation at program start that is capable of drawing texture mapped polygons,

we are free to create texture mapped polygons and assign them to our 3D objects. All routines that

draw or otherwise manipulate 3D polygons do so through abstract pointers and virtual function

calls, meaning that the texture mapped polygons can be used with no impact to existing code.

They are finally displayed through a virtual function call to draw, which then ends up calling the

rasterizer implementation to draw the texture mapped polygon on-screen.

With texture mapping under our belts, it is now time to return to the topic of light mapping,

which builds on the topic of texture mapping.

Light Mapping Revisited
Recall, light mapping is a means of applying computed light intensities to a polygon. It works by

defining a grid of lumels on top of the polygon; each lumel in the lumel grid may be assigned a

separate light intensity.

We mentioned earlier that the main question with light mapping is the determination of which

lumel in the light map corresponds to the current pixel. We can now recognize this as a texture

mapping problem: to solve it, we define and orient the light map exactly as we defined the texture

map, by means of an additional coordinate system. Then we use the texture mapping equations to

convert between screen space, world space, and texture (in this case, light map) space.
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The difference between texture mapping and light mapping is that with texture mapping, the

color in the texture map defines the final color to be displayed on-screen; with light mapping, the

light intensity in the light map does not define the color to be displayed, but instead affects an

existing color, making it either brighter or darker via a lighting table.

There are a few ways to implement light mapping. One way would be to modify the inner loop

of the rasterizer to perform a double texture mapping calculation (once for the texture map, once

for the light map), then to use the lighting table to find the value of the lighted color and display it.

This requires rather invasive changes to the rasterization code, since we now have to handle both a

texture map and a light map. We don’t explore this option further here.

Another way to implement light mapping is to introduce the concept of a surface, which is

nothing more than a precombined texture map and light map. By precombining the texture map

and light map into a surface, we can treat the new surface as a single texture, and associate this sin-

gle texture with the polygon, which can then be rasterized using the exact same texture mapping

routine as before. We’ll look at this solution in more detail shortly.

A third, and perhaps simplest, way of realizing light mapping is to perform two entire

rasterization passes for each polygon. First, we rasterize the polygon with texture but no lighting.

Then, we re-rasterize the same polygon, but using the light map instead of the texture map. During

rasterization, instead of drawing the colors of the light map (which are all just various intensities

of white), we alter the existing, already drawn colors from the texture map. The end result is the

colors of the texture map lighted by the intensities in the light map. Since this strategy requires two

entire rasterization passes, it is only really practical in the presence of hardware acceleration. We

also look at this solution in the coming sections.

Software Light Mapping
Let’s begin by looking at a technique for implementing light mapping in software. The method

relies on surfaces and a surface cache.

Surfaces

A surface is a pre-tiled, pre-lit texture. A texture and a light map combine to form a surface; the

surface can then be treated as a normal texture. With this approach, light mapping becomes simply

a sort of preprocessing step before drawing the texture mapped polygons. In theory, this sounds

easy enough: for each texel in the texture map, simply light it according to the corresponding

lumel in the light map, and we’re done, right? In practice, several problems prevent such a

straightforward implementation. First of all, the texture map and the light map have different

sizes. Typically the light map will have a lower resolution than the texture map because a very fine

resolution of lighting detail is not always needed. Secondly, and this is where it becomes tricky,

the texture may be scaled. If we have scaled the texture down, this means that the texture then

repeats itself (we also say tiles itself) across the surface of the polygon. The problem is that

although the texels of the texture map repeat themselves across the surface of the polygon, the

lumels of the light map must not repeat themselves across the surface of the polygon. A few

moments of thought make this clear: if the lumels were also repeated across the polygon, then

altering the intensity of one lumel would alter the intensity of several points on the polygon, which
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is not at all what is desired! Instead, each lumel should individually control the intensity of one

part of the polygon, regardless of whether the texture underneath repeats itself or not. See Figure

2-44.

The solution to this quandary is to create a surface which may be larger than the original tex-

ture. Specifically, the surface must be exactly large enough to contain the number of repetitions of

the texture occurring on the polygon; the exact number of repetitions depends on the relative sizes

and orientations of the polygon and the texture. This is what we mean when we say that a surface is

a “pre-tiled” texture. Then, we apply the light map to this larger, repeated texture. The result is a

single, large texture image, which (a) contains one or more repetitions of the original texture

image, and (b) has been illuminated by the light map.
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tile the light map.



After creating the pre-tiled, pre-lit surface (which may be larger than the original texture), we

must then redefine the texture coordinates of the associated polygon. If the surface is larger than

the original texture, the new texture coordinates must be appropriately smaller. For instance, if the

polygon contains exactly two repetitions of the original texture horizontally, then the original u

values go from 0 to 2. The larger surface is then twice as wide as the original texture and already

contains two repetitions of the original texture, which means that only one repetition of the surface

should be mapped to the polygon, meaning that the new u values should only go from 0 to 1.

We create surfaces “on demand”—as soon as we attempt to draw a polygon, we first of all see

if we have created a surface for the polygon. Each polygon has a unique surface. If the polygon’s

surface has already been created beforehand, we simply reuse the previous surface and draw the

polygon with the surface as the texture. If the polygon’s surface has not been created, we combine

the texture and light maps into the surface and store the surface for future use. A surface is there-

fore created as soon as it is needed to be drawn. (A predictive algorithm could also attempt to

create surfaces for polygons which are not yet visible but which might soon be visible, to improve

performance.) This all implies that we need some means of managing which surfaces have been

created and which have not. This is the role of the surface cache, which determines for a particular

polygon if its surface has already been created or not. The surface cache can also discard old sur-

faces which have not been used in a long time to save memory.

Let’s now look at the l3d classes for light mapping. The class l3d_surface is a surface.

Member variable polygon points to the polygon with which the surface is associated. Member

variable surface is a pointer to an object of type l3d_texture—after all, a surface is noth-

ing more than a texture which has been pre-tiled and pre-lit. Member variable age keeps track of

the relative age of the surface, so that older surfaces can be discarded to make space for newer sur-

faces. Of course, if a discarded surface is then referenced again, it must be regenerated.

Listing 2-19: scache.h
#ifndef __SCACHE_H
#define __SCACHE_H
#include "../../tool_os/memman.h"

class l3d_texture;
class l3d_texture_data;

#include "../../tool_2d/scrinfo.h"
#include "../../datastr/list.h"

class l3d_polygon_3d_textured_lightmapped;

class l3d_surface {
public:

l3d_surface(void);
const l3d_polygon_3d_textured_lightmapped *polygon;
l3d_texture *surface;

int age;

virtual ~l3d_surface(void);
};
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class l3d_surface_cache {
protected:
l3d_screen_info *sinfo;
l3d_list<l3d_surface> *surfaces;

public:
l3d_surface_cache(l3d_screen_info *sinfo) {
surfaces = new l3d_list<l3d_surface> (10);
this->sinfo = sinfo;

}

virtual ~l3d_surface_cache(void) {
int i;
delete surfaces;

}

l3d_texture *combine_lightmap_and_texmap(int width,
int height,
const l3d_polygon_3d_textured_lightmapped *polygon);

void reset(void) {
delete surfaces;
surfaces = new l3d_list<l3d_surface> (10);

}

l3d_texture_data *find_texdata(l3d_texture_data *texdata);
};

#include "../polygon/p3_tex.h"
#include "../polygon/p3_ltex.h"

#endif

Listing 2-20: scache.cc
#include "scache.h"

#include "../../tool_2d/si_rgb.h"
#include "../../tool_os/memman.h"

l3d_surface::l3d_surface(void) {
surface = NULL;
polygon = NULL;

}

l3d_surface::~l3d_surface(void)
{

if(surface) delete surface;
if(polygon) {polygon->surface = NULL; }
}

l3d_texture *l3d_surface_cache::
combine_lightmap_and_texmap(int width,

int height,
const l3d_polygon_3d_textured_lightmapped *polygon)

{

{
int i;
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for(i=0; i<surfaces->num_items; i++) {
if((*surfaces)[i].polygon == polygon) {
return (*surfaces)[i].surface;

}
}

}

l3d_texture *new_tex;
l3d_surface *new_surface;

new_tex = new l3d_texture;

int next_surface_index = surfaces->next_index();
(*surfaces)[next_surface_index].polygon = polygon;
(*surfaces)[next_surface_index].surface = new_tex;

new_tex->tex_data = new l3d_texture_data;
new_tex->owns_tex_data = true;
new_tex->tex_data->width = width;
new_tex->tex_data->height = height;
new_tex->tex_data->data = new unsigned char [sinfo->bytes_per_pixel *

new_tex->tex_data->width *
new_tex->tex_data->height];

int i,j,u,v;

//- tile texture into larger tiled area
for(v=0; v<new_tex->tex_data->height; v++) {
for(u=0; u<new_tex->tex_data->width; u++) {
for(i=0; i<sinfo->bytes_per_pixel; i++) {
*(new_tex->tex_data->data
+ (v*new_tex->tex_data->width + u) * sinfo->bytes_per_pixel
+ i)

=
*(polygon->texture->tex_data->data
+ ( ((v&(polygon->texture->tex_data->height-1))*polygon->texture->tex_data->width

+ (u&(polygon->texture->tex_data->width-1))) * sinfo->bytes_per_pixel
+ i ) ) ;

}
}

}

unsigned char *c2 = new_tex->tex_data->data;
unsigned char *l = polygon->lightmap->tex_data->data;
l3d_real lx, ly, dlx, dly;

dly = l3d_divrr(int_to_l3d_real(polygon->lightmap->tex_data->height) ,
int_to_l3d_real(new_tex->tex_data->height));

dlx = l3d_divrr(int_to_l3d_real(polygon->lightmap->tex_data->width) ,
int_to_l3d_real(new_tex->tex_data->width));

for(j=0, ly=int_to_l3d_real(0); j<new_tex->tex_data->height; j++, ly+=dly) {
for(i=0, lx=int_to_l3d_real(0); i<new_tex->tex_data->width; i++, lx+=dlx) {

int i_texel=(j*new_tex->tex_data->width + i) * sinfo->bytes_per_pixel;
c2 = new_tex->tex_data->data + i_texel;

int lumel_idx = l3d_real_to_int(ly)*polygon->lightmap->tex_data->width+l3d_real_to_int(lx);

int lumel = l[lumel_idx];
sinfo->light_native(c2, lumel);
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}
}

return new_tex;
}

l3d_texture_data *l3d_surface_cache::
find_texdata(l3d_texture_data *texdata)
{

int i;

for(i=0; i<surfaces->num_items; i++) {
if((*surfaces)[i].surface->tex_data == texdata) {

return (*surfaces)[i].surface->tex_data;
}

}

l3d_texture *new_tex;
l3d_surface *new_surface;

new_tex = new l3d_texture;

int next_surface_index = surfaces->next_index();
(*surfaces)[next_surface_index].polygon = NULL;
(*surfaces)[next_surface_index].surface = new_tex;

new_tex->tex_data = texdata;
new_tex->owns_tex_data = false;

return NULL;
}

Surface Cache

The surface cache is responsible for managing surfaces that have already been created. We create a

surface as soon as its associated polygon is drawn for the first time. Since creating a surface is a

time-consuming process (the texture data must be replicated and combined with the light map),

we save already created surfaces for later reuse in the surface cache.

Class l3d_surface_cache is the class implementing the surface cache. Member vari-

able sinfo points to the screen information object, so that we can know the pixel format of the

texture data. Member variable surfaces is a list of pointers to surface objects. Method reset
deletes all surfaces from the cache, thereby resetting the cache and causing all surfaces to be

regenerated as they are needed. Method find_texdata searches the cache for a particular tex-

ture data object, returning a pointer to the data if it was found, or inserting it into the cache and

returning NULL if it was not found.

Method combine_lightmap_and_texmap combines a light map and a texture map,

returning a pointer to the new surface. This method takes a width and a height as parameters,

which must be the new, possibly larger, size of the pre-tiled texture. (We’ll see in the next section

how we compute these size parameters.) First of all, we search to see if we have already created

the surface and have stored it in the cache; if so, we return a pointer to the existing surface. If not,

then we must create the surface. We do this by creating a new texture of the specified width and
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height, which, remember, may be larger than the original texture size to allow for pre-tiling of the

texture. We then copy the original polygon texture into the newly allocated texture, repeating the

texture as necessary. Then, we loop through all texels of this pre-tiled texture, simultaneously

stepping through the lumels in the light map. This is a simple scaling operation; we merely stretch

the light map to the dimensions of the pre-tiled texture. Note that since the light map has a lower

resolution than the texture map, several texels will map to one lumel. For each texel, we call

l3d_screen_info::light_native with the intensity of the corresponding lumel; this

changes the color of the texel to correspond to the given light level.

The question remains as to how to compute the size of the pre-tiled texture. This depends, as

we said, on the relative sizes of the original texture and the polygon onto which the texture is

mapped. The routine compute_surface_orientation_and_size in class l3d_
polygon_3d_textured_lightmapped handles exactly this task. So, let’s now take a look

at the class l3d_polygon_3d_textured_lightmapped.

Light Mapped Polygons

Class l3d_polygon_3d_textured_lightmapped extends the textured polygon class to

allow for light mapping.

Listing 2-21: p3_ltex.h
#ifndef __P3_LTEX_H
#define __P3_LTEX_H
#include "../../tool_os/memman.h"

#include "p3_tex.h"
#include "../surface/scache.h"

class l3d_polygon_3d_textured_lightmapped :
virtual public l3d_polygon_3d_textured,
virtual public l3d_texture_computer

{
protected:
l3d_surface_cache *scache;

public:
mutable l3d_texture *surface;
//- mutable since the draw routine for s/w rendering needs to assign
//- this member (the tiled, lit surface) if the surface is not currently
//- in the cache, though the poly is otherwise passed as const. logically
//- the draw routine handles the polygon as a const, physically though
//- it can change the mutable surface member

l3d_surface_cache *get_scache(void) const {return scache; }

l3d_texture_space surface_orientation;
int surface_xsize, surface_ysize;

l3d_polygon_3d_textured_lightmapped(int num_pts, l3d_surface_cache *scache);

~l3d_polygon_3d_textured_lightmapped(void) {
//- DO NOT delete the surface! it belongs to the surface cache,
//- or might not even have been created if h/w accel with 2-pass
//- rendering was used
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delete lightmap;
}

l3d_texture *lightmap;

void compute_surface_orientation_and_size(void);

void init_transformed(void);
void transform(const l3d_matrix &m, int count);

void draw(l3d_rasterizer_3d *r ) {
r->draw_polygon_textured_lightmapped(this);

}

l3d_polygon_3d_textured_lightmapped
(const l3d_polygon_3d_textured_lightmapped &r);
l3d_polygon_2d *clone(void);

};

#endif

Listing 2-22: p3_ltex.cc
#include "p3_ltex.h"

#include "../../raster/ras3_sw.h"
#include "../../tool_os/memman.h"

#define EPSILON_VECTOR 0.001

l3d_polygon_3d_textured_lightmapped::l3d_polygon_3d_textured_lightmapped
(int num_pts, l3d_surface_cache *scache):

l3d_polygon_2d(),
l3d_polygon_3d(),
l3d_polygon_3d_clippable(),
l3d_polygon_3d_textured(num_pts)

{
this->scache = scache;
lightmap = new l3d_texture;
lightmap->tex_data = new l3d_texture_data;
lightmap->owns_tex_data = true;
lightmap->tex_data->width = 64;
lightmap->tex_data->height = 64;
lightmap->tex_data->data = new unsigned char[lightmap->tex_data->width *
lightmap->tex_data->height];

int i,j;
for(j=0;j<lightmap->tex_data->height;j++) {
for(i=0;i<lightmap->tex_data->width;i++) {
lightmap->tex_data->data[i + j*lightmap->tex_data->width] = MAX_LIGHT_LEVELS/4;

}
}

surface = NULL;

}

void l3d_polygon_3d_textured_lightmapped::compute_surface_orientation_and_size
(void)
{
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O = texture->O.original;
U = texture->U.original - O;
V = texture->V.original - O;

l3d_real minu,minv,maxu,maxv;

int i= 0;

l3d_point tex_point;
tex_point =
world_to_tex_matrix(*texture)
|
(**vlist) [(*ivertices)[i].ivertex].original;

u = tex_point.X_ = l3d_divrr(tex_point.X_, tex_point.W_);
v = tex_point.Y_ = l3d_divrr(tex_point.Y_, tex_point.W_);

maxu = minu = tex_point.X_;
maxv = minv = tex_point.Y_;

U = texture->U.original - texture->O.original;
V = texture->V.original - texture->O.original;

#define VTX(i) ((**(vlist))[ (*(clip_ivertices))[i].ivertex ].transformed)

for(i=1; i < ivertices->num_items; i++) {

l3d_real u,v;

tex_point =
world_to_tex_matrix(*texture)
|
(**vlist) [(*ivertices)[i].ivertex].original;

u = tex_point.X_ = l3d_divrr(tex_point.X_, tex_point.W_);
v = tex_point.Y_ = l3d_divrr(tex_point.Y_, tex_point.W_);

if(u<minu) minu=u;
if(u>maxu) maxu=u;
if(v<minv) minv=v;
if(v>maxv) maxv=v;

}

int iminu, iminv, imaxu, imaxv;

iminu = ifloor(minu);
iminv = ifloor(minv);
imaxu = iceil(maxu);
imaxv = iceil(maxv);

int u_tilecount = imaxu - iminu;
int v_tilecount = imaxv - iminv;

int u_tilecount_pow2 = 1 << iceil(float_to_l3d_real(log(u_tilecount) / log(2)));
int v_tilecount_pow2 = 1 << iceil(float_to_l3d_real(log(v_tilecount) / log(2)));
imaxu += u_tilecount_pow2 - u_tilecount;
imaxv += v_tilecount_pow2 - v_tilecount;

surface_xsize = texture->tex_data->width * (imaxu - iminu);
surface_ysize = texture->tex_data->height * (imaxv - iminv);
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surface_orientation.O.original.set(O.X_ + U.X_*iminu + V.X_*iminv,
O.Y_ + U.Y_*iminu + V.Y_*iminv,
O.Z_ + U.Z_*iminu + V.Z_*iminv,
int_to_l3d_real(1));

surface_orientation.U.original.set(O.X_ + U.X_*imaxu + V.X_*iminv,
O.Y_ + U.Y_*imaxu + V.Y_*iminv,
O.Z_ + U.Z_*imaxu + V.Z_*iminv,
int_to_l3d_real(1));

surface_orientation.V.original.set(O.X_ + U.X_*iminu + V.X_*imaxv,
O.Y_ + U.Y_*iminu + V.Y_*imaxv,
O.Z_ + U.Z_*iminu + V.Z_*imaxv,
int_to_l3d_real(1));

assign_tex_coords_from_tex_space(surface_orientation);
}

void l3d_polygon_3d_textured_lightmapped::init_transformed(void) {
l3d_polygon_3d_textured::init_transformed();

surface_orientation.O.transformed = surface_orientation.O.original;
surface_orientation.U.transformed = surface_orientation.U.original;
surface_orientation.V.transformed = surface_orientation.V.original;

}

void l3d_polygon_3d_textured_lightmapped::transform(const l3d_matrix &m, int count) {
l3d_polygon_3d_textured::transform(m,count);

surface_orientation.O.transformed = m | surface_orientation.O.transformed;
surface_orientation.U.transformed = m | surface_orientation.U.transformed;
surface_orientation.V.transformed = m | surface_orientation.V.transformed;

}

l3d_polygon_2d* l3d_polygon_3d_textured_lightmapped::clone(void) {
return new l3d_polygon_3d_textured_lightmapped(*this);

}

l3d_polygon_3d_textured_lightmapped::l3d_polygon_3d_textured_lightmapped
(const l3d_polygon_3d_textured_lightmapped &r)

: l3d_polygon_2d(r),
l3d_polygon_3d(r),
l3d_polygon_3d_textured(r),
l3d_polygon_3d_clippable(r),
l3d_texture_computer(r)

{
scache = r.scache;
surface = r.surface;
surface_orientation = r.surface_orientation;
surface_xsize = r.surface_xsize;
surface_ysize = r.surface_ysize;
lightmap = r.lightmap;

}

The member variable scache is a pointer to the surface cache responsible for managing the sur-

face of the polygon. The member variable lightmap points to the light map, which is a small

texture containing light intensities. The member variable surface points to the surface itself,

which contains the tiled and lighted version of the texture. The surface is created by the surface

cache, which is also responsible for deleting the surface.
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The method compute_surface_orientation_and_size determines how many

repetitions of the original texture appear on the polygon, based on the original texture space defi-

nition. This is done by applying the world space to texture space matrix to every vertex in the

polygon, and taking the maximum and minimum resulting u and v values. Then, since a distance

of 1 in texture space indicates one repetition of the texture, the number of repetitions horizontally

and vertically can be computed easily as the difference between the maximum u or v value and the

minimum. We round the horizontal and vertical repetition counts up to whole powers of two, then

multiply them by the width and height of the original texture, respectively. We store the results in

surface_xsize and surface_ysize. These variables represent the total pixel dimensions

of the pre-tiled surface, which is used by the method combine_lightmap_and_texmap.

The surface, like all textures, has dimensions that are powers of two, since this is what the original

software rasterizer requires.

After computing the size of the surface, we also have to define its orientation, which we store

in member variable surface_orientation, a texture space. We define the orientation of the

surface by defining its texture space as follows. The origin of the surface’s texture space is the

location in the original texture space with the minimum rounded (u,v) values for the polygon. The

tip of the u axis of the surface’s texture space is the location in the original texture space with the

maximum rounded u and minimum rounded v value. The tip of the v axis of the surface’s texture

space is the location in the original texture space with the minimum rounded u and maximum

rounded v value. In other words, the origin of the surface’s texture space lies on integer coordi-

nates within the original texture space. The u axis points straight in the u direction in the original

texture space; the v axis points straight in the v direction. Both u and v axes have tips that also lie

exactly on integer coordinates in the original texture space. This special integer alignment of the

surface’s texture space, combined with the fact that the surface contains an integer and not a frac-

tional number of repetitions of the texture, means that the relative positioning of the pre-tiled

surface and the original texture is the same—using the pre-tiled surface and the new surface orien-

tation appears exactly the same as using the original texture and the old texture orientation.

With the new size and orientation of the surface, we must also assign new texture coordinates

to the polygon’s vertices. Since the surface and its u and v axes are larger than in the original tex-

ture, the texture coordinates based on the surface will be different than (smaller than) the texture

coordinates based on the original texture. We simply call assign_tex_coords_from_
tex_space with the new surface orientation as a parameter.

The other members of class l3d_polygon_3d_textured_lightmapped are stan-

dard and need no lengthy explanation. The clone method and the copy constructor provide for

duplication of the polygon through an abstract pointer. The transform and init_trans-
formed methods have been extended to transform the light map orientation. The overridden

draw method causes the light mapped polygon to draw itself, by asking its rasterizer to do so.

Let’s now look at the methods for rasterizing light mapped polygons. First, we look at software

light mapping, then look at the same techniques with hardware acceleration. Surprisingly, this is

one of the cases where software rasterization is simpler than hardware rasterization.
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Software Rasterization of Light Maps

Because the surface cache has already pre-tiled and pre-lit the texture, the software rasterizer

requires practically no changes to support light mapping. The method draw_polygon_tex-
tured_lightmapped in class l3d_rasterizer_3d_sw_imp handles rasterization of

light mapped polygons.

First, we must have access to the pre-lit, pre-tiled surface. If the surface of the polygon in

member variable surface is not currently assigned (either because the polygon is being drawn

for the first time or because the surface was created but later discarded from the cache), then we

create the surface by callingcombine_lightmap_and_texmap, using the precomputed sur-

face width and height. Then, we assign the surface orientation, stored in the polygon’s variable

surface_orientation, to the orientation stored within the surface itself. Finally, we simply

assign the polygon’s texture member variable to be the same as the new surface variable,

and draw the polygon using the existing texture mapping routine. The surface is pre-tiled, pre-lit,

and has the correct orientation. We can therefore treat it exactly like any other texture, and

rasterize the polygon just like a normal texture mapped polygon.

Hardware Light Mapping
With the presence of hardware acceleration, we can use a different, more straightforward strategy

for light mapping polygons. Since 3D hardware can rasterize polygons so quickly, we simply

make two passes over every polygon. First, we draw the polygon textured but without lighting.

Then, we draw the same polygon again, this time using the light map and not replacing the existing

textured pixels, but instead altering their intensities based on the intensities stored in the light map.

This two-pass approach requires three main modifications to our texture mapping strategy:

1. We don’t use surfaces. In other words, we don’t combine textures and light maps into one sur-

face. Therefore, we use the surface cache to store textures and light maps separately, not

surfaces.

2. We must recompute and reassign the polygon’s texture coordinates to draw the texture map

correctly, then we must restore the original texture coordinates, originally computed in com-
pute_surface_orientation_and_size, which define the position and orientation

of the light map.

3. We must tell Mesa to blend the texture map and the light map.

The Mesa rasterizer draws light mapped polygons in routine draw_polygon_textured_
lightmapped. The routine first looks for the texture data in the cache, creating the texture if it
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was not found. Texture creation takes place via the OpenGL calls we saw earlier when discussing

the Mesa texture mapping routines. Next comes the tricky part: we must recompute the polygon’s

texture coordinates twice, once for the texture and once for the light map. The light maps have sep-

arate sizes and orientations, leading to two separate sets of texture coordinates.

To recompute the texture coordinates, we use the pixel-level approach discussed earlier. Here,

we are already in the rasterization stage of the pipeline. The polygon has been projected into 2D

and also clipped in 2D. Remember, the 2D clipping operation can introduce new 2D vertices

which do not directly result from a 3D to 2D projection operation, meaning that for such vertices

we have no 3D information. This means that we only have 2D information, but we now need to

compute the texture coordinates in 3D. The Mesa rasterizer code uses the screen space to texture

space formulas developed earlier. Note that it would have also been possible to use the reverse

projection (covered earlier in the discussion of the Mesa texture mapping routines) to retrieve the

3D world coordinates from the pixel coordinates, then use the world-to-texture matrix to find the

texture coordinates, but it is easier to use the pixel-level formulas, since they go directly from 2D

screen coordinates to texture coordinates.

Let’s step through the new computation of the texture coordinates for the texture map.

First, we start a loop for all post-projection, clipped 2D vertices:

for(int i=0; i<p_poly->clip_ivertices->num_items; i++) {

Then, we compute the simple projection coordinates from the actual screen coordinates. This

undoes the effect of the field of view correction, the y axis reversal, and the top-left instead of

screen-centered origin. We do this computation because the simple projection coordinates are

what we need for the screen space to texture space formulas. Notice that to perform this computa-

tion, we need the field of view terms and the screen size, which is why these variables are

referenced in the l3d_texture_computer class.

float px =
( (**p_poly->vlist) [(*p_poly->clip_ivertices)[i].ivertex].transformed.X_
- *screen_xsize/2 )

/ (*screen_xsize * *fovx);

float py =
(*screen_ysize/2
-
(**p_poly->vlist) [(*p_poly->clip_ivertices)[i].ivertex].transformed.Y_ )
/
(*screen_ysize * *fovy);

Next, given the simple projection coordinates, we simply implement the screen space to texture

space conversion formulas derived earlier. We compute u, v, and z coordinates for the current ver-

tex—in other words, the horizontal and vertical positions in the texture space of the texture map,

and the camera space z coordinate.

float ox = p_poly->texture->O.transformed.X_;
float oy = p_poly->texture->O.transformed.Y_;
float oz = p_poly->texture->O.transformed.Z_;
float ux = p_poly->texture->U.transformed.X_ - ox;
float uy = p_poly->texture->U.transformed.Y_ - oy;
float uz = p_poly->texture->U.transformed.Z_ - oz;
float vx = p_poly->texture->V.transformed.X_ - ox;
float vy = p_poly->texture->V.transformed.Y_ - oy;
float vz = p_poly->texture->V.transformed.Z_ - oz;
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float u = (px*(oy*vz - oz*vy) + py*(oz*vx - ox*vz) - oy*vx + ox*vy)
/ (px*(uz*vy - uy*vz) + py*(ux*vz - uz*vx) + uy*vx - ux*vy);

float v = (px*(oy*uz - oz*uy) + py*(oz*ux - ox*uz) - oy*ux + ox*uy)
/ ((uy*vz - uz*vy)*px + py*(uz*vx - ux*vz) + ux*vy - uy*vx);

float z = (ox*(uz*vy - uy*vz) + oy*(ux*vz - uz*vx) + oz*(uy*vx - ux*vy))
/ (px*(uz*vy - uy*vz) + py*(ux*vz - uz*vx) + uy*vx - ux*vy);

The last step is to store these values with the vertex (more precisely, the vertex index). We also

save the original texture coordinates, defining the light map orientation, so we can restore them

later when we are drawing the light map.

old_texcoords[old_texcoords.next_index()] =
((l3d_polygon_ivertex_textured *)&(*p_poly->clip_ivertices)[i])
->tex_coord;

((l3d_polygon_ivertex_textured *)&(*p_poly->clip_ivertices)[i])
->tex_coord.set(float_to_l3d_real(u),

float_to_l3d_real(v),
float_to_l3d_real(z),
float_to_l3d_real(1.0));

Once we have computed the u, v, and z values, based on the texture map orientation, for all vertex

indices within the polygon, we then draw the polygon using the previous Mesa texture mapping

routine, draw_polygon_textured.

At this point, we now have the texture mapped polygon drawn. Next, we make a second pass

to add in the effect of the light map. Before we make the second pass, though, we must tell

OpenGL that we want the next texture that is drawn, which will be the light map, to not overwrite

the current pixels, but instead to alter their intensity. The following lines do this:

//- set up mag/min filters to make light maps smoother
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

//- set up blend function to combine light map and text map
glEnable(GL_BLEND);
glBlendFunc(GL_ZERO, GL_SRC_ALPHA);

The two calls to glTexParameteri tell OpenGL to smooth the light maps. A texture map or

light map is (practically) always displayed on-screen either larger or smaller than its original

dimensions; in other words, it is very rare that one pixel in the texture map maps to exactly one and

only one pixel in the final image. More often, a texel in the texture map maps to either less than one

or more than one pixel in the final image. This leads to either stretching of the texture image,

which OpenGL calls maxification, or squashing of the image, which OpenGL calls minification.

In such cases, we can either choose the nearest texel to display, which is what we have been doing

so far in both the software and Mesa rasterizers, or we can compute an average of the nearest texel

and the surrounding texels, displaying the averaged color. Doing such averaging is, of course,

slower than simply choosing the nearest texel, but it also generally results in a better quality

image, smoothing out the changes in a texture map and making the individual texels harder to dis-

cern. Since light maps are typically low resolution, and since we are using Mesa mainly as an

interface to graphics acceleration hardware, we go ahead and turn on the averaging, assuming that

the underlying graphics acceleration hardware is capable of handling the additional computations.

The parameter GL_LINEAR tells OpenGL to perform a weighted linear average on the texels.
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Then, we also need to tell OpenGL to blend the light map with the existing pixels from the

texture map which were already drawn in the first pass. To do this, we call glEnable(GL_
BLEND), which enables some sort of blending for the coming drawing operations, and then call

glBlendFunc(GL_ZERO, GL_SRC_ALPHA) to specify exactly how the already existing

pixels should be blended with the new pixels to be drawn from the light map. The two parameters

to glBlendFunc control the relative weight of the new (or source) and the existing (or destina-

tion) pixels, respectively. Thus, the first parameter GL_ZERO means that we display none of the

color of the light map. The second parameterGL_SRC_ALPHAmeans that we display the existing

color from the texture map, but using the value from the source pixel (the light map) as an alpha

value. In computer graphics, an alpha value is simply a transparency value; the greater the alpha,

the more transparent a pixel is. Thus, by treating the light map values as transparency values, we

can “see through” the brighter areas of the light map to see more of the underlying light from the
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image is slightly blurrier as a result.

Figure 2-47: Normal texture mapping
without linear filtering applied. Notice that
the individual texels of the texture image
are clearly visible.



texture; in darker areas of the light map, we see less or none of the original texture. This is exactly

the desired illumination effect.

Then, the rest of the routine draw_polygon_texture_lightmapped draws the same

polygon again, only this time with the light map as the texture. First, we look for the light map data

in the surface cache, creating it if necessary with OpenGL calls. Then, we restore the original light

map texture coordinates for each vertex, which we saved during the first texture coordinate

recomputation. Finally, we draw the polygon just as we did in the draw_polygon_textured
routine, performing a reverse projection using the polygon’s plane to obtain the pre-projection

coordinates Mesa needs to do perspective correct texture mapping.

Sample Program: lightmap
The last sample program in this chapter illustrates the use of light mapping and texture mapping

combined. We also see an implementation of the actual computation of light intensities for the

light maps, by using the diffuse reflection equations discussed earlier.

The program lightmap displays a number of static pyramid objects, all initially dark. You

can fly around the scene with the standard navigation keys provided by class l3d_pipe-
line_world. Press p to place a point light at the current camera position. This causes a

computation of light intensity for every lumel of every light map in the scene. Then, we reload all

light maps by resetting the surface cache. We, therefore, see the effect of the light immediately.

You can place any number of lights in the scene. The lights themselves are not stored in the pro-

gram; only their effect on the light maps is stored.

The program actually displays light mapping and texture mapping simultaneously. The effect

of the light mapping is easier to see with a blank texture, which is the default. To see light mapping

with a real texture, type cp test.ppm.colored test.ppm when in the program directory. This copies

a colored image into the file test.ppm, which is the texture file used by the program. Then run

the program as usual. To return to the blank texture image, type cp test.ppm.white test.ppm.
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Listing 2-23: shapes.h, the declaration of the light mapped pyramid objects for sample
program lightmap

#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p3_ltex.h"
#include "../lib/geom/texture/texture.h"
#include "../lib/geom/texture/texload.h"

class pyramid:public l3d_object {
public:
pyramid(l3d_texture_loader *l, l3d_surface_cache *scache);
virtual ~pyramid(void);

};

Listing 2-24: shapes.cc, the implementation of the light mapped pyramid objects for sample
program lightmap

#include "shapes.h"

#include <stdlib.h>
#include <string.h>

pyramid::pyramid(l3d_texture_loader *l, l3d_surface_cache *scache) :
l3d_object(4)

{
(*vertices)[0].original.set(float_to_l3d_real(0.),float_to_l3d_real(0.),float_to_l3d_real(0.),

float_to_l3d_real(1.));
(*vertices)[1].original.set(float_to_l3d_real(50.0),float_to_l3d_real(0.),float_to_l3d_real(0.),

float_to_l3d_real(1.));
(*vertices)[2].original.set(float_to_l3d_real(0.),float_to_l3d_real(50.),float_to_l3d_real(0.),

float_to_l3d_real(1.));
(*vertices)[3].original.set(float_to_l3d_real(0.),float_to_l3d_real(0.),float_to_l3d_real(50.),

float_to_l3d_real(1.));

l3d_polygon_3d_textured_lightmapped *p;
int pi;

pi = polygons.next_index();
polygons[pi] = p = new l3d_polygon_3d_textured_lightmapped(3,scache);
polygons[pi]->vlist = &vertices;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=0;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=1;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=3;
l->load("test.ppm");
p->texture = new l3d_texture;
p->texture->tex_data = new l3d_texture_data;
p->texture->tex_data->width = l->width;
p->texture->tex_data->height = l->height;
p->texture->tex_data->data = l->data;
p->texture->owns_tex_data = true;
p->texture->O = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[0].ivertex];
p->texture->U = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[1].ivertex];
p->texture->V = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[2].ivertex];
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();
p->assign_tex_coords_from_tex_space(*p->texture);
p->compute_surface_orientation_and_size();
p->plane.align_with_point_normal(p->center.original, normalized(p->sfcnormal.original -

p->center.original));

pi = polygons.next_index();
polygons[pi] = p = new l3d_polygon_3d_textured_lightmapped(3,scache);
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polygons[pi]->vlist = &vertices;

(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=2;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=3;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=1;

p->texture = new l3d_texture;
p->texture->tex_data = new l3d_texture_data;
p->texture->tex_data->width = l->width;
p->texture->tex_data->height = l->height;
p->texture->tex_data->data = l->data;
p->texture->owns_tex_data = true;

p->texture->O = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[0].ivertex];
p->texture->U = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[1].ivertex];
p->texture->V = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[2].ivertex];

polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();
p->assign_tex_coords_from_tex_space(*p->texture);
p->compute_surface_orientation_and_size();
p->plane.align_with_point_normal(p->center.original, normalized(p->sfcnormal.original -

p->center.original));

pi = polygons.next_index();
polygons[pi] = p = new l3d_polygon_3d_textured_lightmapped(3,scache);
polygons[pi]->vlist = &vertices;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=0;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=2;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=1;

p->texture = new l3d_texture;
p->texture->tex_data = new l3d_texture_data;
p->texture->tex_data->width = l->width;
p->texture->tex_data->height = l->height;
p->texture->tex_data->data = l->data;
p->texture->owns_tex_data = true;

p->texture->O = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[0].ivertex];
p->texture->U = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[1].ivertex];
p->texture->V = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[2].ivertex];

polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();
p->assign_tex_coords_from_tex_space(*p->texture);
p->compute_surface_orientation_and_size();
p->plane.align_with_point_normal(p->center.original, normalized(p->sfcnormal.original -

p->center.original));

pi = polygons.next_index();
polygons[pi] = p = new l3d_polygon_3d_textured_lightmapped(3,scache);
polygons[pi]->vlist = &vertices;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=3;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=2;
(*(polygons[pi]->ivertices))[polygons[pi]->ivertices->next_index()].ivertex=0;

p->texture = new l3d_texture;
p->texture->tex_data = new l3d_texture_data;
p->texture->tex_data->width = l->width;
p->texture->tex_data->height = l->height;
p->texture->tex_data->data = l->data;
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p->texture->owns_tex_data = true;

p->texture->O = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[0].ivertex];
p->texture->U = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[1].ivertex];
p->texture->V = (**(polygons[pi]->vlist))[(*(polygons[pi]->ivertices))[2].ivertex];

polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();
p->assign_tex_coords_from_tex_space(*p->texture);
p->compute_surface_orientation_and_size();
p->plane.align_with_point_normal(p->center.original, normalized(p->sfcnormal.original -

p->center.original));

num_xforms = 1;
modeling_xforms[0].set
( float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.) );

modeling_xform=
modeling_xforms[0];

}

pyramid::~pyramid(void) {
for(register int i=0; i<polygons.num_items; i++) {delete polygons[i]; }

}

Listing 2-25: main.cc, the main program file for sample program lightmap
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
#include "../lib/system/fact0_2.h"
#include "../lib/geom/texture/texture.h"
#include "../lib/geom/texture/tl_ppm.h"
#include "../lib/pipeline/pi_wor.h"

#include "shapes.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

class my_pipeline : public l3d_pipeline_world {
public:
my_pipeline(l3d_world *w) :
l3d_pipeline_world(w) {}
void key_event(int ch);

};

class my_world :
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public l3d_world,
public l3d_texture_computer

{
public:
my_world(void);
void update_all(void);

virtual ~my_world(void) {
delete texture_loader;
delete scache;

}
l3d_texture_loader *texture_loader;
l3d_surface_cache *scache;

int compute_light_level(l3d_real u, l3d_real v);
void place_lamp(void);
void reset_surface_cache(void) {
scache->reset();

}
};

void my_pipeline::key_event(int c) {
l3d_pipeline_world::key_event(c);

switch(c) {
case 'p': {

my_world *w;
w = dynamic_cast<my_world *>(world);
if(w) {
w->place_lamp();
w->reset_surface_cache();

}
}

}
}

main() {
l3d_dispatcher *d;
my_pipeline *p;
my_world *w;

factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new my_pipeline(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete p;
delete d;
delete w;

}

void my_world::update_all(void) {
l3d_world::update_all();

}
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my_world::my_world(void)
: l3d_world(400,300)

{

rasterizer_3d_imp->fovx = &(camera->fovx);
rasterizer_3d_imp->fovy = &(camera->fovy);
rasterizer_3d_imp->screen_xsize = &(screen->xsize);
rasterizer_3d_imp->screen_ysize = &(screen->ysize);

l3d_screen_info *si = screen->sinfo;
texture_loader = new l3d_texture_loader_ppm(screen->sinfo);

camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(5.5);
camera->far_z = int_to_l3d_real(500);

scache = new l3d_surface_cache(screen->sinfo);

int i,j,k,onum;

i=10; j=0; k=20;
k=0;

for(i=1; i<200; i+=50) {
objects[onum = objects.next_index()] = new pyramid(texture_loader,scache);

if (objects[onum]==NULL) exit;
objects[onum]->modeling_xforms[0].set
( int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(i),
int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1) );

objects[onum]->modeling_xform =
objects[onum]->modeling_xforms[0] ;

}

screen->refresh_palette();
}

int my_world::compute_light_level
(l3d_real u, l3d_real v)
{
l3d_real x,y,z;

x = O.X_ + l3d_mulri(U.X_, u) + l3d_mulri(V.X_, v);
y = O.Y_ + l3d_mulri(U.Y_, u) + l3d_mulri(V.Y_, v);
z = O.Z_ + l3d_mulri(U.Z_, u) + l3d_mulri(V.Z_, v);

l3d_point aLight(0,0,0,1);

l3d_vector L(aLight.X_ - x ,
aLight.Y_ - y ,
aLight.Z_ - z ,
int_to_l3d_real(0)),

N(cross(U,V));
l3d_real intensity;

l3d_real f_att=l3d_divrr(int_to_l3d_real(1) ,
(float_to_l3d_real(0.1)+float_to_l3d_real(0.02*sqrt(l3d_real_to_float(dot(L,L))))));
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if (f_att>int_to_l3d_real(1)) f_att=int_to_l3d_real(1);

intensity = l3d_mulrr ( l3d_mulrr(int_to_l3d_real(MAX_LIGHT_LEVELS/2) , f_att) ,
dot(normalized(N),normalized(L)) );

if (intensity>int_to_l3d_real(MAX_LIGHT_LEVELS/2)) {intensity = int_to_l3d_real(MAX_LIGHT_LEVELS/2);
}

if (intensity<int_to_l3d_real(0)) {intensity = int_to_l3d_real(0); }

return l3d_real_to_int(intensity);
}

void my_world::place_lamp(void)
{
int iObj, iFacet;

l3d_vector facet_to_cam_vec;
l3d_vector N;

for(iObj=0; iObj<objects.num_items; iObj++) {
l3d_object *object = objects[iObj];

l3d_polygon_3d_clippable *pc;

object->init_nonculled_list();
object->vertices->num_varying_items = 0;
object->transform_stage = 0;
for(register int ivtx=0; ivtx<object->vertices->num_fixed_items; ivtx++) {
(*(object->vertices))[ivtx].reset();

}

l3d_polygon_3d_node *n;
n = object->nonculled_polygon_nodes;
while(n) {
n->polygon->init_clip_ivertices();
n->polygon->init_transformed();
n=n->next;

}

if (object->num_xforms) {
object->transform(object->modeling_xform);

}

object->camera_transform(camera->viewing_xform);

n = object->nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_textured_lightmapped *pt;

pt = dynamic_cast<l3d_polygon_3d_textured_lightmapped *>
(n->polygon);

if(pt) {
int lumel_y,lumel_x;

O = pt->surface_orientation.O.transformed;
U = pt->surface_orientation.U.transformed - O;
V = pt->surface_orientation.V.transformed - O;
printf("obj %d ", iObj);
O.print();
U.print();
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V.print();

for(lumel_y=0; lumel_y < pt->lightmap->tex_data->height; lumel_y++) {
for(lumel_x=0; lumel_x<pt->lightmap->tex_data->width;lumel_x++) {
l3d_real u,v;
u = l3d_divri(int_to_l3d_real(lumel_x),

pt->lightmap->tex_data->width);
v = l3d_divri(int_to_l3d_real(lumel_y),

pt->lightmap->tex_data->height);
int new_light =
(int)(pt->lightmap->tex_data->data

[ lumel_y * pt->lightmap->tex_data->width + lumel_x ]) +
compute_light_level(u, v);

if ( new_light > MAX_LIGHT_LEVELS ) new_light = MAX_LIGHT_LEVELS;

pt->lightmap->tex_data->data
[ lumel_y * pt->lightmap->tex_data->width + lumel_x ] = new_light;

}
}

}

n = n->next;
}

}
}

The pyramid class is the same as in the previous program textest; the only differences are

the pyramid does not rotate and the polygons used to make up the pyramid are of type

l3d_polygon_3d_textured_lightmapped. Since all important functions on polygons

are virtual functions, we need only create instances of our new light mapped polygons and assign

them to our 3D objects. Notice that the constructor of the pyramid, as well as the constructor of the

light mapped polygons, require a surface cache as a parameter. The surface cache is created and

destroyed by our custom world class, my_world.

The custom world class offers two new methods for light mapping: place_lamp and com-
pute_light_level. Method place_lamp transforms all polygons in the scene into camera

space. Since all polygons are light mapped polygons, this means that all light map orientations are

also transformed into camera space. Then, for each lumel in each light map, we compute the light

level by calling compute_light_level. This illuminates all lumels of all polygons in the

scene.

Method compute_light_level first converts the (u,v) coordinates of the lumel back

into camera space, by using the light map’s orientation vectors (as a coordinate system), which

have also been translated into camera space. We then compute the light intensity of the lumel

using the diffuse lighting equation presented earlier. The light position is set to be at the origin—in

other words, the location of the camera. We clamp the maximum light intensity from the lighting

equation only to be half of the maximum allowable light intensity. This ensures that cumulative

applications of light can still cause an increase in intensity.
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NOTE We convert from 2D lumel (u,v) space into 3D camera space (3D space with the
camera at the origin in the standard orientation), instead of converting from 2D lumel space
into 3D world space (3D space with the camera somewhere other than the origin and ori-
ented arbitrarily), then perform the lighting calculations in 3D camera space. It would also be
possible to convert from lumel space to world space, by applying the inverse of the camera
transformation matrix to go from lumel space to camera space to world space. Then, we
would perform the lighting computations in world space. But this extra conversion to world
space is unnecessary. We just need to convert from 2D lumel space into some 3D space where
we can determine the 3D light positions, 3D light vectors, and 3D polygon surface normal
vectors, so that we can perform the 3D lighting computations. Both camera space and world
space are fine for this purpose. In this particular example, it is simply easier to use camera
space coordinates, though you may find it more intuitive to think of lighting computations as
occurring in world space. As long as we can examine the relative 3D positions of lights, light
vectors, and normal vectors, it doesn’t matter which 3D coordinate system we use to do the
lighting computations.

Shadows and Light Maps
The lighting computation in the last sample program does not take into account the fact that some

objects obstruct other objects. Light does not travel through opaque objects, creating areas of

shadow on objects behind the obstructing object. Shadow computation can be done by performing

an additional test before lighting each lumel. We check to see if any polygon from any object lies

between the light source and the camera space (or world space) coordinates of the lumel. If there is

such a polygon, the light rays from the light source are blocked and do not reach the lumel in ques-

tion; therefore, we proceed computing the light for the next lumel. If there is no such polygon, the

light rays from the light source reach the target lumel, and the lighting can be applied as normal.

Testing to see whether any polygon lies between the light source and the lumel requires the

creation of a vector from the light source to the lumel and an intersection test to see if the vector

intersects any polygon in the scene. Creating the vector is easy: its starting point in 3D is the light
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source, and its ending point in 3D is the lumel. The intersection test is harder. We learned how to

intersect a parametric line with a plane when we looked at clipping against arbitrarily oriented

planes. The problem here is that we don’t want to intersect a line with an entire infinite plane, but

only with a polygon—a tiny polygonal cut-out portion of a plane. This requires the line-plane test

developed earlier in this chapter, plus an additional test to see if the point of intersection lies within

the bounds of the polygon. Chapter 8 develops exactly this line-polygon intersection test, for the

purposes of collision detection.

With the line-polygon intersection test defined, computing shadows simply reduces to a

brute-force check to see if any polygon obstructs any light source for every lumel in the scene.

This works, but requires a lot of computation. One way of getting around this is to divide the scene

up into separate larger regions, such as cubes, with each region containing many polygons. We

then intersect the light ray with the boundaries of region. If the light ray does not intersect a region,

then it cannot intersect any of the polygons in the region. This can reduce the total amount of work

needed to compute shadows. A related way of computing shadows has to do with an explicit visi-

bility encoding by means of portals (see Chapter 5).

NOTE There are also many other ways of computing shadows. Visible surface determina-
tion, covered in Chapters 4 and 5, is a huge area in 3D graphics. Computing shadows is also
essentially a visible surface problem; we must determine which surfaces are visible from the
viewpoint of the light source. Surfaces which can be “seen” by the light are illuminated; those
invisible to the light are in shadow.

Summary
In this chapter, we saw several visual techniques for 3D polygons. These techniques include 3D

morphing, light computation, texture mapping with PPM image files, and light mapping. We

solved some equations using the symbolic algebra package Calc, and observed the linearity of u/z,

v/z, and 1/z in screen coordinates, and the non-linearity of u, v, and z in screen coordinates.

We now have a pretty good handle on 3D polygons, but our sample programs have still used

fairly basic 3D objects: pyramids consisting of just a few triangles. Creating more complicated

objects requires the use of a 3D modeling package. The next chapter covers using the free 3D

modeling package Blender to create more interesting models for use in our 3D programs.

160 Chapter 2: Rendering and Animation Techniques for 3D Polygons



C h a p t e r 3

3D Modeling with3D Modeling with
Blender

T
he Blender 3D modeling package is a powerful tool for creating 3D objects. Chapter 1

already reviewed the basics of using Blender to create simple polygonal models for import

into an l3d program. In this chapter, we create more complex models, illustrating the use of

Blender’s animation and texture mapping features. In particular, we cover the following topics:

� Assigning texture coordinates to models

� Using VRML to export and import texture coordinates

� Creating compatible morph targets

� Viewing animations in Blender

� Using inverse kinematics and rotoscoping

This chapter is organized around two tutorials. The first illustrates a 3D morph between a cube and

a texture-mapped tree. The second creates a jointed, animated human figure.

Tutorial: Creating and Exporting
Compatible, Textured 3D Morph Targets

We already know how to import arbitrary models into our 3D programs by using our Videoscape

plug-in for l3d objects. This tutorial takes the idea a step further, illustrating how to use Blender to

apply textures to our models, and how to import these applied textures into our 3D programs. Fur-

thermore, this tutorial also illustrates how to create compatible morph targets—two models with

the same number and ordering of vertices and faces that can morph into one another. Chapter 2

illustrated morphing in 3D, but with simple, uninteresting objects. Now it’s time to create an inter-

esting model in Blender and morph it.

Let’s start with the morphing aspect; we then deal with applying texture coordinates after we

have generated the morph targets.

First, clear everything in Blender by pressing Ctrl+x. Delete the default plane object.
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The Starting Morph Mesh
As we touched upon in Chapter 2, in order for two models to be able to morph into one another,

they must have the same number and ordering of vertices and faces. The reason for this is that

morphing is simply interpolation of vertex positions from old positions to new positions, which is

only (easily) possible if the topology of both models is the same. The best way to ensure this is to

create both source and target models by using the same basis mesh in Blender, merely deforming

the mesh within Blender to shape it into the source and target models. It is not permitted to add or

delete vertices or faces; only deformation of the mesh (i.e., displacement of the mesh’s vertices) is

allowed.

We’ll start out with a cube.

1. Move the 3D cursor to the origin if it is not already there.

2. Add a cube. Remain in EditMode, and make sure that all vertices are selected (displayed in

yellow).

3. Type w. The Specials pop-up menu appears. Select Subdivide. Blender subdivides every

selected face into four smaller, equally sized faces. Subdividing the cube in this manner pre-

serves the shape of the cube, but gives us more faces to work with.

4. Subdivide the cube again. Each side of the cube should now have 16 faces (4� 4).

5. Scale the cube up, so that each side is approximately 8 grid units long.

Now, we’re going to define two morph targets for this mesh, then edit these targets.
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Inserting Two Morph Targets into Blender
The next step is to insert two morph targets into Blender, so that we can see and test the morph

within Blender itself. Blender refers to these morph targets as vertex keys, a term which comes

from key-frame animation. Insert two vertex keys as follows:

1. Ensure that Blender is in EditMode.

2. Notice the numerical slider button on the right-hand side of the header of the ButtonsWindow.

This slider indicates the current frame number for animations. Ensure that the value of this

slider is 1. If not, change its value by dragging it with the mouse or by pressing Down Arrow

(decrease frame by 10) or Left Arrow (decrease frame by 1) until its value is 1.

3. Type i to insert a key. A pop-up menu appears, allowing you to select different kinds of keys.

Select Mesh. This saves the current positions of the vertices of the mesh into a key.
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4. Exit and re-enter EditMode by pressing Tab twice.

5. Increase the frame number to 21 by pressing Up Arrow (increase frame by 10) twice, or press

Right Arrow (increase frame by 1) 20 times.

6. Type i to insert another key.

We now have inserted two vertex keys. You can see these keys by looking in an IpoWindow as

follows.

1. Exit EditMode. Select the cube object for which you just inserted the vertex keys.

2. Open an IpoWindow, preferably in a new window next to the 3DWindow (as opposed to

changing the existing 3DWindow to be of type IpoWindow).

3. In the window header of the IpoWindow, click on the ICONBUT with the image of a polygon

with vertices. This displays vertex keys in the IpoWindow.

4. Ensure that the ICONBUT with the image of a key is not active.

Notice the two horizontal lines within the window. The bottommost orange line represents the

first, baseline vertex key. The first vertex key is always displayed in orange. The second and all

additional vertex keys are displayed as blue horizontal lines. The order of the vertex keys is from

bottom to top.

Also notice the curved line. This is the interpolation curve, which interpolates from the first

key to the second key (vertically) over time (horizontally). The vertical green line indicates the

current frame number. If you change the current frame with the arrow keys, the green line moves

left or right along the time axis accordingly.

Here are some operations you can perform in the IpoWindow. Don’t try these out just now

because the current configuration is important for completing this tutorial. You can right-click a

vertex key in the IpoWindow to select it, at which point it changes to a lighter color (light orange

for the first vertex key, light blue for the additional vertex keys). Type g to grab and move the

selected vertex key(s) to another location, or x to delete a vertex key. If you add vertex keys in the
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3DWindow (remember that you must change the frame number to insert multiple vertex keys),

you can see how more and more blue lines (the vertex keys) appear within the IpoWindow.

For now, make sure that only two vertex keys are present, and that the second vertex key, the

topmost one, is selected (displayed in light blue).

Deforming the Mesh
We now have two vertex keys defined. The second one is selected, because it was the last one

inserted (or because you right-clicked it in the IpoWindow).

With a vertex key selected, any changes to the mesh apply to that vertex key only. This means

that if we go into EditMode now and change the mesh, it changes the mesh just for the second ver-

tex key, but the first vertex key still retains the original shape of the mesh.

This means that we now need to enter EditMode and deform the mesh into a new shape. Begin

as follows.

1. Select the upper-right vertex of the cube.

2. Move the vertex somewhere away from the corner, so that a sharp point is created.

3. Exit EditMode. At this point, by exiting EditMode with a modified mesh, we have just saved

the current shape into the currently selected vertex key.

4. Press Left Arrow a few times to decrease the frame number by a few frames. Notice that the

sharp point you created at the corner of the mesh slowly starts to disappear. As you decrease

the frame number, Blender automatically interpolates the vertex positions to the appropriate

vertex key (computed by Blender by intersecting the interpolation curve in the IpoWindow

with the vertex key for the current frame number), which in this case is the first vertex key.

Since the first vertex key contains the unmodified cube, the mesh morphs back to the original

cube the closer the frame number is to the first frame.
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5. Press Right Arrow to return the frame number back to frame 21. Notice that the sharp point

reappears as you approach frame 21, the time at which the second vertex key was inserted.

Importantly, and quite fortunately, if we save a Videoscape mesh from Blender, the exported

geometry reflects the current state of the mesh for the currently active frame. This means that to

export two compatible morph targets, we simply change to frame 1, write the first mesh, then

change to frame 21, at which point Blender automatically interpolates the vertices to the second

vertex key, and write a second mesh.

Now, you should again be at frame 21. Your job now is to enter EditMode and deform the

mesh into something interesting. Any shape will do, but for this tutorial I chose to deform the

mesh into the shape of a palm tree. Here are some hints for making the palm tree:

1. Start by making the bottom half of the cube longer and thinner to represent the trunk. Next,

make the top flat and somewhat x-shaped. Finally, pull down the outer edges of the top x to

make the leaves droop down.

2. Select groups of vertices using border select mode, and translate, rotate, or scale these groups

of vertices. Creating the tree by moving each vertex individually would be very time

consuming.

3. Be careful not to pull vertices around in physically impossible ways. For instance, if a vertex

is originally on one side of an edge in the original model, you should not pull the vertex such

that it is on the other side of the edge. If you do so, this would reverse the front/back orienta-

tion of the faces connected with the vertex, which leads to incorrect display later. Think of

yourself as a sculptor working with a malleable balloon; you can stretch or compress the bal-

loon to change its shape, but if you try to poke the balloon through itself, the whole thing

blows up in your face.
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The file treemorph.blend (in the same directory as the source code for the next sample pro-

gram, vids3d) contains the palm tree created by deforming the cube.

Next, let’s look at applying a texture to the tree.

Applying a Texture and Assigning Texture Coordinates
We saw in Chapter 2 the theory of defining a texture space and applying this to a polygon. Chapter

6 covers using Blender in this way to define texture spaces and apply them to polygons. The prob-

lem is, this method of applying textures to polygons is not directly supported by Blender (actually,

it is, but the results cannot be exported into a common file format), and requires us to use a sepa-

rate program in addition to Blender. For now, we’ll look at an alternative way of applying texture

coordinates to polygons, which is supported directly by Blender and which can be exported and

thus read into our programs. This alternative way of applying texture coordinates is a direct

assignment of (u,v) texture coordinates to polygon vertices.
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pulling vertex 2 to point b would change the
orientation of the polygon; the vertex sequence 1-2-3
would change from clockwise to counterclockwise. This
is generally undesirable.



NOTE The following paragraphs describe the use of the (u,v) texture editor, a relatively new
feature of Blender. This feature appears to have some small problems in Blender version
1.80, so you might want to use Blender 2.0 to do texturing.

Applying textures in this way requires us to use a special mode of Blender called FaceSelect

mode. Toggle this mode on and off by pressing f. (You can think of this as being analogous to

EditMode, which is toggled on and off with Tab.) In FaceSelect mode, right-clicking a face in the

3DWindow causes it to be selected. Press Shift+right-click to select multiple faces, b to select

faces using border select mode, a to select/deselect all faces, or h to temporarily hide selected

faces. Notice that these keys are the same ones that are used in EditMode for selecting vertices, or

outside of EditMode for selecting objects. Blender draws the selected faces with a yellow dotted

border.

NOTE In EditMode, you can select faces in a limited fashion by selecting all vertices belong-
ing to the face. The problem with EditMode selection is that it selects all faces sharing the
selected vertices; in other words, face selection in EditMode is actually an alternative interpre-
tation of vertex selection, which sometimes makes face selection awkward in EditMode. On
the other hand, FaceSelect mode allows you to selectively select or deselect faces at the face
level, independent of the vertices.

You may find it easiest to use FaceSelect mode in the perspective view, rotating the viewpoint as

needed to display the faces to be selected. Also, first hiding obstructing faces by pressing Alt+h is

a useful way of making selecting easier.

After selecting faces in FaceSelect mode, Blender then allows you to map a texture to the

selected faces in various ways. To do this, you first must load an image texture image. Do this in a

window of type ImageWindow. It is easiest if you have an ImageWindow open next to the

3DWindow. Load an image via the Load button in the window header of the ImageWindow. Note

that if the size of the ImageWindow is too small, the window header might be cut off, and the Load

button might be invisible. Temporarily maximize the ImageWindow in this case to see the Load

button. For the purposes of interactive texture mapping within Blender, the image should be

square; its width and height must be identical. Supported file formats are JPEG, Targa, Iris, or

HamX (a custom Blender format).

NOTE Note that Blender does not support the PPM format, which is the format used by l3d,
so we need to have two copies of our texture images, one for Blender and one for l3d. You
can use a program such as GIMP to convert between image formats. GIMP automatically rec-
ognizes file extensions, so converting from JPEG to PPM is really as simple as loading the
JPEG and saving as PPM. Alternatively, the programs cjpeg and djpeg allow for batch
mode conversion to and from the JPEG format.

Loading an image in the ImageWindow associates the texture image with the currently selected

faces. Since our Videoscape plug-in object only supports one texture image per object, as men-

tioned above, you should select all faces and then load an image to associate the same image file

with all faces. Do this as follows:
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1. Open an ImageWindow next to the 3DWindow.

2. In the 3DWindow, press f to enter FaceSelect mode.

3. If all faces are not selected, then press a until all faces are selected.

4. Press Alt+z. This turns on the textured display mode in the 3DWindow. Since we are going to

be editing texture coordinates on the mesh, it is important that we see the results of our work

immediately in the 3DWindow. (Type z to return to non-textured display and to toggle

between normal wire-frame display and solid non-textured display.)

5. In the ImageWindow, click the Load button, and select an image file with square dimensions

(width and height identical). Middle-click the selected filename to load it.

At this point, the texture image is loaded, and is mapped to every face on the polygon. The texture

is mapped so that each face has a complete copy of the image. This is very similar to the default

texture mapping used in the last sample program, along with the undesirable property that this is

not in general the mapping that we want.

The way we change the mapping is as follows. In the 3DWindow, first select the faces for

which you wish to apply the texture in a different way. Then, type u. This brings up a pop-up menu

that allows you to specify the mapping of the current texture image onto the selected faces. The

various entries in the menu have the following meanings.

� Cube: Applies a cubical mapping to the faces. From the object center, an imaginary cube

(consisting of six faces) is drawn around the object. The texture mapped onto the faces takes

on the orientation of one of the six faces of the cube which is oriented most closely with the

face. Mostly vertical faces get a texture mapping defined by the vertical sides of the cube;

mostly horizontal faces get a texture mapping defined by the horizontal (top or bottom) sides

of the cube. Mathematically, either the (x,y), (x,z), or (y,z) coordinates are used as the (u,v)

coordinates depending on the normal vector to the face. A cubical mapping is good for map-

ping textures onto mostly horizontal or vertical surfaces, such as walls, floors, and ceilings.
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� Cylinder: Applies a cylindrical mapping. The texture space is an imaginary cylinder drawn

around the object, and the texture coordinates are determined by projecting vertices of each

polygon onto this cylinder. A cylindrical mapping is good for wrapping a label texture around

a bottle.

� Sphere: Applies a spherical mapping. The texture space is an imaginary sphere around the

object, and the texture coordinates are determined by projecting vertices of each polygon onto

the sphere. A spherical mapping is good for wrapping a texture around a sphere or sphere-like

object—a creature’s head, for instance.

� Bounds to 64, bounds to 128: Uses the current projection of the polygons in the 3DWindow

for computing the texture coordinates, rounding these to fit within a bounding box of 64� 64

or 128� 128 pixels, respectively.

� Standard 64, standard 128, standard 256: Uses the default square mapping, where every face

is mapped to an identical square subset of the texture with a size of 64� 64, 128� 128, or

256� 256 pixels, respectively. This is the initial face mapping.

� From window: Uses the current projection of the polygons in the 3DWindow for computing

texture coordinates.

After selecting one of these mappings, Blender computes the mapping and stores a (u,v) texture

coordinate with every vertex of every selected face. The results of the mapping are immediately

visible in the 3DWindow (assuming that textured display mode has been activated with Alt+z).

Furthermore, the (u,v) mapping for the selected faces is displayed as a set of connected verti-

ces in the ImageWindow. Remember that the ImageWindow displays the texture, which

represents the texture space; the (u,v) texture coordinates for each vertex are locations in texture

space, which can thus be displayed as points on the image. Within the ImageWindow, you can then

use the normal mesh editing keys to select, grab, scale, or rotate the (u,v) coordinates within the

ImageWindow, which has the effect of repositioning the point within texture space and thus

assigning new texture coordinates to the original polygon’s vertex. This allows you, for instance,

170 Chapter 3: 3D Modeling with Blender

Figure 3-10: Texture coordinates in the
ImageWindow (right), which correspond to
the vertices of the selected faces (left) and
can be moved arbitrarily.



to exactly map a certain part of the texture to fill an entire face, by moving the points correspond-

ing to the face’s vertices onto the appropriate locations on the image in the ImageWindow.

The texture file treetex.jpg (in the same directory as the treemorph.blend file) has

been applied to the tree by using a cylindrical mapping for the trunk and a window-based mapping

for the leaves. The texture file contains two parts. The top part of the texture is green, for the

leaves; the bottom part of the texture is brown, for the trunk.

You can now see why we earlier stated that it is not necessarily very limiting that our

Videoscape plug-in only allows one texture per object. By defining a suitably large texture con-

taining many smaller images, and by assigning specific parts of the texture to specific faces, we

can effectively apply several textures to different faces, even though physically we are only using

one texture.

For this example of the palm tree, you can perform the mapping as follows:

1. Select all faces in the trunk of the tree model. You will need to rotate the model and extend the

selection with Shift+right-click a few times to do this, because it is not possible to select a

face when you are viewing it from its back side.

2. Press u and apply a cylindrical mapping to all the faces in the trunk of the tree.

3. In the ImageWindow, press a to select all texture vertices.

4. Press s to scale down the texture vertices vertically. Move the mouse cursor vertically towards

the center of the selected vertices and middle-click. This limits the scaling in the vertical

direction. Scale down the vertices until they are as high as the brown portion of the texture.

5. Press s to scale down the texture vertices horizontally. Move the mouse cursor horizontally

towards the center of the selected vertices and middle-click. Scale down the vertices until they

are as wide as the brown portion of the texture.

6. Press g to translate the texture vertices. Move them so that all vertices are located within the

brown portion of the texture.
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At this point, you have cylindrically wrapped the brown portion of the texture around the selected

faces, which is a fairly good way of doing the mapping, since the trunk of a tree is essentially a

cylinder.

Proceed in a similar fashion to wrap the green portion of the texture around the leaves, but use

the From Window mapping. First, look at the tree from the side view in the 3DWindow so that the

flat sides of the leaves are visible. Then, select all leaf faces, apply a texture mapping from the

window view, and scale and translate the vertices in the ImageWindow to be positioned over the

correct portion of the texture (the green part in this case).

If you want to tweak the texture coordinates, you simply need to drag the appropriate vertices

in the ImageWindow. Again, you would do this to exactly control which parts of the image get

mapped to which parts of which faces. After repositioning a vertex in the ImageWindow, the

3DWindow automatically displays the results of the new mapping. To see the results of the map-

ping while you are still moving the vertex and before you have confirmed its new position,

activate the Lock button in the header of the ImageWindow.

CAUTION Single-pass light mapping does not work if (u,v) coordinates have been directly
assigned as described above.

It is important to note that manually assigning (u,v) vertices in this manner creates a non-linear

mapping between texture space and world space. Each vertex in the ImageWindow represents a

vertex of a polygon in 3D space. By manually positioning these vertices in the ImageWindow, we

create a connection between the vertex location in 3D space and a (u,v) location in texture space.

In other words, we create an arbitrarily defined mapping between world space and texture space.

This means that with this method, we have no simple matrix that converts between texture and

world space, as we did in Chapter 2, where we always used the texture space to calculate the tex-

ture coordinates as opposed to letting the user arbitrarily position them. The lack of a simple

conversion between texture and world space when using direct (u,v) texture coordinate assign-
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ment implies that any techniques requiring a texture-world space or world-texture space conver-

sion cannot be applied. In particular, the single-pass light mapping strategy of Chapter 2, using a

single pre-tiled surface combining texture and light map information, cannot be applied with

objects that have been textured through direct (u,v) assignment, because this technique requires us

to convert from texture (or lumel) space back into world space, which is not (easily) possible if the

(u,v) coordinates have been arbitrarily assigned. Note that a two-pass light mapping strategy is

still entirely possible even with arbitrarily assigned (u,v) coordinates, because in this case the sec-

ond lighting pass has nothing to do with the arbitrary (u,v) coordinates, instead using a

well-defined light map space. It’s only with the single-pass light mapping that we have problems.

For this reason, the Videoscape plug-in creates textured polygons, but not textured light mapped

polygons.

Testing the Morph in Blender
At this point, you should have a textured tree object, which was formed by deforming a cube in the

second morph target.

You can preview the morph in Blender simply by using the arrow keys to change the active

frame number; as mentioned earlier, Blender automatically interpolates the vertices between the

positions saved within the vertex keys. If you want to see the animation without keyboard inter-

vention, press Alt+a within the 3DWindow. This animates the mesh automatically for a certain

number of frames. Two buttons in the DisplayButtons control the starting and ending frames of the

animation: the Sta button specifies the starting frame, and the End button specifies the ending

frame. Press Esc to terminate the animation.

Exporting the Two Morph Targets
Once we are satisfied with the morphing animation, we can export the two (compatible) models as

follows:

1. Change to frame 1. Notice that the mesh appears cubical in the 3DWindow, as defined by the

first vertex key.

2. Press Alt+w and write the current mesh to the file cube.obj.

3. Change to frame 21. The mesh appears as defined by the second vertex key.

4. Press Alt+w and write the current mesh to file tree.obj.

That was the easy part. Now comes the more tricky part—exporting the texture coordinates.
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Exporting the Texture Information
The Videoscape file format does not store texture coordinates, so by exporting the morph target

meshes to Videoscape, we lose the texture information. One simple solution is to export the file in

VRML format, which is also an ASCII file format but is slightly more complicated to parse than

Videoscape. With VRML export, Blender does save the texture coordinates in the VRML file.

Fortunately, the ordering of the vertices and faces is the same in the Videoscape and the VRML

files. This means that to associate texture coordinates with our Videoscape format objects, we can

simply cut out the texture coordinate mapping within the VRML file, save it to a separate texture

coordinates file, and read in this file later while reading in the Videoscape file.

NOTE The newest free version of Blender supports Python scripting (previously this was only
available in the commercial C-key version). Therefore, it should also be possible to write a
Python script to export the texture coordinates.

The texture coordinates file is the mesh.uv file we spoke of earlier when discussing the parame-

ter string passed to the Videoscape plug-in object. It is simply an ASCII file, where each line

contains a single (u,v) coordinate. The ordering of the lines in the texture coordinates file should

be the same as the order of the vertex indices defining the faces in the Videoscape file. Note that

the texture coordinates are associated with each vertex index defining a face, and not with the

common vertices shared by all faces. This is because even though two adjacent faces may share a

vertex, the texture coordinate at the shared vertex might be different for the two faces. Thus, tex-

ture coordinates are defined per face, and the texture coordinates file specifies one (u,v) coordinate

for each vertex index of each face.

Again, you can create this texture coordinates file simply by cutting out the appropriate por-

tion of a VRML exported file, as follows:

1. Save the file as VRML by pressing Space to bring up the Toolbox, choosing File, then Save

VRML.

2. Edit the VRML file in your favorite text editor. Search for the beginning of the definition of

your mesh object; the line begins with the keyword DEF (for definition) and contains the

name of the mesh.

3. Search for the texture coordinate definition for this mesh. It follows the DEF line and begins

with the keyword TextureCoordinate2. Following this line is a list of several texture

coordinates.

4. Save the list of texture coordinates into a separate file. I suggest giving this file an extension of

.uv, for instance, meshname.uv.

5. Specify this meshname.uv file in the parameter string passed to the Videoscape plug-in

object, as discussed earlier. In this way, the (u,v) coordinates are read out of the file while

loading the geometry from the Videoscape mesh file, and the texture mapping is applied.

CAUTION VRML export of texture coordinates on triangular faces does not appear to work
in Blender. So, only use quadrilaterals if you wish to export texture information.
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Unfortunately, it appears that there is a small bug in the Blender VRML export of texture coordi-

nates with triangular faces. In the experiments I performed, the VRML exported texture

coordinates are simply not correct if the faces are triangular. Making the faces into quadrilaterals

(four-sided) seems to fix the problem. Thus, to export manually assigned texture coordinates in

this manner, make sure all your faces have four sides.

Also, notice that the orientation of the v axis in texture space is different in Blender/VRML

than it is in l3d. We have been using the convention that the upper-left pixel in the texture image is

(0,0) in texture space. Blender’s exported VRML texture coordinates, however, take the lower-

left pixel as point (0,0) in texture space. This means that, for texture coordinates in the range 0.0 to

1.0 (which is the case if all of the texture coordinates lie within the image in Blender’s

ImageWindow), the v coordinate we use in l3d is 1.0–v from the mesh.uv file, which essentially

flips the orientation of the v axis.

Importing the Morph Targets into a Program
The program vids3d imports our morph-compatible meshes and performs a morph between the

cube and tree shapes.

Listing 3-1: File shapes.h, program vids3d
#include "../lib/geom/object/object3d.h"
#include "geom/vertex/verint.h"
#include "dynamics/plugins/plugenv.h"

class pyramid:public l3d_object {
static const int num_keyframes = 2;
int keyframe_no;
l3d_two_part_list<l3d_coordinate> *keyframes[2];
l3d_vertex_interpolator interp;
bool currently_interpolating;

public:
pyramid(l3d_two_part_list<l3d_coordinate> *keyframe0,

l3d_two_part_list<l3d_coordinate> *keyframe1);
virtual ~pyramid(void);
int update(void);

};

Listing 3-2: File shapes.cc, program vids3d
#include "shapes.h"

#include <stdlib.h>
#include <string.h>
#include "../lib/tool_os/memman.h"

pyramid::pyramid(l3d_two_part_list<l3d_coordinate> *keyframe0,
l3d_two_part_list<l3d_coordinate> *keyframe1)

:
l3d_object(100)

{
keyframes[0] = keyframe0;
keyframes[1] = keyframe1;

currently_interpolating = false;
keyframe_no=0;
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}

pyramid::~pyramid(void) {
//- set vertices pointer to NULL to prevent parent l3d_object from trying
//- to delete these vertices, because they do not belong to us
vertices = NULL;

}

int pyramid::update(void) {
if(currently_interpolating) {
vertices = interp.list;
if(! interp.step()) {
currently_interpolating = false;

}
}else {
keyframe_no++;
if(keyframe_no >= num_keyframes) {keyframe_no = 0; }
int next_keyframe = keyframe_no + 1;
if(next_keyframe >= num_keyframes) {next_keyframe = 0; }

vertices = keyframes[keyframe_no];
interp.start( *keyframes[keyframe_no], *keyframes[next_keyframe],

rand()%100 + 50, 3);

currently_interpolating = true;
}

//- it is important to recalculate the normals because the mesa
//- texture mapping reverse projection relies on correct normals!
int i;
for(i=0; i<polygons.num_items; i++) {
polygons[i]->compute_center();
polygons[i]->compute_sfcnormal();

}
}

Listing 3-3: File main.cc program vids3d
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p3_flat.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rast3.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
#include "../lib/system/fact0_2.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/dynamics/plugins/plugenv.h"
#include "../lib/geom/texture/tl_ppm.h"
#include "../lib/dynamics/plugins/vidmesh/vidmesh.h"
#include "../lib/tool_os/memman.h"

#include "shapes.h"

#include <stdlib.h>
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#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

class my_world:public l3d_world {
public:
my_world(void);

};

my_world::my_world(void)
: l3d_world(400,300)

{
l3d_screen_info *si = screen->sinfo;

camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(5.5);
camera->far_z = int_to_l3d_real(500);

rasterizer_3d_imp->fovx = &(camera->fovx);
rasterizer_3d_imp->fovy = &(camera->fovy);
rasterizer_3d_imp->screen_xsize = &(screen->xsize);
rasterizer_3d_imp->screen_ysize = &(screen->ysize);

int i,j,k,onum=0;

i=10; j=0; k=20;
k=0;

//- create two videoscape plug-in objects, one for the first morph
//- target and one for the second

l3d_object *morph_target0, *morph_target1;

l3d_texture_loader *texloader;
l3d_surface_cache *scache;
texloader = new l3d_texture_loader_ppm(si);
scache = new l3d_surface_cache(si);
l3d_plugin_environment *plugin_env0, *plugin_env1;

plugin_env0 = new l3d_plugin_environment(texloader, screen->sinfo, scache,
(void *)"0 0 0 1 0 0 0 1 0 0 0 1 cube.obj tree.ppm tree.uv");

morph_target0 = new l3d_object(10);
//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

morph_target0->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

morph_target0->plugin_loader->load("../lib/dynamics/plugins/vidmesh/vidmesh.so");
morph_target0->plugin_constructor =
(void (*)(l3d_object *, void *))
morph_target0->plugin_loader->find_symbol("constructor");

morph_target0->plugin_update =
(void (*)(l3d_object *))
morph_target0->plugin_loader->find_symbol("update");

morph_target0->plugin_destructor =
(void (*)(l3d_object *))
morph_target0->plugin_loader->find_symbol("destructor");

morph_target0->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
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morph_target0->plugin_loader->find_symbol("copy_data");

if(morph_target0->plugin_constructor) {
(*morph_target0->plugin_constructor) (morph_target0,plugin_env0);

}

plugin_env1 = new l3d_plugin_environment(texloader, screen->sinfo, scache,
(void *)"0 0 0 1 0 0 0 1 0 0 0 1 tree.obj tree.ppm tree.uv");

morph_target1 = new l3d_object(10);
//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

morph_target1->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

morph_target1->plugin_loader->load("../lib/dynamics/plugins/vidmesh/vidmesh.so");
morph_target1->plugin_constructor =
(void (*)(l3d_object *, void *))
morph_target1->plugin_loader->find_symbol("constructor");

morph_target1->plugin_update =
(void (*)(l3d_object *))
morph_target1->plugin_loader->find_symbol("update");

morph_target1->plugin_destructor =
(void (*)(l3d_object *))
morph_target1->plugin_loader->find_symbol("destructor");

morph_target1->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
morph_target1->plugin_loader->find_symbol("copy_data");

if(morph_target1->plugin_constructor) {
(*morph_target1->plugin_constructor) (morph_target1,plugin_env1);

}

//- create some pyramid objects
for(i=1; i<100; i+=20) {
objects[onum=objects.next_index()] =
new pyramid(morph_target0->vertices, morph_target1->vertices);

*objects[onum] = *morph_target0;
objects[onum]->num_xforms = 2;
objects[onum]->modeling_xforms[0] = l3d_mat_rotx(0);
objects[onum]->modeling_xforms[1].set
( float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.) );

objects[onum]->modeling_xform=
objects[onum]->modeling_xforms[1] | objects[onum]->modeling_xforms[0];

objects[onum]->vertices = morph_target0->vertices;

l3d_screen_info_indexed *si_idx;
l3d_screen_info_rgb *si_rgb;

l3d_polygon_3d_flatshaded *p;
for(int pnum=0; pnum<objects[onum]->polygons.num_items; pnum++) {
p = dynamic_cast<l3d_polygon_3d_flatshaded *>(objects[onum]->polygons[pnum]);
if(p) {
p->final_color = si->ext_to_native

(rand()%si->ext_max_red,
rand()%si->ext_max_green,

178 Chapter 3: 3D Modeling with Blender



rand()%si->ext_max_blue);
}

}

if (objects[onum]==NULL) exit;
objects[onum]->modeling_xforms[1].set
( int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(i),
int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1) );

objects[onum]->modeling_xform =
objects[onum]->modeling_xforms[1] |
objects[onum]->modeling_xforms[0] ;

}

screen->refresh_palette();
}

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;

factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete d;
delete p;
delete w;

}

The program is almost identical to the morphing pyramid program from Chapter 2. First, we cre-

ate two Videoscape plug-in objects and load the cube and the tree object into each of these objects.

Then, we create a series of morphable pyramid objects, just as we did in Chapter 2. (The name pyr-

amid is here somewhat of a misnomer, since the morphable objects are not pyramids in this case,

but the naming remains the same to emphasize the similarity of the code with that of Chapter 2.)

In this case, instead of explicitly assigning the vertices in the source and destination morph

vertex lists, we simply use the vertex lists from the already loaded plug-in objects. Then, each pyr-

amid object morphs itself from its source to its target vertex list, and back again, using the vertex

interpolator class.

The logic, therefore, is essentially the same as the simpler morphing program of Chapter 2,

only now we are morphing between two real 3D models, created and textured within Blender. The

logic is simple, yet the results look quite good in 3D.

Note that in this morphing program, in contrast to the morphing program of Chapter 2, we do

recalculate the surface normals during morphing. This is because the Mesa texture mapping rou-

tines require a reverse projection, as we saw in Chapter 2. Performing this reverse projection
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during Mesa texture mapping requires us to have an accurate surface normal vector, which is why

we recalculate it whenever we interpolate the vertex positions.

Tutorial: Using Inverse Kinematics and Roto-
scoping to Model a Walking Human Figure

This tutorial illustrates two very powerful features of Blender: inverse kinematics and

rotoscoping. These techniques allow us to animate a human-like jointed figure, which we then

import into a program.

This tutorial is a small introduction to the field of character animation. Character animation is

a special branch of animation dealing with animating characters—living entities such as humans,

dogs, or imaginary creatures such as aliens. Even ordinarily inanimate objects, such as a sack of

flour, can be animated as characters so that they appear to walk, move around, and come to life.

Indeed, to animate literally means to bring to life. Character animation is a very broad field and

requires years of study to master. This is because the subtle nuances of a character’s movement

convey much about that character’s personality. Creating believable characters requires a firm

concept of the character you wish to portray as well as an understanding of anatomy, proportion,

staging, posing, timing, weight, movement, and so forth.

While this small tutorial cannot show you all of the aspects of character animation, what it

does illustrate is the technical side of basic character animation using Blender. We’ll create a sim-

ple human-like character and move its limbs around to simulate a walking motion. One of the most

important tools for doing character animation is inverse kinematics, which we now look at in more

detail.
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Inverse Kinematics: Definition
Inverse kinematics, abbreviated IK, is best thought of as a way of automatically positioning a

series of joints by specifying the position of just one point—the endpoint. An example will make

this clear. Let’s say we have modeled an arm object as a series of two segments: the top segment

and the bottom segment.

In Blender terminology, each of these segments is called a limb; in other literature, these seg-

ments are sometimes called bones. A series of connected limbs is called a chain or an IK chain.

Blender also refers to a chain as an Ika, short for inverse kinematics. The connecting points

between the chains are called joints. The start of the chain is the root or base of the chain. The last

point in the chain is called the effector.

The important thing about an Ika chain is that moving the effector—a single point—leaves the

base fixed in place, and automatically moves all points in between the base and the effector. In the

arm example above, think of moving the effector as being equivalent to moving the hand. By mov-

ing the hand, which is located at the tip of the arm, we automatically cause the rest of the arm to be

correctly repositioned. This makes animation in many cases much easier; we just pull the hand

(effector) to the new position and the entire arm follows.

You can also move the base of an Ika chain. Moving the base of an Ika moves the entire chain

and the effector, without changing the relative positions of the joints. You move the base of an Ika

in order to reposition the entire Ika.

The alternative to inverse kinematics is forward kinematics, abbreviated FK. To position the

arm with forward kinematics, you move the top part of the arm, which also moves the bottom part

of the arm with it. Then, you move the bottom part of the arm, which then moves without affecting

the top. This finally determines the position of the hand, located at the end of the arm. FK implies a

simple hierarchical relationship between the top limb (the parent) and the bottom limb (the child).

You can create such a simple hierarchical relationship for use in forward kinematics by pressing

Ctrl+p (although not all hierarchical relationships are created for FK animation purposes).
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Just remember the following in order to distinguish between inverse and forward kinematics:

In inverse kinematics, you move the lowest item in a hierarchy (the effector), which automatically

successively moves all higher items in the hierarchy. In forward kinematics, you explicitly start at

the highest level in the hierarchy, and successively manually move the lower items in the hierar-

chy, which finally determines the position of the lowest item in the hierarchy. Inverse kinematics

works from the bottom up; forward kinematics works from the top down.

The choice of which is more appropriate—inverse kinematics or forward kinematics—

depends on the most convenient way you like to think about the animation process. Generally, it’s

easier to think of limb animation in terms of inverse kinematics. For instance, when animating an

arm, you usually think of the animation in terms of moving the hand (the effector) towards an

object, and not in terms of moving the upper and lower arms individually. But since inverse kine-

matics automatically recalculates the joint positions, it also gives you less control over the exact

animation. When animating a tail or a snake with many segments, it might be better to use forward

kinematics.

For this tutorial, we’ll use IK for animating the arms and legs of a human-like figure to create

a simple walking motion. The first step is to understand how to create and manipulate Ikas in

Blender.
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Creating an Ika Chain in Blender
Let’s begin modeling our human-like figure by creating four Ika chains: two for the arms and two

for the legs. (The file ika.blend, located in the source code directory for the next sample pro-

gram ika, contains the finished Ika model we create in the next few sections.) Begin with an

empty Blender configuration (Ctrl+x). Then create the Ika chain for one leg as follows:

1. Position the 3D cursor as follows. Switch to front view (press 1 on the numeric keypad), and

move the 3D cursor one unit to the right of center. Switch to side view (press 3 on the numeric

keypad), and move the 3D cursor about two units above center.

2. Press Shift+a to add an item from the Toolbox, then select Ika. Blender adds an Ika with its

base at the 3D cursor position.

3. Move the mouse cursor to position the effector of the Ika and left-click. The position of the Ika

effector should be somewhat underneath and to the right of the Ika base. After left-clicking,

notice that Blender then draws the next limb in the Ika automatically. The previous effector is

now a joint between the first limb and the new limb; the tip of the new limb is now the new

effector.

4. Move the mouse cursor to position the new effector. The effector should be somewhat below

and to the left of the previous joint.

5. Middle-click to end the creation of the Ika chain.

It is important to make sure that the first limb points slightly forward, and the second limb points

slightly backward; this will be the case if you position the effectors as described above. Posi-

tioning the limbs in this way creates a slight angle between the limbs. Later, when moving the

effector, the angle between the limbs can never increase above 180 degrees. In other words, the Ika

chain will never bend in the other direction of that specified when originally creating the chain.

Working with Ika Chains
As mentioned earlier, there are two ways to move an Ika chain. You can move the effector, which

leaves the base in place and recomputes the position of all the joints between the base and effector.

Or you can move the base, which moves the entire Ika to a new location.

Blender thus offers two movement modes for Ikas. A yellow dot indicates which movement

mode is active. If the yellow dot is at the base of the Ika, then initiating a grab operation (press g)

moves the entire Ika. If the yellow dot is at the tip of the Ika, then a grab operation moves the

effector.

By default, the effector is active after creating an Ika. So, after creating the Ika as described

above, press g and move the mouse cursor to see the effect of moving the effector. Press Esc to

cancel the operation and return the effector to its original position. You could also left-click to

accept the new position, but for now, the Ika should be positioned as we created it in the last sec-

tion. This is because we want the Ika to be in a fairly straight position to start with.
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Press Tab to switch the movement mode so that the base may be moved. This toggles between

the two modes. With the base active, try grabbing the Ika and moving it around. Press Esc to can-

cel the operation when you are done (again, left-clicking would accept the new position).

Now, create the second Ika for the second leg as follows.

1. Ensure that the base of the Ika is active.

2. Switch to top view (press 7 on the numeric keypad).

3. Press Shift+d to duplicate the Ika. After copying the Ika, Blender immediately enters grab

mode, as we saw earlier. This is the reason that it is important that the original Ika’s base was

active; if the effector was active, then the copied Ika’s effector would also be active, meaning

that the automatically initiated grab operation would reposition the effector and not the base,

which is generally not what is wanted after duplicating an Ika.

4. Move the duplicated Ika one unit to the left of center and left-click. You should now have one

Ika located one unit left of center and one located one unit right of center.

5. Make the effector of each Ika active since further manipulation of the Ikas takes place over the

effector and not the base. Select each Ika and Tab until the yellow dot appears at the effector.

Creating the Arm Ikas
Creating the arm Ikas is similar to creating the leg Ikas. The main difference is that the arm Ikas

should bend forward, whereas the leg Ikas bent backward. This means that when creating the arm

Ikas, the first limb should point slightly backward, and the second should point slightly forward.

Create two arm Ikas. From the top view, the left and right arms should be about two units left

and right of center, respectively. From the side view, the arm Ikas should be above the legs and

stretch down slightly below the top of the legs. After creating the arm Ikas, activate the effector of

each Ika by pressing Tab, because we later want to manipulate the effectors of the leg Ikas.
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Creating the Main Body Ika
We have one last Ika to create. This is the Ika for the main body, and it consists of just one limb.

Position the 3D cursor slightly between and slightly above the legs. Then, add an Ika which points

upward, reaching up to approximately the height of the bases of the arm Ikas.

Parenting the Ikas into a Hierarchy
Next, let’s parent the Ikas to one another in a hierarchical relationship. We make the main body Ika

the parent of the arms and the parent of the legs. The idea is that moving the main body Ika should

also move the child Ikas. The effector of the main body Ika can be thought of as the head of our

character. In particular, when we move this effector, which is at the same height as the shoulders of

our arm Ikas, this means that the bases of the arm Ikas also move. In other words, repositioning the

head also automatically repositions the shoulders. We don’t have to manually reposition the shoul-

ders to match the new position of the head; an exact match would be almost impossible to achieve

by hand anyway. This illustrates the power of Ikas in a hierarchy.

First, parent the arm Ikas to the body Ika as follows:

1. Select both of the arm Ikas by pressing Shift+right-click.

2. Extend the selection, again with Shift+right-click, to include the body Ika. The body Ika

should now be active, displayed in a lighter color than the other two Ikas.

3. Press Ctrl+p to make the active object, the body Ika, the parent of the other selected objects,

the arm Ikas. A pop-up menu appears with the choices Use Vertex, Use Limb, and Use Skele-

ton. These choices allow you to specify exactly which part of the Ika should become the

parent. Use Vertex allows you to choose any point along the chain (the base, any of the joints,

or the effector) to be the parent, and is what we use for this example. Use Limb means to use

an entire limb, which we use in the next part of this tutorial. Use Skeleton means that several

combined Ikas, called a skeleton, should be the parent. Using skeletons is unfortunately
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beyond the scope of this book (but if you want to experiment, press Ctrl+k to create a skele-

ton from all selected Ikas, and then assign the skeleton as the parent of a mesh).

4. Choose Use Vertex from the parent menu. Another pop-up menu appears asking which vertex

should be used as the parent. Notice that Blender at this point temporarily displays numbers

next to the vertices of the Ika chain in the 3DWindow to assist in selection. Type 1, since ver-

tex 1 is the effector, and click OK.

At this point, another pop-up menu appears asking about the children. The pop-up menu asks

the yes/no question, Effector as child? If you click OK, the effector of the child Ikas will be

hooked to the parent. If you press Esc to cancel the menu, the base of the child Ikas will be hooked

to the parent.
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5. Press Esc to link the bases of the child Ikas, as opposed to the effectors, to the parent.

Proceed similarly to assign the body Ika as the parent of the leg Ikas; only in this case, use vertex 0

(the base of the body Ika) as the parent. As with the arms, you should press Esc to the question

Effector as child? because you want the bases of the leg Ikas to be hooked to the parent vertex 0 of

the body Ika.

Testing the Ika Chains
With the Ika hierarchy built as described above, try moving around the effectors. Notice that mov-

ing the effector of the main body Ika allows you to cause your character to bend forward or

backward; the shoulders follow the head. Notice also that moving the arm or leg effectors allows

you to very easily place the hands and feet of your character.

The next step is to animate the Ika chains to create a walking motion.
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Animating the Ika Chains
Blender offers a number of ways of animating the Ika chains. We can specify key frames with cer-

tain positions of the effectors, we can draw the movement curves explicitly, or we can even record

the motion of the mouse to allow us to move the limb in real time. Here, we use the first method,

key frame animation.

Animating the Ika chains with key frame animation is almost identical to animating the verti-

ces for 3D morphing as we did earlier. The procedure is as follows.

1. Choose a frame with the arrow keys.

2. Position all effectors for the frame. After positioning each effector, press i to insert a key

frame, and select Effector from the pop-up menu. This saves the position of the effector.

NOTE Instead of manipulating and animating the effectors directly, you can also create an
object (even an empty object, which is nothing more than a help object) which is the parent of
the effector, and manipulate and animate the parent object instead of the effector. Transfor-
mations or animations on the parent object are then propagated to the child effector object.
During key frame animation, you could then insert a LocRotSize key to save the location, rota-
tion, and size of the parent object, instead of inserting an Effector key.

3. Change the frame number and repeat for all frames of the animation.

This is one of the most difficult parts of character animation—actually posing the character.

For a simple walking motion, you can use the guideline that opposite arms and legs should move

more or less in unison, and position the effectors appropriately for the key frames. But there is

much, much more to creating a realistic walking motion—to say nothing of creating an realistic
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and expressive walking motion. As mentioned earlier, this tutorial is only meant to introduce you

to some of the important aspects of character animation. For now, just make the arms and legs

swing back and forth over time.

Remember, you don’t have to specify too many key frames; Blender interpolates the positions

between the key frames to create a smooth animation. In this example, I created five key frames, at

frames 1, 21, 41, 61, and 81. For each key frame, I positioned the effectors of the arm and leg Ikas,

and inserted a key for each effector. Key frame 81 is identical to key frame 1, so that the anima-

tion—in this case, a walking motion—appears to loop.

Although it’s not important for exporting the results (which we do later in this tutorial), it is a

nice feature to make the animation loop in Blender. This way, you can let your animation run sev-

eral times to see how it looks in a loop. You can do this by selecting an Ika, changing to the

IpoWindow, and clicking on the W-shaped button, which represents a repeating angular curve.

This button sets the extend mode for an interpolation curve to be cyclic; the curve then repeats its

shape infinitely. Do this for all Ika curves by selecting each Ika in turn and setting its curves to be

cyclically extended. In this way, the entire animation is then cyclic or looped. View the animation,

as mentioned in the previous morphing tutorial, with Alt+a.

Now, we have a walking motion through our Ikas, but still have no polygonal model. The goal

is to animate a polygonal model in a walking motion. Thus, the next step is to associate a series of

meshes with the Ikas.

Connecting Ika Chains and Meshes
Ideally, we would like to create one single polygonal model with arms and legs, and associate each

part of the model with its appropriate Ika—arm polygons with the arm Ikas and leg polygons with

the leg Ikas. Unfortunately, this is not currently possible with Blender. In Blender, an Ika always

affects an entire mesh, not just part of a mesh. So, we must split up our human-like model; in par-

ticular, the rule is: Each limb in each Ika must be associated with a separate mesh.

This rule ensures that the shape of each limb never changes. If we just had one mesh for sev-

eral limbs (doing this would incidentally require us to create a skeleton with Ctrl+k as mentioned

earlier), then this one mesh would be stretched and distorted based on the influence of several Ika

limbs simultaneously. While this is fine for animating amorphous shapes (such as a sack of flour)

without well-defined appendages, it looks rather ugly for shapes such as humans with arms and

legs which shouldn’t drastically change shape when they bend.

This rule, that we need a separate Ika for each mesh, means that we need two meshes for each

arm, two meshes for each leg, and one mesh for the main body. We also add in an additional mesh

for the head, even though it is not connected to any Ika in this example. Our humanoid figure thus

consists of ten separate meshes.

For each Ika limb in the arm and leg Ikas, proceed as follows:

1. Create a new tube mesh, and position and scale it in 3D space so that it exactly surrounds the

appropriate limb.

2. Select the tube and the Ika, with the Ika active.
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3. Press Ctrl+p to parent the Ika to the mesh. Select Use Limb from the pop-up menu to make

the Ika limb the parent. In the next pop-up menu, specify the desired limb number, which is

the limb the tube surrounds.

For the main body, add a cube mesh and deform it so that it resembles a human torso. Then assign

the (single) limb of the main body Ika to be the cube’s parent. For the head, add a sphere object and

specify the cube (the torso) as its parent.

At this point, any movement of the limbs of the Ika (caused by movement of the effectors)

should also propagate to the child tube objects. Try previewing your animation by pressing Alt+a;

notice that the polygonal meshes now move along with their parent Ika limbs.

Texturing and Exporting the Model
Creating an IK animation in Blender that does not distort the mesh requires that we have a separate

mesh for each Ika limb. But in a 3D program, it is more convenient to treat the entire character as

one single mesh (unless the 3D application program itself directly supports IK, a topic we touch on

briefly later in this chapter). We can easily join all selected meshes in the 3DWindow by pressing

Ctrl+j, but the problem is that after joining meshes, the Ikas no longer correctly affect the joined

mesh, meaning that all further frames of the animation are inaccessible. Undoing a join operation

is also not possible. Therefore, copying a scene is the easiest way to export single, joined meshes

for different frames of animation. In the copied scene, you join all meshes, and export the joined

mesh. Then you delete the copy, and return to the original scene with the separate meshes. You

change to the next frame of animation and repeat.

Thus, I recommend the following procedure to export the separate meshes as single, joined

meshes:

1. Select all mesh objects.

2. Change to the first frame of animation you wish to export using the arrow keys.

3. Duplicate the entire scene. To do this, use the MENUBUT in the header of the InfoWindow.

(In Blender 2.0, this button is located in the header of the ButtonsWindow when the
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AnimButtons (activated with F10) are active. Click on the button, select Add New from the

menu, and select Full Copy from the next menu. This creates an entire copy of the current

scene, and switches to the copied scene.

4. Press Ctrl+j to join all selected meshes.

5. Press Alt+w to write the joined, single mesh into a Videoscape file. Choose a unique

filename.

6. Delete the current scene by clicking on the X next to the Scene button. You return to the previ-

ous scene with the separate meshes.

7. Change to the next frame you wish to export, using the arrow keys. Repeat steps 3 through 6

for all frames you wish to export.

For this example, I chose to export eight key frames of animation, corresponding to frames 1, 11,

21, 31, 41, 51, 61, and 71. Notice that when positioning the effectors, we only specified four key

frames, but we actually have 81 frames at our disposal, since Blender interpolates the effector

positions between the frames we specified.

At this point, the exported meshes should all (hopefully) be morph-compatible, since they

were formed by joining the same meshes in the same manner. Only the position of the individual

sub-meshes has changed from frame to frame.

The last thing to do is to texture the model. You must texture the model after joining the

meshes into a single mesh as described above. You only need to texture one of the models, not all

of them, because the texture coordinate assignment across the model (which we save in the

mesh.uv text file) stays the same regardless of how the model is posed; The texture file

ika.jpg (located in the same directory as ika.blend) is a single 64� 64 texture with five

sub-images: a zigzag pattern, a smiley face, a white area, a green texture, and a skin texture.

Remember that we need to convert the JPEG file to a PPM file when we import it into an l3d

program.
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We map the various polygons of the model to the various sub-parts of the texture image as

described in the 3D morphing example above. To recapitulate: open an ImageWindow and load an

image; in the 3DWindow, enter FaceSelect Mode, select the desired faces, press u, select the

desired mapping, and tweak the mapping by dragging vertices in the ImageWindow. For our

human-like model, we use the following mappings:

� Front of head: Mapping From Window, when facing the front of the head in the 3DWindow.

The resulting mapping is scaled in the ImageWindow to surround exactly the smiley face in

the texture.

� Back of head: Mapping From Window, when facing the back of the head. The resulting map-

ping is scaled to surround the white part of the texture.

� Top of arm: Mapping Cylinder, scaled to fit within the zigzag pattern.

� Bottom of arm: Mapping Cylinder, scaled to fit within the skin pattern.

� Main Body: Mapping Standard 64, scaled to fit within the zigzag pattern.

� Leg: Mapping Cylinder, scaled to fit within the green pattern.

The textured, single-mesh model is located in the scene Textured within the file ika.blend.

Make sure you activate textured viewing mode in the 3DWindow (Alt+z) to see the texturing in

Blender. While it’s not exactly a work of art, this model does illustrate the techniques used to gen-

erate textured, IK controlled meshes.

After applying the texture coordinates, export the file to VRML and save the texture coordi-

nates section of the file to a file ika.uv, as described in the previous morphing example.

Importing the Textured Ika Meshes
Having exported the textured meshes from Blender, we can then import them into a program by

using the Videoscape plug-in from the previous program. The next program, ika, does just this.

The fact that the meshes were created with IK does not matter to the Videoscape plug-in; we just

read them in as meshes and can then morph between them.

For this program, I just chose to morph back and forth between two key frames, which are

saved in file ika1.obj and ika7.obj. These correspond to animation frames 11 and 71 in the

original Blender file. Since we are just using two key frames in the program, this means that we are

skipping over some of the eight key frames we exported. Since the motion in this example is so

simple, this doesn’t make much difference, but for more accurate motion, we could import more

key frames into our program by loading the appropriate Videoscape files.

NOTE If you look closely, you will notice that the tips of the arms, which consist of triangular
faces, have incorrectly assigned texture coordinates. This is due to the apparent VRML export
bug mentioned earlier. To get around this, you should not use triangular faces with VRML
export. I noticed this flaw in the model, but decided to leave it in so you could see what the
problem looks like and how to recognize it.
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The program listing for this program is similar to the previous program. We load different

Videoscape files, pass the texture coordinate file on to the Videoscape plug-in, make the morphing

a bit faster, and only create one instead of several morphing objects, but the rest of the code is the

same.

Listing 3-4: File shapes.h, program ika
#include "../lib/geom/object/object3d.h"
#include "geom/vertex/verint.h"
#include "dynamics/plugins/plugenv.h"

class pyramid:public l3d_object {
static const int num_keyframes = 2;
int keyframe_no;
l3d_two_part_list<l3d_coordinate> *keyframes[2];
l3d_vertex_interpolator interp;
bool currently_interpolating;

public:
pyramid(l3d_two_part_list<l3d_coordinate> *keyframe0,

l3d_two_part_list<l3d_coordinate> *keyframe1);
virtual ~pyramid(void);
int update(void);

};

Listing 3-5: File shapes.cc, program ika
#include "shapes.h"

#include <stdlib.h>
#include <string.h>

pyramid::pyramid(l3d_two_part_list<l3d_coordinate> *keyframe0,
l3d_two_part_list<l3d_coordinate> *keyframe1)

:
l3d_object(100)

{
keyframes[0] = keyframe0;
keyframes[1] = keyframe1;
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currently_interpolating = false;
keyframe_no=0;

}

pyramid::~pyramid(void) {
//- set vertices pointer to NULL to prevent parent l3d_object from trying
//- to delete these vertices, because they do not belong to us
vertices = NULL;

}

int pyramid::update(void) {
if(currently_interpolating) {
vertices = interp.list;
if(! interp.step()) {
currently_interpolating = false;

}
}else {
keyframe_no++;
if(keyframe_no >= num_keyframes) {keyframe_no = 0; }
int next_keyframe = keyframe_no + 1;
if(next_keyframe >= num_keyframes) {next_keyframe = 0; }

vertices = keyframes[keyframe_no];
interp.start( *keyframes[keyframe_no], *keyframes[next_keyframe],

30, 3);

currently_interpolating = true;
}

//- it is important to recalculate the normals because the mesa
//- texture mapping reverse projection relies on correct normals!
int i;
for(i=0; i<polygons.num_items; i++) {
polygons[i]->compute_center();
polygons[i]->compute_sfcnormal();

}
}

Listing 3-6: File main.cc, program ika
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p3_flat.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rast3.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
#include "../lib/system/fact0_2.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/dynamics/plugins/plugenv.h"
#include "../lib/geom/texture/tl_ppm.h"
#include "../lib/dynamics/plugins/vidmesh/vidmesh.h"

#include "shapes.h"

194 Chapter 3: 3D Modeling with Blender

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

class my_world:public l3d_world {
public:
my_world(void);

};

my_world::my_world(void)
: l3d_world(400,300)

{
l3d_screen_info *si = screen->sinfo;

camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(5.5);
camera->far_z = int_to_l3d_real(500);

rasterizer_3d_imp->fovx = &(camera->fovx);
rasterizer_3d_imp->fovy = &(camera->fovy);
rasterizer_3d_imp->screen_xsize = &(screen->xsize);
rasterizer_3d_imp->screen_ysize = &(screen->ysize);

int i,j,k,onum=0;

i=10; j=0; k=20;
k=0;

//- create two videoscape plug-in objects, one for the first morph
//- target and one for the second

l3d_object *morph_target0, *morph_target1;

l3d_texture_loader *texloader;
l3d_surface_cache *scache;
texloader = new l3d_texture_loader_ppm(si);
scache = new l3d_surface_cache(si);
l3d_plugin_environment *plugin_env0, *plugin_env1;

plugin_env0 = new l3d_plugin_environment(texloader, screen->sinfo, scache,
(void *)"0 0 0 1 0 0 0 1 0 0 0 1 ika1.obj ika.ppm ika.uv");

morph_target0 = new l3d_object(10);
//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

morph_target0->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

morph_target0->plugin_loader->load("../lib/dynamics/plugins/vidmesh/vidmesh.so");
morph_target0->plugin_constructor =
(void (*)(l3d_object *, void *))
morph_target0->plugin_loader->find_symbol("constructor");

morph_target0->plugin_update =
(void (*)(l3d_object *))
morph_target0->plugin_loader->find_symbol("update");

morph_target0->plugin_destructor =
(void (*)(l3d_object *))
morph_target0->plugin_loader->find_symbol("destructor");

morph_target0->plugin_copy_data =
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(void (*)(const l3d_object *, l3d_object *))
morph_target0->plugin_loader->find_symbol("copy_data");

if(morph_target0->plugin_constructor) {
(*morph_target0->plugin_constructor) (morph_target0,plugin_env0);

}

plugin_env1 = new l3d_plugin_environment(texloader, screen->sinfo, scache,
(void *)"0 0 0 1 0 0 0 1 0 0 0 1 ika7.obj ika.ppm ika.uv");

morph_target1 = new l3d_object(10);
//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

morph_target1->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

morph_target1->plugin_loader->load("../lib/dynamics/plugins/vidmesh/vidmesh.so");
morph_target1->plugin_constructor =
(void (*)(l3d_object *, void *))
morph_target1->plugin_loader->find_symbol("constructor");

morph_target1->plugin_update =
(void (*)(l3d_object *))
morph_target1->plugin_loader->find_symbol("update");

morph_target1->plugin_destructor =
(void (*)(l3d_object *))
morph_target1->plugin_loader->find_symbol("destructor");

morph_target1->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
morph_target1->plugin_loader->find_symbol("copy_data");

if(morph_target1->plugin_constructor) {
(*morph_target1->plugin_constructor) (morph_target1,plugin_env1);

}

//- create some pyramid objects
objects[onum=objects.next_index()] =
new pyramid(morph_target0->vertices, morph_target1->vertices);

*objects[onum] = *morph_target0;
objects[onum]->num_xforms = 2;
objects[onum]->modeling_xforms[0] = l3d_mat_rotx(0);
objects[onum]->modeling_xforms[1].set
( float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.) );

objects[onum]->modeling_xform=
objects[onum]->modeling_xforms[1] | objects[onum]->modeling_xforms[0];

objects[onum]->vertices = morph_target0->vertices;

l3d_screen_info_indexed *si_idx;
l3d_screen_info_rgb *si_rgb;

l3d_polygon_3d_flatshaded *p;
for(int pnum=0; pnum<objects[onum]->polygons.num_items; pnum++) {
p = dynamic_cast<l3d_polygon_3d_flatshaded *>(objects[onum]->polygons[pnum]);
if(p) {
p->final_color = si->ext_to_native

(rand()%si->ext_max_red,
rand()%si->ext_max_green,
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rand()%si->ext_max_blue);
}

}

if (objects[onum]==NULL) exit;
objects[onum]->modeling_xforms[1].set
( int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(i),
int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1) );

objects[onum]->modeling_xform =
objects[onum]->modeling_xforms[1] |
objects[onum]->modeling_xforms[0] ;

screen->refresh_palette();
}

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;

factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete d;
delete p;
delete w;

}

Rotoscoping and Inverse Kinematics
Blender offers an interesting feature which can make creating IK animations easier. This feature is

called rotoscoping. Rotoscoping is the use of live video material to assist in creating computer ani-

mations. Blender’s support for rotoscoping allows individual frames of a movie file to be

synchronized with the Blender animation frame. The movie image is superimposed on top of the

3DWindow. Changing the Blender animation frame with the arrow keys also changes the dis-

played frame of the movie. For instance, moving ahead five animation frames in Blender also

moves ahead five frames in the movie.

The idea is that the movie footage shows the movement of a character (e.g., a human) from a

fixed camera position. Then, the 3D camera in Blender should be placed in a position in space cor-

responding to the position of the real movie camera used to take the video footage. The virtual

camera and the real camera then view the scene from the same position. Rotoscoping work is thus

done in Blender in the camera view (key 0 on the numeric keypad). For each frame of animation,

we position the Ikas such that the apparent position of the Ikas in Blender’s camera view is identi-

cal to the apparent position of the real actor’s arms and legs in the real movie footage. This
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alignment of the Ikas is made possible because the correct frame of the movie image is superim-

posed upon the 3DWindow. We align the Ikas with the real movie footage for one frame, change to

the next frame, align the Ikas again, and so forth. In this manner, the apparent movement of the

Ikas exactly matches the apparent movement of the real actor, frame for frame. After synchroniz-

ing the movement in this way, we are then free to view the animation from any angle or to export

the animation as a series of meshes for vertex morphing in a 3D program.

To use rotoscoping in Blender we must load a movie as a background image for the

3DWindow. Do this as follows:

1. Add a help object, such as a plane. This help object will use a material, which in turn will use a

texture, which in turn will hold the movie file.

2. Press F5 to change to the MaterialButtons. Add a new material through the MENUBUT but-

ton in the header of the ButtonsWindow. A material specifies visible properties of a surface

and is valuable for creating realistic renderings with Blender; however, we are just using the

material as a placeholder for a texure.

3. Press F6 to change to the TextureButtons. Add a new texture through the MENUBUT button

in the header of the ButtonsWindow. The new texture is connected to the previous material.

4. Activate the TOGBUT Image near the top of the ButtonsWindow. This sets the texture type to

be an image file. Blender supports two kinds of movies for rotoscoping: single file movies

with several frames in one file (such as an AVI file), or movies saved as a series of sequen-

tially named separate files (e.g., file.001.jpg, file.002.jpg, file.003.jpg,

and so forth). If you want to use a single file movie, activate the TOGBUT Movie; otherwise,

leave it unactivated.

5. In the NUMBUT Frames, enter the total number of frames in the animation. For multiple file

movies, this specifies the number of files to be sequentially loaded. For single file movies, this

number specifies how many frames in the animation will be used. If you do not set this num-

ber, you will see the first image of the movie, but no further ones—so be sure to set this value.

6. Click the button Load Image, and select either an AVI movie file or the first numbered file of

a series of images. Blender loads the animation file(s) into the texture.

7. In the 3DWindow, press Shift+F7 to access the ViewButtons for this 3DWindow. The win-

dow changes from type 3DWindow to type ButtonsWindow, and the ViewButtons are

displayed.

8. Activate the TOGBUT BackgroundPic. A MENUBUT appears beneath the TOGBUT; use it

to select the movie you loaded earlier.

9. The bottommost MENUBUT in the ViewButtons controls the use of a movie as a background

picture (as opposed to a still image). To use a movie as a background picture, select the tex-

ture, which you previously created and into which the movie was loaded, with this

MENUBUT. A TEXTBUT appears beneath the MENUBUT displaying your selection.
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NOTE Once, I encountered what may be a bug in Blender 2.0, which prevented the use of
the MENUBUT to select a movie texture. The symptom was that selection of the texture in the
MENUBUT never caused the TEXTBUT to appear, indicating that Blender did not accept my
selection. To solve this, I deleted the file .B.blend from my home directory, which saves
Blender’s default configuration information. After deletion of the defaults file, the function
worked again; evidently, some odd configuration prevented use of the movie texture.

10. Press Shift+F5 to change the window back to a 3DWindow.

11. Press 0 on the numeric keypad to switch to camera view. You should now see the movie super-

imposed on top of the 3DWindow. Additionally, in top, front, and side orthogonal views, you

also see the movie. For any other viewpoint, you do not see the movie. This indicates that

rotoscoping is only useful in orthogonal or camera views. For the purposes of character ani-

mation, camera view is the view to use. (For tracing 2D logos, orthogonal mode could be

used.)

Now, whenever you change the Blender animation frame with the arrow keys, the superimposed

movie also changes its frame. So, to do rotoscoping, you simply:

1. Build an Ika hierarchy and parent it to a series of meshes.

2. Position the 3D camera in the same position and orientation relative to the character as in the

original film footage. Either you must know this information, or you can guess it by looking at

the footage. For instance, it might appear that the camera is slightly above the character and is

a few meters distant. The more accurately you place the camera, the better results you will get.

3. Use the arrow keys to change to the first frame of the animation and of the movie.

4. Switch to camera view.

5. Position the Ikas (through their effectors) so that the profile of the surrounding meshes

matches the profile of the character on the movie frame. You may find it helpful to have sev-

eral 3DWindows open simultaneously: one in camera view to monitor the camera view of the

Ikas, and some orthogonal view 3DWindows for precise positioning of the Ika effectors in

side, front, and top view.

6. Insert keys for all Ika effectors (or their parent objects, if you have chosen to manipulate

effectors through parent objects). Additionally, if you have rotated the Ikas or their parent

objects, you should also insert keys to save the rotation (type Rot, LocRot, or LocRotSize to

save the rotation).

7. Change to the next frame of animation. Depending on how precisely you wish to mimic the

animation, and how much time you are willing to invest, you may want to synchronize every

frame, which is the most exact method, or you may work in steps of, say, ten frames, allowing

Blender to interpolate the rest of the movement. Repeat the synchronization steps 5 and 6 for

all frames of animation.

You can incrementally work on synchronizing the frames. For instance, you could start by syn-

chronizing the positions of the Ikas once every 30 frames, to get a rough capture of the gross

motion. Then, preview the animation and observe if the automatically interpolated Ika positions

match up closely enough with the video footage. If not, then resynchronize the Ikas every 15
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frames at those points where the interpolated position deviates too greatly from the actual posi-

tion. Continue this process to achieve the desired accuracy.

Programming IK and FK
Until now, we’ve looked at IK from the point of view of a 3D modeling program; we manually

pose our character in the 3D modeler with the help of IK, then export the results to meshes which

we then animate in our program. A more comprehensive approach, and one which has started to

become more common in recent years, is actually to do the IK calculations in real time in the 3D

program itself. Essentially, you need to create a hierarchical data structure to store the limbs in an

IK chain, and a system of solving for all intermediate positions and orientations of the intermedi-

ate joints given the position of the base and the effector. Indeed, Blender itself must perform

exactly such a computation to position the Ikas. The techniques unfortunately go beyond the scope

of this book, and are sometimes combined with physically based simulation so that movement of

the character’s joints obeys the physical (Newtonian) laws of motion. Creating animations in this

manner can create very realistic, non-repetitive animations; with a key frame approach, all anima-

tions are pre-recorded and appear the same whenever they are played back within the program.

However, physically based systems also give less control over exactly what sort of motion

appears, since it is automatically calculated; this can be disadvantageous if you want to model spe-

cific nuances of motion.

Another reason for programming IK into the 3D application program itself is to allow more

sophisticated ways of handling the appearance of polygons at joints. With IK under program con-

trol, we can dynamically create smoothing polygons at the joints, depending on the position of the

limbs, so that elbows and knees don’t appear to be two separate sticks glued together, but instead

smoothly flow into one another, like real skin on top of bones. We can also cause other dynamic

position-based effects, such as bulging muscles when an arm is flexed.

Essentially, computing the IK beforehand makes the 3D program simpler and allows for eas-

ier control of the exact appearance of the motion, but computing the IK in the program allows you

more opportunities to interact with the IK computation and its effects on the mesh. The availabil-

ity of good tools is the key to combining the advantages of precomputed and program-controlled

IK.

Even without programming a complete IK system, you can still program a simple limb-based

(or bone-based, depending on your terminology) system quite easily, for the sole purpose of sav-

ing memory [LUNS98]. Consider that for each frame of our IK-generated animations, we export

the entire mesh data, with positions of all vertices. Thus, for each frame of animation, we store the

positions of all vertices in a vertex list in memory. For large animations, this can be a lot of mem-

ory. We can save memory by recognizing that the model is not a loose collection of unrelated

vertices, but is instead a grouping of limbs which just happen to be combined into one mesh for

convenience. Thus, even if all vertices move from one frame to the next, certain relationships

among the vertex positions remain constant—specifically, all vertices belonging to a limb remain

in the same position relative to one another. It is only the position of the limbs relative to one

another that changes from frame to frame.
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Thus, a limb-based animation system stores each limb as a set of vertices in memory, and

stores the movement data in terms of the movement of the limb (which is one transformation

matrix applied to every vertex of the mesh associated with the limb) instead of in terms of explicit

vertex positions for all vertices in the limb. Writing such a system requires you to extract the limb

information from a raw mesh after it has been exported—a tricky process, but not impossible.

First, you find all limbs by finding vertices whose relative positions do not change from frame to

frame. This divides the mesh up into a set of limbs. Then, given the raw vertices for a limb at the

previous frame and at the next frame, you must derive a transformation matrix converting from the

old vertex positions to the new vertex positions. You can do this by forming a coordinate system

based on certain vertices of the original and the new positions of the limb, then using a matrix to

convert between the coordinate systems.

Note that these limbs and the transformation matrices moving these limbs can all be generated

completely automatically. With some additional manual intervention, it is also possible to arrange

the limbs—and their transformation matrices—into a hierarchy. For instance, movement of the

forearm limb would not be viewed in terms of a forearm-to-world-space matrix, but instead in

terms of the series of matrices forearm-to-upper-arm, upper-arm-to-shoulder, and shoulder-to-

world-space. The process for automatically extracting limbs from an unstructured mesh has no

way of deciding on a hierarchy of limbs, which is why this information would need to be specified

additionally.

Once we have specified this additional hierarchy, the entire animation system essentially

becomes a forward kinematics system. The original positions of the mesh vertices may have been

generated via IK, but this information was not exported; only the raw mesh geometry was

exported. Through the limb extraction process, we obtain collections of vertices which move

together, then derive their orientations and arrange them manually into a hierarchy of limbs and

their transformation matrices. The hierarchy then controls the mesh in an FK manner: the precom-

puted transformations from the parent limbs propagate to the child limbs. The result is an anima-

tion that results in the same mesh animation we would achieve with vertex morphing, but that uses

less memory.

An example of how such a limb-based system can save memory is animating a walking

motion [SEGH00]. To animate a walk using vertex morphing, we need at least three keys for the

feet (back, centered, forward); any fewer and it becomes obvious that the feet are translating in a

straight line from back to front, thus shortening the legs. To look good, we need at least five keys.

With a limb-based hierarchial system, we just need two keys (back, forward) since the points will

rotate around the joint properly, maintaining their shape with respect to the limb.

Summary
In this chapter, we looked at a number of useful Blender modeling techniques. We saw how to use

the Videoscape file format in combination with additional files for storing a texture image and tex-

ture coordinate information, which we then read in using a Videoscape plug-in object. We saw

how to use Blender’s VRML export for extracting the texture coordinates. We also looked at the

animation topics of compatible morph targets, inverse kinematics, and rotoscoping.
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We now know quite a bit about Linux 3D graphics programming—both theoretical and prac-

tical aspects. With the free compilers and 3D modeling tools available for Linux, you can put all of

this knowledge to work by practicing writing 3D programs and creating interesting, animated, tex-

tured 3D models for use in these programs.

Starting with the next chapter, we turn our attention to some of the 3D techniques specific to

creating larger, more interesting, more interactive environments. The next chapter focuses on gen-

eral visual surface determination techniques used to deal with larger 3D datasets.
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C h a p t e r 4

Visible SurfaceVisible Surface
Determination I:Determination I:
General Techniques

W
e have seen many facets of Linux 3D graphics programming: operating system issues,

the X Window System, 2D graphics, 3D geometry and mathematics, classes for orga-

nizing 3D world data, 3D modeling and texturing, import and export of polygonal

models, and animation. Starting with this chapter, we begin to put all of this information together,

to create larger, interactive 3D environments. In this and the coming chapters we’ll look at tech-

niques for handling larger datasets, tools for creating these datasets, and some miscellaneous

topics which make for a more realistic and enjoyable 3D experience (collision detection, sound,

and basic networking).

This chapter deals with the topic of visual surface determination, abbreviated VSD, which is

the determination from an arbitrary set of polygons which ones are visible for the given viewpoint.

VSD is a large area of study, so we devote two chapters to the topic. In this chapter, we cover gen-

erally applicable VSD techniques and principles, which can be used in most situations without

much difficulty. In particular, we discuss the following topics:

� Purpose and goals of VSD algorithms

� Back-face culling

� Hierarchical view frustum culling and bounding volumes

� Painter’s algorithm

� z buffer algorithm

Each of the discussed algorithms is also implemented in l3d library classes to illustrate exactly

how the algorithm works in practice.
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The Goals of VSD
VSD algorithms have two main goals: to ensure a correct display and to efficiently reduce the

amount of computation which must be done. Let’s discuss each separately.

First, the correctness issue addressed by VSD algorithms aims to ensure that farther polygons

do not obscure nearer polygons, since this is a physical impossibility due to the properties of light.

Drawing polygons to the screen in no particular order often leads to an incorrect display where far-

ther polygons sometimes obscure nearer ones. For this reason, the l3d library, as we have seen it

thus far, implements a simple version of the so-called painter’s algorithm, which we return to in

more detail later in this chapter. Other VSD algorithms we look at in this chapter take different

approaches but have the same goal: each pixel drawn to the screen should, ideally, correspond to

(that is, result from the projection of) a point that we are physically able to see from our 3D model

for the given viewpoint. We say “ideally” because VSD algorithms for interactive 3D environ-

ments can often get away with slightly imperfect results; since the viewer is probably moving, any

small imperfections in the VSD for the current frame may very well disappear for the next frame.

The situation is different with photorealistic, non-real-time algorithms, where every rendered

image should be as close to perfect as time, algorithms, and resources allow.

Second, the efficiency issue addressed by VSD algorithms aims to reduce the amount of work

that must be done when drawing a scene, trying to restrict processing of polygons to just those

polygons that are indeed visible for the current viewpoint. Efficient visible surface determination

is important, because for a large world consisting of many polygons, generally only a small
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Figure 4-1: The correctness issue of VSD. Farther polygons or parts of polygons
cannot obscure nearer polygons. A correct display mimics physical viewing reality.
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fraction of these are visible. Many are invisible because they are behind the viewer, pointing away

from the viewer, too far from the viewer, outside the field of view, or obstructed by other polygons.

Sequentially checking every single polygon in the environment to see if it is visible or not can be

extremely time consuming if most of the polygons are indeed invisible; in the end, we only need to

draw the visible polygons. Thus, visual surface determination techniques try to use efficient data

structures to eliminate processing of as much of the world as possible, and to focus processing on

only the parts of the world that can be seen. The main obstacle to developing efficient VSD algo-

rithms for interactive environments is the dynamic nature of the environment: both the viewer and

the environment may move or change from frame to frame, meaning that the VSD problem essen-

tially needs to be resolved any time anything in the environment changes. We can, however, reuse

visibility information from the previous frame in solving the VSD problem for the current frame,

since much of the information as to which polygons were visible and invisible may still be valid if

the viewer and/or environment only change slightly from frame to frame. Additionally, we can try

to precompute some viewpoint-independent visibility information, which we statically store then

reference at run time to solve the VSD problem for the current viewpoint. Examples of such

precomputed visibility information include portals and BSP trees, which we cover in the next

chapter.

The opposite of visual surface determination is hidden surface removal, abbreviated HSR.

This refers to the removal of surfaces which are hidden or not visible. Thus, we use the terms VSD

and HSR more or less interchangeably; they both refer to the same problem, just seen from differ-

ent viewpoints.
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Figure 4-2: The efficiency issue addressed by VSD.
(Arrows represent polygon surface normals.) Only
polygon 1 and part of polygon 3 are visible; the
rest are invisible because they are behind the
viewer (8), pointing away from the viewer (4, 5),
too far from the viewer (6), outside the field of
view (7), or obstructed by other polygons (2, part
of 3). Processing as few invisible polygons as
possible is an efficiency goal of VSD. If the
viewpoint or the polygon positions change, so
does the visibility information.



Recall the complementary roles of hardware acceleration and VSD schemes. The general phi-

losophy is “cull what you can, accelerate what you can’t.” In other words, in the presence of

accelerated hardware, culling or VSD schemes can stop processing once the polygon counts per

frame lie within the ranges that can be handled by the hardware. For instance, if the hardware can

draw several hundred thousand polygons in 1/60th of a second, then we don’t need to painstak-

ingly compute exactly which edges or pixels of one polygon obscure which edges or pixels of

another polygon; we simply send all of the “probably visible” polygons to the hardware, and let

the hardware draw them all. Even if we waste time drawing invisible polygons, this is hardware-

accelerated wasted time, which takes less than 1/60th of a second. As you read this chapter, keep

in mind that hardware acceleration can reduce the need for exact fine-grained VSD, but at a very

minimum, coarse-grained VSD will always be necessary to handle increasingly complex 3D

scenes.

It should be noted that VSD techniques, within the context of interactive 3D applications, are

related to but not the same as world partitioning techniques. A world partitioning technique is one

which attempts to reduce the amount of the world (i.e., the number of 3D objects) which must be

examined to update the environment from frame to frame. In an interactive 3D environment, the

environment may change; objects might move around, change their state, and so forth. VSD tech-

niques, if seen purely from the viewpoint of the visibility problem, are not the same as world

partitioning techniques, because changes in the environment might take place in a portion of the

world that is currently invisible. VSD techniques reduce the amount of work which needs to be

done drawing the scene, but similar techniques are needed to reduce the amount of work updating

the entire dynamic 3D environment. Typically, world partitioning techniques are an extension of a

VSD technique. This means that we determine which parts of the world are visible, then allow

objects in or “near” the visible area to change or move around. The rest of the environment is

“frozen in time” and does not change until it becomes visible or nearly visible. The rationale is that

areas near the current viewpoint will likely become visible in a few frames if the viewpoint moves

in a continuous manner through the environment (as opposed to teleporting around randomly), so

nearby areas are updated even if they are not yet completely visible. Ideally, of course, we would

allow the entire world—all objects—to update each frame, but with larger worlds this is impossi-

ble, given that RAM and processing power are not infinite. Therefore, the compromise usually

taken is to couple a VSD algorithm with a world partitioning algorithm. As with VSD, a primary

concern of world partitioning schemes is avoiding sequentially looping through and testing many

objects or areas only to find out that they are currently inactive; an efficient scheme computes the

active regions near the viewer without exhaustive search. We see examples of this in Chapter 5.
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With an understanding of the correctness and efficiency issues that VSD algorithms address,

and their relationship to world partitioning schemes, let’s now look at a number of VSD

techniques.

Back-Face Culling
One of the simplest VSD algorithms is the back-face culling algorithm. This algorithm mainly

addresses the efficiency issue of VSD. In 3D graphics, to cull an object means to remove it from

further consideration. Thus, back-face culling refers to the removal from further consideration of

faces (polygons) which are back-facing. Let’s explore this idea more closely.

Principally, we use polygons to model the surface of our 3D objects. If all of our objects are

closed so that the interior may never be seen, this implies that we only ever see the outward-facing

surface of the object. This means that we cannot see any part of the surfaces (polygons) pointing

away from the viewer; the back side of the surface points toward the interior of the object, which

we never see because it is always obstructed by the outward-facing polygons, and the front side of

the surface points away from the viewer, meaning it also cannot be seen. Put simply, this means

that any polygons facing away from the viewer—called back-facing polygons—need not be

drawn.

Chapter 4: Visible Surface Determination I: General Techniques 207

Figure 4-3: World partitioning and
VSD schemes. If we partition the 3D
world into a series of cubical areas,
then only those areas within the field
of view (solid lines) are visible.
However, all visible areas and some
additional “almost visible” areas
(dashed lines) can be made active, so
that the part of the world around the
viewer updates. Areas too far away
from the viewer (dotted lines) are
inactive and not updated. Since active
areas depend on the viewer location,
they also change whenever the viewer
moves. An efficient scheme will not
need to perform an exhaustive search
of all areas to determine which are
currently active.



Not drawing back-facing polygons means, however, that clipping away parts of the front-fac-

ing polygons—against the near z clip plane, for instance—allows us to see straight through the

object, since none of its back-faces are drawn. You can notice this behavior in almost every poly-

gon-based 3D game, typically with the enemies. If you come too close to a polygonal mesh, it will

be clipped against the near-z plane, and you see through its polygonal hollow shell. This is typi-

cally avoided by implementing a collision detection algorithm (see Chapter 8) so that the viewer

cannot move so close to an object that it is clipped against the near z plane, but due to inaccuracy

with the collision detection sometimes the viewer can get too close to an object.

Determination of back-faces and front-faces is a straightforward matter. In camera space, we

simply examine the sign of the z coordinate of the surface normal vector. In world space, we can

take the dot product of the surface normal vector with the vector from the polygon’s center to the
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Figure 4-5: Clipping away parts of
near polygons means that we see
through the back side of the object,
since the back-facing polygons are
not drawn at all.

Figure 4-4: Back-facing
polygons (dashed lines) can
never be seen by the
camera and are not drawn.



camera; if the dot product is negative, then the polygon is back-facing. The back-face culling algo-

rithm is simple: if the polygon is back-facing, do not send it to the rasterizer to be drawn.

3D Convexity and Back-Face Culling
We encountered the concept of convexity in 2D when discussing the clipping and rasterization 2D

polygons. As we have seen, the convexity of a polygon in 2D allows for a number of simplifica-

tions on various polygonal operations. Rasterization in horizontal spans and simplified analytical

clipping are two operations we have seen that rely on the convexity of the 2D polygons on which

they operate.

Convexity also plays a role in 3D. A polygonal 3D object is convex if it has no “dents” or

“holes” in it. More formally, for a convex object, a line segment drawn between any two points on

the object lies entirely within the object. 3D convexity means that the entire object is approxi-

mately sphere-shaped, just as 2D convex polygons were approximately O-shaped.

If the only object being viewed is a single convex polygonal 3D mesh, then back-face culling

is the only VSD algorithm needed to correctly display the mesh. With a convex mesh, no

front-facing polygon can obscure any part of any other front-facing polygon; this could only occur

if a “dent” in the polyhedron caused some front-facing polygons to jut in front of other front-fac-

ing polygons. Since no front-facing polygons can obscure any others, and since we only see the

front-facing polygons, this means we can simply draw all front-facing polygons in any order, and

achieve a correct display—if our mesh is convex.

In and of itself, this observation is interesting, but not immediately useful. Typically the 3D

objects we deal with are not convex. For instance, none of the objects we created with Blender in

Chapter 3 (with the exception of the cube) were convex. Furthermore, scenes consist of many

objects, not just one object. Lack of convexity implies that we need to resort to another VSD

scheme to produce a correct display. For instance, until now we have use the painter’s algorithm,

which we look at again in this chapter, to draw the polygons in a back to front order. The z buffer

algorithm, also covered later in this chapter, is another way of producing a correct display in the

absence of convexity. These algorithms incur a computational expense for resolving the visibility

among front-facing polygons by performing depth comparisons or computations.

Other VSD techniques, instead of attempting to compensate for the lack of convexity, try to

create and leverage convexity. Two schemes that we look at later, the BSP tree and portals, rely on

a convex partitioning of geometry. In this way, the convexity observation again becomes useful.

By partitioning our objects into disjointed convex pieces, the VSD problem is raised to a higher

level of ensuring correct visibility among the convex pieces; within each convex piece, we simply

use back-face culling and perform no further VSD within the convex piece.

We return to this topic of convexity in more detail when we have looked at the BSP and portal

schemes.

Sample Program: backface
The sample program backface implements back-face culling. Its structure is simple and typical

of an l3d program. We derive the custom world class for program backface from the new class
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l3d_world_backface. If you have read the introductory companion book Linux 3D Graph-

ics Programming, you can see that this program is nearly identical to the fltsim program.

Run the program and notice the display in the upper left of the screen, showing the number of

polygons sent to the rasterizer. Only the front-facing polygons are drawn, as you can see by the

drawn polygon count.

Listing 4-1: shapes.h, shape definition header file for program backface
#include "../lib/geom/object/object3d.h"

class pyramid:public l3d_object {
int xtheta;

public:
pyramid(void);
virtual ~pyramid(void);
int update(void);

};

Listing 4-2: shapes.cc, shape definition code for program backface
#include "shapes.h"

#include <stdlib.h>
#include <string.h>

pyramid::pyramid(void) :
l3d_object(4)

{
(*vertices)[0].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*vertices)[1].original.set
(float_to_l3d_real(10.0),
float_to_l3d_real(0.),
float_to_l3d_real(0.),
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Figure 4-6: Output from
sample program backface,
illustrating the number of
polygons drawn.



float_to_l3d_real(1.));
(*vertices)[2].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(10.),
float_to_l3d_real(0.),
float_to_l3d_real(1.));
(*vertices)[3].original.set
(float_to_l3d_real(0.),
float_to_l3d_real(0.),
float_to_l3d_real(10.),
float_to_l3d_real(1.));

int pi;
pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
printf("before: %p", polygons[pi]->vlist);
polygons[pi]->vlist = &vertices;
printf("after: %p", polygons[pi]->vlist);
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=1;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

pi = polygons.next_index();
polygons[pi] = new l3d_polygon_3d_flatshaded(3);
polygons[pi]->vlist = &vertices;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=3;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=2;
(*polygons[pi]->ivertices)[polygons[pi]->ivertices->next_index()].ivertex=0;
polygons[pi]->compute_center();polygons[pi]->compute_sfcnormal();

num_xforms = 2;
xtheta=0;
modeling_xforms[0] = l3d_mat_rotx(xtheta);
modeling_xforms[1].set
( float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.), float_to_l3d_real(0.),
float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(0.), float_to_l3d_real(1.) );

modeling_xform=
modeling_xforms[1] | modeling_xforms[0];

}
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pyramid::~pyramid(void) {
for(register int i=0; i<polygons.num_items; i++) {delete polygons[i]; }

}

int pyramid::update(void) {
xtheta += 10; if (xtheta>359) xtheta-=360;
modeling_xforms[0]=l3d_mat_rotx(xtheta);
modeling_xform=
modeling_xforms[1] | modeling_xforms[0];

}

Listing 4-3: main.cc, main program file for program backface
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p3_flat.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rast3.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
#include "../lib/geom/world/w_back.h"
#include "../lib/system/fact0_2.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/dynamics/plugins/plugenv.h"

#include "shapes.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

class my_world:public l3d_world_backface {
public:
my_world(void);

};

my_world::my_world(void)
: l3d_world_backface(640,400)

{
l3d_screen_info *si = screen->sinfo;

camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(5.5);
camera->far_z = int_to_l3d_real(500);

int i,j,k,onum=0;

i=10; j=0; k=20;
k=0;

//- create some pyramid objects
for(i=1; i<200; i+=20) {
objects[onum=objects.next_index()] = new pyramid();
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l3d_screen_info_indexed *si_idx;
l3d_screen_info_rgb *si_rgb;

l3d_polygon_3d_flatshaded *p;
for(int pnum=0; pnum<objects[onum]->polygons.num_items; pnum++) {
p = dynamic_cast<l3d_polygon_3d_flatshaded *>(objects[onum]->polygons[pnum]);
if(p) {
p->final_color = si->ext_to_native

(rand()%si->ext_max_red,
rand()%si->ext_max_green,
rand()%si->ext_max_blue);

}
}

if (objects[onum]==NULL) exit;
objects[onum]->modeling_xforms[1].set
( int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(i),
int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(0), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1), int_to_l3d_real(1),
int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(0), int_to_l3d_real(1) );

objects[onum]->modeling_xform =
objects[onum]->modeling_xforms[1] |
objects[onum]->modeling_xforms[0] ;

}

//- create a plugin object

objects[onum=objects.next_index()] = new l3d_object(10);
//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

objects[onum]->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

objects[onum]->plugin_loader->load("../lib/dynamics/plugins/pyramid/pyramid.so");
objects[onum]->plugin_constructor =
(void (*)(l3d_object *, void *))
objects[onum]->plugin_loader->find_symbol("constructor");

objects[onum]->plugin_update =
(void (*)(l3d_object *))
objects[onum]->plugin_loader->find_symbol("update");

objects[onum]->plugin_destructor =
(void (*)(l3d_object *))
objects[onum]->plugin_loader->find_symbol("destructor");

objects[onum]->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
objects[onum]->plugin_loader->find_symbol("copy_data");

l3d_plugin_environment *e = new l3d_plugin_environment
(NULL, screen->sinfo, NULL, (void *)"");

if(objects[onum]->plugin_constructor) {
(*objects[onum]->plugin_constructor) (objects[onum],e);

}

screen->refresh_palette();
}

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
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my_world *w;

factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete d;
delete p;
delete w;

Class l3d_World_Backface

The new class l3d_world_backface has modified the main polygon processing loop, by

overriding method draw_all, to perform back-face culling. Recall that we group polygons into

objects, but can also access the polygons as individual polygons, through the nonculled_
polygon_nodes linked list member of l3d_object. Until now, the only time we removed

polygons from this list was if they were completely clipped away against the near z plane. Now,

with back-face culling, we also remove any polygons from the list if they are back-facing. Only

the polygons surviving all culling operations are inserted into the final polygon list to be drawn for

each frame.

The following code snippet from class l3d_world_backface performs the back-face

culling.

//- vector from facet center to camera (at 0,0,0), for backface culling
l3d_vector facet_to_cam_vec;
//- facet's sfc normal relative to origin (aFacet.sfc_normal is relative
//- to facet center)
l3d_vector N;
n = objects[iObj]->nonculled_polygon_nodes;
while(n) {
N = n->polygon->sfcnormal.transformed - n->polygon->center.transformed;

facet_to_cam_vec.set (0 - n->polygon->center.transformed.X_,
0 - n->polygon->center.transformed.Y_,
0 - n->polygon->center.transformed.Z_,
int_to_l3d_real(0));

//- dot product explicitly formulated so no fixed point overflow
//- (facet_to_cam_vec is very large)
//- (use of the inline function "dot" uses default fixed precision)

#include "../../math/fix_lowp.h"
#define BACKFACE_EPS float_to_l3d_real(0.1)

if(( l3d_mulrr(FX_CVT(N.X_), FX_CVT(facet_to_cam_vec.X_)) +
l3d_mulrr(FX_CVT(N.Y_), FX_CVT(facet_to_cam_vec.Y_)) +
l3d_mulrr(FX_CVT(N.Z_), FX_CVT(facet_to_cam_vec.Z_)) > BACKFACE_EPS)
//- equivalent to: if(N.dot(facet_to_cam_vec) > BACKFACE_EPS )

#include "../../math/fix_prec.h"

&&
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n->polygon->clip_near_z(camera->near_z))

{
//- polygon is not culled

}else {

//- take this polygon out of the list of nonculled_polygon_nodes

First, we compute the vector going from the center of the polygon to the camera. Since this com-

putation takes place in camera coordinates, the camera is at location (0,0,0). Then, we take the dot

product of the polygon’s surface normal vector and the computed polygon-to-camera vector,

using the sign to determine the front-face or back-face orientation of the polygon. Note the explicit

formulation of the dot product as a sum of products instead of using the operator dot to control

the precision of the computation (how many bits are used for fractional and whole parts) in the

case where fixed-point math is being used, since otherwise the dot product computation could

overflow and incorrectly compute the orientation of polygons with fixed-point math. Also note

the use of an epsilon parameter to further allow for some inaccuracy in the computation; polygons

must be front-facing by an amount larger than the epsilon parameter to be accepted as front-fac-

ing. (The “amount” that a polygon is front-facing is the scalar returned by the dot product

computation, which is the cosine of the angle between the vectors.) Since we are performing the

back-face computation in camera coordinates, it would actually suffice just to check the sign of

the z component of the normal vector. This example, however, illustrates the more general dot

product method of back-face computation, which could also be performed in world coordinates

before expending the computational effort on transforming vertices into camera space, only to

find out that the transformed vertices are not needed because they belong to back-facing polygons.

Class l3d_world_backface also displays a count of polygons that it sends to the

rasterizer. Notice that for identical scenes, this number is lower for program backface than for

program fltsim; the back-face culling reduces the number of polygons sent to the rasterizer.

Listing 4-4: w_back.h, declaration for the new world class performing back-face culling
#ifndef __W_BACK_H
#define __W_BACK_H
#include "../../tool_os/memman.h"

#include "../../tool_os/dispatch.h"
#include "../../view/camera.h"
#include "../../tool_2d/screen.h"
#include "../object/object3d.h"
#include "world.h"

class l3d_world_backface : public l3d_world
{

public:
l3d_world_backface(int xsize, int ysize) :
l3d_world(xsize,ysize) {};
virtual ~l3d_world_backface(void);

/* virtual */ void draw_all(void);
};

#endif
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Listing 4-5: w_back.cc, code for the new world class performing back-face culling
#include "w_back.h"
#include <stdlib.h>
#include <string.h>

#include "../object/object3d.h"
#include "../polygon/polygon.h"
#include "../../tool_2d/screen.h"
#include "../../tool_os/dispatch.h"
#include "../../raster/rasteriz.h"
#include "../../tool_2d/scrinfo.h"
#include "../../system/fact0_2.h"
#include "../../tool_os/memman.h"

l3d_world_backface::~l3d_world_backface() {
}

void l3d_world_backface::draw_all(void) {
int iObj, iFacet;

l3d_polygon_3d *plist[MAX_VISIBLE_FACETS]; int pnum=0;

rasterizer->clear_buffer();

for(iObj=0; iObj<objects.num_items; iObj++) {

objects[iObj]->reset();

if (objects[iObj]->num_xforms) {
objects[iObj]->transform(objects[iObj]->modeling_xform);

}

objects[iObj]->camera_transform(camera->viewing_xform);

l3d_polygon_3d_node *n;

//- vector from facet center to camera (at 0,0,0), for backface culling
l3d_vector facet_to_cam_vec;
//- facet's sfc normal relative to origin (aFacet.sfc_normal is relative
//- to facet center)
l3d_vector N;
n = objects[iObj]->nonculled_polygon_nodes;
while(n) {
N = n->polygon->sfcnormal.transformed - n->polygon->center.transformed;

facet_to_cam_vec.set (0 - n->polygon->center.transformed.X_,
0 - n->polygon->center.transformed.Y_,
0 - n->polygon->center.transformed.Z_,
int_to_l3d_real(0));

//- dot product explicitly formulated so no fixed point overflow
//- (facet_to_cam_vec is very large)
//- (use of the inline function "dot" uses default fixed precision)

#include "../../math/fix_lowp.h"
#define BACKFACE_EPS float_to_l3d_real(0.1)

if(( l3d_mulrr(FX_CVT(N.X_), FX_CVT(facet_to_cam_vec.X_)) +
l3d_mulrr(FX_CVT(N.Y_), FX_CVT(facet_to_cam_vec.Y_)) +
l3d_mulrr(FX_CVT(N.Z_), FX_CVT(facet_to_cam_vec.Z_)) > BACKFACE_EPS)
//- equivalent to: if(N.dot(facet_to_cam_vec) > BACKFACE_EPS )

#include "../../math/fix_prec.h"
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n->polygon->clip_near_z(camera->near_z))

{
//- polygon is not culled

}else {

//- take this polygon out of the list of nonculled_polygon_nodes
if(n->prev) {
n->prev->next = n->next;

}else {
objects[iObj]->nonculled_polygon_nodes = n->next;

}

if(n->next) {
n->next->prev = n->prev;

}
}

n = n->next;
}

objects[iObj]->apply_perspective_projection(*camera,
screen->xsize, screen->ysize);

n = objects[iObj]->nonculled_polygon_nodes;

while(n) {
if ( n->polygon->clip_to_polygon_2d(screen->view_win)) {

plist[pnum++] = n->polygon;

/* Use the average of all z-values for depth sorting */
l3d_real zsum=int_to_l3d_real(0);
register int ivtx;

for(ivtx=0; ivtx<n->polygon->ivertices->num_items; ivtx++) {
zsum += (**(n->polygon->vlist))[ (*n->polygon->ivertices)[ivtx].ivertex

].transformed_intermediates[1].Z_ ;
}
n->polygon->zvisible = l3d_divri(zsum, ivtx);

}
n = n->next;

}
}

/* Sort the visible facets in decreasing order of z-depth */
qsort(plist, pnum, sizeof(l3d_polygon_3d *), compare_facet_zdepth);

/* Display the facets in the sorted z-depth order (painter's algorithm) */

for(int i=0; i<pnum; i++) {
plist[i]->draw(rasterizer);

}

char msg[256];
sprintf(msg,"%d POLYS DRAWN", pnum);
rasterizer->draw_text(0,16,msg);

}
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Although it is not needed very often, if you really want to see both sides of a surface, you either

need to use two polygons to model the front and back sides of the surface, or you need to skip the

back-face culling operation. Note that if you skip the back-face culling operation, and want

back-facing polygons to be drawn, you need to make a change to the rasterization routines in l3d,

which all expect polygon vertices to be in a particular order, namely clockwise. Back-facing poly-

gons have a reverse orientation, and thus have their vertices in a counterclockwise order, which

would need to be handled within the rasterizer. In a sense, the fact that the rasterizer does not draw

polygons with a reversed orientation is also a form of back-face culling (and is in fact the

screen-space method which OpenGL uses), but it can be faster to eliminate sending the polygon to

the rasterizer at all by doing the back-face determination using the surface normal vector.

View Frustum Culling
View frustum culling is another VSD algorithm which, like back-face culling, focuses on the effi-

ciency side of VSD. With view frustum culling, we cull polygons or groups of polygons which are

completely outside of the view frustum. The view frustum, also called the view volume, is the area

in 3D space visible to the virtual viewer. The viewer does not see everything in the world; the hori-

zontal and vertical field of view terms, which involve the size of the display window, limit the

amount of the world which can be seen. Nothing outside of the window boundaries can be seen.

Furthermore, neither objects closer than the near z plane nor farther than the far z plane can be

seen. Geometrically, then, the view volume is a truncated pyramid with its apex at the camera.

Objects inside the view volume are visible; objects outside the view volume are invisible.

The idea behind view frustum culling is to mathematically represent the view frustum in 3D

space, then to test objects to see if they are in the frustum or not. If they are, they are processed fur-

ther. If not, they are discarded from further processing immediately. Clearly, the earlier we can

perform the view volume containment test, the more work we can potentially save.

Defining a View Frustum
The view frustum can be represented by six planes. The frustum itself is then the area inside of the

intersection of all six planes.
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The near and far planes of the frustum are the near and far z clipping planes, each defined by a

plane equation of the form z=k, where k is the distance of the plane (near or far) from the eye. Until

now, we have not actually clipped against a far z plane, but the idea is the same as with the near z

plane, with the exception that the far z plane’s normal points in the opposite direction as the near z

plane’s, because we clip against the near side of the near plane, but against the far side of the far

plane.

The remaining four planes of the frustum are a bit trickier to define. They represent the left,

right, bottom, and top limits to the field of vision, due to the finite size of the projection window.

Recall that knowing three points lying on a plane can define the plane; we only need to use the

three points to form two unique vectors, take the cross product to find the plane normal (the A, B,

and C terms of the plane equation), and then use one of the three points to solve for the D term of

the plane equation. Method l3d_plane::align_with_points computes the plane coeffi-

cients based on three given points; remember that the order of the points passed to the method is

important, because it determines the front/back orientation of the plane.

To define the remaining four planes of the frustum, we first calculate the camera space coordi-

nates of the four corners on the near plane which, when projected from 3D to 2D, yield the four

corners of the screen in screen space. In other words, we take a reverse projection of the four cor-

ners of the screen in 2D screen space, giving us four corner points in 3D camera space lying on the

near z plane. Each view frustum plane passes through two of these points.

For instance, (0,0), (319,0), (319,239), (0,239) would be the screen space corner coordinates

for a 320� 240 window; we would reverse project these onto the near z plane using the reverse pro-

jection formulas from Chapter 2. Recall that reverse projection first finds the z value of the

projected point by using the plane equation of the plane on which the 3D point must lie, then
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multiplies the projected x and y by the computed 3D z value to obtain the 3D x and y values, thus

reversing the perspective division by z. See Chapter 2 for the full equations, which involve the

field of view terms and the screen size. Note that in this case we actually don’t need to use the

plane equation to compute the z value; since we are reverse projecting onto the near z plane, where

z is a constant, we already know the z value to use in the reverse projection formulas of Chapter 2.

We then use consecutive pairs of these reverse projected corner points, along with the camera

space coordinates of the camera itself (which is conveniently (0,0,0) in camera space), and calcu-

late a plane given these three points, because these three points lie exactly on each side of the view

frustum. Assuming we call the reverse projected corner points of the screen “upper-left,”

“upper-right,” “lower-right,” and “lower-left,” the following list shows us which points to use to

calculate a particular frustum plane.

� Top frustum plane: Camera location (0,0,0), upper-right, and upper-left.

� Right frustum plane: Camera location (0,0,0), lower-right, and upper-right.

� Bottom frustum plane: Camera location (0,0,0), lower-left, and lower-right.

� Left frustum plane: Camera location (0,0,0), top-left, and lower-left.

NOTE In the above list, the order of the points has been carefully chosen so as to define the
inside side of the plane to be inside of the frustum; in other words, when viewed from the
inside of the frustum, the specified points appear clockwise. This is important for the method
l3d_plane::align_with_points, as mentioned earlier.

Computing the Frustum in World Coordinates

The above procedure gives us frustum planes, defined in terms of plane equation coefficients, in

camera space. We can also perform the same procedure by using the world space locations by mul-

tiplying each point by the inverse camera transformation matrix just before using the point to

compute the frustum plane. This gives us the frustum planes in world coordinates instead of cam-

era coordinates. This can be useful to allow us to perform frustum culling in world space rather

than camera space, which allows us to cull objects before transforming them to camera space.

Note that such world space culling only saves computational effort if we use a simplified bound-

ing volume to represent the geometry for the culling purposes; see the section titled “Bounding

Spheres and the View Frustum.”

For instance, to compute the top frustum plane in world coordinates, we multiply camera

location (0,0,0) by the inverse camera transformation matrix to get the camera’s position in world

space. Similarly, we multiply the upper-right and upper-left corner points by the inverse camera

matrix to obtain these points in world space instead of camera space. Then using these world space

coordinates, we compute the plane equation.

Computing the near and far frustum planes in world space also requires us to create planes

using three points in world space, not camera space. This is also straightforward: the near and far

planes are defined, in camera space, by an equation of the form z=k, where k is a constant defining

the distance from the eye to the plane. Therefore, in camera space, any point of the form (x,y,k), for

arbitrary x and y, lies on the plane in question. We can choose any three points (x,y,k) that do not lie

in a straight line to define the plane in camera space; then, we multiply these camera space points
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by the inverse camera matrix to obtain world space points from which we can compute the world

space plane. A convenient choice of non-collinear (not lying in a straight line) points for the near

plane is (0,0,k), (1,0,k), and (0,1,k); for the far plane, use the same points in reverse order: (0,1,k),

(1,0,k), (0,0,k). The far plane’s normal must point in the opposite direction of the near plane’s nor-

mal so that the inside side of each plane lies on the inside of the frustum—hence, the reversal of

point ordering for near and far planes. For instance, if the near z plane is defined in camera space as

z=1.5, we would take points (0,0,1.5), (1,0,1.5), and (0,1,1.5) as points known to be on the near

plane in camera space. Then we multiply these points by the inverse camera matrix to obtain world

space points. Finally, we compute the plane using these three points.

Class l3d_Viewing_Frustum

Class l3d_viewing_frustum represents a view frustum. It stores six planes for the six sides

of the frustum, in member variables top, bottom, left, right, near, and far.

The method create_from_points creates a view frustum given four reverse projected

corner points (as covered earlier), a near plane, a far plane, and a transformation matrix. The rou-

tine aligns the six planes of the frustum using the scheme described in the previous section: the

top, bottom, left, and right planes are created using the eye point and two of the four corner points.

The front and back planes are created using a simple non-collinear set of three points located on

the near and far planes. Creation (or alignment, depending on how you view it) of all planes takes

place through method l3d_plane::align_with_points. Before all points are passed to

this method, they are multiplied with the transformation matrix xform, which is passed as a

parameter. By default, the frustum creation takes place in camera coordinates and yields a set of

planes representing the location of the frustum in camera coordinates. By passing a transformation

matrix that changes from camera coordinates to world coordinates, we can compute the frustum in

world coordinates, which is generally more desirable. This means that we pass the inverse viewing

matrix from the camera as the xform parameter to obtain the frustum planes in world space. To

obtain the frustum in camera space, pass an identity matrix as the xform parameter.

The method intersect_with_sphere tests to see if a sphere is inside of the view

frustum. The next sections cover this method and the idea in more detail.

Listing 4-6: vfrust.h
#ifndef __VFRUST_H
#define __VFRUST_H
#include "../../tool_os/memman.h"
#include "../point/point.h"
#include "../plane/plane.h"
#include "../boundvol/boundsph.h"

class l3d_viewing_frustum {
public:
l3d_plane top, bottom, left, right, near, far;
void create_from_points(const l3d_point & top_left,

const l3d_point & top_right,
const l3d_point & bot_right,
const l3d_point & bot_left,
const l3d_real & near_z,
const l3d_real & far_z,
const l3d_matrix& xform);
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int intersects_sphere(const l3d_bounding_sphere & sphere);
};

#endif

Listing 4-7: vfrust.cc
#include "vfrust.h"
#include "../../tool_os/memman.h"

void l3d_viewing_frustum::create_from_points
(const l3d_point & top_left,
const l3d_point & top_right,
const l3d_point & bot_right,
const l3d_point & bot_left,
const l3d_real & near_z,
const l3d_real & far_z,
const l3d_matrix& xform)
{
l3d_point eye(0,0,0,1);

top.align_with_points(xform|eye, xform|top_right, xform|top_left);
bottom.align_with_points(xform|eye, xform|bot_left, xform|bot_right);
left.align_with_points(xform|eye, xform|top_left, xform|bot_left);
right.align_with_points(xform|eye, xform|bot_right, xform|top_right);

l3d_point p1, p2, p3;

p1.set(int_to_l3d_real(0), int_to_l3d_real(0), near_z, int_to_l3d_real(1));
p2.set(int_to_l3d_real(1), int_to_l3d_real(0), near_z, int_to_l3d_real(1));
p3.set(int_to_l3d_real(0), int_to_l3d_real(1), near_z, int_to_l3d_real(1));
near.align_with_points(xform|p1,xform|p2,xform|p3);

p1.set(int_to_l3d_real(0), int_to_l3d_real(1), far_z, int_to_l3d_real(1));
p2.set(int_to_l3d_real(1), int_to_l3d_real(0), far_z, int_to_l3d_real(1));
p3.set(int_to_l3d_real(0), int_to_l3d_real(0), far_z, int_to_l3d_real(1));
far.align_with_points(xform|p1,xform|p2,xform|p3);

}

int l3d_viewing_frustum::intersects_sphere(const l3d_bounding_sphere & sphere)
{
return
(
sphere.distance_to_plane(top) > -sphere.radius &&
sphere.distance_to_plane(bottom) > -sphere.radius &&
sphere.distance_to_plane(left) > -sphere.radius &&
sphere.distance_to_plane(right) > -sphere.radius &&
sphere.distance_to_plane(near) > -sphere.radius &&
sphere.distance_to_plane(far) > -sphere.radius

);
};
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Using the Frustum Planes
Once we have the frustum planes, we then can test each polygon for containment within the

frustum. A polygon is within the frustum if all of its vertices are in the frustum. A vertex is in the

frustum if it is on the inside side of every frustum plane, which we can evaluate simply by evaluat-

ing the plane equation using the vertex. If a polygon is outside of the view frustum, it is removed

from further processing by removing it from the nonculled_polygon_nodes list, just as we

did for back-face culling.

Note that in reality, we usually do not perform frustum culling on single polygons, but instead

on entire objects or even groups of objects. This is hierarchical frustum culling, our next topic.

Hierarchical View Frustum Culling
Individually checking every polygon for containment within the view frustum is very inefficient.

We can be more efficient by introducing a hierarchy into our checks. Instead of checking each

polygon, we can first perform a coarse check at the object level. If an entire object is found to be

outside of the view frustum, then all of its polygons must also lie outside of the frustum, so we

don’t need to waste time checking every polygon in the object. If the object is entirely inside the

view frustum, then all of its polygons are also inside. If the object is partially inside and partially

outside the view frustum, then we must check each polygon individually.

NOTE With hardware acceleration, it might be faster to consider partially contained
bounding volumes as being fully contained, and simply send all of their geometry to the hard-
ware to be drawn. As we said at the beginning of this chapter, this may be inefficient, but
hardware acceleration can often make the actual time penalty of such inefficiency virtually
disappear.

Extending the hierarchy even further, we can collect objects into larger groups, and check each

group first. If the entire group is inside or outside, then so are all of the constituent objects; if it is

partially inside and partially outside, each constituent object must be checked separately. Check-

ing the objects then proceeds as outlined above. The hierarchy can be extended to an arbitrary

number of levels, starting with very large groups of objects, proceeding to medium-sized groups

of objects, proceeding down to objects, proceeding down to individual polygons.
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Figure 4-8: Hierarchical view frustum culling. First, check the hierarchically higher groups of polygons
(A, B, and C), before investing time checking the individual polygons (1, 2, 3, 4, 5, 6, etc.). Here, A is
completely outside, so all of its six polygons can be immediately skipped without traversing that
branch of the hierarchy further. B is completely inside, so all of its polygons can be immediately
passed on for further processing. C is partially inside and partially outside, so all of its individual
polygons must be examined separately, thus requiring a further traversal of this branch of the
hierarchy.

Figure 4-9: Multi-level hierarchy in view frustum culling. Here, group A is found to be partially inside
the view frustum, so processing continues with all groups within A, namely, C, D, and E. Group C is
partially inside, so processing continues with all polygons in group C. Group D is completely outside,
so all of its polygons are immediately discarded. Group E is completely inside, so all of its polygons
are immediately passed on for further processing. Group B, again at the top level of the hierarchy, is
completely outside the frustum, meaning that everything within group B can be instantly discarded.
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The key condition for such a hierarchical scheme to work is an efficient way of checking for

view frustum containment of a group of polygons or objects. This group check must be faster than

checking each individual polygon or object individually; otherwise, the whole scheme wastes

time rather than saving it. The way that we can make group checks faster than individual checks is

through the concept of a bounding volume. A bounding volume is a mathematically simple object,

such as a sphere or a cube, that is large enough to contain all polygons of the object it bounds.

Spheres are particularly simple and convenient for use as bounding volumes. Let’s look more

closely at how we can use spheres to save time in view frustum culling.

Bounding Spheres and the View Frustum

A 3D sphere can be defined in terms of a center and a radius. Let us assume that we have a sphere

that is large enough to contain a polygonal model. (We look at computing such spheres later; it’s

quite easy.) We call such a sphere a bounding sphere. Checking for frustum containment of such a

sphere is extremely fast and easy. It relies on the fact that evaluating a plane equation with a partic-

ular point (x,y,z) gives the shortest (i.e., perpendicular) distance between the plane and the point.

Recall that the side_of_point function does exactly this: it evaluates the plane equation for a

given point, and returns a positive, negative, or zero value if the point is in front of, behind, or on

the plane, respectively. The function can be understood in terms of vector projections; the result of

the side_of_point function is essentially the difference in the length of the projection onto

the plane’s normal vector of the vector from the origin to the point in question. In other words, the

result of l3d_plane::side_of_point is the shortest distance from the point to the plane. If

the point is on the plane, the distance from the point to the plane is zero. If the point is in front of

the plane, it is a positive displacement from the plane; if it is behind the plane, it is a negative dis-

placement from the plane.

CAUTION The plane’s normal vector (the terms A, B, and C in the plane equation) must be
normalized (have a length of 1) for the above computation to work. Plane vectors computed
through the method l3d_plane::align_with_points satisfy this property, since this
method creates a normalized vector. If you create your own planes by explicitly specifying
plane equation coefficients, remember that the plane normal must be normalized. If it is not
normalized, you can still use the plane equation to compute the distance between a point and
the plane. To do this, first normalize the vector (divide it by its length). Then, evaluate the
plane equation using the point for the x, y, and z values, using the normalized A, B, and C
components of the normalized vector, and using the original D component of the plane equa-
tion. Generally, it’s easiest to store normalized vectors from the beginning, so we don’t have
to re-normalize them later to do distance computations.

The trick that makes sphere checking easy is that the very definition of a sphere is based upon dis-

tance. A sphere is defined to be the set of all points in 3D space that are a certain distance, termed

the radius, from a given center point. This means that the following are true:

� If the distance between a sphere’s center and a plane is positive, negative, or zero, the center of

the sphere is in front of, behind, or exactly on the plane, respectively.
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� If the absolute value of the distance between a sphere’s center and a plane is greater than the

sphere’s radius, the sphere is completely on one side of the plane; the sign of the distance

determines which side it is on (inside or outside).

� If the absolute value of the distance between a sphere’s center and a plane is less than the

sphere’s radius, the sphere is partially inside and partially outside the plane; in other words,

the sphere intersects the plane.

� If the absolute value of the distance between a sphere’s center and a plane is exactly equal to

the sphere’s radius, then the sphere grazes the plane.

These facts mean that to check for containment of a bounding sphere in the view frustum, we

evaluate the plane equation for each of the frustum’s planes by using the center of the sphere as the

(x,y,z) point in the plane equation. The result can be analyzed using the above facts to tell us if the

sphere is completely outside, completely inside, or partially inside and partially outside of one

individual frustum plane. If the sphere is completely outside of any one frustum plane, it and all of

its bounded geometry are completely outside of the entire frustum, and can be eliminated from

further processing. If the sphere is completely inside all frustum planes, then it and all of its

bounded geometry are completely inside the entire frustum, and should be passed on for further
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Figure 4-10: Checking
for intersection between
a bounding sphere and a
plane. Given a plane
with normalized normal
vector (A,B,C), and a
sphere with radius r and
center at (cx,cy,cz), this
diagram shows how to
classify the position of
the sphere with respect
to the plane. We
evaluate the plane
equation with the center
point of the sphere, and
compare the result to r.
The value of r tells us the
position of the sphere
with respect to the plane.
From top to bottom, the
sphere is completely
outside of, grazing the
outside of, mostly on the
outside of, split exactly in
half by, mostly inside of,
grazing the inside of, or
completely inside of the
plane.



processing. In any other case, the sphere and its bounded geometry are partially inside and par-

tially outside of the entire frustum, and view frustum culling must continue at the next more

detailed level of the hierarchy for each polygon or object within the bounding sphere.

Note that this computation can be performed in either world space or camera space; we sim-

ply need the sphere’s center point and the planes in the appropriate coordinate system.

TIP The classification of a bounding sphere with respect to a plane can also be interpreted
as the detection of whether the sphere collides with the plane. See Chapter 8 for more on the
topic of collision detection.

Also, notice that we can save time by first transforming only an object’s bounding sphere from

object space into world space to be tested against the world space frustum. If the sphere turns out

to be outside of the frustum, we have saved the work of transforming all of the object’s vertices. If

the sphere turns out to be inside or partially inside the frustum, only then do we expend computa-

tional effort transforming the entire object geometry into world space.

Computing Bounding Spheres

We can compute a bounding sphere for a polygonal object by computing two values: a center and a

radius.

Compute the center of the object by finding the maximum and minimum x, y, and z values

among all vertices. Then, for each x, y, and z, add the maximum and minimum value and divide by

two to arrive at the average middle position along the x, y, and z axes. This yields a single (x,y,z)

location representing the center of the object. Then, with the center point, calculate the distance of

each vertex from the center, using the 3D distance formula. Keep track of the maximum distance

found. Then, define the radius of the sphere to be the maximum distance found. In this way, all

vertices, and thus all polygons, are guaranteed to lie within the sphere, because they all have a dis-

tance smaller than the maximum distance from the sphere’s center.

Note that regardless of how the object is rotated, the bounding sphere remains the same.
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CAUTION If the object contains vertices that are not referenced by any polygon, then be
sure not to use such vertices when computing the center and radius.

It is possible for an object to contain unused vertices—that is, vertices which are not referenced by

any polygon. It is important not to use such vertices when computing the center or radius of the

polygon, since such vertices do not contribute to the geometry of the object. The world editing

scheme covered in Chapter 6 intentionally adds “unused” vertices to the polygonal mesh (vertices

not referenced by any polygon) to encode non-geometric information within the mesh. This

non-geometric information is a unique integer object identifier, which we can then use to associate

arbitrary information with every polygonal mesh: a name, the name of a texture file to be associ-

ated with the mesh, and so forth. We should be careful that such non-geometrical vertices do not

contribute to the bounding sphere computation.

Class l3d_bounding_sphere

Class l3d_bounding_sphere is the l3d class representing a bounding sphere.

Member variables radius and center store the radius and center of the bounding sphere.

The center is stored as l3d_coordinate, so it has an original and a transformed location. The

method compute_around_object computes the bounding sphere around a given object by

computing the center and finding the maximum required radius among all of the object’s vertices

which are used by at least one polygon. Method distance_to_plane computes the distance

between the center of the sphere and a plane, simply by calling the plane’s side_of_point
method with the center point; it is merely another interface to the same functionality.

The member variable transform_stage, along with methods transform and reset,

are responsible for transforming the bounding sphere and tracking how many times the sphere has

already been transformed, just as is the case with the vertices of objects. Since a bounding sphere

is sort of a simplified version of an object, we also provide for similar means of transforming the

bounding sphere.

Transforming a bounding sphere is as simple as transforming its center point; no transforma-

tion we use for the code in this book can change the shape or orientation of a sphere (only a

non-uniform scaling or a shearing transformation could squash or tug the sphere into an asymmet-

ric ellipsoid with an identifiable orientation). We track the number of times the sphere has been

transformed because the bounding sphere should, eventually, be transformed the same number of

times (and with the same matrices) as the geometry it bounds. We say “eventually” because in the

case of a culling operation, the whole idea is to save time by first transforming only the bounding

sphere, then later transforming the geometry if needed. However, for other operations (such as

collision detection), we transform the geometry, then use the bounding sphere later, expecting that

the bounding sphere has also been transformed along with the geometry. In such a case, the bound-

ing sphere is transformed after the geometry, not before. We use the transform_stage
variable to synchronize the transformations of the bounding sphere with those of its underlying

geometry.

We saw earlier how to check for containment of a bounding sphere within the view frustum;

we check the distance between the sphere’s center with every plane in the frustum. If the sphere is

on the inside side of every plane, it is in the frustum; otherwise, it is outside. The method
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l3d_view_frustum::intersects_sphere, which we saw earlier, performs exactly this

test, using the bounding sphere’s distance_to_plane method. The inter-
sects_sphere method considers any sphere that is even partially within the frustum to be

inside; the distance tests check the distance against the negative radius of the sphere. If the signed

distance between the sphere’s center and the plane is greater than the negative radius, this means

that at least some part of the sphere is on the inside side of the plane. This implies that the view

frustum test with bounding spheres, as implemented here, is a conservative test. It may conserva-

tively flag an object as being “inside” the frustum, even if only a tiny part of the bounding sphere is

inside the frustum. Since a bounding sphere cannot perfectly fit its underlying geometry (unless

the underlying geometry is also a sphere), the actual geometry might be completely outside the

frustum even if our test says it might be inside. But no geometry inside the frustum is ever rejected

with our test. This is a general characteristic of conservative tests: they overestimate the work that

might need to be done, but never underestimate it.

Listing 4-8: boundsph.h
#ifndef __BOUNDSPH_H
#define __BOUNDSPH_H
#include "../../tool_os/memman.h"

#include "../../system/sys_dep.h"
#include "../plane/plane.h"
#include "../../math/matrix.h"
#include "../vertex/coord.h"
class l3d_object;

class l3d_bounding_sphere {
public:
int transform_stage;
virtual void reset(void);
virtual void transform(const l3d_matrix &xform);

l3d_real radius;
l3d_coordinate center;
l3d_real distance_to_plane(const l3d_plane & plane) const;
void compute_around_object(const l3d_object *object);

};

#endif

Listing 4-9: boundsph.cc
#include "boundsph.h"
#include "../plane/plane.h"
#include "../object/object3d.h"
#include "../../tool_os/memman.h"

void l3d_bounding_sphere::reset(void) {
transform_stage = 0;
center.reset();

}

void l3d_bounding_sphere::transform(const l3d_matrix &xform) {
transform_stage++;
center.transform(xform, transform_stage);

}
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l3d_real l3d_bounding_sphere::distance_to_plane(const l3d_plane & plane) const
{
//- ensure the size of the plane's normal vector is 1, otherwise this
//- computation doesn't work

return plane.side_of_point(center.transformed);
}

void l3d_bounding_sphere::compute_around_object(const l3d_object *object) {
int i;
center.original.set(0,0,0,1);

l3d_point min, max;
int first_vtx=1;

for(i=0; i<object->vertices->num_fixed_items; i++) {
int vtx_is_referenced=0;
for(int pi=0; pi<object->polygons.num_items && !vtx_is_referenced;pi++) {
for(int vi=0; vi<object->polygons[pi]->ivertices->num_items; vi++) {
if((*object->polygons[pi]->ivertices)[vi].ivertex == i) {
vtx_is_referenced = 1;
break;

}
}

}

if(vtx_is_referenced) {
if(first_vtx) {
first_vtx = 0;
min.X_ = (*object->vertices)[i].original.X_;
max.X_ = (*object->vertices)[i].original.X_;
min.Y_ = (*object->vertices)[i].original.Y_;
max.Y_ = (*object->vertices)[i].original.Y_;
min.Z_ = (*object->vertices)[i].original.Z_;
max.Z_ = (*object->vertices)[i].original.Z_;

}else {
if ( (*object->vertices)[i].original.X_ < min.X_) {
min.X_ = (*object->vertices)[i].original.X_;

}
if ( (*object->vertices)[i].original.X_ > max.X_) {
max.X_ = (*object->vertices)[i].original.X_;

}
if ( (*object->vertices)[i].original.Y_ < min.Y_) {
min.Y_ = (*object->vertices)[i].original.Y_;

}
if ( (*object->vertices)[i].original.Y_ > max.Y_) {
max.Y_ = (*object->vertices)[i].original.Y_;

}
if ( (*object->vertices)[i].original.Z_ < min.Z_) {
min.Z_ = (*object->vertices)[i].original.Z_;

}
if ( (*object->vertices)[i].original.Z_ > max.Z_) {
max.Z_ = (*object->vertices)[i].original.Z_;

}
}

}
}

center.original.X_ =
l3d_divri(min.X_ + max.X_, 2);
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center.original.Y_ =
l3d_divri(min.Y_ + max.Y_, 2);

center.original.Z_ =
l3d_divri(min.Z_ + max.Z_, 2);

radius = int_to_l3d_real(0);
for(i=0; i<object->vertices->num_fixed_items; i++) {
int vtx_is_referenced=0;
for(int pi=0; pi<object->polygons.num_items && !vtx_is_referenced;pi++) {
for(int vi=0; vi<object->polygons[pi]->ivertices->num_items; vi++) {
if((*object->polygons[pi]->ivertices)[vi].ivertex == i) {
vtx_is_referenced = 1;
break;

}
}

}

if(vtx_is_referenced) {

l3d_real dist_squared;
dist_squared = dot((*object->vertices)[i].original - center.original,

(*object->vertices)[i].original - center.original);

if(dist_squared > radius) {
radius = dist_squared;

}
}

}
//- the value computed in the above loop was the max squared distance,
//- now take the square root to retrieve the actual distance
radius = l3d_sqrt(radius);

reset(); //- copy original into transformed
}

Other Bounding Volumes

Other bounding volumes are also used in 3D graphics for the purposes of faster testing and early

rejection. Two common ones are the arbitrarily oriented bounding box (OBB) and the axially

aligned bounding box (AABB).

An arbitrarily oriented bounding box is a cube-like box, with pairwise parallel sides which

fully encompass the geometry it bounds. Like a cube, it can be defined with eight points. In gen-

eral, a bounding box is stored along with the geometry it bounds, and is transformed the same way.

For instance, if we rotate an object, we rotate its bounding box as well. This means that a bounding

box can be arbitrarily oriented in space. On the one hand, this makes bounding boxes good bound-

ing volumes, because they can tightly “fit” the underlying geometry (i.e., the bounding volume

contains relatively little empty space around the bounded geometry), but on the other hand, the

arbitrary orientation of the bounding box means that we have six arbitrarily oriented faces and

eight arbitrarily located points. For instance, computing if two arbitrarily aligned bounding boxes

intersect is not trivial; any one point of one box might pierce any face of the other box. For the pur-

poses of view volume culling, we can check all corner points of the bounding box against all

planes of the view frustum, then use the same logic we used for spheres for determining contain-

ment in the view frustum. One special case which must be handled is a huge bounding box larger
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than the frustum itself; all eight corners lie outside the frustum, but part of the box does lie within

the frustum.

An axially aligned bounding box is the same as a bounding box, with the exception that all of

its sides are always parallel to one of the x-y, y-z, or x-z planes. In other words, the normal vectors

of the sides of the AABB must lie along one of the principal coordinate axes, hence the term “axi-

ally aligned.” In contrast to an arbitrarily oriented bounding box, an axially aligned bounding box

is not transformed along with its underlying geometry due to the alignment restriction on the sides.

This means that as an object rotates, its AABB might need to be recomputed. Since the sides of an

AABB are all conveniently aligned, we only need to store two opposite corner points of the

AABB, not all eight corner points. AABBs generally provide a fairly poor fit to the underlying

geometry, but certain operations on AABBs are very easy. For instance, intersection of two

AABBs can be determined by three consecutive one-dimensional overlap tests; if the x, y, and z

intervals defining the sides of the two AABBs overlap, then the AABBs themselves overlap; oth-

erwise they are disjoint. For the purposes of view volume culling, AABBs can be handled like

OBBs; we test the corner points of the AABB against the view frustum to see if the entire AABB is

inside or outside of the view frustum.
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Figure 4-12: An arbitrarily oriented bounding box is transformed along with its geometry, making for
a tight fit but possibly more complicated computations.

Figure 4-13: An axis-aligned bounding box has sides whose normal vectors lie along the principal
coordinate axes. It provides a poor fit to geometry, but simplifies some computations.



Clipping Against the View Frustum
After culling objects against the view frustum, we know all objects whose bounding spheres lie at

least partially within the frustum. We can then process these objects as normal—performing

back-face culling, perspective projection, clipping to the 2D view window, and rasterization.

However, with the addition of the 3D view frustum, we now can make a change to one step:

the clip against the 2D view window. Recall that projection of a polygon from 3D into 2D can lead

to vertices which lie outside of the 2D view window. Our solution up to this point was to clip the

projected polygons in 2D against the view window to ensure that only the part lying within the

window would be drawn.

But clipping projected polygons in 2D to the view window has some quirks. In particular, the

new vertices that may be generated from a 2D clipping operation do not directly result from a 3D

to 2D projection of an original vertex in the polygon. We’ve mentioned this fact in a number of

places before. This lack of original 3D information for the vertices generated by 2D clipping led us

to develop a reverse projection strategy to obtain the corresponding 3D coordinate for such 2D

vertices. We needed this for the Mesa/OpenGL texture mapping strategy of Chapter 2. Further-

more, clipping texture coordinates in 2D required us to clip u/z, v/z, and 1/z, instead of u and v,

because u/z, v/z, and 1/z can be linearly interpolated and clipped in 2D, whereas u and v cannot.

Reverse projection and the linearity of u/z, v/z, and 1/z in 2D screen space are important topics

to understand, but we can sidestep these issues by performing clipping in 3D instead of in 2D.

Instead of clipping projected polygons against the 2D view window, we can now clip world space

polygons in 3D against the planes of the 3D view frustum. Mathematically, this produces exactly

the same results as the clip in 2D to the 2D view window. In 2D, we clip against the edges of the

view window; in 3D, we clip against the planes, computed via reverse projection, passing through

these same edges and the eye. But by performing the clipping in 3D, we can directly clip the u and

v values instead of u/z, v/z, and 1/z. We saw this in the class l3d_polygon_3d_textured.

Furthermore, this means that all polygon vertices in 2D directly result from the projection of a 3D

vertex. This would eliminate the need for certain reverse projection operations that we used for the

Mesa/OpenGL texture mapping strategy.

Personally, I feel that there are arguments for both 2D and 3D clipping, so you can choose

whichever seems more comfortable to you. The next sample program eliminates 2D clipping

entirely and does all clipping in 3D, so you can see how it is done.

CAUTION Do not confuse culling against the view frustum, which is a possibly hierarchical
inside/outside classification operation, with clipping against the view frustum, which is an
actual change of the underlying geometry of an object to ensure that only the part inside the
frustum remains.

Sample Program: frustum
The sample program frustum performs view frustum culling on a number of tree objects which

are loaded via a plug-in. The program displays on-screen how many objects have been culled via a

bounding sphere test. Navigate around the scene, and notice how many objects are culled away

when you are not looking at them.
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We load the objects in the main program file. After loading each object, we compute a bound-

ing sphere around it. Then, the new world subclass l3d_world_frustum, which is covered in

the next section, draws the world, incorporating view frustum culling.

Listing 4-10: main.cc, main program file for program frustum
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/obound.h"
#include "../lib/geom/polygon/p3_flat.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rast3.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/w_vfrust.h"
#include "../lib/system/fact0_2.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/dynamics/plugins/plugenv.h"
#include "../lib/geom/texture/tl_ppm.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

class my_world:public l3d_world_frustum {
protected:
l3d_texture_loader *texloader;
l3d_surface_cache *scache;

public:
my_world(void);
virtual ~my_world(void);

};

my_world::my_world(void)
: l3d_world_frustum(320,240)

{
l3d_screen_info *si = screen->sinfo;
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Figure 4-14: Output from sample program frustum.
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camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(1.0);
camera->far_z = int_to_l3d_real(50);

//- for mesa rasterizer's reverse projection
rasterizer_3d_imp->fovx = &(camera->fovx);
rasterizer_3d_imp->fovy = &(camera->fovy);
rasterizer_3d_imp->screen_xsize = &(screen->xsize);
rasterizer_3d_imp->screen_ysize = &(screen->ysize);

int i,j,k,onum=0;

texloader = new l3d_texture_loader_ppm(si);
scache = new l3d_surface_cache(si);

for(i=0; i<150; i++) {

//- create a plugin object
l3d_object_clippable_boundable *oc;

objects[onum=objects.next_index()] =
oc =
new l3d_object_clippable_boundable(10);

//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

objects[onum]->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

objects[onum]->plugin_loader->load("../lib/dynamics/plugins/vidmesh/vidmesh.so");
objects[onum]->plugin_constructor =
(void (*)(l3d_object *, void *))
objects[onum]->plugin_loader->find_symbol("constructor");

objects[onum]->plugin_update =
(void (*)(l3d_object *))
objects[onum]->plugin_loader->find_symbol("update");

objects[onum]->plugin_destructor =
(void (*)(l3d_object *))
objects[onum]->plugin_loader->find_symbol("destructor");

objects[onum]->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
objects[onum]->plugin_loader->find_symbol("copy_data");

texloader = new l3d_texture_loader_ppm(si);
scache = new l3d_surface_cache(si);

char plugin_parms[4096];
sprintf(plugin_parms, "%d %d %d 1 0 0 0 1 0 0 0 1 tree.obj tree.ppm tree.uv",

rand()%200-100, 0, rand()%200-100);

l3d_plugin_environment *e = new l3d_plugin_environment
(texloader, screen->sinfo, scache, plugin_parms);

if(objects[onum]->plugin_constructor) {
(*objects[onum]->plugin_constructor) (objects[onum],e);

}

oc->bounding_sphere.compute_around_object(oc);

}
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screen->refresh_palette();
}

my_world::~my_world(void) {
delete texloader;
delete scache;

}

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;

factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete d;
delete p;
delete w;

}

Class l3d_World_Frustum

The new class l3d_world_frustum incorporates view frustum culling into the world’s draw-

ing behavior. It only overrides method draw_all.

Listing 4-11: w_vfrust.h
#ifndef __W_VFRUST_H
#define __W_VFRUST_H
#include "../../tool_os/memman.h"

#include "../../tool_os/dispatch.h"
#include "../../view/camera.h"
#include "../../tool_2d/screen.h"
#include "../object/object3d.h"
#include "world.h"

class l3d_world_frustum : public l3d_world
{

public:
l3d_world_frustum(int xsize, int ysize) :
l3d_world(xsize,ysize) {};
virtual ~l3d_world_frustum(void);

/* virtual */ void draw_all(void);
};

#endif
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Listing 4-12: w_vfrust.cc
#include "w_vfrust.h"
#include <stdlib.h>
#include <string.h>

#include "../object/obound.h"
#include "../polygon/polygon.h"
#include "../../tool_2d/screen.h"
#include "../../tool_os/dispatch.h"
#include "../../raster/rasteriz.h"
#include "../../tool_2d/scrinfo.h"
#include "../../system/fact0_2.h"
#include "../frustum/vfrust.h"
#include "../../tool_os/memman.h"

l3d_world_frustum::~l3d_world_frustum() {
}

void l3d_world_frustum::draw_all(void) {
int iObj, iFacet;

l3d_polygon_3d *plist[MAX_VISIBLE_FACETS]; int pnum=0;

rasterizer->clear_buffer();

l3d_viewing_frustum frustum;

l3d_point top_left, top_right, bot_right, bot_left;
const int XOFF=2,YOFF=2;

top_left.set(l3d_mulrr(l3d_divrr(int_to_l3d_real(XOFF - screen->xsize/2),
l3d_mulri(camera->fovx,screen->xsize)),

camera->near_z),
l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->ysize/2 - YOFF),

l3d_mulri(camera->fovy,screen->ysize)),
camera->near_z),

int_to_l3d_real(camera->near_z),
int_to_l3d_real(1));

top_right.set(l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->xsize-XOFF - screen->xsize/2),
l3d_mulri(camera->fovx,screen->xsize)),

camera->near_z),
l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->ysize/2 - YOFF),

l3d_mulri(camera->fovy,screen->ysize)),
camera->near_z),

int_to_l3d_real(camera->near_z),
int_to_l3d_real(1));

bot_right.set(l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->xsize-XOFF - screen->xsize/2),
l3d_mulri(camera->fovx,screen->xsize)),

camera->near_z),
l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->ysize/2 - screen->ysize+YOFF),

l3d_mulri(camera->fovy,screen->ysize)),
camera->near_z),

camera->near_z,
int_to_l3d_real(1));

bot_left.set(l3d_mulrr(l3d_divrr(int_to_l3d_real(XOFF - screen->xsize/2),
l3d_mulri(camera->fovx,screen->xsize)),

camera->near_z),
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l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->ysize/2 - screen->ysize+YOFF),
l3d_mulri(camera->fovy,screen->ysize)),

camera->near_z),
camera->near_z,
int_to_l3d_real(1));

frustum.create_from_points
(top_left, top_right, bot_right, bot_left,
camera->near_z, camera->far_z,
camera->inverse_viewing_xform);

int culled_obj_count;
culled_obj_count =0;
for(iObj=0; iObj<objects.num_items; iObj++) {

objects[iObj]->reset(); //- also resets bounding sphere

if (objects[iObj]->num_xforms) {

l3d_object_clippable_boundable *obj;
if((obj=dynamic_cast<l3d_object_clippable_boundable *> (objects[iObj])))
{

//- first, position *ONLY* the bounding sphere in world space
obj->bounding_sphere.transform(objects[iObj]->modeling_xform);

//- now, check if the bounding sphere is in the frustum
if(! frustum.intersects_sphere(obj->bounding_sphere)) {
culled_obj_count++;
continue; //- frustum does not intersect sphere->discard object

}else {
//- sphere is at least partially in frustum. so, now,
//- transform *ALL* of the object's vertices into world space.

objects[iObj]->transform(objects[iObj]->modeling_xform);
}

}
else {

//- no bounding sphere available. transform all object vertices
//- immediately.
objects[iObj]->transform(objects[iObj]->modeling_xform);

}
}else {
//- no object-to-world space xform applied, so obj coords
//- are world coords; do frustum test on obj coords

l3d_object_clippable_boundable *obj;
if((obj=dynamic_cast<l3d_object_clippable_boundable *> (objects[iObj])))
{
if(! frustum.intersects_sphere(obj->bounding_sphere)) {
culled_obj_count++;
continue; //- frustum does not intersect sphere->discard object

}else {
//- sphere and object are (partially) in frustum: do not cull

}
}

}

l3d_object_clippable *oc;
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oc = dynamic_cast <l3d_object_clippable *>(objects[iObj]);
if(oc) {
oc->clip_to_plane(frustum.near);
oc->clip_to_plane(frustum.far);
oc->clip_to_plane(frustum.top);
oc->clip_to_plane(frustum.bottom);
oc->clip_to_plane(frustum.left);
oc->clip_to_plane(frustum.right);

}

objects[iObj]->camera_transform(camera->viewing_xform);

l3d_polygon_3d_node *n;

//- vector from facet center to camera (at 0,0,0), for backface culling
l3d_vector facet_to_cam_vec;
//- facet's sfc normal relative to origin (aFacet.sfc_normal is relative
//- to facet center)
l3d_vector N;
n = objects[iObj]->nonculled_polygon_nodes;
while(n) {
N = n->polygon->sfcnormal.transformed - n->polygon->center.transformed;

facet_to_cam_vec.set (0 - n->polygon->center.transformed.X_,
0 - n->polygon->center.transformed.Y_,
0 - n->polygon->center.transformed.Z_,
int_to_l3d_real(0));

//- dot product explicitly formulated so no fixed point overflow
//- (facet_to_cam_vec is very large)
//- (use of the inline function "dot" uses default fixed precision)

#include "../../math/fix_lowp.h"
#define BACKFACE_EPS float_to_l3d_real(0.1)

if(( l3d_mulrr(FX_CVT(N.X_), FX_CVT(facet_to_cam_vec.X_)) +
l3d_mulrr(FX_CVT(N.Y_), FX_CVT(facet_to_cam_vec.Y_)) +
l3d_mulrr(FX_CVT(N.Z_), FX_CVT(facet_to_cam_vec.Z_)) > BACKFACE_EPS)
//- equivalent to: if(N.dot(facet_to_cam_vec) > BACKFACE_EPS )

#include "../../math/fix_prec.h"

)

{
//- polygon is not culled

}else {

//- take this polygon out of the list of nonculled_polygon_nodes
if(n->prev) {
n->prev->next = n->next;

}else {
objects[iObj]->nonculled_polygon_nodes = n->next;

}

if(n->next) {
n->next->prev = n->prev;

}
}

n = n->next;
}
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objects[iObj]->apply_perspective_projection(*camera,
screen->xsize, screen->ysize);

n = objects[iObj]->nonculled_polygon_nodes;

while(n) {
{

plist[pnum++] = n->polygon;

/* Use the average of all z-values for depth sorting */
l3d_real zsum=int_to_l3d_real(0);
register int ivtx;

for(ivtx=0; ivtx<n->polygon->ivertices->num_items; ivtx++) {
zsum += (**(n->polygon->vlist))[ (*n->polygon->ivertices)[ivtx].ivertex

].transformed_intermediates[1].Z_ ;
}
n->polygon->zvisible = l3d_divri(zsum, ivtx);

}
n = n->next;

}
}

/* Sort the visible facets in decreasing order of z-depth */
qsort(plist, pnum, sizeof(l3d_polygon_3d *), compare_facet_zdepth);

/* Display the facets in the sorted z-depth order (painter's algorithm) */

for(int i=0; i<pnum; i++) {
plist[i]->draw(rasterizer);

}

char msg[256];
sprintf(msg,"%d POLYS DRAWN", pnum);
rasterizer->draw_text(0,16,msg);

sprintf(msg,"%d objects culled",
culled_obj_count);

rasterizer->draw_text(0,32,msg);
}

The first thing we do in the new draw_all routine is compute the view frustum in world coordi-

nates. We perform a reverse projection to get the four corner points on the near plane (using the

formulas from Chapter 2), then call l3d_viewing_frustum::create_from_points to

create the view frustum, passing the inverse camera transformation matrix as a parameter so that

the frustum is computed in world space, not camera space. The XOFF and YOFF constants in the

code are pixel offsets from the corner of the screen. Instead of using the extreme upper/lower

left/right corners of the screen for the reverse projection, we use points slightly offset towards the

center of the screen. For instance, instead of (0,0) at the upper left, we use (2,2). This makes the

frustum slightly smaller than the actual screen, to allow for minor numerical inaccuracy in the

clipping code. The reason we make the frustum smaller is that clipping polygons against the

frustum is mathematically equivalent to 2D clipping to the view window, as we noted earlier. But

smaller numerical errors in clipping computations can lead to clipped vertices which lie slightly

outside the frustum. By artificially making the frustum smaller with the XOFF and YOFF
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constants, we can be reasonably sure that even if a clipped vertex in 3D lies slightly outside the

frustum, it will, when projected, still lie within the 2D screen boundaries—which is important if

we use 3D frustum clipping as a replacement for 2D clipping.

Then, we perform view frustum culling on an object with the following snippet of code:

l3d_object_clippable_boundable *obj;
if((obj=dynamic_cast<l3d_object_clippable_boundable *> (objects[iObj])))
{

//- first, position *ONLY* the bounding sphere in world space
obj->bounding_sphere.transform(objects[iObj]->modeling_xform);

//- now, check if the bounding sphere is in the frustum
if(! frustum.intersects_sphere(obj->bounding_sphere)) {
culled_obj_count++;
continue; //- frustum does not intersect sphere->discard object

}else {
//- sphere is at least partially in frustum. so, now,
//- transform *ALL* of the object's vertices into world space.

objects[iObj]->transform(objects[iObj]->modeling_xform);
}

}

First, we transform just the bounding sphere of the object from object space into world space.

Then, we check to see if the bounding sphere is outside of the frustum; if it is, we discard the object

and continue processing the next object in the world. Otherwise, if the bounding sphere was at

least partially inside the frustum, we transform the geometry bounded by the sphere into world

space, and continue processing the object as normal. The actual code has two main if branches,

one for the case that the object has a transformation matrix from object space to world space, and

one for the case that the object has no transformation (i.e., the object’s coordinates are already

world coordinates), but the general logic—if bounding sphere in frustum, then keep, else

reject—is the same for both cases.

If the object’s bounding sphere is in the view frustum, then the next step is to clip the object in

3D against the view frustum planes:

l3d_object_clippable *oc;
oc = dynamic_cast <l3d_object_clippable *>(objects[iObj]);
if(oc) {
oc->clip_to_plane(frustum.near);
oc->clip_to_plane(frustum.far);
oc->clip_to_plane(frustum.top);
oc->clip_to_plane(frustum.bottom);
oc->clip_to_plane(frustum.left);
oc->clip_to_plane(frustum.right);

}

The rest of the object processing is identical to what we have seen before: transformation into

camera space, back-face culling, perspective projection, polygon sorting, and rasterization. (The

next section, which is on the painter’s algorithm, covers the topic of polygon sorting in more

detail.) Notice that we do not clip polygons in 2D to the view window in this case; 3D view

frustum clipping means that any projected polygons will lie within the view window (except in the

case of numerical inaccuracy, as mentioned earlier). Finally, the new draw_all routine also

draws a text string to the display, indicating the number of objects culled.
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The view frustum culling as implemented here, however, still has problems as the number of

objects increases. We perform culling at the object level, with no further hierarchy. This means

that as the number of objects increases, we must linearly search through more and more objects,

testing each one to see if it is in the frustum or not. Even if we can save work by not processing the

objects further, it still costs more and more time to check more and more objects. As we saw ear-

lier, by hierarchically grouping objects into larger and larger groups, and by first checking these

large groups against the view frustum, we can save time by discarding large groups from further

processing without needing to traverse every node in the hierarchy.

The problem remains of how to generate such a hierarchy. You could hard-code the hierarchy

into your program, but this would be very difficult to maintain. You could use the 3D features of

the 3D modeling package to impose hierarchy on your scene, assuming you could export this

information to be read in by a 3D program. This still has the problem that any changes to the scene

would require changing or updating the hierarchy within the 3D modeler. A very interesting

option is the use of a BSP tree to automatically generate a hierarchy of bounding volumes for an

arbitrary set of polygons, as discussed in the next chapter.

But before talking about BSP trees, let’s continue looking at some simpler VSD algorithms.

Next, we cover a simple and popular algorithm, which we already have seen and used: the

painter’s algorithm.

The Painter’s Algorithm
The painter’s algorithm is a VSD algorithm, relying on polygon sorting, which addresses the cor-

rectness issue but neglects the efficiency issue. We know that drawing polygons in random order

to the screen sometimes results in an incorrect display because farther polygons obscure nearer

ones. The solution adopted in the original l3d_world class was the so-called painter’s algo-

rithm, where we draw polygons from back-to-front order into the frame buffer. By drawing the

nearest polygons last, the pixels for the nearest polygons overwrite any pixels from farther poly-

gons which might already be in the frame buffer at the same positions. This means that nearer

polygons always obscure farther polygons.

Since the sample programs using the l3d_world class already use the painter’s algorithm,

there is no additional sample program here. The painter’s algorithm is very simple, and produces

mostly correct results most of the time. However, there are a few important shortcomings and

observations about the painter’s algorithm which we should take note of.

� Sorting. The painter’s algorithm requires us to sort polygons based on their distance to the

viewer. Sorting takes time. For large numbers of polygons, the painter’s algorithm can spend

much of its time sorting the polygons. One technique to avoid such sorting is to create a large

list of polygons, say large enough for 4096 polygons. Each entry in this list represents one z

depth. Then, before drawing a polygon, we scale its z depth to lie within the range of the list.

We round this scaled z depth to an integer and use it as the polygon’s insertion position into the

list. If two polygons’ z depths are close enough, they get assigned to the same slot, which can

result in small-scale sorting errors. Then, to draw the polygons, we traverse the list from back
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to front. In essence, this scheme is a radix sort, using the z depth itself as an index into the list

to avoid sorting.

� Overdraw. The painter’s algorithm suffers from overdraw. Overdraw means that a particular

pixel is often drawn more than once into the frame buffer. Consider a set of 500 texture

mapped polygons, all facing the viewer and positioned one behind the other. With the

painter’s algorithm, we first draw the farthest polygon, taking the time to transform it into

camera space, do perspective division and clipping, and carry out the entire texture mapping

computations for every single pixel of the polygon. Then, we draw the second farthest poly-

gon, again performing many computations for every pixel, entirely overwriting the results of

the farthest polygon. Then, we draw the third farthest polygon, again entirely overwriting the

results of the first two polygons. Although this example is extreme, it shows how a

back-to-front drawing of polygons wastes time by carefully computing the correct pixels and

colors to be drawn, then possibly overwriting much or all of this work when a nearer polygon

is drawn. The painter’s algorithm works because of overdraw, but when the overdrawn pixels

take a significant amount of time to compute—as is the case with texture mapping—more

overdraw means more “wasted” time computing pixels which will be overwritten anyway. It

is important to note, however, that the overdraw concern is mainly an issue for software ren-

dering. With hardware-accelerated rendering, it is often possible to completely ignore this

issue of overdraw, since the hardware can draw polygons so quickly.

� Non-orderable polygon groups. The painter’s algorithm does not produce correct results all of

the time. One classic case is cyclic overlap. If a series of polygons overlap such that they form

a cycle (see Figure 4-15), then there is no single ordering which can be applied to draw the

polygons so that a correct display results. Similarly, if one polygon pierces another polygon,

then there is also no single ordering which is correct: part of the piercing polygon lies in front

of, part behind the pierced polygon. In both of these cases, the painter’s algorithm can still be

used if we perform a number of tests and polygon splitting operations. Splitting polygons into

more pieces resolves any ambiguities in the z ordering, producing more independent poly-

gons to be drawn, but which can then be drawn in a correct order. The tests to be done for the

splitting are a bit tedious, and in my opinion, not really worth the trouble; we won’t cover

them further here. Part of the appeal of the painter’s algorithm is its simplicity, and if we start

to bog down the code with several special case tests, then it might be better just to use a differ-

ent VSD algorithm entirely.
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You can see a good example of the kinds of problems which arise with the painter’s algorithm

in the program textest from Chapter 2. Here, we had two pyramid objects, one static and one

rotating. The rotating pyramid object pierced the static pyramid object. If you look closely at the

appearance of the piercing pyramid, you will notice that the polygons instantaneously “flip” from

in front of the pierced pyramid to behind it. This is because the simple painter’s algorithm tries to

find a single sort order to draw all polygons, based on the polygon’s average z value. As soon as

the average z value is smaller, the polygon appears in front; as soon as the average z value is

greater, the polygon appears behind the others. In the case of a piercing polygon, as we said before,

this is not correct: part of the piercing polygon lies in front of, part behind the pierced polygon. See

Figures 4-16 and 4-17: the piercing polygon, highlighted with a white border, is always drawn

either completely in front of or completely behind the pierced polygons. When observing the ani-

mation in the running program, the polygon appears to flip from one side to the other.
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Figure 4-15: Cyclic overlap cannot be resolved by the
simple painter’s algorithm.

Figure 4-16: The highlighted polygon is
drawn completely behind the static
pyramid.
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Now, let’s look at a simple VSD routine which can solve these sorting problems of the

painter’s algorithm: the z buffer algorithm.

The Z Buffer Algorithm
The z buffer algorithm is a per-pixel VSD algorithm which mainly addresses the VSD correctness

issue, essentially ignoring the VSD efficiency issue. The idea is very simple. We maintain a 2D

array of z values, which has the same dimensions as the rasterizer buffer. This array is called a z

buffer. Each position in the z buffer corresponds to a pixel in the rasterizer buffer. Furthermore,

each value in the z buffer represents the z value (or a 1/z value, as we see shortly) of the point in 3D

space whose projection yields the pixel at that location in the z buffer.

We use the z buffer as follows. At the beginning of each frame, before any objects are

rasterized, we clear the z buffer by setting all of its values to represent the maximum possible dis-

tance. Then, we rasterize polygons as normal, pixel for pixel. When rasterizing polygons, for each

pixel we compute the z value of the current pixel being rasterized. Then, we compare the z value

for the current pixel against the z value already in the z buffer at the pixel’s location.

If the current z value has a smaller depth than the old z buffer value, then the 3D point corre-

sponding to the pixel being drawn lies closer to the viewer than the 3D point corresponding to the

pixel that was previously drawn. Thus, the new pixel must obscure the old pixel. We draw the new

pixel and update the z buffer at that pixel position with the new depth.

If, on the other hand, the current z value has a greater depth than the old z buffer value, then

this means that the 3D point corresponding to the pixel being drawn lies farther from the viewer

than the 3D point corresponding to the pixel that was previously drawn. Thus, the old pixel

obscures the new pixel. We do not draw the pixel, we do not update the z buffer, and we continue

rasterization of the next pixel in the polygon.
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Figure 4-17: The highlighted polygon is
drawn completely in front of the static
pyramid.



The z buffer algorithm is accurate to the pixel. It correctly handles polygons that pierce one

another, as well as cyclic overlap. It can even be used for non-polygonal objects; all that is needed

is some way of determining the z value of the object for a given pixel position.

General Observations about the Z Buffer
Let’s now look at some important aspects of the z buffer algorithm.

� Sorting. We do not need to sort objects before sending them to the z buffer. Eventually, after

all objects are rasterized, the nearest pixels will correctly obscure the farthest pixels. How-

ever, if we do perform a rough front-to-back sort, this can save time. This is because drawing

polygons in back-to-front order into the z buffer means that many painstakingly computed

pixels will be wastefully overwritten, just as with the painter’s algorithm. But by drawing

polygons roughly front to back, the nearest z values will get written first into the z buffer,

meaning that pixels for the later, farther polygons will lie behind the existing z buffer values

and thus do not need to be computed. The front-to-back sorting can be “rough” and does not

need to be exact, because the z buffer ultimately compares depth at the pixel level; the time

needed to perform a full-blown painter’s style sort on all polygons is not needed. A rough

front-to-back sorting, for instance, might be a sorting of objects from front to back, but not of

the polygons within the objects.

� Memory. The z buffer needs to be as large as the rasterizer’s frame buffer; thus, we are keep-

ing two copies of the screen information. Each z value in the z buffer needs to be stored with

enough bytes of accuracy to ensure an accurate representation of the z values. For instance,

storing each z value in the z buffer with only one byte would mean that we could only have

256 different depth values, which is far too few for an accurate z buffer. Typically we use

between 2 bytes (16 bits) and 4 bytes (32 bits) to store each z value within the z buffer.

� Speed. Before each frame, the z buffer needs to be reset by setting each value to the maximum

possible depth. Since the z buffer is just as large as the rasterizer buffer, this means that we
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Figure 4-18: The z buffer. At first, it is initialized to the maximum depth value (left). Then we
insert one polygon, drawing each pixel and storing its depth values into the z buffer only if the
polygon’s z value is less than that in the z buffer (middle). Finally we insert another polygon,
whose z values again are compared with the existing z values in the z buffer (right).



have to perform an initialization of another large memory buffer (the frame buffer also must

be cleared), at the beginning of each frame, which costs time. Furthermore, the z value com-

parisons take place per pixel within the innermost loop of the rasterizer, where we must deter-

mine for each pixel if it is to be drawn or not. Adding this comparison to the inner loop of the

rasterizer can cause a great performance degradation in a software rasterizer.

� Artifacts. Regardless of how many bits of precision we use to store the z values in the z buffer,

there are always situations where the z buffer accuracy is not enough. Consider a 3D model

where a sheet of paper lies on top of a desk. In reality, the sheet of paper lies perhaps 0.000005

meters above the surface of the desk. Due to numerical inaccuracy inherent in finite-precision

computations, it is possible that when rasterizing the sheet of paper, the computed z values

incorrectly lie very slightly behind those of the underlying desk. This would cause the desk

model to “poke through” the sheet of paper wherever this occurs, which is rather disturbing.

The only solution to such accuracy problems is to alter the position of the models slightly so

that the distance between them is great enough to be differentiated by the limited precision of

the z buffer.

� z value computations. We’ve mentioned so far that we store in the z buffer the z value of the

3D point whose projection yields the 2D location of the pixel being rasterized. We can com-

pute this value by taking a reverse projection, using the pixel location and the plane equation

of the polygon. This gives us the exact z value for the pixel in question. However, the reverse

projection operation requires one divide for every pixel. Fundamentally, this is because z val-

ues are not linear in 2D screen space due to the perspective projection, as we saw in Chapter 2.

But, as we also observed in Chapter 2, 1/z values are linear in screen space. With a z buffer, the

actual z value is not important; it is the relationship among the various z values that is impor-

tant. With this understanding, we can use a 1/z buffer instead of a z buffer and achieve the

same result, without needing to perform the per-pixel division of a reverse projection to

retrieve the 3D z value. Instead, with a 1/z buffer, we take the 1/z values at each polygon’s ver-

tex and linearly interpolate them in 2D across the polygon. Conveniently, we already need to

perform this operation anyway, for texture mapping! Then, we store the 1/z values in the z

buffer, without performing a divide to retrieve the original z. We also reverse the sense of the

comparison operation; instead of checking if the current pixel’s z value is less than the z buffer

value, we check to see if the current pixel’s 1/z value is greater than the z buffer value. Finally,

we clear the z buffer to 0 instead of the maximum distance, because with a 1/z buffer, 1/0

(infinity) is effectively the maximum distance. In this way, we preserve the relative ordering

of the z values, though we are actually storing and comparing 1/z values to avoid the per-pixel

division needed to retrieve the original z.

� Fog. As mentioned in Chapter 2, fog can be computed as a function of the z distance of a pixel

from the viewer, although the radial distance would be the correct distance to use. We now see

why the z distance is often used instead: with a z buffer, we already have the z values, for every

pixel, which can be used to create a simple, albeit somewhat inaccurate, fog effect.
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A Software Z Buffer: Class
l3d_rasterizer_3d_zbuf_sw_imp

Class l3d_rasterizer_3d_zbuf_sw_imp is the l3d software rasterizer implementing z

buffering. It draws textured polygons into a z buffer. The implementation is a fairly simple exten-

sion of the textured polygon drawing routine. Since we already need to interpolate the 1/z values

across the polygon for texture mapping, all we need to do for z buffering is to store these values in

a z buffer, and to compare each pixel’s 1/z value against the 1/z value in the z buffer to see if the

current pixel should be drawn or not.

Listing 4-13: ras3z_sw.h
#ifndef __RAS3Z_SW_H
#define __RAS3Z_SW_H
#include "../tool_os/memman.h"

#include "ras3_sw.h"
#include "math.h"
#include "../system/sys_dep.h"

class l3d_rasterizer_3d_zbuf_sw_imp :
virtual public l3d_rasterizer_3d_sw_imp

{
private:
l3d_fixed *zbuf;
long int zbuf_size;

public:
l3d_rasterizer_3d_zbuf_sw_imp(int xs, int ys, l3d_screen_info *si);
virtual ~l3d_rasterizer_3d_zbuf_sw_imp(void);

/* virtual */ void draw_polygon_textured(const l3d_polygon_3d_textured *p_poly);

/* virtual */
void clear_buffer(void);

};

class l3d_rasterizer_3d_zbuf_sw_imp_factory :
public l3d_rasterizer_3d_imp_factory

{
public:
l3d_rasterizer_3d_imp *create(int xs, int ys, l3d_screen_info *si);

};

#endif

Listing 4-14: ras3z_sw.cc
#include "ras3z_sw.h"
#include "../system/sys_dep.h"
#include <string.h>
#include <stdlib.h>
#include <values.h>
#include "../tool_os/memman.h"

l3d_rasterizer_3d_imp * l3d_rasterizer_3d_zbuf_sw_imp_factory::create
(int xs, int ys, l3d_screen_info *si)
{
return new l3d_rasterizer_3d_zbuf_sw_imp(xs,ys,si);

}

248 Chapter 4: Visible Surface Determination I: General Techniques



l3d_rasterizer_3d_zbuf_sw_imp::l3d_rasterizer_3d_zbuf_sw_imp
(int xs, int ys, l3d_screen_info *si)

:
l3d_rasterizer_3d_sw_imp(xs,ys,si),
l3d_rasterizer_3d_imp(xs,ys,si),
l3d_rasterizer_2d_sw_imp(xs,ys,si),
l3d_rasterizer_2d_imp(xs,ys,si)

{
zbuf = new l3d_fixed[xs*ys];
zbuf_size = xs*ys;
long register int i;
for(i=0; i<zbuf_size; i++) {
zbuf[i] = 0;

}
}

l3d_rasterizer_3d_zbuf_sw_imp::~l3d_rasterizer_3d_zbuf_sw_imp(void) {
delete [] zbuf;

}

void l3d_rasterizer_3d_zbuf_sw_imp::clear_buffer(void) {
l3d_rasterizer_3d_sw_imp::clear_buffer();

long register int i;

for(i=0; i<zbuf_size; i++) {
zbuf[i] = 0;

}
}

#define Z_MULT_FACTOR 512
#define Z_ADD_FACTOR -0.42

//- convenience macro for accessing the vertex coordinates. Notice
//- that we access the clipped vertex index list (not the original),
//- and the transformed coordinate (not the original). This means
//- we draw the clipped version of the transformed polygon.
#define VTX(i) ((**(p_poly->vlist))[ (*(p_poly->clip_ivertices))[i].ivertex ].transformed)

#include "../math/fix_lowp.h"
#if 0
#define l3d_fixed float
#define l3d_real_to_fixed(x) (x)
#define fixfixdiv(a,b) ((a)/(b))
#define fixfixmul(a,b) ((a)*(b))
#define int2fix(a) ( (float)(a))
#define fix2int(a) ( (int)(a))
#define fix2float(a) (a)
#define float2fix(a) (a)
#define iceil_fix(a) ( (int)ceil((double)(a)) )

#endif

void l3d_rasterizer_3d_zbuf_sw_imp::draw_polygon_textured
(const l3d_polygon_3d_textured *p_poly)
{

l3d_fixed x0,y0,x1,y1,x2,y2,x3;
l3d_fixed top_y, bottom_y;
int point_on_right=0;
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int left_idx, right_idx, top_y_idx, bottom_y_idx;

int maxy_upper, iceil_fix_y0, iceil_fix_y1, iceil_fix_y2;

l3d_point *vtemp;

int i;

int scanline;

//- variables for the left edge, incremented BETWEEN scanlines
//- (inter-scanline)

l3d_fixed volatile
left_x, left_ui, left_vi, left_zi,
left_x_start, left_y_start, left_ui_start, left_vi_start, left_zi_start,
left_x_end, left_y_end, left_ui_end, left_vi_end, left_zi_end,
left_dx_dy, left_dui_dy, left_dvi_dy, left_dzi_dy;
int
left_ceilx,
left_ceilx_start, left_ceilx_end,
left_ceily_start, left_ceily_end;

//- variables for the right edge, incremented BETWEEN scanlines
//- (inter-scanline)

l3d_fixed volatile
right_x, right_ui, right_vi, right_zi,
right_x_start,right_y_start,right_ui_start,right_vi_start,right_zi_start,
right_x_end, right_y_end, right_ui_end, right_vi_end, right_zi_end,
right_dx_dy, right_dui_dy, right_dvi_dy, right_dzi_dy;

int
right_ceilx,
right_ceilx_start, right_ceilx_end,
right_ceily_start, right_ceily_end;

//- variables incremented WITHIN one scanline (intra-scanline)

l3d_fixed volatile
u,v,z,
ui, vi, zi, dui_dx, dvi_dx, dzi_dx,

u_left, u_right, du_dx,
v_left, v_right, dv_dx,
inv_dx, denom, inv_run_dx,

run_x, run_x_start, run_x_end,
u_run_end, v_run_end, du_dx_run, dv_dx_run;

long int cur_x;

top_y = l3d_real_to_fixed(VTX(0).Y_);
top_y_idx = 0;
bottom_y = top_y;
bottom_y_idx = top_y_idx;
for(i=0; i<p_poly->clip_ivertices->num_items; i++) {
if(l3d_real_to_fixed(VTX(i).Y_) < top_y) {
top_y = l3d_real_to_fixed(VTX(i).Y_);
top_y_idx = i;
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}
if(l3d_real_to_fixed(VTX(i).Y_) > bottom_y) {
bottom_y = l3d_real_to_fixed(VTX(i).Y_);
bottom_y_idx = i;

}
}

left_idx = top_y_idx;
right_idx = top_y_idx;

left_x_start=l3d_real_to_fixed(VTX(top_y_idx).X_);
left_ceilx_start=iceil_fix(left_x_start);
left_y_start=l3d_real_to_fixed(VTX(top_y_idx).Y_);
left_ceily_start=iceil_fix(left_y_start);
left_ceily_end=left_ceily_start;
left_zi_start = fixfixdiv(int2fix(Z_MULT_FACTOR),

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Z_)

+ float2fix(Z_ADD_FACTOR));
left_zi_end = left_zi_start;
left_ui_start =
fixfixmul(
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.X_),
left_zi_start);

left_ui_end = left_ui_start;
left_vi_start = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Y_),

left_zi_start);
left_vi_end = left_vi_start;

right_x_start=left_x_start;
right_y_start=left_y_start;
right_ceily_start=left_ceily_start;
right_ceily_end=right_ceily_start;
right_ui_start = left_ui_start;
right_vi_start = left_vi_start;
right_zi_start = left_zi_start;

scanline = left_ceily_start;
int oneshot=1;

while(scanline < ysize) {
while( left_ceily_end - scanline <= 0 )
{
if (left_idx == bottom_y_idx) {
return;

}
left_idx = p_poly->next_clipidx_left(left_idx,p_poly->clip_ivertices->num_items);
left_y_end=l3d_real_to_fixed(VTX(left_idx).Y_);
left_ceily_end = iceil_fix(left_y_end);
if(left_ceily_end - scanline) {

#define MIN_EDGE_HEIGHT float2fix(0.005)
#define MIN_EDGE_WIDTH float2fix(0.005)

left_x_end=l3d_real_to_fixed(VTX(left_idx).X_);
left_ceilx_end=iceil_fix(left_x_end);

left_zi_end = fixfixdiv(int2fix(Z_MULT_FACTOR),
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
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& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Z_)
+ float2fix(Z_ADD_FACTOR));

left_ui_end = fixfixmul(
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.X_),
left_zi_end);

left_vi_end = fixfixmul(
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Y_),
left_zi_end);

if(left_y_end - left_y_start >= MIN_EDGE_HEIGHT) {
left_dx_dy = fixfixdiv(left_x_end-left_x_start,left_y_end-left_y_start);
left_dui_dy = fixfixdiv(left_ui_end - left_ui_start,

left_y_end - left_y_start);
left_dvi_dy = fixfixdiv(left_vi_end - left_vi_start,

left_y_end - left_y_start);
left_dzi_dy = fixfixdiv(left_zi_end - left_zi_start,

left_y_end - left_y_start);
}
else
{
left_dx_dy =
left_dui_dy =
left_dvi_dy =
left_dzi_dy = int2fix(0);

}

left_x = left_x_start +
fixfixmul(int2fix(left_ceily_start)-left_y_start , left_dx_dy);

left_ui = left_ui_start + //- sub-pixel correction
fixfixmul(int2fix(left_ceily_start)-left_y_start,

left_dui_dy);
left_vi = left_vi_start + //- sub-pixel correction

fixfixmul(int2fix(left_ceily_start)-left_y_start,
left_dvi_dy);

left_zi = left_zi_start + //- sub-pixel correction
fixfixmul(int2fix(left_ceily_start)-left_y_start,

left_dzi_dy);
}else {
left_x_start = l3d_real_to_fixed(VTX(left_idx).X_);
left_ceilx_start=iceil_fix(left_x_start);
left_y_start = l3d_real_to_fixed(VTX(left_idx).Y_);
left_ceily_start = iceil_fix(left_y_start);
left_zi_start = fixfixdiv(int2fix(Z_MULT_FACTOR),

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Z_)

+ float2fix(Z_ADD_FACTOR));
left_ui_start = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.X_),

left_zi_start);
left_vi_start = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[left_idx]))->tex_coord.Y_),

left_zi_start);

}
}
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while(right_ceily_end - scanline <= 0 )
{
if (right_idx == bottom_y_idx) {
return;

}
right_idx = p_poly->next_clipidx_right(right_idx, p_poly->clip_ivertices->num_items);
right_y_end=l3d_real_to_fixed(VTX(right_idx).Y_);
right_ceily_end = iceil_fix(right_y_end);
if(right_ceily_end - scanline) {

right_x_end=l3d_real_to_fixed(VTX(right_idx).X_);
right_ceilx_end = iceil_fix(right_x_end);
right_zi_end = fixfixdiv(int2fix(Z_MULT_FACTOR),

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.Z_)

+ float2fix(Z_ADD_FACTOR));
right_ui_end = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.X_),

right_zi_end);
right_vi_end = fixfixmul(

l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)
& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.Y_),

right_zi_end);

if(right_y_end-right_y_start>=MIN_EDGE_HEIGHT) {
right_dx_dy =
fixfixdiv(right_x_end-right_x_start,right_y_end-right_y_start);

right_dui_dy = fixfixdiv(right_ui_end - right_ui_start,
right_y_end - right_y_start);

right_dvi_dy = fixfixdiv(right_vi_end - right_vi_start,
right_y_end - right_y_start);

right_dzi_dy = fixfixdiv(right_zi_end - right_zi_start,
right_y_end - right_y_start);

}
else
{
right_dx_dy =
right_dui_dy =
right_dvi_dy =
right_dzi_dy = int2fix(0);

}

right_x = right_x_start +
fixfixmul(int2fix(right_ceily_start)-right_y_start , right_dx_dy);

right_ui = right_ui_start + //- sub-pixel correction
fixfixmul(int2fix(right_ceily_start)-right_y_start,

right_dui_dy);
right_vi = right_vi_start + //- sub-pixel correction

fixfixmul(int2fix(right_ceily_start)-right_y_start,
right_dvi_dy);

right_zi = right_zi_start + //- sub-pixel correction
fixfixmul(int2fix(right_ceily_start)-right_y_start,

right_dzi_dy);

}else {
right_x_start = l3d_real_to_fixed(VTX(right_idx).X_);
right_ceilx_start = iceil_fix(right_x_start);
right_y_start = l3d_real_to_fixed(VTX(right_idx).Y_);
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right_ceily_start = iceil_fix(right_y_start);

right_zi_start = fixfixdiv(int2fix(Z_MULT_FACTOR),
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.Z_)
+float2fix(Z_ADD_FACTOR));

right_ui_start = fixfixmul(
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.X_),
right_zi_start);

right_vi_start = fixfixmul(
l3d_real_to_fixed(((l3d_polygon_ivertex_textured *)

& ((*(p_poly->clip_ivertices))[right_idx]))->tex_coord.Y_),
right_zi_start);

}
}

if (left_ceily_end > ysize) left_ceily_end = ysize;
if (right_ceily_end > ysize) right_ceily_end = ysize;

while ( (scanline < left_ceily_end) && (scanline < right_ceily_end) )
{
if (left_x > right_x) {
}
else {
left_ceilx = iceil_fix(left_x);
right_ceilx = iceil_fix(right_x);

if(right_x - left_x > MIN_EDGE_WIDTH) {
dui_dx = fixfixdiv(right_ui - left_ui , right_x - left_x);
dvi_dx = fixfixdiv(right_vi - left_vi , right_x - left_x);
dzi_dx = fixfixdiv(right_zi - left_zi , right_x - left_x);

}else {
dui_dx =
dvi_dx =
dzi_dx = int2fix(0);

}

ui = left_ui + //- sub-pixel correction
fixfixmul(int2fix(left_ceilx) - left_x, dui_dx);

vi = left_vi + //- sub-pixel correction
fixfixmul(int2fix(left_ceilx) - left_x, dvi_dx);

zi = left_zi + //- sub-pixel correction
fixfixmul(int2fix(left_ceilx) - left_x, dzi_dx);

cur_x=left_ceilx;

#define LINEAR_RUN_SHIFT 4
#define LINEAR_RUN_SIZE (1<<LINEAR_RUN_SHIFT)

z = fixfixdiv(int2fix(1), zi);
u = fixfixmul(ui,z);
v = fixfixmul(vi,z);

l3d_fixed *zbuf_ptr;

unsigned char *pix;
for(pix=sinfo->p_screenbuf+(left_ceilx + SW_RAST_Y_REVERSAL(ysize,

scanline)*xsize)*sinfo->bytes_per_pixel,
zbuf_ptr = zbuf + (left_ceilx + scanline*xsize)

;
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pix< sinfo->p_screenbuf+(right_ceilx+ SW_RAST_Y_REVERSAL(ysize,
scanline)*xsize)*sinfo->bytes_per_pixel;

)
{
run_x_end = int2fix(cur_x) +

int2fix(LINEAR_RUN_SIZE);
if (run_x_end > int2fix(right_ceilx)) {
run_x_end = int2fix(right_ceilx);

}
denom = fixfixdiv

(int2fix(1) ,
zi + fixfixmul(dzi_dx, run_x_end-int2fix(cur_x)));

u_run_end=fixfixmul
(ui + fixfixmul(dui_dx,(run_x_end-int2fix(cur_x))),
denom) ;

v_run_end=fixfixmul
(vi + fixfixmul(dvi_dx,(run_x_end-int2fix(cur_x))),
denom) ;

inv_run_dx = fixfixdiv
(int2fix(1),
(run_x_end-int2fix(cur_x)));

du_dx_run = fixfixmul((u_run_end - u) ,inv_run_dx);
dv_dx_run = fixfixmul((v_run_end - v) ,inv_run_dx);

for(run_x = int2fix(cur_x);
run_x < run_x_end;
run_x+=int2fix(1))

{
unsigned char *texel =
p_poly->texture->tex_data->data +
((fix2int(l3d_mulri(v,p_poly->texture->tex_data->height-1))&
(p_poly->texture->tex_data->height-1))*(p_poly->texture->tex_data->width)
+
(fix2int(l3d_mulri(u,p_poly->texture->tex_data->width-1))&
(p_poly->texture->tex_data->width-1)) ) *
sinfo->bytes_per_pixel;

if(zi > *zbuf_ptr) {
*zbuf_ptr = zi;

for(register int b=0; b<sinfo->bytes_per_pixel;b++) {
*pix++ = *texel++;

}

int fog = int2fix(Z_MULT_FACTOR) - fixintmul(zi,64);
fog = fog >> 14;
if(fog<0) fog=0;
if(fog>MAX_LIGHT_LEVELS) fog=MAX_LIGHT_LEVELS;
sinfo->fog_native(pix - sinfo->bytes_per_pixel, fog);

}else {
pix+= sinfo->bytes_per_pixel;
texel+= sinfo->bytes_per_pixel;

}
zbuf_ptr++;
u += du_dx_run;
v += dv_dx_run;
zi += dzi_dx;

}
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cur_x += LINEAR_RUN_SIZE;
#if 0

ui += dui_dx<<LINEAR_RUN_SHIFT;
vi += dvi_dx<<LINEAR_RUN_SHIFT;
zi += dzi_dx<<LINEAR_RUN_SHIFT;

#else
ui += l3d_mulri(dui_dx, LINEAR_RUN_SIZE);

vi += l3d_mulri(dvi_dx, LINEAR_RUN_SIZE);
#endif

}
}

scanline++;
left_x += left_dx_dy;
right_x += right_dx_dy;

left_ui += left_dui_dy;
left_vi += left_dvi_dy;
left_zi += left_dzi_dy;
right_ui += right_dui_dy;
right_vi += right_dvi_dy;
right_zi += right_dzi_dy;

}

if ( left_ceily_end - scanline <= 0 ) {
left_x_start=left_x_end;
left_y_start=left_y_end;
left_ceily_start=left_ceily_end;
left_ui_start=left_ui_end;
left_vi_start=left_vi_end;
left_zi_start=left_zi_end;

}
if ( right_ceily_end - scanline <= 0 ) {
right_x_start=right_x_end;
right_y_start=right_y_end;
right_ceily_start=right_ceily_end;
right_ui_start=right_ui_end;
right_vi_start=right_vi_end;
right_zi_start=right_zi_end;

}
}

}
#include "../math/fix_prec.h"

The constructor declares the z buffer as an array of fixed-point values, with the same dimensions

as the frame buffer, and initializes all values in the buffer to be zero. The destructor deletes this

array. The overridden clear_buffer method has been extended to clear not only the frame

buffer, but also the z buffer.

The routine of interest is the overridden draw_polygon_textured routine. The routine

is largely identical to the non-z-buffered version. As mentioned earlier, for texture mapping we are

already computing a 1/z value for each pixel. All we need to do for a z buffer is to store these val-

ues into the z buffer and to compare against the existing values before drawing a pixel. The

polygon is rasterized in horizontal spans. For each horizontal span of the polygon, we first

256 Chapter 4: Visible Surface Determination I: General Techniques



initialize the pointerzbuf_ptr to point to the entry in the z buffer corresponding to the first pixel

in the span. Then, for each pixel we draw in the span, we check it against the z buffer, and update

the z buffer if necessary. The following snippet is the z buffer check.

if(zi > *zbuf_ptr) {
*zbuf_ptr = zi;

for(register int b=0; b<sinfo->bytes_per_pixel;b++) {
*pix++ = *texel++;

}

int fog = int2fix(Z_MULT_FACTOR) - fixintmul(zi,64);
fog = fog >> 14;
if(fog<0) fog=0;
if(fog>MAX_LIGHT_LEVELS) fog=MAX_LIGHT_LEVELS;
sinfo->fog_native(pix - sinfo->bytes_per_pixel, fog);

}else {
pix+= sinfo->bytes_per_pixel;
texel+= sinfo->bytes_per_pixel;

}
zbuf_ptr++;

NOTE Actually the 1/z values computed within the software rasterizer are Z_MULT_
FACTOR/(z+Z_ADD_FACTOR), to compensate for fixed-point accuracy problems, as we saw
in Chapter 2. Still, for simplicity, we refer to these values as “1/z” values; the actual values
have simply been offset and scaled slightly from the real 1/z value.

In the above loop, notice that after determining that a pixel is indeed visible, we also apply a fog

computation to the pixel. Since we already know the 1/z value of the current pixel, calculating a

z-based fog value is as simple as using the 1/z value in some formula which maps the 1/z value to a

fog value, which we then use with the fog table of Chapter 2 to fade the color of the pixel into fog,

similar to the way we used the lighting tables. Here, we simply multiply the 1/z value (which has

actually been multiplied by Z_MULT_FACTOR) by 64 and subtract it from the maximum scaled

1/z value, which is Z_MULT_FACTOR. This has the effect of giving an integer fog value some-

where in the vicinity of the value of Z_MULT_FACTOR. Then we shift the fog value right by 14

bits, which has the effect of removing the fractional part of the fixed-point value of the computed

fog value (see the Appendix for information on fixed-point numbers). Finally, we clamp the com-

puted fog value so that it lies within the range of 0 to MAX_LIGHT_LEVELS, and call the

fog_native method of the sinfo object to apply the fog to the pixel.

Mesa/OpenGL Z Buffering
Mesa/OpenGL provide built-in support for z buffering. 3D acceleration hardware often provides a

z buffer in the hardware, meaning that applications can reap the benefits of the z buffer (draw poly-

gons in any order, the display will always be correct) without worrying too much about the

per-pixel performance hit; in hardware, the calculations are fast enough so as not to be the bottle-

neck. This does not mean, however, that higher-level culling (such as hierarchical view frustum

culling) can be completely ignored; it is still a waste of time, even on the fastest accelerated hard-

ware, to send millions of polygons to be drawn by the hardware if 99% of them are obscured or
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invisible. In other words, hardware z buffering allows you to focus on high-level culling, but it

does not solve all VSD problems by itself.

Performing z buffering through Mesa/OpenGL is done by issuing OpenGL commands to

enable z buffering. OpenGL calls the z buffer the “depth buffer.” The following new classes call

the appropriate OpenGL routines to enable z buffering.

� l3d_screen_zbuf_mesa: A screen class identical to l3d_screen_mesa, except that

we add the parameter GLUT_DEPTH to the call to glutInitDisplayMode, to tell

GLUT to use the depth buffer.

� l3d_rasterizer_3d_zbuf_mesa_imp: A rasterizer implementation identical to the

3D Mesa rasterizer implementation, except that the constructor calls

glEnable(GL_DEPTH_TEST) to turn on depth buffering, and the clear_buffer
method calls glClear(GL_DEPTH_BUFFER_BIT) to also clear the depth buffer in addi-

tion to the frame buffer.

With these simple changes, our Mesa/OpenGL rasterizer now performs z buffering.

Note, however, that the depth buffering only works because the original ogl_textur-
ing_between_glbegin_glend method passed the pre-projection constant of 1 as the z

coordinate to theglVertex4fv function. This, combined with passing z as the w coordinate, led

to the post-projection value of 1/z in the z component of the vertex. We commented on this in

Chapter 2. This 1/z value then encodes the depth information and can be used for determining visi-

bility among pixels from different polygons. If, on the other hand, we had passed the original z

coordinate as both the z and w components to glVertex4fv, then after the homogeneous divi-

sion by w, the z component would become the constant 1—smashed down into a plane,

irrevocably losing the depth information. Try changing the code in l3d_rasterizer_
3d_mesa_imp to pass the orig_z value as the third (z) component to glVertex4fv; you

will then see (in the next sample program) that the z buffering no longer works correctly.

Listing 4-15: sc_zmesa.h
#ifndef __SC_ZMESA_H
#define __SC_ZMESA_H
#include "../tool_os/memman.h"

#include "sc_mesa.h"

class l3d_screen_zbuf_mesa : public l3d_screen {
public:
l3d_screen_zbuf_mesa(int xsize, int ysize);
void open_screen(void);
void blit_screen(void);
virtual ~l3d_screen_zbuf_mesa(void);

};

class l3d_screen_factory_zbuf_mesa : public l3d_screen_factory {
public:
l3d_screen *create(int xsize, int ysize) {
return new l3d_screen_zbuf_mesa(xsize,ysize);

}
};

#endif
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Listing 4-16: sc_zmesa.cc
#include "sc_zmesa.h"
#include "../tool_os/memman.h"

l3d_screen_zbuf_mesa::l3d_screen_zbuf_mesa(int xsize, int ysize) :
l3d_screen(xsize,ysize)

{
int argc=1;
char *argv[1];
argv[0] = "a";

Visual *vis;
int depth=0, bytespp=0, scanline_pad=0;
Display *dpy;
XPixmapFormatValues *pixmap_formats;
int i, count;

dpy = XopenDisplay(NULL);

pixmap_formats = XListPixmapFormats(dpy, &count);
for(i=0, depth=0; i<count; i++) {
if(pixmap_formats[i].depth > depth) {
depth = pixmap_formats[i].depth;
bytespp = pixmap_formats[i].bits_per_pixel / BITS_PER_BYTE;
scanline_pad = pixmap_formats[i].scanline_pad;

}
}
Xfree(pixmap_formats);
printf("max depth of display %d", depth);
printf("bytes per pixel: %d", bytespp);

bufsize = xsize * ysize * bytespp;

vis = DefaultVisual(dpy,0);

switch(vis->c_class) {

case PseudoColor:
sinfo = new l3d_screen_info_indexed_mesa(255, 65535, 65535, 65535);
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE|GLUT_INDEX|GLUT_DEPTH);
glutInitWindowSize(xsize,ysize);
glutInitWindowPosition(100,100);
glutCreateWindow("l3d");

glClearColor(0.0,0.0,0.0,0.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, xsize, ysize, 0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.375, 0.375, 0.0);
glViewport(0,0,xsize,ysize);

break;
case TrueColor:
sinfo = new l3d_screen_info_rgb_mesa(vis->red_mask, vis->green_mask,

vis->blue_mask, bytespp);
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glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_DEPTH);
glutInitWindowSize(xsize,ysize);
glutInitWindowPosition(100,100);
glutCreateWindow("l3d");

glClearColor(0.0,0.0,0.0,0.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, xsize, ysize, 0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.375, 0.375, 0.0);
glViewport(0,0,xsize,ysize);

break;
case StaticColor: printf("unsupported visual StaticColor");break;
case GrayScale: printf("unsupported visual GrayScale");break;
case StaticGray: printf("unsupported visual StaticGray");break;
case DirectColor: printf("unsupported visual DirectColor");break;

}

}

l3d_screen_zbuf_mesa::~l3d_screen_zbuf_mesa(void) {
}

inline void l3d_screen_zbuf_mesa::blit_screen(void) {
glutSwapBuffers();
glFlush();

}

void l3d_screen_zbuf_mesa::open_screen(void) {
}

Listing 4-17: ras3z_mes.h
#ifndef __RAS3Z_MES_H
#define __RAS3Z_MES_H
#include "../tool_os/memman.h"

#include "ras3_mes.h"

class l3d_rasterizer_3d_zbuf_mesa_imp :
public l3d_rasterizer_3d_mesa_imp

{
public:
l3d_rasterizer_3d_zbuf_mesa_imp(int xs, int ys, l3d_screen_info *si);
virtual ~l3d_rasterizer_3d_zbuf_mesa_imp(void);
void clear_buffer(void);

};

class l3d_rasterizer_3d_zbuf_mesa_imp_factory :
public l3d_rasterizer_3d_imp_factory {
public:
l3d_rasterizer_3d_imp *create(int xs, int ys, l3d_screen_info *si);

};

#endif
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Listing 4-18: ras3z_mes.cc
#include "ras3z_mes.h"
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include "../tool_os/memman.h"

l3d_rasterizer_3d_imp * l3d_rasterizer_3d_zbuf_mesa_imp_factory::create
(int xs, int ys, l3d_screen_info *si)
{
return new l3d_rasterizer_3d_zbuf_mesa_imp(xs,ys,si);

}

l3d_rasterizer_3d_zbuf_mesa_imp::
l3d_rasterizer_3d_zbuf_mesa_imp(int xs, int ys, l3d_screen_info *si):

l3d_rasterizer_3d_imp(xs,ys,si),
l3d_rasterizer_2d_imp(xs,ys,si),
l3d_rasterizer_2d_mesa_imp(xs,ys,si),
l3d_rasterizer_3d_mesa_imp(xs,ys,si)

{
glEnable(GL_DEPTH_TEST);

}

l3d_rasterizer_3d_zbuf_mesa_imp::
~l3d_rasterizer_3d_zbuf_mesa_imp(void)
{
}

void l3d_rasterizer_3d_zbuf_mesa_imp::clear_buffer(void)
{
l3d_rasterizer_2d_mesa_imp::clear_buffer();
glClear(GL_DEPTH_BUFFER_BIT);

}

Factory Manager for Z Buffered Rasterizers
To allow l3d programs to use the z buffered versions of the rasterizers, we need to provide a new

factory manager which allows for selection of factories that produce the new rasterizers. The

l3d_factory_manager_v_0_3 class does exactly this. It adds three new choices to the ini-

tial factory selection menu, which are the z buffered versions of the first three choices.

Listing 4-19: fact0_3.h
#ifndef __FACT0_3_H
#define __FACT0_3_H
#include "../tool_os/memman.h"

#include "fact0_2.h"

class l3d_factory_manager_v_0_3 : public l3d_factory_manager_v_0_2 {
public:
l3d_factory_manager_v_0_3(void);
virtual ~l3d_factory_manager_v_0_3(void);
int choose_factories(void);

};
extern l3d_factory_manager_v_0_3 factory_manager_v_0_3;

#endif
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Listing 4-20: fact0_3.cc
#include "fact0_3.h"

#include <stdio.h>

#include "../tool_os/dis_x11.h"
#include "../tool_os/dis_mesa.h"
#include "../tool_2d/sc_x11.h"
#include "../tool_2d/sc_x11sh.h"
#include "../tool_2d/sc_mesa.h"
#include "../raster/ras3_sw.h"
#include "../raster/ras3_mes.h"
#include "../dynamics/plugins/pl_linux.h"
#include "../raster/ras3z_sw.h"
#include "../raster/ras3z_mes.h"
#include "../tool_2d/sc_zmesa.h"
#include "../tool_os/memman.h"

l3d_factory_manager_v_0_3 factory_manager_v_0_3;

l3d_factory_manager_v_0_3::l3d_factory_manager_v_0_3(void) :
l3d_factory_manager_v_0_2()

{
}

l3d_factory_manager_v_0_3::~l3d_factory_manager_v_0_3(void)
{
}

int l3d_factory_manager_v_0_3::choose_factories(void) {

char input[80];
int i;

printf("which configuration?");
printf("1. Software X11");
printf("2. Software X11 with SHM extension");
printf("3. Mesa (with 3DFX h/w accel if installed with Mesa)");
printf("4. Software X11 with z buffer and fog");
printf("5. Software X11 with SHM, z buffer, and fog");
printf("6. Mesa with z buffer");
gets(input);
sscanf(input,"%d", &i);
switch(i) {
case 1:
screen_factory = new l3d_screen_factory_x11;
ras_2d_imp_factory = new l3d_rasterizer_2d_sw_imp_factory;
dispatcher_factory = new l3d_dispatcher_factory_x11;
ras_3d_imp_factory = new l3d_rasterizer_3d_sw_imp_factory;
plugin_loader_factory = new l3d_plugin_loader_linux_factory;
break;

case 2:
screen_factory = new l3d_screen_factory_x11_shm;
ras_2d_imp_factory = new l3d_rasterizer_2d_sw_imp_factory;
dispatcher_factory = new l3d_dispatcher_factory_x11;
ras_3d_imp_factory = new l3d_rasterizer_3d_sw_imp_factory;
plugin_loader_factory = new l3d_plugin_loader_linux_factory;
break;

case 3:
screen_factory = new l3d_screen_factory_mesa;
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ras_2d_imp_factory = new l3d_rasterizer_2d_mesa_imp_factory;
dispatcher_factory = new l3d_dispatcher_factory_mesa;
ras_3d_imp_factory = new l3d_rasterizer_3d_mesa_imp_factory;
plugin_loader_factory = new l3d_plugin_loader_linux_factory;
break;

case 4:
screen_factory = new l3d_screen_factory_x11;
ras_2d_imp_factory = new l3d_rasterizer_2d_sw_imp_factory;
dispatcher_factory = new l3d_dispatcher_factory_x11;
ras_3d_imp_factory = new l3d_rasterizer_3d_zbuf_sw_imp_factory;
plugin_loader_factory = new l3d_plugin_loader_linux_factory;
break;

case 5:
screen_factory = new l3d_screen_factory_x11_shm;
ras_2d_imp_factory = new l3d_rasterizer_2d_sw_imp_factory;
dispatcher_factory = new l3d_dispatcher_factory_x11;
ras_3d_imp_factory = new l3d_rasterizer_3d_zbuf_sw_imp_factory;
plugin_loader_factory = new l3d_plugin_loader_linux_factory;
break;

case 6:
screen_factory = new l3d_screen_factory_zbuf_mesa;
ras_2d_imp_factory = new l3d_rasterizer_2d_mesa_imp_factory;
dispatcher_factory = new l3d_dispatcher_factory_mesa;
ras_3d_imp_factory = new l3d_rasterizer_3d_zbuf_mesa_imp_factory;
plugin_loader_factory = new l3d_plugin_loader_linux_factory;
break;

}

factory_manager_v_0_2 = *this;
factory_manager_v_0_2.should_delete_factories = 0;

return i;
}

Sample Program: texzbuf
The sample program texzbuf is the same as the sample program textest, only the main pro-

gram file has been changed to use the new factory manager. It displays two intersecting pyramids,

one static and one rotating. Run the program, and select one of the factories 4, 5, or 6 to see the z

buffering in action. Notice closely the area where the two pyramid objects intersect. With the pre-

vious programtextest (and with this programtexzbuf, as well, if you select factories 1, 2, or

3), the piercing polygons appear to flip immediately from in front of to behind the pierced poly-

gons, due to the use of the simple painter’s algorithm. With the new program texzbuf, using one

of the new z buffer factories 4, 5, or 6, the area of intersection between the pyramid objects is cor-

rectly drawn. Notice that the tip of the one pyramid really appears to pierce the face of the other

pyramid, and that there is a clear line of intersection between the pyramid objects, reflecting the

real 3D positions of each pixel of each polygon. Again, this is one of the advantages of the z buffer

algorithm: it is accurate to the pixel, even for intersecting polygons, and no polygons need to be

split to produce a correct display.
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Listing 4-21: main.cc, main program file for sample program texzbuf. Only the factory
manager has been changed from previous program textest.

#include "../textest/textest.h"
#include "../lib/system/fact0_3.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;

factory_manager_v_0_3.choose_factories();
d = factory_manager_v_0_3.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete p;
delete d;
delete w;

}

Z Buffer-like Algorithms
It’s worth mentioning that there are a number of variations on the z buffer algorithm which can

also be useful. Initially, we viewed polygon rasterization in terms of a vertical collection of hori-

zontal spans of pixels drawn to the screen. For each scanline in the polygon, we draw one

horizontal span. Then, with the introduction of the z buffer algorithm, we shifted the focus to
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Figure 4-19: Output from sample program
texzbuf. Notice that the polygons piercing
the right pyramid appear partially in front of
and partially behind the pierced polygons, just
as they should.
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individual pixels. Each individual pixel is tested against and possibly written to the z buffer. A

solution between these two extremes is to keep track of spans of pixels for each scanline.

Instead of storing the z value for every pixel in each scanline, we store a list of spans for each

scanline. Each span represents a visible, horizontally contiguous set of pixels belonging to one

polygon, along with depth information just for each of its endpoints. This is the difference

between spans and the z buffer: the z buffer explicitly stores the depth information for every pixel

within (and even outside of) the span, whereas the span-based method just stores the depth infor-

mation for the endpoints of the span. Since by definition the span is a horizontally contiguous set

of pixels belonging to one polygon, no information is lost by just storing the depth values at the

endpoints. An intersection routine which splits spans when they overlap replaces the

pixel-for-pixel comparison of the z buffer.

Consider one scanline. Initially, its span list is empty. Then, if we rasterize a horizontal span of

a polygon into the scanline, we insert this span—consisting of its left and right x and z val-

ues—into the span list. Later, as we rasterize other polygons into the same scanline, we insert their

spans into the same list. If two spans do not overlap—in other words, if their x intervals are dis-

joint—we do not need to waste time checking pixel depths; we know that the two spans cannot

obscure each other. But if two spans overlap, then we split the spans by analytically computing

which parts of both spans are visible; this is nothing more than an intersection calculation to see at

exactly which x value one span “pokes through” (has a z value greater than) the other span. This

analytical computation is possible because we store the depth information with each endpoint of

each span. So, instead of individually checking each pixel against the z buffer, we group pixels

into spans. When spans overlap, we compute an analytical intersection and split the spans.
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Figure 4-20: z buffering versus span buffering. Instead of storing depth values for
each pixel within a span (left), we can store just the starting and ending values, and
the span length (right). This saves memory, but overlapping spans require an
intersection computation and creation of new spans.



Another span-based VSD algorithm requires no span splitting, but also requires us to sort the

polygons from front to back. We draw the frontmost polygons first. As each polygon is drawn, we

write a span into the scanline. This span indicates the portion of the scanline which has already

been covered by one of the frontmost polygons. We continue drawing polygons, proceeding

towards the backmost polygons. If two spans overlap, we merge the two into one larger span. We

never redraw a pixel in a location where a span already exists. The spans in this case thus merely

keep track of coverage information, and not depth information. This is sort of a “reverse painter’s

algorithm,” where we only draw background polygons around the areas already covered by fore-

ground polygons. This algorithm requires perfect front-to-back sorting, and does not handle

intersecting polygons. However, it can provide a useful measure of when a scene has been com-

pletely rendered. If every span for every scanline is completely full, then we know that every pixel

in the display has been rendered. This completion test requires only one check per scanline, as

opposed to one check per pixel with a z buffer. Such a completion test can be useful for some

front-to-back VSD algorithms which continue drawing polygons until the entire screen has been

filled.

Span-based algorithms can provide a speed-up over the pixel-based z buffer because they

work with groups of pixels instead of individual pixels. The problem is that using spans requires a

number of per-scanline data structures which do not map well onto 3D acceleration hardware,

where pixel-level or scanline-level access is either not possible or comparatively slow.

Summary
In this chapter we took a look at some important and generally applicable visible surface determi-

nation algorithms. The goals of VSD are correctness and efficiency. We looked at back-face

culling, hierarchical view frustum culling and bounding volumes, the painter’s algorithm, and z

buffering.

Chapter 5 continues the discussion of VSD with some specific algorithms based on space-par-

titioning techniques.
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C h a p t e r 5

Visible SurfaceVisible Surface
Determination II:Determination II:
Space-partitioning
Techniques

T
his chapter continues the discussion of various VSD algorithms that was started in Chapter

4. Chapter 4 dealt with generally applicable VSD techniques. This chapter deals with

space-partitioning techniques, which represent a “divide and conquer” approach to VSD.

We partition, or divide, space into various regions, then perform VSD based on the regions. Of

course, it is not all quite as simple as it sounds, which is why we take the time to look at these algo-

rithms in detail in this chapter.

This chapter covers:

� Binary space partitioning trees

� Octrees

� Regular spatial partitioning

� Portals and cells

� Special effects with portals (shadows, mirrors)

� Overview of other VSD algorithms.

Binary Space Partitioning Trees, Octrees,
and Regular Spatial Partitioning

We mentioned in Chapter 4 the correctness and visibility aspects of VSD algorithms. The binary

space partitioning (BSP) tree and octree algorithms are VSD algorithms which address both the

correctness and efficiency issues of VSD. First, let’s cover BSP trees; later, we’ll look at octrees.

The two algorithms are quite similar.
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The BSP tree divides space hierarchically into regions in a time-consuming, one-time prepro-

cessing step, then later allows determination of a correct back-to-front or front-to-back polygon

ordering, for any viewpoint, without sorting the polygons (in contrast to the simple painter’s algo-

rithm). Since the construction of the BSP tree takes a lot of time, the BSP tree algorithm is

generally best suited for scenes where most of the polygons do not move because moving poly-

gons would force a recomputation of at least part of the tree. (There are ways of incorporating

movement into BSP trees, but they are a bit tricky; see Bruce Naylor’s article “A Tutorial on

Binary Space Partitioning Trees” for details on so-called “tree merging.” [NAYL98])

The BSP tree is based upon a very simple idea. Consider a space. Concretely, you can think of

this “space” as a huge box large enough to contain all geometry in your virtual world. Then, con-

sider a plane with arbitrary orientation located somewhere within this space. As we have seen, a

plane is infinitely wide and high, has a front side, and has a back side. Thus, we can think of the

plane as dividing the space into two regions: the region in front of the plane and the region behind

the plane. (We can also consider the region exactly on the surface of the plane to be a third region,

or we can assign it arbitrarily to the front or back side.)

We use the term half space to describe each region that results from the splitting of a space by

a plane. Then, given a half space, we can again choose a splitting plane within this half space,

which again results in two half spaces. We can continue this splitting process indefinitely.
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Figure 5-1: A plane divides space into two regions—three, if we count the surface of
the plane itself.



Thus, we are using planes to hierarchically slice space into smaller and smaller regions. We

can store such a hierarchical space division in memory as a tree data structure. Each internal node

of the tree contains a plane, and has two child nodes: one for the half space on the front side and

one for the half space on the back side of the plane. Each node of the tree also represents the small

region of space which remains after being sliced by all parent nodes along the path to the node.

This tree is the BSP tree: it is a binary partition of space. It is binary because a plane has two sides,

a front and a back; it is a space partition, because we use the plane to split or partition the space into

Chapter 5: Visible Surface Determination II: Space-partitioning Techniques 269

Figure 5-2: Each half space can be split again by a plane.

Figure 5-3: The process of half space splitting can be extended to an arbitrary number of
levels.



exactly two pieces. Let us use the convention that the left child of a BSP tree node represents the

space behind the partitioning plane of the parent, and the right child is the space in front of the par-

titioning plane.

Notice that we thought of the original space as a huge bounding box enclosing all of the geom-

etry in our world. For any size of geometry, it is always possible to make a bigger bounding box to

enclose all of it. Thus, we can always think of the entire world space as being a huge box. A box is

convex; it has no concave dents or holes in it. And when repeatedly slicing a convex shape with a

plane, the resulting pieces are also always convex. This is because each plane is infinitely wide

and high, and slices all geometry along its way, within the space or half space it divides. To under-

stand this geometrically, take a piece of paper and a pair of scissors. The paper represents the

original space. Cut the paper in two, using only one straight cut. Notice that each piece is still con-

vex. Continue cutting each half piece in two, again using only straight cuts that go all the way from

one side of the paper to the other, forming two pieces. You’ll notice that you can never produce a

concave piece by slicing in this manner; this is because each slice goes straight through the entire

piece, preserving convexity.

The question remains as to why we want to partition space in this manner. Consider a set of

polygons located within a space. If we can partition the polygons into two disjointed spaces, called

A and B, then this partitioning encodes a viewpoint-independent visibility relationship between A

and B. Note that if any polygons cross the boundary between A and B, they must be split into two

parts, one completely in A and one completely in B. Essentially, the partition states “A is separate

from B.” This is also the reason that polygons must be split if they cross the partition boundary: the

regions must be separate. Then, given this separation of regions, we can use the camera position

combined with the partitioning to determine the relative visibility of A and B. If the camera is in A,

then no polygon in B can obscure any polygon in A. Similarly, if the camera is in B, then no poly-

gon in A can obscure any polygon in B [SCHU69]. The partitioning, combined with the camera

position, gives us a visibility ordering among the regions of space; using the painter’s algorithm,

we can draw the far space first, then the near space. Then, within each smaller half space, we again

use the camera position with respect to the half space’s partitioning plane to determine the order-

ing of the sub-half-spaces within each half space. We continue recursively all the way down to the

polygon level (exactly how polygons fit into the scheme is covered in the next section), which

gives us a visibility ordering for all polygons within the scene—without the need for sorting the

polygons.

270 Chapter 5: Visible Surface Determination II: Space-partitioning Techniques

Figure 5-4: A set of polygons within a space.



Using a BSP Tree to Partially Pre-sort Polygons
Let’s now look more closely at how we can construct a BSP tree, then look at an example of how to

use a BSP tree for rendering polygons in front-to-back or back-to-front order.

The key idea of the BSP tree is to divide space hierarchically using planes. The question is,

which planes do we choose to divide space? The answer depends on the fact that the spatial

regions the BSP tree partitions are not empty. Instead, these regions contain polygons. We typi-

cally choose one of the polygons within the space, and use the plane of the polygon to split the

space into two smaller sub-spaces. If any of the remaining polygons cross the splitting plane, they

must be split into two pieces, one in each sub-space, to ensure complete separation among the

sub-spaces. Then, for each sub-space, we again choose a polygon within the sub-space, whose

plane then splits all of the polygons within the sub-space. The splitting process continues recur-

sively. We stop when all polygons have been used in this manner—in other words, when all

polygons have been inserted into the tree.

The above discussion ignored one small detail; if several polygons are coplanar (share the

same plane), then if any one of these polygons is chosen as the source of the splitting plane, we

should ideally assign all of the coplanar polygons to the BSP tree node. Not doing so won’t cause
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Figure 5-5: The space has been partitioned into two regions. If the camera is in region A,
we know that no objects from region B can obscure any objects from region A. Similarly, if
the camera is in region B, we know that no objects from region A can obscure any objects
from region B. Note that one polygon, which crossed the splitting plane, had to be split
into two pieces. If each smaller region is further subdivided, we apply the same visibility
ordering principle recursively.



any problems, but it causes inefficiency in the tree because later on we might choose a different

one of the coplanar polygons, causing several nodes in the BSP tree to have the same splitting

plane.

Choosing a Splitting Plane

The question still remains as to which polygon’s plane, at any given point, is the best plane to

choose for splitting the space. The answer depends on how we use the BSP tree. But generally, it is

best to try to choose the splitting planes such that, after splitting, larger sub-spaces contain few

polygons and smaller sub-spaces contain many polygons [NAYL98]. Striving for a balanced tree

is usually not desirable, because the underlying geometry is usually not evenly distributed

[NAYL98]. Remember that each node in the BSP tree represents a convex region formed by slic-

ing up space by all planes along the path to the node. Furthermore, the region of a node is always

large enough to contain all of the geometry beneath it in the BSP tree. By choosing the splitting

planes as described above (many polygons in small spaces), the resulting BSP tree structure places

volumes containing many polygons at relatively shallow levels of the tree. Assuming such groups

of polygons represent local and not global features of interest in the underlying polygonal geome-

try (Bruce Naylor refers to this as the principle of locality [NAYL98]), then such a tree allows us

to find volumes containing features of interest quickly, because we don’t need to traverse the tree

too deeply to find the volumes containing interesting groups of polygons representing local fea-

tures of the geometry.
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Figure 5-6: We usually choose the splitting plane from
one of the polygons within the half space.



To understand this partitioning principle, consider the model in Figure 5-7. In this model, we

have many polygons around the hand and fingers, and few polygons around the arm. The principle

of locality states that the group of many polygons probably represents an interesting set of local

features. Indeed it does—it represents the “hand” of our model. With a BSP tree, it is better to par-

tition space such that the hand, containing many polygons, is in one small region, and the arm,

containing few polygons, is in one large region. This is the BSP tree illustrated in the bottom left of

the figure. An alternative, more balanced but poorer tree, is at the bottom right of the figure.

Notice that the first splitting plane in the poorer, balanced tree splits the interesting region (the

hand) into two regions.

Then, consider the question of point classification—is a particular point in the hand, or not?

For instance, if you were simulating a hand catching a ball, the center point of the ball would need

to be in the region of the hand in order to be caught. With the good tree on the left, as soon as we

find out that the point is in the spatial region of node 3, which is the union of the children regions C

and D, we know that the point cannot lie within the hand. (We classify a point in this manner by

evaluating the plane equation of the splitting plane with the point’s coordinates, as discussed in the

introductory companion book Linux 3D Graphics Programming.) Thus, with the good tree, we

can potentially know the answer to the point classification question at the first level of the BSP

tree. Otherwise, if the point is in region 2, we further traverse this primarily hand-containing

branch of the tree to compare the point with smaller and smaller spaces (defined by their splitting

planes) until we finally know if the point is in the hand or not.
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Figure 5-7: An arm/hand polygonal model and two different BSP trees for the same model. All
vertex normals for the polygons in the hand model point outward; the splitting planes’ normals
point in the same direction as the corresponding polygons’ normals. The BSP tree is constructed
with the convention that the left child lies behind the splitting plane; the right child, in front of
the plane. Note that for simplicity the BSP trees shown here are not complete, since a complete
tree would require using every polygon as a splitting plane.



With the poor tree on the right, only region B can be excluded with certainty from the hand;

and reaching region B requires us to traverse deeper in the tree to the second level. Furthermore,

the interesting hand region has been split into the three regions A, C, and D, located in different

sub-trees. Contrast this with the good BSP tree, where the interesting region was all in one sub-

tree, adhering to the principle of locality. The split of the interesting region into many smaller parts

means that to answer the question of point classification, we have to traverse deeper into the tree in

many different branches. By using the principle of locality and trying to group large numbers of

polygons into small areas, we try to make interesting regions reachable quickly through the tree

for quicker point classification.

Naylor presents algorithms using expected case heuristics (rules of thumb guiding the algo-

rithm at each stage to make a “best guess”) to choose the splitting plane that most likely leads to

good trees, where “good” is specified as a probability function [NAYL98]. Producing good trees

requires the use of such guiding heuristics because the only known way of producing an optimal

tree is by exhaustive search [NAYL98], which is far too slow.

Another possibility for choosing a splitting plane is to use the number of polygon splits as the

criteria for choosing a splitting plane. We choose a few splitting planes at random, then see how

many polygons would need to be split for each chosen splitting plane. The plane causing the few-

est splits is then chosen [FOLE92]. However, minimizing splits does not necessarily

automatically maximize the principle of locality. It is possible to construct scenes where no poly-

gon’s plane would split any other; then, if minimizing splits is the only guiding heuristic, plane

selection becomes arbitrary. Combining several heuristics is generally the best way to construct

good trees.

Back-to-Front Rendering (Painter’s Algorithm Revisited)

Let’s now see how we can use the BSP tree, once constructed. It should be noted that there are

many uses of BSP trees; we can only cover a few here.

One interesting property of a BSP tree as constructed above (choose splitting planes based on

polygons) is that a traversal of the tree by using the camera position produces a perfect back-to-

front or front-to-back ordering of the polygons, just as needed for the painter’s algorithm, but

without sorting. The traversal, which is recursive, works as follows.

1. Set the current node to be the root of the BSP tree.

2. If the current node is a leaf node, then draw the polygon within the node and return to the

caller.

3. Otherwise, compare the camera position to the splitting plane of the current node.

3a. If the camera position is in front of the plane, then recursively draw the left sub-tree

(behind the plane), then draw the polygon in the current node (on the plane), then recur-

sively draw the right sub-tree (in front of the plane).

3b. If, on the other hand, the camera position is behind the plane, recursively draw the right

sub-tree (in front of the plane, but behind the plane from the camera’s point of view), then

draw the polygon in the current node (on the plane), then recursively draw the left

sub-tree (behind the plane, but in front of the plane from the camera’s point of view).
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Notice that this is an in-order traversal of the tree data structure, with the modification that at each

step of the recursive traversal, the position of the camera in respect to the splitting plane deter-

mines the order in which the children are visited. We always draw the sub-tree farthest from the

camera first, then the polygon on the splitting plane, and then the sub-tree nearest the camera.

Let’s restate that one more time for emphasis: the BSP traversal results in a perfect back-to-

front ordering of polygons. We can draw polygons during the traversal, in a manner similar to the

painter’s algorithm, with the knowledge that nearer polygons then obscure farther ones. Also,

because the space partitioning splits polygons which cross region boundaries, and because no far-

ther region can ever obscure any other nearer region, the BSP traversal does not suffer from the

problems of non-orderable polygon groups or intersecting polygons which we encountered in the

simple painter’s algorithm. Polygon ambiguities are resolved beforehand by the BSP tree by split-

ting the polygons across sub-spaces.

Front-to-Back Rendering

Instead of traversing from back to front, we can also traverse the BSP tree front to back. This

requires a trivial change to the traversal logic: we simply recursively draw the nearest sub-tree

first, then the polygon of the splitting plane, then the farthest sub-tree.

Front-to-back rendering, of course, requires some additional data structure, such as a z buffer

or one of its span-based variants, to ensure that later pixels drawn from farther polygons do not

obscure the nearer pixels already drawn. By eliminating recomputation of pixels that have already

been drawn, a front-to-back BSP rendering can increase performance by a factor of two to four

[GORD91].

Combining BSP Trees and Bounding Volumes

We’ve now seen how to use the BSP tree to produce a correct polygon ordering for an arbitrary

camera position. But with very large scenes, it becomes impractical to draw all of the polygons in

all of the nodes of the BSP tree. It turns out that the technique of hierarchical view volume culling

works well with BSP trees.

The idea is that each node of a BSP tree represents a convex volume of space. So, all we need

to do is compute a bounding sphere for each node in the BSP tree. This is the bounding sphere of

the object formed by all of the polygons located at or beneath the node in the tree. We can then

store this bounding sphere with each node of the tree.

During traversal of the BSP tree, we simply check to see if the bounding sphere for the current

node is outside the view frustum. If it is, then we immediately stop processing that branch of the

tree: nothing beneath it can possibly be visible. This allows us to quickly eliminate large portions

of the scene from further processing. We can also check if a sphere is completely inside the

frustum; if so, then all of its geometry must be inside. The idea is exactly the same as the hierarchi-

cal view frustum culling which we discussed earlier; the new trick is that the BSP tree

automatically hierarchically organizes polygons into convex volumes, which we can then reuse

for view frustum culling.

Note that the use of the bounding sphere for culling at each level of the BSP tree reinforces the

idea that a balanced tree is usually not better, and that adhering to the principle of locality is more
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desirable. View frustum culling can be viewed as a search operation among polygons to find those

which lie outside of the frustum. By balancing the BSP tree, we force the search to progress with

equal probability throughout the entire tree. By grouping polygons into localized regions, we

allow the search to progress in a region-based manner. Then, culling a region saves more work

than with a balanced tree: small regions contain many polygons, and small regions are more likely

cullable. Again consider the hand and arm model; assume the arm has 10 polygons, and the hand

has 5,000. By grouping the many hand polygons into a spatially small region, as soon as we find

out that the hand’s small bounding sphere is outside the frustum, we can cull 5,000 polygons from

processing. If, however, we balance the tree and split the arm and hand polygons into two large,

balanced groups of 2,505 polygons each, then we cannot cull “the hand” as a whole; instead, we

have to look at the left arm-hand half (5+2,500 polygons) and the right arm-hand half (5+2,500)

polygons separately, neither half of which is likely to be culled because the large volumes contain

relatively many polygons, and larger volumes are difficult to cull. This forces us to progress fur-

ther and further down into the (balanced) tree to find which polygons are inside and which are

outside the frustum.

Sample Program: bsp
With this theoretical understanding of BSP trees, let’s take a look at a simple sample program that

creates a BSP tree and renders it back to front, combining this with hierarchical view frustum cull-

ing. The program reads a single Videoscape mesh from disk and creates a BSP tree from these

polygons, also storing bounding spheres with each node of the tree. Then, the tree is traversed and

rendered in back-to-front order, using view frustum culling to cull parts of the tree. The program

displays how many nodes of the tree have been visited for the current scene. Navigate around the

scene and notice how the number changes; without view frustum culling, we would always need

to visit all nodes of the tree.

The purpose of the next sample program bsp and the supporting classes is merely to illustrate

the creation and use of 3D BSP trees. The sample program is not very efficient in terms of memory

usage, so as it stands, it should not be used for creating BSP trees on models with more than a

handful of polygons (unless you have lots of time and memory).
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Figure 5-8: Output from sample program bsp.



Classes l3d_halfspace and l3d_bsptree

Class l3d_bsptree is the class representing the nodes of a BSP tree and the operations which

can be performed on the tree. The individual nodes of the BSP tree are instances of class

l3d_halfspace. Each l3d_halfspace represents a region of space, can store a 3D object

(list of polygons) located within the half space, can store a splitting plane, and can have child

nodes.

Listing 5-1: halfspace.h
#ifndef __BSPTREE_H
#define __BSPTREE_H
#include "../../tool_os/memman.h"

class l3d_halfspace;
class l3d_object_clippable_boundable;
class l3d_object;
class l3d_bsptree {
protected:
void _permanently_merge_objects(l3d_object *dest, l3d_object *src);
void _recursive_delete_tree(l3d_halfspace *root);

public:
l3d_halfspace *root;
l3d_bsptree(void);
virtual ~l3d_bsptree(void);
void compute_for_object(l3d_halfspace *root,

l3d_object_clippable_boundable *rest_of_obj);

void push_polys_to_children
(l3d_halfspace *tree,
l3d_object_clippable_boundable *unsplit_obj_from_parent);

void make_videoscape_meshes(l3d_halfspace *tree);
void print_stats(l3d_halfspace *tree);

};

#endif

Listing 5-2: bsptree.h
#ifndef __BSPTREE_H
#define __BSPTREE_H
#include "../../tool_os/memman.h"

class l3d_halfspace;
class l3d_object_clippable_boundable;
class l3d_object;
class l3d_bsptree {
protected:
void _permanently_merge_objects(l3d_object *dest, l3d_object *src);
void _recursive_delete_tree(l3d_halfspace *root);

public:
l3d_halfspace *root;
l3d_bsptree(void);
virtual ~l3d_bsptree(void);
void compute_for_object(l3d_halfspace *root,

l3d_object_clippable_boundable *rest_of_obj);
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void push_polys_to_children
(l3d_halfspace *tree,
l3d_object_clippable_boundable *unsplit_obj_from_parent);

void make_videoscape_meshes(l3d_halfspace *tree);
void print_stats(l3d_halfspace *tree);

};

#endif

Listing 5-3: bsptree.cc
#include "bsptree.h"
#include "halfspace.h"
#include "../object/obound.h"
#include "../../dynamics/plugins/vidmesh/vidmesh.h"
#include "../../tool_os/memman.h"

l3d_bsptree::l3d_bsptree(void) {
root = NULL;

}

void l3d_bsptree::_recursive_delete_tree(l3d_halfspace *root) {
if(root) {

_recursive_delete_tree(root->children[0]);
_recursive_delete_tree(root->children[1]);
if(root->object) {
delete root->object;

}
}

}

l3d_bsptree::~l3d_bsptree(void) {
_recursive_delete_tree(root);

}

void l3d_bsptree::print_stats(l3d_halfspace *tree) {
static int level = 0;
level++;
if(tree) {
printf("%-*.*sLEVEL %d ", level*2, level*2, "", level);
if(tree->object) {
printf("%d polys, obj %p", tree->object->polygons.num_items, tree->object);

}else {
printf("NO OBJECT (0 polys)");

}
printf("%-*.*sleft child:", level*2, level*2, "");
print_stats(tree->children[0]);
printf("%-*.*sright child:", level*2, level*2, "");
print_stats(tree->children[1]);

}
level--;

}

void l3d_bsptree::compute_for_object(l3d_halfspace *root,
l3d_object_clippable_boundable *rest_of_obj)

{
static int recurselevel=0;
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recurselevel++;

if(rest_of_obj->polygons.num_items == 1) {
root->object = rest_of_obj;

l3d_polygon_3d_clippable *pc;
pc = dynamic_cast<l3d_polygon_3d_clippable *>

((rest_of_obj->polygons)[0]);

root->plane = pc->plane;

root->children.num_items = 0;
int cnum;
root->children[cnum=root->children.next_index()] = NULL;
root->children[cnum=root->children.next_index()] = NULL;

}
else {
rest_of_obj->reset();

int split_poly_num = rand() % rest_of_obj->polygons.num_items;
l3d_polygon_3d_clippable *split_poly;
split_poly = dynamic_cast<l3d_polygon_3d_clippable *>

((rest_of_obj->polygons) [split_poly_num]);

root->plane = split_poly->plane;

l3d_object_clippable_boundable *left_obj, *right_obj;
left_obj = new l3d_object_clippable_boundable(1);
*left_obj = *rest_of_obj;
right_obj = new l3d_object_clippable_boundable(1);
*right_obj = *rest_of_obj;

root->object = rest_of_obj;
root->bounding_sphere.compute_around_object(root->object);

root->object->reset();
l3d_polygon_3d_node *n;
n = root->object->nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_clippable *pc;
pc = dynamic_cast<l3d_polygon_3d_clippable*>(n->polygon);

if(pc==split_poly) {
root->object->nonculled_polygon_nodes = n;
n->next = NULL;
n->prev = NULL;
break;

}
n = n->next;

}

root->object->make_current_geometry_permanent();

left_obj->reset();

int poly_i;
poly_i = 0;
n = left_obj->nonculled_polygon_nodes;
while(n) {
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l3d_polygon_3d_clippable *pc;
pc = dynamic_cast<l3d_polygon_3d_clippable*>(n->polygon);

if(poly_i == split_poly_num) {
if(n->prev) {
n->prev->next = n->next;

}else {
left_obj->nonculled_polygon_nodes = n->next;

}
if(n->next) {
n->next->prev = n->prev;

}
break;

}
n = n->next;
poly_i++;

}
right_obj->reset();
poly_i = 0;
n = right_obj->nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_clippable *pc;
pc = dynamic_cast<l3d_polygon_3d_clippable*>(n->polygon);

if(poly_i==split_poly_num) {
if(n->prev) {
n->prev->next = n->next;

}else {
right_obj->nonculled_polygon_nodes = n->next;

}
if(n->next) {
n->next->prev = n->prev;

}
break;

}
n = n->next;
poly_i++;

}

l3d_plane other_plane;
other_plane.a = -split_poly->plane.a;
other_plane.b = -split_poly->plane.b;
other_plane.c = -split_poly->plane.c;
other_plane.d = -split_poly->plane.d;

left_obj->clip_to_plane(other_plane);
right_obj->clip_to_plane(split_poly->plane);

left_obj->make_current_geometry_permanent();
right_obj->make_current_geometry_permanent();

l3d_halfspace *left, *right;
if(left_obj->polygons.num_items) {
left = new l3d_halfspace;
left->object = left_obj;
left->children.num_items = 0;
left->bounding_sphere.compute_around_object(left_obj);

}else {
left = NULL;
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}
if(right_obj->polygons.num_items) {
right = new l3d_halfspace;
right->object = right_obj;
right->children.num_items = 0;
right->bounding_sphere.compute_around_object(right_obj);

}else {
right = NULL;

}

root->children.num_items = 0;
int cnum;
root->children[cnum=root->children.next_index()] = left;
root->children[cnum=root->children.next_index()] = right;

if(left) {compute_for_object(left, left_obj); }
if(right) {compute_for_object(right, right_obj); }

}

recurselevel--;

}

void l3d_bsptree::_permanently_merge_objects
(l3d_object *dest, l3d_object *src)
{
if(!src) return;

dest->reset();

l3d_polygon_3d_node *n;
n = src->nonculled_polygon_nodes;
while(n) {

l3d_polygon_2d *poly;
poly = n->polygon->clone(); //- warning: does not clone texture

//- point texture in cloned polygon to the destination mesh's texture,
//- otherwise the cloned polygon still points to the original mesh's tex,
//- which is a problem when the original mesh is deleted
l3d_polygon_3d_textured *ptex;
ptex = dynamic_cast<l3d_polygon_3d_textured *> (poly);
if(ptex) {
l3d_plugin_videoscape_mesh *mesh =
(l3d_plugin_videoscape_mesh *)dest->plugin_data;

ptex->texture->tex_data = mesh->tex_data;
}
poly->ivertices->num_items = 0;
int ivtx;
for(ivtx=0; ivtx<poly->clip_ivertices->num_items; ivtx++) {
int new_ivtx;
int found_new_ivtx=0;
for(new_ivtx=0;

new_ivtx<dest->vertices->num_fixed_items &&
! found_new_ivtx;
new_ivtx++)

{
if( (*dest->vertices)[new_ivtx].original.X_ ==
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(**poly->vlist)[(*poly->clip_ivertices)[ivtx].ivertex].original.X_
&& (*dest->vertices)[new_ivtx].original.Y_ ==
(**poly->vlist)[(*poly->clip_ivertices)[ivtx].ivertex].original.Y_
&& (*dest->vertices)[new_ivtx].original.Z_ ==
(**poly->vlist)[(*poly->clip_ivertices)[ivtx].ivertex].original.Z_

)
{
found_new_ivtx = 1;
int next_idx = poly->ivertices->next_index();
(*poly->ivertices)[next_idx].ivertex = new_ivtx;

}
}
if(!found_new_ivtx) {
dest->vertices->next_varying_index();
dest->vertices->num_varying_items --;
dest->vertices->max_varying_items --;
dest->vertices->num_fixed_items ++;
(*dest->vertices)
[dest->vertices->num_fixed_items - 1].original
=
(**poly->vlist)[(*poly->clip_ivertices)[ivtx].ivertex].original ;

int next_idx = poly->ivertices->next_index();
(*poly->ivertices)[next_idx].ivertex =
dest->vertices->num_fixed_items - 1;

}

}

poly->vlist = &dest->vertices;

int pnum = dest->polygons.next_index();
l3d_polygon_3d_clippable *poly3;
poly3 = dynamic_cast<l3d_polygon_3d_clippable *> (poly);

dest->polygons[pnum] = poly3;
poly3->compute_center();
poly3->compute_sfcnormal();
poly3->plane.align_with_point_normal
(poly3->center.original,
normalized(poly3->sfcnormal.original - poly3->center.original));

n = n->next;
}

}

void l3d_bsptree::push_polys_to_children
(l3d_halfspace *tree,
l3d_object_clippable_boundable *unsplit_obj_from_parent)
{
static int lvl=0;
lvl++;
if(tree) {

//- define front and back clipping planes

l3d_plane front_clip_plane, back_clip_plane;
back_clip_plane.a = -tree->plane.a;
back_clip_plane.b = -tree->plane.b;
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back_clip_plane.c = -tree->plane.c;
back_clip_plane.d = -tree->plane.d;
front_clip_plane.a = tree->plane.a;
front_clip_plane.b = tree->plane.b;
front_clip_plane.c = tree->plane.c;
front_clip_plane.d = tree->plane.d;

l3d_object_clippable_boundable *back_obj;
back_obj = new l3d_object_clippable_boundable

(tree->object->vertices->num_fixed_items);
int should_delete_back_obj = 1;

*back_obj = *tree->object;

//- uncomment the following to cause all polys to end up in the
//- right children in the tree (be sure to comment out the similar
//- assignment below to front_obj->polygons.num_items = 0)
//-
back_obj->polygons.num_items = 0;
if(unsplit_obj_from_parent) {
unsplit_obj_from_parent->reset();
unsplit_obj_from_parent->clip_to_plane(back_clip_plane);
_permanently_merge_objects(back_obj, unsplit_obj_from_parent);

}

if(back_obj->polygons.num_items > 0) {
back_obj->reset();

if(tree->children[0]) {
push_polys_to_children(tree->children[0], back_obj);

}else {
//- there previously were no polys in the back half space, but
//- now due to a poly pushed down from the parent, there are.
//- so create a new left child.
tree->children[0] = new l3d_halfspace;
tree->children[0]->object = back_obj;
tree->children[0]->children.num_items = 0;
tree->children[0]->children[tree->children[0]->children.next_index()]
= NULL;
tree->children[0]->children[tree->children[0]->children.next_index()]
= NULL;
tree->children[0]->bounding_sphere.compute_around_object(back_obj);

should_delete_back_obj = 0;
}

}
else {
if(tree->children[0]) {
push_polys_to_children(tree->children[0], NULL);

}
}

if(should_delete_back_obj) {delete back_obj; }

l3d_object_clippable_boundable *front_obj;
front_obj = new l3d_object_clippable_boundable

(tree->object->vertices->num_fixed_items);
int should_delete_front_obj = 1;
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*front_obj = *tree->object;

//- uncomment the following to cause all polys to end up in the
//- left children in the tree (be sure to comment out the similar
//- assignment above to back_obj->polygons.num_items = 0)
//-
//- front_obj->polygons.num_items = 0;
if(unsplit_obj_from_parent) {
unsplit_obj_from_parent->reset();
unsplit_obj_from_parent->clip_to_plane(front_clip_plane);
_permanently_merge_objects(front_obj, unsplit_obj_from_parent);

}
if(front_obj->polygons.num_items > 0) {
front_obj->reset();
if(tree->children[1]) {
push_polys_to_children(tree->children[1], front_obj);

}else {
//- there previously were no polys in the front half space, but
//- now due to a poly pushed down from the parent, there are.
//- so create a new right child.
tree->children[1] = new l3d_halfspace;
tree->children[1]->object = front_obj;
tree->children[1]->children.num_items = 0;
tree->children[1]->children[tree->children[1]->children.next_index()]
= NULL;
tree->children[1]->children[tree->children[1]->children.next_index()]
= NULL;
tree->children[1]->bounding_sphere.compute_around_object(front_obj);

should_delete_front_obj = 0;
}

}
else {
if(tree->children[1]) {
push_polys_to_children(tree->children[1], NULL);

}
}
if(should_delete_front_obj) {delete front_obj; }

delete tree->object;
tree->object = NULL;

}
lvl--;

}

void l3d_bsptree::make_videoscape_meshes(l3d_halfspace *tree) {
static int level = 0;
static int filecounter=0;
level++;
if(tree) {
if(tree->object) {
FILE *fp;
char fname[512];
sprintf(fname,"vid%d.obj", filecounter);
fp = fopen(fname,"wb");
fprintf(fp,"3DG1");
fprintf(fp,"%d", tree->object->vertices->num_fixed_items);
for(int i=0; i<tree->object->vertices->num_fixed_items; i++) {
fprintf(fp, "%f %f %f",

l3d_real_to_float( (*tree->object->vertices)[i].original.X_),
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l3d_real_to_float( (*tree->object->vertices)[i].original.Z_),
l3d_real_to_float( (*tree->object->vertices)[i].original.Y_));

}
for(int ip=0; ip<tree->object->polygons.num_items; ip++) {
fprintf(fp,"%d ", (*tree->object->polygons[ip]->ivertices).num_items);
for(int iv = (*tree->object->polygons[ip]->ivertices).num_items-1;

iv >= 0;
iv--)

{
fprintf(fp,"%d ",

(*tree->object->polygons[ip]->ivertices)[iv].ivertex);
}
fprintf(fp,"0xf0f0f0");

}
fclose(fp);
filecounter++;

}else {
}
make_videoscape_meshes(tree->children[0]);
make_videoscape_meshes(tree->children[1]);

}
level--;

}

First, let’s look at class l3d_halfspace. Member variable plane is the splitting plane for this

half space. Member variable children is an array of child nodes. children[0] is the left

child (behind the splitting plane); children[1] is the right child (in front of the splitting

plane). The reason for using an array is to enable each tree node to have more than two children, as

is the case with the octree data structure (covered later in this chapter). Member variable object
is the 3D object (in other words, a list of polygons) associated with this node. For the BSP tree as

covered so far, this object will contain exactly one polygon; for the leafy BSP tree covered later,

this object can contain more polygons. Member variable bounding_sphere is the bounding

sphere for all polygons in this node and all nodes beneath it in the tree; in other words, it is the

bounding sphere for all geometry within the half space.

Next, let’s look at class l3d_bsptree. Member variable root is the pointer to the root of

the tree of l3d_halfspace nodes. Method compute_for_object computes the BSP tree

based on the given arbitrary object and a root node of type l3d_halfspace. It computes the

BSP tree by choosing a splitting plane, partitioning the polygons with respect to this splitting

plane, and recursively computing smaller sub-trees for each smaller subset of polygons. Spe-

cifically, the BSP tree construction works as follows.

1. Compute the bounding sphere for all polygons within the current half space, and store it

within the current tree node.

2. Choose one of the polygons belonging to the current half space. The chosen polygon’s plane

is the current splitting plane. Store the splitting plane and the polygon in the node.

3. If there are no remaining polygons in the half space, then return to the caller; every polygon in

this half space has been assigned to a tree node. Otherwise, split the remaining polygons

against the split plane. Divide the split polygons into two groups: the group in front of the

plane and the group behind the plane.
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4. For the group behind the plane, create a left child of the current tree node, and recursively call

step 1. For the group in front of the plane, create a right child of the current tree node, and

recursively call step 1.

The algorithm terminates when no polygons are left in the input set because each has been

assigned to a node.

Note that for simplicity this routine ignores the small detail of coplanar polygons; as men-

tioned earlier, when choosing a splitting plane we actually should assign all polygons lying on this

splitting plane to the current node. This requires a search through the rest of the polygons to see if

any of them lie within the splitting plane (evaluating all of the polygon’s vertices with the plane

equation answers this question). Not doing this, as mentioned earlier, doesn’t harm, it just makes

for a less efficient tree.

Also, for reasons of simplicity, the polygon we choose for the splitting plane is chosen com-

pletely at random. As mentioned earlier, creating a better tree requires us to specify the operations

of interest upon the tree (e.g., point classification), and typically means creating a tree based on

expected case heuristics which exploits the principle of locality.

Returning to the class l3d_bsptree, the protected method _recursive_delete_
tree recursively deletes the tree rooted at the node stored in member variableroot. This routine

is called from the destructor.

The method print_stats recursively prints some statistics about the BSP tree. It shows

how many polygons are in each node, and the left and right children of the node. For the BSP trees

constructed as described above, each node contains exactly one polygon. (This changes with leafy

BSP trees, as we see later.)

For now, ignore the methods push_polys_to_children, make_videoscape_
meshes, and _permanently_merge_objects. We cover these in the coming section on

leafy BSP trees.

Class l3d_world_bsptree

Class l3d_world_bsptree is a demonstration world class illustrating the basics of drawing a

BSP tree in back-to-front order, combined with view frustum culling. Provision is only made for

one BSP tree. In a larger application, it can be impractical to store the entire geometry for a world

in one BSP tree (although it can be done); doing so raises practical questions, such as to how to

assign texture objects to different polygons in different parts of the tree, how to handle moving

objects, and so forth. A different way of organizing geometry involves a manual grouping of poly-

gons into sectors, and the creation of a so-called mini BSP tree, one for each sector. See the

sections on mini BSP trees and portals for further discussion of this technique.

Listing 5-4: w_bsp.h
#ifndef __W_BSP_H
#define __W_BSP_H
#include "../../tool_os/memman.h"

#include "../../tool_os/dispatch.h"
#include "../../view/camera.h"
#include "../../tool_2d/screen.h"
#include "../object/object3d.h"
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#include "world.h"
#include "../frustum/vfrust.h"

class l3d_bsptree;
class l3d_halfspace;
class l3d_world_bsptree : public l3d_world
{
protected:
int visited_nodes;

public:
l3d_world_bsptree(int xsize, int ysize) :
l3d_world(xsize,ysize) {};
virtual ~l3d_world_bsptree(void);
void render_bsp_tree(l3d_halfspace *tree, l3d_point campos,

l3d_viewing_frustum &frustum);

/* virtual */ void draw_all(void);
l3d_bsptree *the_tree;

};

#endif

Listing 5-5: w_bsp.cc
#include "w_bsp.h"
#include <stdlib.h>
#include <string.h>

#include "../object/sector.h"
#include "../polygon/polygon.h"
#include "../../tool_2d/screen.h"
#include "../../tool_os/dispatch.h"
#include "../../raster/rasteriz.h"
#include "../../tool_2d/scrinfo.h"
#include "../../system/fact0_2.h"
#include "w_bsp.h"
#include "../bsp/halfspace.h"
#include "../bsp/bsptree.h"
#include "../frustum/vfrust.h"
#include "../../tool_os/memman.h"

l3d_world_bsptree::~l3d_world_bsptree() {
if(the_tree) delete the_tree;

}

void l3d_world_bsptree::render_bsp_tree
(l3d_halfspace *tree, l3d_point campos, l3d_viewing_frustum &frustum)
{
visited_nodes++;

if(tree) {

if( tree->plane.side_of_point(campos) > 0 ) {
if(tree->children[0]

&& frustum.intersects_sphere(tree->children[0]->bounding_sphere)
)

{
render_bsp_tree(tree->children[0],campos,frustum);

}
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if(tree->object) {
tree->object->reset();

//- no world coord xforms allowed, bsp is static

if(tree->object->clip_to_plane(frustum.top)
&& tree->object->clip_to_plane(frustum.bottom)
&& tree->object->clip_to_plane(frustum.left)
&& tree->object->clip_to_plane(frustum.right)
&& tree->object->clip_to_plane(frustum.near)
&& tree->object->clip_to_plane(frustum.far))

{

tree->object->camera_transform(camera->viewing_xform);

tree->object->apply_perspective_projection
(*camera, screen->xsize, screen->ysize);

l3d_polygon_3d_node *n;
n = tree->object->nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_clippable *poly =
dynamic_cast<l3d_polygon_3d_clippable *>
(n->polygon);

if( poly->sfcnormal.transformed.Z_ -
poly->center.transformed.Z_ < float_to_l3d_real(0.05) )

{
poly->draw(rasterizer);

}
n = n->next;

}
}

}

if(tree->children[1]
&& frustum.intersects_sphere(tree->children[1]->bounding_sphere)

)
{
render_bsp_tree(tree->children[1],campos,frustum);

}
}else {
if(tree->children[1]

&& frustum.intersects_sphere(tree->children[1]->bounding_sphere)
)

{
render_bsp_tree(tree->children[1],campos,frustum);

}

if(tree->object) {
tree->object->reset();
//- no world coord xforms allowed, bsp is static

if(tree->object->clip_to_plane(frustum.top)
&& tree->object->clip_to_plane(frustum.bottom)
&& tree->object->clip_to_plane(frustum.left)
&& tree->object->clip_to_plane(frustum.right)
&& tree->object->clip_to_plane(frustum.near)
&& tree->object->clip_to_plane(frustum.far))

{
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tree->object->camera_transform(camera->viewing_xform);
tree->object->apply_perspective_projection
(*camera, screen->xsize, screen->ysize);

l3d_polygon_3d_node *n;
n = tree->object->nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_clippable *poly =
dynamic_cast<l3d_polygon_3d_clippable *>
(n->polygon);

{
if( poly->sfcnormal.transformed.Z_ -

poly->center.transformed.Z_ < float_to_l3d_real(0.05) )
{
poly->draw(rasterizer);

}
}
n = n->next;

}
}

}
if(tree->children[0]

&& frustum.intersects_sphere(tree->children[0]->bounding_sphere)
)

{
render_bsp_tree(tree->children[0],campos,frustum);

}
}

}

}

void l3d_world_bsptree::draw_all(void) {
int iObj, iFacet;

rasterizer->clear_buffer();

l3d_viewing_frustum frustum;

l3d_point top_left, top_right, bot_right, bot_left;
const int XOFF=2,YOFF=2;

top_left.set(l3d_mulrr(l3d_divrr(int_to_l3d_real(XOFF - screen->xsize/2),
l3d_mulri(camera->fovx,screen->xsize)),

camera->near_z),
l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->ysize/2 - YOFF),

l3d_mulri(camera->fovy,screen->ysize)),
camera->near_z),

int_to_l3d_real(camera->near_z),
int_to_l3d_real(1));

top_right.set(l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->xsize-XOFF - screen->xsize/2),
l3d_mulri(camera->fovx,screen->xsize)),

camera->near_z),
l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->ysize/2 - YOFF),

l3d_mulri(camera->fovy,screen->ysize)),
camera->near_z),

int_to_l3d_real(camera->near_z),
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int_to_l3d_real(1));

bot_right.set(l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->xsize-XOFF - screen->xsize/2),
l3d_mulri(camera->fovx,screen->xsize)),

camera->near_z),
l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->ysize/2 - screen->ysize+YOFF),

l3d_mulri(camera->fovy,screen->ysize)),
camera->near_z),

camera->near_z,
int_to_l3d_real(1));

bot_left.set(l3d_mulrr(l3d_divrr(int_to_l3d_real(XOFF - screen->xsize/2),
l3d_mulri(camera->fovx,screen->xsize)),

camera->near_z),
l3d_mulrr(l3d_divrr(int_to_l3d_real(screen->ysize/2 - screen->ysize+YOFF),

l3d_mulri(camera->fovy,screen->ysize)),
camera->near_z),

camera->near_z,
int_to_l3d_real(1));

frustum.create_from_points
(top_left, top_right, bot_right, bot_left,
camera->near_z, camera->far_z,
camera->inverse_viewing_xform);

//- traverse the BSP tree

l3d_point camera_world_pos = camera->VRP;

visited_nodes = 0;
render_bsp_tree(the_tree->root, camera_world_pos, frustum);

char msg[256];
sprintf(msg,"%d nodes visited", visited_nodes);
rasterizer->draw_text(0,32,msg);

}

Member variable the_tree points to the single BSP tree which will be rendered by the world.

Overridden method draw_all then does the drawing. It creates a view frustum in world coordi-

nates, then calls the recursive routine render_bsp_tree. Method render_bsp_tree then

recursively traverses the tree in a back-to-front method as described earlier: first draw the far

sub-tree (as seen from the camera position), then the polygon in the current node, then the near

sub-tree. While recursively traversing the tree structure, we also check each node’s bounding

sphere against the view frustum. Since the bounding sphere for a node encompasses all of the

geometry at or beneath that node in the tree, we do not process that node or any node beneath it if

the node’s bounding sphere is completely outside of the frustum.

The Main Program

The main program file for bsp is quite simple. It declares a subclass of l3d_world_bsptree,

which performs some typical world initialization and loads a Videoscape mesh. The filename of

the mesh it loads is soup.obj, so named because an arbitrary collection of polygons is often

called a polygon soup. Then, in the last part of the world constructor, we create a BSP tree with

exactly one node and no children, and then invoke the compute_for_object method to
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compute the full BSP tree for the loaded Videoscape object. The drawing of the BSP tree takes

place in the parent class l3d_world_bsptree, in the inherited method draw_all.

Listing 5-6: main.cc, main program file for sample program bsp
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/sector.h"
#include "../lib/geom/polygon/p3_flat.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rast3.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/w_bsp.h"
#include "../lib/system/fact0_2.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/dynamics/plugins/plugenv.h"
#include "../lib/geom/texture/tl_ppm.h"
#include "../lib/dynamics/plugins/vidmesh/vidmesh.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>
#include "../lib/geom/bsp/halfspace.h"
#include "../lib/geom/bsp/bsptree.h"

class my_world:public l3d_world_bsptree {
protected:
l3d_texture_loader *texloader;
l3d_surface_cache *scache;

public:
my_world(void);
virtual ~my_world(void);

};

my_world::my_world(void)
: l3d_world_bsptree(320,240)

{
l3d_screen_info *si = screen->sinfo;

camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(1.0);
camera->far_z = int_to_l3d_real(50);

//- for mesa rasterizer's reverse projection
rasterizer_3d_imp->fovx = &(camera->fovx);
rasterizer_3d_imp->fovy = &(camera->fovy);
rasterizer_3d_imp->screen_xsize = &(screen->xsize);
rasterizer_3d_imp->screen_ysize = &(screen->ysize);

int i,j,k;

texloader = new l3d_texture_loader_ppm(si);
scache = new l3d_surface_cache(si);
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//- create a plugin object
l3d_object_clippable_boundable *oc;

oc =
new l3d_object_clippable_boundable(10);

//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

oc->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

oc->plugin_loader->load("../lib/dynamics/plugins/vidmesh/vidmesh.so");
oc->plugin_constructor =
(void (*)(l3d_object *, void *))
oc->plugin_loader->find_symbol("constructor");

oc->plugin_update =
(void (*)(l3d_object *))
oc->plugin_loader->find_symbol("update");

oc->plugin_destructor =
(void (*)(l3d_object *))
oc->plugin_loader->find_symbol("destructor");

oc->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
oc->plugin_loader->find_symbol("copy_data");

texloader = new l3d_texture_loader_ppm(si);
scache = new l3d_surface_cache(si);

char plugin_parms[4096];
sprintf(plugin_parms, "%d %d %d 1 0 0 0 1 0 0 0 1 soup.obj soup.ppm soup.uv",

0,0,0);

l3d_plugin_environment *e =
new l3d_plugin_environment
(texloader, screen->sinfo, scache, (void *)plugin_parms);

if(oc->plugin_constructor) {
(*oc->plugin_constructor) (oc,e);

}

oc->bounding_sphere.compute_around_object(oc);

l3d_bsptree *tree;

tree = new l3d_bsptree;
tree->root = new l3d_halfspace;
tree->root->bounding_sphere = oc->bounding_sphere;
tree->root->object = NULL;
tree->root->children.num_items = 0;
tree->root->children[tree->root->children.next_index()] = 0;
tree->root->children[tree->root->children.next_index()] = 0;

tree->compute_for_object(tree->root, oc);

the_tree = tree;

screen->refresh_palette();
}

my_world::~my_world(void) {
delete texloader;
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delete scache;
}

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;

factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete d;
delete p;
delete w;

}

The World Database, Revisited

Thel3d_world class, as presented thus far (see Chapter 1 and the introductory companion book

Linux 3D Graphics Programming), uses a very simple world database: merely a list of l3d_
object objects, traversed sequentially. As the number of objects grows, sequentially traversing

the world database takes more and more time.

With this sample program bsp, we have now seen one example of an alternative world data-

base. Instead of blindly processing all polygons, we have used the BSP tree to spatially “sort” the

polygons hierarchically. Drawing the world then amounts to a hierarchical traversal of a binary

tree.

TIP Notice that both the original simple world database (a list of objects) and the BSP’s
database (a binary tree of polygons) are both fundamental data structures from the field of
computer science. There are many other data structures—queues, hash tables, directed acy-
clic graphs, and so forth. All of these can be used within the context of interactive 3D graphics
applications to create more efficient data structures for managing larger world databases.
While most data structures books deal (and necessarily so) with operations on simple objects
such as words, letters, numbers, or database records, the same principles can be applied with
great success to storing and efficiently accessing 3D objects in a world database. The portal
scheme covered later in this chapter uses a graph to store visibility information.

Leafy BSP Trees: Automatic Convex Partitioning of
Space

The BSP tree structure as described so far stores polygons in both the internal and leaf nodes of the

tree. By traversing the tree in a particular order using the camera position relative to the current

node’s splitting plane, we determine an ordering among the BSP tree nodes. We draw each single

Chapter 5: Visible Surface Determination II: Space-partitioning Techniques 293



polygon in each node as we traverse the tree to determine a viewpoint-dependent polygon order-

ing without sorting.

Another form of BSP tree stores polygons exclusively in the leaf nodes of the tree, not in the

internal nodes of the tree. Such a tree is sometimes called a leafy BSP tree. Quake was one of the

first games to use this method. The idea is simple. When splitting the set of polygons by a plane,

we effectively created three nodes. The left child is the root of the tree storing all polygons behind

the plane, the right child is the root of the tree storing all polygons in front of the plane, and the cur-

rent node stores the polygon exactly on the plane. (Though as noted earlier, to be completely

correct we would have to store all polygons that are coplanar to the splitting plane in the current

node.)

With the leafy BSP tree, no polygons are allowed to lie “on” the splitting plane. Instead, they

must be assigned to either the front half space or the back half space. The choice is arbitrary, but

must be consistent for all polygons. In other words, we “push” each polygon which lies on a split-

ting plane further down into the tree, so that it eventually ends up in a leaf node. The tricky part

about pushing polygons down further into the tree is that pushing a polygon down into a node

requires that we split the polygon against the receiving node’s splitting plane. Splitting the poly-

gon generally will result in two pieces, meaning that each smaller piece must then individually be

pushed further down into the tree. In other words, with a leafy BSP tree, each child node’s splitting

plane is also allowed to split the polygons from parent nodes.

NOTE The choice of whether polygons lying on the splitting planes are pushed to the front
or the back half space influences whether the resulting convex polygon sets appear in the left
or right child leaves of the tree.
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Rather than pushing each polygon individually through the tree, which would require multi-

ple passes through the tree, we can save work by merging all split pieces coming from a

higher-level tree node with the current polygon in the current node. In this way, as a polygon pro-

gresses down the tree, it gets clipped against each node’s plane and merged with more and more

polygons from each node along the way down. This causes clumps of polygons to form as they

progress down the tree.

After pushing and splitting all polygons down into the leaf nodes of the tree, we end up with a

BSP tree with polygons only at the leaves. In general, such a tree will have more nodes than the

corresponding non-leafy version, because the polygons which were previously in the interior

nodes have most likely been split into several pieces as they were pushed down the tree.

The interesting thing about a leafy BSP tree is that the polygons in each leaf node are all con-

vex subsets of the original geometry. Recall that each node of a BSP tree represents a convex space

because the slicing along infinite planes always preserves convexity of the space. Since all of the

splitting planes were chosen from the planes of the polygons in the input set, all of the convex

spaces have faces that align with the plane of at least one of the polygons of the input set. Further-

more, since all polygons lie on a splitting plane, then all post-slicing polygons lie on a face of their

leaf node’s convex space.

Convexity is an indication of geometric “simplicity,” as we mentioned earlier. In particular,

this means for any particular clump of polygons at the leaf of the leafy BSP tree, we can draw these

polygons without sorting and in fact in any order, and be assured of a correct result. We only need

to use back-face culling to eliminate drawing back-facing polygons. Since the polygons lie on the

face of a convex space, none of the front-facing polygons can ever obscure each other.

The convexity of the regions is a fascinating geometric property, but there is still the question

of visibility among the various convex regions. With the non-leafy BSP tree, this was solved

because of the hierarchy of splitting planes and the recursive camera-based traversal order. We

could use the same strategy with the leafy BSP tree, using the camera position to determine a tra-

versal order of the leaf nodes, either from far to near (back to front) or near to far (front to back).

However, the convexity of resulting polygon sets allows for other traversal possibilities. With a

leafy BSP tree, solving the inter-region visibility problem can also be done by computing or speci-

fying explicit connectivity information among the convex regions. This is the approach of

portal-based schemes, which are covered later in this chapter.

Creating a Leafy BSP Tree

We can create a leafy BSP tree from a non-leafy BSP tree by using a recursive routine to push

polygons down into their child nodes. The algorithm works as follows. Create a BSP tree as nor-

mal, with polygons stored in the internal nodes. Then, push each polygon down to a leaf node

recursively as follows. Begin at the root of the entire tree with an empty convex clump.

1. Split the current convex clump against the current node’s splitting plane. This yields two con-

vex clumps: one in front of the splitting plane and one behind the splitting plane.

2. Assign the current node’s polygon, which lies on the splitting plane, to one of the convex

clumps. It doesn’t matter which, but choose consistently. At this point, all polygons have been

assigned either to the front or back convex clump.
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3. Process the back half space as follows.

3a. If the back convex clump is empty, no polygons currently lie within the back half space,

but polygons deeper in the tree still will lie within the back half space. So, recursively call

step 1 on the left child node, passing NULL as the convex clump.

3b. If the back convex clump is non-empty, then this is the portion of the current convex

clump that lies behind the splitting plane of the current node. We must continue to push

this convex clump further down into the left child of the tree. There are two cases. If the

left child node exists, then recursively call step 1 on the left child node, passing the back

convex clump. This adds the back convex clump to the left sub-tree. If the left child node

does not exist, then there previously was no polygon on the back side of the current split-

ting plane, but the current convex clump, which was pushed down from higher levels in

the tree, now needs to exist within the left half space. So, create a new left child node, and

assign the back clump to the new left child node. The newly created child node is then a

leaf node.

4. Process the right half space in a similar fashion.

4a. If the front convex clump is empty, then recursively call step 1 on the right child node,

passing NULL as the convex clump.

4b. If the front convex clump is non-empty, then check to see if the right child node exists. If

the right child node exists, then recursively call step 1 on the right child node, passing the

front convex clump. If the right child node does not exist, then create it, and assign the

front convex clump to it. The newly created child node is a leaf node.

In this manner, each polygon from a higher-level node gets pushed down into a lower-level node.

As the polygons get pushed down into the tree, they are always clipped against the current node’s

splitting plane, then (if they survive the clipping) they are merged with the polygon of the current

node. Each polygon eventually gets assigned to a leaf node, though polygons coming from higher

levels will likely be split into smaller pieces and scattered throughout the tree as they are pushed

down.

Methods for Leafy BSP Trees in Class l3d_bsptree

The class l3d_bsptree contains methods for leafy BSP trees which we skipped earlier. Now,

let’s look at these methods again.

Method push_polys_to_children is a recursive routine that pushes polygons from

the internal nodes down into the child nodes, using the algorithm outlined previously. Since the

routine is recursive, the polygons all eventually end up (after possibly being split) in one or more

leaf nodes.

Method _permanently_merge_objects merges two objects of type l3d_object
into one. The reason we need this routine is to save work when pushing polygons down the tree; as

mentioned earlier, if we join all split polygon fragments coming from a higher level in the tree

with the polygon at the current level in the tree, we can form clumps of polygons which then all get

pushed down simultaneously, rather than needing to make multiple passes through the tree with

each single polygon. Forming clumps is done by joining the polygons in two separate l3d_
object objects. The join operation takes two parameters: a destination object and a source
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object. The destination object is the one which will contain the merged geometry afterwards; the

source object is the object containing the additional polygons to be added to the current geometry

in the destination object. Joining the objects requires us to create a new polygon in the destination

for every polygon in the source, and to rewrite the new polygon’s vertex index list to use the verti-

ces in the destination’s vertex list. It is possible that the copied polygon used vertices in the source

object which do not yet exist in the destination object; in this case, we need to add the vertex to the

destination’s vertex list.

Method make_videoscape_meshes recursively traverses the leafy BSP tree and for

each node with any polygons in it (for a leafy BSP tree this will be only the leaf nodes), it writes a

separate Videoscape mesh file, with sequentially numbered filenames vid0.obj, vid1.obj,

vid2.obj, and so forth. You can then load the meshes into Blender to see the individual convex

meshes produced by leafy BSP tree. The next sample program illustrates this.

Sample Program: leafybsp

The sample program leafybsp reads in a Videoscape file as input, creates a leafy BSP tree

based from the mesh, then writes out a series of Videoscape files, where each file contains the

polygons in one leaf node of the leafy BSP tree. You can then load these files, all at once, into

Blender, and see how the leafy BSP tree automatically divides arbitrary geometry into convex

subsets.

The main program file is very similar to that of program bsp. The only difference is that after

loading the Videoscape object file and creating the BSP tree, we call push_polys_to_chil-
dren and make_videoscape_meshes to create and write the leafy BSP tree. Before and

after the call to push_polys_to_children we call print_stats to show the statistics

for the tree. Before pushing the polygons to the leaves, each node in the tree has exactly one poly-

gon, as can be seen in the printed statistics. After pushing polygons to the leaves, the internal

nodes have no polygons, and the leaf nodes have several polygons.

Listing 5-7: main.cc, main program file for program leafybsp
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/sector.h"
#include "../lib/geom/polygon/p3_flat.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rast3.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/w_bsp.h"
#include "../lib/system/fact0_2.h"
#include "../lib/pipeline/pi_wor.h"
#include "../lib/dynamics/plugins/plugenv.h"
#include "../lib/geom/texture/tl_ppm.h"
#include "../lib/dynamics/plugins/vidmesh/vidmesh.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
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#include <math.h>
#include <stdarg.h>
#include "../lib/geom/bsp/halfspace.h"
#include "../lib/geom/bsp/bsptree.h"

class my_world:public l3d_world_bsptree {
protected:
l3d_texture_loader *texloader;
l3d_surface_cache *scache;

public:
my_world(void);
virtual ~my_world(void);

};

my_world::my_world(void)
: l3d_world_bsptree(320,240)

{
l3d_screen_info *si = screen->sinfo;

camera->VRP.set(0,0,-50,0);
camera->near_z = float_to_l3d_real(1.0);
camera->far_z = int_to_l3d_real(50);

//- for mesa rasterizer's reverse projection
rasterizer_3d_imp->fovx = &(camera->fovx);
rasterizer_3d_imp->fovy = &(camera->fovy);
rasterizer_3d_imp->screen_xsize = &(screen->xsize);
rasterizer_3d_imp->screen_ysize = &(screen->ysize);

int i,j,k;
texloader = new l3d_texture_loader_ppm(si);
scache = new l3d_surface_cache(si);

//- create a plugin object
l3d_object_clippable_boundable *oc;

oc =
new l3d_object_clippable_boundable(10);

//- max 10 fixed vertices, can be overridden by plug-in if desired
//- by redefining the vertex list

oc->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

oc->plugin_loader->load("../lib/dynamics/plugins/vidmesh/vidmesh.so");
oc->plugin_constructor =
(void (*)(l3d_object *, void *))
oc->plugin_loader->find_symbol("constructor");

oc->plugin_update =
(void (*)(l3d_object *))
oc->plugin_loader->find_symbol("update");

oc->plugin_destructor =
(void (*)(l3d_object *))
oc->plugin_loader->find_symbol("destructor");

oc->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
oc->plugin_loader->find_symbol("copy_data");

texloader = new l3d_texture_loader_ppm(si);
scache = new l3d_surface_cache(si);
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char plugin_parms[4096];
sprintf(plugin_parms, "%d %d %d 1 0 0 0 1 0 0 0 1 soup.obj soup.ppm soup.uv",

0,0,0);

l3d_plugin_environment *e =
new l3d_plugin_environment
(texloader, screen->sinfo, scache, (void *)plugin_parms);

if(oc->plugin_constructor) {
(*oc->plugin_constructor) (oc,e);

}

oc->bounding_sphere.compute_around_object(oc);

l3d_bsptree *tree;
tree = new l3d_bsptree;
tree->root = new l3d_halfspace;
tree->root->bounding_sphere = oc->bounding_sphere;
tree->root->object = NULL;
tree->root->children.num_items = 0;
tree->root->children[tree->root->children.next_index()] = 0;
tree->root->children[tree->root->children.next_index()] = 0;

tree->compute_for_object(tree->root, oc);
tree->print_stats(tree->root);
tree->push_polys_to_children(tree->root,NULL);
tree->print_stats(tree->root);
tree->make_videoscape_meshes(tree->root);

delete tree;
screen->refresh_palette();

exit(0);
}

my_world::~my_world(void) {
delete texloader;
delete scache;

}

main() {
l3d_dispatcher *d;
l3d_pipeline_world *p;
my_world *w;

factory_manager_v_0_2.choose_factories();
d = factory_manager_v_0_2.dispatcher_factory->create();

w = new my_world();
p = new l3d_pipeline_world(w);
d->pipeline = p;
d->event_source = w->screen;

d->start();

delete d;
delete p;
delete w;

}
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The program reads Videoscape file soup.obj. As output it writes several Videoscape files with

filenames vid0.obj, vid1.obj, and so forth. To see what the program does, proceed as

follows.

1. Load soup.obj into Blender. Notice that all polygons are in one mesh, and that the mesh is

not convex (it has dents).

2. Run the sample program. It creates the files vid0.obj, vid1.obj, and so forth, in the cur-

rent directory. (Before running the program you may wish to delete these files from the

current directory.)

3. In Blender, erase everything by pressing Ctrl+x. Then, load file vid0.obj. This automati-

cally also loads vid1.obj, vid2.obj, and so forth. Notice that the shape of the geometry

is the same as in the original soup.obj file, but that the leafy BSP tree has automatically

divided the geometry into convex subsets. In other words, instead of being one mesh, the

geometry now consists of several convex meshes. Right-click individually on each mesh in

Blender to see its convex shape.

In the binaries directory for the sample program bsp, there is another Videoscape mesh file,

named uglysoup.obj. This mesh contains a number of random polygons with completely ran-

dom 3D positions and orientations, often intersecting one another, and exemplifies the meaning of

the words “polygon soup.” Rename this file to soup.ppm, and rerun the program to see how the

leafy BSP tree automatically creates convex regions even out of a completely random selection of

polygons.
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Figure 5-11: The automatic convex
partitioning of the mesh by
program leafybsp.

Figure 5-12: The chaotic concave, self-intersecting
polygon soup in file uglysoup.obj.

Figure 5-13:
Some pieces of
the automatic
convex
partitioning.



NOTE The program leafybsp usually creates a large number of convex regions, each
with just a few polygons. Such a tree is not very efficient. By inspection, you can sometimes
recognize better convex regions which might be able to be formed, but in general, forming
better convex regions requires us to use some guiding heuristic when choosing the splitting
plane, as discussed earlier.

Axis-aligned BSP Trees and Mini BSP Trees
The BSP tree structure we’ve considered so far divides space by splitting planes chosen from

polygons within the input set. Another kind of BSP tree uses only axis-aligned planes to divide

space [MOEL99]; in other words, each splitting plane must be parallel to one of the planes x=0,

y=0, or z=0.

When a polygon crosses a splitting plane, we can split it into two pieces, just as we did before,

so that each piece ends up in a separate half space. Alternatively, we can choose to view split poly-

gons as lying “on” the splitting plane and store them at the splitting plane’s level in the BSP tree, or

we can assign the polygon to both half spaces [MOEL99].

The choice of the splitting plane is, given the additional restriction of axis-alignment, arbi-

trary. We can choose to split the space into exactly two equally sized halves, or try to balance the

number of polygons in each half, or try to maximize the principle of locality, or try to minimize the
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number of splits, or use any other heuristic that reduces the expected cost of desired operations on

the BSP tree.

Previously, we chose the splitting planes from the polygons; when all polygons had been

used, the tree was complete. With axis-aligned BSP trees, the choice of plane is completely arbi-

trary, so we need some other criteria to decide when to stop dividing space. For instance, we can

stop when the depth of the tree reaches a certain maximum limit, or when the number of polygons

in a space drops below a minimum limit, or when the physical size of a BSP tree node drops below

a certain limit.

The axis-aligned BSP tree is more loosely connected with its underlying polygonal geometry

than the BSP trees we looked at earlier. In particular, we cannot traverse the axis-aligned BSP tree

to determine a completely correct back-to-front ordering for the polygons within the tree. Simi-

larly, we cannot push polygons to the tree leaves and expect the formation of convex subsets.

What we can do with the axis-aligned BSP tree is use it for hierarchical view frustum culling.

The volumes formed by the axis-aligned BSP tree are all axis-aligned boxes; we can compare the

boxes themselves against the view frustum, as outlined previously, or we can compute a bounding

sphere for each box and compare the sphere to the view frustum. We can also use the axis-aligned

BSP tree to determine a back-to-front or front-to-back traversal of the nodes themselves (but not

the polygons within them), using the camera position as we did before: first draw all nodes in the

far half space as seen from the camera, then draw all nodes in the near half space. Each node, how-

ever, may contain one or more polygons, for which we have no ordering information. This means

that for a correct display, we must resort to some other visibility mechanism within each node. For

instance, we could draw all nodes back to front, and before drawing the polygons for each node,

we could perform a z sort on the polygons within the node, as with the simple painter’s algorithm.

Another option is to draw all nodes front to back, and draw the polygons in each node in any order,

using a z buffer to resolve visibility.

Another way of resolving the polygon ordering issue within one node is to compute a mini

BSP tree for the node. A mini BSP tree is simply a small BSP tree for just the set of polygons con-

tained within a particular node of the axis-aligned BSP tree. In general, a mini BSP tree is a

polygon-aligned (not axis-aligned) BSP tree computed for some smaller subset of the polygons,

where that subset as a whole is then subject to sorting or ordering at some higher level. In this case,

we traverse the higher-level nodes of the axis-aligned BSP tree to determine a node ordering; then

within each node, we use that node’s mini BSP tree (which is not axis-aligned, but rather uses split

planes of the polygons) to find a correct polygon ordering within that node. Taken as a whole, this

yields a complete, correct visibility ordering.

BSP Tree as a Multi-resolution Solid-Modeling
Representation

As we mentioned at the beginning of our discussion on BSP trees, we unfortunately cannot cover

all the uses of BSP tree here; see the references in the Appendix for more information. But one last

topic concerning BSP trees deserves mention: the use of the BSP tree as a representation of a poly-

hedral solid. Instead of storing a set of polygons defining the boundary of a polyhedral object, we

can view the BSP tree as being a representation of the volume (and not the boundary) of the same
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polyhedral object. In other words, a set of polygons and a BSP tree can represent the same geome-

try, in different ways; the polygons delineate the outer surface of the object, but the BSP tree can

be interpreted as delineating the actual volume occupied by the object. This has a number of inter-

esting implications, as we see shortly.

First, let’s explore how a BSP tree represents volume. This requires us to extend the concept

of a BSP tree, classifying nodes into what we will call splitting nodes and non-splitting nodes.

Each node in a BSP tree stores a splitting plane (with the notable exception of the new nodes cre-

ated at the leaves during generation of a leafy BSP tree—a topic we return to shortly). Thus, each

node of a BSP tree splits space into a front and a back region. We call these nodes splitting nodes.

The leaf splitting nodes (that is, those with no children) represent the finest (smallest) divisions of

space within the BSP tree. For each leaf splitting node, let us add two children: a left child and a

right child, each with no splitting plane. We call these nodes non-splitting nodes. These nodes rep-

resent the half spaces, which are not further divided, located behind and in front of the plane of the

parent node, respectively. Remember that due to the slicing along infinite planes, all half spaces

and thus all non-splitting nodes are convex.

After ensuring that every leaf splitting node has two non-splitting nodes as children, then all

leaf nodes of the BSP tree are now non-splitting nodes. The union of the spaces represented by all

non-splitting nodes is the entire space represented by the root of the tree; each non-splitting node

is a small convex cutout of the entire space. Furthermore, each non-splitting node can be classified

in terms of its position in relationship to its parent’s splitting plane. Either the non-splitting node is

a left child, behind its parent’s plane, or it is a right child, in front of its parent’s plane.

With a polygon-based BSP tree, we choose splitting planes from the planes of polygons

within the input set. The interior of an object lies on one particular side of all polygons (either the

front side or the back side); let us assume the polygon normals point outward, implying that the

interior of the object lies on the back side of all polygons. Since all splitting planes come from the

polygons, this means that the interior of the object always lies on the back side of all splitting

planes. The back side of all splitting planes is the union of all non-splitting nodes which are left

children of their parents. Therefore, the interior of the object (assuming outward-pointing nor-

mals) consists of all non-splitting nodes in the BSP tree which are left children. Similarly, the

exterior of the object is the union of all non-splitting nodes which are right children.

In other words, a splitting node of a BSP tree divides space into two regions: a front and a back

region. The region of space represented by a splitting node is inhomogeneous, being split further

into a front and a back side. On the other hand, a non-splitting node represents a homogeneous

region of space which is not further divided, and which belongs either entirely to the interior of the

object (if it is a left child) or the exterior of the object (if it is a right child).

The leafy BSP tree which we saw earlier forces polygons from their parent nodes to be pushed

down into their child nodes, being split as they move down the tree. This process will cause the

creation of new tree nodes; a polygon coming down from higher in the tree will eventually get

pushed into one of the half spaces of the leaf splitting nodes, thus creating a new non-splitting

node as a child. Examine again the text output of program leafybsp; you will notice that before

pushing polygons to the leaves, polygons exist both in the left and right nodes everywhere within

the tree; after pushing, the polygons exist only in the right, leaf, non-splitting nodes of the tree.
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(They exist in the right and not the left children because the polygon normals for the sample mesh

point inward, and we push polygons on a plane to the back half space, not the front half space.

Using a mesh with outward-pointing normals, and modifying class l3d_bsptree to push poly-

gons on the plane to the front half space, causes the polygons to appear in the left non-splitting leaf

nodes.)

Previously, we simply viewed the polygons within each leaf node of a leafy BSP tree as con-

vex subsets of the original input polygons. We can now interpret each leaf node of the leafy BSP

tree as a non-splitting node, thereby defining the convex volume of space resulting from the split-

ting of space along all planes in the nodes along the path to the non-splitting node. Instead of

merely being a container for polygons, the leaf node itself is a convex space belonging to (or not

belonging to, though we didn’t create non-belonging nodes in the sample program) the volume of

the object.

To summarize, we are interpreting the BSP tree as a hierarchy of bounding volumes instead of

a hierarchy of splitting planes [NAYL98]. Indeed, we already encountered the idea of computing a

bounding sphere for each node in the BSP tree. What we now can see is that each node in the tree is

a bounding volume, and each non-splitting leaf node is a homogeneous volume which belongs

either entirely inside or outside the object.

This hierarchy of bounding volumes means that checking for point containment within a par-

ticular region of space can be done quickly and hierarchically using the BSP tree. Essentially, the

BSP tree can be used as a hierarchical spatial search structure.

Furthermore, we can prune the tree by eliminating some of the lower-level leaves and

branches. Doing so creates a shallower tree with fewer nodes. If we interpret the nodes as a hierar-

chy of bounding volumes, pruning the tree means that we bound space less tightly and less exactly

than we would if we went deeper in the tree. This means that the volume bounded by a pruned tree

can be interpreted as a more “approximate” version of the geometry bounded by the full tree.

Indeed, by pruning the tree, we can automatically create a model approximating the same geome-

try, but with fewer polygons [NAYL98]. This is useful for so-called level of detail techniques (see

Chapter 9). Creating such reduced polygon models requires us to go from the BSP tree to a polyg-

onal representation; previously, we went in the other direction, creating a tree from a polygonal

model. To create a polygonal model from a (possibly pruned) BSP tree, we can start with a polygo-

nal model of a bounding box, then slice it into pieces as we go down the tree. At each slicing stage,

we have two half objects, and must also create two new polygonal faces, one for each half of the

sliced object, to close the open holes left by the slicing operation. (Imagine slicing a milk carton in

half, then gluing paper over the open areas.) We continue this slicing operation to an arbitrary

depth in the tree, stopping whenever we want. When we stop, we then take all (convex) pieces

either from all left children or all right children, depending on our surface normal orientation, and

join them together. This gives us a polygonal representation of the volume bounded by the nodes

in a BSP tree.

The idea of tree pruning to create a more approximate version of the bounded geometry again

underscores the importance of using the principle of locality for creating good BSP trees. By

emphasizing the principle of locality, a good BSP tree will, at higher levels, first immediately clas-

sify large regions of space as either belonging mostly inside or mostly outside the object under
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question. At deeper levels of the tree, the spaces get divided further, and the inside/outside classifi-

cation becomes more exact, until finally, at the homogeneous non-splitting leaf nodes, the

classification is exact. A good BSP tree represents its underlying geometry in a multi-resolution

fashion; a poor BSP tree indiscriminately splits and scatters detail throughout the tree.

BSP Trees and Dimension Independence
One last comment on BSP trees is that the concept can be applied to any dimensional space. The

examples we looked at were 3D examples, where we used 2D splitting planes to divide 3D space.

In general, for an n dimensional space, we use objects of dimension n–1 to divide the space into

two pieces. The n–1 dimensional objects are referred to as hyperplanes. In 2D, for instance, we

deal with 2D line segments and polygons, and split 2D space by 1D lines. (The game Doom used a

2D BSP tree.) In 1D, we deal with intervals, and split 1D space by 0D points. BSP trees can also be

extended to dimensions greater than 3D, but 3D graphics, not 4D graphics, is the topic of this

book.

Octrees
The octree is a structure very similar to the BSP tree, so we won’t discuss it at great length here.

The octree divides space hierarchically, just like a BSP tree, but each node has eight children, not

two as with the BSP tree. The octree begins with a perfectly cubical bounding box around all of the

geometry of interest. Then, the octree divides space into eight equally sized regions by slicing the

cube exactly in half along three axis-aligned planes, in a manner very similar to the axis-aligned

BSP tree. We can further recursively divide some or all child nodes in the same manner. As with

the axis-aligned BSP tree, we must make decisions as to what to do when polygons cross splitting

boundaries (split them, store them at that level, or store them in both children) and when to stop

recursing (when the tree reaches a certain depth, when a node reaches a certain physical size, or

when the polygon count for a node drops below a certain limit).

We can store the octree in memory by storing within each node pointers to all eight children.

Alternatively, we can store the octree as a BSP tree, which enables us to use BSP tree algorithms

more easily. To store the octree as a BSP tree, simply view each progressive octree subdivision of

space as three consecutive BSP divisions of space; one along each of the planes parallel to x=0,

y=0, and z=0. This storage scheme is a bit redundant, since the successive splits in a consecutive

series of three splits all use the same planes in both the front and back half spaces, but it illustrates

nicely the similarities between octrees and BSP trees.
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We can use the octree in a manner similar to the way we use an axis-aligned BSP tree. As with

the axis-aligned BSP tree, there is no guarantee of convexity of the polygon groups within an

octree node. So, to display the contents of an octree, we can traverse the nodes back to front or

front to back, relying on a z sort, z buffer, or mini BSP tree to resolve the visibility question within
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Figure 5-16: Storing an octree. We can store all eight children directly as child nodes of the
parent node, or we can store the eight children within a BSP tree by splitting space three
ways.

Figure 5-15: Octree division of space. We begin with an undivided cube (shown at the
left of the diagram), then divide it into eight equally sized regions numbered 0-7
(shown in the middle part of the diagram; note that octant 0 is hidden), then again
divide octant 7 into eight further octants (shown at the right of the diagram). The
numbering scheme chosen for the octants is not standardized, and is taken from
[FOLE92].



one node. We can also use the octree nodes hierarchically to achieve hierarchical view frustum

culling.

Regular Spatial Partitioning
It’s also worth mentioning that for some applications, a simple, non-hierarchical partitioning of

space may suffice for VSD purposes. In this case, we simply take the bounding box of all geome-

try, and divide it equally into a fixed number of smaller boxes, say, 128 smaller boxes. We can

store these linearly in an array. Essentially, this approach simply uses bounding volumes in a

non-hierarchical manner. If the number of boxes grows to be too large, then some sort of hierarchy

can be used to reduce the number of nodes that need to be traversed.

Even without introducing hierarchy into the data structure, we can use regular spatial parti-

tioning in combination with a portal scheme so that only those boxes lying within the view

frustum get traversed. This requires us to store links from each box to all of its neighbor boxes, and

to traverse the boxes based on the viewpoint. Understanding this idea fully requires us to discuss

portal schemes, which is our next topic.

Portals and Cells
Portal-based VSD schemes rely on an explicit specification of visibility to instantly cull invisible

regions of space. They require a convex partitioning of space into cells, and the specification of

connectivity information among cells via portals. Portals are typically useful for indoor environ-

ments, such as rooms, buildings, or tunnels; they are less useful for general, outdoor geometry

such as landscapes, forests, or flight simulator scenery.

The idea behind portal-based visibility algorithms is a surprisingly simple and effective one.

Let’s start by looking at the three main components of the portal algorithm: the cell, the portal, and

the current camera position.

The Main Ideas Behind the Portal Algorithm
A cell, sometimes called a sector, is a closed, convex set of polygons. It is easiest to think of a cell

as representing the interior of a room, or some other enclosure. With portal schemes, the entire

polygonal environment must be divided into separate convex cells (though the convexity restric-

tion can be loosened, as we see later). The cell should be closed; there should be no “holes” in the

cell where the absence of polygons would allow us to see through the cell to the outside. The rea-

son for the closed nature of the cells is that visibility is strictly controlled with the portal

algorithm—through portals.
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A portal is a polygon that defines visibility and mobility between cells. It is easiest to think of

a portal as a window cut out of the wall of a cell that allows us to see outside of the cell. By default,

no cell can see any other cell. By introducing a portal polygon into a cell, we define a specific

region of space which allows us to see and move into another specific cell. A portal, therefore, has

a containing cell, a polygonal shape, and a target cell to which it leads. Notice that this definition is

not necessarily two-way; a portal from cell A to cell B does not have to mean that a portal from cell

B to cell A exists (though for a physically realistic world, this should be the case); in the real

world, a window has the same shape, size, and connectivity regardless of which side we view it

from. For fantasy worlds, we can allow one-way portals which allow us to see and move into

rooms from which we can no longer return to the original room.

The current camera position is the third and final ingredient in the portal recipe. The camera is

always located in exactly one cell within the world, and its position with respect to the cells and

portals plays a vital role in the portal rendering algorithm.
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Figure 5-18: Adding a
portal polygon to each
cell, leading to the
other cell.

Figure 5-19: The effect of adding the
portals is to make it appear that the
cells are directly adjacent to one
another, being connected by a
“window” which is the portal polygon.

Figure 5-17: Two
separate, convex cells.



Rendering a Portal World
Rendering a world with portals is simple. The idea relies on recursive rendering of and clipping to

the screen space projection of portal polygons.

1. Set the viewing window to be a rectangle large enough to encompass the screen.

2. Render all polygons within the cell containing the camera, clipping them to the viewing win-

dow. Since the cell is convex, we only need to use back-face culling; all front-facing polygons

can be drawn in any order, since they cannot obscure themselves.

3. While rendering, if we encounter a portal polygon, we set the view window to be the screen

space projection of the polygon, and recursively call step 2 with the new view window and the

cell on the other side of the portal.
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Figure 5-20: A portal model with several cells
and portals. The camera is always located in
exactly one cell. The gray area represents the
view frustum, but note that not everything
within the frustum is visible (see Figure 5-21).
Notice that to preserve convexity, what
appears to be one “room” in the diagram
(delineated by heavy lines) is often composed
of several convex cells, with “artificially”

added portals (denoted by dashed lines).

Figure 5-21: Rendering a portal scene
traverses the cells based on the portals visible
to the camera. The dark areas represent those
portions of the view frustum visible to the
camera. Notice that whenever a portal is
encountered, what is behind the portal is also
visible, through the portal (i.e., clipped to the
portal). When a polygon is encountered,
nothing behind it is visible (or even known to
exist). For this viewpoint, exactly one cell is
traversed.



This means that if we see a portal polygon—in other words, if its projection lies within the

current clip window—then we can see another part of the world. We thus recursively draw what is

on the other side of the portal, using the portal’s screen space projection as the new clip window.

We must use the portal’s outline as the new clip window because the portal limits what we can see;

what is outside of the portal cannot be seen through the portal, for the current viewpoint. This is

the key idea of the portal algorithm: we can only see other cells through the portal, meaning we

clip to the portals. Anything not visible within the boundaries of a portal cannot be seen from the

current viewpoint; a portal seen through a portal means a recursive visibility traversal.
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Figure 5-22: Another viewpoint in the same
scene. Here, three cells are traversed. The
light-shaded region represents the entire view
frustum. The dark-shaded regions represent
those portions of the world within the view
frustum that are actually visible. Therefore,
those cells that intersect the dark-shaded
regions are the cells that are traversed. Notice
that the dark-shaded regions (i.e., the zones of
visibility) are blocked by solid polygons, but
are allowed to pass through portal polygons.

Figure 5-23: Another viewpoint. Here, five cells
are traversed.



Note that portal polygons, just like any other polygons, get clipped to the current clip window

before being processed. This means that if we see a portal through a portal, the farther portal is,

like all geometry seen through the portal, first clipped against the nearer portal. Recursively, this

means that any portal that we see has already been clipped by all portals that came before it in the

line of visibility. In this way, farther portals are always either smaller than the portal through which

they are seen, or they are entirely clipped away by the nearer portal, in which case they are not pro-

cessed further.

Notice how the portal scheme instantly culls any unseen parts of the world, which is essential

for handling larger environments. If a portal is invisible, we do not spend any computational effort

whatsoever examining any of the geometry on the other side of the portal. Recall that the world

database in class l3d_world is by default a simple list of objects. In that case, we check each

object, then discard it if it is invisible. Hierarchical view frustum culling can greatly reduce the

number of such checks, but the idea is still the same: check, then reject; everything left over is visi-

ble. The portal scheme looks at the visibility situation in reverse. Initially, we start with the current

cell and assume that everything outside the current cell is invisible. Only when we encounter a
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Figure 5-24: Portal
rendering, as seen from the
screen. Initially, the screen is
empty. We draw polygons in
any order; since they are
convex, they cannot obscure
one another. If we encounter
a portal, we draw the
contents of the connected
cell, clipped to the portal
boundaries.



portal do we then take the time to access and transform the data on the other side of the portal.

Other culling schemes search the objects to see which ones are invisible; portal schemes assume

everything is invisible, and search from a known starting point for portals and thus cells which are

visible.

Put another way, the explicit division of the world into linked cells allows us to introduce the

concept of a “current cell” from which we begin visibility computations. By always keeping track

of the current cell, we always know where to begin our visibility computations; by following the

links (portals), we find areas visible from the current cell. A good analogy can be made with the

word processor. Imagine a word processor which does not store the current cursor location. Each

time you type a character, the program would need to start at the first character in the document,

then search all characters to see if they should be displayed on-screen or not. This would be intol-

erably slow. By organizing the document in terms of consecutive characters and lines, we then can

keep track of the “current position” (the cursor location) and the currently visible region (all lines

visible on-screen around the cursor). The idea is the same with portals; the cells and portals form a

navigable graph of nodes where we can track the current position and use the current position as

the starting point for further computation or navigation.

Observations about the Portal Scheme
Having understood the basics of portals, let’s now look at some of the properties of this VSD

approach.

Portals as a Connectivity Graph

Portals form an explicitly specified connectivity graph among various cells. We traverse the graph

by determining which portals (in other words, which links among the graph nodes) are visible

on-screen. Remember what we said earlier about the BSP tree: the typical data structures of com-

puter science can be used to create effective visibility algorithms. Portals are another elegant

example of this.

Advantages and Disadvantages

The main advantage of the portal scheme is that it allows us to quickly and efficiently cull large

portions of the world in a very natural manner. We only draw what we see. If we don’t see a portal,

we do not draw it, and we do not waste time examining any part of the world database lying behind

the portal. As soon as we look in the direction of the portal, we traverse that part of the world data-

base and draw what is behind the portal. Also, if the cells are convex, there is no overdraw of

pixels, which is important for performance in a software-based renderer. For the interior environ-

ments that portals are meant to handle, we also know that every pixel for each frame will be

overwritten in the frame buffer. Since we view the cells from the inside, and since the cells are

closed, the polygons and the portals for the current cell completely encompass the field of view

and thus fill each pixel on screen (and exactly once). This means that we do not need to take the

time to clear the frame buffer before drawing the next frame, which can provide a speedup for soft-

ware rendering.
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Another advantage is that we can choose to stop drawing once the recursion reaches a certain

depth, providing a natural way of limiting scene complexity. The game Descent allowed you to

control the depth of portal traversal via a configuration parameter (although it wasn’t explicitly

labeled as a traversal depth parameter). However, artificially limiting the traversal depth does

mean that parts of the scene which would be visible simply do not get drawn, resulting in black

“holes” in the picture. As the viewer approaches these regions (camera movement in portal envi-

ronments is covered below), making them less distant and within the traversal threshold, they

suddenly “pop” into view.

The main disadvantage of the portal scheme is the flip side of the same coin: the burden of

explicitly finding or specifying connectivity information among convex regions of space. If we do

not ensure convexity of the cells, then we must use some other VSD mechanism to draw the poly-

gons within one cell correctly: a z buffer, sorting, or a mini BSP tree. But regardless of whether the

cells are convex or not, we still must maintain connectivity information among the cells. We can

do this by means of a modeling program designed for or adapted to portal modeling (see Chapter

8), or by using a BSP tree (discussed later in this chapter).

Back-Face Culling

When recursively traversing the portals, it is important to use back-face culling on the portal poly-

gons also. This is because typically a portal leading from cell A to cell B has a counterpart portal in

cell B leading to cell A. If we are in cell A looking through the portal at cell B, then we are facing

the portal polygon, and the counterpart portal in cell B will be facing exactly away from the cam-

era. Back-face culling will thus eliminate portals on the other side of the one we are looking at. If

we do not eliminate back-facing portal polygons from consideration, then while drawing, we

could traverse from A through a portal to B, through the counterpart portal back to A, then again

through the first portal back to B, ad infinitum.

Clipping

Another item of note is the clipping to the portal boundaries. We can do this in 2D or in 3D. In 2D,

we begin with a 2D clip window which is a rectangle the size of the screen. We project polygons,

then clip them to the clip window. Portal polygons are projected and clipped to the current clip

window, just like any other polygon. If we encounter a portal, we take the 2D projection of the por-

tal polygon and use it as the new 2D clip window for rendering the cell on the other side. Any

polygons (geometry or portal) that do not survive the clipping are discarded; those surviving are

drawn (geometry) or traversed (portal).

In 3D, we clip polygons in world space against the planes formed by the edges of the portal

polygon and the eye. As with the view frustum, we use the location of the eye and the two end-

points of the edge to form a plane, then clip against this plane. We repeat this for all edges of the

portal polygon, in 3D world space. All polygons, including portal polygons, get clipped in 3D in

this manner. A polygon surviving the clipping is then projected and drawn (for a geometry poly-

gon) or is again used as a clipping polygon for the geometry behind it (for a portal polygon). In 3D,

you can think of the portal clipping as clipping against a view frustum, but with no near and far

plane, and with the same number of edges as the portal polygon.
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Instead of performing exact clipping against the portal, we can also perform approximate

clipping. To do this, we take the bounding box in screen space of the projected portal polygon, and

use its four edges to form the top, bottom, left, and right planes of a frustum. This frustum is guar-

anteed to encompass more space than would the exact frustum of the portal polygon itself. We

then clip against this approximate, larger frustum. This means that after clipping, edges of the

polygons from the connected sector “stick out” or extend over the edges of the actual portal poly-

gon, leading to an incorrect display. To solve this, we must use an additional VSD mechanism

such as a z buffer. The reason we might want to perform approximate clipping is that 3D accelera-

tion hardware sometimes offers acceleration for clipping against a normal view frustum (without

the extra sides introduced by a portal frustum), as well as a hardware z buffer. Using accelerated

frustum clipping and a hardware z buffer can be faster than analytically clipping the geometry to

the exact portal edges or planes in software.

Convexity or Non-Convexity

Portals, as defined so far, deal with convex cells. The cells can also be non-convex, but this

requires us to use another VSD algorithm in addition to the portal culling. In the case of non-con-

vexity, the portal scheme can be viewed as a high-level rough ordering of the cells, as with the

axis-aligned BSP tree or octree. Then within each cell, we resort to another VSD mechanism to

draw the polygons within the cell correctly. In this case, the significant difference between portals

and the axis-aligned BSP tree or octree is that cell-to-cell connectivity is explicit with portals.

Still, you might want to aim for convexity, depending on whether you plan to use software or

hardware rendering. Part of the attraction of portals from a software rendering standpoint is that

with exact clipping and convex cells, every pixel in the scene gets drawn exactly once, reducing

overdraw. With non-convex cells, this advantage is lost.

Moving the Camera and Objects Within a Portal
Environment

Of the VSD algorithms we’ve looked at so far, the portal scheme is the most explicit about divid-

ing space into regions; the cells form an integral component of the approach. As mentioned earlier,

the camera is always located in exactly one cell, and the entire portal rendering algorithm requires

us to start in the cell containing the camera. This has two implications for a moving camera.

First, before rendering anything at all, we must determine which cell contains the initial cam-

era position. We might know this information beforehand; for instance, if we always start the

camera at position (0,0,0) in world space, and if we always create the first cell so that it encloses

the point (0,0,0), then we know that the camera starts out in the first cell. Otherwise, we must

search through the cells to see which one contains the camera. Since each cell is convex, we can do

this by using a frustum-style point-to-plane check. The camera is within a cell if it is on the front

side of the plane of every polygon defining the cell, as determined by evaluating each plane’s

equation with the camera position.

Second, we have to track the movement of the camera (or any other object which can move

among cells) from cell to cell, so that we always know which cell the camera is in. There are two

ways to do this. One is to constantly check, for every frame, which sector the camera is in, using
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the plane tests as described above. This is not as time-consuming as it might sound; once we know

the current camera position, it is a reasonable assumption that the camera can only move from the

current cell to an adjacent cell. (The only way this could be otherwise is if the camera is moving so

quickly that it takes a discrete step so large as to jump over an adjacent cell into one much farther

away.) This means we don’t need to search all cells to see which one the camera is in; we only need

to search the cells adjacent to the current one—as well as searching the current cell—to determine

the current camera location. Also, before checking for containment within each cell, we could use

a simpler bounding volume (such as a sphere or cube) for each cell, and first check for contain-

ment within the bounding volume. If the camera is not within the cell’s bounding volume, we

don’t need to expend the effort of doing the actual point-to-plane test for every polygon in the cell.

The other way of tracking camera movement is to track collisions with polygons. Whenever

the camera moves through a polygon which is a portal, we set the current sector to be the one on

the other side of the portal. The problem with this method is that checking to see if the camera

crossed through a polygon is not completely trivial (see Chapter 8 for details). It does not suffice to

check to see if the camera has moved from one side of the portal plane to the other side; there

might be multiple portals within one plane, meaning that the camera might have moved through a

different portal in the same plane. Tracking passage through portals requires us to intersect the 3D

line segment, going from the previous camera position to the new camera position, with the poly-

gon, and to see if the intersection lies within the polygon. We look at this intersection computation

in detail in Chapter 8, when discussing collision detection.

Another movement issue with portals is how to handle moving objects. Typically, in a portal-

based environment the geometry modeled by the cells remains static. We can associate moving

objects with each cell by storing with each cell a list of objects contained in that cell. Drawing such

objects can be easy or hard. It is easy if you use a z buffer; merely draw the objects for a sector as

you encounter them. The z buffer sorts out all the depth issues. The issue is harder without a z

buffer. The problem with drawing moving objects is that they destroy the convexity on which the

portal algorithm relies. So, to draw such objects, we can make two passes for each cell—one to

draw the convex sector geometry one to draw the objects on top of the cell geometry. Whenever

we draw a cell, we first draw its geometry, and traverse any visible portals. Then, after the cell and

all of its portals have been drawn, we draw the cell’s moveable objects, which then appear in front

of all other geometry and portals in the cell. Among the polygons of the object itself, we need to

use some other means of VSD to ensure a correct display; the painter’s algorithm is probably a

good choice here.

As with the camera, if objects can move from cell to cell, we need to track their movement to

notice when they move from one cell into another, so we can update the cell pointers which point

to the contained objects for each cell.

Portals and the Near Z Plane

Clipping polygons against the near z plane is a necessity, as discussed in the introductory compan-

ion book Linux 3D Graphics Programming. However, it causes problems with portals. In

particular, as we are approaching a portal, right as soon as we are about to cross it to move into the

adjoining cell, the portal gets briefly but completely clipped away by the near z plane. This causes
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a very distracting jump in the image just as we cross the portal. If we are clearing the frame buffer

after every frame, then we will see a flash of black just before crossing the portal. If we do not clear

the buffer after every frame (as noted before, it is not strictly necessary for indoor portal environ-

ments), then nothing gets drawn for a few frames while crossing the portal, leading to an apparent

“freezing” of the image for a few frames.

The problem is that the camera’s location is still within a cell, but just barely—it is right about

to cross a portal into another cell, but it is not yet in the other cell. But we are so near to the portal

polygon that it is clipped away by the near z plane; thus, the portal is not (or is only partially)

drawn, meaning that we don’t see what is behind the portal; indeed, we don’t see anything at all.

To solve this problem, notice that when the camera is so close to a portal polygon so that the

portal is clipped away, it is likely that the portal polygon is the only visible polygon from the cell

containing the camera. This means that we can effectively consider the camera to already be in the

adjoining cell. But we don’t want to teleport the camera position to suddenly be inside of the cell;

this would be just as visually jarring as the black flicker. Instead, we leave the camera in the same

position, continuing to draw polygons based on this same camera position and orientation. What

we change is the concept of the “current sector” for portal rendering. We do this by introducing a

“pseudo-location” which is located slightly in front of the camera, along its VFW vector. In partic-

ular, the pseudo-location should be far enough in front of the camera so that when a portal polygon

is near enough to be clipped away, the pseudo-location is already located on the far side of the near

clipping plane. Then, for the purposes of portal traversal, we start in the cell containing the

pseudo-location, not in the cell containing the actual location of the camera. In this way, the start-

ing cell for the portal rendering algorithm is always the cell which is located a bit in front of the

camera. Near z clipping and projection of polygons still take place with respect to the actual loca-

tion of the camera; portal rendering, however, always starts on the far side of the near clip plane,

meaning that we (almost) never have the situation that a single portal, providing visibility for the

entire scene, is clipped away.
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Figure 5-25: Here, a portal polygon is
clipped away by the near z plane. Since
the portal polygon is the only visible
polygon in the current cell, and since the
portal polygon is completely clipped away,
in this case we see nothing on-screen.



Unfortunately, it is only “almost” never. It is still possible to view a portal polygon exactly or

almost exactly on its edge; in such a case, both the camera location and the pseudo-location both

lie on the plane of the portal polygon, and the portal still might be clipped against the near z plane,

again resulting in a black screen for a moment. To solve this, we can do a number of things. First,

we can simply ignore it. In many environments, it is not typical to stand within a portal polygon

and look at it edge-on; it is much more common to pass through the portal more or less along its

normal vector. In such a case, the pseudo-location approach provides an adequate solution.

Another option is to detect when the viewer is looking at a portal edge-on, and to “bump” the cam-

era slightly in front of or behind the portal. Finally, we could completely skip near z clipping for

portal polygons. This only really causes a problem when the z value for one of the portal’s vertices

is exactly zero (because we cannot divide by z, necessary for the perspective projection, if z=0); if

it is, then simply “jitter” it slightly to be, say, 0.0001. Of course, this results in slight inaccuracy of

the drawing of the portal’s border, but if you are that close to the portal, then it encompasses most

of the screen anyway. The inaccuracy caused by a z jitter is likely less than a pixel and will likely

last a maximum of one frame, so the inaccuracy is acceptable.

Shadows

Another interesting use of portals is the generation of shadows. With a portal-based world, the

portals define the only visibility among cells. Anything not visible through a portal cannot be seen.

Computation of shadows can be viewed as a VSD problem. Imagine that the light source is

like a camera. Then, all parts of polygons visible from the light source have their intensity affected

by the light. Consequently, all other parts of polygons are not affected by the light, and are, by

default, in shadow.

To use portals for shadow generation, we merely need to traverse the portal graph starting

from the cell containing the position of the light. Since each cell is convex, no polygon in the cell

can cause any part of the current cell to be in shadow; in other words, the convexity means that the

cell cannot shadow itself. So, for all polygons within the current cell, we compute the light
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slightly in front of the camera beyond the
near z plane, and use its containing cell to
start the portal rendering. This means the
actual cell containing the camera is
discarded, but this doesn’t matter since we
are almost outside the cell anyway.



intensity. With a light map based scheme, this means computing the light intensity for each lumel

of each polygon’s light map, as we saw in Chapter 2.

Then, for each portal polygon within the cell, we clip the polygons in the adjoining sector to

the portal. It is easiest to do this clipping in 3D; for each edge of the portal polygon, we create a

plane using the light location and the two endpoints of the edge. We then clip the adjoining sector

to each such plane. Afterwards, we have exactly the parts of the polygons in the adjoining sector

that are visible to the light source through the portal. We compute the light for these polygons as

well, but only for the part of the polygon remaining after clipping to the portal. The process contin-

ues recursively. We can stop recursing either when no further portal polygons are visible, as we did

when rendering the portals, or when the traversed sector lies beyond a certain physical distance

from the light. Since we typically model light as having a maximum distance beyond which it has

no effect, we can stop traversing portals if a sector is too far away to be affected by the light.

Let’s briefly go over exactly how to compute the light intensities. We only compute light

intensities for those parts of the polygons that survive after the clipping to a portal; only such

post-clipping polygons are visible to the light. With a light map scheme, this means we need to

transform the clipped polygon from 3D world space back into 3D light map space, using the world

to texture space matrix of Chapter 2. Assuming that the 3D light map space lies exactly on the face

of the polygon, which is how we have been defining it so far, then we can drop the third light map

coordinate, and the 2D (u,v) light map coordinates of the clipped polygon are then the polygon’s

vertices in light map space. (If the light map space did not lie on the face of the polygon, we would

need to do some sort of a projection, probably orthographic, to go from 3D light map coordinates

(u,v,w) into 2D light map coordinates (u,v).) Since the light map coordinates are the polygon’s ver-

tices in the 2D light map, this means that we simply need to rasterize the polygon into the light

map, using a rasterization routine similar to that developed in Chapter 2. The “frame buffer” for

the rasterization is not the screen, but is rather the light map data itself. For each lumel lying within

the polygon in light map space, we compute its intensity using any desired illumination formula

from Chapter 2. Diffuse illumination is a good, simple choice to start with.
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cells, all parts of polygons visible through
the portals are lit. This process continues
recursively.



Remember that in Chapter 2 we mentioned that computing shadows with light maps can be

time-consuming because we have to see if any polygon obstructs the light ray from the light

source to the lumel under consideration. If any such polygon exists, which essentially requires us

to search all polygons, then the lumel is in shadow; otherwise, it is lit. Portals reverse this compu-

tation by explicitly specifying lines of sight rather than trying to find blocked lines of sight. All

lumels visible through a portal are in light; we leave all others alone, and they are by default in

shadow.

Without light maps, there are other ways of using the portal-clipped polygons for rendering

shadows. We can split the actual underlying geometry into two new pieces, the shadowed part and

the lit part. The lit part would then be assigned a brighter texture; the shadowed part, a darker one.

Or, we could split the geometry, store light intensities at the vertices of the split polygons—

brighter intensities for the lit part, darker for the shadowed part—and use Gouraud shading. The

split geometry needs to be re-joined and re-split whenever a light moves or changes, making this

approach more suitable for static lights. With OpenGL, we can avoid splitting the underlying

geometry by making two passes. In the first pass, we render the scene without lights, then in a sec-

ond pass, we render the portal-clipped polygons (which are the parts of the polygons visible to the

light) using OpenGL blending, exactly as we used a second OpenGL blending pass to render light

maps. A second pass is only really feasible with hardware acceleration. With this scheme, you can

think of the first pass as drawing the normal statically lit scene, and the second pass as painting

extra light onto those parts of polygons which a dynamic light can see.

As this example illustrates, computing shadows can often be viewed as a VSD problem, only

we must determine visibility from the light source, not the camera.

Mirrors

Portals can also be used to create mirror effects. A mirror can be considered to be a portal onto the

same sector, merely seen from a different viewpoint. The image that a viewer sees in a (planar)

mirror is the same image that the viewer would see if he were standing at the same position

reflected against the plane of the mirror. This means that to create a mirror effect, we can have a

portal that connects a sector to itself, but renders the sector from a new camera position—the

reflected camera position. We could accomplish this by storing a flag with each portal to indicate

if it is a mirror or not. If it is not, we render it as normal; if so, then we render it using the reflected

camera position. Alternatively, we could store an arbitrary transformation matrix with each portal,

allowing each portal to add an arbitrarily additional transformation to the geometry seen through

the portal. This would allow not only mirrors, but also refractive effects.

Programming a portal-based mirror can be a bit tricky, since we must then render and trans-

form different parts of the same sector multiple times (transformed once for the normal camera

position, transformed again for the reflected camera position). We have to beware of infinite

recursion if mirrors point at one another, creating a “hall of mirrors” effect. Also, the textures, light

maps, and polygon orientations as seen from the reflected camera position all need to be reversed.
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Portals and Other Rendering Methods

Portal rendering can be combined easily with other methods of rendering. If we allow each cell to

be responsible for rendering itself, then when we encounter a portal, we ask the connected cell to

render itself through a virtual function call. This is in contrast to an approach where one main con-

trolling routine tries to render each sector manually by explicitly drawing polygons and traversing

the portals.

Allowing each sector to render itself implies that each sector can use a different (even

non-portal) algorithm for rendering. For instance, within a building, we could have portals for the

doorways, leading from room to room. Each room would render itself in a normal portal-based

manner, traversing the adjoining cells. Then, we could also have a doorway leading outside of the

building, into an open landscape. This landscape could be stored as a cell or series of cells, but

with an entirely different rendering algorithm. (Rendering landscapes is different than rendering

indoor scenes, because the amount of data is greater and explicit partitioning into regions with

exactly defined visibility is not generally possible.) Whenever we see the landscape regions

through a portal, the portal asks the landscape region to render itself, thereby invoking (through

the virtual function call) the appropriate landscape rendering routine. As we see later, the class

l3d_sector, implementing a cell or a sector in the l3d library, declares its render method to be

virtual, for exactly this reason.

Portals can also be used as a regular spatial partitioning method. To do this, we arbitrarily

divide our scene geometry into a series of equally sized cubes. Each cube is then a cell. Then, we

create a portal for the face of each cube, thus creating six portals (top, bottom, left, right, front, and

back) for each cube. We connect each portal to the adjoining cube; the cubes on the very border of

the scene will have no portals on their outermost faces. We then keep track of the current camera

position, start rendering in the current cell, and recursively visit the neighboring cells. In general,

the geometry contained within each cube will not be convex, meaning we have to resort to another

VSD scheme to draw the contents of each cell correctly. Also, when rendering, we must artifi-

cially limit the portal traversal. In contrast to “normal” portals, which are small cut-out windows

of visibility in otherwise opaque geometry, the portals in this case are always large enough to

allow you to see to the end of the scene. The entire surface of every cell (in other words, the six

faces of the cube) consists entirely of portals, meaning that anything clipped away by one portal

appears in an adjacent portal, leading to essentially unlimited visibility. We can limit the depth of

portal recursion, or set a maximum number of cells which will be rendered. Also, not rendering

cells beyond the far z plane limits the number of visited cells.

The BSP tree can also be combined with portals. The leafy BSP tree, as we have seen, creates

convex regions of space for an arbitrary input set. We can then find portals connecting these

regions, and use portal traversal to render the scene. It should be noted, however, that using a BSP

tree generally creates a tremendously large number of convex regions—many more than would

result if you manually partitioned the world into convex regions (i.e., cells). Using a BSP tree is far

from a completely automated, ideal solution to generating convex cells; for arbitrary geometry,

generating a good convex partitioning automatically is a very difficult task. Nevertheless, let’s

briefly go over the BSP tree idea. After running polygons through the leafy BSP tree to obtain con-

vex regions, we can find the portals connecting these regions by creating a large square polygon
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for each splitting plane in the tree. The polygon must be large enough to encompass the geometry

rooted at that node in the tree. Then, we push each square polygon down the tree, splitting it as we

go down, just as we did when creating the leafy BSP tree, with the one change that a polygon lying

on the split plane of a node gets pushed down both sides of the node, rather than an arbitrarily cho-

sen side as we did earlier. After this process, in the leaves, we have polygon fragments which all

are small convex cutouts of all of the splitting planes. The splitting planes split the original geome-

try into convex regions; this means that the portals, which must connect the convex regions, lie on

the splitting planes. Indeed, they will be one of the splitting plane fragments we just created by

slicing the large square polygons. All we need to do is search for a splitting plane fragment which

appears in two leaf nodes; such a fragment is then a portal between the convex geometry of the two

leaf nodes, because it is the part of the plane which split the geometry into those two convex parts.

Classes for Portals and Sectors
Let’s now take a look at the l3d classes for portal rendering. The l3d classes use the term “sector”

instead of “cell,” so we’ll continue to use this terminology in the following sections.

Class l3d_polygon_3d_portal

A portal is nothing more than a polygon which can be connected to a target sector. The class

l3d_polygon_3d_portal portal therefore merely derives from the 3D polygon class

l3d_polygon_3d_clippable, and adds a pointer to a sector, in member variable con-
nected_sector. Member variable connected_sector_name stores a string identifier

indicating with which sector the portal is connected; the reason for this is to facilitate loading por-

tal worlds from a file, where a portal polygon might be created before the sector to which it is

connected exists. In such a case, we first create all polygon, portal, and sector objects, storing the

sector references as string. Then in a separate “linking” phase we actually assign values to the por-

tal pointers to point to the appropriate sector objects, which are then searched for by their string

identifier. Representing arbitrary references is always tricky for objects which must be streamed to

and from an external source.

Listing 5-8: p_portal.h
#ifndef __P_PORTAL_H
#define __P_PORTAL_H
#include "../../tool_os/memman.h"

#include "poly3.h"
class l3d_sector;
class l3d_polygon_3d_portal :

virtual public l3d_polygon_3d_clippable
{
public:
l3d_polygon_3d_portal(int num_pts):
l3d_polygon_3d_clippable(num_pts),
l3d_polygon_3d(num_pts),
l3d_polygon_2d(num_pts)

{}
l3d_sector *connected_sector;
char connected_sector_name[80];
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l3d_polygon_3d_portal(const l3d_polygon_3d_portal &r);
l3d_polygon_2d *clone(void);

};

#include "../object/sector.h"

#endif

Listing 5-9: p_portal.cc
#include "p_portal.h"
#include "../../tool_os/memman.h"

l3d_polygon_2d* l3d_polygon_3d_portal::clone(void) {
return new l3d_polygon_3d_portal(*this);

}

l3d_polygon_3d_portal::l3d_polygon_3d_portal(const l3d_polygon_3d_portal &r)
: l3d_polygon_3d(r)

{

connected_sector = r.connected_sector;

strcpy(connected_sector_name, r.connected_sector_name);
}

Class l3d_sector

Class l3d_sector represents a region of space which can contain portals to other sectors. It is a

logical unit of the virtual world; in other words, think of it as a “place,” such as a room, or a hall-

way, or an airlock. It inherits from class l3d_object_clippable_boundable. In fact, the

existing l3d_object class can already deal with portal polygons, since the object’s polygon list

contains pointers to abstract polygon objects, with which the new portal polygons are compatible.

So, l3d_sector doesn’t need to do anything to accommodate the portal polygons itself.

Instead, l3d_sector adds methods and variables which are useful for portal rendering.

Memberobjects is a list of pointers to other objects of typel3d_object.This allows us

to store moveable entities, such as spaceships, monsters, or rotating pyramids, within the sector.

This reinforces the idea that a sector is a meaningful sub-unit of the virtual world, in which certain

entities reside and act.

Since the sector can contain objects, the overridden update method calls update on each

object, allowing each to update itself. The sector can also theoretically update its own geometry,

meaning that a room might change shape over time, for instance.

The overridden assignment operator copies all sector data from the source to the target, so that

the target is an identical but separate copy of the sector.

The new virtual method render implements the portal rendering scheme. This is a recursive

method that takes a 2D clip window as a parameter. For all polygons in the sector, we transform

them into world and camera space, apply back-face culling, then perform a perspective projection,

just as we have been doing so far. Then, we clip the polygon to the current clip window. Initially,

the clip window is a rectangle as large as the screen (as we saw in Chapter 2); but with portal ren-

dering, this clip window becomes smaller and smaller as we render sectors which are further and

further away. Before drawing a polygon, we check to see if the polygon is a portal polygon. If it is,

Chapter 5: Visible Surface Determination II: Space-partitioning Techniques 323



we recursively call render on the portal’s connected sector, passing the portal polygon itself,

whose geometry has now been projected into screen space, as the clipping window. This means

that the screen space projection of the portal polygon limits the boundaries of what can be seen

through the portal, which is the whole idea of portal rendering.

The only tricky part about the method render is the combination of the objects’ polygon

lists and the sector’s polygon list. As we mentioned before, we should draw moveable objects in a

cell after drawing that sector’s geometry, so that the objects appear on top of the sector’s geometry.

We do this by joining all the polygon nodes of all objects together into one big list, then appending

this object polygon node list to the polygon node list of the sector. In this way, we first process and

draw the sector polygons, then draw and process the object polygons. Remember that for a correct

display of object polygons we must use some other VSD mechanism to sort the polygons within

and among the objects, but here we simply draw them in any order. When joining the object and

sector polygon lists, we have to set the transformation stage variable (which tracks how many

times an object, polygon, or vertex has been transformed) for the object polygons to be the same as

that of the sector polygons. In general, an object polygon may have been transformed more times

than the sector polygon, because the object may undergo its own local transformation (it may spin

itself or move around, for instance). But when we join the object polygon list with the sector poly-

gon list, all polygons should have the same transformation stage for consistency. The code in

method render therefore takes care of joining the object and sector polygon lists, and ensuring

that their transformation stage counters are the same.

Note that the method render is virtual; as mentioned earlier, this means that descendants of

the sector class can implement new rendering methods for different types of sectors.

Listing 5-10: sector.h
#ifndef __SECTOR_H
#define __SECTOR_H
#include "../../tool_os/memman.h"

#include "obound.h"
#include "../../view/camera.h"

class l3d_polygon_3d_portal_clippable;

class l3d_sector :
public l3d_object_clippable_boundable

{
public:
l3d_sector(int num_fixed_vertices) :
l3d_object(num_fixed_vertices),
l3d_object_clippable(num_fixed_vertices),
l3d_object_clippable_boundable(num_fixed_vertices)
{
objects = new l3d_list<l3d_object_clippable_boundable *>(1);

};
virtual ~l3d_sector(void);
l3d_list<l3d_object_clippable_boundable *> *objects;
int update(void);

virtual void render(l3d_polygon_2d *clipwin,
l3d_rasterizer_3d *rasterizer, l3d_camera *camera,
int xsize, int ysize);
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l3d_sector& operator= (const l3d_sector &r);

};

#include "../polygon/p3_clip.h"
#include "../polygon/p_cport.h"

#endif

Listing 5-11: sector.cc
#include "sector.h"
#include "../../tool_os/memman.h"

l3d_sector & l3d_sector::operator= (const l3d_sector &r) {
strcpy(name, r.name);
parent = r.parent;

num_xforms = r.num_xforms;
modeling_xform = r.modeling_xform;
for(int i=0; i<r.num_xforms; i++) {
modeling_xforms[i] = r.modeling_xforms[i];

}

*vertices = *r.vertices;

polygons = r.polygons;
for(int i=0; i<r.polygons.num_items; i++) {
l3d_polygon_3d *p = dynamic_cast<l3d_polygon_3d *>(r.polygons[i]->clone());
if(p) {
p->vlist = &vertices;
polygons[i] = p;

}else {
printf("error during cloning: somehow a non-3d polygon is in an object!");

}
}

polygon_node_pool = r.polygon_node_pool;

nonculled_polygon_nodes = NULL;
for(int i=0; i<r.polygon_node_pool.num_items; i++) {
if(r.nonculled_polygon_nodes == &r.polygon_node_pool[i]) {
nonculled_polygon_nodes = &polygon_node_pool[i];

}
}

transform_stage = r.transform_stage;
strcpy(plugin_name, r.plugin_name);
plugin_loader = r.plugin_loader;
plugin_constructor = r.plugin_constructor;
plugin_update = r.plugin_update;
plugin_destructor = r.plugin_destructor;
plugin_data = r.plugin_data;

objects = r.objects;
return *this;

}

l3d_sector::~l3d_sector(void) {
delete objects;
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}

void l3d_sector::render(l3d_polygon_2d *clipwin,
l3d_rasterizer_3d *rasterizer, l3d_camera *camera,
int xsize, int ysize)

{
static int level=0;
level++;

int iObj, iFacet;

l3d_vector facet_to_cam_vec;
l3d_vector N;

l3d_polygon_3d_clippable *pc;

//- init polys for all objects contained in the sector

for(int i=0; i<objects->num_items; i++) {
(*objects)[i]->init_nonculled_list();
(*objects)[i]->vertices->num_varying_items = 0;
(*objects)[i]->transform_stage = 0;

for(register int ivtx=0; ivtx<(*objects)[i]->vertices->num_fixed_items; ivtx++) {
(*((*objects)[i]->vertices))[ivtx].reset();

}

l3d_polygon_3d_node *n;
n = (*objects)[i]->nonculled_polygon_nodes;
while(n) {
n->polygon->init_clip_ivertices();
n->polygon->init_transformed();
n=n->next;

}

//- position all vertices of object into world space

if ((*objects)[i]->num_xforms) {
(*objects)[i]->transform((*objects)[i]->modeling_xform);

}

//- sector transform
if (num_xforms) {
(*objects)[i]->transform(modeling_xform);

}
}

//- now concatenate all polys in all objects into one big object-polys
//- list.

l3d_polygon_3d_node *n_objects=0;

for(int i=0; i<objects->num_items; i++) {

//- prepend this object's polys to the overall list of all polys in all
//- objects
if((*objects)[i]->nonculled_polygon_nodes) {
l3d_polygon_3d_node *n_temp;
n_temp = (*objects)[i]->nonculled_polygon_nodes;
while(n_temp->next) {
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n_temp=n_temp->next;
}

n_temp->next = n_objects;
if(n_objects) {n_objects->prev = n_temp; }
n_objects = (*objects)[i]->nonculled_polygon_nodes;

n_objects->prev = NULL;
}

}

//- initialize polys for the sector geometry
init_nonculled_list();
vertices->num_varying_items = 0;
transform_stage = 0;

for(register int ivtx=0; ivtx<vertices->num_fixed_items; ivtx++) {
(*(vertices))[ivtx].reset();

}

l3d_polygon_3d_node *n;
n = nonculled_polygon_nodes;
while(n) {
n->polygon->init_clip_ivertices();
n->polygon->init_transformed();
n=n->next;

}

//- position all vertices of sector into world space

if (num_xforms) {
transform(modeling_xform);

}

//- at this point, the sector geometry and the geometry of all
//- contained objects are in world coordinates and have any transformations
//- already applied. now we dump all polys from all objects and the sector
//- into one big list - from now on, there is no distinction between
//- sector polys and contained-object-polys. they are just polys from now
//- on. note that the object polys come after the sector polys in the list.
{
l3d_polygon_3d_node *n;

//- for all object polygons and their vlists: set the transform stage
//- to be the same as for the sector.

n = n_objects;
while(n) {
n->polygon->set_transform_stage(transform_stage);
n = n->next;

}

n = nonculled_polygon_nodes;
if(n) {
while(n->next) {n = n->next; }
n->next = n_objects; //- append object polys to sector poly list
if(n_objects) {n_objects->prev = n; }

}else {
nonculled_polygon_nodes = n_objects;

}
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}

camera_transform(camera->viewing_xform);

n = nonculled_polygon_nodes;

while(n) {

N.set(n->polygon->sfcnormal.transformed.X_ - n->polygon->center.transformed.X_,
n->polygon->sfcnormal.transformed.Y_ - n->polygon->center.transformed.Y_,
n->polygon->sfcnormal.transformed.Z_ - n->polygon->center.transformed.Z_,
int_to_l3d_real(0));

facet_to_cam_vec.set (0 - n->polygon->center.transformed.X_,
0 - n->polygon->center.transformed.Y_,
0 - n->polygon->center.transformed.Z_,
int_to_l3d_real(0));

/* dot product explicitly formulated so no fixed point overflow */
/* (facet_to_cam_vec is very large) */
/* (use of the inline function "dot" uses default fixed precision) */
/* equivalent to: if(N.dot(facet_to_cam_vec) > 0 ) */
if(

#define BACKFACE_EPS float_to_l3d_real(0.001)
(dot(N,facet_to_cam_vec) > BACKFACE_EPS )

&&

n->polygon->clip_near_z(camera->near_z)

)

{
}else {

if(n->prev) {
n->prev->next = n->next;

}else {
nonculled_polygon_nodes = n->next;

}

if(n->next) {
n->next->prev = n->prev;

}
}

n = n->next;
}

apply_perspective_projection
(*camera, xsize, ysize);

int ncount=0;
n = nonculled_polygon_nodes;
while(n) {

if(n->polygon->clip_to_polygon_2d(clipwin))
{
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l3d_polygon_3d_portal *p;
if ( (p=dynamic_cast<l3d_polygon_3d_portal *>(n->polygon)) ) {

p->connected_sector->render(p,rasterizer,camera,xsize,ysize);
}else {
ncount++;
n->polygon->draw(rasterizer);

}
}
n = n->next;

}

level--;
}

int l3d_sector::update(void) {
for(register int i=0; i<objects->num_items; i++) {
(*objects)[i]->update();

}
return 1;

}

Class l3d_world_portal_textured_lightmapped_obj

Class l3d_world_portal_textured_lightmapped_obj is a new world class which

handles portal rendering with support for texturing, light mapping, and plug-in objects. It inherits

directly from class l3d_world. Originally, this class descended indirectly from three simpler

classes, l3d_world_portal (portal rendering without texture mapping), l3d_world_
portal_textured (portal rendering with textured polygons), and l3d_world_por-
tal_textured_lightmapped (portal rendering with textured and light mapped polygons).

While it is a useful exercise to add these features step by step, all of these classes are actually very

similar; the main difference is merely the types of polygons they create and the way they read

them in from a file. It would take too much time and space here to look at all of the simpler classes,

without really serving any educational purpose, so I decided to make the class l3d_world_
portal_textured_lightmapped_obj independent of the simpler classes, so that it could

be seen and understood by itself. On the CD-ROM, you can still find the simpler portal classes,

and sample programs using them (the simpler sample portal programs are named portal,

portex, and porltex, for portal, textured portal, and textured and light mapped portal

rendering).

Listing 5-12: w_porlotex.h
#ifndef __W_PORLOTEX_H
#define __W_PORLOTEX_H
#include "../../tool_os/memman.h"

#include "world.h"
#include "../object/sector.h"
#include "../texture/tl_ppm.h"
#include "../surface/scache.h"
#include "../polygon/p_cport.h"

class l3d_world_portal_textured_lightmapped_obj :
public l3d_world,
public l3d_texture_computer
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{
protected:
l3d_texture_loader *texture_loader;
l3d_list<l3d_texture_data> tex_data;
l3d_surface_cache *scache;

public:
l3d_sector *sector_by_name(const char *name);
l3d_sector *current_sector;

l3d_world_portal_textured_lightmapped_obj(int xsize, int ysize);
~l3d_world_portal_textured_lightmapped_obj(void);
virtual void load_from_file(const char *fname);
void place_lamp(l3d_sector *sector, l3d_polygon_3d_clippable *clipwin);
void reset_surface_cache(void) {
scache->reset();

}

void update_all(void);
void draw_all(void);

};

#endif

Listing 5-13: w_porlotex.cc
#include "w_porlotex.h"
#include "../object/object3d.h"
#include "../polygon/p_portal.h"
#include <string.h>
#include "../polygon/p3_ltex.h"
#include "../polygon/p3_cflat.h"
#include "../polygon/p_cport.h"
#include "../../raster/ras_swl.h"
#include "../../view/camcol.h"
#include "../../dynamics/plugins/plugenv.h"
#include "../../system/fact0_2.h"
#include "../../tool_os/memman.h"

void l3d_world_portal_textured_lightmapped_obj::update_all(void) {
l3d_world::update_all();

int i;
l3d_sector *s;
int found=0;

int portal_num=0;
s = current_sector;
while(!found) {

s->reset();

if (s->num_xforms) {
s->transform(s->modeling_xform);

}
s->camera_transform(camera->viewing_xform);

found=1;
for(i=0; i<s->polygons.num_items && found; i++) {
l3d_polygon_3d *p;
l3d_vector N, facet_to_cam_vec;
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p = s->polygons[i];
N.set(p->sfcnormal.transformed.X_ - p->center.transformed.X_,

p->sfcnormal.transformed.Y_ - p->center.transformed.Y_,
p->sfcnormal.transformed.Z_ - p->center.transformed.Z_,
int_to_l3d_real(0));

facet_to_cam_vec.set (0 - p->center.transformed.X_,
0 - p->center.transformed.Y_,
0.5 - p->center.transformed.Z_,
int_to_l3d_real(0));

/* dot product explicitly formulated so no fixed point overflow */
/* (facet_to_cam_vec is very large) */
/* (use of the inline function "dot" uses default fixed precision) */
l3d_real d;
d=dot(N,facet_to_cam_vec);
if(d>-0.05)

{
}else {
found = 0;

}
}
if (!found) {

if(s!=current_sector) portal_num++;

int next_sector_found=0;
l3d_polygon_3d_portal *por;
while(portal_num<current_sector->polygons.num_items && !next_sector_found) {
if ( (por = dynamic_cast<l3d_polygon_3d_portal *>

(current_sector->polygons[portal_num])) )
{
next_sector_found = 1;
s = por->connected_sector;

}else {
portal_num++;

}
}

if(!next_sector_found) {
found = 1;

}
}else {
current_sector = s;

}
}

}

void l3d_world_portal_textured_lightmapped_obj::draw_all(void) {
current_sector->render(screen->view_win,

rasterizer, camera,
screen->xsize, screen->ysize);

}

l3d_world_portal_textured_lightmapped_obj::
l3d_world_portal_textured_lightmapped_obj
(int xsize, int ysize)

: l3d_world(xsize, ysize)
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{

l3d_screen_info *si = screen->sinfo;
si->ext_to_native(0,0,0); //- allocate black bg color first
texture_loader = new l3d_texture_loader_ppm(screen->sinfo);

rasterizer_3d_imp->fovx = &(camera->fovx);
rasterizer_3d_imp->fovy = &(camera->fovy);
rasterizer_3d_imp->screen_xsize = &(screen->xsize);
rasterizer_3d_imp->screen_ysize = &(screen->ysize);

scache = new l3d_surface_cache(screen->sinfo);

}

l3d_world_portal_textured_lightmapped_obj::
~l3d_world_portal_textured_lightmapped_obj(void)
{
delete scache;
delete texture_loader;

}

l3d_sector *l3d_world_portal_textured_lightmapped_obj::
sector_by_name(const char *name)
{
int i;
int found=0;
l3d_sector *result = NULL;

for (i=0; (i<objects.num_items) && (!found); i++) {
if ( strcmp(objects[i]->name, name) == 0 ) {
result = dynamic_cast<l3d_sector *> ( objects[i] );
found=1;

}
}

if(result==NULL) printf("NULL sector %s!",name);
return result;

}

void l3d_world_portal_textured_lightmapped_obj::load_from_file(const char *fname) {
FILE *fp;

int linesize=1536;
char line[1536];
int tex_count, snum;

fp = fopen("world.dat", "rb");

fgets(line,sizeof(line),fp);
sscanf(line,"%d", &tex_count);

for(int i=0; i<tex_count; i++) {
fgets(line,sizeof(line),fp);
while(line[strlen(line)-1] == '') {line[strlen(line)-1] = '0'; }

texture_loader->load(line);
int next_tex_index;
next_tex_index = tex_data.next_index();
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tex_data[next_tex_index].width = texture_loader->width;
tex_data[next_tex_index].height = texture_loader->height;
tex_data[next_tex_index].data = texture_loader->data;

}

screen->refresh_palette();

fgets(line,linesize,fp);
sscanf(line,"%d",&snum);

l3d_sector *current_sector=NULL;

for(int onum=0; onum<snum; onum++) {
char sname[80];
char keyword[80];
char plugin_name[1024];
char rest_parms[4096];
int numv, nump;
fgets(line, linesize, fp);
strcpy(keyword,"");
strcpy(sname,"");
strcpy(plugin_name,"");
strcpy(rest_parms,"");
sscanf(line,"%s %s %s",keyword, sname, plugin_name);

//- get rest parameters all in one string
char *tok;
tok=strtok(line, " "); //- skip keyword
tok=strtok(NULL, " "); //- skip object name
tok=strtok(NULL, " "); //- skip plugin name
tok=strtok(NULL, ""); //- rest of the line until newline
if(tok) {strncpy(rest_parms, tok, sizeof(rest_parms)); }

if(strcmp(keyword,"SECTOR")==0) {

fgets(line,linesize,fp);
sscanf(line, "%d %d", &numv, &nump);

l3d_sector *sector;
int new_onum;
objects[new_onum=objects.next_index()] = sector = new l3d_sector(numv);
current_sector = sector;

strcpy(objects[new_onum]->name, sname);

for(int v=0; v<numv; v++) {
int vn;
float vx, vy, vz;

fgets(line, linesize, fp);
sscanf(line, "%d %f %f %f", &vn, &vx, &vy, &vz);
(*(objects[new_onum]->vertices))[vn].original.set(float_to_l3d_real(vx),

float_to_l3d_real(vy),
float_to_l3d_real(vz),
int_to_l3d_real(1));

}

for(int p=0; p<nump; p++) {
int p_idx = objects[new_onum]->polygons.next_index();
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char *s;
fgets(line, linesize, fp);
s = strtok(line, " ");
if(strcmp(s,"GEOMPOLY")==0) {
int num_vtx;
l3d_polygon_3d_textured_lightmapped *pt;

s = strtok(NULL, " ");
sscanf(s, "%d", &num_vtx);
objects[new_onum]->polygons[p_idx] = pt =

new l3d_polygon_3d_textured_lightmapped(num_vtx,scache);
objects[new_onum]->polygons[p_idx]->vlist = &objects[new_onum]->vertices;

for(int vtx=0; vtx<num_vtx; vtx++) {
s = strtok(NULL, " ");
int iv;
sscanf(s, "%d", &iv);
(*(objects[new_onum]->polygons[p_idx]->ivertices))[
objects[new_onum]->polygons[p_idx]->ivertices->next_index()].ivertex = iv;

}

pt->fovx = &(camera->fovx);
pt->fovy = &(camera->fovy);
pt->screen_xsize = &(screen->xsize);
pt->screen_ysize = &(screen->ysize);

int tex_id = 0;
pt->texture = new l3d_texture;
pt->texture->tex_data = & tex_data[tex_id];
pt->texture->owns_tex_data = false;

pt->texture->O.original.set
(

(**pt->vlist)[ (*pt->ivertices)[0].ivertex ].original.X_,
(**pt->vlist)[ (*pt->ivertices)[0].ivertex ].original.Y_,
(**pt->vlist)[ (*pt->ivertices)[0].ivertex ].original.Z_,
int_to_l3d_real(1) );

pt->texture->U.original.set
(
(**pt->vlist)[ (*pt->ivertices)[1].ivertex ].original.X_,
(**pt->vlist)[ (*pt->ivertices)[1].ivertex ].original.Y_,
(**pt->vlist)[ (*pt->ivertices)[1].ivertex ].original.Z_,
int_to_l3d_real(1) );

l3d_point V_point(
(**pt->vlist)[ (*pt->ivertices)[pt->ivertices->num_items-1].ivertex ].original.X_,
(**pt->vlist)[ (*pt->ivertices)[pt->ivertices->num_items-1].ivertex ].original.Y_,
(**pt->vlist)[ (*pt->ivertices)[pt->ivertices->num_items-1].ivertex ].original.Z_,
int_to_l3d_real(1) );

l3d_vector
U_vector = pt->texture->U.original - pt->texture->O.original,

V_vector = V_point - pt->texture->O.original,
U_cross_V_vector = cross(U_vector, V_vector),

V_vector_new = normalized(cross(U_cross_V_vector, U_vector)) *
sqrt(dot(U_vector,U_vector));

pt->texture->V.original = V_vector_new + pt->texture->O.original;
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objects[new_onum]->polygons[p_idx]->compute_center();
objects[new_onum]->polygons[p_idx]->compute_sfcnormal();

pt->compute_surface_orientation_and_size();

pt->plane.align_with_point_normal(pt->center.original, normalized(pt->sfcnormal.original
- pt->center.original));

}else if(strcmp(s,"GEOMPOLY_TEX")==0) {

int num_vtx;
l3d_polygon_3d_textured_lightmapped *pt;

s = strtok(NULL, " ");
sscanf(s, "%d", &num_vtx);
objects[new_onum]->polygons[p_idx] = pt = new l3d_polygon_3d_textured_lightmapped(num_vtx,

scache);
objects[new_onum]->polygons[p_idx]->vlist = &objects[new_onum]->vertices;

for(int vtx=0; vtx<num_vtx; vtx++) {
s = strtok(NULL, " ");
int iv;
sscanf(s, "%d", &iv);
(*(objects[new_onum]->polygons[p_idx]->ivertices))[
objects[new_onum]->polygons[p_idx]->ivertices->next_index()].ivertex = iv;

}
s = strtok(NULL, " ");

pt->fovx = &(camera->fovx);
pt->fovy = &(camera->fovy);
pt->screen_xsize = &(screen->xsize);
pt->screen_ysize = &(screen->ysize);

int tex_id;
sscanf(s, "%d", &tex_id);
pt->texture = new l3d_texture;
pt->texture->tex_data = & tex_data[tex_id];
pt->texture->owns_tex_data = false;
float x,y,z;
s = strtok(NULL, " ");
sscanf(s,"%f", &x);
s = strtok(NULL, " ");
sscanf(s,"%f", &y);
s = strtok(NULL, " ");
sscanf(s,"%f", &z);

pt->texture->O.original.set(float_to_l3d_real(x),
float_to_l3d_real(y),
float_to_l3d_real(z),
int_to_l3d_real(1));

s = strtok(NULL, " ");
sscanf(s,"%f", &x);
s = strtok(NULL, " ");
sscanf(s,"%f", &y);
s = strtok(NULL, " ");
sscanf(s,"%f", &z);
pt->texture->U.original.set(float_to_l3d_real(x),

float_to_l3d_real(y),
float_to_l3d_real(z),
int_to_l3d_real(1));
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s = strtok(NULL, " ");
sscanf(s,"%f", &x);
s = strtok(NULL, " ");
sscanf(s,"%f", &y);
s = strtok(NULL, " ");
sscanf(s,"%f", &z);
pt->texture->V.original.set(float_to_l3d_real(x),

float_to_l3d_real(y),
float_to_l3d_real(z),
int_to_l3d_real(1));

objects[new_onum]->polygons[p_idx]->compute_center();
objects[new_onum]->polygons[p_idx]->compute_sfcnormal();

pt->compute_surface_orientation_and_size();

pt->plane.align_with_point_normal(pt->center.original, normalized(pt->sfcnormal.original
- pt->center.original));

}else {
int num_vtx;

s = strtok(NULL, " ");
sscanf(s, "%d", &num_vtx);
objects[new_onum]->polygons[p_idx] = new l3d_polygon_3d_portal(num_vtx);
objects[new_onum]->polygons[p_idx]->vlist = &objects[new_onum]->vertices;
for(int vtx=0; vtx<num_vtx; vtx++) {
s = strtok(NULL, " ");
int iv;
sscanf(s, "%d", &iv);
(*(objects[new_onum]->polygons[p_idx]->ivertices))[
objects[new_onum]->polygons[p_idx]->ivertices->next_index()].ivertex = iv;

}

objects[new_onum]->polygons[p_idx]->compute_center();
objects[new_onum]->polygons[p_idx]->compute_sfcnormal();

s = strtok(NULL," ");
char *s2 = s + strlen(s)-1;
while(*s2=='' || *s2=='') {*s2=0; s2--; }
l3d_polygon_3d_portal *pp;
pp = dynamic_cast<l3d_polygon_3d_portal *>(objects[new_onum]->polygons[p_idx]);
if(pp) {strcpy(pp->connected_sector_name, s); }

}

}
}else if(strcmp(keyword,"ACTOR")==0) {
int new_onum;

objects[new_onum = objects.next_index()]
= (*current_sector->objects)[current_sector->objects->next_index()]
= new l3d_object_clippable_boundable(100);

strcpy(objects[new_onum]->name, sname);
strcpy(objects[new_onum]->plugin_name, plugin_name);
objects[new_onum]->parent = current_sector;

if(strlen(plugin_name)) {
objects[new_onum]->plugin_loader =
factory_manager_v_0_2.plugin_loader_factory->create();

objects[new_onum]->plugin_loader->load(plugin_name);
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objects[new_onum]->plugin_constructor =
(void (*)(l3d_object *, void *))
objects[new_onum]->plugin_loader->find_symbol("constructor");

objects[new_onum]->plugin_update =
(void (*)(l3d_object *))
objects[new_onum]->plugin_loader->find_symbol("update");

objects[new_onum]->plugin_destructor =
(void (*)(l3d_object *))
objects[new_onum]->plugin_loader->find_symbol("destructor");

objects[new_onum]->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
objects[new_onum]->plugin_loader->find_symbol("copy_data");

l3d_plugin_environment *e = new l3d_plugin_environment
(texture_loader, screen->sinfo, scache, rest_parms);

if(objects[new_onum]->plugin_constructor) {
(*objects[new_onum]->plugin_constructor) (objects[new_onum],e);

}
}

}else if(strcmp(keyword,"CAMERA")==0) {

float posx,posy,posz;
float xaxis_x, xaxis_y, xaxis_z,
yaxis_x, yaxis_y, yaxis_z,
zaxis_x, zaxis_y, zaxis_z;
char *tok;

tok = strtok(rest_parms, " "); if(tok) {sscanf(tok, "%f", &posx); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &posy); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &posz); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_z); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_z); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_z); }

this->current_sector = current_sector;
camera->VRP.set(float_to_l3d_real(posx),

float_to_l3d_real(posy),
float_to_l3d_real(posz),
int_to_l3d_real(1));

camera->calculate_viewing_xform();
}

}

for(int ii=0; ii<objects.num_items; ii++) {
for(int pi=0; pi<objects[ii]->polygons.num_items; pi++) {
l3d_polygon_3d_portal *p;
if ((p = dynamic_cast<l3d_polygon_3d_portal *>(objects[ii]->polygons[pi]))) {
p->connected_sector = sector_by_name(p->connected_sector_name);

}
}

}
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}

void l3d_world_portal_textured_lightmapped_obj::place_lamp
(l3d_sector *sector, l3d_polygon_3d_clippable *clipwin)
{
static int recurselevel = 0;

if(recurselevel > 4) return;
recurselevel ++;
int iObj, iFacet;

l3d_vector facet_to_cam_vec;
l3d_vector N;

l3d_polygon_3d_clippable *pc;

for(int i=0; i<sector->objects->num_items; i++) {
(*sector->objects)[i]->init_nonculled_list();
(*sector->objects)[i]->vertices->num_varying_items = 0;
(*sector->objects)[i]->transform_stage = 0;

for(register int ivtx=0; ivtx<(*sector->objects)[i]->vertices->num_fixed_items; ivtx++) {
(*((*sector->objects)[i]->vertices))[ivtx].reset();

}

l3d_polygon_3d_node *n;
n = (*sector->objects)[i]->nonculled_polygon_nodes;
while(n) {
n->polygon->init_clip_ivertices();
n->polygon->init_transformed();
n=n->next;

}

if ((*sector->objects)[i]->num_xforms) {
(*sector->objects)[i]->transform((*sector->objects)[i]->modeling_xform);

}

if (sector->num_xforms) {
(*sector->objects)[i]->transform(sector->modeling_xform);

}
}

l3d_polygon_3d_node *n_objects=0;

for(int i=0; i<sector->objects->num_items; i++) {

if((*sector->objects)[i]->nonculled_polygon_nodes) {
l3d_polygon_3d_node *n_temp;
n_temp = (*sector->objects)[i]->nonculled_polygon_nodes;
while(n_temp->next) {
n_temp=n_temp->next;

}

n_temp->next = n_objects;
if(n_objects) {n_objects->prev = n_temp; }
n_objects = (*sector->objects)[i]->nonculled_polygon_nodes;

n_objects->prev = NULL;
}
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}

sector->init_nonculled_list();
sector->vertices->num_varying_items = 0;
sector->transform_stage = 0;
for(register int ivtx=0; ivtx<sector->vertices->num_fixed_items; ivtx++) {
(*(sector->vertices))[ivtx].reset();

}

l3d_polygon_3d_node *n;
n = sector->nonculled_polygon_nodes;
while(n) {
n->polygon->init_clip_ivertices();
n->polygon->init_transformed();
n=n->next;

}

if (sector->num_xforms) {
sector->transform(sector->modeling_xform);

}

l3d_polygon_3d_node *last_sector_node;
{
l3d_polygon_3d_node *n;

n = n_objects;
while(n) {
n->polygon->set_transform_stage(sector->transform_stage);
n = n->next;

}

n = sector->nonculled_polygon_nodes;
if(n) {
while(n->next) {n = n->next; }
last_sector_node = n;
n->next = n_objects;
if(n_objects) {n_objects->prev = n; }

}else {
last_sector_node=NULL;
sector->nonculled_polygon_nodes = n_objects;

}
}

sector->camera_transform(camera->viewing_xform);

if(clipwin) {

l3d_point origin(0,0,0,1), p0, p1;
l3d_plane clip_plane;

int survived=1;
int idx0,idx1;

idx0 = clipwin->clip_ivertices->num_items-1;
idx1 = 0;

while(1) {
p1 = (**(clipwin->vlist))[(*clipwin->clip_ivertices)[idx0].ivertex].transformed;
p0 = (**(clipwin->vlist))[(*clipwin->clip_ivertices)[idx1].ivertex].transformed;
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clip_plane.align_with_points( origin, p0, p1);

sector->clip_to_plane(clip_plane);

idx0 = idx1;
if(idx0==clipwin->clip_ivertices->num_items-1) break;
idx1++;

}}

n = sector->nonculled_polygon_nodes;
while(n) {
N.set(n->polygon->sfcnormal.transformed.X_ - n->polygon->center.transformed.X_,

n->polygon->sfcnormal.transformed.Y_ - n->polygon->center.transformed.Y_,
n->polygon->sfcnormal.transformed.Z_ - n->polygon->center.transformed.Z_,
int_to_l3d_real(0));

facet_to_cam_vec.set (0 - n->polygon->center.transformed.X_,
0 - n->polygon->center.transformed.Y_,
0 - n->polygon->center.transformed.Z_,
int_to_l3d_real(0));

/* dot product explicitly formulated so no fixed point overflow */
/* (facet_to_cam_vec is very large) */
/* (use of the inline function "dot" uses default fixed precision) */
/* equivalent to: if(N.dot(facet_to_cam_vec) > 0 ) */
if( (dot(N,facet_to_cam_vec) > 0 ) )
{
}else {
if(n->prev) {
n->prev->next = n->next;

}else {
sector->nonculled_polygon_nodes = n->next;

}

if(n->next) {
n->next->prev = n->prev;

}
}

n = n->next;
}

n = sector->nonculled_polygon_nodes;
while(n) {

l3d_polygon_3d_textured_lightmapped *pt;
l3d_polygon_3d_portal *p;

if ( (p=dynamic_cast<l3d_polygon_3d_portal *>(n->polygon)) ) {
place_lamp(p->connected_sector, p);

}else if ((pt = dynamic_cast<l3d_polygon_3d_textured_lightmapped *>
(n->polygon)))

{
l3d_screen_info *si = new l3d_screen_info_indexed(MAX_LIGHT_LEVELS,

0, 0, 0);
si->p_screenbuf = pt->lightmap->tex_data->data;

l3d_rasterizer_2d_sw_lighter_imp *rast_imp = new
l3d_rasterizer_2d_sw_lighter_imp(pt->lightmap->tex_data->width,

pt->lightmap->tex_data->height,si);

340 Chapter 5: Visible Surface Determination II: Space-partitioning Techniques



l3d_rasterizer_2d rast(rast_imp);

rast_imp->O = pt->surface_orientation.O.transformed;
rast_imp->U = pt->surface_orientation.U.transformed - rast_imp->O;
rast_imp->V = pt->surface_orientation.V.transformed - rast_imp->O;

l3d_polygon_2d_flatshaded *lightmap_poly;
l3d_two_part_list<l3d_coordinate> *vlist;
vlist = new l3d_two_part_list<l3d_coordinate>

(pt->clip_ivertices->num_items);

int i;
lightmap_poly = new l3d_polygon_2d_flatshaded

(pt->clip_ivertices->num_items);
lightmap_poly->vlist = &vlist;
for(i=0; i< pt->clip_ivertices->num_items; i++) {
l3d_point tex_coord;
tex_coord =
world_to_tex_matrix(pt->surface_orientation)
| camera->inverse_viewing_xform
| (**pt->vlist) [ (*pt->clip_ivertices)[i].ivertex ].transformed;

if(tex_coord.W_ != int_to_l3d_real(1)) {
l3d_real invw = l3d_divrr(int_to_l3d_real(1), tex_coord.W_);
tex_coord.X_ = l3d_mulrr(tex_coord.X_, invw);
tex_coord.Y_ = l3d_mulrr(tex_coord.Y_, invw);
tex_coord.Z_ = l3d_mulrr(tex_coord.Z_, invw);
tex_coord.W_ = int_to_l3d_real(1);

}

l3d_real ul,vl;
ul = l3d_mulri(tex_coord.X_, pt->lightmap->tex_data->width);
vl = l3d_mulri(tex_coord.Y_, pt->lightmap->tex_data->height);

l3d_coordinate vtx;
vtx.transformed.set
(ul, vl,
int_to_l3d_real(0),
int_to_l3d_real(1));

(*vlist)[i] = vtx;
(*lightmap_poly->clip_ivertices)
[lightmap_poly->clip_ivertices->next_index()].ivertex =
i;

}

lightmap_poly->final_color = 255;
lightmap_poly->draw(&rast);

delete vlist;
delete lightmap_poly;
delete si;
delete rast_imp;

}
n = n->next;

}

recurselevel--;
}
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Member variable current_sector is a pointer to the current sector object, since the current

sector is always the starting point for portal rendering. Notice that we don’t need to declare a list of

sectors; sectors are derived from 3D objects, and the world class already has a list of objects.

Method sector_by_name searches for a particular sector in the world’s object list, and

returns a pointer to it. This method is used to link a portal with an actual sector object when only

the sector’s name is known; this is the case when loading portal definitions from a file.

Overridden method update_all does two things: it calls the ancestor update_all rou-

tine, and it searches to find which sector the camera is currently in; since the camera can move, this

information can change from frame to frame. The call to the ancestor update_all routine calls

update for all objects within the object list; since each object in the list is a sector, this calls update

for each sector, which in turn calls update on all of the contained objects in the sector. Thus, for

each frame, the entire world is updated. Instead of updating the entire world, we could choose to

call update only for the current sector and a few adjoining sectors, to save processing time.

The other thing update_all does is to search for the sector containing the camera. The

search encompasses only the current sector and all immediately adjoining sectors, and takes place

in camera coordinates. We check for containment of the point (0,0,0.5), which is 0.5 units in front

of the camera in camera coordinates, within each sector; the sector (in camera coordinates) con-

taining this point is the current sector. The slight displacement is the pseudo-location to avoid the

portal clipping problem, as discussed earlier.

Method draw_all starts the portal rendering with a single method invocation; it merely

asks the current sector to render itself. This then recursively causes the rendering of other sectors

which are visible through the portals.

Method place_lamp effectively places a light at the current camera position. This method

calculates a new light intensity for all visible lumels in all light maps. It depends on a light map

rasterizer class, covered in the next section. The light is computed as coming from the location of

the camera. The light computation progresses recursively through the portals, clipping the seen

polygons to the portals. This leads to the generation of shadows, as we discussed earlier. The cur-

rent camera location is not explicitly saved as a “lamp position” which can be later accessed;

instead, the information is merely implicitly saved in terms of the change in the light maps them-

selves. A more comprehensive approach could save a list of light objects with the world, which

could be dynamically created, destroyed, or moved.

Member variables texture_loader, tex_data, and scache manage the texture data

for the world. texture_loader loads a texture file from disk; tex_data is a list of texture

data objects which are shared among possibly several polygons, and scache is the surface cache

which manages the combined texture and light map data. Method reset_surface_cache
deletes all surfaces in the surface cache, forcing the surfaces to be re-created, by newly combining

the texture and light map information. This is useful if the light map information has changed after

an invocation of place_lamp.

The load_from_file routine reads portal and sector definitions from a world file. This

makes testing easier; we don’t have to hard code creation of portals and sectors in our program, but

can instead use a data file to specify our portal world. We can also use a 3D editor such as Blender

to interactively model our portal worlds. Doing so, however, requires the support of a few custom
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tools and a bit of post-processing work; Chapter 8 describes the process in detail. Admittedly, the

load_from_file routine is a bit monolithic; a better approach would read an arbitrary class

name from a file, pass this class name on to an object factory which creates an instance of a

streamable object, then call a virtual load method on the object to allow the object to load itself

from the stream. A comprehensive approach would even allow for arbitrary polymorphic refer-

ences to objects or lists of objects not yet loaded from disk, meaning that the entire world is not

loaded at once, but only in pieces as it is needed. We don’t have the time to go into such topics

here, and our world file definition is very simple, so the load_from_file method takes the

simple, function-oriented, one-function-knows-it-all approach.

The format of a world file is as follows.

1 TEXTURES
stone.ppm
4 SECTORS_AND_ACTORS
SECTOR main
numverts numpolys
0 x y z
1 x y z
...
11 x y z
GEOMPOLY 4 v0 v1 v2 v3
GEOMPOLY_TEX 4 v0 v1 v2 v3 tex_id ox oy oz ux uy uz vx vy vz
PORTALPOLY 4 v0 v1 v2 v3 sectorxxx
...
ACTOR act01 plugin.so x y z m00 m01 m02 m11 m10 m12 m20 m21 m22 mesh.obj mesh.ppm mesh.uv
CAMERA cam01 plugin.so x y z m00 m01 m02 m11 m10 m12 m20 m21 m22
SECTOR sector1

The world file begins with a line indicating the number of textures used within the file, followed

by the names of the PPM texture files, one on each line. Next comes a count of sector and actor

blocks in the file, followed by that same number of sector, actor, or camera blocks.

A sector block begins with the word “SECTOR” followed by the sector name. Next comes a

line containing two numbers, the number of vertices and the number of polygons in the sector.

Then come the vertex definitions, one per line, starting with the vertex index number, followed by

the (x,y,z) coordinates of the vertex. Finally, we have the polygon definitions, exactly one per line.

Within a sector block, the polygon definitions use one of the keywords GEOMPOLY,

GEOMPOLY_TEX, orPORTALPOLY. KeywordGEOMPOLY indicates a geometrical polygon with

automatically assigned texture image and texture space. After this keyword, the first number is a

count of vertex indices, followed by a clockwise specification of the integer vertex indices defin-

ing the polygon. The texture image is the first texture image in the world file, and the texture

coordinates are computed assuming that the first vertex is the texture space origin, the second ver-

tex is the tip of the u axis, and the last vertex is the tip of the v axis. Keyword GEOMPOLY_TEX

specifies a polygon with an explicitly specified texture image and space. After this keyword, first

come the vertex index count and a list of vertex indices. Then comes an integer texture identifier,

starting with 0, specifying which image in the texture section should be used for this polygon.

Finally come nine numbers, specifying the texture space origin, tip of the u axis, and tip of the v

axis. Keyword PORTALPOLY indicates a portal. Following this keyword are the vertex index

count and a list of vertex indices. Then comes a string specifying the name of the sector to which
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the portal leads; the actual pointer to the sector object is assigned later, after all sectors have been

read into memory.

An actor block in the world file consists of exactly one line starting with the keyword ACTOR.

This specifies a dynamic object (of type l3d_object or one of its descendants) which will be

created in the world and which is located in the immediately preceding sector in the world file.

Following this keyword is the name of the object and the name of a dynamic library plug-in file

controlling the behavior of the object. All following parameters are then plug-in specific, and will

be parsed by the plug-in itself. Let’s look at the parameters used by the Videoscape plug-in of

Chapter 3. Listed first is the initial (x,y,z) position of the object, followed by nine numbers repre-

senting the rotation matrix of the object specified in row-major order (first horizontally, then

vertically). Listed next are three filename specifications: the Videoscape mesh file defining the

geometry for this actor, the PPM texture file for the mesh, and the (u,v) coordinates file specifying

the texture coordinates for the mesh (all of which we saw in Chapter 3). The vidmesh.so
plug-in file is responsible for extracting and using these parameters. If we specified a different

plug-in on the ACTOR line, it could define and parse its own parameter list in the world file; all

parameters after the plug-in name are simply handed off to the plug-in for further processing.

A camera block in the world file consists of exactly one line starting with the keyword

CAMERA. This specifies the location of the camera in the world; it will begin in the immediately

preceding sector in the world file. Listed next is the name of the camera object, a plug-in filename,

and the (x,y,z) location of the camera and its 3� 3 rotation matrix. Currently, only the location of the

camera is parsed by the world class; the name, plug-in, and orientation parameters are not yet

used. However, this specification scheme treats the camera similar to the way that it treats objects,

meaning that a derived world class could load a plug-in to control the behavior of the camera. In

the existing world class, though, the camera is treated as a user-controllable object without plug-in

behavior, just as we have been doing all along.

Class l3d_rasterizer_2d_sw_lighter_imp

Class l3d_rasterizer_2d_sw_lighter_imp is a software polygon rasterizer imple-

mentation, which is designed to rasterize a polygon directly into the lumels in a light map (as

opposed to rasterizing into the pixels in an off-screen frame buffer). The intensity of the lumels is

computed during the rasterization process.

As we saw earlier, the place_lamp method of class l3d_world_portal_tex-
tured_lightmapped_obj effectively places a light at the current camera position, and

traverses the portals to determine which parts of which polygons are visible to the light source.

This leads to generation of shadows. To generate shadows in this way, we need to rasterize the

portal-clipped polygon in lumel space. As we discussed, we first need to obtain the coordinates of

the clipped polygon’s vertices in lumel space, then we rasterize the polygon into the light map,

computing a light intensity for each lumel that we rasterize.

Method draw_polygon_flatshaded draws a “flat-shaded” polygon into the rasterizer

buffer, which in this case is the light map data itself. “Flat-shaded” is a bit of a misnomer, but it is

the most appropriate function to override from the inherited software rasterizer implementation,

since during rasterization we only keep track of edge coordinates, not texture coordinates. This
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method draws the polygon into the light map, using the same logic as the flat-shaded polygon

rasterizer. There are only two changes to the rasterizer logic. First, instead of assigning a fixed

color to each lumel we rasterize, we call compute_light_level to determine what the light

level should be at the current lumel. Second, the horizontal and vertical size of the polygon is arti-

ficially increased, to allow for lumels on the edge of the polygon to be included in the light map

computation.

Let’s briefly discuss why we need to artificially increase the size of the polygon for light map

rasterization purposes. The reason for this goes all the way back to a discussion in the introductory

companion book Linux 3D Graphics Programming, when we first developed the rationale for our

rasterization strategy. There, we said that it was of primary importance to plot every pixel once and

only once, so that the polygons all lined up on the edges. We used the rule that only pixels whose

upper left corner was in the polygon were drawn. The problem is that using this same strategy here

often leads to unsightly dark holes or dark strips in the light map, because certain lumels exactly

on the edge of the polygon do not get rasterized and thus remain dark. When computing a light

map, we should ideally compute a light intensity for every lumel of which any part—not just the

upper-left corner—touches the polygon. Then, depending on how much of the lumel lies within

the polygon, we would scale the computed intensity accordingly; a lumel only half within the

polygon would only get half of its computed light intensity, for instance. This technique is called

anti-aliasing. The shadow light map rasterizer here doesn’t perform anti-aliasing, but it instead

artificially expands the horizontal and vertical size of the polygon to cause it to cover more lumels.

This means that the generated shadows are somewhat inaccurate, and sometimes contain a hole or

two, but the code does serve its illustrative purpose in a working example.

Method compute_light_level computes the light level for a given 2D lumel coordi-

nate (u,v). It first goes from light map space into world space—a very easy transformation using

the axes of the light map space, as we saw in Chapter 2—then computes a light value using the dif-

fuse reflection equation. The variables for storing the axes of the light map space are inherited

from class l3d_texture_computer, and must have been set beforehand by the external

caller.

Listing 5-14: ras_swl.h
#ifndef __RAS_SWL_H
#define __RAS_SWL_H
#include "../tool_os/memman.h"

#include "ras_sw.h"
#include "math.h"
#include "../system/sys_dep.h"
#include "../geom/texture/texture.h"

class l3d_rasterizer_2d_sw_lighter_imp :
virtual public l3d_rasterizer_2d_sw_imp,
virtual public l3d_texture_computer

{
protected:
virtual int compute_light_level(int lumel_x, int lumel_y);

public:

l3d_rasterizer_2d_sw_lighter_imp(int xs, int ys, l3d_screen_info *si) :
l3d_rasterizer_2d_imp(xs,ys,si),
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l3d_rasterizer_2d_sw_imp(xs,ys,si) {};
void draw_polygon_flatshaded(const l3d_polygon_2d_flatshaded *p_poly);

};

#endif

Listing 5-15: ras_swl.cc
#include "ras_swl.h"
#include "../system/sys_dep.h"
#include <string.h>
#include <stdlib.h>
#include "../tool_os/memman.h"

int l3d_rasterizer_2d_sw_lighter_imp::compute_light_level(int lumel_x, int lumel_y)
{
l3d_real x,y,z;

l3d_real u,v;

u = l3d_divrr( int_to_l3d_real(lumel_x), xsize );
v = l3d_divrr( int_to_l3d_real(lumel_y), ysize );

x = O.X_ + l3d_mulri(U.X_, u) + l3d_mulri(V.X_, v);
y = O.Y_ + l3d_mulri(U.Y_, u) + l3d_mulri(V.Y_, v);
z = O.Z_ + l3d_mulri(U.Z_, u) + l3d_mulri(V.Z_, v);

l3d_vector aLight(0,0,0,1);

l3d_vector L(aLight.X_ - x ,
aLight.Y_ - y ,
aLight.Z_ - z ,
int_to_l3d_real(0)),

N(cross(U,V));

l3d_real intensity;

l3d_real f_att=l3d_divrr(int_to_l3d_real(1),
(float_to_l3d_real(0.1)+float_to_l3d_real(0.01*sqrt(l3d_real_to_float(dot(L,L))))));

if (f_att>int_to_l3d_real(1)) f_att=int_to_l3d_real(1);

l3d_real n_dot_l;
n_dot_l = dot(normalized(N), normalized(L));

intensity = l3d_mulrr ( l3d_mulrr(int_to_l3d_real(128) , f_att) ,
n_dot_l);

if (intensity>int_to_l3d_real(128)) {intensity = int_to_l3d_real(128); }
if (intensity<int_to_l3d_real(2)) {intensity = int_to_l3d_real(2); }

return l3d_real_to_int(intensity);
}

void l3d_rasterizer_2d_sw_lighter_imp::draw_polygon_flatshaded
(const l3d_polygon_2d_flatshaded *p_poly)
{
l3d_real x0,y0,x1,y1,x2,y2,x3,
left_x_start,left_y_start,left_x_end,left_y_end,left_dx,left_x,leftedge,
right_x_start,right_y_start,right_x_end,right_y_end,right_dx,right_x,rightedge;
int left_ceily_start, left_ceily_end,
right_ceily_start, right_ceily_end, scanline;
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l3d_real top_y, bottom_y;
int point_on_right=0;
int left_idx, right_idx, top_y_idx, bottom_y_idx;

int clipleftedge, cliprightedge;
int maxy_upper, iceil_y0, iceil_y1, iceil_y2;

int i;

//- convenience macro for accessing the vertex coordinates. Notice
//- that we access the clipped vertex index list (not the original),
//- and the transformed coordinate (not the original). This means
//- we draw the clipped version of the transformed polygon.

#define VTX(i) ((**(p_poly->vlist))[ (*(p_poly->clip_ivertices))[i].ivertex ].transformed)

#define XPAD 4
#define YPAD 1
//-------------------------------------------------------------------------
//- STEP 1: Find top and bottom vertices
//-------------------------------------------------------------------------

top_y = VTX(0).Y_;
top_y_idx = 0;
bottom_y = top_y;
bottom_y_idx = top_y_idx;
for(i=0; i<p_poly->clip_ivertices->num_items; i++) {

if(VTX(i).Y_ < top_y) {
top_y = VTX(i).Y_;
top_y_idx = i;

}
if(VTX(i).Y_ > bottom_y) {
bottom_y = VTX(i).Y_;
bottom_y_idx = i;

}
}

left_idx = top_y_idx;
right_idx = top_y_idx;

//-------------------------------------------------------------------------
//- STEP 2: Create empty left edge
//-------------------------------------------------------------------------
left_x_start = VTX(top_y_idx).X_;
left_y_start = VTX(top_y_idx).Y_;
left_ceily_start=iceil(left_y_start);
left_ceily_end=left_ceily_start;

//-------------------------------------------------------------------------
//- STEP 3: Create empty right edge
//-------------------------------------------------------------------------
right_x_start=left_x_start;
right_y_start=left_y_start;
right_ceily_start=left_ceily_start;
right_ceily_end=right_ceily_start;

//-------------------------------------------------------------------------
//- STEP 4: Loop from top y to bottom y
//-------------------------------------------------------------------------
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scanline = left_ceily_start;

int first_scanline_done = 0;
while(scanline <= ysize) {

//-------------------------------------------------------------------------
//- STEP 5: Find next left-edge of non-zero height (if needed)
//-------------------------------------------------------------------------
while( left_ceily_end - scanline <= 0 ) {
if (left_idx == bottom_y_idx) return; //- done
left_idx = p_poly->next_clipidx_left

(left_idx, p_poly->clip_ivertices->num_items);
left_y_end= VTX(left_idx).Y_;
left_ceily_end = iceil(left_y_end);

if(left_ceily_end - scanline) { //- found next vertex
//-------------------------------------------------------------------
//- STEP 5a: Initialize left-x variables
//-------------------------------------------------------------------
left_x_end= VTX(left_idx).X_;
left_dx = l3d_divrr(left_x_end-left_x_start,left_y_end-left_y_start);
left_x = left_x_start + //- sub-pixel correction

l3d_mulrr(int_to_l3d_real(left_ceily_start)-left_y_start , left_dx);
}else { //- did not find next vertex: last failed end = new start
left_x_start = VTX(left_idx).X_;
left_y_start = VTX(left_idx).Y_;
left_ceily_start = iceil(left_y_start);

}
}

//-------------------------------------------------------------------------
//- STEP 6: Find next right-edge of non-zero height (if needed)
//-------------------------------------------------------------------------
//- if needed, find next right-edge whose ceily_end > current scanline
//- this is a while and not an if, as desribed above...
while(right_ceily_end - scanline <= 0 ) {
if (right_idx == bottom_y_idx) return; //- done
right_idx = p_poly->next_clipidx_right

(right_idx,p_poly->clip_ivertices->num_items);
right_y_end=VTX(right_idx).Y_;
right_ceily_end = iceil(right_y_end);
if(right_ceily_end - scanline) { //- found next vertex
//-------------------------------------------------------------------
//- STEP 6a: Initialize right-x variables
//-------------------------------------------------------------------
right_x_end=VTX(right_idx).X_;
right_dx =
l3d_divrr(right_x_end-right_x_start,right_y_end-right_y_start);

right_x = right_x_start + //- sub-pixel correction
l3d_mulrr(int_to_l3d_real(right_ceily_start)-right_y_start , right_dx);

}else { //- did not find next vertex: last failed end = new start
right_x_start = VTX(right_idx).X_;
right_y_start = VTX(right_idx).Y_;
right_ceily_start = iceil(right_y_start);

}
}

//- clamp edge values to screen
if (left_ceily_end > ysize) left_ceily_end = ysize;
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if (right_ceily_end > ysize) right_ceily_end = ysize;

//-------------------------------------------------------------------
//- STEP 7: Loop until left and/or right edge is finished
//-------------------------------------------------------------------
while ( (scanline < left_ceily_end) && (scanline < right_ceily_end) ) {
if(! first_scanline_done) {
first_scanline_done = 1;

int top_pad;
top_pad = scanline -YPAD;
if(top_pad < 0) top_pad = 0;
int target = scanline;

for(scanline=top_pad ; scanline < target; scanline++) {

clipleftedge = ifloor(left_x)-XPAD;

clipleftedge = (clipleftedge < 0) ? 0 : clipleftedge;
cliprightedge = iceil(right_x)+XPAD;

cliprightedge = (cliprightedge > xsize-1) ? xsize-1 : cliprightedge;

int lumel_x = clipleftedge;
for(register char unsigned *pix =

address_of_point(clipleftedge,
SW_RAST_Y_REVERSAL(ysize,scanline));

pix <= address_of_point(cliprightedge, scanline);

lumel_x++

)
{
int light_value = compute_light_level(lumel_x, scanline);

light_value += *pix;
if(light_value > 255) light_value = 255;
draw_point_at_paddress(&pix, light_value);

}

left_x+= left_dx;
right_x+= right_dx;

}

}

clipleftedge = ifloor(left_x)-XPAD;

clipleftedge = (clipleftedge < 0) ? 0 : clipleftedge;
cliprightedge = iceil(right_x)+XPAD;

cliprightedge = (cliprightedge > xsize-1) ? xsize-1 : cliprightedge;

{
//-------------------------------------------------------------------
//- STEP 8: Draw horizontal span
//-------------------------------------------------------------------
int lumel_x = clipleftedge;
for(register char unsigned *pix =
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address_of_point(clipleftedge,
SW_RAST_Y_REVERSAL(ysize,scanline));

pix <= address_of_point(cliprightedge, scanline);

lumel_x++

)
{
int light_value = compute_light_level(lumel_x, scanline);

light_value += *pix;
if(light_value > 255) light_value = 255;
draw_point_at_paddress(&pix, light_value);

}
}

//-------------------------------------------------------------------
//- STEP 9: Increase y, and step x-values on left and right edges
//-------------------------------------------------------------------
scanline++;
left_x += left_dx;
right_x += right_dx;

}

//-------------------------------------------------------------------
//- STEP 10: Continue loop, looking for next edge of non-zero height
//-------------------------------------------------------------------

//- for the left and/or right segment(s) which just completed drawing
//- initialize xxx_start = xxx_end, to begin next segment. xxx_end is
//- then searched for in the next iteration (the while() loops)
if ( left_ceily_end - scanline <= 0 ) {
left_x_start=left_x_end;
left_y_start=left_y_end;
left_ceily_start=left_ceily_end;

}
if ( right_ceily_end - scanline <= 0 ) {
right_x_start=right_x_end;
right_y_start=right_y_end;
right_ceily_start=right_ceily_end;

}
}

for(int bottom_pad=0; bottom_pad<YPAD; bottom_pad++) {
if(scanline < ysize-1) {
scanline++;
left_x += left_dx;
right_x += right_dx;

clipleftedge = ifloor(left_x)-XPAD;

clipleftedge = (clipleftedge < 0) ? 0 : clipleftedge;
cliprightedge = iceil(right_x)+XPAD;

cliprightedge = (cliprightedge > xsize-1) ? xsize-1 : cliprightedge;

int lumel_x = clipleftedge;
for(register char unsigned *pix =
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address_of_point(clipleftedge,
SW_RAST_Y_REVERSAL(ysize,scanline));

pix <= address_of_point(cliprightedge, scanline);

lumel_x++

)
{
int light_value = compute_light_level(lumel_x, scanline);

light_value += *pix;
if(light_value > 255) light_value = 255;
draw_point_at_paddress(&pix, light_value);

}

scanline++;
left_x++;
right_x++;

}
}

}
#undef VTX(i)

Class l3d_pipeline_world_lightmapped

Class l3d_pipeline_world_lightmapped is a pipeline class handling the new keyboard

input required by light mapped portal world objects. The two new keys are p and r. Press p to place

a lamp at the current camera position. Press r to reset the surface cache, causing the newly com-

puted light maps to be displayed.

Listing 5-16: pi_lwor.h
#ifndef __PI_LWOR_H
#define __PI_LWOR_H
#include "../tool_os/memman.h"

#include "pi_wor.h"
#include "../geom/world/world.h"

class l3d_pipeline_world_lightmapped : public l3d_pipeline_world {
public:
l3d_pipeline_world_lightmapped(l3d_world *w) :
l3d_pipeline_world(w) {};
void key_event(int ch);

};

#endif

Listing 5-17: pi_lwor.cc
#include "pi_wor.h"

#include <sys/time.h>
#include <unistd.h>
#include <string.h>
#include "../tool_os/memman.h"

void l3d_pipeline_world::key_event(int c) {
switch(c) {

Chapter 5: Visible Surface Determination II: Space-partitioning Techniques 351



case 'q': done = 1;

//- default keys for world->camera movement -- full 360 degree movement
case 'j': if(world->camera->rot_VUP_velocity>int_to_l3d_real(-95)) world->camera->rot_VUP_velocity

-= int_to_l3d_real(5); break;
case 'l': if(world->camera->rot_VUP_velocity<int_to_l3d_real( 95)) world->camera->rot_VUP_velocity

+= int_to_l3d_real(5); break;
case 'J': if(world->camera->rot_VFW_velocity<int_to_l3d_real( 95)) world->camera->rot_VFW_velocity

+= int_to_l3d_real(5); break;
case 'L': if(world->camera->rot_VFW_velocity>int_to_l3d_real(-95)) world->camera->rot_VFW_velocity

-= int_to_l3d_real(5); break;
case 'I': if(world->camera->rot_VRI_velocity<int_to_l3d_real( 95)) world->camera->rot_VRI_velocity

+= int_to_l3d_real(5); break;
case 'K': if(world->camera->rot_VRI_velocity>int_to_l3d_real(-95)) world->camera->rot_VRI_velocity

-= int_to_l3d_real(5); break;
case 'k': if(world->camera->VFW_velocity >int_to_l3d_real(-90)) world->camera->VFW_velocity -=

world->camera->VFW_thrust; break;
case 'i': if(world->camera->VFW_velocity <int_to_l3d_real( 90)) world->camera->VFW_velocity +=

world->camera->VFW_thrust; break;
case 's': if(world->camera->VRI_velocity >int_to_l3d_real(-90)) world->camera->VRI_velocity -=

world->camera->VRI_thrust; break;
case 'f': if(world->camera->VRI_velocity <int_to_l3d_real( 90)) world->camera->VRI_velocity +=

world->camera->VRI_thrust; break;
case 'd': if(world->camera->VUP_velocity >int_to_l3d_real(-90)) world->camera->VUP_velocity -=

world->camera->VUP_thrust; break;
case 'e': if(world->camera->VUP_velocity <int_to_l3d_real( 90)) world->camera->VUP_velocity +=

world->camera->VUP_thrust; break;

//- field-of-view modification
case 'X': world->camera->fovx = world->camera->fovx + float_to_l3d_real(0.1); break;
case 'x': world->camera->fovx = world->camera->fovx - float_to_l3d_real(0.1); break;
case 'Y': world->camera->fovy = world->camera->fovy + float_to_l3d_real(0.1); break;
case 'y': world->camera->fovy = world->camera->fovy - float_to_l3d_real(0.1); break;

//- speed
case 'v': case 'V':

world->camera->VUP_thrust += int_to_l3d_real(1.0);
if(world->camera->VUP_thrust > 3.0) {
world->camera->VUP_thrust -= int_to_l3d_real(3.0);

}
world->camera->VFW_thrust = world->camera->VUP_thrust;
world->camera->VRI_thrust = world->camera->VUP_thrust;
break;

//- display

case 'n': case 'N':
world->should_display_status = 1-world->should_display_status; //- toggle
break;

}

}

void l3d_pipeline_world::update_event() {
world->update_all();

}

void l3d_pipeline_world::draw_event(void) {
static int frame=0;
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static long last_sec, last_usec;
long sec, usec;
static float fps;
static char str[80];

struct timeval tv;
struct timezone tz;
tz.tz_minuteswest = -60;

world->rasterizer->clear_buffer();
world->draw_all();

frame++;
if((frame & 0x3F) == 0) {
gettimeofday(&tv,&tz);
fps = 64 * 1.0 / ( (tv.tv_sec + tv.tv_usec/1000000.0) - (last_sec + last_usec/1000000.0) );
last_sec = tv.tv_sec;
last_usec = tv.tv_usec;

}

if(world->should_display_status) {
sprintf(str,"FPS: %f", fps);
world->rasterizer->draw_text(0, 0, str);

}

world->screen->blit_screen();

}

Sample Program: porlotex
The last sample program in this chapter, porlotex, is a simple example using the above portal

classes to create an indoor portal world, complete with objects, lights, and shadows. With the

above classes for handling portals and sectors, the main program merely needs to create an

instance of the new portal-based world class, and ask the world class to load the world database

from a file, in this case file world.dat.

The floor plan for world.dat appears in Figure 5-28. After starting the program, you will

be located at the camera location indicated in the figure. Initially, the scene will be fairly dark.

Press p to place a lamp at the current camera position; press r to reset the surface cache and see the

newly computed light maps. From the starting position, try placing a few lamps at the current cam-

era position, then move into the larger room ahead, to see the shadowing effect of portal light map

computation. Also notice that we have placed three Videoscape plug-in objects in the room at the

lower left of the floor plan. Their meshes are loaded from the file torch.obj. Support for arbi-

trary objects within a sector means we are free to place props within the room to arrange our scene,

much as a stage designer does.
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Figure 5-28: The floor plan for the
world database for program
porlotex.

Figure 5-29: Shadows generated by the portals
in program porlotex.

Figure 5-30: Program porlotex also can load
arbitrary meshes, such as these torches, into the
portal world.
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The ASCII contents of the world.dat text file define the sectors, portals, polygons, and

objects within the world, according to the world format described earlier. Since it is an ASCII text

file, you could create this file by hand, but this is unbearably tedious for all but the simplest of

worlds. A more realistic approach is to use a 3D modeling program to create the world file for us;

see Chapter 8.

Listing 5-18: main.cc, main program file for program porlotex
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p_flat.h"
#include "../lib/geom/polygon/p_portal.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
#include "../lib/system/fact0_3.h"
#include "../lib/geom/texture/texload.h"
#include "../lib/geom/texture/tl_ppm.h"
#include "../lib/pipeline/pi_lwor.h"
#include "../lib/geom/world/w_porlotex.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

main() {
factory_manager_v_0_2.choose_factories();

l3d_dispatcher *d;
l3d_pipeline_world_lightmapped *p;
l3d_world_portal_textured_lightmapped_obj w(320,240);
void *startinfo;

w.load_from_file("world.dat");
w.camera->near_z = float_to_l3d_real(0.5);
w.camera->far_z = int_to_l3d_real(5000);

d = factory_manager_v_0_2.dispatcher_factory->create();

p = new l3d_pipeline_world_lightmapped(&w);
d->pipeline = p;
d->event_source = w.screen;

d->start();

delete p;
delete d;

}
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Other VSD Algorithms
There are many other VSD algorithms. Recently, there has been a bit of interest in occlusion-based

algorithms. The main idea behind such algorithms is that if we can find large polygons near the

camera, they will obscure or occlude polygons behind them. Assuming, as is usually the case, that

the polygons are opaque and not transparent, then finding large occluder polygons early on means

that we do not need to draw or process anything behind the occluder. It should be noted that while

the z buffer essentially is an occlusion algorithm, it operates at the pixel level, and requires us to

compare each pixel of each object to be rasterized with each pixel in the z buffer. Only after all pix-

els of all objects have been compared against the z buffer is the image ready for display. In contrast

to the z buffer, occlusion algorithms try to save work by completely eliminating any processing of

polygons which lie completely behind occluders.

Some occlusion culling algorithms rely on shadow volumes, where a large occluder acts like a

portal polygon in reverse. We find an occluder polygon (generally a dynamic search and not a

static specification as with portals) and create a frustum; then, we discard everything inside the

frustum, because it lies behind the occluder. The difficulty here lies in finding good occluders

quickly at run time. Good occluders are those which are near the camera and cover a large amount

of screen space for the current camera position. We can preprocess the world database to store

“large” polygons in a special potential occluder list, to limit the search space at run time. Another

interesting occlusion algorithm is the hierarchical occlusion map, or HOM [ZHAN97], which cre-

ates a hierarchy of occlusion maps, from low resolution to high resolution, for each potential

occluder. An occlusion map is something like a 2D transparency map: where it is opaque, nothing

behind that pixel in the occlusion map can be seen; where it is transparent or semi-transparent,

something behind that pixel might be seen. In the middle of an opaque polygon, the occlusion map

is completely opaque; exactly on the edge, the occlusion map is semi-transparent. The hierarchy

allows us to zoom in on semi-transparent regions where needed, whereas completely opaque

regions are known to occlude their background. The occlusion idea is similar to the shadow vol-

ume method; the main difference is that the hierarchy of occlusion maps allows for incremental

and approximate determination of occlusion by successive opacity comparisons, whereas the

shadow volume method (as described above) computes an exact frustum for the exact outline of

the occluder.

There is also a hierarchical version of the z buffer [MOEL99, GREE93], which can also be

viewed as an occlusion algorithm similar to the z buffer, but hierarchical to avoid always compar-

ing every pixel against the z buffer for occlusion. With this algorithm, we store and update a

hierarchy of z buffers, all simultaneously. The z buffer hierarchy progresses from low resolution to

high resolution, where each pixel in a lower resolution z buffer stores the maximum z value of a

4� 4 sample of the next higher resolution z buffer. In this way, each z value in a lower resolution z

buffer is a maximum (farthest) z coverage value of a particular region of the highest resolution z

buffer, beyond which any primitives are invisible. If we combine this with an octree spatial parti-

tioning method, then we can cull octree nodes quickly against the z buffers by comparing the depth

of their faces to the depth in the coarser levels in the z buffer hierarchy. We traverse the hierarchy
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from coarser levels to finer levels. If at any level we find that the octree node’s faces lie completely

behind the value in the z buffer at that level in the hierarchy, we know that face lies behind every

primitive (even lower in the hierarchy) and thus is occluded. One problem with this algorithm is

that updating a hierarchy of z buffers takes considerable time, probably too much time with a soft-

ware-only implementation of the z buffer hierarchy.

One last VSD algorithm which deserves mention is ray tracing. It is currently far too slow for

real-time use, but in time (decades, probably) it will eventually become viable for interactive

applications. With ray tracing, we mathematically trace a 3D ray from the eye through each pixel

in the screen. Then, for each ray, we see which object in the world is the first one to intersect the

ray. This object is the one which is then visible for the pixel pierced by the ray. So, we compute a

color value for the object at its point of intersection with the ray (with lighting and texture map-

ping, for instance), and draw the resultant color in the pixel. We are essentially casting “reverse”

rays of light from the eye out to the scene to see which objects they hit, reversing the physical

model of light where rays come from the objects to the eye. In a way, ray tracing is similar to tex-

ture mapping, where we also traced a ray from the eye to the u-v plane of texture space, but with

ray tracing, we have to intersect the ray with every object in the scene to see which one is the first

along the ray, to solve the VSD correctness problem. With ray tracing, we also can recursively

trace rays from object to object, allowing the ray to bounce off of a surface. This simulates reflec-

tion and even refraction of light, making ray tracing a very realistic, but very time-consuming

VSD algorithm. For instance, with a 640� 480 screen, with just ten objects in the scene, we need to

perform 3,072,000 intersection operations for every frame, assuming no recursive ray tracing (i.e.,

no reflection or refraction of rays). Of course, partitioning and hierarchy can be used to reduce the

amount of work, but the sheer number of intersection calculations needed by ray tracing will prob-

ably limit the use of ray tracing to non-interactive applications, for some time to come.

Summary
This chapter discussed VSD algorithms based on some sort of space partitioning. We looked at

BSP trees, octrees, and portals. We saw how convexity prevents self-occlusion and thus enables

simple rendering with back-face culling and portals. We discussed how a BSP tree can create a

hierarchy of convex regions automatically. We also looked at several sample programs illustrating

these techniques, culminating in a portal-based example complete with plug-in objects, texture

mapping, light, and shadows.

We’ve now seen a number of VSD techniques which not only ensure a correct display, but

which also are useful for creating larger interactive 3D environments. In general, we can use the

techniques of partitioning, hierarchy, and minimizing search space in order to handle larger 3D

worlds.

We now know some techniques for handling larger worlds, but how do we create these larger

worlds? Although the world file is a text file, for more complex worlds, we can’t type in all of our

vertices, polygons, portals, sectors, and objects into the world file; it would take too long. We need

to use a tool to create our worlds. In Chapter 3, we used Blender to create individual models for
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import. Now, we are ready to use Blender to create the worlds themselves in which these objects

are located. This is a conceptually simple idea, but requires quite a bit of work and some somewhat

unusual tricks to actually obtain a working system. Chapter 6 shows you one way of using Blender

to create portal worlds for import into l3d programs.
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C h a p t e r 6

Blender and WorldBlender and World
Editing

T
he creation of any kind of complex information structure generally requires the help of an

external tool. Even with a well-defined format for how the information must look, there is

always a certain complexity level above which it becomes impractical to work with the

information at the lowest, raw level. Tools help by combining raw data into more meaningful,

higher-level abstractions which the human brain can more easily manage.

Creating 3D worlds is a perfect example of how good tools can raise the abstraction level of

the work to be done. In Chapter 5, we defined a simple ASCII world file format which allowed the

specification of 3D worlds as a combination of sectors, portals, and arbitrary, autonomous polygo-

nal objects inhabiting these sectors. Since the definition file is ASCII, it can be read and created

with a simple text editor. Indeed, doing so is a valuable exercise to ensure that you understand

exactly how vertices are specified, how polygons are constructed as clockwise lists of indices into

this vertex list, and how objects are placed and oriented in 3D space. The main skill you must pos-

sess for such low-level 3D data manipulation is the ability to spatially visualize the location of a

point just given its coordinates.

But rising world complexity places a limit on the types of 3D worlds that humans can produce

directly in ASCII. It’s much more convenient for us to work at a higher and visual level, visually

placing objects where they should be located in the world, instead of mathematically specifying

their coordinates.

In this chapter, we’ll take a look at how we can use Blender to create worlds for use in the por-

tal engine developed in Chapter 5. First, we look at some general concepts concerning world

editing, then look at one way of using Blender to achieve our goals. Specifically, we cover:

� General world editing ideas and options

� Requirements of a portal world editing system

� Blender techniques to create portal worlds

� Using external tool blend_at to associate texture and attribute information with meshes

� Using external tool vid2port.pl to convert Videoscape meshes into the portal world file

of Chapter 5

� Other possible world editing systems for other world partitioning schemes.

It’s important to note that while the majority of this chapter focuses on one possible way of using

Blender to create portal worlds, there are a number of different ways to create a world editing
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system with Blender or another 3D modeling package. The last part of this chapter discusses some

alternatives, so that you can make a world editing system best suited to the worlds you wish to

create.

World Editing
We use the term world editing to describe the process of creating a specification of several 3D

objects which together form a 3D world. The specification is typically in the form of a data file,

which we call the world file. (Instead of being a file, the world specification could also be a rela-

tional or object-oriented database, for instance.) A world editor is a program that allows us to

create a world file in a visual manner, graphically placing objects at their desired locations in 3D.

Often, the terms level editing, level file, and level editor are used instead of the world-based

terms. This terminology comes from the computer game industry, where each level forms a partic-

ular phase of the game which must be completed. Each separate level is typically viewed as a

separate unit of abstraction and is stored in its own file, thus making the level the unit of work.

For our purposes, we want to find a world editing solution that allows us to create world files

corresponding to the format defined in Chapter 5. However, the ideas and techniques presented in

this chapter also apply to world editing in general. For instance, a project is currently underway,

using the techniques developed in this chapter, to create a level editing system for the Linux ver-

sion of the World Foundry game development system (see Chapter 9). You could also use the same

ideas to create a VRML development environment, allowing you to place objects and behaviors

within a 3D scene designed for viewing and interaction through a WWW browser. Thus, while our

immediate goal is the visual creation of a world file having the format described in Chapter 5, you

should keep in mind the broader world editing context in which the ideas of this chapter can be

understood.

Now, let’s look at the types of world editing solutions available to us.

No World Editor
The simplest world editing solution is to use no world editor. This means directly editing the world

file in ASCII. As mentioned before, this is technically possible, and for debugging purposes,

sometimes necessary. Without a world editor, you need a very good mental visualization capabil-

ity, so that you can imagine what an object looks like and where it is located, just by looking at its

ASCII coordinate and face definitions. This visualization capability comes in handy when debug-

ging 3D code, since all you have in the debugger are the raw coordinates; you have to determine

by inspection which values seem incorrect or illogical in order to find the error.

Creating worlds without a world editor can be done for simple, box-like geometry, but even

for simple worlds, you probably need to sketch out the world on paper to keep track of the coordi-

nate and face definitions.

If you develop a custom 3D program or library, world editing is probably not the highest pri-

ority in the early stages of development; more important at this stage are the core architecture and

basic operation of the system. Thus, it is entirely conceivable and even natural to work without a
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world editor in the beginning. After a while, though, the great effort needed to make even small

changes to the world files becomes a nuisance, at which point it makes more sense to use a visual

world editing program.

Write Your Own World Editor
Writing a custom world editor allows you to create a visual world editing system exactly tailored

to your 3D application. Such a world editing system can be programmed to allow or disallow cer-

tain combinations of objects depending on the underlying 3D library. For instance, if you want to

limit the number of objects per sector to be 10, then you could disallow adding more than 10

objects to any particular sector. If you wanted to limit the maximum number of textures to 32, then

the world editor would prevent you from adding a 33rd texture. In other words, a custom world edi-

tor can offer arbitrary features or impose arbitrary restrictions to conform to the features or

restrictions of the underlying 3D layer, so that the resulting world files are always valid.

The flexibility of such a custom world editor comes at a high cost for programming the editor

itself. As we saw in Chapter 3, a 3D editor can encompass many features; it can be a real challenge

to implement these features in a reliable program which in the end truly saves you time. There are

also a large number of basic operations which have to be implemented for a useful world editor, all

of which take time to implement: object selection, multiple viewpoints, vertex selection,
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Figure 6-2: A custom world editor can be
made to fit your 3D application exactly,
only allowing valid world files to be
created.

Figure 6-1: Having no world
editor means keeping track
of coordinates on paper and
in your head.



transformations, and so forth. If you’ve ever written an editor of any kind (a music editor such as

ModEdit, or a text editor, for instance), then you are surely familiar with all of the issues required

to create a robust, reliable, efficient editing system. This is not meant to discourage you at all costs

from writing your own level editor. By judiciously choosing a feature set and by reliably imple-

menting a stable architecture, it is entirely possible to create a good level editing system which

exactly matches your 3D application. Depending on the overall goals and time frame for your pro-

ject, sometimes writing your own level editor can be the best choice.

Nonetheless, it can be frustrating to spend several weeks or months writing (and above all

debugging) your own level editor when what you really want to be doing is creating an interesting,

interactive 3D world. In such a case, we can turn to a third alternative: adapting an existing editor.

Adapt an Existing Editor
Adapting an existing editor means that we should find a 3D editor that has a feature set similar to

the features we require for editing worlds. We then edit our worlds in the 3D editor, using the edi-

tor’s usual tools for placing, scaling, orienting, or otherwise changing 3D objects. Plug-ins or

external programs can be used to allow for customized editing of objects or their attributes in a

manner needed by the underlying 3D application. The 3D editor should allow exporting the world

to a documented output format which can then be parsed and transformed by an external program

to create the final world file.

Taking this route requires you to understand the capabilities of the 3D editor, the needs of the

world file, and how to write programs to transform between the two. Not all 3D editors are suitable

for world editing. For instance, some 3D modeling programs focus primarily on the editing of just

one object at a time. Such a 3D editor would be difficult to adapt for world editing purposes, where

an important fundamental idea is the existence of multiple objects located in different sectors or

regions of space.

Furthermore, if you use an existing 3D editor, it is likely that you will not be able to check for

validity of the world files until after exporting the file from the editor. This means that within the

3D editor itself, you might be able to create worlds that the underlying 3D application cannot han-

dle (for instance, if you exceed the maximum number of objects per sector or the maximum

number of textures, or violate some invariant condition of the 3D application, such as non-over-

lapping rooms). An existing 3D editor typically cannot enforce application-specific constraints.

Of course, you can build in an error-checking phase after exporting, to check the exported world

file for validity, but this is slightly more inconvenient than having immediate error checking

within the editor itself. This is the fundamental trade-off that has to be made: if you want exact

control over all editing parameters within the editor itself, you probably have to write your own

editor; but if you can adapt an existing system well enough and live with some minor inconve-

niences, you are probably better off using an existing editor.
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The route chosen in this chapter is that of adapting Blender for world editing purposes. Let’s

now take a closer look at the exact requirements of this system, then proceed to see how the system

works in practice.

NOTE Again, don’t forget that the Blender-specific, portal-based world editing scheme pre-
sented here is just one of countless possible world editing schemes. At the end of this chapter,
we look at some other ways of using Blender or another 3D editor for creating other types of
worlds.

Using Blender for Portal Worlds
Since Chapter 3 used Blender to create 3D models for import into our l3d programs, it is only logi-

cal also to use Blender to create entire 3D worlds. The worlds we wish to create are portal worlds,

defined by the world file format of Chapter 5.

NOTE Sometimes it makes more sense to separate model creation from level creation, as is
done in the World Foundry system (see Chapter 9). One 3D package might be more suited to
creating textured IK animated characters, while another 3D package might have better tools
for placing rooms and objects and editing their properties.

Stated simply, the goal for our world editing system is to create valid world files. The world file

definition implicitly defines the requirements on the world editing system. But let’s state the

requirements more concretely. We want to create portal worlds, which consist of sectors and por-

tals which link the sectors. We also want to be able to place plug-in objects within the sectors. This

means that our world editing system must allow us to do all of the following:

� Create separate areas of the world, which are the sectors in a portal/sector scheme

� Define the geometry and texturing of the polygons within a sector
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Figure 6-3: Adapting an existing 3D editor allows you to leverage existing technology,
but means that custom editing must be done via plug-ins or external programs, and
invalid world files are sometimes only detected after export from the editor.



� Define polygons as portals

� Link portals with sectors

� Place plug-in objects with sectors

� Define the geometry, texturing, position, orientation, and behavior of plug-in objects

These requirements are fairly modest, but given the fact that plug-in objects can have any appear-

ance and behavior, defined via a plug-in file which is external to the world editing system, the

system does allow for creation of interesting, dynamic worlds.

The next three sections look at one system for using Blender to reach these goals. We look at

this world editing system from three different perspectives. First, we look at the Blender features

we use, the limitations of those features, and ways of working around these limitations. Second,

we look at the system from a step-by-step perspective, as you would view the procedure when cre-

ating a world. Finally, we look at the system in terms of data flow. After understanding the system

from these three perspectives, we then proceed to create a simple world to see exactly how to use

Blender and the external tools.

Main Ideas of a Blender Portal World Editor
Let’s now look at the main ideas of how we are going to use Blender in combination with some

custom tools to fulfill the above requirements. The main ideas of our Blender portal world editing

system are as follows.

� Meshes as sectors. We represent a sector as a single polygonal mesh object in Blender. The

geometry of the mesh defines the geometry of the sector. A sector cannot be split across two

meshes. Similarly, a single mesh should not contain the geometry for more than one sector.

For a convex cell portal engine the geometry in each cell should be convex; for an arbitrary

cell portal engine, using an additional means of VSD, the geometry in each cell need not be

convex. Checking for sector convexity is the responsibility of the person doing the world

editing.

NOTE A custom world editor could prevent the creation of any non-convex mesh. This
again illustrates the fundamental difference between the choices of writing your own editor or
adapting an existing editor. Adapting an existing editor allows you to leverage the existing
editing framework, but also means that the creation of certain illegal features, such as
non-convex sectors, is allowed within the editor and can only be detected later on.
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Figure 6-4:
Each sector in
a world is
modeled as a
separate
mesh in
Blender.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



� Simple meshes as plug-in objects. We represent a plug-in object as a single polygonal mesh

object. The actual geometry of the mesh is irrelevant; thus, we can use a cube or other simple

mesh to represent the plug-in object. The cube’s position and orientation determine the posi-

tion and orientation of the plug-in object. Furthermore, we associate a plug-in name and a

mesh name with the cube, which determine the behavior and appearance of the plug-in object

at run time.

� Implicit portals. Portals are specified implicitly, not explicitly. Each sector must be a closed

convex set of geometry; any holes in this geometry are then portals. (We define exactly how to

find such holes later.) The portal’s connected sector is the sector containing a portal whose

coordinates correspond to the original portal’s coordinates.

� Export to multiple Videoscape files. By marking all meshes (press a) and exporting them as

Videoscape (press Alt+w), we can save all meshes to separate, sequentially numbered

Videoscape files. This allows us to save an entire world, albeit as separate files. The separate-

ness of the files creates a serious problem: the loss of name information.

Chapter 6: Blender and World Editing 365

Figure 6-5: We use a simple placeholder mesh (such as a cube) to denote a
plug-in object, whose geometry and behavior are determined at run time.
We associate a plug-in name with the cube, via the external tool blend_at.

Figure 6-6: Holes in a sector’s geometry are implicitly portals.



� Loss of name information upon export. Although Blender’s Videoscape export facility allows

us to export multiple objects (i.e., an entire world) at once, there is major limitation: all

exported objects have essentially random filenames. This means that after Videoscape export,

we have a series of files which together make up the entire world; however, we do not know

which specific file is which specific object or sector in the world. Being able to uniquely refer-

ence each object is important for any object-specific information (such as, this sector uses tex-

ture file wall.ppm) or for inter-object references (such as, object TORCH01 is initially

located in sector ROOM02). Thus, we must have some way of uniquely referencing objects

and sectors within the world before and after export, leading to the next point.

� Embedding identifiers within mesh geometry. After Videoscape export, all name information

is lost for all meshes; only the mesh geometry remains. But by artificially adding overlapping

vertices in a special way into the mesh geometry, we can encode a numerical identifier into the

mesh itself, which remains within the mesh and is therefore preserved even after Videoscape

export. In other words, we can use the mesh geometry itself to store a unique number within

each mesh, thereby allowing unique identification of each mesh after Videoscape export. A

separate tool is responsible for creating and later extracting such mesh identifier information.
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Figure 6-7: Loss of name information after
Videoscape export. After exporting, we have
three randomly named files. But which one
is the left cube, which one is the middle
cube, and which one is the right cube? With
raw Videoscape files, there is no way to tell.

Figure 6-8: When storing redundant edges
within the mesh geometry itself, these edges
can be detected after Videoscape export to
identify the mesh. Here, the redundant edges
are represented schematically as diagonal
lines stored within the mesh. After export, for
a particular mesh file, we extract the diagonal
edges again. The count of diagonal edges
forms a unique numerical identifier allowing
us to know which object is saved in the
particular mesh file. Note that the diagram is
only schematic; the actual geometric storage
of the identifier, covered later, is more
complicated and is stored as a series of
physically overlapping edges.



� Associating arbitrary data with a mesh identifier. By tagging each mesh with a unique identi-

fier, we can then create a separate database associating each mesh identifier with any arbitrary

additional information we wish to store with the mesh. We could store the object’s type (if it is

a sector or a plug-in object), its name, any texture files used, its plug-in name if it is a plug-in

object, and so forth. This additional information is then used when creating the final world

file.

Step-by-Step Guide to World Design
We’ve now seen what features we use in Blender to create our portal worlds (meshes as sectors,

implicit portals, embedding IDs into mesh geometry, using an external database to associate

attributes with IDs). Let’s now look at the system from the viewpoint of the world designer, i.e.,

the person actually using the system to create a world. From the viewpoint of the world designer,

the entire system can be seen as the following step-by-step process.

1. Create sectors as separate meshes in Blender. The polygons within the mesh define the shape

of the sector.

2. Tag each sector with an ID, using external tool blend_at.

3. Associate additional information with the sector ID, using external tool blend_at. Such

additional information for sectors includes the type name (SECTOR), the name of the object,

texture space definitions, and texture filenames used to texture the polygons of the sector.

4. Create plug-in objects as cubes in Blender. The polygons within the cube have no bearing on

the final shape of the object at run time; the shape is determined by associating a separate

mesh file with the object (see below). Position the cubes at the desired locations where the

plug-in object should initially be created.

5. Tag each cube with an ID, using external tool blend_at.
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Figure 6-9: By storing a separate database of information associating each mesh
identifier with an arbitrary list of attributes, we essentially are associating arbitrary
attributes with each mesh object.



6. Associate additional information with the object ID, using external tool blend_at. Such

additional information for plug-in objects includes the type name (ACTOR), the name of the

object, the plug-in filename, the name of the sector containing the object, the object’s position

and orientation, the mesh file defining the object’s geometry, the texture image file, and the

texture coordinate file.

7. Select all meshes (sectors and plug-in objects), and export them all at once as Videoscape

files.

8. Use external tool vid2port.pl to create the world file from the exported meshes. The tool

extracts the ID from each mesh, then finds any additional attributes associated with the ID in

the attribute database. Next, the tool finds portals by looking for holes in the geometry of all

sectors, and links portals to sectors by looking for overlapping portals in other sectors.

Finally, given the mesh geometry and any additional attributes, the tool writes the appropriate

lines in the world file, either SECTOR or ACTOR blocks.

Data Flow within the World Editing System
Figure 6-10 shows the flow of data which takes place when creating a world file from a series of

Blender meshes. The data flow diagram does not show control flow; it makes no statement about

any execution order. The purpose of the diagram is to show how Blender meshes get transformed

into the world file.

Each arrow in the diagram represents a data flow, and is always labeled with the type of data

flowing. Think of each arrow as a hose on an automobile engine; various gases must flow from

part to part for proper operation, and the contents of each hose must always be known to
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Figure 6-10: Data flow
for creating a world file
from Blender meshes.



understand the system. Each oval in the diagram represents a process that takes some data as input,

and produces some other data as output. Next to each oval, in a bold italicized font, is the name of

the actual program which is responsible for that process. In the course of this chapter, we discuss

each of these helper programs individually. Items not contained within an oval (the attributes data-

base, the world file, the external attributes, and the pool of OBJ files) are external data sources or

sinks which do not process, but merely provide or store data.

This diagram has a clearly defined semantic interpretation. This means that there is a set of

rules making it possible to mechanically go from the diagram to an English sentence which states

something useful about the problem. (There is nothing more confusing than an important diagram

with ambiguous semantics, where symbols implicitly represent several ideas. For instance, those

with no formal training in software often indiscriminately use lines within a single diagram to

simultaneously represent hierarchy, aggregation, control flow, data flow, and temporal depend-

ency. Extracting precise information from such a diagram can be very difficult.) Here, the

semantics are simple. For each oval, begin a sentence with “The process of” followed by the pro-

cess name within the oval. For each arrow coming into an oval, substitute the phrase “takes as

input” followed by the label of the arrow. For each arrow leaving an oval, substitute the phrase

“produces as output” followed by the label of the arrow.

For instance, we can read the first few parts of the diagram as follows. The process of Blender

mesh creation produces as output a raw mesh. The process of ID embedding takes as input a raw

mesh, and produces as output a mesh with an embedded ID, and an ID. The process of attribute

association with an ID takes as input an ID and external attributes, and produces as output an

ID+attribute set. You can read the rest of the diagram in a similar fashion.

Now, having looked at the Blender portal editing system from three separate perspectives,

let’s see how the system works in practice, by creating a simple world in Blender and exporting it.

This first example deals only with sectors and portals; the next example deals with textures and

plug-in objects.

Creating Sectors and Portals
Sectors and portals in the world editing system are closely related. As we have said, a portal is not

explicitly defined; instead, it is a hole in the geometry of a sector. Let’s formalize this notion of a

hole in a sector. A hole in a sector is a continuous loop of free edges. A free edge is an edge in a sec-

tor which is used by only one polygon within the sector. Such free edges have a polygon on just

one side, and empty space—in other words, a hole—on the other side. This definition assumes that

the sector geometry is convex and closed; in other words, you should not have free edges or holes

which do not belong to portals.
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Note that such an implicit definition of a portal rules out the possibility of two exactly adja-

cent portals sharing one edge (such a portal would appear to the viewer to be one portal), since the

shared edge in this case has no geometric polygons on either side, just portal polygons, meaning

that the edge is not saved by Blender as part of the geometry. Even if such an invisible edge

between adjacent portals were saved with the geometry, we still would not know whether one

large portal or two smaller ones were wanted, since both would form valid loops of free edges.

With the system described here, specifying adjacent portals is not possible; because of the lack of a

separating edge, the two adjacent portals are automatically combined into one larger portal. This

would be incorrect if we wanted two adjacent portals which lead to different sectors. Supporting

such cases would require explicit rather than implicit specification of portals, and would probably

require writing a custom world editor from scratch. The reason for this is that polygons in Blender

can only have three or four sides, but portal polygons can have a greater number of sides. Since

Blender doesn’t allow us to specify arbitrary convex polygons with more than four sides, this

means that explicit portal specification, and the ability to have two exactly adjacent portals lead-

ing to different sectors, requires another tool. Note that the l3d classes for handling portals have

absolutely no problem with adjacent portals; the only problem here is the specification of such

adjacent portals within a modeling tool.

Portal connectivity (which sector is connected to a portal) is also implicit. Once we have a list

of portals (holes) in each sector, we then search for portals whose vertices exactly overlap. Each

such portal is then connected with the sector of the other portal.
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Figure 6-11: Free edges have a
polygon on just one side. A
consecutive series of free edges
forms a hole in the sector, and thus
is a portal.



This implies that precise alignment of the vertices of the portals in adjoining sectors is essen-

tial to correct operation of this system. If portals from adjacent sectors do not align exactly, then

the world editing system will not be able to find overlapping portals, and will thus be unable to

connect portals to their target sectors.

Let’s now see how we can best create such sectors and portals within Blender, so that the por-

tals line up.

Tutorial: Creating Aligned Portals via Extrusion and
Separation

The best way of aligning the vertices of portals is to initially create separate sectors as one

mesh, then later separate parts of the mesh into individual sectors. The idea is to cut a portal into a

sector by deleting some faces. Then, we select the vertices along the edges of the deleted faces and

extrude these vertices, producing a tunnel which exactly lines up with the portal we created.

Finally, we separate the original sector and the extruded tunnel into two separate meshes, automat-

ically preserving the overlapping of the portals. The following tutorial illustrates how to do this.
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Figure 6-12: Portal connectivity
is implicitly determined by
overlapping of portals. Here,
portal A.0 of sector A exactly
overlaps with portal B.0 of
sector B. Therefore, portal A.0
is connected with sector B.
Also, portal B.0 of sector B
exactly overlaps with portal A.0
of sector A; therefore, portal
B.0 is connected with sector A.
Portal B.1 in this figure is not
connected to any sector.

Figure 6-13: Slightly misaligned
portals means that no
corresponding overlapping
portals will be found, and that
portals are left unlinked. Here,
no portals overlap with one
another, meaning that no portal
connectivity could be
automatically determined.



1. Begin with an empty Blender window. Ensure that Draw Faces is activated in the EditButtons

(F9).

2. Create a simple cubical sector. Press Shift+a, select Mesh, then Cube.

3. Select the vertices of a face in which you wish to have a passageway to another sector. You

can either use border select mode (press b) or you can individually Shift+right-click each of

the desired vertices.

4. Subdivide the face until enough smaller faces appear so that you can remove a few to create a

small hole in the face. With a face selected, subdivide it as follows: press w, then select Subdi-

vide from the menu. Here, we have subdivided the far face twice, yielding 16 smaller faces.

5. Select the vertices of the faces which you wish to remove, and delete the faces only by press-

ing x, then select Faces. The faces should all lie within one plane. Here, we have deleted the

four faces in the bottom center of the subdivided face, creating a small doorway.
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Figure 6-14

Figure 6-15



6. Select the vertices lying on the edges of the faces you just deleted. Extrude the vertices by

pressing e, Enter, drag the mouse, and left-click to finish. It is easiest to perform the extrusion

in the top, front, or side orthogonal views (press 7, 1, or 3 on the numeric keypad to choose

these viewpoints, and press 5 to toggle between orthogonal and perspective viewing). This

extrusion creates a tunnel or corridor.

7. Select just the vertices of the original mesh, and separate them from the newly extruded tunnel

by pressing p, Enter. The selected vertices are then removed from the current mesh and

moved into a new, separate mesh. The vertices of the open part of the tunnel exactly match up

with the vertices in the open part of the original sector mesh, meaning that the two portals

between the two sectors exactly overlap.
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Figure 6-16

Figure 6-17



By repeatedly extruding sectors in this way, we cause the creation of corridors or rooms that

are built upon the existing vertices of the polygonal portal. Then, by separating the geometry into

separate meshes, we cause exact duplication of the portal vertices. Thus, the general procedure is:

create a mesh, cut a hole to form a portal, extrude the portal, separate the mesh into two sectors.

Tutorial: Aligning Portals from Separate Meshes
The previous example showed you how to create a mesh via extrusion of a portal, and separation

of the mesh into pieces. But sometimes you already have two separate sectors, which were created

independently and not via extrusion of a portal. You can also connect these sectors via portals. To

do this, each sector must have a portal with the same number of vertices and edges. The idea is to

join the meshes together into one mesh, manually eliminate duplicate vertices around the portals

so that both meshes share exactly the same vertices along the portal, and then separate the meshes

again so that the resulting portals align exactly.

The following tutorial shows you how to align portals from two separate meshes. The files

from this example may be found in directory $L3D/data/levels/tworooms.

1. Create a cube with an extruded tunnel as in the last example.

2. Exit EditMode. Duplicate the mesh so that there are two copies of the mesh: select the mesh,

press Shift+d, move the copied mesh to its new location, and left-click.
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Figure 6-18

Figure 6-19
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3. To make this example more difficult—and more realistic—switch to top view and rotate the

meshes so they are positioned diagonally facing one another. This makes the example more

difficult because the portals now lie on an arbitrary plane in space instead of being neatly

axis-aligned. When working with real models, you will encounter arbitrarily aligned portals.

Now, we have a typical situation where we have two separate, arbitrarily aligned meshes,

each having a portal with identical vertex and edge counts. What we now want to do is join the two

tunnels with one another via a portal.

1. Move the meshes together so that the portals align as closely as possible.
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Figure 6-20

Figure 6-21



2. Select both meshes and press Ctrl+j, Enter to join the selected meshes.

3. Enter EditMode by pressing Tab. Select all vertices except for those around the portals. Hide

all of these vertices by pressing h.
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Figure 6-22

Figure 6-23

Figure 6-24



4. Move each vertex of each portal as close as possible to its corresponding vertex in the other

portal with which it should overlap. Move vertices as usual by right-clicking and pressing g to

grab them, then using either the arrow keys or the mouse to move the vertex to the desired

position and pressing Enter. Switch frequently among top, front, and side views, zoom in

closely, and also use the perspective view mode with interactive view rotation to check if the

vertices really overlap. The danger is that they might appear to overlap from one viewing

angle, but not from another; thus the importance of frequently switching among viewpoints

while editing and of interactively rotating the view in perspective.

5. Select all portal vertices for the two portals which should overlap. Ensure that all vertices

from both portals are selected; temporarily start then cancel a grab operation to verify this. If

any vertices are not selected, they will appear to stick to their old positions during the tempo-

rary grab operation; in this case, use border select mode to select the still unselected portal

vertices.

6. In the EditButtons, find the button Rem Doubles. This button removes overlapping or nearly

overlapping vertices. Directly beneath this button is a NUMBUT labeled “Limit.” This button

controls the minimum distance below which two vertices will be merged into one. Depending

on how close you were able to move the vertices to one another, you will need to change this

limit. For this example, the limit was set to 0.35.

7. After setting the limit for double vertex removal, click Rem Doubles. Blender then displays a

message showing how many doubles were removed. The count should be the same as the

number of vertices in one of the portal polygons; if not, then the limit was set too low. In this

case, set the limit slightly higher, and repeat step 6.
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Figure 6-25



8. After you believe that all doubles have been removed, verify this as follows. Select each indi-

vidual vertex of the portal. Press g to temporarily enter grab. Move the mouse slightly to see if

another vertex is lying “underneath” the selected vertex. After looking underneath the vertex,

press Esc to cancel the grab. If any such vertex appears underneath the currently selected one,

then it is a double vertex which has not yet been removed; thus, increase the limit and repeat

step 6. If no such vertices appear underneath any of the portal’s vertices, then all doubles have

been removed, and the same portal vertices are now shared among the two meshes.

9. After removing the doubles, it is likely that the vertices of the portal no longer lie within a

plane. Ensuring that the vertices do lie within a plane is important since otherwise the portal

will be non-planar, and portal crossing computations based on collision detection (see Chap-

ter 8) will not function reliably. It is not absolutely essential to align the vertices in a plane (in

other words, l3d programs will not crash if the vertices are not completely aligned), but it is

best to try. Align the vertices in a plane as follows.

9a. Select all vertices belonging to the portal.

9b. Switch to orthogonal top view. Remember the approximate orientation of the portal.

9c. Rotate the portal so that it is parallel to a grid line. Press r, move the mouse to rotate, and

press Enter.
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Figure 6-26

Figure 6-27



9d. If necessary, repeat the rotation process in orthogonal side view, again remembering the

approximate original orientation in side view. Such a rotation would be necessary if the

portal were tilted around the x axis so that it was not perfectly straight up and down. For

this example, the portal is not tilted around the x axis, so no side view rotation is neces-

sary. After such a side view rotation, switch back to top view. At this point, the portal

should be aligned more or less perfectly vertically, and you should be looking straight

down along the top edge of the portal.

9e. Adjust the grid size to be small enough so that the grid points (the intersections between

the lines) are located fairly close to the portal vertices. In the 3DWindow, press Shift+F7,

enter the desired grid spacing in the NUMBUT labeled “Grid,” then press Shift+F5 to

change back to the 3DWindow. Here, we have reduced the grid spacing from 1.0 to 0.1.

9f. Press Shift+s, then select Sel->Grid from the menu. This snaps all selected vertices,

which are all portal vertices, to the nearest grid point. Now it is clear why we reduced the

grid spacing in the previous step: we don’t want the portal vertices to be snapped to verti-

ces very far away, which would distort the shape of the portal.
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Figure 6-28

Figure 6-29



9g. Now, all portal vertices lie on grid lines but not necessarily on the same grid line.

Manually select and grab portal vertices so that from top view, they all appear to lie on the

same grid line. Press and hold Ctrl while grabbing the vertices to ensure that they remain

exactly on the grid lines. At this point, the portal should be completely planar, lying

within the plane of the single grid line containing the vertices. Rotate the view interac-

tively in perspective mode to verify that it looks approximately planar.

9h. Select all portal vertices, switch to orthogonal top view, and rotate the portal so that it has

its original orientation as seen from top view. In other words, you now undo the rotation

you did earlier. Do the same in orthogonal side view, if you rotated the portal in side view.

The portal is now planar, but with its original orientation.
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Figure 6-30

Figure 6-31



9i. Press Alt+h. This again displays all hidden vertices.

9j. Conceivably, through the process of snapping portal vertices to make the portal polygon

planar, other four-sided polygons which shared the same vertices are no longer planar.

(This is not an issue with triangles, since a triangle is always planar.) Visually check for

any such anomalies, and make any such polygons planar by a similar process: select

polygon, hide everything else, rotate, snap to grid, align to one single grid line, rotate

back.

10. Finally, select the vertices of each convex part of the mesh, and press p, Enter to separate

these into separate meshes. At this point, you have separate convex meshes, which line up

exactly on the portals.
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Figure 6-32

Figure 6-33



To summarize the idea of aligning portals, we join meshes together and eliminate duplicate

vertices around the portal so that both meshes share identical vertices along the portal boundary.

Then, we make the portal planar by rotating it into a convenient grid-aligned orientation, snapping

it to a plane on the grid, then rotating it back. Finally, we separate the mesh back into individual

pieces, which automatically causes duplication of the shared vertices along portal boundaries.

This means that the portals align exactly.

Tips for Working with Portals
Now that we understand how to create sectors with portals that line up exactly, let’s review some

tips for effectively working with this system. We saw most of these tips in the tutorials above, but

the last few tips in the list are new.

� Temporarily grab vertices to see if there are any hidden vertices underneath a given vertex;

cancel the grab with Esc.

� Switch often between multiple viewpoints, and rotate the view interactively in perspective

mode, to get a spatial feeling for which vertices are selected. Also, temporarily grab the selec-

tion and move the mouse to move the selection around; this way, you can verify which verti-

ces are selected.

� Snap vertices to the grid to create precise alignments. For exact planar alignment on arbi-

trarily oriented portals or polygons, first rotate the polygon to align with the grid, snap the ver-

tices to one grid line, then rotate the now-planar polygon back to its original position. Exact

alignment of two vertices, as required for portal joining, can be achieved by manually moving

vertices close then increasing the Rem Doubles limit, or by snapping vertices exactly to one

another as follows: select the first vertex, press Shift+s, select Curs->Sel, select the second
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vertex, press Shift+s, then select Sel->Curs. This snaps the cursor to the first vertex, then the

second vertex to the cursor, effectively snapping the second vertex to the first vertex.

� Activate the DrawFaces button in the EditButtons. Sector geometry should be defined by

faces; portals should be holes in the sector without faces.

� Subdivide a large face to create smaller polygons which can then be removed to create a small

portal in the large face.

� Add extra faces to simplify portal outlines. In the example we have looked at so far, we took a

cube, subdivided a face twice, removed four faces, then extruded along the hole we created.

While this works, it creates more polygons than are necessary. Notice that there are eight ver-

tices along the portal border because of the face subdivision. Since the portal is square and not

octagonal, we actually only need four vertices, not eight, along the portal border.

By introducing extra faces along the edge of the portal, we can reduce the number of edges.

We do this by inserting extra triangles along the portal border. For each set of two edges lying in a

straight line, we push the meeting point of the edges up slightly, and introduce a new face formed

by the triangular indentation thus created. (To create the new triangular face in Blender, select the

three vertices after displacing the meeting point as described and type f.) In this way, the edge

along the portal gets reduced to just one edge, instead of two.
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Figure 6-35: Eight vertices
along the portal border.
The edges all form a
square, not an octagon,
implying that four of the
edges in this case are
redundant.



Then, if we extrude the portal to create a tunnel, fewer polygons are created in the tunnel. This

can add up to a significant savings if the tunnel is extruded several times to create several tunnel

segments; each segment now has only four polygons, instead of eight as before.

� Check normal vectors. It is important that the normal vectors of a model face in the proper

direction, so that back-face culling works properly. If you get the normal vector orientation

incorrect, the symptom at run time is that from the inside of the sector (which is the normal

viewing situation), some polygons simply fail to appear, because they have been removed by

back-face culling. With sectors, the normals should all point inward, since a sector is geome-

try which is viewed from the inside. As covered in the introductory companion volume Linux

3D Graphics Programming, you can check the normals by activating the TOGBUT Draw

Normals in the EditButtons; flip the normals inside by selecting the desired faces and pressing

Ctrl+Shift+n.
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Figure 6-36: Introducing
triangles along the portal
border reduces the number
of vertices in the portal.

Figure 6-37: Extruding the
reduced portal creates
correspondingly fewer
faces.TE
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NOTE Note that on rare occasions Blender can get confused as to which side is the “inside”
side of a mesh, so always visually check the normal vector orientation yourself, and flip the
normal vectors for individual faces if their vectors happen to point outside the mesh. If
Blender is confused about the inside/outside orientation, you would then press Ctrl+n to
point the normal in the direction Blender considers to be “outside,” since in such a case this is
really the inside direction. This has only happened to me once or twice, but it can happen.

� Fly through the scene to interactively get a feeling of how the level will appear when imported

into l3d. To fly through a scene in Blender, switch to camera view (press 0 on the numeric key-

pad), then press Shift+f to enter fly mode. Move the mouse toward an edge of the screen to

point the camera in that direction. Left-click to increase velocity in the forward direction;

middle-click to decrease velocity. Press Esc to terminate fly mode and return the camera to its

original position; press Space to terminate fly mode and leave the camera in its current posi-

tion. Note that flying straight up in fly mode causes confusing turbulence, presumably

because Blender uses successive concatenations of separate x, y, and z axis rotation matrices

instead of the rotation matrix about an arbitrary axis. By using a concatenation of three sepa-

rate rotation matrices, a situation called Gimbal lock occurs, where freedom to move in one

direction becomes restricted because one axis has been completely or almost completely

rotated into another, thereby making the static concatenation order of the separate rotation

matrices invalid for certain rotational combinations—such as flying straight up.

Portalization: Generating Portal
Connectivity

Now, let’s look at how to generate a simple world file based on the sector meshes we created in the

last tutorial. The most significant thing that this process achieves is the automatic generation of the

portal connectivity among the sectors and the creation of the appropriate PORTALPOLY lines in

the world file. We call this process portalization. This is significant because this connectivity

information was only implicitly specified in Blender through portal alignment; after executing the

commands below, the connectivity information becomes explicit, in the form of PORTALPOLY

specifications. The next most significant thing that this process achieves is the creation of the rest

of the world file, defining the normal GEOMPOLY polygons for the sector. This is convenient, but

not as significant as the portal generation, because the geometry was already explicitly specified

in the exported Videoscape files; we simply need to slightly rewrite the geometry specification to

conform to the world file format. Taken together, these two aspects (generation of portal connec-

tivity and definition of sector geometry) allow us to generate a usable portal world file from the

exported Videoscape files.

For now, you should just execute the commands presented below; afterwards, we look at the

actual code behind these commands in detail. Also, we haven’t yet covered creating plug-in

objects or how to texture the polygons in the sector; these topics come later in this chapter. Right

now, it’s important to get a feeling for how the basic system works before diving into the special-

ized and rather arcane solutions needed for plug-ins and texture assignment.
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Begin with the same Blender file from the last tutorial, which should now contain exactly four

meshes (two larger rooms and two smaller corridors). Again, this file is also located on the CD in

directory$L3D/data/levels/tworooms/tworooms.blend. Then, proceed as follows.

1. Type a until all meshes are selected.

2. Press Alt+w to write all meshes to sequentially numbered Videoscape files. Choose any

directory in which to save the files; as a filename, enter tworooms.obj.

3. Enter the following command, replacing <PATH> with the directory name where you saved

the Videoscape files from step 2. This command executes the Perl script (which we cover

shortly) to create portals and sectors from the separate Videoscape mesh files we just saved.

The program prints lots of diagnostic output (free edge scanning, finding overlapping portals)

to the standard error stream, and finally prints the actual world file to the standard output

stream. Here, we redirect the standard output into file world.dat.

perl $L3D/source/utils/portalize/vid2port.pl <PATH>/two-rooms.obj* > world.dat

After executing this file, we have a mostly correct world file. We now must make a few

manual changes to the world file. Later, these changes will be made automatically by the

tool blend_at, but for now, we must do it by hand.

4. Edit the world file. Change the first line from “0 TEXTURES” to “1 TEXTURES”. Immedi-

ately after this line, insert a single line containing the string “stone.ppm.” By doing this, we

add one texture file, stone.ppm, to the world file. We must add at least one texture file

because by default, if we don’t specify otherwise, all polygons use the first texture in the

world file, with a standard mapping (texture space axes aligned with the polygon’s edges).

Later, we see how to specify custom texture files and mappings for sector geometry, in which

case the specified texture files automatically get added to the world file.

5. Change the line “4 SECTORS AND ACTORS” to “5 SECTORS_AND_ACTORS.” We are

going to add one actor, the camera, to the file. Later, we see how to use tool blend_at to

specify the camera location within Blender itself.

6. At the end of the file, insert the following line to specify the camera location.

CAMERA CAM1 noplugin.so 0 0 0 1 0 0 0 1 0 0 0 1

The first three tokens are the type of object, the name of the object, and the plug-in name

(currently ignored by the l3d code for the camera object, though the code could be

extended to allow for camera plug-ins). The next three numbers are the location of the

camera; the last nine numbers are the orientation of the camera (currently ignored by l3d).

At this point, the world file should be usable. Copy it into the same directory containing the exe-

cutable file porlotex from the last chapter. Also ensure that the referenced texture file,

stone.ppm, is in the same directory. Then, execute the porlotex program as before; the pro-

gram loads the new world.dat file and displays the world you just created in Blender.

NOTE Currently the world class does no error checking during the loading of the world file.
Thus, any errors will likely lead to a program crash. Be sure to follow the above instructions
carefully. With your own world files, if the program crashes during or shortly after loading the
world file, trace the code with the debugger to find the exact problem.
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After starting the program with the new world.dat file, you will probably first see a black

screen. This is because we specified the camera position to be (0,0,0), but we inserted the camera

into the last sector in the file (since the CAMERA line in the world file always places the camera in

the immediately preceding sector in the world file). The last sector in the world file can be any one

of the meshes you created in Blender; due to the loss of name information on Videoscape export,

we don’t know which of the original sector contains the camera; we just know that it is the last one

in the world file. Thus, most likely, the camera will initially be located outside of the sector to

which it is assigned. So, press j and l a few times to rotate the view and find the sector geometry,

then navigate inside the sector. At this point, you can explore the world you just exported from

Blender. Notice that the default texture assignment looks somewhat odd; we see later how to con-

trol the texture assignment exactly.

Now, let’s look a bit more closely at the actual code which converts from the Videoscape files

into the portal world file.

Perl Scripts
The conversion from the Videoscape files to the portal world file is done via a series of scripts

written in the Perl language. Let’s briefly discuss what Perl is, and why we use it for the conver-

sion work.

Perl is the Practical Extraction and Report Language. It is a high-level language that is very

good at scanning text files, extracting information from these files, and printing reports based on

these files. What this means in practice is that tasks which require you to parse and extract infor-

mation from large amounts of text are very well suited for Perl. The Videoscape file format is text,

and lends itself well to Perl processing.

What makes Perl particularly good for working with text is the integration of several typical

Unix text processing commands and ideas into the Perl language itself. You can treat the input text

as one large list of lines, search through it with a single grep command, sort it withsort, print it,

and so forth. Perl is also a dynamically typed language, making it easy to quickly build and test

systems. Perl’s basic data structures include scalars (such as strings or numbers), arrays of scalars

indexed by number, and associative arrays of scalars (known as hashes) which are indexed by
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string. By using references, similar to pointers in C, data structures may be nested, creating arrays

of hashes, for instance. The hash is a very powerful data structure. With it, we can easily store lists

of information referenced by a string identifier. For instance, we can store a list of sectors in a

hash, where each sector is accessed by its name. Each sector entry within this hash could point to

another hash, which contains information about the sector: vertex lists, polygon lists, and portal

lists. Scanning for overlapping portals could then be done by scanning through each portal of each

other sector.

Furthermore, Perl supports object-oriented programming by providing for a class mechanism

allowing for data abstraction, inheritance, and dynamic binding. This means we can write truly

object-oriented programs with Perl.

Another feature that distinguishes Perl from similar languages is that it allows you to write

scalable code. It doesn’t do this for you automatically, but by sticking to standard object-oriented

practices, you will find that any sort of problem which can be viewed as text processing of some

sort is achieved well with Perl. This holds true for larger problems as well. For instance, one of the

most stable VRML browsers for Linux, FreeWRL, is written in Perl; the Perl code interprets the

textual VRML file, then interfaces with OpenGL to produce a real-time, dynamically alterable

view of the virtual world. As you can imagine, this is no small undertaking. Because of its text pro-

cessing slant, it may be tempting to compare Perl with other text processing languages, such as

awk or a normal shell script written in the language of the shell interpreter (for instance, bash or

csh). However, the data and control structures in awk or shell languages are severely lacking when

it comes to larger programs. If you have ever attempted to write a large system, say more than

1,000 lines spread out over several files, in awk or a shell script, you will certainly understand

what I mean: data structures have to be flattened out into strings, nesting data structures requires

much trickery or maintenance of parallel data structures, temporary files need to be created to

store some sorts of data, and so forth. With such languages, maintenance simply becomes a night-

mare once the complexity of the system rises; the languages are not scalable. By the time you

realize this, it’s usually too late—you’ve already invested too much time in developing the system,

and suddenly you have run up against the inherent limitations of the system. From personal expe-

rience, I have not yet encountered any limits or run up against any “walls” in Perl where the

language itself has hindered further progress, whereas I frequently encountered such problems

with other scripting languages.

Perl modules are another big plus. Very many Perl modules already exist which perform

countless tasks. This allows you to build your Perl systems in a component-wise fashion. For

instance, Perl scripts can easily interface with TCP/IP networks, making Perl ideal for WWW

work, where most of the major protocols are in text (modules also exist for handling encrypted

traffic over SSL). Also, as indicated above, there are interfaces from Perl to OpenGL, for doing

graphics programming. The list of categories of available Perl modules is simply too long to

include here. There’s a well-organized network of Perl modules called CPAN (the comprehensive

Perl archive network) which is mirrored at hundreds of sites on the Internet. These modules were

written by programmers just like ourselves and submitted to CPAN for the benefit of the Perl com-

munity at large. If you want a parser for any text file format or protocol which is reasonably well
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known, you can bet that there is probably already a Perl module on CPAN which parses it for you.

CPAN is accessible under the URL http://www.perl.com/CPAN.

A final factor which makes Perl attractive is its excellent, comprehensive online documenta-

tion in the form of manual pages. Ranging from philosophy and basic concepts, to tutorials on data

structures and object-oriented programming, to comprehensive reference information, it’s all

available via man, making incremental learning of Perl a realistic option.

With all of this praise, you might be wondering if there are any disadvantages to using Perl. Of

course there are; no language is perfect. Some aspects which you might consider before using Perl

are its inherent lack of type safety, its sometimes cryptic syntax, and its lack of ISO standardiza-

tion. You should also check the availability of Perl tools and Perl libraries for the particular task

you are trying to achieve before committing to Perl for a project, but the same holds true of any

programming language. If another language has better tool and library support for your problem

domain, then you might not want to use Perl, or only link in small Perl modules.

To summarize, here are the benefits of Perl:

� Excellent framework for dealing with text

� Support for object-orientation

� Scalability

� Good online documentation

� Active community support (CPAN) for a broad range of problem domains

Since our Videoscape files are text, and since our output world file is also text, the Videoscape-

to-world-file conversion process, including the most significant phase, the identification of portal

connectivity, can all be viewed as a text manipulation problem. We must parse the text Videoscape

files, extract portal connectivity from the files, then write a world file as output.

With this understanding, let’s take a look at the specific Perl modules comprising the system.

Architecture of the Perl Portalization System
The Perl portalization system consists of a number of scripts which can be divided into three cate-

gories: structural modules, parsing and generator modules, and controlling scripts. The next

sections cover each of these categories individually.

We unfortunately don’t have the space here to provide a tutorial on the Perl language. Check

the manual page for Perl (type man perl) for extensive information on the various reference mate-

rial and tutorials available online. We’ll go over the major concepts of each Perl script at a high

level so you can understand how they work, and also comment briefly on any particularly unusual

Perl constructs used to achieve the goals.

The operation of the entire system can be understood as follows. Also, refer back to the data

flow diagram of the system, Figure 6-10.

1. Parse all Videoscape files. Store all of the geometry in internal Perl data structures, organized

by sector.

2. For each sector, scan the mesh for free edges. Link all free edges into continuous loops. Add

each continuous loop as a portal polygon belonging to the sector.
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3. For each sector and portal, scan all other sectors for an overlapping portal. If such an overlap-

ping portal is found, link the original portal to the target sector containing the overlapping

portal. If no such portal is found, the portal has no target sector, which is a modeling error;

thus, delete the portal.

4. Print each sector’s vertex, polygon, and portal definitions to the world file.

Keep the high-level operation of the system in mind as you read the following sections on the spe-

cific Perl modules used.

Structural Modules

The structural Perl modules in the portalization system store the geometrical data extracted from

the Videoscape files in a structured manner, so that this information may be easily queried and

changed. Each Perl module is essentially a class, in the object-oriented sense of the word. The

organization of the structural classes is similar to that of the l3d classes. At the lowest level, we

have 3D vertices (represented by module Vertex.pm). Based on lists of these vertices, we can

build facets (polygons) and portals (modules Facet.pm and Portal.pm). A facet can contain

a reference to a texture (Texture.pm). Facets and polygons are grouped into sectors (Sec-
tor.pm). A sector can also contain any number of actors (Actor.pm), which are plug-in

objects. All sectors and actors belong to the world (World.pm).

A description of each of the structural modules follows.

Vertex.pm

Module Vertex.pm represents a vertex in 3D space.

Method new is the object constructor. It creates a new Perl hash object—which, remember, is

just a list with members indexed by string—and inserts several items into the hash. These items

are essentially the member variables of the class, and we will refer to them as such. In other words,

we are using a Perl hash as an instance of a class, and are using elements of the hash object to rep-

resent member variables for that instance. This idea is identical for all of the Perl modules used in

the portalization system.

Member variables _x, _y, and _z are the spatial coordinates of the vertex. External users of

this class do not access the variables directly, but instead go through the member functions x, y,

and z. Without an argument, these functions return the corresponding value; with an argument,

they set the value to the given value. Another programming idiom, also used in the Perl

portalization modules, is to have separate get and set routines, for instance get_x and set_x.

All of the Perl portalization modules use this scheme of private hash members being accessed

through member functions (either separate get/set methods or a unified get-set method), so we

won’t explicitly mention it again.

Method dot takes a second vertex as a parameter, and takes the dot product of itself and the

given vertex. Both vertices are interpreted as the tips of vectors starting at the origin. This implies

that the Perl Vertex class as defined here does not distinguish between vectors and points—a

small sin, but if you’ve made it this far in the book, you hopefully know well the difference

between vectors and points so as to understand which is meant within the context of a particular

usage.
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Method dif takes a second vertex as a parameter, and returns the vector difference between

the location of the current vertex and the location of the second vertex—in other words, the vector

from the second vertex to the current vertex.

Listing 6-1: Vertex.pm
package Vertex;
use strict;

############################
## the object constructor ##
############################
sub new {

my $proto = shift;
my $class = ref($proto) || $proto;
my $self = {};
$self->{_x} = undef;
$self->{_y}= undef;
$self->{_z} = undef;
bless ($self, $class);
return $self;

}

##############################################
## methods to access per-object data ##
## ##
## With args, they set the value. Without ##
## any, they only retrieve it/them. ##
##############################################

sub x {
my $self = shift;
if (@_) {$self->{_x}= shift }

return $self->{_x};
}

sub y {
my $self = shift;
if (@_) {$self->{_y}= shift }

return $self->{_y};
}

sub z {
my $self = shift;
if (@_) {$self->{_z}= shift }

return $self->{_z};
}

sub dot {
my $self = shift;
my $v2 = shift;

return $self->x * $v2->x +
$self->y * $v2->y +
$self->z * $v2->z ;

}
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sub dif {
my $self = shift;
my $v2 = shift;

my $vnew = Vertex->new();
$vnew->x ( $self->x - $v2->x );
$vnew->y ( $self->y - $v2->y );
$vnew->z ( $self->z - $v2->z );

return $vnew;
}

1; # so the require or use succeeds

Facet.pm

Module Facet.pm represents a polygonal facet. It stores the geometrical definition of the facet

in terms of indices into a vertex list. It also provides methods which we need for the portalization

process: accessing the facet’s edge list, checking for polygon overlap, and using the facet as a tex-

ture space.

Method new is the object constructor. As a parameter, it expects a sector object, which is the

parent of the facet object. In other words, facets cannot exist in isolation; they belong to a sector.

Member variable_is_invisible is an integer flag indicating if the facet is invisible (1) or

visible (0). As we see later, we can use invisible facets to help define texture spaces to map tex-

tures to the walls of our sectors.

Member variable _tex_id is a string indicating which texture should be applied to this

facet. Again, we cover texturing later in this chapter; also see module Texture.pm.

Member variable _parent_sector is a reference to the sector containing this facet, and is

set in the constructor.

Member variable _vertex_indices is an array of integers which are indices into the par-

ent sector’s vertex list. These vertex indices define the polygon.

Method get_edge_list constructs a list of edges for the facet and returns it to the caller.

An edge is simply a consecutive pair of vertex indices. The purpose of this method is to explicitly

store all such pairs in a list, and to return this list. For instance, if a polygon is defined by the three

vertex indices 0 7 2, then the edge list would be [ [0,7] , [7,2], [2,0] ]. Accessing the edges plays an

important role in finding the free edges, which form the boundaries of portals.

Method contains_edge tells the caller whether or not the facet contains a particular edge,

as specified by its two vertex indices. We use this method when scanning for free edges; if an edge

is contained only by one facet, then it is a free edge; otherwise, it is not.

Method coincident_with_facet tells the caller whether or not the facet overlaps

exactly with another facet, passed as a parameter. This is used in scanning for overlapping portals

to link them together. It works by seeing if for each vertex in the original facet, a corresponding

vertex at the same spatial location can be found in the other facet. If so, then the facets are coinci-

dent; otherwise, they are not. During comparison, we introduce an epsilon parameter to allow

nearby points also to count as overlapping, to compensate for slight numerical or modeling errors.

Method get_tex_ouv interprets a triangular facet as a texture space specification and

returns a hash with three elements representing the origin of the texture space, the tip of the u axis,
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and the tip of the v axis. Methods get_tex_origin, get_tex_u_vec, and get_tex_
v_vec call method get_tex_ouv and just return the appropriate single element requested (the

origin, u tip, or v tip, respectively). The idea behind these methods is that a single triangular facet

can be interpreted as a texture space; we call such a triangle a texture definition triangle. In order

for this to work, the facet must be a right triangle—in other words, one of the angles must be

exactly 90 degrees. The polygon vertex ordering determines the front/back orientation of the poly-

gon; the left-handed convention we have been using throughout this book is that the front side is

the side from which the polygon vertices appear clockwise. Then, we can define the triangle tex-

ture space as follows: when looking at the front side of the right triangle, the vertex on the 90

degree angle is the origin, the next vertex in the clockwise direction is the tip of the u axis, and the

remaining vertex is the tip of the v axis. By appropriately scaling and positioning a triangle, we can

then specify any texture space with a single polygon; we later see exactly how to do this in

Blender, and how to flag a triangle so that it is recognized by the portalization system as being a

texture definition triangle. Assuming a triangle has been found to have been marked as a texture

definition triangle, the method get_tex_ouv then scans the triangle to find the vertex on the 90

degree angle, using the dot product between the two adjoining edges. This point is the origin of

texture space; the next clockwise point is the u tip, and the other point is the v tip.
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Figure 6-39: A texture space defined in world
coordinates.

Figure 6-40: The texture space represented by a right
triangle. Point 0 is on a 90 degree angle between two
edges, and is thus the origin of the texture space. Point
1 is the next clockwise vertex (we are looking at the
back side of the triangle), and is thus the tip of the u
axis. Point 2 is the tip of the v axis. The w axis is not
explicitly defined and is not needed for 2D textures.



NOTE Note that a texture space defined by means of a right triangle only specifies the loca-
tion of the origin, the u axis tip, and the v axis tip. It does not allow for specification of a w axis.
Specification of a w axis is only important if we use 3D volumetric textures (see Chapter 3),
which we do not in this book.

Listing 6-2: Facet.pm
package Facet;
use strict;

my $debug = undef;

############################
## the object constructor ##
############################
sub new {

my $proto = shift;

my $parent = shift;

my $class = ref($proto) || $proto;
my $self = {};
$self->{_is_invisible} = 0;
$self->{_tex_id} = "";
$self->{_vertex_indices} = [];
$self->{_parent_sector} = $parent;
bless ($self, $class);
return $self;

}

##############################################
## methods to access per-object data ##
## ##
## With args, they set the value. Without ##
## any, they only retrieve it/them. ##
##############################################

sub get_is_invisible {
my $self = shift;
return $self->{_is_invisible};

}

sub set_is_invisible {
my $self = shift;
my $val = shift;
$self->{_is_invisible}= $val;

}

sub get_tex_id {
my $self = shift;
return $self->{_tex_id};

}

sub set_tex_id {
my $self = shift;
my $id = shift;
$self->{_tex_id}= $id;

}

sub get_parent_sector {
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my $self = shift;
return $self->{_parent_sector};

}

sub set_parent_sector {
my $self = shift;
my $parent = shift;
$self->{_parent_sector}= $parent;

}

sub get_vertex_index {
my $self = shift;
my $position = shift;

return $self->{_vertex_indices}[$position];
}

sub get_vertex_index_count {
my $self = shift;
return $#{$self->{_vertex_indices}};

}

sub add_vertex_index {
my $self = shift;
my $index = shift;

push @{$self->{_vertex_indices}}, $index;
}

#sub get_vertex_index_list {
# my $self = shift;
#
# return @{$self->{_vertex_indices}};
#}

sub get_edge_list {
my $self = shift;

my $i;
my @edge_list;
for($i=0; $i <= $self->get_vertex_index_count(); $i++) {
my $j;
$edge_list[$i] = [ $self->get_vertex_index($i) ];
$j = $i + 1;
if($j > $self->get_vertex_index_count()) {
$j = 0;

}
push @{$edge_list[$i]}, $self->get_vertex_index($j);

}
return @edge_list;

}

sub contains_edge {
my $self = shift;
my $idx0 = shift;
my $idx1 = shift;

my $found = undef;

my @edge_list = $self->get_edge_list();
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for( my $i=0; ( $i <= $#edge_list ) && ( !$found ); $i++ ) {
if ( ( ( $edge_list[$i][0] == $idx0 ) && ( $edge_list[$i][1] == $idx1 ) )

||( ( $edge_list[$i][0] == $idx1 ) && ( $edge_list[$i][1] == $idx0 ) ) )
{
$found = 1;

}
}

return $found;
}

sub coincident_with_facet {
my $self = shift;
my $epsilon = 1.001;

my $other_facet = shift;
my $result = 1;

for ( my $i = 0; ($i <= $self->get_vertex_index_count()) && $result; $i++ ) {
my $vertex_found_in_other = undef;
for ( my $other_i = 0;

($other_i <= $other_facet->get_vertex_index_count())
&& !$vertex_found_in_other;
$other_i++)

{
my $parent = $self->get_parent_sector();
my $other_parent = $other_facet->get_parent_sector();
if(
(abs($parent->get_vertex($self->get_vertex_index($i)) -> x() -

$other_parent->get_vertex
($other_facet->get_vertex_index($other_i))->x())

< $epsilon)
&&(abs($parent->get_vertex($self->get_vertex_index($i)) -> y() -

$other_parent->get_vertex
($other_facet->get_vertex_index($other_i))->y())

< $epsilon)
&&(abs($parent->get_vertex($self->get_vertex_index($i)) -> z() -

$other_parent->get_vertex
($other_facet->get_vertex_index($other_i))->z())

< $epsilon)
)
{
$vertex_found_in_other = 1;

}
}
if ( ! $vertex_found_in_other ) {
$result = undef;

}
}

return $result;
}

sub get_tex_ouv() {
my $self = shift;

my $v1, my $v2, my $v3;
my $epsilon = 0.001;

$v1 = Vertex->new();
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$v2 = Vertex->new();
$v3 = Vertex->new();

$v1->x ( $self->get_parent_sector()->get_vertex
($self->get_vertex_index(0)) -> x );

$v1->y ( $self->get_parent_sector()->get_vertex
($self->get_vertex_index(0)) -> y() );

$v1->z ( $self->get_parent_sector()->get_vertex
($self->get_vertex_index(0)) -> z() );

$v2->x ( $self->get_parent_sector()->get_vertex
($self->get_vertex_index(1)) -> x() );

$v2->y ( $self->get_parent_sector()->get_vertex
($self->get_vertex_index(1)) -> y() );

$v2->z ( $self->get_parent_sector()->get_vertex
($self->get_vertex_index(1)) -> z() );

$v3->x ( $self->get_parent_sector()->get_vertex
($self->get_vertex_index(2)) -> x() );

$v3->y ( $self->get_parent_sector()->get_vertex
($self->get_vertex_index(2)) -> y() );

$v3->z ( $self->get_parent_sector()->get_vertex
($self->get_vertex_index(2)) -> z() );

# try origin at v1

if ( $v2->dif($v1)->dot($v3->dif($v1)) < $epsilon) {
if ($debug) {print "origin v1"; }
return {o => $v1,

v => $v3,
u => $v2 };

}

# try origin at v2

if ( $v1->dif($v2)->dot($v3->dif($v2)) < $epsilon) {
if ( $debug ) {print "origin v2"; }
return {o => $v2,

v => $v1,
u => $v3 };

}

# try origin at v3

if ( $v1->dif($v3)->dot($v2->dif($v3)) < $epsilon) {
if ( $debug ) {print "origin v3"; }
return {o => $v3,

v => $v2,
u => $v1 };

}

else {
if ( $debug ) { print "Hm... no origin found!" };
print "WARNING: Invalid texture definition triangle found";
print " (orientation could not be determined).";

}

}

sub get_tex_origin() {
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my $self = shift;

return $self->get_tex_ouv()->{'o'};

}

sub get_tex_u_vec() {
my $self = shift;
return $self->get_tex_ouv()->{'u'};

}

sub get_tex_v_vec() {
my $self = shift;
return $self->get_tex_ouv()->{'v'};

}

1; # so the require or use succeeds

Texture.pm

Module Texture.pm represents a texture image and orientation. It stores a texture space, the

name of a texture image file, and a unique string which identifies the texture object itself. Textures

can be assigned to facets, as we mentioned earlier. Importantly, notice that assigning a Texture
to a Facet not only assigns the image to the facet, but also the orientation defined in the

Texture.

Member variable _tex_id is a string identifying this object. Its purpose is to allow us to

define a single texture image and orientation, and assign a name to it, such as stony_ceiling.

This way, we can set all polygons located in the ceiling of a room to use the texture

stony_ceiling, which means that they all share the same texture image and the same texture

space. This allows all polygons forming the ceiling, no matter how oddly shaped they are, to line

up seamlessly on the edges, since they all share the same texture space.

Member variables _u_vec, _v_vec, and _origin define the texture space in terms of the

tip of the u axis, the tip of the v axis, and the texture space origin.

Member variable _image is a string containing the filename of the texture image associated

with this texture object.

Listing 6-3: Texture.pm
package Texture;
use strict;

use Portals::Vertex;

############################
## the object constructor ##
############################
sub new {

my $proto = shift;

my $parent = shift;

my $class = ref($proto) || $proto;
my $self = {};
$self->{_tex_id} = "";
$self->{_u_vec} = Vertex->new();
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$self->{_v_vec} = Vertex->new();
$self->{_origin} = Vertex->new();
$self->{_image} = "";
bless ($self, $class);
return $self;

}

##############################################
## methods to access per-object data ##
## ##
## With args, they set the value. Without ##
## any, they only retrieve it/them. ##
##############################################

sub get_tex_id {
my $self = shift;
return $self->{_tex_id};

}

sub set_tex_id {
my $self = shift;
my $id = shift;
$self->{_tex_id}= $id;

}

sub get_u_vec {
my $self = shift;
return $self->{_u_vec};

}

sub set_u_vec {
my $self = shift;
my $vec = shift;
$self->{_u_vec}= $vec;

}

sub get_v_vec {
my $self = shift;
return $self->{_v_vec};

}

sub set_v_vec {
my $self = shift;
my $vec = shift;
$self->{_v_vec}= $vec;

}

sub get_origin {
my $self = shift;
return $self->{_origin};

}

sub set_origin {
my $self = shift;
my $o = shift;
$self->{_origin}= $o;

}

sub get_image {
my $self = shift;
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return $self->{_image};
}

sub set_image {
my $self = shift;
my $i = shift;
$self->{_image}= $i;

}

1; # so the require or use succeeds

Portal.pm

Module Portal.pm represents a portal polygon. It inherits from the Facet class.

Member variable _target_sector (which, incidentally, is not explicitly created in the

constructor, but is instead dynamically created upon assignment via method set_target_
sector) is a reference to a sector object, to which the portal polygon leads.

Listing 6-4: Portal.pm
package Portal;

use Portals::Facet;
@ISA = qw(Facet);

sub get_target_sector {
my $self = shift;
return $self->{_target_sector};

}

sub set_target_sector {
my $self = shift;
my $target = shift;
$self->{_target_sector}= $target;

}

1;

Sector.pm

ModuleSector.pm represents a sector containing both geometric polygons and portal polygons

leading to other sectors. It contains the logic for generating portals based on the holes in the sector

geometry.

Member variable _name is a unique string identifier for this sector.

Member variable _vertices is a list of vertices of type Vertex. The vertices are accessi-

ble by an integer index indicating their position in the list.

Member variable _facets is a list of geometric polygons in the sector mesh. The polygons

are of type Facet.

Member variable _portals is a list of portal polygons in the sector mesh and are of type

Portal.

Member variable _nonlooped_portals is a list of incomplete portal polygons which

could not be completely formed because the free edges did not form a closed loop, which is neces-

sary for a valid portal polygon. This list can be printed for error checking purposes.
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Member variable _nonlinked_portals is a list of invalid portal polygons for which no

corresponding overlapping portal could be found, meaning that the portal could not be linked to

any other sector.

Member variable _free_edges is a list of all free edges among all polygons in the sector

mesh. It is filled through private method _find_free_edges.

Member variable _actors is a list of all actor objects (plug-in objects) which have been ini-

tially assigned to this sector. We see later how to use Blender to specify the location of actors.

Member variables _node_min_{x,y,z} and _node_max_{x,y,z} store an axially

aligned bounding box for the sector, in terms of the minimum and maximum corner points.

Member variable _has_geometry indicates whether or not the sector contains any geome-

try. Normally it will return a true value; however, certain automatic sector generation schemes

(discussed at the end of this chapter) can result in the creation of empty sectors containing no

geometry, in which case this variable returns a false value.

Private method _find_free_edges is the first part of the portal generation process. It

scans for free edges among all polygons within the sector. The logic is as follows. For each poly-

gon, we loop through all of its edges. For each edge, we see if any other polygon edge in the sector

contains the same edge. If so, the edge is used by more than one polygon, and cannot be a free

edge. If not, the edge is only used by one polygon, and is thus a free edge. After execution of this

method, member variable _free_edges contains the free edge list.

Private method _merge_free_edges_into_portals is the second part of the portal

generation process. Given the list of free edges, we then proceed to find continuous loops of free

edges. Each such loop is a portal. We proceed simply by starting with one free edge, which is a pair

of vertices. Then, we try to daisy chain to the next free edge, by finding another free edge whose

starting vertex is the same as the ending vertex of the current free edge. In this manner, we build up

a loop, free edge by free edge. If we finally arrive at the starting free edge again, we have com-

pleted the loop, and can add it to the sector’s list of portals. If any free edge loop can be started but

not completed (i.e., if we do not finally arrive back at the starting free edge), then the input data

was partially erroneous, and we have a non-looped portal.

Public method make_portals_from_holes simply calls _find_free_edges and

_merge_free_edges_into_portals in sequence, and is the interface for external users

to create portal polygons for this sector.

Listing 6-5: Sector.pm
package Sector;
use strict;
use Portals::Facet;
use Portals::Portal;
use Portals::Vertex;

############################
## the object constructor ##
############################
sub new {

my $proto = shift;
my $class = ref($proto) || $proto;
my $self = {};
$self->{_name} = undef;
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$self->{_vertices}= {};
$self->{_facets} = {};
$self->{_portals} = {};
$self->{_actors}= {};
$self->{_nonlooped_portals}= {};
$self->{_nonlinked_portals}= {};
$self->{_free_edges} = [];
$self->{_has_geometry}= undef;
$self->{_node_min_x}=999999;
$self->{_node_min_y}=999999;
$self->{_node_min_z}=999999;
$self->{_node_max_x}=-999999;
$self->{_node_max_y}=-999999;
$self->{_node_max_z}=-999999;

bless ($self, $class);
return $self;

}

##############################################
## methods to access per-object data ##
## ##
## With args, they set the value. Without ##
## any, they only retrieve it/them. ##
##############################################

sub node_min_x {
my $self = shift;
if (@_) {$self->{_node_min_x}= shift }

return $self->{_node_min_x};
}

sub node_min_y {
my $self = shift;
if (@_) {$self->{_node_min_y}= shift }

return $self->{_node_min_y};
}

sub node_min_z {
my $self = shift;
if (@_) {$self->{_node_min_z}= shift }

return $self->{_node_min_z};
}

sub node_max_x {
my $self = shift;
if (@_) {$self->{_node_max_x}= shift }

return $self->{_node_max_x};
}

sub node_max_y {
my $self = shift;
if (@_) {$self->{_node_max_y}= shift }

return $self->{_node_max_y};
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}

sub node_max_z {
my $self = shift;
if (@_) {$self->{_node_max_z}= shift }

return $self->{_node_max_z};
}

sub has_geometry {
my $self = shift;
if (@_) {$self->{_has_geometry}= shift }

return $self->{_has_geometry};
}

sub name {
my $self = shift;
if (@_) {$self->{_name}= shift }

return $self->{_name};
}

sub get_all_vertices {
my $self = shift;
if (@_) {$self->{_vertices}= shift }

return $self->{_vertices};
}

sub get_vertex {
my $self = shift;
my $vertex_index = shift;

return $self->{_vertices}->{$vertex_index};
}

sub add_vertex {
my $self = shift;
my $vertex_index = shift;
my $vertex = shift;
$self->{_vertices}->{$vertex_index}= $vertex;

}

sub get_all_facets {
my $self = shift;

return $self->{_facets};

#if (@_) {@{$self->{_facets}}= @_ }
#return @{$self->{_facets}};

}

sub get_facet {
my $self= shift;
my $facet_index = shift;
return $self->{_facets}->{$facet_index};

}

sub add_facet {
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my $self = shift;
my $facet_index = shift;
my $facet = shift;

$self->{_facets}->{$facet_index}= $facet;
}

sub get_all_actors {
my $self = shift;
if (@_) {$self->{_actors}= shift }

return $self->{_actors};
}

sub add_actor {
my $self = shift;
my $actor = shift;
$self->{_actors}->{$actor->name()}= $actor;

}

sub get_actor {
my $self = shift;
my $key = shift;

return $self->{_actors}->{$key};
}

sub get_all_portals {
my $self = shift;
if (@_) {$self->{_portals}= shift }

return $self->{_portals};
}

sub get_portal {
my $self= shift;
my $portal_index = shift;
return $self->{_portals}->{$portal_index};

}

sub add_portal {
my $self = shift;
my $portal_index = shift;
my $portal = shift;

$self->{_portals}->{$portal_index}= $portal;
}

sub delete_portal {
my $self = shift;
my $portal = shift;

for my $a_index ( keys %{$self->get_all_portals()}) {
if ($self->get_portal($a_index) == $portal) {
print STDERR "Portal deleted.";
delete $self->{_portals}->{$a_index};

}
}

}
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sub get_free_edges {
my $self = shift;

return $self->{_free_edges};
}

sub make_portals_from_holes {
my $self = shift;

printf(STDERR "Making portals from holes:");
$self->_find_free_edges();
$self->_merge_free_edges_into_portals();

}

sub add_nonlooped_portal {
my $self = shift;
my $portal_index = shift;
my $portal = shift;

$self->{_nonlooped_portals}{$portal_index}= $portal;
}

sub get_nonlooped_portal {
my $self= shift;
my $portal_index = shift;
return $self->{_nonlooped_portals}->{$portal_index};

}

sub get_all_nonlooped_portals {
my $self = shift;

return $self->{_nonlooped_portals};
}

sub add_nonlinked_portal {
my $self = shift;
my $portal_index = shift;
my $portal = shift;

$self->{_nonlinked_portals}{$portal_index}= $portal;
}

sub get_all_nonlinked_portals {
my $self = shift;

return $self->{_nonlinked_portals};
}

sub get_nonlinked_portal {
my $self= shift;
my $portal_index = shift;
return $self->{_nonlinked_portals}->{$portal_index};

}

###################### PRIVATE #######################

sub _find_free_edges {
my $self = shift;

my $aSector = $self;
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my $aFacet_key;
my $aFacet;
my $aOtherFacet_key;
my $aOtherFacet;
my @edge_list;

print STDERR "Scanning for free edges, Sector ", $aSector->name(), "";
for $aFacet_key ( keys % {$aSector->get_all_facets() }) {
$aFacet = $aSector->get_facet($aFacet_key);
print STDERR " Facet ", $aFacet_key, "";
@edge_list = $aFacet->get_edge_list();
for ( my $i=0; $i<=$#edge_list; $i++) {
my $edge_taken = undef;
for $aOtherFacet_key ( keys % {$aSector->get_all_facets() }) {
if($aOtherFacet_key != $aFacet_key) { # for all OTHER facets
$aOtherFacet = $aSector->get_facet($aOtherFacet_key);
if($aOtherFacet ->contains_edge($edge_list[$i][0],$edge_list[$i][1]))
{
$edge_taken = 1;

}
}

}
if ( !$edge_taken ) {
print STDERR

" FREE EDGE ", $edge_list[$i][0]," ", $edge_list[$i][1], "";
push @{$self->get_free_edges()}, $edge_list[$i] ;

}
}

}
print STDERR " Summary of found free edges:";
for ( my $i=0; $i<=$#{$self->get_free_edges()}; $i++) {
print STDERR " ";
print STDERR ${@{$self->get_free_edges()}[$i]}[0]," ";
print STDERR ${@{$self->get_free_edges()}[$i]}[1],"";

}
}

sub _merge_free_edges_into_portals {
my $self = shift;
my $portal;

# note that we must link the edges from pt1 to pt0 instead of pt0 to pt1
# because we must reverse the orientation of the edges to make the portal
# normal point the same direction as the neighboring facets' normals.

my $portal_num = 0;
my $unlooped_portal_num = 0;
while ( ( $#{$self->get_free_edges()}>= 0 ) ) {

my $error = undef;

print STDERR " Creating new portal.";
$portal = Portal->new($self);
$self->add_portal(sprintf("%d",$portal_num), $portal);

my $e_idx = 0;
my $idx1 = ${@{$self->get_free_edges()}[$e_idx]}[1];
my $idx0 = ${@{$self->get_free_edges()}[$e_idx]}[0];

# add current vertex to vertex list
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$portal->add_vertex_index( $idx1 );
splice ( @{$self->get_free_edges()}, $e_idx, 1 ); # remove current edge
print STDERR " Starting vertex $idx1.";

my $first_idx = $idx1;

while ( ( $idx0 != $first_idx ) && !$error ) {
# keep going through vertex pairs until you hit the starting vertex again

# find daisy-chained edge

my $i;
my $done = undef;

for ( $i=0; ($i<=$#{$self->get_free_edges()}) && (!$done); $i++) {
my $candidate_idx1 = ${@{$self->get_free_edges()}[$i]}[1];
my $candidate_idx0 = ${@{$self->get_free_edges()}[$i]}[0];

if ( $candidate_idx1 == $idx0 ) {
$idx1 = $candidate_idx1;
$idx0 = $candidate_idx0;

# add current vertex to vertex list
$portal->add_vertex_index( $idx1 );
print STDERR " Daisy-chaining vertex $idx1.";

$e_idx = $i;
# remove current edge
splice ( @{$self->get_free_edges()}, $e_idx, 1 );
$done = 1;

}
# the videoscape format appears to arbitrarily reverse
# the order of vertices in two-vertex "faces" (probably since
# no normal vector orientation can be computed based on two
# vertices), so we have to also check for a matching edge in
# the other direction, i.e. edge 0-1 and 1-3 daisy chains to 0-1-3,
# but so does 0-1 and 3-1 (since 3-1 is the same as 1-3)
elsif ( $candidate_idx0 == $idx0 ) {
$idx1 = $candidate_idx0;
$idx0 = $candidate_idx1;

# add current vertex to vertex list
$portal->add_vertex_index( $idx1 );
print STDERR " Daisy-chaining vertex $idx1.";

$e_idx = $i;
# remove current edge
splice ( @{$self->get_free_edges()}, $e_idx, 1 );
$done = 1;

}
}

if ( !$done) {
print STDERR

"Uh oh, free edges couldn't be joined into a loop; skipping...";
$self->delete_portal($portal);
$self->add_nonlooped_portal(sprintf("%d",$unlooped_portal_num++),

$portal);
$done = 1;
$error = 1;
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}
}
if ( ! $error ) {
print STDERR " Portal complete.";
$portal_num++;

}
}

}

1; # so the require or use succeeds

Actor.pm

ModuleActor.pm represents a plug-in object, or actor. Later in this chapter, we see how to spec-

ify actors in Blender.

Member variable _name is a string uniquely identifying the actor.

Member variable _parent is the sector object in which this actor initially resides; member

variable _parent_name is the name of this sector object.

Member variable _orientation is a string containing the nine elements of the object’s

rotation matrix. A more flexible approach would store the rotation matrix as an array where each

element is individually accessible, but in this case, we don’t actually use the rotation matrix; we

simply read it from the mesh, and rewrite it to the world file. This is why the orientation is stored as

a simple string.

Member variable _position is a string containing the coordinates of the object’s position.

As with the orientation, the string storage format is used because we do not do any manipulation of

the position.

Member variable _is_camera reflects whether or not the current plug-in object under con-

sideration is the main camera in the scene. According to the world file format in Chapter 5, the

camera is specified by a CAMERA line in the world file, whereas other plug-in objects are specified

with an ACTOR line; thus, we need to differentiate between the two.

Member variable_meshfile is the name of the Videoscape file containing the geometry for

this plug-in object. As we touched upon earlier and as we see later in more detail, we use simple

cubes in Blender as placeholders for plug-in objects; the actual plug-in geometry is defined by this

separate mesh file.

Member variable _uvfile is the name of the file containing the texture coordinates for the

mesh.

Member variable _texturefile is the name of the file containing the texture image for

the mesh.

Member variable _pluginfile is the name of the dynamic library file controlling the

behavior of this plug-in object.

Listing 6-6: Actor.pm
package Actor;
use strict;
use Portals::Facet;
use Portals::Portal;
use Portals::Vertex;

############################
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## the object constructor ##
############################
sub new {

my $proto = shift;
my $class = ref($proto) || $proto;
my $self = {};
$self->{_name} = undef;
$self->{_parent}= undef;
$self->{_parent_name}= undef;
$self->{_orientation}= undef;
$self->{_position} = undef;
$self->{_is_camera} = undef;
$self->{_meshfile} = undef;
$self->{_uvfile}= undef;
$self->{_texturefile}= undef;
$self->{_pluginfile} = undef;

bless ($self, $class);
return $self;

}

##############################################
## methods to access per-object data ##
## ##
## With args, they set the value. Without ##
## any, they only retrieve it/them. ##
##############################################

sub name {
my $self = shift;
if (@_) {$self->{_name}= shift }

return $self->{_name};
}

sub parent_name {
my $self = shift;
if (@_) {$self->{_parent_name}= shift }

return $self->{_parent_name};
}

sub parent {
my $self = shift;
if (@_) {$self->{_parent}= shift }

return $self->{_parent};
}

sub is_camera {
my $self = shift;
if (@_) {$self->{_is_camera}= shift }

return $self->{_is_camera};
}

sub meshfile {
my $self = shift;
if (@_) {$self->{_meshfile}= shift }
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return $self->{_meshfile};
}

sub uvfile {
my $self = shift;
if (@_) {$self->{_uvfile}= shift }

return $self->{_uvfile};
}

sub texturefile {
my $self = shift;
if (@_) {$self->{_texturefile}= shift }

return $self->{_texturefile};
}

sub pluginfile {
my $self = shift;
if (@_) {$self->{_pluginfile}= shift }

return $self->{_pluginfile};
}

sub orientation {
my $self = shift;
if (@_) {$self->{_orientation}= shift }

return $self->{_orientation};
}

sub position {
my $self = shift;
if (@_) {$self->{_position}= shift }

return $self->{_position};
}

1; # so the require or use succeeds

World.pm

Module World.pm is the highest-level structural module, which represents a portal world con-

sisting of sectors and actors. Essentially, we parse all exported Videoscape files and store them

into a World object, which we then traverse to print out the final portal world file.

Member variable _sectors is a list of sector objects, of type Sector, belonging to this

world. For each Videoscape file, there is one sector object.

Member variable _textures is a list of all textures, of type Texture, available in the

world. Remember that a Texture specifies both an image and an orientation.

Member variable _texture_imagenums is a unique, numbered list of all texture images

referenced by all Texture objects in the _textures list. The idea is that if several Texture
objects use the same texture image (but with different orientations), the texture image should not

be loaded more than once. By collecting all texture images into a unique list, we prevent unneces-

sary duplication of texture images. We can reference each image in the unique texture image list
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by a numerical identifier, which, not coincidentally, is also how the world file format refers to tex-

tures (by number).

Member variables _min{x,y,z} and _max{x,y,z} store the bounding box of all geom-

etry in the world, in terms of minimum and maximum corner points. Member variables

_nodesize{x,y,z} store predefined dimensions of a box. If we were using a regular spatial

partitioning scheme (see the end of this chapter), we could divide the bounding box of all geome-

try into smaller boxes with dimensions specified by _nodesize{x,y,z}.

Method link_portals is the last part of automatic portal generation. Within the Sector
class, we first found all free edges, then linked free edges into portals belonging to the sector. After

doing this for all sectors, the last step is to find overlapping portals. For all sectors, for all portals,

we must link each portal to the sector containing its overlapping counterpart. In other words, given

a portal A in one sector, we scan for a portal B in another sector which exactly overlaps A. If we

find such a portal B, then we link A to the sector containing B. If we find no such corresponding

portal B, then this is an error, and A is a non-linked portal which should be deleted from its con-

taining sector.

Listing 6-7: World.pm
package World;
use strict;
use Portals::Sector;
use Portals::Texture;

############################
## the object constructor ##
############################
sub new {

my $proto = shift;
my $class = ref($proto) || $proto;
my $self = {};
$self->{_sectors} = {};
$self->{_textures} = {};
$self->{_texture_imagenums} = {};
$self->{_minx} = 500000;
$self->{_maxx} = -500000;
$self->{_miny} = 500000;
$self->{_maxy} = -500000;
$self->{_minz} = 500000;
$self->{_maxz} = -500000;
$self->{_nodesizex} = 200;
$self->{_nodesizey} = 200;
$self->{_nodesizez} = 200;

bless ($self, $class);
return $self;

}

##############################################
## methods to access per-object data ##
## ##
## With args, they set the value. Without ##
## any, they only retrieve it/them. ##
##############################################

sub get_nodesizex {
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my $self = shift;
return $self->{_nodesizex};

}

sub get_nodesizey {
my $self = shift;
return $self->{_nodesizey};

}

sub get_nodesizez {
my $self = shift;
return $self->{_nodesizez};

}

sub get_minx {
my $self = shift;
return $self->{_minx};

}

sub get_miny {
my $self = shift;
return $self->{_miny};

}

sub get_minz {
my $self = shift;
return $self->{_minz};

}

sub get_maxx {
my $self = shift;
return $self->{_maxx};

}

sub get_maxy {
my $self = shift;
return $self->{_maxy};

}

sub get_maxz {
my $self = shift;
return $self->{_maxz};

}

sub set_minx {
my $self = shift;
my $v = shift;
$self->{_minx}= $v;

}

sub set_miny {
my $self = shift;
my $v = shift;
$self->{_miny}= $v;

}

sub set_minz {
my $self = shift;
my $v = shift;
$self->{_minz}= $v;
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}

sub set_maxx {
my $self = shift;
my $v = shift;
$self->{_maxx}= $v;

}

sub set_maxy {
my $self = shift;
my $v = shift;
$self->{_maxy}= $v;

}

sub set_maxz {
my $self = shift;
my $v = shift;
$self->{_maxz}= $v;

}

sub get_nodesizex {
my $self = shift;
return $self->{_nodesizex};

}

sub get_nodesizey {
my $self = shift;
return $self->{_nodesizey};

}

sub get_nodesizez {
my $self = shift;
return $self->{_nodesizez};

}

sub get_all_sectors {
my $self = shift;

return $self->{_sectors};
}

sub get_sector {
my $self = shift;
my $sector_name = shift;

return $self->{_sectors}->{$sector_name};
}

sub add_sector {
my $self = shift;
my $sector_name = shift;
my $sector = shift;

$self->{_sectors}->{$sector_name}= $sector;
}

sub get_all_textures {
my $self = shift;

return $self->{_textures};
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}

sub get_texture {
my $self = shift;
my $tex_id = shift;

return $self->{_textures}->{$tex_id};
}

sub add_texture {
my $self = shift;
my $tex_id = shift;
my $tex = shift;

$self->{_textures}->{$tex_id}= $tex;
}

sub get_all_texture_imagenums {
my $self = shift;

return $self->{_texture_imagenums};
}

sub get_texture_imagenum {
my $self = shift;
my $texi_id = shift;

return $self->{_texture_imagenums}->{$texi_id};
}

sub set_texture_imagenum {
my $self = shift;
my $texi_id = shift;
my $texi = shift;

$self->{_texture_imagenums}->{$texi_id}= $texi;
}

sub link_portals {
my $self = shift;

my $aSector_key;
my $aSector;
my $aPortal_key;
my $aPortal;
my $aOtherSector_key;
my $aOtherSector;
my $aOtherPortal_key;
my $aOtherPortal;
for $aSector_key ( keys % {$self->get_all_sectors() }) {
my $unlinked_portal_num = 0;
$aSector = $self->get_sector($aSector_key);

print STDERR "Linking portals from Sector $aSector_key.";
for $aPortal_key ( keys % {$aSector->get_all_portals() }) {
$aPortal = $aSector->get_portal($aPortal_key);
if ($aPortal->get_target_sector()) {
print STDERR " Already assigned other side of portal $aPortal_key";
print STDERR "(Sector ", $aPortal->get_target_sector()->name(), ").";

}else {
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print STDERR " Searching for other side of portal $aPortal_key.";

my $portal_linked = undef;
for $aOtherSector_key ( keys % {$self->get_all_sectors() }) {
if ($aOtherSector_key ne $aSector_key) {
$aOtherSector = $self->get_sector($aOtherSector_key);
for $aOtherPortal_key (keys %{$aOtherSector->get_all_portals()}) {
$aOtherPortal = $aOtherSector->get_portal($aOtherPortal_key);
if ( $aPortal->coincident_with_facet($aOtherPortal) ) {
$portal_linked = 1;
print STDERR " Coincides with Sector $aOtherSector_key,";
print STDERR " Portal $aOtherPortal_key";
$aPortal->set_target_sector($aOtherSector);
$aOtherPortal->set_target_sector($aSector); #reverse link

}
}

}
}
if ( ! $portal_linked) {
print STDERR " No link found!";
$aSector->delete_portal($aPortal);
$aSector->add_nonlinked_portal(sprintf("%d",$unlinked_portal_num++),

$aPortal);
}

}
}

}
}

1; # so the require or use succeeds

Parsing and Generator Modules

We’ve now seen the Perl modules which store the structure of the entire portal world in memory.

These structures form the middle stage of a pipeline. The input to the pipeline comes from a parser,

which parses the Videoscape files and fills the world structures accordingly. On the output side,

the world data is then fed through a generator, which traverses the world structure in memory and

writes as output a valid portal world file to disk, conforming to the format specified in Chapter 5.

The next sections look at the input (parser) and output (generator) classes of the Perl

portalization system.

VidscParser.pm

Module VidscParser.pm is a parser for the Videoscape file format. It only has one member

variable, _world, which is the World object that will be filled by the parser.

Method parse reads all input files specified on the command line (which should be all

Videoscape files forming the world), parses them to find the definitions of the geometric poly-

gons, and stores these polygons in the world object. For now, you can ignore most of the parse
routine, because most of it deals with the extraction of attribute information from the mesh, which

we cover later in this chapter. The code which now interests us begins at the block marked “all

untagged meshes are treated as sectors.” Here, we create and fill a new sector object. We simply

read in the facet definitions from the Videoscape file, change the coordinates from a right-handed

to a left-handed system, and store these facets in the current sector object. We do this for all
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Videoscape files, since one Videoscape file represents one sector. The next code block of interest

then begins at the line marked “link portals together.” At this point in the code, we have already

read in and parsed all facet definitions for all sectors, and have stored these in memory. So, we call

make_portals_from_holes for each sector, then call link_portals for the world to

link all portals among all sectors. At this point, the sector objects in memory now contain both the

geometry polygons and the portals, which are linked to their connected sectors. The data is ready

to be written to disk by one of the generator classes, which we cover next.

Listing 6-8: VidscParser.pm
package VidscParser;

# defines variable $Bin, which is dir from which script was invoked
use FindBin;
use lib "$FindBin::Bin";

use strict;
use Portals::World;
use Portals::Actor;
use FileHandle;

my $debug = 0;
my $debug_str = "DEBUG————————-";
my $portal_flag = hex '0x800000';
my $id_extraction_program = "$FindBin::Bin/../vidinfo/vidinfo";
my $attrib_filename_format_str = "attrib%d.dat";
my $attrib_dir = "";

############################
## the object constructor ##
############################
sub new {

my $proto = shift;
my $class = ref($proto) || $proto;
my $self = {};
$self->{_world} = World->new();
bless ($self, $class);
return $self;

}

##############################################
## methods to access per-object data ##
## ##
## With args, they set the value. Without ##
## any, they only retrieve it/them. ##
##############################################

sub get_world {
my $self = shift;

return $self->{_world};
}

sub parse {

my $self = shift;
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my @files = @_;

my @actors;

for (my $file_idx=0; $file_idx <= $#files; $file_idx++) {
my @mesh_properties;
my $mesh_type;
my $mesh_name;
my $cmd = join(" ", $id_extraction_program, $files[$file_idx]);
my @extracted_info = `$cmd`;
my $extracted_id = $extracted_info[0];
if($extracted_id) {
my $attrib_file = sprintf($attrib_filename_format_str, $extracted_id);

my @attrib_dir_tokens = split('/', $files[$file_idx]);
pop @attrib_dir_tokens; # get path of current videoscape file
$attrib_dir = join("/", @attrib_dir_tokens);
if( length($attrib_dir) ) {
$attrib_file = join("/",$attrib_dir, $attrib_file);

}else {
$attrib_file = $attrib_file;

}
my $fh = FileHandle->new();
$fh->open($attrib_file);
while(<$fh>) {
push @mesh_properties, $_;

}
$fh->close();

my @mesh_types = grep( /^TYPE / , @mesh_properties);
$mesh_type = $mesh_types[0];
my @mesh_tokens = split(' ', $mesh_type);
$mesh_type = $mesh_tokens[1];

my @mesh_names = grep( /^NAME / , @mesh_properties);
$mesh_name = $mesh_names[0];
my @meshname_tokens = split(' ', $mesh_name);
$mesh_name= $meshname_tokens[1];

}else {
$mesh_type = undef;
$mesh_name = undef;

}

if (lc($mesh_type) eq "actor") {
my $actor = Actor->new();
if(length($mesh_name)) {
$actor->name($mesh_name);

}else {
$actor->name(sprintf("ACTOR%d",$file_idx));

}

my @mesh_matches;
my $mesh_match;
my @tokens;

@mesh_matches = grep( /^PARENT / , @mesh_properties);
$mesh_match = $mesh_matches[0];
@tokens = split(' ', $mesh_match);
$mesh_match = $tokens[1];
if($mesh_match) {
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$actor->parent_name($mesh_match);
}

@mesh_matches = grep( /^IS_CAMERA / , @mesh_properties);
$mesh_match = $mesh_matches[0];
@tokens = split(' ', $mesh_match);
$mesh_match = $tokens[1];
if($mesh_match) {
$actor->is_camera($mesh_match);

}

@mesh_matches = grep( /^MESH / , @mesh_properties);
$mesh_match = $mesh_matches[0];
@tokens = split(' ', $mesh_match);
$mesh_match = $tokens[1];
if($mesh_match) {
$actor->meshfile($mesh_match);

}

@mesh_matches = grep( /^TEXCOORDS / , @mesh_properties);
$mesh_match = $mesh_matches[0];
@tokens = split(' ', $mesh_match);
$mesh_match = $tokens[1];
if($mesh_match) {
$actor->uvfile($mesh_match);

}

@mesh_matches = grep( /^TEXTURE / , @mesh_properties);
$mesh_match = $mesh_matches[0];
@tokens = split(' ', $mesh_match);
$mesh_match = $tokens[1];
if($mesh_match) {
$actor->texturefile($mesh_match);

}

@mesh_matches = grep( /^PLUGIN / , @mesh_properties);
$mesh_match = $mesh_matches[0];
@tokens = split(' ', $mesh_match);
$mesh_match = $tokens[1];
if($mesh_match) {
$actor->pluginfile($mesh_match);

}

my $loc = $extracted_info[1];
my $or_row0 = $extracted_info[2];
my $or_row1 = $extracted_info[3];
my $or_row2 = $extracted_info[4];
$or_row0 =~ s/
$or_row1 =~ s/
$or_row2 =~ s/
$loc =~ s/

my @loc_parts = split(' ',$loc);
$loc = join(" ", $loc_parts[0], $loc_parts[2], $loc_parts[1]);

# to change orientation from rhs to lhs we must do two things:
# 1) swap the y and z columns in the matrix
# 2) swap the y and z rows in the matrix
my @row_parts = split(' ', $or_row0);
$or_row0 = join(" ", $row_parts[0], $row_parts[2], $row_parts[1]);
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@row_parts = split(' ', $or_row1);
$or_row1 = join(" ", $row_parts[0], $row_parts[2], $row_parts[1]);
@row_parts = split(' ', $or_row2);
$or_row2 = join(" ", $row_parts[0], $row_parts[2], $row_parts[1]);

$actor->position($loc);
$actor->orientation(join(" ", $or_row0, $or_row2, $or_row1));
push @actors, $actor;

}
else # elsif(lc($mesh_type) eq "sector")
{

########################################################################
# all untagged meshes are treated as sectors
########################################################################

my $sector = Sector->new();

if(length($mesh_name)) {
$sector->name($mesh_name);

}else {
$sector->name(sprintf("S%d",$file_idx));

}
$self->get_world()->add_sector($sector->name(), $sector);

my %sectors;
undef %sectors;

open (FILE,$files[$file_idx]);
if ($debug) {print "$debug_str $files[$file_idx] opened"; }

my $id = <FILE>;
my $vertex_count = <FILE>; # no. of vertices

# read in vertex list from file

for (my $i=0; $i<$vertex_count; $i++) {
my $vertex = Vertex->new();
$sector->add_vertex( sprintf("%d",$i), $vertex );
my $line = <FILE>;

my @list = split(' ',$line);

# blender/videoscape uses a +z-up RHS system; we use a +y-up LHS system.
$vertex->x($list[0]);
$vertex->z($list[1]);
$vertex->y($list[2]);

}

# read in facet definitions from file

my @face_properties = grep( /^FACE / , @mesh_properties);
print STDERR "Mesh properties: ——————-";
print STDERR @mesh_properties;
print STDERR "Face properties: ——————-";
print STDERR @face_properties;

my $facet_number = 0;
while ( <FILE> ) {
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my @list = split(' ');

if( $list[0] < 3 ) {
next; # this "polygon" has less than three edges: either it is

# a special ID flag, or it is a modeling error, but it
# certainly is not geometry we need to write to the final
# world file

}

pop @list; # pop color off list
shift @list; # don't care about vertex index count

my $facet = Facet->new($sector);
$facet->set_is_invisible(0); # may be changed below
# we add the facet to the sector object LATER, after it is determined
# if it is visible or not (if not it is just there to define a
# texture orientation)

my @this_face_properties =
grep( /^FACE *$facet_number /, @face_properties);

print STDERR @this_face_properties;

# we count the vertex indices in reverse because blender/videoscape
# normally store the vertices counterclockwise(rhs) whereas we use
# clockwise (rhs)

for(my $i=$#list; $i>=0; $i—) {
$facet->add_vertex_index( $list[$i] );

}

my $tex_id;
my $tex_image_name;
my @matching_texspace_lines =
grep( /_TEX_SPACE/ , @this_face_properties);

if($#matching_texspace_lines > -1) {
# a polygon should EITHER use OR define a texture space, not both.
# also, a polygon can't use or define multiple textures. so, we
# just take the first matching line with _TEX_SPACE and extract the
# texture id from it.
my @matching_texspace_tokens =
split(' ', $matching_texspace_lines[0]);

# joining sector name with tex id name ensures uniqueness among
# reused texture space names among sectors. not joining it with sector
# name allows texture spaces to be reused across sectors, since
# the texture space list is global in the world, not local in the sector.
$tex_id = join(".", $sector->name(), $matching_texspace_tokens[3]);
$tex_image_name = $matching_texspace_tokens[4];

}

if ( grep( /IS_TEX_SPACE/ , @this_face_properties )
&& !grep( /IS_INVISIBLE/, @this_face_properties ) )
{
if ($facet->get_vertex_index_count() != 2) {
printf(STDERR

"Non-triangle marked as geometry and tex-def-tri. ID: %s.",
$tex_id);

}else {
printf(STDERR "Geometry and tex-def-tri found. ID: %s", $tex_id);
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$facet->set_tex_id($tex_id);

$self->get_world()->set_texture_imagenum($tex_image_name, "dummy");
# we just insert the image name as the hash KEY into the hash;
# the value, which is the numerical index, is assigned later
# in l3dGen after all tex images have been defined.
# using a hash ensures uniqueness among the keys.

my $tex = Texture->new();
$tex->set_tex_id($tex_id);
$tex->set_image($tex_image_name);
$tex->set_origin($facet->get_tex_origin());
$tex->set_u_vec($facet->get_tex_u_vec());
$tex->set_v_vec($facet->get_tex_v_vec());
$self->get_world()->add_texture(sprintf("%s",$tex_id), $tex);

}
}elsif ( grep( /IS_TEX_SPACE/ , @this_face_properties )

&& grep( /IS_INVISIBLE/, @this_face_properties ) )
{
if ($facet->get_vertex_index_count() != 2) {
printf(STDERR

"Non-triangle marked as pure tex-def-tri. ID: %s.",
$tex_id);

}else {
printf(STDERR

"Pure tex-def-tri found. ID: %s", $tex_id);
$facet->set_is_invisible(1); # face not to be written to world file
$facet->set_tex_id($tex_id);

$self->get_world()->set_texture_imagenum($tex_image_name, "dummy");
# we just insert the image name as the hash KEY into the hash;
# the value, which is the numerical index, is assigned later
# in l3dGen after all tex images have been defined.
# using a hash ensures uniqueness among the keys.

my $tex = Texture->new();
$tex->set_tex_id($tex_id);
$tex->set_image($tex_image_name);
$tex->set_origin($facet->get_tex_origin());
$tex->set_u_vec($facet->get_tex_u_vec());
$tex->set_v_vec($facet->get_tex_v_vec());
$self->get_world()->add_texture(sprintf("%s",$tex_id), $tex);

}
}elsif ( grep( /USES_TEX_SPACE/ , @this_face_properties ) ) {
printf(STDERR "Geometry poly num %d linked to tex ID: %s",

$facet_number, $tex_id);
$facet->set_tex_id($tex_id);

}else {
printf(STDERR "Normal Geometry poly num %d", $facet_number);

}

# if facet was not invisible, add it to the world file
if($facet->get_is_invisible() == 0) {
$sector->add_facet( sprintf("%d",$facet_number), $facet );

}
$facet_number++;

}
}

}
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# link portals together

my $aSector_key;
my $aSector;
for $aSector_key ( keys % {$self->get_world()->get_all_sectors() }) {
$aSector = $self->get_world()->get_sector($aSector_key);
$aSector->make_portals_from_holes();

}
$self->get_world()->link_portals();

# assign actors to sectors

print STDERR "Now assigning ", $#actors + 1, " actors to their sectors.";
my $i;
for ( $i = 0; $i<=$#actors; $i++) {
print STDERR " Assigning actor ", $actors[$i]->name(), " to sector ";
print STDERR $actors[$i]->parent_name(), "...";
$aSector = $self->get_world()->get_sector
($actors[$i]->parent_name());

if($aSector) {
$aSector->add_actor($actors[$i]);
printf(STDERR "done");

}else {
printf(STDERR

" uh oh, couldnt't find parent sector... object discarded.");
}

}
}

1; # so the require or use succeeds

l3dGen.pm

Module l3dGen.pm is a generator class, which generates a portal world file based on the infor-

mation stored in a World object.

Member variable _world stores the world object, which must have already been filled by a

parser object.

Method _generate is a method which simply traverses the world structure in memory and

prints the appropriate lines, conforming to the world file format of Chapter 5, to the standard out-

put stream. The data in memory is already organized similarly to the format needed in the world

file. The first thing we do is print a unique list of all texture images that are used by all Texture
objects used by all Facet objects. Then we print a count of total sectors and actors, followed by

sector and actor blocks. For each sector, we print all vertices and polygons. Non-textured geome-

try polygons (which are the only kind we have created thus far) cause generation of a

GEOMPOLY_TEX line, which is a textured polygon, but the texture defaults to be the first texture

in the world file, and the orientation is automatically computed based on the edges of the polygon.

Explicitly textured geometry polygons generate a GEOMPOLY_TEX line with the specific image

and orientation specified by the Texture object attached to the polygon. Portal polygons gener-

ate a PORTALPOLY line. After printing the polygons for the sector, we then print a list of actors

assigned to the sector, in the form of ACTOR lines for normal plug-in objects or a CAMERA line for

the camera object.
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Listing 6-9: l3dGen.pm
package l3dGen;
use strict;
use Portals::World;

my $debug = 0;
my $debug_str = "DEBUG————————-";
my $portal_flag = hex '0x800000';

############################
## the object constructor ##
############################
sub new {

my $proto = shift;
my $class = ref($proto) || $proto;
my $self = {};
$self->{_world} = undef;
bless ($self, $class);
return $self;

}

##############################################
## methods to access per-object data ##
## ##
## With args, they set the value. Without ##
## any, they only retrieve it/them. ##
##############################################

sub get_world {
my $self = shift;

return $self->{_world};
}

sub set_world {
my $self = shift;
my $w = shift;

$self->{_world}= $w;
}

sub generate {
my $self = shift;

my $aSector_key;
my $aSector;

#########################################################################
# create the world file

# texture images

# assign a numerical id to each texture image, and print them in this
# order; they will then be read back in in this order at runtime
my $ikey;
my $tex_image_num;
$tex_image_num = 0;
for $ikey ( sort keys %{$self->get_world()->get_all_texture_imagenums() }) {
$self->get_world()->set_texture_imagenum($ikey, $tex_image_num);
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$tex_image_num++;
}
print $tex_image_num, " TEXTURES";
for $ikey ( sort keys %{$self->get_world()->get_all_texture_imagenums() }) {
print $ikey, "";

}

# textures (orientations)

my %tex_name_to_num = {};

my $total_actors_and_sectors=0;
for my $aSector_key( keys % {$self->get_world()->get_all_sectors() }) {
# +1 for this sector
$total_actors_and_sectors++;

# add in this sectors objects too
$aSector = $self->get_world()->get_sector($aSector_key);
for my $dummy2 ( keys % {$aSector->get_all_actors() }) {
$total_actors_and_sectors++;

}
}
print "$total_actors_and_sectors SECTORS_AND_ACTORS";

# sector info

for $aSector_key ( sort keys % {$self->get_world()->get_all_sectors() }) {
$aSector = $self->get_world()->get_sector($aSector_key);

print "SECTOR ", $aSector->name();
if($aSector->has_geometry()) {
printf(" %d %d %d %d %d %d ",
$aSector->node_min_x() - $self->get_world()->get_minx(),
$aSector->node_min_y() - $self->get_world()->get_miny(),
$aSector->node_min_z() - $self->get_world()->get_minz(),
$aSector->node_max_x() - $self->get_world()->get_minx(),
$aSector->node_max_y() - $self->get_world()->get_miny(),
$aSector->node_max_z() - $self->get_world()->get_minz());

}
print "";

# vertices, facets
my $num_vertices = 0;
for my $v ( keys % {$aSector->get_all_vertices() }) {$num_vertices++; }
print $num_vertices, " ";
my $num_facets = 0;
for my $f ( keys %{$aSector->get_all_facets()}) {$num_facets++; }
my $num_portals = 0;
for my $p ( keys %{$aSector->get_all_portals()}) {$num_portals++; }
print $num_facets + $num_portals;
print "";

# vertices

my $vertex_key;
my $aVertex;
for $vertex_key ( sort {$a<=>$b}(keys %{$aSector->get_all_vertices()}) ) {
$aVertex = $aSector->get_vertex($vertex_key);
print $vertex_key , " ";
print $aVertex->x() , " ";
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print $aVertex->y() , " ";
print $aVertex->z() , "";

}

# facets

my $facet_key;
my $aFacet;

for $facet_key ( keys %{$aSector->get_all_facets()}) {
$aFacet = $aSector->get_facet($facet_key);

if($aFacet->get_is_invisible()) {next; }

if ((length($aFacet->get_tex_id) == 0)
|| ( ! exists $self->get_world()->get_all_textures->

{$aFacet->get_tex_id()}) )
# could be falsely linked to a nonexistent texture id
{
print "GEOMPOLY ";
print $aFacet->get_vertex_index_count()+1;
for(my $i=0; $i<=$aFacet->get_vertex_index_count(); $i++) {
print " " , $aFacet->get_vertex_index($i);

}
print "";

}

else {

my $aTex = $self->get_world()->get_texture
(sprintf("%s",$aFacet->get_tex_id()));

print "GEOMPOLY_TEX "; # ,$aTex->get_tex_id()," ";
print $aFacet->get_vertex_index_count()+1;
for(my $i=0; $i<=$aFacet->get_vertex_index_count(); $i++) {
print " " , $aFacet->get_vertex_index($i);

}
# texture image number
# print " ", $tex_name_to_num{$aTex->get_tex_id()};
print " ", $self->get_world()->get_texture_imagenum

($aTex->get_image());
# texture orientation
printf(" %f %f %f ",
$aTex->get_origin()->x(),
$aTex->get_origin()->y(),
$aTex->get_origin()->z());

printf(" %f %f %f ",
$aTex->get_u_vec()->x(),
$aTex->get_u_vec()->y(),
$aTex->get_u_vec()->z());

printf(" %f %f %f ",
$aTex->get_v_vec()->x(),
$aTex->get_v_vec()->y(),
$aTex->get_v_vec()->z());

print "";
}

}

Chapter 6: Blender and World Editing 425



# portals

my $portal_key;
my $aPortal;

for $portal_key ( keys %{$aSector->get_all_portals()}) {
$aPortal = $aSector->get_portal($portal_key);
print "PORTALPOLY ";
print $aPortal->get_vertex_index_count()+1;
for(my $i=0; $i<=$aPortal->get_vertex_index_count(); $i++) {
print " " , $aPortal->get_vertex_index($i);

}
print " ",$aPortal->get_target_sector()->name();
print "";

}

# actors within this sector

my $actor_key;
for $actor_key ( keys %{$aSector->get_all_actors()}) {
my $anActor;
$anActor = $aSector->get_actor($actor_key);
if ($anActor->is_camera()) {
print "CAMERA ", $anActor->name(), " ";
print "no_plugin ";
print $anActor->position(), " ";
print $anActor->orientation(), " ";

}else {
print "ACTOR ", $anActor->name(), " ";
print $anActor->pluginfile(), " ";
print $anActor->position(), " ";
print $anActor->orientation(), " ";
print $anActor->meshfile(), " ";
print $anActor->texturefile(), " ";
print $anActor->uvfile(), " ";

}
print "";

}
}

}

errGen.pm

Module errGen.pm is a generator class that attempts to identify errors in a World object and

prints diagnostics as output.

Member variable _world stores the world object, which must have already been filled by a

parser object.

Method _generate searches for errors in the world structure in memory, prints diagnostics

as output, and creates a series of Videoscape files which visually display the location of the errors.

The error checking looks at the non-looped and non-linked portal lists of each sector, prints a text

message indicating the existence of such portals for the sector, and creates a Videoscape file con-

taining edges illustrating the boundaries of such invalid portals. The output files are in

nonlinked.obj* and nonlooped.obj*; the asterisk indicates that several sequentially

numbered Videoscape files may be created, one for each sector with invalid portals. By loading

these Videoscape files into Blender, you can see the spatial location of any invalid portals. By
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storing the level meshes in one layer or scene and the invalid portals in another layer or scene, you

can easily switch back and forth between the two to see exactly which sector meshes cause the

invalid portals.

Listing 6-10: errGen.pm
package errGen;
use strict;
use Portals::World;
use FileHandle;

my $debug = 0;
my $debug_str = "DEBUG————————-";
my $portal_flag = hex '0x800000';

############################
## the object constructor ##
############################
sub new {

my $proto = shift;
my $class = ref($proto) || $proto;
my $self = {};
$self->{_world} = undef;
bless ($self, $class);
return $self;

}

##############################################
## methods to access per-object data ##
## ##
## With args, they set the value. Without ##
## any, they only retrieve it/them. ##
##############################################

sub get_world {
my $self = shift;

return $self->{_world};
}

sub set_world {
my $self = shift;
my $w = shift;

$self->{_world}= $w;
}

sub generate {
my $self = shift;

my $aSector_key;
my $aSector;

my $unlinked_num;
my $unlooped_num;

# error report

unlink <nonlinked.obj*>;
unlink <nonlooped.obj*>;
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for $aSector_key ( keys % {$self->get_world()->get_all_sectors() }) {
my $portal_key;
my $aPortal;

$aSector = $self->get_world()->get_sector($aSector_key);

if ( keys %{$aSector->get_all_nonlooped_portals}) {
print STDERR "Sector ", $aSector_key, " has nonlooped portals.";

# vertices

my $fname;

if ($unlooped_num) {
$fname = sprintf("> nonlooped.obj%d", $unlooped_num++);

}else {
$fname = sprintf("> nonlooped.obj");
$unlooped_num = 1;

}

my $fh = FileHandle->new();
$fh->open($fname);
print $fh "3DG1";

my $num_vertices = 0;
for my $v ( keys % {$aSector->get_all_vertices() }) {$num_vertices++; }
print $fh $num_vertices,"";
my $vertex_key;
my $aVertex;
for $vertex_key ( sort{$a<=>$b}keys %{$aSector->get_all_vertices()}) {
$aVertex = $aSector->get_vertex($vertex_key);
# print "(" , $vertex_key , ")";
print $fh " " , $aVertex->x();
print $fh " " , $aVertex->z(); # reverse y and z to conv. lhs<->rhs
print $fh " " , $aVertex->y();
print $fh "";

}

for $portal_key ( keys %{$aSector->get_all_nonlooped_portals()}) {
$aPortal = $aSector->get_nonlooped_portal($portal_key);

# since the portal may have more than 4 sides, and since Blender
# only handles polygons with max 4 sides, we can't write out the
# portal as a single polygon; instead we write it out edge by edge
my $edge;
for $edge ( $aPortal->get_edge_list() ) {
print $fh "2 ",$edge->[0], " ", $edge->[1];
print $fh " 0xFFFFFF";

}
}

$fh->close();
}
if ( keys %{$aSector->get_all_nonlinked_portals}) {
print STDERR "Sector ", $aSector_key, " has nonlinked portals.";

# vertices

my $fname;
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if ($unlinked_num) {
$fname = sprintf("> nonlinked.obj%d", $unlinked_num++);

}else {
$fname = sprintf("> nonlinked.obj");
$unlinked_num = 1;

}

my $fh = FileHandle->new();
$fh->open($fname);
print $fh "3DG1";

my $num_vertices = 0;
for my $v ( keys % {$aSector->get_all_vertices() }) {$num_vertices++; }
print $fh $num_vertices,"";
my $vertex_key;
my $aVertex;
for $vertex_key ( sort{$a<=>$b}keys %{$aSector->get_all_vertices()}) {
$aVertex = $aSector->get_vertex($vertex_key);
# print "(" , $vertex_key , ")";
print $fh " " , $aVertex->x();
print $fh " " , $aVertex->z(); # reverse y and z to conv. lhs<->rhs
print $fh " " , $aVertex->y();
print $fh "";

}

for $portal_key ( keys %{$aSector->get_all_nonlinked_portals()}) {
$aPortal = $aSector->get_nonlinked_portal($portal_key);

# since the portal may have more than 4 sides, and since Blender
# only handles polygons with max 4 sides, we can't write out the
# portal as a single polygon; instead we write it out edge by edge
my $edge;
for $edge ( $aPortal->get_edge_list() ) {
print $fh "2 ",$edge->[0], " ", $edge->[1];
print $fh " 0xFFFFFF";

}
}

$fh->close();

}
}

}

Controlling Scripts

As is often the case with object-oriented systems, we have a number of components (classes), each

of which represents a useful, coherent data abstraction in the problem domain. (Don’t fall into the

trap of thinking that a class does one thing well, because a class is a data abstraction, not a func-

tional unit.) To bring the entire system together, we have a controlling script which creates the

proper objects and sets them in motion. For our portalization system, this script is

vid2port.pl.

vid2port.pl

Controlling script vid2port.pl executes the portalization system by creating and invoking

methods on the appropriate structural objects.
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Invoke vid2port.pl with a command of the form

perl $L3D/source/utils/portalize/vid2port.pl name.obj* >

world.dat

Replace name.obj with the name prefix of the Videoscape file to which you exported your

meshes. Include the asterisk on the command line; this causes the shell to pass all Videoscape files

with matching names as parameters to the Perl script. As output, this creates file world.dat;

diagnostic messages are also printed to the standard error stream during the portalization process.

The script begins by creating an instance of a Videoscape parser object. It then calls parse
on the parser object, passing a list of all the Videoscape filenames as a parameter. The parser

object creates in memory a world object corresponding to the Videoscape files. Next,

vid2port.pl creates an error generator object, assigns the world object to the generator, and

calls generate. This creates the nonlooped.obj* and nonlinked.obj* Videoscape

files to help find invalid portals. Finally, vid2port.pl creates an l3d generator object, assigns

the world object to this generator, and calls generate. This prints the final portal world file to

the standard output stream, which we redirected on the command line into file world.dat.

Listing 6-11: vid2port.pl
#!/usr/bin/perl

use FindBin;
use lib "$FindBin::Bin";

use Portals::VidscParser;
use Portals::l3dGen;
use Portals::errGen;
use strict;

my $parser = VidscParser->new();
$parser->parse(<@ARGV>);

my $g = errGen->new();
$g->set_world($parser->get_world());
$g->generate();

my $g = l3dGen->new();
$g->set_world($parser->get_world());
$g->generate();

Embedding Location, Orientation, Texture,
Actor, and Other Information into Meshes

We now understand the basics of the portalization system: parsing Videoscape, scanning for holes,

generating portals, linking portals, and creating the final world file as output. Now it’s time to see

how we can use the system to specify information on plug-in objects and textures. Doing so

requires some fundamental enhancements to the system.

Notice that the entire portalization system so far has functioned without knowing which

exported Videoscape file corresponded to which mesh in Blender. Up until now, this was
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irrelevant. Portal and sector connectivity was determined in an object-independent manner by

scanning for spatial overlap of portal polygons. If we found two overlapping portals, then we

knew that the sector on one side—regardless of which one it actually was—was connected via a

portal to the sector on the other side.

This situation changes as soon as we want to associate any specific information with a specific

mesh. In particular, texture mapping and assignment of actors to sectors require us to uniquely

identify meshes. For instance, in a sector representing a bathroom we might want to apply a tile

texture to the walls, while in a living room sector we might use a wood texture. If we do not know

which Videoscape file represents the bathroom and which represents the kitchen, we have no way

of knowing which texture should be assigned to which mesh. We need a way of uniquely identify-

ing each mesh before and after Videoscape export and a way of storing additional information,

such as texture images and orientations, with each mesh.

The solution chosen here is to use overlapping edges in the geometry to encode a numerical

identifier and an orientation within the mesh itself, and to use an external database to store addi-

tional information corresponding to each numerical ID. The next sections cover the system in

detail.

Basic Ideas of Associating Attributes with Objects
The main idea we need to be aware of is the association of arbitrary attributes with a particular

mesh. We call this system the attribute system. First, let’s look at the basic ideas of the attribute

system and the tools that implement these ideas. Then, we proceed on to an example of actually

using the attribute system to specify texture and actor information for sectors.

Store an ID, Location, and Orientation in Overlapping
Edges

The first goal is to be able to uniquely identify each mesh before and after export. The design of

this system was dictated by the limitations of the Videoscape export system supported by Blender.

As mentioned earlier, two major properties of this system make a solution difficult: only mesh

geometry is exported, and we lose name information when exporting multiple meshes

simultaneously.

This means that if we can somehow encode the mesh’s identity within the geometry itself,

then this information would indeed be preserved after Videoscape export. The minimum informa-

tion needed to uniquely identify a mesh is a single integer ID number. Therefore, we need to find a

way to encode an integer number into the mesh geometry, in such a way that it can be automati-

cally extracted later for identification.

To accomplish this, we insert extra redundant polygons into the mesh geometry, where each

polygon has just one edge (i.e., two vertices). Ordinarily, a one-edge polygon is a geometric

impossibility, but we are using such polygons and edges to encode information, not represent

geometry. These edges, and their vertices, encode an integer number. We call such edges magic

edges, and their vertices magic vertices. Fortunately, such non-geometric edges are indeed

exported by Blender, in their original order, into the Videoscape file, and remain preserved upon

import.
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It turns out that another important requirement, that of storing object location and orientation,

can also be fulfilled by using such magic edges to specify a coordinate system. We thus solve both

problems at once, as we see shortly. Storing object location and orientation is important for plug-in

objects (less so for sectors), because each plug-in object should have a local object coordinate sys-

tem which allows us to position and orient the object as a whole in world coordinates.

The system relies on two different positions of edges. One edge position represents a bit with

the value zero; another edge position represents a bit with the value one. Given these two edge

positions, we can then insert an arbitrary number of extra magic edges into the mesh, each edge

having either the one position or the zero position. In this way, we can encode a binary number into

the mesh geometry.The whole system works as follows.

1. Find the geometric center of the object by averaging all x, y, and z values. Call this center point

(i,j,k).

2. Insert four exactly overlapping one-edge polygons into the geometry. Each of these edges

goes from the center point (i,j,k) to point (i+1,j,k). The presence of these four overlapping

edges marks the beginning of a sequence of magic edges; it is sort of a start of transmission

flag.

3. Insert a one-edge polygon into the geometry going from (i,j,k) to (i+1,j,k). This edge serves

two purposes. First, its position defines a zero-bit position. Any following edges which over-

lap with this edge will be numerically interpreted as a zero-bit. Second, the position of this

edge defines one unit along the x axis in the object’s local coordinate system. The x axis for the

object’s local coordinate system thus starts at the local origin (i,j,k); one unit along the object’s

x axis extends to (i+1,j,k).

4. Insert a one-edge polygon into the geometry going from (i,j,k) to (i,j+1,k). This edge also

serves two purposes. First, its position defines a one-bit position; any following edges that

overlap with this edge will be numerically interpreted as a one-bit. Second, the position of this

edge defines one unit along the y axis in the object’s local coordinate system.

5. Insert a one-edge polygon into the geometry going from (i,j,k) to (i,j,k+1). This edge serves

only one purpose. The position of this edge defines one unit along the z axis in the object’s

local coordinate system. (Conceivably, we could also use this edge to make a ternary numeri-

cal encoding system, but alarmingly enough, some programmers these days even have

problems with binary, so we’ll just stick to binary.)

6. Insert two one-edge polygons into the geometry, forming an X on the tip of the x axis. This is

for optical identification in Blender of which edge forms the x axis of the local coordinate sys-

tem, since otherwise all axes would look alike.

7. We now wish to encode an integer identifier into the mesh. For each bit of the integer identi-

fier, insert a one-edge polygon into the geometry. If the bit has a value of zero, insert a zero-bit

edge; if it has a value of one, insert a one-bit edge. Continue until all bits of the integer identi-

fier have been inserted.
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The next question is exactly how these edges get inserted into the geometry. For a particular

mesh, we can insert the magic edges by first exporting the mesh as Videoscape, parsing and aug-

menting the Videoscape file, deleting the original mesh in Blender, and then loading the

augmented Videoscape file.

The problem with this approach is that it can be tedious to do all of these steps by hand in order

to insert an ID into a mesh. Thus, a tool automates this process for us. This tool is blend_at, the

topic of the next section.

The Tool Blend_at: Remote Control of Blender

The tool blend_at is a Blender attributes editor. When configured properly, it allows you to edit

arbitrary attributes of any mesh object in Blender. The typical editing process using blend_at is

as follows:

1. Select an object in Blender by right-clicking it.

2. Click Refresh in the blend_at window. The selected object’s attributes are displayed.

3. Edit the object attributes, and click Save in the blend_at window.
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Figure 6-41: The appearance of the magic edges in
Blender. Though it appears to be just composed of
five edges, in reality several edges overlap to encode
arbitrarily long integer numbers in a spatially small
region. Notice that the Blender right-handed
coordinate system has z going up and y into the
page; l3d’s left-handed coordinate system has y
going up and z into the page.

Figure 6-42: The main blend_at window.



CAUTION You must set up the default load and save filenames, described in detail below,
before you can use the system in this manner.

blend_at is a program which runs parallel to Blender and automates Blender operations needed

for our portal editing scheme. This allows for a fairly smooth, even if not perfectly integrated, edit-

ing of object attributes. The operation of the system is fairly simple, but it requires a bit of work to

configure and understand the system. First, let’s discuss how the system works, then look at the

per-project configuration which needs to be done before using blend_at.

blend_at fulfills the following main goals:

� Automatic embedding of ID information into a mesh. We saw in the previous section how,

technically, we use overlapping edges to store an integer ID within the mesh itself; the tedious

part was the manual saving, changing, and reloading of the Vidoescape file. blend_at does

this all automatically, by sending event messages via the X event mechanism to the Blender

window, thereby effectively remote controlling the Blender window. The specific keystrokes

that blend_at sends to Blender cause Blender to save the currently selected mesh to a

Videoscape file. Then, blend_at scans the saved Videoscape file to see if an ID is already

embedded by looking for overlapping one-edge polygons. If an ID is already found, we pro-

ceed to the next step. If no ID is found, then blend_at determines a new ID number by add-

ing one to the last assigned ID number, which it keeps track of in an external file (typically

oid.txt). blend_at then encodes the number in binary, inserts the appropriate one-edge

polygons into the mesh, and sends Blender the appropriate keystrokes to cause it to delete the

old mesh and reload the new mesh with the embedded ID.

� Association of attribute information with an ID. After finding the ID of the mesh, possibly

creating a new ID if necessary, blend_at then looks for a filename attribXXX.dat,
where XXX is the numerical ID of the selected mesh. The contents of this file are then dis-

played in the main text editing window of blend_at, where the file can be edited and saved.

By convention, each line in the attributes file represents one attribute or property of the mesh.

Each line starts with a keyword indicating the name of the property to set (such as NAME), fol-

lowed by the value or values of the property. Therefore, all files with filenames

attribXXX.dat form the attributes database, storing all extra information about all

meshes. (The term database is used a bit loosely here, since we are using a collection of flat

files, but we could just as easily use a real relational or object-oriented database to store the

attribute information.)

NOTE The source and executable files for the program blend_at are located in directory
$L3D/source/utils/blendat/src.

Configuration and Testing of blend_at

Now that we’ve seen what blend_at does (insertion of ID into mesh, association of attributes

with ID) and how it does it (remote control of Blender through simulated keyboard events), let’s

look at its practical usage. Before you can use blend_at, you first must configure both Blender

and blend_at to use the same directories and filenames. Do this as follows.
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1. Start Blender and blend_at. It is typically most convenient to resize the Blender window to

be slightly less wide, and to place the blend_atwindow next to the Blender window so that

both can be seen simultaneously. In Blender, add any mesh object, such as a plane. Leave

EditMode, and ensure that the plane object is selected.

2. Press Alt+w. Select a directory, and enter a filename ending in .obj. Say you choose the

directory /home/supergame and filename level.obj. Confirm your choice by press-

ing Enter in the filename field. This saves the plane object to /home/supergame/
level.obj. The purpose of this save operation is not to save the contents of a file, but rather

to initialize Blender so that the next save operation automatically uses this same file. There is

no reliable way for blend_at to instruct Blender to use a specific filename, so we must ini-

tialize a default filename in this way beforehand, and configure blend_at to use this known

filename.

3. Press F1. Select the same directory you chose before, and the same filename you entered

before. Confirm your choice by pressing Enter in the filename field. This loads the plane

object from /home/supergame/level.obj. As before, the purpose of this load opera-

tion is not to load the contents of a file, but rather to initialize Blender so that the next load

operation automatically uses this same file.

4. Type x, Enter to delete the just-loaded object, which is a second copy of the original mesh

object added in step 1. Then, select the original mesh from step 1, and delete it as well; we no

longer need it.

5. Check that Blender has accepted the default filenames you have entered, both for loading and

saving. Do this as follows. Press Alt+w to check the default save filename. Blender should

automatically display the directory and filename you entered earlier; in this example,

/home/supergame and level.obj. Press Esc to cancel the save. Then, press F1 to

check the default load filename. Again, Blender should automatically display the same direc-

tory and filename. Press Esc to cancel the load. If either of these displays is incorrect, repeat

the entire procedure again from step 1.

6. Configure blend_at to use the same directory and filename. Do this as follows. Start

blend_at. In the menu, select Edit then Preferences. In the Blender working directory

field enter the name of the directory from step 2. In the Blender workfile field enter the file-

name from step 2. In the Attribute database directory field enter the directory from step 2. In

the OID filename field enter the string oid.txt—this is the file in which blend_at keeps

track of the last ID number it assigned.
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At this point, Blender and blend_at should be ready to use. Test your configuration as

follows.

CAUTION Because blend_at sends simulated keystroke and mouse events to the
Blender window, it is imperative that you not move the mouse or press any keys when
blend_at is sending such events to Blender. The buttons Refresh and New Face Property
cause the sending of events to Blender; thus, after clicking these buttons, do not move the
mouse or press any keys until the command has completed (a few seconds).

1. Set up the Blender default load and save filenames as described above. Start blend_at and

configure it to use the same directories and filenames.

2. Create two cube objects in Blender. Make sure to leave EditMode.

3. Select one of the cube objects. In blend_at, click Refresh. Wait until the command fin-

ishes executing. You should see the cursor move around automatically, and Blender should

automatically reload the mesh. Notice that the mesh has a new set of magic edges, and that the

blend_at window displays a new template attributes file for editing.

4. Type some random text into the blend_at text window. Click Save. This essentially saves

this text with the mesh. (In actuality the text is associated with an ID number, and the ID num-

ber is encoded within the mesh, so the relationship between text and mesh is only indirect.)

5. Select the other cube object in Blender. In blend_at, click Refresh and wait for the com-

mand to complete. Notice the new magic edges, and that the blend_at window displays a

new template attributes file for this second cube object.

6. Type some different random text into the blend_at window, and click Save.

7. Select the first cube object again in Blender. Click Refresh in blend_at. Notice that the

text you originally typed for the first mesh appears again.

This example illustrates how the system effectively associates any arbitrary data with each mesh

in Blender. Next, let’s see specifically what data we should store with each mesh for the

portalization system.
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Specific Mesh Attributes Used by the Portalization
System

The textual attribute data that we can associate with each mesh ultimately gets parsed by the

VidscParser.pmmodule, where the attributes are then evaluated and affect the creation of the

corresponding lines in the final world file. The following sections cover the attributes that are

understood byVidscParser.pm, and how they affect the mesh with which they are associated.

The Name Attribute

Each attribute file should somewhere contain a line of the form:

NAME <MESH_NAME>

where <MESH_NAME> is a string name, without spaces, uniquely identifying the mesh. For

instance, sectors might have names such as living_room, bathroom, or the_zen_room.

Plug-in objects or actors might have names such as torch5 or amorphous_undulat-

ing_procedurally_generated_flesh_heap_number_69. Typically, the name

attribute appears as the first line in the file.

The Type Attribute

The attribute file should also somewhere contain a line of the form:

TYPE <TYPENAME>

where <TYPENAME> is the type of the mesh. Currently, types SECTOR and ACTOR are under-

stood. Typically, the type attribute appears as the second line in the file.

The type of the mesh controls which other attributes in the attributes file are expected and

understood. The next sections cover the attributes for mesh typesSECTOR andACTOR separately.

Attributes for Sectors

If the mesh is of type SECTOR, then the following additional attributes may appear in the world

file to specify additional information about the sector.

FACE <X> Attributes

The FACE attribute specifies face-specific attributes about a mesh, and is used for texture map-

ping purposes. There are three allowable kinds of FACE attribute lines, covered in the following

sections. All face attributes have in common that they begin with FACE <X>, where <X> repre-

sents the face number within the mesh. The faces of a mesh are stored in memory and exported to

disk in a particular order; the face number is then a particular face’s position in the list.

blend_at can show you the face number for the selected faces in Blender. Do this as follows.

1. Enter EditMode.

2. Select the desired faces by right-clicking their vertices. If Draw Faces in the EditButtons is

activated, each selected face is drawn in yellow. You can select multiple faces or just one.

3. Do not leave EditMode; you must remain in EditMode for the next step to work. (Note that

this is in contrast to the procedure when using the Refresh button, in which case you must not

be in EditMode.)
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4. In blend_at, click New Face Property. Wait for the command to complete (a few sec-

onds); do not move the mouse or press any keys until the command is done. For each selected

face, blend_at creates a new FACE line in the text window with the appropriate numerical

index.

The New Face Property button works by sending Blender keystrokes to cause it to duplicate and

separate the selected faces, then save the separated faces to the work file.blend_at then reads in

the face definitions from the file, sends Blender more keystrokes to cause it to save the original

mesh, and then reads the original mesh into memory. Finally, blend_at searches for each

selected face in the original mesh, and creates a corresponding FACE line with the numerical

index in the original mesh of the found face.

CAUTION The New Face Property button assumes that the main geometry is located in
Blender’s layer 0, and uses layers 9 and 10 as temporary storage. Therefore, you should not
have any geometry in layers 9 or 10, and you should normally work in layer 0.

CAUTION If you insert or delete faces into the sector mesh, the face numbers will very likely
change, meaning that any FACE attribute specifications will now refer to different faces.
Therefore, do not assign FACE attributes until the sector mesh geometry is fairly stable, or
reassign FACE attributes after changing the sector mesh geometry.

FACE <X> IS_TEX_SPACE <NAME> <IMAGE>

The FACE <X> IS_TEX_SPACE attribute indicates that the particular face is a texture defini-

tion triangle, as we defined earlier in this chapter (in the discussion of the Facet.pm module).

<NAME> is a string which identifies this texture space, including both its image and its orientation.

The example we used earlier for a typical name was stony_ceiling; this represents the stony

texture and the ceiling orientation. <IMAGE> is the name of the texture image to be used, such as

stone.ppm.

The orientation of the texture space, as we saw earlier, is defined by the triangle itself. The tri-

angle must be a right triangle. When looking at the front side of the triangle (the side into which

the normal vector points; enable Draw Normals in Blender to see the normal vectors), the apex of

the right angle is the origin of the texture space; the next point in the clockwise direction is one unit

along the u axis, and the other point is one unit along the v axis.

Note that theoretically, textures—including image and orientation—can conceivably be

shared among sectors, though in practice this is not very useful. For instance, we might want to

assign the texture stony_ceiling to the ceiling polygons in several sectors. But this means

that if we want another stony ceiling texture with a different orientation or position in another sec-

tor, we would need to define stony_ceiling_2, or stony_ceiling_in_dungeon and

stony_ceiling_in_hallway. It turns out that it is more convenient to deal with tex-

tures—again, where the term refers to a combined image and orientation—on a per-sector basis.

For this reason, internally, the VidscParser.pm module combines the sector and texture

names to form a unique identifier, such as dungeon.stony_ceiling or hall-
way.stony_ceiling. Of course, the texture images themselves are only loaded once, since

World.pm creates a unique list of all texture images used by all textures.
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FACE <X> USES_TEX_SPACE <NAME>

The FACE <X> USES_TEX_SPACE attribute causes a polygon to use the texture space defined

by a texture definition triangle. <NAME> is the name of the texture space to be used, and is implic-

itly understood to be sector-specific. This means that there must also be a texture definition

triangle in the same sector that defines texture space <NAME>.

By assigning the same texture space to several polygons, all of the polygons will line up

seamlessly on the edges. For instance, for a wall, you will typically define one texture space, then

assign all polygons on the wall to use that same texture space. The next tutorial illustrates how to

do this.

FACE <X> IS_INVISIBLE

The FACE <X> IS_INVISIBLE attribute only has a meaning for faces that are texture defini-

tion triangles. This attribute specifies that the face does not define any geometry (only a texture

space) and should not appear within the final world file.

This implies that if we do not specify the IS_INVISIBLE attribute, a face can simulta-

neously be a texture definition triangle and a geometry polygon. This is useful if the mesh

geometry already happens to contain a right triangle with exactly the right size and orientation; in

this case, we can just reuse the existing geometry triangle as a texture definition triangle. Usually,

though, such right triangles do not simply happen to exist in a mesh, and artificially introducing

such triangles can be cumbersome. In these cases, which are more common, we then define extra

triangles in the mesh without disrupting the existing geometry, and flag such extra triangles as

being invisible texture definition triangles.

Attributes for Actors

If the mesh is of type ACTOR, then the following additional attributes may appear in the world file

to specify additional information about the sector.

NAME <NAME>

The NAME attribute specifies a string without spaces which uniquely identifies the actor. <NAME>

represents the actual string.

PARENT <SECTOR>

The PARENT attribute specifies the name of the parent sector, <SECTOR>, in which this object is

initially located. The object is initially inserted into the objects list of the parent sector, so that it is

drawn along with the sector.

Note that the parent sector does not own the object and is not responsible for its destruction;

the object is merely located within the sector. Indeed, the object can move from sector to sector, in

which case it must remove itself from the objects list of the old sector and insert itself into the

objects list of the new sector.

IS_CAMERA YES

The IS_CAMERA attribute only appears if it has a value of YES. In the presence of such a line, the

associated mesh is interpreted to be the camera object, and its starting position and parent sector
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are used to initialize the camera location. In this case, all of the other actor attributes described

below are currently ignored. (Though it would be possible to associate geometry with the camera

object, as well.)

MESH <FILENAME.OBJ>

The MESH attribute specifies the name of the Videoscape mesh, <FILENAME.OBJ>, which

defines the geometry of the plug-in object.

TEXTURE <FILENAME.PPM>

The TEXTURE attribute specifies the name of the texture image file, <FILENAME.PPM>, which

should be applied to the geometry of the plug-in object.

TEXCOORDS <FILENAME.UV>

The TEXCOORDS attribute specifies the name of the texture coordinates file, <FILENAME.UV>,

which should be used to map the texture file onto the polygons. See Chapter 3 for information on

how to create this file.

PLUGIN <FILENAME.SO>

The PLUGIN attribute specifies the name of the dynamic library file, <FILENAME.SO>, which

controls the behavior of this plug-in object. See the introductory companion book Linux 3D

Graphics Programming or look at the included Makefiles on the CD-ROM for information on cre-

ating such dynamic library files.

Parsing of Attributes by VidscParser.pm and vidinfo

We have now seen how we use blend_at to associate attribute information with meshes, and

what specific attributes have a meaning for the generation of the world file. This is all the write

side of the attribute system, where we essentially insert information into the attributes database.

The read side of the attribute system takes place in moduleVidscParser.pm , where the attrib-

ute information is extracted and evaluated. With an understanding of the operation of the attribute

system, we now can examine those parts of VidscParser.pm that we skipped over in our ear-

lier discussion.

The key to the entire attributes system is the unique identification of each mesh before and

after Videoscape export, which we achieve via embedding of the binary encoding of an ID number

through overlapping, specially positioned edges within the mesh geometry (a method which we

can also refer to as smoke and mirrors). When parsing the Videoscape files, we need to extract the

ID from the mesh geometry in order to find the corresponding attributes file attribXXX.dat.

Extraction of the ID from the mesh geometry is done with the tool vidinfo.

Listing 6-12: vidinfo.cc
#include <unistd.h>
#include <stdio.h>
#include <vector>
#include <string>
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struct vertex {
float x,y,z;

int operator==(const vertex &r) {
return(

-0.001 < x-r.x && x-r.x < 0.001 &&
-0.001 < y-r.y && y-r.y < 0.001 &&
-0.001 < z-r.z && z-r.z < 0.001

);
}

};

main(int argc, char **argv)
{

if(argc != 2) {
printf("usage: %s videoscape_file.obj", argv[0]);
exit(-1);

}
FILE *fp;

unsigned long oid;

vector<vertex> vidscape_vertices;

char vidscape_line[1024];

float float1, float2, float3;
int found=0;

char blender_work_fname[1024];
sprintf(blender_work_fname,argv[1]);
fp = fopen(blender_work_fname, "rt");
int lineno = 1;
int num_vertices=0;

float xsum=0.0, ysum=0.0, zsum=0.0;
float xc,yc,zc;
float x0_0,y0_0,z0_0 , x0_1,y0_1,z0_1,
x1_0,y1_0,z1_0 , x1_1,y1_1,z1_1,
x2_0,y2_0,z2_0 , x2_1,y2_1,z2_1;

int prev_v_vtxcount=0, prev_v_vtx0_0, prev_v_vtx0_1;
int overlapping_edge_count=0;

vertex pos;
vertex x_axis, y_axis, z_axis;

while(!feof(fp) && !found) {
fgets(vidscape_line, 1024, fp);
if(!feof(fp)) {

#define VIDSC_VTXCOUNT_LINENO 2

if(lineno>VIDSC_VTXCOUNT_LINENO &&
lineno<=VIDSC_VTXCOUNT_LINENO + num_vertices)

{
vertex v;
sscanf(vidscape_line, "%f %f %f", &float1,&float2,&float3);
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v.x =float1;
v.y =float2;
v.z =float3;
vidscape_vertices.push_back(v);

}
if(lineno == VIDSC_VTXCOUNT_LINENO) {

sscanf(vidscape_line, "%d", &num_vertices);
}

int sc;
int v_vtxcount=0, v_vtx0_0=0, v_vtx0_1=0;
unsigned long v_color;
char v_color_str[255];
if((lineno > VIDSC_VTXCOUNT_LINENO + num_vertices + 1)

&& (sc=sscanf(vidscape_line,"%d %d %d %s",
&v_vtxcount, &v_vtx0_0, &v_vtx0_1, v_color_str)==4)

&& (v_vtxcount==2)
)

{

if(prev_v_vtxcount==2
&&((vidscape_vertices[v_vtx0_0]==vidscape_vertices[prev_v_vtx0_0]

&& vidscape_vertices[v_vtx0_1]==vidscape_vertices[prev_v_vtx0_1])
||(vidscape_vertices[v_vtx0_0]==vidscape_vertices[prev_v_vtx0_1]

&& vidscape_vertices[v_vtx0_1]==vidscape_vertices[prev_v_vtx0_0]))
) {
overlapping_edge_count++;

}else {
overlapping_edge_count=1;

}

prev_v_vtxcount = v_vtxcount;
prev_v_vtx0_0 = v_vtx0_0;
prev_v_vtx0_1 = v_vtx0_1;

}

if(overlapping_edge_count==4)
{

int x_v0, x_v1,
y_v0, y_v1,
z_v0, z_v1;

fgets(vidscape_line, 1024, fp);
sscanf(vidscape_line, "%d %d %d", &v_vtxcount, &x_v0, &x_v1);
fgets(vidscape_line, 1024, fp);
sscanf(vidscape_line, "%d %d %d", &v_vtxcount, &y_v0, &y_v1);
fgets(vidscape_line, 1024, fp);
sscanf(vidscape_line, "%d %d %d", &v_vtxcount, &z_v0, &z_v1);

vertex x0,x1,y0,y1,z0,z1;
if ( vidscape_vertices[x_v0] == vidscape_vertices[y_v0] ) {
x0 = vidscape_vertices[x_v0];
y0 = vidscape_vertices[y_v0];
x1 = vidscape_vertices[x_v1];
y1 = vidscape_vertices[y_v1];

}else if(vidscape_vertices[x_v0] == vidscape_vertices[y_v1]) {
x0 = vidscape_vertices[x_v0];
y0 = vidscape_vertices[y_v1];
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x1 = vidscape_vertices[x_v1];
y1 = vidscape_vertices[y_v0];

}else if(vidscape_vertices[x_v1] == vidscape_vertices[y_v0]) {
x0 = vidscape_vertices[x_v1];
y0 = vidscape_vertices[y_v0];
x1 = vidscape_vertices[x_v0];
y1 = vidscape_vertices[y_v1];

}else if(vidscape_vertices[x_v1] == vidscape_vertices[y_v1]) {
x0 = vidscape_vertices[x_v1];
y0 = vidscape_vertices[y_v1];
x1 = vidscape_vertices[x_v0];
y1 = vidscape_vertices[y_v0];

}else {
fprintf(stderr,"fatal error: origin not found");

}

if ( vidscape_vertices[x_v0] == vidscape_vertices[z_v0] ) {
z0 = vidscape_vertices[z_v0];
z1 = vidscape_vertices[z_v1];

}else if(vidscape_vertices[x_v0] == vidscape_vertices[z_v1]) {
z0 = vidscape_vertices[z_v1];
z1 = vidscape_vertices[z_v0];

}else if(vidscape_vertices[x_v1] == vidscape_vertices[z_v0]) {
z0 = vidscape_vertices[z_v0];
z1 = vidscape_vertices[z_v1];

}else if(vidscape_vertices[x_v1] == vidscape_vertices[z_v1]) {
z0 = vidscape_vertices[z_v1];
z1 = vidscape_vertices[z_v0];

}else {
fprintf(stderr,"fatal error: origin not found");

}

pos = x0;
x_axis.x = x1.x - x0.x;
x_axis.y = x1.y - x0.y;
x_axis.z = x1.z - x0.z;
y_axis.x = y1.x - x0.x;
y_axis.y = y1.y - x0.y;
y_axis.z = y1.z - x0.z;
z_axis.x = z1.x - x0.x;
z_axis.y = z1.y - x0.y;
z_axis.z = z1.z - x0.z;

int dummy1,dummy2,dummy3;
fgets(vidscape_line, 1024, fp);
sscanf(vidscape_line, "%d %d %d", &dummy1, &dummy2, &dummy3);
fgets(vidscape_line, 1024, fp);
sscanf(vidscape_line, "%d %d %d", &dummy1, &dummy2, &dummy3);

found = 1;
int done = 0;
int shift=0;
oid = 0;
while(!feof(fp) && !done) {
fgets(vidscape_line, 1024, fp);
if(!feof(fp)) {
sscanf(vidscape_line,

"%d %d %d",
&v_vtxcount, &v_vtx0_0, &v_vtx0_1);

if(v_vtxcount != 2) {
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done=1;
}else {

int bit = !
(((vidscape_vertices[v_vtx0_0].x==

vidscape_vertices[x_v0].x &&
vidscape_vertices[v_vtx0_0].y==
vidscape_vertices[x_v0].y &&
vidscape_vertices[v_vtx0_0].z==
vidscape_vertices[x_v0].z)
&&
(vidscape_vertices[v_vtx0_1].x==
vidscape_vertices[x_v1].x &&
vidscape_vertices[v_vtx0_1].y==
vidscape_vertices[x_v1].y &&
vidscape_vertices[v_vtx0_1].z==
vidscape_vertices[x_v1].z))

||
((vidscape_vertices[v_vtx0_0].x==
vidscape_vertices[x_v1].x &&
vidscape_vertices[v_vtx0_0].y==
vidscape_vertices[x_v1].y &&
vidscape_vertices[v_vtx0_0].z==
vidscape_vertices[x_v1].z)
&&
(vidscape_vertices[v_vtx0_1].x==
vidscape_vertices[x_v0].x &&
vidscape_vertices[v_vtx0_1].y==
vidscape_vertices[x_v0].y &&
vidscape_vertices[v_vtx0_1].z==
vidscape_vertices[x_v0].z)));

oid |= bit<shift;
shift++;

}
}

}
printf("%lu", oid);

}

lineno++;
}

}
fclose(fp);

if(found) {
printf("%f %f %f", pos.x, pos.y, pos.z);
printf("%f %f %f", x_axis.x, y_axis.x, z_axis.x);
printf("%f %f %f", x_axis.y, y_axis.y, z_axis.y);
printf("%f %f %f", x_axis.z, y_axis.z, z_axis.z);

}
}

Tool vidinfo takes as a command-line parameter the name of a Videoscape file. It then pro-

duces as output either nothing, if no ID could be found within the mesh, or five lines (covered

below) if an ID could be found within the mesh. The ID is found by scanning for the four overlap-

ping one-edge polygons (start of transmission), then extracting the next three one-edge polygons

as the zero-bit edge and x axis, the one-bit edge and y axis, and the z axis. We then scan the
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remaining one-edge polygons and see if they overlap with the zero-bit edge or one-bit edge, and

build up the ID number in binary fashion, until we run out of one-edge polygons.

Assuming vidinfo could find an ID within the file, then the five lines of output it produces

are the ID number, the (x,y,z) location of the object in space, as determined by the intersection of

the magic edges forming the local coordinate system, and three lines representing the object’s

rotation matrix, again determined by the local coordinate system formed by the magic edges. A

typical output from vidinfo looks as follows.

19
-0.081439 2.115297 0.000000
1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
0.000000 0.000000 1.000000

Note that the location and orientation are extracted directly from the Videoscape file and are thus

specified in Blender’s right-handed coordinate system, not l3d’s left-handed coordinate system.

VidscParser.pm changes the coordinates to the left-handed coordinate system before writing them

to the world file.

VidscParser.pm uses vidinfo to extract the ID from the file. Then, with the ID, it tries

to find the corresponding attribXXX.dat file, where XXX is the extracted mesh ID. The con-

tents of the attributes file are read into an array in memory.

The TYPE and NAME attributes, since they are universal, are extracted first. Based on the type

attribute, we either handle the mesh as an actor or as a sector.

If TYPE is ACTOR, then we extract all of the relevant actor attributes, such as plug-in name

and texture file, which we need to create a valid ACTOR line as specified in Chapter 5. We store all

of these attributes with the Actor object in memory. Later, during the generation phase, the

Actor properties get written to the ACTOR line in the world file.

If TYPE is anything else, we assume that the mesh is a sector. (Ordinarily we would want to

bring an error message for unknown types, but in this case, this technique allows completely

untagged meshes to still be handled as unnamed sectors.) We already saw earlier how the vertices

and polygons get created for a sector. What we didn’t discuss earlier is that as each face is being

parsed from Videoscape into the World structure, we search for any FACE <X> attribute in the

mesh’s attribute list. If we find any FACE <X> attributes corresponding to the current face being

processed, then we use these attributes to control the exact attributes of the Facet object in mem-

ory, which in turn ultimately control what gets written to the world file. If the face is a visible

texture definition triangle (IS_TEX_SPACE), then we compute the texture space based on the tri-

angle and save the texture space by name in a hash for future reference by other polygons. If the

face is an invisible texture triangle (IS_TEX_SPACE and IS_INVISIBLE), then we addition-

ally set the face’s flag _is_invisible to be true, which later inhibits the generation of this

triangle as a geometry polygon in the world file. If the face uses a texture space

(USES_TEX_SPACE), then the named texture is simply assigned to the facet. If the face uses no

texture space (no special face attributes found), then no texture gets explicitly assigned to the face.

Later, during the generation phase, faces with assigned textures cause the creation of

GEOMPOLY_TEX lines with the texture space orientation and image specified by the assigned tex-

ture. Faces with no assigned textures also cause the creation of GEOMPOLY_TEX lines, but with a

default texture space orientation, and with the first texture image available in the world file.
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VidscParser.pm also assigns any actor objects to their parent sectors, as determined by

the PARENT attribute for actor meshes. Then, during the generation phase, all actors belonging to

a sector are printed immediately after the sector block, so that the actor gets assigned to the sector

during loading of the world file.

Program Listings for blend_at
Now that we’ve seen all of the details of how blend_at works, we can look at the code listings

for this tool.

blend_at was written using the GUI builder/environment Glade. The terms “builder/envi-

ronment” are used to indicate that Glade is more than a one-way GUI builder tool, but not as

completely integrated as a true Rapid Application Development environment. Glade is based

upon the GTK toolkit of user interface widgets, and allows you to graphically place widgets

within windows and attach code to the various events that can occur with widgets. Just as the

world editing system frees us from worrying about the exact coordinates of objects in 3D space,

Glade frees us from worrying about the exact coordinates of widgets within the window, and

allows for much quicker, visual development of applications with modern user interfaces.

Glade automatically generates code to create the windows and place the widgets within the

windows. This code was then manually extended to perform the necessary actions when a button

is clicked or a menu item is selected. Rather than embedding all of the logic within the window

classes themselves (which is a poor idea), the code follows the model-view-controller paradigm,

where the view of data (the window) is kept separate from the actions taken upon it (the control-

ler). The concept sounds simple enough in theory, but like all principles of good software design,

the real issue is if you actually can stick to the concept in the code. In particular, with RAD envi-

ronments and GUI builders, the temptation is great to just insert the application code in the empty

function bodies conveniently provided by the GUI builder, but this approach scatters your applica-

tion logic indiscriminately throughout the code, much as a poor BSP tree indiscriminately scatters

coherent geometric detail into separate parts of the tree. The structure of complex application soft-

ware should be decided by a competent designer; no GUI builder can suggest an appropriate

software architecture for your application domain.

What this means is that the GUI code for blend_at is mostly automatically generated, and

the parts which were extended (such as the actual code executed when a button is clicked) do not

perform any of the logic themselves, but instead simply invoke methods on a controller object,

which then carries out the actual task. The controller object thus encapsulates the logic. Therefore,

we won’t go over the GUI code for blend_at here, instead focusing on domain-specific classes

in blend_at.

To distinguish the domain-specific files from the Glade-generated files, all domain-specific

files begin with the prefix nl_, a prefix chosen for reasons printed on the front cover of the book.

The next sections cover each of the domain-specific classes used in blend_at.
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Class vertex

Class vertex is a vertex in 3D space. Member variables x, y, and z are the spatial coordinates.

Operator == tests for equality of two vertex objects by comparing their coordinates, with a slight

epsilon parameter to allow for nearby points to be counted as equal.

Listing 6-13: nl_vertex.h
#ifndef __NL_VERTEX_H
#define __NL_VERTEX_H

struct vertex {
float x,y,z;

int operator==(const vertex &r) {
return(

-0.001 < x-r.x && x-r.x < 0.001 &&
-0.001 < y-r.y && y-r.y < 0.001 &&
-0.001 < z-r.z && z-r.z < 0.001

);
}

};

#endif

Class blender_config

Class blender_config stores the Blender configuration data which blend_at must know

in order to operate.

Member blender_path is a string storing the directory name where the Blender work file

is located.

Member blender_work_filename is a string storing the filename of the Blender work

file.

Memberdb_path is a string storing the directory in which the attribute files will be saved.

Member oid_filename is a string storing the filename in which blend_at stores a

counter indicating the last ID number it assigned to a mesh. This counter is increased by one every

time a mesh gets assigned a new ID, so that meshes always get unique ID numbers.

Constant BLENDER_MAGIC_X_SIZE is a floating-point value that determines the spatial

size of the magic edges which get inserted into the geometry to encode the ID. By default, the size

is 1.0.

Constant ATTRIB_FNAME is a string containing the prefix of all attribute filenames. By

default, the prefix is the string attrib, leading to attribute filenames of the form

attribXXX.dat.

Listing 6-14: nl_blender_config.h
#ifndef _BLENDER_CONFIG_H
#define _BLENDER_CONFIG_H

#include <string>

class blender_config {
public:
string blender_path;
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string blender_work_filename;
string db_path;
string oid_filename;

static float BLENDER_MAGIC_X_SIZE;
static char ATTRIB_FNAME[];

};

#endif

Listing 6-15: nl_blender_config.cc
#include "nl_blender_config.h"

float blender_config::BLENDER_MAGIC_X_SIZE = 1.0;
char blender_config::ATTRIB_FNAME[] = "attrib";

Class blender_controller

Class blender_controller is an abstract interface for remote control of Blender.

Member variable blender_config points to a Blender configuration object that stores

important directory names and filenames.

Member variable current_id is an integer representing the ID of the mesh currently

selected in Blender.

Member variable current_prop_filename is the full path to the current attributes file

corresponding to the ID stored in current_id.

Member variable property_lines is a string list containing the contents of the current

attributes file.

Member variable selected_faces is a list of integers indicating the indices of the faces

which are currently selected in Blender.

Pure virtual method find_blender_window asks the controller to find the current

Blender window and to somehow internally store a reference to this window, so that later com-

mands can reference the Blender window. Exactly how the controller finds and stores a reference

to the window depends on the windowing system, and is implemented in a subclass.

Pure virtual method press_key asks the controller to simulate a key-press event and send it

to the Blender window.

Pure virtual method release_key asks the controller to simulate a key-release event and

send it to the Blender window.

Pure virtual method read_properties asks the controller to extract the ID of the cur-

rently selected mesh in Blender, then to read the mesh’s properties (the contents of its attributes

files) into memory. If the currently selected mesh does not yet have an ID, then read_proper-
ties should create a new ID, embed the new ID in the mesh, reload the mesh, create an empty

attributes file, and read this empty attributes file into memory.

Pure virtual method determine_selected_face_nums asks the controller to deter-

mine the indices of the faces currently selected in Blender, and to store this list in

selected_faces. This list, as we saw earlier, is used by the New Face Property button to cre-

ate new FACE <X> properties based on the currently selected faces.
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Listing 6-16: nl_blender_controller.h
#ifndef __NL_BLENDER_CONTROLLER_H
#define __NL_BLENDER_CONTROLLER_H

#include <vector>

class blender_config;

class blender_controller {
public:
blender_config *config;

virtual void find_blender_window(void) = 0;
virtual void press_key(int code) = 0;
virtual void release_key(int code) = 0;
virtual void read_properties(void) = 0;
virtual void determine_selected_face_nums(void) = 0;
int current_id;
char current_prop_filename[4096];
vector<int> selected_faces;
vector<string> property_lines;

};

#endif

Class blender_xcontroller

Class blender_xcontroller is a Blender controller for the X Window System.

Member variable dpy stores a pointer to the X Display.

Member variable blender_w stores a reference to the Blender window as a Window
object.

Method recursive_find_blender_window recursively traverses all windows in the

display until it finds a window with the title Blender. It then stores this window in the variable

blender_w.

Overridden method find_blender_window calls recursive_find_blender_
window to do the X search for the Blender window.

Overridden method press_key creates an event of type XEvent, fills the event structure

so that it is a key-press event with the given key code, sends the event to the Blender window with

XSendEvent, and then flushes the event queue with XFlush to ensure that the event is sent.

Overridden method release_key creates an event of type XEvent, fills the event struc-

ture so that it is a key-release event with the given key code, sends the event to the Blender

window with XSendEvent, and then flushes the event queue with XFlush to ensure that the

event is sent.

Overridden method read_properties is probably the most significant method in the

entire blend_at program. This method sends keystrokes to Blender to cause it to save the cur-

rently selected mesh to the work file. Then, the file is read and scanned for an ID, by looking for

overlapping edges as described earlier. If no ID is found, a new ID is created and encoded within

the mesh; then, the appropriate keystrokes are sent to Blender to cause it to delete the old mesh and

reload the new one with the embedded ID. After finding or newly assigning an ID, the attributes

file corresponding to the ID is opened, and its contents are read into theproperty_lines list.
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Overridden method determine_selected_face_nums is the second most significant

method in blend_at. It determines which faces are selected by sending Blender keystrokes to

separate and save the selection and the original mesh; then, it searches for the selected faces within

the original mesh and stores their index numbers in the selected_faces list.

Listing 6-17: nl_blender_xcontroller.h
#ifndef __NL_BLENDER_XCONTROLLER_H
#define __NL_BLENDER_XCONTROLLER_H

#include <X11/X.h>
#include <X11/Intrinsic.h>
#include <unistd.h>
#include <stdio.h>
#include <gtk/gtk.h>
#include <vector>
#include <string>

#include "nl_blender_controller.h"

class blender_config;

class blender_xcontroller : public blender_controller {
protected:
Display *dpy;
int recursive_find_blender_window(Window w);

public:
Window blender_w;

blender_xcontroller(Display *dpy, blender_config *c);
virtual ~blender_xcontroller(void);
void find_blender_window(void);
void press_key(int code);
void release_key(int code);
void read_properties(void);
void determine_selected_face_nums(void);

};

#endif

Listing 6-18: nl_blender_xcontroller.cc
#include "nl_blender_xcontroller.h"
#include "nl_vertex.h"
#include "nl_blender_config.h"

blender_xcontroller::blender_xcontroller(Display *dpy, blender_config *c) {
this->dpy = dpy;
config = c;
find_blender_window();

}

blender_xcontroller::~blender_xcontroller(void) {
delete config;

}

int blender_xcontroller::recursive_find_blender_window(Window w) {
Window root_return, parent_return, *children;
unsigned int nchildren;
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if(blender_w) return 1;

XQueryTree(dpy, w, &root_return, &parent_return,
&children, &nchildren);

if(children==NULL) {
return 0;

}else {
int i;
for(i=0; i<nchildren && !blender_w; i++) {
char *wn;
XFetchName(dpy, children[i], &wn);
if(wn && strcmp(wn, "Blender")==0) {
blender_w = children[i];

}else {
recursive_find_blender_window(children[i]);

}
Xfree(wn);

}
Xfree(children);

}
}

void blender_xcontroller::find_blender_window(void)
{
blender_w = 0;
recursive_find_blender_window(DefaultRootWindow(dpy));

}

void blender_xcontroller::press_key(int code)
{
XEvent event;
unsigned long mask;

event.type = KeyPress;
event.xkey.type = KeyPress;
event.xkey.serial = 30;
event.xkey.send_event = FALSE;
event.xkey.display = dpy;
event.xkey.window = blender_w;
event.xkey.root = DefaultRootWindow(dpy);
event.xkey.subwindow = 0;
event.xkey.time =1954543190;
event.xkey.x = event.xkey.y = 0;
event.xkey.x_root = event.xkey.y_root = 0;
event.xkey.state = 0;
event.xkey.keycode = code;
event.xkey.same_screen= TRUE;
mask = 1;
XSendEvent(dpy, blender_w,

TRUE, mask, &event);

Xflush(dpy);
}

void blender_xcontroller::release_key(int code)
{
XEvent event;
unsigned long mask;

event.type = KeyRelease;
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event.xkey.type = KeyRelease;
event.xkey.serial = 30;
event.xkey.send_event = FALSE;
event.xkey.display = dpy;
event.xkey.window = (Window) blender_w;
event.xkey.root = DefaultRootWindow(dpy);
event.xkey.subwindow = 0;
event.xkey.time =1954543190;
event.xkey.x = event.xkey.y = 0;
event.xkey.x_root = event.xkey.y_root = 0;
event.xkey.state = 0;
event.xkey.keycode = code;
event.xkey.same_screen= TRUE;
mask = 1;
XSendEvent(dpy, blender_w,

TRUE, mask, &event);

Xflush(dpy);
}

void blender_xcontroller::read_properties(void)
{
Window root_return, child_return;
int rootx, rooty, winx, winy;
int rootx_new, rooty_new, winx_new, winy_new;
unsigned int mask;

XQueryPointer(dpy, DefaultRootWindow(dpy), &root_return, &child_return,
&rootx, &rooty, &winx, &winy, &mask);

XWarpPointer(dpy, None, blender_w, 0, 0,
0,0, 100,100);

XQueryPointer(dpy, DefaultRootWindow(dpy), &root_return, &child_return,
&rootx_new, &rooty_new, &winx_new, &winy_new, &mask);

press_key(64);
press_key(25);
release_key(25);
release_key(64);
usleep(250000);
press_key(36);
usleep(250000);
press_key(36);
usleep(250000);
press_key(36);
usleep(250000);
press_key(36);

FILE *fp;

unsigned long oid;

vector<string> new_vidscape_strings;
vector<vertex> vidscape_vertices;

char oid_fname[1024];
char attrib_fname[1024];
sprintf(oid_fname,"%s/%s",

config->db_path.c_str(),
config->oid_filename.c_str());
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fp=fopen(oid_fname, "rt");
char oid_txt[80];
fgets(oid_txt, 80, fp);
fclose(fp);
sscanf(oid_txt, "%lu", &oid);
oid++;

int num_bits_in_oid=0;
unsigned long temp_oid = oid;
while(temp_oid) {
num_bits_in_oid++;
temp_oid>=1;

}

char vidscape_line[1024];
string vidscape_string;
float float1, float2, float3;
int found=0;

char blender_work_fname[1024];
sprintf(blender_work_fname,"%s/%s",

config->blender_path.c_str(),
config->blender_work_filename.c_str());

fp = fopen(blender_work_fname, "rt");
int lineno = 1;
int num_vertices=0;

float xsum=0.0, ysum=0.0, zsum=0.0;
float xc,yc,zc;
float x0_0,y0_0,z0_0 , x0_1,y0_1,z0_1,
x1_0,y1_0,z1_0 , x1_1,y1_1,z1_1,
x2_0,y2_0,z2_0 , x2_1,y2_1,z2_1;

int prev_v_vtxcount=0, prev_v_vtx0_0, prev_v_vtx0_1;
int overlapping_edge_count=0;

while(!feof(fp) && !found) {
fgets(vidscape_line, 1024, fp);
if(!feof(fp)) {

#define VIDSC_VTXCOUNT_LINENO 2

if(lineno>VIDSC_VTXCOUNT_LINENO &&
lineno<=VIDSC_VTXCOUNT_LINENO + num_vertices)

{
vertex v;
sscanf(vidscape_line, "%f %f %f", &float1,&float2,&float3);
xsum += float1;
ysum += float2;
zsum += float3;

v.x =float1;
v.y =float2;
v.z =float3;
vidscape_vertices.push_back(v);

}

if(lineno == VIDSC_VTXCOUNT_LINENO) {
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sscanf(vidscape_line, "%d", &num_vertices);

sprintf(vidscape_line, "%d", num_vertices +
(4 + 3 + 2 + num_bits_in_oid)*2);

vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);

}else if (lineno == VIDSC_VTXCOUNT_LINENO + num_vertices) {
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);

xc = xsum/num_vertices;
yc = ysum/num_vertices;
zc = zsum/num_vertices;

x0_0 = xc; y0_0 = yc; z0_0 = zc;
x0_1 = xc + blender_config::BLENDER_MAGIC_X_SIZE; y0_1 = yc; z0_1 = zc;
x1_0 = xc; y1_0 = yc; z1_0 = zc;
x1_1 = xc; y1_1 = yc + blender_config::BLENDER_MAGIC_X_SIZE; z1_1 = zc;
x2_0 = xc; y2_0 = yc; z2_0 = zc;
x2_1 = xc; y2_1 = yc; z2_1 = zc + blender_config::BLENDER_MAGIC_X_SIZE;

for(int i_flagedge=0; i_flagedge<4; i_flagedge++) {
sprintf(vidscape_line, "%f %f %f", x0_0, y0_0, z0_0);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);
sprintf(vidscape_line, "%f %f %f", x0_1, y0_1, z0_1);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);

}

sprintf(vidscape_line, "%f %f %f", x0_0, y0_0, z0_0);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);
sprintf(vidscape_line, "%f %f %f", x0_1, y0_1, z0_1);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);

sprintf(vidscape_line, "%f %f %f", x1_0, y1_0, z1_0);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);
sprintf(vidscape_line, "%f %f %f", x1_1, y1_1, z1_1);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);

sprintf(vidscape_line, "%f %f %f", x2_0, y2_0, z2_0);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);
sprintf(vidscape_line, "%f %f %f", x2_1, y2_1, z2_1);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);

sprintf(vidscape_line, "%f %f %f", x0_1,
y0_1 - 0.5,
z0_1 - 0.5);

vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);
sprintf(vidscape_line, "%f %f %f", x0_1,

y0_1 + 0.5,
z0_1 + 0.5);

vidscape_string = vidscape_line;
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new_vidscape_strings.push_back(vidscape_string);

sprintf(vidscape_line, "%f %f %f", x0_1,
y0_1 - 0.5,
z0_1 + 0.5);

vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);
sprintf(vidscape_line, "%f %f %f", x0_1,

y0_1 + 0.5,
z0_1 - 0.5);

vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);

unsigned long temp_oid=oid;
while(temp_oid) {
if(temp_oid&0x1) {
sprintf(vidscape_line, "%f %f %f", x1_0, y1_0, z1_0);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);
sprintf(vidscape_line, "%f %f %f", x1_1, y1_1, z1_1);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);

}
else {
sprintf(vidscape_line, "%f %f %f", x0_0, y0_0, z0_0);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);
sprintf(vidscape_line, "%f %f %f", x0_1, y0_1, z0_1);
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);

}
temp_oid>=1;

}

}else {
vidscape_string = vidscape_line;
new_vidscape_strings.push_back(vidscape_string);

}

int sc;
int v_vtxcount, v_vtx0_0, v_vtx0_1;
unsigned long v_color;
char v_color_str[255];
if((lineno > VIDSC_VTXCOUNT_LINENO + num_vertices + 1)

&& (sc=sscanf(vidscape_line,"%d %d %d %s",
&v_vtxcount, &v_vtx0_0, &v_vtx0_1, v_color_str)==4)

&& (v_vtxcount==2)
)

{

if(prev_v_vtxcount==2
&&((vidscape_vertices[v_vtx0_0]==vidscape_vertices[prev_v_vtx0_0]

&& vidscape_vertices[v_vtx0_1]==vidscape_vertices[prev_v_vtx0_1])
||(vidscape_vertices[v_vtx0_0]==vidscape_vertices[prev_v_vtx0_1]

&& vidscape_vertices[v_vtx0_1]==vidscape_vertices[prev_v_vtx0_0]))
) {
overlapping_edge_count++;

}else {
overlapping_edge_count=1;
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}

prev_v_vtxcount = v_vtxcount;
prev_v_vtx0_0 = v_vtx0_0;
prev_v_vtx0_1 = v_vtx0_1;

}

if(overlapping_edge_count==4)
{

int x_v0, x_v1,
y_v0, y_v1,
z_v0, z_v1;

fgets(vidscape_line, 1024, fp);
sscanf(vidscape_line, "%d %d %d", &v_vtxcount, &x_v0, &x_v1);
fgets(vidscape_line, 1024, fp);
sscanf(vidscape_line, "%d %d %d", &v_vtxcount, &y_v0, &y_v1);
fgets(vidscape_line, 1024, fp);
sscanf(vidscape_line, "%d %d %d", &v_vtxcount, &z_v0, &z_v1);

int dummy1,dummy2,dummy3;
fgets(vidscape_line, 1024, fp);
sscanf(vidscape_line, "%d %d %d", &dummy1, &dummy2, &dummy3);
fgets(vidscape_line, 1024, fp);
sscanf(vidscape_line, "%d %d %d", &dummy1, &dummy2, &dummy3);

found = 1;
int done = 0;
int shift=0;
oid = 0;
while(!feof(fp) && !done) {
fgets(vidscape_line, 1024, fp);
if(!feof(fp)) {
sscanf(vidscape_line,

"%d %d %d",
&v_vtxcount, &v_vtx0_0, &v_vtx0_1);

if(v_vtxcount != 2) {
done=1;

}else {

int bit = !
(((vidscape_vertices[v_vtx0_0].x==

vidscape_vertices[x_v0].x &&
vidscape_vertices[v_vtx0_0].y==
vidscape_vertices[x_v0].y &&
vidscape_vertices[v_vtx0_0].z==
vidscape_vertices[x_v0].z)
&&
(vidscape_vertices[v_vtx0_1].x==
vidscape_vertices[x_v1].x &&
vidscape_vertices[v_vtx0_1].y==
vidscape_vertices[x_v1].y &&
vidscape_vertices[v_vtx0_1].z==
vidscape_vertices[x_v1].z))

||
((vidscape_vertices[v_vtx0_0].x==
vidscape_vertices[x_v1].x &&
vidscape_vertices[v_vtx0_0].y==
vidscape_vertices[x_v1].y &&
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vidscape_vertices[v_vtx0_0].z==
vidscape_vertices[x_v1].z)
&&
(vidscape_vertices[v_vtx0_1].x==
vidscape_vertices[x_v0].x &&
vidscape_vertices[v_vtx0_1].y==
vidscape_vertices[x_v0].y &&
vidscape_vertices[v_vtx0_1].z==
vidscape_vertices[x_v0].z)));

oid |= bit<shift;
shift++;

}
}

}
sprintf(attrib_fname, "%s/%s%lu.dat",

config->db_path.c_str(),
blender_config::ATTRIB_FNAME,
oid);

this->current_id = oid;
}

lineno++;
}

}
fclose(fp);

if(!found) {

int magic_vtx_ctr;

for(magic_vtx_ctr=0; magic_vtx_ctr < 4*2; magic_vtx_ctr+=2) {

sprintf(vidscape_line, "2 %d %d 0x%x",
num_vertices+magic_vtx_ctr, num_vertices+magic_vtx_ctr+1,
0x0);

vidscape_string=vidscape_line;
new_vidscape_strings.push_back(vidscape_line);

}

int stop=magic_vtx_ctr + 3*2;
for(; magic_vtx_ctr < stop; magic_vtx_ctr+=2) {

sprintf(vidscape_line, "2 %d %d 0x%x",
num_vertices+magic_vtx_ctr, num_vertices+magic_vtx_ctr+1,
0x0);

vidscape_string=vidscape_line;
new_vidscape_strings.push_back(vidscape_line);

}

stop=magic_vtx_ctr + 2*2;
for(; magic_vtx_ctr < stop; magic_vtx_ctr+=2) {
sprintf(vidscape_line, "2 %d %d 0x%x",

num_vertices+magic_vtx_ctr, num_vertices+magic_vtx_ctr+1,
0x0);

vidscape_string=vidscape_line;
new_vidscape_strings.push_back(vidscape_line);

}

unsigned long temp_oid = oid;
while(temp_oid) {
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sprintf(vidscape_line, "2 %d %d 0x%x",
num_vertices+magic_vtx_ctr,
num_vertices+magic_vtx_ctr+1,
0x0);

magic_vtx_ctr+=2;
vidscape_string=vidscape_line;
new_vidscape_strings.push_back(vidscape_line);
temp_oid >= 1;

}

fp=fopen(oid_fname, "wt");
fprintf(fp, "%d", oid);
fclose(fp);

fp=fopen(blender_work_fname, "wt");
for(int i=0; i<new_vidscape_strings.size(); i++) {
fprintf(fp,"%s", new_vidscape_strings[i].c_str());

}
fclose(fp);

for(int i=0; i<new_vidscape_strings.size(); i++) {
new_vidscape_strings.pop_back();

}

press_key(53);
release_key(53);
usleep(250000);
press_key(36);

press_key(67);
release_key(67);
usleep(250000);
press_key(36);
usleep(250000);
press_key(36);
usleep(250000);
press_key(36);
usleep(250000);
press_key(36);

sprintf(attrib_fname, "%s/%s%lu.dat",
config->db_path.c_str(),
config->ATTRIB_FNAME,
oid);

fp = fopen(attrib_fname, "wt");
fprintf(fp, "NAME OBJ%d", oid);
fprintf(fp, "TYPE [SECTOR | ACTOR]");
fprintf(fp, "PROPNAME VALUE [VALUE ...]");
fclose(fp);

}

XWarpPointer(dpy, None, None, 0, 0,
0,0, rootx - rootx_new,rooty-rooty_new);

Xflush(dpy);

int old_linecount = property_lines.size();
int i;
for(i=0; i<old_linecount; i++) {property_lines.pop_back(); }
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strncpy(current_prop_filename, attrib_fname, sizeof(current_prop_filename));
fp = fopen(attrib_fname, "rt");

if(fp) {
char attrib_line[4096];
while(!feof(fp)) {
fgets(attrib_line, sizeof(attrib_line), fp);
if(feof(fp)) break;
property_lines.push_back(attrib_line);

}
fclose(fp);

}else {
printf("error opening %s", attrib_fname);

}
}

void blender_xcontroller::determine_selected_face_nums(void)
{
int i;

int oldsize = this->selected_faces.size();
for(i=0; i<oldsize; i++) {
this->selected_faces.pop_back();

}

Window root_return, child_return;
int rootx, rooty, winx, winy;
int rootx_new, rooty_new, winx_new, winy_new;
unsigned int mask;

XQueryPointer(dpy, DefaultRootWindow(dpy), &root_return, &child_return,
&rootx, &rooty, &winx, &winy, &mask);

XWarpPointer(dpy, None, blender_w, 0, 0,
0,0, 100,100);

XQueryPointer(dpy, DefaultRootWindow(dpy), &root_return, &child_return,
&rootx_new, &rooty_new, &winx_new, &winy_new, &mask);

press_key(58);
release_key(58);
usleep(250000);
press_key(19);
usleep(250000);
release_key(19);
usleep(250000);
press_key(36);
usleep(250000);

press_key(19);
usleep(250000);
release_key(19);
usleep(250000);

press_key(50);
usleep(250000);
press_key(40);
usleep(250000);
release_key(50);
release_key(40);
press_key(36);
usleep(250000);
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press_key(33);
usleep(250000);
release_key(33);
press_key(36);
usleep(250000);
press_key(58);
usleep(250000);
press_key(18);
release_key(18);
usleep(250000);
press_key(36);
usleep(250000);

press_key(23);
press_key(38);
press_key(64);
usleep(250000);
press_key(25);
usleep(250000);
release_key(25);
release_key(64);
usleep(250000);
press_key(36);
usleep(250000);
press_key(36);

usleep(250000);
usleep(250000);
usleep(250000);
usleep(250000);

press_key(53);
usleep(250000);
press_key(36);

int num_face_vertices;
vector<vertex> face_vertices;
typedef vector<int> facedef;
vector<facedef> selected_faces;
int num_selected_faces;
num_selected_faces = 0;

FILE *fp;
char blender_work_fname[1024];
char line[4096];
sprintf(blender_work_fname,"%s/%s",

config->blender_path.c_str(),
config->blender_work_filename.c_str());

fp = fopen(blender_work_fname, "rt");
fgets(line, sizeof(line), fp);
fgets(line, sizeof(line), fp);
sscanf(line, "%d", &num_face_vertices);

for(i=0; i<num_face_vertices; i++) {
vertex v;
fgets(line, sizeof(line), fp);
sscanf(line, "%f %f %f",

&v.x,
&v.y,
&v.z);
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face_vertices.push_back(v);
}
while(!feof(fp)) {
fgets(line, sizeof(line), fp);
if(feof(fp)) break;

char *tok;
tok = strtok(line," ");
int numv;
sscanf(tok, "%d", &numv);

facedef a_facedef;
a_facedef.push_back(numv);
int iv;
for(iv=0; iv<numv; iv++) {
tok = strtok(NULL, " ");
int ivertex;
sscanf(tok, "%d", &ivertex);
a_facedef.push_back(ivertex);

}
selected_faces.push_back(a_facedef);
num_selected_faces++;

}
fclose(fp);

press_key(18);
release_key(18);
usleep(250000);

press_key(38);
usleep(250000);
press_key(38);
usleep(250000);
press_key(64);
usleep(250000);
press_key(25);
usleep(250000);
release_key(25);
release_key(64);
usleep(250000);
press_key(36);
usleep(250000);
press_key(36);

press_key(58);
release_key(58);
usleep(250000);
press_key(10);
usleep(250000);
release_key(10);
usleep(250000);
press_key(36);
usleep(250000);

press_key(10);
release_key(18);
usleep(250000);

XWarpPointer(dpy, None, None, 0, 0,
0,0, rootx - rootx_new,rooty-rooty_new);
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Xflush(dpy);

usleep(250000);
usleep(250000);
usleep(250000);
usleep(250000);

int num_mesh_vertices;
vector<vertex> mesh_vertices;
sprintf(blender_work_fname,"%s/%s",

config->blender_path.c_str(),
config->blender_work_filename.c_str());

fp = fopen(blender_work_fname, "rt");
fgets(line, sizeof(line), fp);
fgets(line, sizeof(line), fp);
sscanf(line, "%d", &num_mesh_vertices);
for(i=0; i<num_mesh_vertices; i++) {
vertex v;
fgets(line, sizeof(line), fp);
sscanf(line, "%f %f %f",

&v.x,
&v.y,
&v.z);

mesh_vertices.push_back(v);
}

int found_overlapping_face;
int face_num;
face_num = 0;
while(!feof(fp)) {
fgets(line, sizeof(line), fp);
if(feof(fp)) break;

int selface;
char orig_line[4096];
strncpy(orig_line, line, sizeof(orig_line));
for(selface=0; selface<num_selected_faces; selface++) {
strncpy(line, orig_line, sizeof(line));

char *tok;
tok = strtok(line, " ");

int num_v;
int iv;
sscanf(tok, "%d", &num_v);

int found_overlapping_vertex;
for(iv=0; iv<num_v; iv++) {
tok = strtok(NULL, " ");
int ivertex;
sscanf(tok, "%d", &ivertex);

found_overlapping_vertex = 0;
int fv;
for(fv=1; fv<=selected_faces[selface][0]; fv++) {
if ( mesh_vertices[ivertex] ==

face_vertices[selected_faces[selface][fv]] )
{
found_overlapping_vertex = 1;
break;
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}
}
if(!found_overlapping_vertex) {
break;

}
}
if(found_overlapping_vertex) {
this->selected_faces.push_back(face_num);
break;

}
}
face_num++;

}
fclose(fp);

}

Tutorial: Creating a Textured Room with Actors
In this last tutorial, we now use all of the features of blend_at to create a textured room with

plug-in objects. For simplicity, we’ll just create one room, rather than creating several rooms. The

earlier tutorials in this chapter already showed you how to create several rooms connected with

portals; here, the focus is on the new specifications of texture and actor information. The files

from this example may be found in directory $L3D/data/levels/bigcube.

1. Start Blender and blend_at. Choose a directory and filename for the work file, and config-

ure both Blender and blend_at to use this directory and filename.

2. Create a fairly large cube in Blender. Subdivide the entire cube twice so that each side has 16

faces. Ensure that the normals point inward (Shift+Ctrl+n). This cube will be our sector.

Then, exit EditMode. Ensure that the cube object is selected.

3. In blend_at, click Refresh and wait for the command to complete. Notice that the Blender

window acts under the control of the blend_at program. When the command is complete,
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blend_at displays a new, empty attributes file, and the mesh in Blender now contains an

embedded ID.

4. In blend_at, enter the following attributes.

TYPE SECTOR
NAME CUBE1

5. Create six new texture definition triangles, one slightly outside of each side of the cube. There

are several ways to do this, but I recommend the following procedure.
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5a. Enter EditMode. Select a face which has approximately the same size as the desired tex-

ture definition triangle.

5b. Switch to an orthogonal view so that you are now viewing the selected face on its edge.

For instance, if you selected a face on the top of the cube, you would now change to front

or side orthogonal view; if you selected a face on the right side of the cube, you would

change to front or top orthogonal view.

5c. Press Shift+d to duplicate the selected face. Press one of the arrow keys to nudge the face

slightly so that it is located just slightly outside of the cube, then press Enter. At this

point, you have just created a face parallel to the side of the cube from which it was dupli-

cated, but located slightly away from the cube.

Chapter 6: Blender and World Editing 465

Figure 6-47

Figure 6-48



5d. Select all vertices except for the just duplicated face, and type h to hide them.

5e. Ensure that the face is a right triangle. Remember, texture definition triangles must be

right triangles. If the face is not a triangle but is instead a quad (four vertices), then delete

one of its vertices by right-clicking the vertex and pressing x. Then, select all three

remaining vertices and press f to make a triangular face. After ensuring that the face is tri-

angular, snap all the vertices to the nearest grid point (select the vertices, press Shift+s,

then select Sel->Grid), then drag the vertices, if necessary, to make the triangle exactly a

right triangle.

5f. Press Alt+h to unhide the vertices. Ensure that the normal vector for the face points

towards the inside of the cube. If it does not, flip it with Shift+Ctrl+n or Ctrl+n.
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5g. Repeat this process from step 5a for each of the remaining five sides of the cube.

6. Mark each texture definition triangle as such by using blend_at. Select the triangle and

remain in EditMode. Click New Face Property in blend_at and wait for the command to

complete. Notice the new FACE <X> line which appears in the text window, where <X> is

the automatically determined face number.
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7. Edit the line to read

FACE <X> IS_TEX_SPACE <NAME> <IMAGE>

For <NAME>, substitute an appropriate name for the texture space. In this case, we have

exactly six texture spaces, one for each side of the cube. Logical names for these are

FRONT, BACK, LEFT, RIGHT, TOP, and BOTTOM. I use the convention that when

viewing the model in front view (press 1 on the numeric keypad), the apparent left and

right sides are LEFT and RIGHT sides; from side view (press 3 on the numeric keypad),

the apparent left and right sides are the FRONT and BACK sides, and the apparent top and

bottom sides are the TOP and BOTTOM sides. For <IMAGE>, substitute the string

stone.ppm, or any other valid texture file.

8. Add another line directly beneath this one reading:

FACE <X> IS_INVISIBLE
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9. Deselect all vertices, then select all faces which should use this texture space. For instance, if

you just defined the FRONT texture space, then select all faces on the top of the cube.

10. Click New Face Property in blend_at and wait for the command to complete. Notice that

blend_at creates several new FACE <X> lines, one for each selected face. Edit each of

these lines to read:

FACE <X> USES_TEX_SPACE <NAME>

where <NAME> is the name of the previously defined texture space, such as FRONT. Since

there will be several faces using the same texture space, you can copy and paste text

between lines to save work. Press Ctrl+c and Ctrl+v to copy and paste text, respectively.

11. Repeat this process of face classification by repeating from step 6 until all faces have been

classified.

12. Click Save to save your changes to the attributes file.

Let’s step back for a moment and summarize what we have just done. We have created six extra

right triangles, all located parallel to but slightly outside of the cube. We then marked each of these

triangles as being a texture space, and then assigned the faces from each side of the cube to use the

appropriate one of the six texture spaces.

One item deserves special comment, the reason that we create the triangles slightly outside of

the cube. We do this for two reasons. First of all, we can easily see that these triangles are separate

from the mesh geometry, giving us a visual cue that they are texture definition triangles. Second,

the fact that the texture definition triangles are topologically separate from the rest of the mesh

allows us to use a convenient feature of Blender, linked selection. Linked selection works in

EditMode, and selects vertices starting at the mouse cursor location, extending the selection to all

vertices that are connected by an edge to the original vertex. To try this, select the cube and enter

EditMode. Move the mouse cursor near the middle of the cube, next to some vertex in the middle,

but away from the magic vertices. Then press l for linked select. Notice that just the cube has been
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selected, and none of the texture definition triangles. Next, press h. This hides the cube and conve-

niently leaves just the texture definition triangles visible, allowing for easy editing.

At this point in this tutorial, we’ve created a textured cube, but have not yet put in any plug-in

objects. Let’s now create a plug-in object and a camera object.

1. Exit EditMode. Add a new, separate cube object, sized somewhat small and located some-

where inside the larger cube. After adding the cube, exit EditMode, and ensure that the

smaller cube is still selected.

2. In blend_at, click Refresh and wait for the command to complete. Notice that blend_at
inserts magic edges into the mesh and displays a new empty attributes file.

3. Enter the following attributes into the attributes file. Click Save when you are done.

NAME TORCH1
TYPE ACTOR
PARENT CUBE1
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MESH torch.obj
TEXCOORDS torch.uv
TEXTURE torch.ppm
PLUGIN ../lib/dynamics/plugins/vidmesh/vidmesh.so

Note that all of the files specified in the attributes exist in the executable directory for the

porlotex program of Chapter 5, which we have been using to test our world files. In

general, any files you specify should be accessible from the directory containing the world

file and the executable program file. As you can see from the PLUGIN attribute, it is per-

mitted to specify relative pathnames.

4. In Blender, rotate the cube so that its local coordinate system tilts slightly backwards towards

the front of the cube. Do this rotation outside of EditMode, so that you can easily undo it later

(with Alt+r) if you wish.

5. Place a camera in the scene as follows: Ensure you are not in EditMode. Insert a second cube

somewhere inside the sector, exit EditMode, and ensure the second cube is selected. Click

Refresh inblend_at, wait for the command to complete, and enter the following attributes.

Click Save when you are done.

NAME CAMERA1
TYPE ACTOR
PARENT CUBE1
IS_CAMERA yes
PLUGIN no_plugin.so

Remember that the PLUGIN attribute is currently ignored for camera objects, but we still need to

specify it.
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At this point, we are ready to export, convert, and test the level. Do this as follows:

1. Mark all meshes in Blender with Ctrl+a. Export them all to Videoscape by pressing Alt+w,

Enter, Enter. Since you already set up the default filename earlier, you don’t need to explic-

itly specify it here.

2. Run the Videoscape conversion process by entering perl $L3D/source/utils/portalize/

vid2port.pl <PATH>/mesh.obj* > world.dat, where <PATH> is the directory where you

saved the Videoscape files and mesh.obj is the filename you used. Open the world file in a

text editor, and notice that the texture list at the beginning of the file has been automatically

generated, as have the ACTOR and CAMERA lines with the proper coordinates for the actors

and camera.

3. Copy the resulting world.dat file into the same directory as the executable file

porlotex. Ensure that all files referenced within world.dat (texture, mesh, and plug-in

files) are in the current directory. If you used the filenames provided above, the files will

already be in the porlotex executable directory.

4. Run the program porlotex. Notice that the camera’s starting position is as specified in the

world file, and that the plug-in object, which was a cube in Blender, has been replaced with

the specified mesh geometry, in this case a torch. Also notice that the torch is properly tilted

backwards, just as we oriented it in Blender. Finally, notice that the textures on the walls are

seamlessly tiled, because all polygons for a wall share the same texture space. Even if the

polygons were oddly triangulated and of different sizes and orientations, as is often the case

when faces are subdivided to cut holes into sectors, the textures still line up perfectly because

of the shared texture space.
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NOTE The Blender file and the world file for the original porlotex program were, of
course, also created with the Blender world editing system in exactly this same manner. The
original files for the porlotex world can be found in directory $L3D/data/levels/
tunnel.

Tips for Working with Attributes
You have now seen all aspects of the Blender portal editing system. Here is a brief list of tips that

make working with this system more effective.

� Always check that you are in the proper EditMode/non-EditMode state before clicking any

button in blend_at. You must be outside of EditMode if you click on Refresh, or in

EditMode if you click on New Face Property.

� Always ensure that the current directory and filename are set up properly in Blender and

blend_at. In particular, if you save your work in another directory or into native Blender

format, you must reinitialize the work directory and filename in Blender.

� Only move the magic vertices as a whole; mark all of them with the border select button

before attempting to move them. Moving just a few of the magic vertices or edges destroys the

overlapping information which encodes the ID, but moving all of them at once preserves the

overlap. You would want to move all the magic vertices to reposition the local object coordi-

nate system with respect to the object.

� Never mark any of the magic vertices and click on the Rem Doubles button, since this

removes the redundancy on which the entire ID encoding system is built. Be particularly care-

ful when selecting all vertices, since this also selects the magic vertices by default.

� If you suspect that you have indeed accidentally destroyed the magic vertices, then it is best to

completely re-tag the mesh. (The symptom of this problem is that blend_at finds the

wrong attributes file, or no attributes file at all, when Refresh is clicked.) Re-tag the mesh as

follows. Select the mesh, enter EditMode by pressing Tab, mark all magic vertices, then press

x and select Vertices to delete all the magic vertices. Now, the mesh no longer has any ID

associated with it. Exit EditMode by pressing Tab. In the blend_at window, click the

Refresh button. This causes the selected mesh to be re-tagged with a new ID, and to be associ-

ated with a new, empty attributes file. At this point, you have lost the original attribute
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information, but this information is still stored in the (now unused) attribute file

attribXXX.dat on disk. You can search for this file manually (perhaps using a file

browser, or a tool such as grep to search for a file containing a particular string), and paste its

contents into the new attribute file.

� If you duplicate a mesh with Shift+d, then you should delete the magic vertices in the dupli-

cate mesh, and re-tag the now anonymous mesh by clicking Refresh inblend_at. If you do

not do this, then both meshes would have the same ID, which would cause ambiguity when

editing the attributes of one of the meshes.

� If Blender appears to act strangely when it is receiving the remote control commands from

blend_at, one possible reason is that the Alt, Shift, or Ctrl keys have become stuck in

Blender, which means that when blend_at sends the keystroke a, Blender might incor-

rectly interpret this as Alt+a. If you suspect that this is the case, then switch to the Blender

window, and briefly press Alt twice, Shift twice, and Ctrl twice. This unsticks the keys if they

were stuck. Then, try the same operation again in blend_at. Notice that, unfortunately, you

may have to manually undo some of the incorrect results of the previous remote control ses-

sion before attempting the operation again.

� If you are working with a display using a color palette, use the PBM utilities to create a com-

mon palette for all textures (see Chapter 2).

� blend_at does little error checking. If you have saved the directory preferences, they are

written to the file .blend_at.config. If you later delete the directories referenced by the

configuration file, blend_at will gracelessly crash. Remove .blend_at.config in

this case, which causes the directories to be set to reasonable defaults.

Summary of Blender and Portal Worlds
Having now reached the end of our coverage of the Blender portal editing system, let’s once again

summarize the basic steps necessary to create worlds with this system.

1. Create a project working directory.

2. Start Blender and blend_at.

3. If editing an existing world, load the Blender file containing the world.

4. Set up the default load and save filenames for blend_at by loading and saving pro-
ject.obj from the project directory.

5. In blend_at, ensure that the project directory and working filename are identical to the

directory and filename of file project.obj.

6. Create sectors as meshes. Use holes in sectors as portals. Portals between sectors must align

exactly.

7. Assign each sector a unique ID by selecting the object in Blender, then clicking Refresh in

blend_at. Edit the attributes of each sector in blend_at to specify texture information

for the faces.

8. Create plug-in objects as cubes.
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9. Assign each object a unique ID by selecting the object in Blender, then clicking Refresh in

blend_at. Edit the attributes of each object in blend_at, to specify plug-in, appearance,

and initial sector information.

10. Create the camera as a plug-in object with the attribute IS_CAMERA YES.

11. Export the entire world by selecting all objects and exporting to Videoscape. This creates sev-

eral sequentially numbered files, all using the same base filename specified earlier

(project.obj).

12. Convert all meshes in the world to the portal world file format with a command of the form

perl $L3D/source/utils/portalize/vid2port.pl project.obj* > world.dat

and test the resulting world.dat file in l3d program porlotex. Ensure that all files

referenced in world.dat are accessible from the executable directory.

13. Save your work to a native Blender file when you are finished with an editing session.

The most important part of these instructions is the default load and save filename. By following

the instructions as outlined above, you can use the same filename both for temporary working pur-

poses, as needed by blend_at, and for exporting the entire level with Alt+w. This means that if

you follow the instructions above, you shouldn’t need to worry about the filename while you are

editing a world; you can edit, export, and test in a continuous cycle without ever needing to specify

a filename.

The only time you do need to worry about the filename is if you save your work in native

Blender format (which you should, since Videoscape is best viewed as an export format and not

the working format for your data) or in another directory. After such an operation, you must

reinitialize the default load and save filename by saving to and loading from the Videoscape pro-

ject work file project.obj. If you do not do so, subsequent save and load operations will

operate on the Blender native file—not the Videoscape work file—and the entire blend_at pro-

gram will behave in an undefined manner. If you are ever in doubt, run a quick check in Blender:

press F1, Esc to glance at the default load filename, and press Alt+w, Esc to glance at the default

save filename.

Other World Editing Ideas
We mentioned at the beginning of this chapter that the portal-based Blender world editing system

is just one of many possible world editing solutions. We purposely looked at this one particular

solution in detail, so that you could see all the small problems which need to be solved, and also so

that you can experiment with a working system to create levels. Now, let’s look at some other pos-

sible world editing ideas which could be used for other world organization schemes.

Portalized Regular Spatial Partitioning
As we mentioned in Chapter 5, we can use a regular spatial partitioning scheme combined with a

depth-bounded recursive portal traversal. With such a system, our world editor does not need to

divide the system up explicitly into sectors. Instead, arbitrary geometry, convex or concave, is just

Chapter 6: Blender and World Editing 475



saved into one or several meshes. It doesn’t matter how much or how little geometry is in one

mesh. Then, when exporting the world, we automatically slice the world up into equally sized

cubes, each of which is a sector. We do this by computing the bounding box for all of the geometry

in the world, then dividing this bounding box into smaller boxes. For each of the smaller boxes, we

clip all geometry in the world to each plane of the smaller box, to see what part of the world geom-

etry remains inside each box. We saw in Chapter 5 how to clip an object against planes.

After dividing the world up in this way, we then insert portals between all adjacent sectors

(cubes). Each interior sector has exactly six portals, one completely encompassing each face of the

sector, leading to its neighbors. Not all sectors generated in this way will contain geometry. We

can be more efficient by excluding empty sectors from further processing. We could use the

_has_geometry field of the Perl Sector object to keep track of this.

As we saw in Chapter 5, such a portal scheme requires an additional VSD scheme such as a z

buffer or a painter’s sort to produce a correct display at run time. Also, we must always limit the

depth of portal traversal with such a scheme, since the portals in this scheme always allow us to see

to the end of the world.

The advantage of this approach is that world editing is easier; you don’t need to worry about

creating separate sectors or aligning portals. The disadvantage is that you have no control over

how the geometry gets split into sectors. In the worst case (in fact, in the usual case), a room could

get split in half. Then, if you were standing some distance away, the near half of the room would be

displayed, but the far half of the room would require a portal traversal beyond the depth limit,

meaning that the far half simply would not be displayed until you moved nearer, at which point it

suddenly blinks into existence. Therefore, this scheme is less useful for indoor scenes, where it is

visually jarring to have parts of rooms suddenly appear or disappear, even if they are far away.

This scheme is better suited for outdoor scenes, where appearance or disappearance of hills or

trees far away is more tolerable. Combining this scheme with fog to hide the sudden appearance

and disappearance of geometry in the distance can also be effective.

BSP Tree and Octree
BSP trees and octrees are similar to the regular spatial partitioning scheme, only hierarchical. Cre-

ating a world editor for such a system is also similar. You do not specify any partitioning of space

yourself, instead letting the BSP tree or the octree divide the geometry for you. The geometry in

the world editor is stored in any convenient manner, divided in any way across an arbitrary number

of meshes; then, all geometry is exported at once and is automatically partitioned by the BSP tree

or octree. The advantages and disadvantages are similar to the regular spatial partitioning scheme.

Non-convex Sector-based Partitioning
A sort of middle ground between completely manual partitioning and completely automatic parti-

tioning is possible with the use of non-convex sectors. With this scheme, the world editor allows

you to divide the world into logical sectors of space, which do not have to be convex. In this case,

the partitioning serves to reduce complexity, but not to control explicit visibility information as is

the case with convex sectors. For instance, with convex sectors, one logical “room” might have to
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be split into multiple physical sectors to preserve convexity. This can be inconvenient from a

world editing standpoint, though it makes the visibility computations more efficient. Allowing

non-convex sectors permits us to group even non-convex geometry into one logically coherent

mesh, but complicates visibility.

To connect the regions, we could use portal polygons, explicitly defining visibility between

regions, as we did before. But since our sectors are non-convex anyway, we can also use a more

lax portal scheme similar to that with regular spatial partitioning. That is, for each non-convex sec-

tor, we compute its bounding box. Then, for each bounding box, we create six large rectangular

portals, one on each face of the box and exactly filling that face. For each portal created in this

way, we then spatially scan to see which other sectors’ bounding boxes overlap the portal. This is

an inexact overlap test; if any part of a sector’s bounding box overlaps the portal (i.e., intersects

with the portal), it counts as overlapping. We connect the portal to the overlapping sectors; there

could conceivably be more than one overlapping sector connected to each portal in this case,

which requires us to connect all of them to the portal.

Then, at run time, we use the same depth-bounded recursive portal traversal we used for the

regular spatial partitioning case. Again, we must depth-bound the traversal because the portals in

this case always overestimate visibility; portal connectivity exists between regions even if visibil-

ity is actually blocked by intervening polygons.

This sort of world editing scheme requires no scanning for free edges to make portals; instead,

it computes bounding boxes, makes large rectangular faces on the portals of these bounding

boxes, and connects portals to those sectors which overlap any part of the portal.

Since the sectors are non-convex, it is not easy to determine if a particular point, such as the

center of an object, is actually within a sector or not. Also, since portal connectivity is not exact but

is overestimated with this scheme, tracking the movement of the camera or an object between sec-

tors is more complicated. We can use the bounding box of the sector as a conservative test to see if

a point might be in a sector, but since bounding boxes of sectors can overlap, a point may be classi-

fied as being in multiple sectors at once. This requires some scheme to ensure that an object is

assigned to just one sector and is processed just once per frame.

The advantage of this scheme is that it allows the world designer control over how geometry

gets split into sectors, while simultaneously automating the connectivity among sectors without

requiring manual portal specification and alignment. The disadvantage is that portal connectivity

is very inexact and overestimated with this scheme, meaning that distant regions of the world still

can suddenly blink out of existence if they lie beyond the maximum traversal depth, but at least the

world designer can control the exact partitioning of the geometry so as to make areas that “blink

out” hidden behind a bending passageway so that the disappearing geometry is hidden behind a

wall anyway. Also, this approach requires an additional VSD scheme such as a z buffer to produce

a correct display, and causes more overdraw than a convex portal scheme (mostly a concern for

software rasterizers).

NOTE As far as I understand it, Blender 2.0, which includes game development facilities,
uses a scheme similar to this one.
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Summary
In this chapter, we looked at a world editing system using Blender. Using Blender and some exter-

nal tools, we created portal worlds which could be imported into the porlotex program from

the previous chapter. We saw how to implicitly specify and align portals, how to associate attrib-

utes with meshes using binary edge encoding and an external attributes database, and how to use

attributes to specify texture and plug-in information. We used the tool vid2port.pl to perform

the final conversion from the exported Videoscape meshes to the world file. Finally, we looked at

some other possible world editing schemes.

Having completed this chapter, we now know how to store, display, manipulate, and create

interesting and interactive real-time 3D environments using Linux tools and programs. That’s a

short sentence, but it summarizes the bulk of this book (and the introductory companion volume

Linux 3D Graphics Programming). With all of this knowledge, we are now ready for the next

chapter, which explores some more advanced 3D graphics techniques.
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C h a p t e r 7

Additional GraphicsAdditional Graphics
Techniques

T
he previous chapters have hopefully provided you with a broad and solid understanding of

theoretical and practical aspects of Linux 3D graphics programming. In this chapter, we

take a whirlwind tour of additional 3D graphics techniques. This chapter is a bit different

than the rest of the book in that it does not try to cover any topic in great detail or present lengthy

code examples for every concept; instead, this chapter aims to provide you with a perspective on

further 3D graphics techniques that you are likely to encounter or need, and that you can explore

further on your own. You now know enough to understand all of these topics at a high level; the

experience from the previous chapters has equipped you to deal with the low-level implementa-

tion issues on your own. You’ve earned your wings; now it’s time to fly.

In this chapter we look at the following topics:

� Techniques for creating special effects, such as environment mapping and lens flare

� Modeling natural phenomena such as smoke, water, or landscapes

� Particle systems

� Level of detail

� Curved surfaces

� Camera tracking in 3D

Special Effects
In previous chapters we have seen all of the basic elements needed to create a reasonably

good-looking interactive 3D environment. Let’s briefly recapitulate the main techniques we have

seen up to this point. Perspective creates a sense of depth and the parallax effect. Arbitrary camera

orientation allows for realistic viewpoints. Texture mapping and lighting create engaging surface

detail. A 3D modeling program allows us to create believable, complex geometry. VSD schemes

combined with a world editing environment enable the creation of entire 3D worlds.

In this section, we now take a look at some other more specialized techniques which can fur-

ther enhance the visual impact of a 3D program.
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Environment Mapping
The term environment mapping refers to a special form of dynamic texture mapping used to simu-

late the reflection of the environment off of a surface. Let’s first talk about the general idea, then

see how the idea can be applied in real time.

Environment mapping simulates the appearance of a reflective surface by coloring each pixel

of the surface’s rasterized image with a color coming from a reflected object in the surrounding

environment. For a perfect reflection, we could use ray tracing. Understanding the idea behind ray

tracing is necessary to understand environment mapping, so let’s talk about ray tracing first. With

ray tracing, we render reflections as follows.

1. Project an object from 3D into 2D. Rasterize the surface.

2. For each rasterized pixel, determine the 3D point corresponding to the pixel using a reverse

projection. Call this point p. From the 3D point, determine the surface normal at that point.

Call this normal N. We can interpolate surface normals, as with Phong shading (see Chapter

2), to simulate a smooth curved surface when only flat polygons exist.

3. Using the physical reflection law that the angle of incidence equals the angle of reflection,

reflect the vector from the eye to p around the vector N. We can do this using a rotation matrix

of 180 degrees, as we saw in Chapter 2. This gives a bounced visibility vector off of the

surface.

4. Determine which other object in the environment is the first (nearest) one that intersects the

bounced visibility vector. This requires an intersection test between a ray and a polygon,

which we cover in Chapter 8. Compute a color and light value for the object at the point of

intersection (using texture and light mapping, for instance), and draw this color in the pixel

from step 2 currently being rasterized.

5. Repeat for every pixel in the image.
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Figure 7-1: A cylinder modeled with environment
mapping. The cylinder appears to reflect its
environment.



We thus trace rays of visibility from the eye through every pixel in the image, bouncing each ray

off of the surface to create a reflection and thereby determining which reflected object is seen for

every pixel.

While ray tracing creates good reflections, its problem is that it is slow. Environment mapping

is a way of speeding this up by capturing the entire environment beforehand in a special 2D image,

called the environment map. During the rasterization of each pixel of a reflective surface, instead

of searching the entire 3D environment to see which object intersects the reflected visibility vec-

tor, we simply look up the appropriate pixel in the 2D environment map. In essence, therefore,

environment mapping is a form of texture mapping, but the texture coordinates dynamically

depend on the reflected vector from the eye to the surface, correctly causing a change in the reflec-

tion whenever the eye moves. Environment mapping assumes that the environment is far away

from the reflector, and that the reflector cannot reflect itself (since it is not part of the environment

captured in the environment map).
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Figure 7-2: Ray tracing to create reflections.



Environment mapping requires us to do two main computations: the computation of the envi-

ronment map itself, and the mapping of the 3D reflection vector to a 2D (u,v) index within the

environment map. The way we compute the environment map affects the way that we map the

reflection vector to the environment map. Two common schemes, but not the only ones, are the

cubic and spherical environment map.

With the cubic method, illustrated in Figure 7-3, we place a camera in the center of the envi-

ronment, and construct a cube around the camera. The camera then renders an image of the

environment onto each of the six cube faces, each time with a 90 degree field of view. Mapping the

reflection vector to the cube is done first by selecting one of the six cube faces based on the largest

component of the reflection vector; for instance, a reflection vector of (0.75,0.2,0.63) would select

the –x side of the cube, since the x component is largest and is negative. Then, the remaining two

components of the normal vector, which both must lie within the range from –1.0 to 1.0 because of

the unit length of the reflection vector, are scaled to lie within the range from 0 to 1; for instance,

the two remaining coordinates (0.2,–0.63) would map to an environment map (u,v) index

(0.6,0.185) on the selected face. By doing this computation for all vertices of a polygon, we can

then simply texture map the polygon as normal to make the polygon appear to reflect its
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Figure 7-3: Environment mapping first captures the environment in a static 2D environment
map, then uses the reflection vector to compute an index into the environment map. Here,
cubic environment mapping is shown.



environment. If two vertices of a polygon lie on different faces of the environment map cube, we

can split the polygon into two or more pieces, each lying on only one face of the cube.

With the spherical method, the environment map is a circular image representing the appear-

ance of the environment as it would appear orthographically reflected in a sphere. The

environment map in this case can be referred to as a sphere map. Physically, such sphere maps can

be created by taking a photograph of a large chrome sphere with a camera located very far away

from the sphere (to simulate orthographic viewing). Algorithmically, we can take a cubical envi-

ronment map and warp it into a sphere by using image warping techniques, a technique

documented in Advanced OpenGL Game Development [GOLD98]. Once you have such an envi-

ronment map, you can then use the following equation to map from the 3D reflection vector r to

the 2D (u,v) values in the environment map (the m value is a temporary magnitude value used in

the computation and is not needed later):

OpenGL directly supports sphere mapping, which means that it can compute these texture coordi-

nates automatically for you by using the above equations. A sample code fragment that performs

OpenGL sphere mapping follows.

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_2D);
//- polygon rendering comes here, e.g. glBegin(GL_POLYGON)
glNormal3f(nx,ny,nz);
glVertex3f(x,y,z);
//- etc., glEnd(GL_POLYGON);

The calls to glTexGeni turn on the OpenGL automatic texture generation, meaning that calls to

glTexCoord*, which specify explicit texture coordinates, are not necessary; contrast this with

the texture mapping Mesa rasterizer of Chapter 2.

For the generation of sphere maps, Mark Kilgard has written a library LibGLsmap, which cre-

ates a cubical environment map and then warps it into a spherical map for use by OpenGL sphere

mapping. See Advanced OpenGL Game Development [GOLD98] for details. Such sphere maps

can be generated dynamically, so that whenever the environment changes, the reflections also

change. If the environment does not change, a static sphere map could be computed once and used.

NOTE Blender supports rendering images with environment mapping, and was used to
create the image of the environment mapped cylinder in Figure 7-1. You must use the
TextureButtons in Blender to select an EnvMap texture to apply to a material, which is in turn
applied to a mesh. When rendering a scene with environment mapping in Blender, notice that
Blender briefly renders six small images, implying that it uses some variation of the cube map
scheme. With the SaveEnvMap button in the TextureButtons, Blender allows you to save the
computed environment map to a 2D Targa image file (you can convert it to another format
with the GIMP program), which contains six small square images, one for each side of the
cube. To use this environment map in your program, you would have to implement the cube
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mapping yourself, or warp the image into a sphere and use OpenGL’s sphere mapping. See
the Blender home page http://www.blender.nl for tutorials on environment mapping
with Blender.

Billboards
A billboard is a single texture mapped polygon which always rotates itself so that it directly faces

the viewer. Billboards are also often called sprites. The texture image on the billboard is typically

a 2D image of a more complicated 3D object. For instance, a 2D billboard could contain a

pre-rendered image of a complex tree model containing hundreds of polygons. Then, we can

approximate the visual appearance of the tree by rendering just one polygon. Thus, the purpose of

using billboards is to create the illusion of complex geometry by using a single texture mapped

polygon.

There are two main ways to define when the billboard “faces the viewer.” In one case, the bill-

board always rotates around all three axes so that it is perfectly parallel to the screen. We call such

billboards screen-aligned billboards. Such billboards can be used for printing text (which is where

the name billboard originally comes from), or for displaying explosions or smoke, as we see

below. In the other case, the billboard only is allowed to rotate around one axis, typically its own

up axis. We call such billboards axis-aligned billboards. This scheme can be used for modeling

trees.

To perform the actual rotation for either kind of billboard, we must construct a rotation matrix

rotating from the billboard’s current orientation to the desired orientation. Think of the billboard

as being a camera with its own local coordinate system. The VUP axis points up the billboard, the

VRI axis points horizontally along the billboard, and the VFW axis points along the billboard’s

surface normal. These axes are the billboard’s current orientation. Then, express desired orienta-

tion in terms of vectors. For the screen-aligned billboard, the desired orientation is the camera

orientation, with the same VUP vector but with reversed VRI and VFW vectors. For the

axis-aligned billboard, the desired alignment can be expressed as a rotation of the current align-

ment around the billboard’s own VUP vector. Given the desired alignment, we can then construct

a matrix converting from the original alignment to the desired alignment.
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Figure 7-4: A billboard always changes its position so that it faces the viewer.
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Typically a billboard will have a so-called alpha channel. This is because the billboard poly-

gon is usually rectangular, for simplicity, but the image on the billboard is not generally

rectangular. This means that parts of the billboard rectangle are unused. We don’t want to draw the

parts of the billboard that are unused, because then this would look as if we were sticking rectan-

gular pictures all over the top of our scene—which is in fact what we are doing, but we can make it

look better with an alpha channel. An alpha channel is a special type of color that specifies the

transparency of an image. We can thus use the alpha channel to set the unused part of the billboard

polygon to be transparent and the rest to be opaque.

An alpha channel is typically physically represented in memory by a certain number of bits.

For instance, if we have a 24-bit red-green-blue (RGB) color model, with 8 bits each for red,

green, and blue, then we can introduce an additional 8 bits for the alpha channel, giving a 32-bit

red-green-blue-alpha (RGBA) color model. Graphics acceleration hardware often supports an

alpha channel directly, whereas implementing alpha in software manually requires the rasterizer

to check for alpha values and combine the new color with the previous color accordingly. (The sit-

uation is somewhat easier with just a 1-bit alpha channel, since no color mixing needs to be done;

either you see the old color with an alpha of zero, or you see the new color with an alpha of one.)
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Figure 7-5: Screen-aligned
billboard. Regardless of the
camera orientation, the
billboard always faces the
camera.

Figure 7-6: Axis-aligned
billboard. The billboard is only
allowed to rotate about its
vertical axis, meaning that a
view from above does not cause
the billboard to tilt backward.

Figure 7-7: An alpha channel allows us to see
through the unused parts of a billboard, creating
a natural appearance. The billboards on the left
use no alpha channel, and it is obvious that they
are rectangular textured polygons; the billboards
on the right use an alpha channel.



Billboards can be used in combination with other techniques to create visual special effects,

with fewer polygons than would otherwise be required. We’ll now look at some of these

techniques.

Lens Flare
Lens flare is a phenomenon caused by the imperfection of real-world lenses when confronted with

very bright light, causing a sparkle or flare to appear in the final image. We can use billboards to

simulate lens flare, thereby giving or underscoring the appearance of bright light in an image. We

simply render or draw a 2D image texture that looks like a small sparkle, then draw this texture

onto a screen-aligned billboard. We can render the lens flare after all other geometry is rendered,

so that the lens flares never appear to be obstructed by other geometry. Such an obstruction would

make it clear that the lens flare is merely a textured polygon.

We can control the drawing of the lens flare with line-of-sight and distance parameters. For

instance, we can model a bright light source as being behind a wall. If a straight line of sight from

the camera to the light source exists, we can draw the lens flare billboard; otherwise, we do not

draw it. This creates the desired effect of having the lens flare suddenly pop into existence as soon

as the light is visible. We can also draw the lens flare billboard larger as we move closer to the light

source, and smaller as we move away, by using a distance formula. Although the lens flare would

already automatically increase in apparent size as we approach it due to normal perspective, we

can exaggerate this effect by making the lens flare grow or shrink in size exponentially as we

approach or recede from it. We would want to exaggerate the growth or shrinkage of the lens flare

with distance because the lens flare should not appear to be a physical point in space that we can

normally approach; it is instead a lens artifact that depends on our viewing position.
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Figure 7-8: Using a billboard to simulate lens flare.



Particle Systems
A particle system is a system of many small objects, called particles, all of which are set into

motion and controlled by some algorithm specific to the system. Any effect which can be viewed

as a collection of particles can be modeled with a particle system. Examples of systems that can be

modeled with particle systems are explosions, fire, smoke, a swarm of insects, or a school of

swimming fish.

The particles in a particle system are typically numerous, ranging from the hundreds to the

thousands. It is the collective optical effect of all the particles as a whole system that leads to the

term particle system. Because the effect depends on the quantity of particles, it is often the case

that the particles themselves are very simple objects. They can be actual polygonal objects (as

with a school of fish), or simple billboards (for fire or smoke), or even simply single points (for

explosions or insect swarms). The simpler the representation, the more particles you can have in

the system. Speed is also of primary concern in a real-time particle system, because there are so

many particles.
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Figure 7-9: Using line-of-sight to control lens flare.

Figure 7-10: Using distance to control lens flare.



Particle systems are particularly fun to program and play with because with just a few lines of

code, you can create an interesting and, as we now see for the first time in this book, physically

realistic system. Let’s now look at a simple particle system.

Physics and Particle Systems

The idea behind our particle system is amazingly simple, yet it produces quite satisfying results.

The next sample programparticle simulates an explosion of a few thousand particles. We start

all particles out at a certain position, and then impart each particle with a random 3D velocity away

from the starting point, to simulate the tremendous and practically instantaneous outward force

generated by an explosion. From classical Newtonian physics, we know that velocity is a change

in position over time. The velocity of each particle, therefore, is expressed as a 3D vector indicat-

ing the x, y, and z displacements per second for each particle. We’ll see in a moment exactly how

the time component, the seconds, plays a role.

This alone would be enough to generate an explosion effect, but it would be mostly uninter-

esting—at least, in comparison to all the things we can achieve with a particle system. In

particular, the velocity of each particle would not change over time with this system. This may be

the way things work in outer space, where no other forces act on the particles, but let’s make it a bit

more interesting and assume we are modeling an explosion of particles on the earth.

On Earth, all bodies are subject to the force of gravity. Objects fall toward the ground with an

acceleration of 9.8 m/s2 (meters per second squared), regardless of their mass. Acceleration is a

change in velocity over time; velocity, in turn, changes position over time. This means that if we

are modeling an explosion on Earth, each particle’s velocity should, each second, increase by 9.8

m/s downward toward the earth. This creates a realistic falling effect. The acceleration is

expressed as a 3D vector indicating the x, y, and z change to the velocity per second. Assuming our

left-handed coordinate system with y going up, this means that our acceleration vector due to grav-

itational force is (0,–9.8,0) meters per second, each second.

To make the simulation more interesting, we also model a flat, hard floor off of which the par-

ticles can bounce. If a particle is found to have moved beneath the floor, we correct its position to

be back on the surface of the floor, and reverse the y component’s velocity so that it is no longer

traveling down, but up. We also reduce the y component of the velocity to simulate a loss of energy

after impact with the floor. Note that this handling of collision with the floor is quite simplified;

see the section on collision detection in Chapter 8 for some of the issues involved with more accu-

rate collision detection and response.

Finally, we give each particle a lifetime in seconds. After a certain number of seconds, the par-

ticle “dies” and is no longer visible. In this sample program, when a particle dies, we reinitialize it

so that the particle system is always in motion. Furthermore, all particles are initially created

simultaneously and have identical lifetimes, meaning that the explosion animation appears to

repeat itself because all particles die and reincarnate with one another simultaneously. You could

give each particle a random lifetime to create a more continuous, non-repetitive flow of particles,

but then it wouldn’t look so much like a massive explosion, rather more like a stream of individ-

ual, high-powered particles being shot one after another. The choice of lifetime depends on the

desired effect.
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Real-Time Update

We’ve now laid down the simple physical rules governing our particle system, which are a simpli-

fication of Earth’s rules. Our particles start out with a random initial explosive outward velocity,

which changes the particles’ positions over time. All particles are subject to the force of gravity,

which causes an acceleration of the particles in the downward direction. This acceleration changes

the particles’ velocities over time, again changing the position over time. Particles die and are

reborn after a fixed lifetime in seconds.

The one new component here is the time factor. All of our dynamic quantities here depend on

elapsed time in seconds. Until now, we have not used time explicitly in the update routines for our

objects. We updated objects from frame to frame, with the knowledge that one frame temporally

follows the previous one, but we didn’t know exactly how much time elapsed since the last frame.

Until now, this was largely unimportant, because we weren’t doing any physically based simula-

tion. Now we are. In Chapter 1, we made a passing comment on this phenomenon, repeated here:

“The calling frequency of update_event is not necessarily guaranteed to be constant.

That is to say, the amount of physical time which elapses between successive calls may be slightly

different. For accurate physical simulations, where velocities or other physical quantities should

be updated based on time, we can store an internal variable recording the value of the system clock

the last time that update_event was called. We can then compare the current system clock to

the value of the variable to determine how much physical time has elapsed, and update the

time-dependent quantities accordingly.”

This explains exactly what we are going to do in our sample program to update our positions

and velocities with respect to time. We update each particle individually. For each particle, at the

beginning of a frame, we use the system callgettimeofday to retrieve the current system time.

We then compare the current time to a previously saved time value, which was set during the pre-

vious frame at exactly the same position in the code. We subtract the current time from the

previous time see how much physical time, in seconds, has elapsed since the last frame. Typically

this value will be a fraction of a second (and should be, for interactive 3D applications).

Given the elapsed time since the last frame, we multiply it with the time-dependent quantities

to obtain the change in the time-dependent value, and update the time-dependent values accord-

ingly. For instance, let’s say we have a particle with an initial velocity of 10m/s in the positive y

direction. This means that the particle is traveling upwards. Let’s say that 0.25 seconds elapsed

since the last time we called this routine. First, we determine the change in distance, by multiply-

ing the elapsed time with the velocity: 10m/s*0.25s = 2.5m. This means that in the 0.25 elapsed

seconds since the last time we updated the particle’s position, the particle has traveled 2.5 meters.

Then we update the velocity itself. Due to gravity, acceleration changes the y component of veloc-

ity by –9.8m/s each second. We multiply the acceleration by the elapsed time: 0.25s* (–9.8m/s2),

yielding a change in velocity over those 0.25s of –2.45m/s. We add this change in velocity to the

current velocity, giving us 10m/s–2.45m/s = 7.55m/s as the new current velocity of the particle.

Now, the particle is still traveling upwards, but more slowly, because gravity is pulling it down.

After performing these computations, we save the current time into a variable, which represents

the last time that we took physical action on our particle. The next time the routine is called, the

new position and velocity are again updated based on the elapsed time.
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NOTE This means of computing new values of time-dependent quantities through multipli-
cation with the elapsed time is called Euler integration. It is not completely correct, because it
assumes the particles were moving in straight lines with constant velocity and acceleration
during the elapsed time. This is generally not the case, which leads to cumulative errors in the
computed positions, velocities, and accelerations of the particles. See the section on physics
for more information.

Sample Program: particle

With the preceding explanation, understanding the source code listing for the sample program

particle should be easy. The structure of this program is based on that of the dots program

presented in the introductory companion book Linux 3D Graphics Programming (and included on

the CD-ROM). We have mercilessly slashed out the code for the runway lights, stars, and snow

examples, and focused the program on the particle system simulation. The abstract class mydot
has been extended to include a member variable lifetime, indicating how much longer this dot

has to live, in seconds, and a method is_alive, returning if the dot is still alive or not.

The pipeline class has been minimally changed, so that instead of determining if a dot is out-

side of the world coordinate bounds, as we did in the original dots program, we check to see if

the dot is alive or not. If not, then we reset it.

The new dot subclass dot_particle controls the behavior of the particles, which in this

program are simply drawn as dots. The methods of interest are place_dot and move_dot.

Methodplace_dot places a dot at the origin, resets its lifetime, and assigns it a random outward

velocity. This method is called to initially place the dots at program start and to resurrect a dot

whenever it dies. Method move_dot computes the elapsed time since the last invocation of

move_dot, and updates the position and velocity accordingly. If a dot is found to be beneath the

floor, it is repositioned to lie on the floor, and its velocity in the y direction is instantaneously

negated and scaled down slightly, simulating a vertical bounce with loss of energy; gravity eventu-

ally pulls the dot back down again. Also, we similarly bounce the dots off of invisible, vertical,

axis-aligned planes, if the dot’s x or z values are too large or small. Finally, we reduce the lifetime

of the dot so that it eventually dies and gets reborn.
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Listing 7-1: particle.cc
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>

#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
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#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/system/fact0_3.h"

#include "../lib/geom/point/point.h"
#include "../lib/math/vector.h"
#include "../lib/math/matrix.h"

#define MAXDOTS 1500

#define PI 3.14159265

void choose_factories(void) {
factory_manager_v_0_3.choose_factories();

}

l3d_real fovx, fovy;
int xsize, ysize;

class mydot {
public:
l3d_coordinate position;
l3d_vector displacement;
l3d_vector velocity;
mydot(void) {position.original.set(int_to_l3d_real(0),

int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1)); }

virtual void place_dot(void) = 0;
virtual void move_dot(void) = 0;
virtual void project_dot(void) {
position.transformed.X_ =
l3d_mulri(l3d_mulrr(l3d_divrr( position.transformed.X_,

position.transformed.Z_),
fovx),

xsize)
+
int_to_l3d_real(xsize > 1);

position.transformed.Y_ =
l3d_mulri(l3d_mulrr(l3d_divrr(-position.transformed.Y_,

position.transformed.Z_),
fovy),

ysize)
+
int_to_l3d_real(ysize > 1);

}
virtual int is_alive(void) = 0;

};

class my_pipeline : public l3d_pipeline {
protected:
l3d_rasterizer_2d_imp *ri;
l3d_rasterizer_2d *r;

unsigned long color;

mydot *dots[MAXDOTS];
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int numdots;

long i, j;
long wc_win_width, wc_win_height, wc_win_dist, fov;
long wc_win_left, wc_win_top;

public:
l3d_screen *s;
my_pipeline(void);
virtual ~my_pipeline(void);

void key_event(int ch);
void update_event(void);
void draw_event(void);

};

my_pipeline::my_pipeline(void) {
s = factory_manager_v_0_3.screen_factory->create(400,300);
ri = factory_manager_v_0_3.ras_2d_imp_factory->create(400,300,s->sinfo);
r = new l3d_rasterizer_2d(ri);

s->sinfo->ext_to_native(0,0,0);
s->sinfo->ext_max_red =
s->sinfo->ext_max_green =
s->sinfo->ext_max_blue = 255;

color = s->sinfo->ext_to_native(255, 255, 255);
s->refresh_palette();

xsize = s->xsize;
ysize = s->ysize;
fovx = float_to_l3d_real(1.0/tan(50./180. * PI));
fovy = float_to_l3d_real(1.0/tan(30./180. * PI));

}

my_pipeline::~my_pipeline(void) {

int dot_i = 0;
for(dot_i=0; dot_i<numdots; dot_i++) {
delete dots[dot_i];

}

delete s;
delete ri;
delete r;

}

void my_pipeline::key_event(int ch) {
switch(ch) {
case 'q': {

exit(0);
}

}
}

void my_pipeline::update_event() {
int i;

for(i=0;i<numdots;i++) {
dots[i]->position.reset();
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dots[i]->move_dot();
if(! (dots[i] -> is_alive())) {
dots[i]->place_dot();

}
dots[i]->project_dot();

}
}

void my_pipeline::draw_event(void) {
int i;
r->clear_buffer();

for(i=0;i<numdots;i++) {
if(dots[i]->position.transformed.X_>=0 &&

dots[i]->position.transformed.X_ <= int_to_l3d_real(s->xsize) &&
dots[i]->position.transformed.Y_ >= 0 &&
dots[i]->position.transformed.Y_ <= int_to_l3d_real(s->ysize))

{
r->draw_point(ifloor(dots[i]->position.transformed.X_),

ifloor(dots[i]->position.transformed.Y_),
color);

}
}

s->blit_screen();
}

class dot_particle : public mydot {
protected:
l3d_vector accel;
float lifetime;
long last_sec, last_usec;

public:
void place_dot(void); //- virtual
void move_dot(void); //- virtual
int is_alive(void);

};

void dot_particle::place_dot(void) {
displacement.set(0,

0,
50,
0);

position.reset();
accel.set (float_to_l3d_real(0.0),

float_to_l3d_real(-9.8),
float_to_l3d_real(0.0),
float_to_l3d_real(0.0));

velocity.set(float_to_l3d_real( l3d_divri( int_to_l3d_real(rand()%500),10) - int_to_l3d_real(25) ),
float_to_l3d_real( l3d_divri( int_to_l3d_real(rand()%500),10) ),
float_to_l3d_real( l3d_divri( int_to_l3d_real(-rand()%500),10)),
float_to_l3d_real(0.0));

lifetime = 15.0;

struct timeval tv;
struct timezone tz;
tz.tz_minuteswest = -60;
gettimeofday(&tv,&tz);
last_sec = tv.tv_sec;
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last_usec = tv.tv_usec;

}

void dot_particle::move_dot(void) {

struct timeval tv;
struct timezone tz;
tz.tz_minuteswest = -60;
gettimeofday(&tv,&tz);

l3d_real delta_t = float_to_l3d_real
( (tv.tv_sec + 0.000001 * tv.tv_usec -

(last_sec + 0.000001 * last_usec)) );

displacement = displacement + velocity*delta_t;

l3d_vector total_accel;
total_accel = accel;
velocity = velocity + total_accel*delta_t;

if(displacement.a[0] > int_to_l3d_real(100)) {
velocity.a[0] = l3d_divri(-velocity.a[0],4);
displacement.a[0] = int_to_l3d_real(100);

}
if(displacement.a[0] < int_to_l3d_real(-100)) {
velocity.a[0] = l3d_divri(-velocity.a[0],4);
displacement.a[0] = int_to_l3d_real(-100);

}
if(displacement.a[2] > int_to_l3d_real(120)) {
velocity.a[2] = l3d_divri(-velocity.a[2],4);
displacement.a[2] = int_to_l3d_real(120);

}
if(displacement.a[2] < int_to_l3d_real(60)) {
velocity.a[2] = l3d_divri(-velocity.a[2],4);
displacement.a[2] = int_to_l3d_real(60);

}
if(displacement.a[1] < int_to_l3d_real(-10)) {
displacement.a[1] = int_to_l3d_real(-10);
velocity.a[1] = l3d_divri(-velocity.a[1],4);

}
position.reset();
position.transformed = position.transformed + displacement;

lifetime -= delta_t;

last_sec = tv.tv_sec;
last_usec = tv.tv_usec;

}

int dot_particle::is_alive(void) {
return (lifetime > 0.0);

}

class my_pipeline_particle : public my_pipeline {
public:
my_pipeline_particle(void) {
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int i;

for(i=0; i<MAXDOTS; i++) {
dots[i] = new dot_particle();
dots[i]->place_dot();

}
numdots = MAXDOTS;

}
};

int main(int argc, char **argv) {

choose_factories();

l3d_dispatcher *d;
my_pipeline *p;

d = factory_manager_v_0_3.dispatcher_factory->create();
p = new my_pipeline_particle();

d->pipeline = p;
d->event_source = p->s;
d->start();

delete d;
delete p;

}

Comments on the Sample Program’s Physics

There are actually several oversimplifications made to the physics modeling in this program. Just

for starters, the particles have no mass or volume, and cannot interact with each other. Also, we

wantonly fooled around with the particles’ positions and velocities whenever we found that they

happened to be beneath the floor, instead of actually detecting and handling collisions. So,

although each particle behaves in a mostly realistic manner, there are still several physics issues

which have been vastly and incorrectly simplified in this example. (We briefly return to the topic

of physics in Chapter 8.) This is one of the advantages of particle systems: you can use a simple

particle system as a testbed for simple physics code, and even if the physics isn’t completely cor-

rect, with a particle system it still tends to look good due to the sheer number of particles. Handling

physics correctly is more important when we have a few, large objects interacting with one

another, when we are more likely to notice exactly how the objects behave.

Some Ideas for You to Try

You might want to experiment with the particle system to try to create some more interesting

effects. Some ideas are:

� Allow the particles to interact with one another. For instance, assign each particle a magnetic

attractive or repulsive force, which affects all other particles. This would require saving the

previous state of all particles in an array, and then updating each particle based on the sum of

all previous forces exerted by all particles.
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� Assign each particle a color based on its lifetime. This could be used for a fire effect, where

newer particles glow with a hot white color, while older particles fade away to dull red.

� Add extra forces such as air resistance, negative gravity, and additional gravitational centers.

� Model spring forces between the particles to build more complex structures.

� Create real l3d_object objects or billboards instead of dots to represent the particles.

� Allow for arbitrary camera movement so you can observe the particle system from any angle.

� Encapsulate a generalized particle system into a class, and write a plug-in object that uses the

particle system. Examples of such plug-in objects could include flamethrowers, explosions,

or water fountains.

Natural Phenomena
There are a number of techniques we can use to simulate the appearance of natural phenomena,

such as water, clouds, smoke, and so forth. Since real physical modeling and simulation of these

phenomena is currently enormously computationally expensive, we have to find ways of simulat-

ing their appearance. Simulating natural phenomena mostly relies on a clever use of texture

mapping, billboarding, and sometimes use of actual polygonal geometry.

NOTE Real numerical simulation of such natural phenomena is, of course, possible. For
instance, I used to work at a meteorology lab, where thunderstorms were numerically simu-
lated in 3D using computational fluid dynamics techniques, sometimes in real time. It was a
routine matter to run these simulations on a Cray or a cluster of RISC workstations. This shows
the sort of computing power which is needed to run such simulations in real time—and “real
time” here merely means faster than the weather, not at interactive frame rates with multiple
updates per second. So unless you have a spare Cray lying around, you’ll have to be satisfied
with simulating the appearance rather than the real behavior of natural phenomena.

Let’s now look at some kinds of natural phenomena whose appearance we can easily simulate.

Advanced OpenGL Game Development provides more coverage of some of these techniques

[GOLD98].

� Clouds: We can create a single, large polygon with a repeating, small cloud texture, and place

it high within the scene. By dynamically changing the texture coordinates, the cloud images

will appear to drift across the cloud layer. We can use multiple cloud polygons at different

heights in combination with an alpha channel to create the appearance of multiple cloud lay-

ers. The cloud texture can be created manually or by some procedural or fractal method.

Image manipulation programs such as the GIMP often have plug-ins for creating cloud-like

and other natural textures; Blender also has cloud support as a procedural texture.
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� Sky domes and sky boxes: Instead of using a single polygon for the sky, we can surround the

camera with a huge texture mapped dome or box. The box is large enough so that its faces all

appear very distant from the camera. We then map any static background geometry onto the

faces of the box—for instance, distant mountains, clouds, and a fiery sunset. The box is drawn

in camera space with unchanging coordinates. This causes all parts of the box always to be a

certain fixed distance from the camera; the viewer can never get physically closer to the back-

ground image polygons. This produces the illusion of an infinitely far background.

� Smoke: A single screen-aligned billboard polygon with an alpha channel can be used to simu-

late a single puff of smoke. Over time, we can make the billboard larger and more transparent

to simulate the expansion and dissipation of the smoke. By using several smoke puffs one

after another, each independently expanding and eventually fading completely away, we can

create a trail of smoke. Smoke textures, like cloud textures, can be generated algorithmically

or by hand.

� Fire: An animated series of screen-aligned billboard polygons can create the illusion of a

flickering fire. The same technique can be used for explosions and fireballs. We can combine

these techniques with the smoke techniques.
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Figure 7-12: A polygonal cloud layer.
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for the puff can be seen in the lower left of the
figure.



� Water: We can use a single translucent, colored polygon with a changing ripple texture to sim-

ulate water, such as the surface of a pool. The geometry underneath the water then appears to

be seen through the polygon representing the water surface. We can treat this translucent

water surface polygon as a portal, possibly distorting the underwater geometry behind the

portal in a slow, cyclic fashion, to simulate the changing refraction of light through moving

water. We can also use a textured polygon mesh, which is dynamically morphed over time

with sine waves to geometrically model the surface of the water and waves. Environment

mapping can be used to capture reflections in the water; if the water is perfectly still, a simple

second rendering of the reflected geometry (as with portal mirrors; see Chapter 5) can be used

for the reflection. Underneath water, we can use some of the following techniques: a pale

underwater green color, upward-floating air bubbles (either billboards or polygonal, translu-

cent spheres), and wavy image distortion of the 2D image just before rasterization.

� Fog: We can also use the fog techniques of Chapter 2 in combination with any or all of the

above.

Bump Mapping
Bump mapping is a technique used to give a flat surface the appearance of having small surface

perturbations, or bumps and pits. Bump mapping is similar to texture mapping in that it uses a 2D

image map, the bump map, whose contents are used to vary the surface normal of a polygon during

rasterization on a per-pixel basis. The modified surface normal is then used to compute lighting.

Because the lighting computation depends on the surface normal, the modified surface normal

gives the appearance that the surface has been perturbed slightly, leading to small shadows or

highlights.
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Figure 7-14: Fire. These images
were created automatically with the
GIMP image manipulation program
(using the menu options
Filters-Render-Flame).

Figure 7-15: Water. Here, we use a textured, wavy mesh with an
alpha channel to simulate the water surface. For clarity, no
surrounding geometry is drawn around the water mesh, so you can
see directly beneath the water polygons to the fish. Ordinarily, the
water mesh would be completely surrounded by land geometry, so
that the only way to see the underwater objects would be through
the translucent water mesh.



One way of using the bump map is to store a (u,v) displacement at each location in the bump

map. We then add these vectors to the tip of a real surface normal vector to push or pull the tip of

the normal into a new direction, much as you would push or pull the tip of a joystick to change its

direction. Another way to use the bump map is to interpret the bump map as a height field, where

each pixel in the bump map is a height value. In this case, the bump map then completely deter-

mines the surface normal, instead of modifying the existing surface normal. The slope between

any two adjacent bump map pixels determines the surface normal; if two adjacent pixels in the

bump map have the same height, then the slope between them is flat, and the normal points

straight up; if they have a different height, then the slope points either upward or downward, and

the normal is perpendicular to the slope.

Bump mapping as described here is a computationally expensive operation, since it requires

normal and lighting calculations for each pixel, but there are a number of ways of speeding it up.

Real-Time Rendering by Tomas Möller and Eric Haines provides an overview of several methods

[MOEL99].

Multi-pass Techniques
The recent increase in availability of graphics acceleration hardware has made it feasible to imple-

ment multi-pass rendering algorithms. Multi-pass algorithms render the same scene multiple

times, combining the results of each rendering into the final 2D image which gets displayed

on-screen. This, of course, implies increased rendering work. There are two main reasons for

multi-pass rendering: either it is the most natural solution to a problem, or the presence of hard-

ware acceleration makes it the fastest solution to a problem.

We’ve actually already seen an example of multi-pass rendering in Chapter 2, where we used

multi-pass rendering with Mesa to modulate our textured polygons with the light coming from

light maps. This is an example of where the presence of hardware acceleration makes multi-pass

rendering the fastest solution to a problem. In software light map rendering, recall, we computed a

surface, which was the combined light map and texture map. Then, we drew this combined surface

in one pass, using an unmodified texture-mapping rasterizer. Computing the surface costs time

and memory. With hardware acceleration, it is more efficient just to make two passes on the scene,

then combine them. Combining the two passes can be done with the function glBlendFunc, as

we saw in Chapter 2.

An example of multi-pass rendering as the most natural solution to a problem is when multi-

ple, dynamic lighting components interact. Consider an example of a textured and environment
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mapped model of a shiny apple. The texture map represents the surface of the apple itself; it would

be red and slightly uneven to simulate the appearance of the apple peel. The environment map rep-

resents the reflection of the environment off of the apple’s surface. If we move the viewpoint or the

apple, then the apple’s texture (the peel) appears to remain fixed to the apple’s geometry, but the

reflections, since they depend on the viewpoint, appear to change with respect to the apple’s

geometry. Thus, we have two different images which get mapped onto the apple’s geometry, each

of which is computed differently than the other. The texture map’s coordinates are fixed; the envi-

ronment map’s texture coordinates change with the viewpoint, but both ultimately affect the same

2D pixels resulting from the projection of the same 3D points. While it would theoretically be pos-

sible to combine the environment map and the texture map into a single texture, as we did with

light mapping, this would need to be redone for every change in the viewpoint, since the environ-

ment map contribution changes based on the viewpoint, unlike the diffuse lighting components

(which are viewpoint independent) captured into a static light map. In this case, therefore, it is

most natural to render the texture in one pass, the environment in another pass, and blend the two

images together.

OpenGL 1.3 supports multi-texturing, where the graphics API itself (and possibly also the

hardware) allows for the simultaneous specification of multiple texture coordinates for one set of

geometry. Then, in the presence of appropriate multi-texturing hardware, the scene is rendered

with multiple textures, but in the time it takes to render just one pass.

Advanced Techniques
In this section, we take a look at some graphical techniques which use interesting algorithms to

create complicated or visually interesting graphics. The advanced techniques of this section differ

from the special effects of the previous section in that the special effect techniques generally relied

upon a fairly simple idea, with the goal of generating a visually interesting result. On the other

hand, the advanced techniques in this section generally have somewhat more complex algorithms,

and often have a goal other than just a visual glamour. They can represent an entirely different or

new way of handling some fundamental aspect of 3D graphics.

Curved Surfaces
The focus of this book has been on polygonal 3D graphics. We stored our models as polygons, and

rendered these polygons to the screen.

An alternative is to represent the geometry in terms of curved surfaces, then to tessellate the

geometry dynamically to generate a polygonal representation. While it would theoretically be

possible to render the curved surface directly by using a z buffer (remember, the z buffer only

requires us to be able to compute a z value for the surface for every pixel), it is generally more

common to tessellate the curve into polygons, so that hardware acceleration for polygons can be

exploited.

There are a number of curved surface representations. Hermite surfaces, Bezier surfaces, and

NURBS (Nonuniform Rational B-Spline) surfaces are some of the more common ones. A patch is
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a small segment of a curved surface; think of a patch as a square sheet of rubber which has been

stretched into a curved shape. These curved surface representations are examples of parametric,

bicubic surfaces. This means that we obtain an (x,y,z) point on the surface by evaluating a paramet-

ric function f(u,v), where u and v are parameters going from 0 to 1 representing the relative

position along each side of the patch. The function f which returns the (x,y,z) is cubic in u and v,

meaning that it is a polynomial including terms up to u3 and v3.

To render a patch as polygons, we can evaluate successive rows on the patch. For instance, we

would keep v constant, say 0.0, then evaluate f(u,v) for u from 0.0 to 1.0 in any chosen interval, say

ten steps. Then we increase v slightly, for instance to 0.1, and evaluate f(u,v) again for u from 0.0 to

1.0. This gives us two rows of vertices. By connecting the vertices in a zig-zag fashion, we create a

series of triangles, which can then be rendered as polygons. A series of triangles connected in this

way is called a triangle strip. Some graphics acceleration hardware can draw triangle strips faster

than drawing individual polygons, because in the interior of the strip, a single new vertex defines a

new triangle; the other two vertices are reused from the previous triangle in the strip.
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Importantly, notice that we can choose to create anywhere from a few to infinitely many poly-

gons to approximate the curved surface. We simply adjust how finely we step along the parameter

axes u and v. In this way, curved surfaces present a scalable solution. If we have processing power

to burn and appropriate hardware acceleration, we can step along u and v in increments of

0.00000001 to create beautifully smooth surfaces with millions of polygons. If we’re running on a

less well-equipped system, we step more coarsely and produce fewer polygons. Using curved sur-

faces allows us to store just one representation of the geometry in memory, namely, the parametric

bicubic function f, but still gives us the flexibility to create multiple polygonal representations of

that geometry at varying levels of detail. The next section covers other level of detail techniques.

Another interesting curved surface representation is that of subdivision surfaces. Subdivision

surfaces begin with a normal polygonal mesh, then subdivide the faces of the mesh to add new

faces and vertices. The new vertices are then moved to new positions based on some guiding rules;

in particular, the new vertices are positioned such that the resulting faces are curved, where curved

is mathematically defined in terms of the concept of curve continuity. The big advantage of subdi-

vision surfaces is the ability to create curved surfaces using an arbitrary polygonal mesh as a

starting point (also called the control net); creating complex curved surfaces with NURBS, for

instance, requires stitching adjacent patches together, a tedious process. Subdivision surfaces, like

NURBS and other patches, can also be tessellated to an arbitrary number of polygons, yielding a

scalable, adaptive representation.
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rows of vertices to create a
triangle strip.



Blender supports modeling using NURBS surfaces and subdivision surfaces, so it provides a

good platform for you to experiment with these curves to see what exactly they are and how they

work. To add a NURBS surface, select Add, Surface, Surface from the Toolbox. To change an

existing polygon mesh into a subdivision surface, activate the TOGBUT S-Mesh in the

EditButtons. But to reap the real benefit of curved surfaces—the scalability and dynamic tessella-

tion—you have to implement the system yourself in your 3D application program. See Computer

Graphics: Principles and Practice [FOLE92] for a rigorous introduction to the topic, and a few of

Brian Sharp’s articles for Game Developer magazine for more tutorial material with sample pro-

grams [SHAR99a] [SHAR99b] [SHAR00].
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Figure 7-19: A polygonal face rendered
without the help of subdivision surfaces. Due
to the low polygon count and my current lack
of low-polygon modeling skills, the face looks
somewhat grotesque.

Figure 7-20: The same polygonal face
rendered as a subdivision surface. The
automatic addition of curvature and
smoothness greatly improves the appearance
of the model. (The image comes from a
planned animation of mine which may or may
not see the light of day.)
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Level of Detail
Level of detail techniques, abbreviated LOD, try to render simpler geometry for more distant

objects, and to save more complex geometry for nearby objects. The idea is that with a perspective

projection, farther objects occupy fewer pixels on-screen. Therefore, rendering complex geome-

try with several polygons for a distant object is generally wasted work, because the additional

geometric detail all gets projected onto very few pixels, where the additional polygons are likely

indiscernible.

LOD techniques generally work in one of two ways: either static or dynamic computation of

the LOD models.

First, we can statically create several models ahead of time, with decreasing numbers of poly-

gons. These models can be generated either algorithmically (with one of the methods covered

below) or by hand with a 3D modeling program, manually deleting polygons and adjusting the

geometry to preserve topology. We store all of these models in memory with each object. Then, at

run time, we choose which model to render based on the distance of the object to the viewer. We

can use the true radial distance to the camera, or simply use the z object’s coordinate in camera

space; this is similar to the choice between radial fog and z-based fog.

Second, we can try to dynamically compute the LOD mesh at run time. This is more difficult.

Based on the distance to the viewer, we can apply in real time some algorithm to simplify the

geometry. Such techniques can be used for landscapes, where a single continuous landscape mesh

can be very large and might not lend itself well to partitioning into separate models. In such a case,
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Figure 7-21: The idea behind LOD: farther
objects project to fewer pixels on-screen, so we
use simpler geometry for farther objects.



we can leave the mesh whole, allowing nearer areas of the landscape mesh to retain their detail,

while dynamically simplifying those areas of the mesh farther away from the camera. See the sec-

tion on landscapes for some more discussion of the technique.

The next few sections discuss some ways of computing different LOD models ahead of time.

Billboards

One of the simplest LOD models is a single polygon. (The only simpler non-empty LOD model is

a single pixel.) If the object is suitably far away, a pre-rendered billboard of the object can be used

instead of the object geometry. We should store several billboards with the object, each represent-

ing the object as seen from a different viewing angle (0 to 360 degrees), and dynamically pick

which billboard to use based on the viewing angle. Alternatively, at a slight run-time cost, we can

dynamically render the billboard in real time. That is, as soon as we determine that the object is

distant enough, we then rasterize it for the current viewpoint into a billboard texture, then render

the billboard for subsequent frames. If the viewpoint or the object changes, then the dynamically

computed image stored in the billboard texture no longer accurately depicts the geometry; we can

either ignore this (because it is far enough away anyway), or recompute the billboard texture. We

can also decide only to recompute the texture if the viewpoint has changed by more than a certain

amount.

It should be noted that this billboard scheme can be applied not only to single objects, but also

to entire areas of a scene [SCHA96] [SHAD96]. Large outdoor scenes with few limits on visibil-

ity, such as landscapes or cityscapes, can benefit from such a scheme. This relies on some sort of

partitioning of the model, possibly hierarchical, and the association of dynamically computed bill-

boards with each partition (and with each hierarchy node, if hierarchical partitioning is used).

Each billboard is a simple rendering of the geometry of the partition which it represents. When

rendering, if we encounter a portion of the scene that is too far away, we render it as normal, but

save the results of the rendering into the billboard. For successive frames, we then just render the

billboard, not the geometry it represents. If the viewpoint changes more than a certain user-defin-

able amount, then the billboard image needs to be recomputed.

With a hierarchical space partitioning of the scene, this means that any part of the hierarchy

found to be too far away is simply rendered with a billboard. This is similar to view frustum cull-

ing, except with view frustum culling we completely discarded any geometry that was too far

away. The idea here is to render the billboard for the distant geometry, which still gives a visual

indication of the culled geometry, but is very fast.

Edge Collapse

An algorithmic means of simplifying a triangular mesh relies on edge collapse operations

[HOPP96]. The algorithm starts with a mesh consisting exclusively of triangles; if other arbitrary

polygons are in the mesh, they should first be tessellated to triangles. Then, we make the mesh

simpler by moving two separate vertices to one location. By doing this on a closed model, we

eliminate one vertex, three edges, and two triangles. We can apply a series of edge collapse opera-

tions to reduce a triangular mesh to an arbitrary number of triangles.
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An edge collapse merges two vertices into one. The important decision to make is the exact

location of the new merged vertex. A simple scheme uses the location of one of the original verti-

ces as the new location. This essentially means that one vertex gets merged into the other. The

advantage of this scheme is its simplicity and speed; it can even be implemented at run time

[MELA98]. The problem is that the approximations generated in this way are not of the best qual-

ity. Another method is to search for a new spatial location which most preserves the original shape

(and possibly texturing) of the mesh; both vertices then get merged to this new location [HOPP96]

[GARL98]. This yields better quality meshes, but requires extra computation time; we must

define a cost function for an edge collapse, and find the spatial location minimizing this function.

An interesting property of edge collapsed meshes is that they can be progressively simplified

and reconstructed. In other words, each simplified mesh differs very slightly from the previous

one, and is constructed based on the previous one. This means that when transforming between

LOD models, we can perform a morph from one into the other, providing a smooth transition.

Also, we can transmit 3D models in a progressive manner, first transmitting a simple model, and

then progressively adding edges. This is useful for display in WWW browsers; the receiver can

get a broad impression of the overall model’s shape before waiting for the entire model to be

received.

BSP Tree

As mentioned in Chapter 5, we can also use a BSP tree, interpreted as a volumetric representation

of an object, to perform mesh simplification [NAYL98]. We construct a BSP tree representing the

geometry, then prune the BSP tree and create a polygonal model based on the volume described by

the pruned BSP tree. Pruning the BSP tree at a shallow level leads to models with fewer polygons;

traversing the tree to a deeper level yields models with more polygons.

For this scheme to produce good lower-polygon models, it is important that the tree be con-

structed such that successively deeper levels of the tree encode more and more detailed features of

the geometry, as opposed to a randomly constructed tree that splits the geometry in an arbitrary

fashion. The choice of splitting plane is of key importance in the BSP tree algorithm, much as the

choice of merged vertex location is important for edge collapses. Bruce Naylor presents

cost-based algorithms for evaluating potential splitting planes, and suggests trying both splitting

planes which lie on a polygon’s face, as well as planes which go through the face vertices and have

predetermined directions, such as axis-aligned [NAYL98].

If we ignore the polygonal representation and focus on the tree itself, the tree can also be

transmitted in a progressive fashion similar to the edge collapsed meshes. We would transmit the

tree nodes from top to bottom, corresponding to a coarse-to-fine bounding of the geometry. The

receiver would then need to perform the BSP-to-polyhedron conversion (covered in Chapter 5).
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Figure 7-22: A triangular mesh simplified by
one edge collapse operation. Vertices a and b
are merged into one new vertex.



This allows for incremental refinement of the model represented by the BSP tree, since a good

BSP tree is a multi-resolution bounding of volume.

Texture LOD Techniques: MIP Mapping

A final type of LOD that deserves mention deals with simplification not of the geometry of an

object, but instead of its texture. The reason we wish to do this is to improve the appearance of tex-

ture mapped polygons which are viewed from a great distance. In contrast to geometry LOD

techniques, which are intended to speed up processing by rendering fewer polygons, this texture

LOD scheme mainly aims to improve visual quality. (In some cases this texture LOD scheme can

also cause more coherent memory accesses, thus also improving performance, but this is not typi-

cally the main goal.)

The problem is that textures viewed at a great distance get mapped onto very few pixels

on-screen. With ordinary texture mapping, for each rasterized pixel we only choose exactly one

texel from the texture map to display. This causes unwanted moire artifacts, because we are effec-

tively sampling the texture image with too low of a frequency. That is, for a distant texture, several

texels should all contribute to the final pixel color on-screen, because several texels all project to

the same pixel; but ordinary texture mapping uses just one texel. The plotted color is therefore not

representative of the actual light contribution of all texels.

One solution to this problem is to use filtering. This method always dynamically averages the

contributions of surrounding texels to arrive at the final pixel color on-screen. This is an excellent

solution, but is slow in the absence of hardware support.

Another solution to the problem is to pre-filter the textures into smaller versions, which are

used when the polygon is farther away. Then, when performing the texture mapping, we use a

texel from the appropriate smaller, pre-filtered texture. We can do this on a per-pixel basis or

per-polygon basis. Per-pixel, we compute the distance of each pixel to the camera, select the

appropriate texture based on the distance (greater distance causes selection of a smaller texture),

then select the appropriate texel from the selected texture. Per-polygon, we simply compute one

average distance value for the entire polygon, and then select and apply one entire pre-filtered tex-

ture to the polygon, based on the distance. Per-pixel produces better results; per-polygon is faster,

but can result in popping artifacts as the entire polygon suddenly shifts between using a smaller

and a larger version of the texture.

The smaller, pre-filtered versions of the textures are called MIP maps, although the collection

of all such MIP maps is also often referred to as the MIP map. The idea was introduced by Lance

Williams in his article “Pyramidial Parametrics” [WILL83]. The MIP in MIP mapping stands for

the Latin multum in parvo, meaning many things in a small place, which in this case refers to the

storage of the original texture and all of its smaller version in a space 4/3 of the original texture’s

size. We arrive at this 4/3 factor as follows. Each smaller version of the texture is typically exactly

1/4 of the size of the original image, having exactly half of the horizontal and vertical dimensions

of the next larger version. We can compute such smaller versions simply by averaging the colors

from a 4� 4 region of the larger version. We continue successively reducing the size of the MIP

maps until it is just one pixel wide and/or high. Then, the space requirement expressed as a factor
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of the original texture size is 1+1/4+1/16+1/64+1/256 and so forth, a series whose limit is 1+1/3,

or 4/3.

NOTE OpenGL supports MIP mapping; the function gluBuild2DMipMaps constructs the
smaller mipmaps.

Landscapes
An area of 3D graphics with its own special set of problems and techniques is that of landscapes.

This is a unique area due to the storage, generation, and rendering techniques for landscape data.

We consider each of these aspects below.

Storing Landscapes as Height Fields

Landscape data is typically stored as a height field, or elevation grid. A height field is simply an

evenly spaced 2D array of values, where each value represents the height of the landscape at that

point on the ground. Height fields are a natural and easy way of storing elevation data, and many

natural landscapes can be represented with height fields. Those landscapes that cannot be repre-

sented with height fields have cliffs or overhangs, where there would be multiple heights for a

particular ground location. Fortunately, many natural landscapes do not have such overhangs,

since gravity tends to cause overhangs to eventually fall to the earth, thus forming the simple hills

and valleys which we can model with height fields.

We can obtain such height field data for real-world locations based on geographical surveying

information. For artificial landscapes, we can create the height field by hand in a normal 2D paint

program. If we make a 2D gray scale image, then the darker values of gray could represent lower

elevations and lighter shades could represent higher elevations. We can then easily and intuitively

paint a landscape, as if we were viewing it from above.

We can use tiles to reduce the memory requirements of a large landscape. The idea is to create

several small landscape maps, all of which match on the edges. Then, by combining these tiles in

various ways, we can generate varied landscapes with reduced storage requirements. Of course,

such a scheme introduces repetition into the landscape, but clever arrangement of the tiles can hide

this fact. Also, using the same tiles at different elevations is an effective reuse technique. To reuse
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a tile at different elevations, the geometry within the tile would need to slope upwards or down-

wards, so that the tiles match up seamlessly on the edges.

Generating Fractal Landscapes

Height field data for landscapes can also be generated algorithmically. Perhaps the best known

class of algorithms for generating such data are the fractal algorithms. Fractal landscape algo-

rithms fundamentally work by starting with a single, undivided polygon. The polygon is then

divided into smaller polygons, which adds new vertices. The new vertices are first positioned at

the average height of their neighboring vertices, then are additionally randomly displaced up or

down. We recursively repeat the subdivision, with the important property that the amount of ran-

dom displacement gets smaller and smaller as we divide further and further. This means that the

first few coarse levels of subdivision establish large-scale hills and valleys; increasing subdivision

leads to finer and finer surface details. The exact reason this works is because the random dis-

placements simulate Brownian motion in two dimensions, creating a surface with fractal

dimension [PEIT92]. Fractal dimension means that the surface has a fractional dimension

between 2D and 3D (hence the term fractal) and appears self-similar. The specific factor by which

the amount of displacement is reduced for each recursive subdivision depends on this fractal prop-

erty, and for square polygons is sqrt(1/2h), where h is the level of recursion. See [PEIT92] for the

derivation and an extremely broad introduction to the field of fractals and chaos theory.

You can program a fractal landscape generator without too much difficulty based on the previ-

ous description. Also, Blender has a fractal subdivision option which you can use to experiment.

To try this in Blender, add a plane and remain in EditMode. Then type w, and select Subdivide

Fractal to subdivide all selected vertices in a fractal manner. By repeating this process, you can

create more and more fractal landscape detail. Blender, however, only allows you to access and

export the data as a polygonal mesh, not as a 2D height field.
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Rendering and LOD Techniques for Landscapes

LOD algorithms can be of considerable advantage with landscapes because of the large number of

polygons needed to draw an entire landscape. The lack of natural partitioning boundaries for land-

scape meshes makes it difficult to use other LOD or culling techniques which are based on small,

separate objects. An extreme example of this is the portal approach described in Chapter 5, which

is poorly suited for landscape rendering because of the lack of obvious cell or sector structure in an

arbitrary landscape. Thus arises the need for other LOD techniques for landscapes.

Rendering a landscape stored as a height field can be done in a number of ways. One way is to

generate curved surface patches which go through the points of the height field, thus creating a

smooth landscape which can be dynamically tessellated to the desired level of detail. We could

tessellate more for patches closer to the viewer, and fewer for distant patches. However, a critical

problem with this approach is to subdivide the patches in a way which avoids cracks between the

edges of adjacent patches, since they will be very noticeable. Cracks appear when adjacent edges

have different numbers of vertices or differently positioned vertices, so avoiding cracks means

ensuring that adjacent edges always line up.

Another way of rendering landscapes is to create triangles between alternate rows of the

height field, as we saw with parametric bicubic surfaces, and to render these triangles. Instead of

always rendering all of the triangles, we can try to use a dynamic LOD scheme to reduce the num-

ber of rendered polygons in distant areas. The ROAM algorithm is one such algorithm. ROAM

stands for Real-time Optimally Adapting Meshes [DUCH97]. This algorithm relies in a special

data structure, the triangle bintree, which allows for run-time, view-dependent alteration and sim-

plification of parts of the landscape mesh based on their distance from the camera.

Finally, it is also worth mentioning that for small landscapes with relatively few polygons,

and fast enough graphics acceleration hardware, it is sometimes possible to completely ignore

LOD issues and simply render all triangles within the landscape for every frame. This could con-

ceivably be used in a mixed indoor/outdoor engine, where the outdoor parts of the world are

isolated small landscapes. The isolated small landscapes could then be rendered in their entirety. If

we combine this with a portal scheme and place the landscape areas in their own sectors, the land-

scape regions do not degrade rendering performance when they are completely blocked by

intervening walls of an indoor region.

NOTE One older way of rendering landscapes relies on rendering the height field as a
series of vertical strips in front-to-back order, and restricting camera movement such that
rotation around the VFW vector is forbidden; in other words, the VUP vector always points
straight up. By restricting camera movement in this way, the projection of the height field to
the screen always results in a series of perfectly vertical strips. By rendering these front to
back, we can cull large regions of the landscape which are obscured by nearer, higher verti-
cal strips. We can only see parts of the landscape to which the line of sight is not blocked by
the nearer strips, meaning that an intersection calculation from the eye through the top of the
highest foreground strip determines which is the next visible part of the background. Due to
the restriction on camera movement, and the lack of hardware acceleration for this method,
this scheme has lost popularity in recent years, though the scheme does provide an interest-
ing alternative.
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Camera Tracking
Another advanced technique useful for interactive 3D graphics applications is camera tracking.

By camera tracking, we mean that the camera should always follow a particular subject. This is

particularly useful for third-person games, where the player controls the movement of a character

throughout the virtual world. The world is seen not through the character’s eyes, but instead from

the viewpoint of an external camera following the movement of the character. In such an applica-

tion, it is important that the camera always keep the target in sight.

An appropriate rotation matrix can ensure that the camera always points towards the target.

We take a vector from the camera to the target, normalize it, and use this as the camera’s VFW vec-

tor. We cross the vector (0,1,0) with the VFW vector, normalize the result, and use this as the VRI

vector. Then we cross the VFW and VRI vectors to obtain the VUP vector. This ensures that the

camera looks at the target and is oriented vertically. We can also compute the distance between the

camera and the target, and ensure that the camera never gets too close to or too far away from the

target by moving the camera whenever the distance falls outside of the tolerance. A narrow toler-

ance range causes the camera to follow the target at an almost constant distance, as if it were

attached with a wire to the target, whereas a wide tolerance allows the camera to move into place,

then rest and follow the action just by looking, until the target moves significantly farther away.

One problem with this simple approach is that it is possible that the camera is looking toward

the subject, but that one or more intervening polygons actually obstruct the line of sight. There are

several solutions to this problem. One is to determine which polygons intersect the line of sight

(using a line-polygon intersection test; see Chapter 8), and to refrain from drawing these polygons,

or to draw them with slight transparency (using an alpha channel). This produces a sort of

“cutaway” view of the 3D model allowing the target to be seen.

A more complex solution involves finding a new spatial position from which the target can be

seen—that is, a spatial position where the line of sight to the target is not blocked by any interven-

ing polygon. One way of doing this, suggested to me by Ton Roosendaal [ROOS99], is to start at

the target position, and trace a ray back to the camera. If the ray hits any polygon, the line of sight

is blocked, but we at least know that the location of the first polygon intersection is a spatial loca-

tion from which the target can certainly be seen. It is not the only such location, but it is definitely

one such location. Therefore, the goal is to move the camera to this location. If the camera does not

collide with the environment, then we can simply move the camera to the new location, allowing

the camera to sail unhindered through the obstructing geometry to its new vantage point. If the

camera is not allowed to move through walls, then we must find a path around the obstructing

geometry. We can do this by repeatedly reflecting the visibility vector off of the obstructing geom-

etry, thereby incrementally tracing a path backwards from the target to the camera; then, the

camera traverses this path forwards toward the target.
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The path thus determined does lead to the target, but in a fairly inefficient way. We can

improve this by continually checking for target visibility while the camera is moving along the

path. If the target suddenly becomes visible, then we can stop tracing the path; we found an earlier

solution along the way. Otherwise, we simply trace the path all the way to its end, which eventu-

ally leads to a point where the target is certainly visible.

The World Foundry game development kit [SEGH97] adds more designer control to the cam-

era at run time. World Foundry introduces the concept of a director object, which can then select

among various camera shots. Each camera shot has a different focus of attention, and the director

uses some user-defined criteria, specified in a script file, to choose among the camera shots. This

allows for a great deal of artistic freedom with camera movement.

Well-executed camera movement can have a significant impact on the effectiveness of an ani-

mation sequence. Camera control in 3D environments is similar to camera control in films, where

cinematographers have developed a visual language in which camera placement plays an impor-

tant role. The article “Declarative Camera Control for Automatic Cinematography” in

Proceedings of AAAI ’96 explores some of the elements of cinematography and develops a

high-level declarative language for specifying computerized camera shots in director’s terms,

along with a compiler and heuristic evaluation system which control camera movement within the

3D environment [CHRI96].

Summary
In this chapter, we took a quick look at some important graphical techniques useful for interactive

3D programs. In particular, we looked at:

� Special effects techniques: environment mapping, billboards, lens flare, particle systems,

bump mapping, and multi-pass techniques
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Figure 7-25: Roosendaal’s method for camera tracking. The line of sight from the
camera to the target is blocked, so we trace a reverse ray from the target to the camera,
bouncing the ray off of any intervening geometry, until we reach the camera. This is then
the path the camera must take through the geometry to see the target.



� Natural phenomena: water, smoke, fire, and clouds

� Advanced techniques: curved surfaces, level of detail techniques, landscapes, and camera

tracking

Combining the techniques of this chapter with the ideas and code from the rest of the book allows

us to create realistic, interactive Linux 3D applications.

Although our applications can now achieve a degree of visual realism, interactive 3D envi-

ronments require more than just visuals. Other forms of interaction with the environment are also

desirable. The next chapter discusses non-graphical techniques which are very often used by 3D

graphics programs to increase the illusion of reality on levels other than visual.
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C h a p t e r 8

Non-Graphical
Techniques for GamesTechniques for Games
and Interactiveand Interactive
Environments

W
e’ve almost reached the end of this book. Until now, the content of this book has, not

surprisingly, focused on the graphics techniques necessary for creating visually

appealing and realistic 3D applications. But in such 3D applications, often visual qual-

ity is not the only important factor. 3D applications are often simulations of reality, such as games,

virtual reality, and so forth. In such programs, the overall effect of the application is a combination

of visual and other cues provided by the program. This chapter is devoted to these other cues. By

devoting some attention to these other issues, we can produce 3D programs that not only look but

also sound and act realistically.

In this chapter we look at the following topics:

� Collision detection

� Physics

� Artificial intelligence

� Digital sound

� Networking

Sound
Though this is a book on 3D graphics, writing our programs to involve more senses than just sight

often enhances the entire experience. The next easiest sense to integrate is the sense of sound.
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NOTE The sense of touch has already been implemented in haptic systems, where force
feedback gives the impression of actually coming in contact with the virtual objects. Haptic
devices can involve just one finger, an entire hand, or even the entire body. The sampling rate
for haptic systems lies far above that of graphics systems; rates must lie in the thousands of
samples per second to allow the user to physically interact in real time with the virtual objects
and to avoid the feeling of vibration in the feedback device. The senses of smell and taste are
more difficult to integrate reliably into virtual environments; I am not aware of any
non-experimental products in this area.

Digital audio is surprisingly simple to implement under Linux, or under Unix systems in general.

For comparison, I’d like to digress for a moment to compare the Linux audio interface with that of

DOS. Years ago, I wrote a music editor for digital music files under DOS, called ModEdit.

Accessing the sound card under DOS was an incredibly tedious affair (and in the end was done by

my programming partner Mark Cox), involving interrupts, assembly language programming, pre-

cise timing, and direct access to hardware I/O ports. I recall looking at sound card access code in

assembler: it was not a pretty sight. Then a while later, I happened to find a MOD file player for

SunOS, a Unix variant. It was written entirely in C, and the audio output consisted of two lines: a

write command to the special file /dev/audio, and a usleep call to wait the appropriate num-

ber of microseconds before sending the next sample to the audio device. Digital audio couldn’t be

simpler; the Unix philosophy of everything is a file also applies to device drivers, including those

for the sound card. So, under Linux, we just need to write to /dev/audio to create a sound.

Let’s first look at the basics of digital audio with a simple example program that directly

accesses the audio device to create a sound. Then, we’ll look at a more convenient way of playing

sounds, including background music, CDs, and multiple simultaneous sounds, using the RPlay

server.

Basics of Digital Sound
Humans physically perceive sound because vibration of matter causes the vibration of surround-

ing air particles and the creation of longitudinal sound waves. These sound waves propagate

through the air and cause a corresponding vibration in the ear drum, where the movement is then

transmitted to the brain and interpreted as sound. Loudspeakers can reproduce other sounds

because they vibrate in such as way as to produce the same sound waves created by the original

source.

A loudspeaker is nothing more than an electromagnet connected to a large cone. Variations in

current flowing through the electromagnet’s coils cause a movement of the electromagnet itself,

which correspondingly causes a movement in the cone. The cone’s movement, in turn, causes the

vibration of the air and the reproduction of the sound. Therefore, a loudspeaker converts electrical

current levels into physical air vibrations.

Digital sound works by controlling a speaker’s electromagnet digitally. We send an instruc-

tion to the sound card hardware (through an I/O port or an appropriate device driver) to play a

particular digital sound value, typically a signed integer. The sound hardware interprets this num-

ber and converts it to a specific voltage and current level on the Speaker-Out jack, which then

ultimately flows through the loudspeaker coils and creates the sound. Therefore, a single integer
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number controls the loudspeaker displacement. By very quickly sending a large number of vary-

ing numbers to the sound hardware, we can reproduce sounds with acceptable aural fidelity. CD

audio uses a sampling rate of 44,100 hertz, meaning that 44,100 digital samples per second are

sent to the speaker. Due to an artifact of discrete sampling, the highest frequency that can be repro-

duced is only half of the sampling rate, meaning CDs can reproduce sounds up to 22,050 hertz.

Seen the other way around, the minimum sampling rate (called the Nyquist rate) necessary to

faithfully reproduce a signal with frequency f is twice this frequency, 2f.

NOTE Since fundamentally digital audio works by converting an integer number into a
physical voltage level, it is actually quite possible to build your own sound card for digital
audio purposes. The idea is to output digital sound values to the PC’s parallel port; in this
case, each 8-bit byte which is sent to the parallel port gets neatly mapped to eight separate
pins on the parallel port. Then, with a series of resistors connected in a ladder-like fashion
(called a D/A converter, for digital-analog), we can convert the electrical signals from the
eight pins into one single combined voltage level. This voltage level can then be fed into an
amplifier, where the small voltage variations get amplified to a level enough to move a loud-
speaker cone and reproduce the audio signal. Making such D/A converters was common
practice in the early 1990s, when PC digital audio was still fairly young. My first sound card
was such a home-brew D/A converter, which I built for use with ModEdit. Since almost every
PC nowadays comes with a sound card, you generally don’t need to build your own sound
card to enjoy digital audio, but it’s useful to know that there’s no magic involved—just a bit of
solder.

So, under Linux, how do we write values to the sound hardware? As we hinted at earlier, the key is

the special device file /dev/audio. We simply open this file, write numbers to the file, and hear

the output. /dev/audio is not actually a file, but is rather a character special device. We can

access it just like a file, which makes programming very straightforward, but in reality, writing

and reading characters to this file actually invokes a special driver, which then does something

particular with the data. All files in /dev are such special files; the mknod program is used to cre-

ate these files. Each special file has a major number and a minor number, specified by mknod,

which allows the operating system to identify the proper driver to load when accessing that file. In

the case of /dev/audio, the major number is 14, and the minor number 4, as you can verify

with an ls –l command.

Two items determine the sound which is produced when writing to /dev/audio: which

numbers we write and how fast we write them. The following sample program, square, pro-

duces a so-called square wave by alternately writing a low value, then a high value to the audio

device, omitting any values in between. This produces a somewhat mechanical sounding tone.

The sample program writes the numbers as fast as it can to the sound device, meaning that the

default sampling rate set by the audio driver determines the actual frequency heard. Thepat array

controls the values written to the sound card. Experiment with these values; for instance, if you

add additional leading zero values, the resulting tone decreases in pitch, because the square wave

signal bursts become separated by a larger interval, leading to lower frequency.
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NOTE The sample program square does not use and is not part of the l3d library, and is
very Linux-specific. Therefore, in contrast to most of the other sample programs, its execut-
able file is compiled directly into the directory containing the source code files. The program is
in $L3D/source/app/audio.

The actual interpretation of the values written to the sound card depends on the sound card driver

and hardware. Sometimes, signed byte values are used, which means that a value of zero repre-

sents no displacement of the speaker cone, a value of 127 represents the maximum positive

displacement, and –128 represents the maximum negative displacement. Alternatively, unsigned

values can be used, meaning that a value of 128 represents no displacement, 0 represents negative

displacement, and 255 represents positive displacement. Furthermore, we also often use two bytes

(16 bits) instead of just one byte (8 bits). To set these parameters yourself in the sound driver, you

can use the ioctl function, which is a general routine that sets parameters for various device

files. For the specific parameters allowable for the sound file /dev/audio, see file

/usr/src/linux/include/soundcard.h, and search for the string ioctl.

NOTE Note how the open source philosophy allows and encourages programmers to liter-
ally go straight to the source (code) to understand exactly which parameters are allowable.
There’s no danger here that the documentation is out of date since you are looking at the
actual code executed by the operating system.

Listing 8-1: square.cc
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

main() {
FILE *fp;

fp=fopen("/dev/audio","wb");
char pat[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

128 , 128, 128, 128, 128};
char i = 0;
int l = sizeof(pat);
while(1) {
fputc(pat[i++], fp);
if(i>=l) i = 0;

}
}

This program thus shows us how to play one sound to the sound card: we write sound data directly

to the audio device in a linear fashion. Digital sound data in this format is said to be in raw format.

The Sox program can convert sound files to and from various formats, including raw files. This

means that most sound files can be converted to raw format, at which point we can read the data

directly into memory, then dump it directly to the audio device (possibly first setting the sound

card parameters with ioctl, as discussed above).

To play multiple sounds simultaneously, each sample we send to the sound card is simply the

sum of all integer signal contributions from all sources, clamped to lie within the maximum and

minimum allowable range. Importantly, we do not average the signals together! In other words,

we do not add all the signals, then divide by the number of signals present; we only add all the
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signals together. Imagine the simple case of a loud sound and a completely silent sample being

played together. If we averaged the two, then the loud sound would decrease in amplitude by one

half, which makes no physical sense: a sound does not decrease in amplitude just because another

sound (especially a silent one) happens to be playing at the same time. Instead, since sounds can be

viewed as waves varying over time, we simply add all contributions of all waves together to get

the total sound wave sample at that point in time. It is possible that all sounds together exceed the

maximum or minimum allowable sound values, which results in clipping of the audio signal; this

is unavoidable, since the combined signal is then simply too loud to be correctly represented by

the audio device. But on the average, with sound waves that have both positive and negative digi-

tal values, we can expect that their summed contribution will normally lie within bounds; when

one signal is at a high, it’s very possible the other signal is at a low, resulting in a medium-level

summed contribution. The moral of the story: just add multiple signal contributions together to

play several sounds simultaneously.

While this shows us how to play sounds, there is a lot more to actually integrating sound sup-

port into our programs. Ideally, we would like direct support for common sound formats, a queue

which allows us to submit sound requests, and an event notification mechanism which tells us

when sounds finish playing. Fortunately, there is an excellent, easy-to-use sound server for Linux,

the RPlay server.

The RPlay Server
RPlay is a flexible network sound server which allows sounds to be played to and from local and

remote Unix systems. It can play multiple simultaneous sounds with differing volumes, under-

stands common formats (au, wav, voc, raw, and many others), can be extended to play arbitrary

sound formats through helper applications, supports audio CD tracks, has an event notification

mechanism, and runs parallel to the application program. Since RPlay is a separate server pro-

gram, which incidentally can run on a separate computer from the one running the application,

playing sounds requires very little work on the part of the client program. We merely need to send

a command to the server, specifying the sound file we want to play. The rest is handled by the

server. The command is sent over a TCP/IP socket, as we see shortly. (TCP/IP stands for Trans-

mission Control Protocol/Internet Protocol; TCP is a protocol built on top of IP.)

After installing the RPlay server (see the Appendix), start the server as follows: type rplayd

and press Enter. This command starts an RPlay server on the same machine, listening on network

port number 5556. This means that the RPlay server can accept an incoming IP connection on this

port. A port is simply a number under which a service of a machine on a network can be accessed.

So, any machine which can initiate a network connection to port 5556 can access the RPlay server.

In our case, our application program and the RPlay server both run on the same machine, meaning

that our application program must open a connection to the RPlay server.

Let’s next discuss how a sound client connects to the RPlay sound server via TCP/IP

networking.
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Using TCP/IP Networking to Communicate with the
Server

Opening a connection to the RPlay server is done by creating a socket, which is an endpoint for

network communication. A socket is similar to a file descriptor in C; we conceptually open it,

write to or read from it, and close it. In this sense, a socket functions similar to a file, except the

data comes from the network. This is similar in spirit to character special files, which look like

files but which actually send and receive data to and from devices.

We create a socket with the socket system call, then call connect to connect the socket

with the RPlay server at address 127.0.0.1 and port 5556. The Internet address 127.0.0.1 is a spe-

cial address which always represents the local host. After opening the socket, we can use the

send function to send data to the socket. In our case, we don’t need to worry about receiving data

from the server, so we only need to write to the socket.

The data we write to the socket to control the RPlay server are simple ASCII strings. RPlay

supports a number of commands; see the RPlay online documentation for a comprehensive list.

The only command we are interested in for now is the command to play a sound file. The simplest

form of this command looks as follows:

play count=1 volume=64 sound=crash.au

The count parameter specifies how many times the specified sound should be played. Thevol-
ume parameter specifies the volume, with 0 being the lowest and 255 being the highest. The

sound parameter is the full path to the sound file to be played. The sound file must be accessible

to the RPlay server, which is why it is advisable to specify a full path name. Alternatively, a path

name relative to the directory in which the server was started may be specified. Yet another possi-

bility would be to stream the actual sound data over the socket to the server.

The next sample program playtest creates a socket and connects it to the RPlay server.

Run the program as follows. First, change to the program’s source code directory

$L3D/source/app/audio. Compile the program with make. Next, kill any previous run-

ning copies of the RPlay server: type killall -9 rplayd and press Enter. Then, start the RPlay

server from this directory: type rplayd and press Enter. (We start the server in this directory to

allow the sample program to specify just the filename of the desired file, without the full

pathname.) Next, start the sample program: type playtest and press Enter. The program waits for

you to press Enter; each time you do, a command is sent via a socket to the RPlay server to play

the file crash.au, located in the same directory.

Listing 8-2: playtest.cc
#include <sys/socket.h>
#include <sys/types.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>

main() {
int mysocket;
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struct sockaddr_in addr;
struct sockaddr_in boundaddr;

addr.sin_family = AF_INET;
addr.sin_port = htons(5556);
inet_aton("127.0.0.1", &addr.sin_addr);
mysocket = socket(PF_INET, SOCK_STREAM, getprotobyname("IP")->p_proto);
connect(mysocket, (sockaddr *)&addr, sizeof(addr));

while(1) {
char s[256];
gets(s);
char cmd[] = "play count=1 volume=64 sound=crash.au";
printf("sending following command to server: %s",cmd);
send(mysocket, cmd, strlen(cmd),0);

}
shutdown(mysocket,2);

}

Notice that the sound plays as soon as you press Enter, and that the client program is very simple

indeed. We simply send the appropriate command to the server. This is the advantage of using an

external sound server.

If you don’t hear any sound when running this program, then make sure that you started the

RPlay server from the directory containing the file crash.au. You can also test to make sure

that the server is running as follows: type telnet 127.0.0.1 5556 and press Enter. This opens up a

telnet connection to the RPlay server. You should see the RPlay welcome message, and can even

issue RPlay commands directly. Press Ctrl+], q to quit the telnet session. If you are unable to

establish a connection with telnet, then the RPlay server is not running. Other possibilities to

check are that the volume on the sound card—both in software and in hardware—has been set

loud enough, and that your sound card fundamentally works properly under Linux. The Sound

HOWTO, usually located in /usr/doc/howto, explains how to get your sound card set up

properly.

This sample program shows how easy it is to add audio to our programs by sending simple

commands over a socket to the RPlay server on port 5556. Let’s now encapsulate this functionality

into l3d classes.

Class l3d_sound_client
Class l3d_sound_client represents a user of a sound server. It is an abstract class that allows

us to access sound services in l3d programs without needing to directly hard-code in

Rplay-specific code. This class is designed to be abstract enough so that other sound clients, not

based on RPlay, can also inherit its interface.

Listing 8-3: soundclient.h
#ifndef __SOUNDCLIENT_H
#define __SOUNDCLIENT_H

class l3d_sound_client {
public:
virtual void send_command(const char *cmd) = 0;
virtual void connect(const char *addr) = 0;
virtual ~l3d_sound_client(void) {};
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};

class l3d_sound_client_factory {
public:
virtual l3d_sound_client *create(void) = 0;

};

#endif

Abstract method connect connects to a sound server. Parameter addr takes a character string

representing the address of the server to connect to.

Abstract method send_command sends a character string to the sound server.

Note that this interface is overly simplified; a more useful interface would abstract useful

operations into virtual methods, such asplay_sound,stop_sound,get_sound_status,

and so forth. The current approach has an interface with strong implicit dependencies on struc-

tured ASCII messages. To preserve compatibility, any new sound client subclasses must not only

conform to the explicit class declarations, but also to the implicit ASCII message protocol. There-

fore, this class is mostly illustrative in nature, though its structure does provide some minimal

flexibility for the future.

Class l3d_sound_server_rplay
Class l3d_sound_client_rplay is a sound client which can connect to an RPlay server.

Listing 8-4: scli_rplay.h
#ifndef __SCLI_RPLAY_H
#define __SCLI_RPLAY_H

#include "soundclient.h"

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

class l3d_sound_client_rplay_factory : public l3d_sound_client_factory {
public:
l3d_sound_client *create(void);

};

class l3d_sound_client_rplay : public l3d_sound_client {
public:
virtual ~l3d_sound_client_rplay(void);
void connect(const char *connect_string);
void send_command(const char *cmd);

protected:
int sound_socket;
int connected;
struct sockaddr_in addr;

};

#endif

Listing 8-5: scli_rplay.cc
#include "scli_rplay.h"

#include <sys/socket.h>
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#include <sys/types.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

l3d_sound_client* l3d_sound_client_rplay_factory::create(void) {
return new l3d_sound_client_rplay;

}

void l3d_sound_client_rplay::connect(const char *connect_string)
{
char parms[1024];
char server_ip[256];
char server_port[16];

strncpy(parms,connect_string,sizeof(parms));
parms[sizeof(parms)-1]=0;

char *param;
param = strtok(parms," ");
strncpy(server_ip, param, sizeof(server_ip));
server_ip[sizeof(server_ip)-1]=0;

param = strtok(NULL," ");
strncpy(server_port, param, sizeof(server_port));
server_port[sizeof(server_port)-1]=0;

addr.sin_family = AF_INET;
addr.sin_port = htons(atoi(server_port));
inet_aton(server_ip, &addr.sin_addr);
sound_socket = socket(PF_INET, SOCK_STREAM, getprotobyname("IP")->p_proto);
connected = ( ::connect(sound_socket, (sockaddr *)&addr, sizeof(addr)) == 0 );

}

void l3d_sound_client_rplay::send_command(const char *cmd) {
if ( !connected || send(sound_socket, cmd, strlen(cmd),0) <= 0 ) {
//- apparently there was an error. try, but just once, to re-establish
//- contact to server.

connected = ( ::connect(sound_socket, (sockaddr *)&addr, sizeof(addr)) == 0);
if(connected) {
send(sound_socket, cmd, strlen(cmd),0);

}
};

}

l3d_sound_client_rplay::~l3d_sound_client_rplay(void) {
shutdown(sound_socket,2);

}

Overridden method connect interprets the address as being a string containing the server’s IP

address followed by the port number of the RPlay server. It opens a socket to the appropriate host

and port.
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Overridden method send_command sends the ASCII string, passed in parameter cmd,

directly over the socket to the sound server, allowing the server to execute the command. As men-

tioned before, this has the undesirable side effect of introducing implicit dependencies on the

ASCII RPlay protocol. Though our l3d programs won’t access this class directly, instead going

through the abstract class l3d_sound_server, the fact that the ASCII command strings

(which our l3d programs do specify directly) are based on the RPlay protocol causes the applica-

tion code to be dependent on this protocol in a way which is not obvious just by looking at the

abstract class declarations. But, since this chapter is largely a do-it-yourself chapter anyway, it’s

your task to see if you can design a better interface. Doing so would probably require researching

several sound servers to see what a truly common command set would be, then implementing this

command set as a set of pure virtual functions overridden by concrete subclasses. Remember that

finding appropriate abstract classes is generally the hardest part of object-oriented design. This is

a good example; to understand the abstract properties of the problem domain, you have to look at

enough representative examples (or develop a general enough command set through sheer ana-

lytic reasoning, probably an impossible task).

TCP/IP Networking
Communicating with the RPlay server required us to open a socket to the RPlay server to send data

to the server via TCP/IP. In general, it can be useful for 3D programs to communicate with other

programs or with each other via TCP/IP sockets. This can be used for synchronizing multi-user

environments in TCP/IP networks, allowing events from one user’s machine to propagate to

another user’s machine. So, let’s look at the general way in which we can achieve TCP/IP net-

working between two programs.

As we saw with RPlay, servers make their services available via an IP address and a port. This

means that any two machines that are connected via a TCP/IP network can communicate with one

another using the techniques discussed below. This includes machines inside of a LAN (local area

network), as well as machines literally located on opposite sides of the Earth connected via the

Internet. This is one aspect that makes networking so exciting. Linux support for networking is

extremely good; after all, the Internet was born on Unix machines. With just a few lines of code

you can write an Internet server and client which enable worldwide communication.

There are two parts to any network connection: a client and a server. The same program may

simultaneously be a client and a server. In a client role, a program establishes connections to other

machines’ services using their IP/port combinations. In a server role, a program listens for connec-

tions on a particular port, and answers any incoming requests on that port.

The following sections show programs for both an IP client and server. The programs are

located in directory $L3D/source/app/network.

The Client
Sample program client is a network client that attempts to connect to a server at a specific IP

address and port number. It then allows you to enter any input on a line, which is then sent to the
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server. The server’s response to your input is then displayed. This continues indefinitely. This

model of communication is quite general: any information is sent to the server; the server does

something with the information; and then the server returns some other information.

This program is very similar to the RPlay client we saw earlier. The only real change is that it

displays the server’s responses to our messages. Let’s now discuss the program structure in a bit

more detail.

The address of the server is specified in a C structure of type sockaddr_in, where the in
stands for Internet. We set the sin_family of this address structure to be AF_INET, the

address family for Internet addresses. The sin_port member of the address structure specifies

the port number to connect to. We must specify the port number using function htons, which

changes the byte ordering of the specified number from host to network order, explaining the “h”

and the “n” in htons; the “s” denotes the data type, a short integer. The sin_addr member of

the address structure contains the actual Internet address of the machine to connect to. We set this

member using the inet_aton function, which converts an IP address in dotted quad notation

(such as 127.0.0.1) to binary data in network byte order.

We then create a socket with the function call socket, specifying the following parameters:

PF_INET to specify the Internet Protocol family, SOCK_STREAM to specify a sequenced and

reliable connection stream (as opposed to unreliable or non-sequenced messages such as ping

requests), and getprotobyname("IP") to specify the Internet Protocol for communication

over the socket.

The connect function then connects the given Internet socket with the Internet address and

port we previously stored in the address structure. The send and recv functions send or receive

data from the socket, using a buffer to facilitate the transfer of data. These functions normally

return the number of characters processed. If we notice that the number of characters processed at

any stage is zero or negative, then some error occurred, and we shut down the socket with

shutdown.

Listing 8-6: client.cc
#include <sys/socket.h>
#include <sys/types.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <sys/time.h>

main() {
int mysocket;

struct sockaddr_in addr;
struct sockaddr_in boundaddr;

addr.sin_family = AF_INET;
addr.sin_port = htons(5559);
inet_aton("127.0.0.1", &addr.sin_addr);
mysocket = socket(PF_INET, SOCK_STREAM, getprotobyname("IP")->p_proto);
if(connect(mysocket, (sockaddr *)&addr, sizeof(addr))) {
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printf("connect to server failed");
exit(-1);

};

int ok = 1;
while(ok) {
char response[1024];
int response_len;

response_len = recv(mysocket, response, sizeof(response),0);
response[response_len] = 0;
printf("server said: %s",response);

char s[256];
gets(s);
printf("sending following string to server: %s",s);
ok = ( send(mysocket, s, strlen(s),0) > 0 );

}
shutdown(mysocket,2);

}

In the sample program, we hard-coded the IP address and port number of the server. You can

change these values to any valid Internet address and port number to connect to any machine

reachable via the Internet Protocol. A server should be listening on the specified IP address and

port number. For the purposes of this section, we are interested in creating our own server, so that

our 3D programs can exchange data with one another in real time. Writing a server is our next

topic.

The Server
Writing a simple IP server is not much more difficult than writing the client. We first declare an

Internet address structure of type sockaddr_in, and fill it with the IP address and port of the

server. In other words, the server fills the address structure with its own IP address, and with the

port number on which it will be listening. In the sample program server, we specified address

127.0.0.1 for the local host, but in a real application with separate client and server machines, you

would replace this with the actual IP address of the server machine in the network. The port num-

ber specified in the server should be the same as the port number in the client; otherwise no

communication will be possible.

Note that one machine can have several IP addresses; indeed, an IP address is not assigned to a

“machine,” but is instead assigned to a network interface, whereby one machine can have several

network interfaces (such as network cards, and the PPP modem interface). To allow incoming

connections on any of the server machine’s IP addresses, we can use the assignment

addr.sin_addr=htnol(INADDR_ANY), where INADDR_ANY means that any IP address

on any of the server’s network interfaces will accept an incoming connection.

You obtain your IP address from your Internet service provider (ISP). If you use a dial-up con-

nection to the Internet, then your IP address is probably dynamically assigned each time you

connect to the Internet; if you have a cable modem, you probably have a static IP address which

always stays the same. Putting servers on dynamic IP addresses requires the server to somehow

announce its location to potential clients; one way is to have a WWW site with a static IP address,
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containing a page with the current dynamic IP address of the server. Whenever the server machine

connects or disconnects from the Internet, it updates this WWW page.

Within a local area network (LAN) that never connects to the Internet, you can choose to

assign your own arbitrary IP addresses to the machines in the network, since communication only

occurs among the local computers. Under Linux, you configure the IP address with the command

ifconfig, which allows you to configure a network interface, including specification of the

interface’s IP address. Typically, LAN IP addresses adhere to the convention specified in

RFC1597, where IP addresses lie within one of the following ranges: 10.0.0.0 through

10.255.255.255, 172.16.0.0 through 172.31.255.255, or 192.168.0.0 through 192.168.255.255.

These IP addresses are guaranteed never to be assigned to computers actually connected to the

Internet, meaning that they are always free for local use. Of course, if you are using a LAN IP

address as opposed to a real IP address from an ISP, then your clients and servers can only commu-

nicate with other machines in the local network, not with the Internet at large. For more

information on Linux and networks, see the Linux Networking HOWTO.

It’s also worth mentioning how you choose a port number for your server. Only one service

can occupy a particular port on a particular machine. Several port numbers are assigned to stan-

dard services and should not be used by your server; if you do, then either you will block the

intended server when it tries to start, or the other server will have already started and will prevent

your server from starting. The file /etc/services documents some of the more common port

numbers which are already taken. Historically, the lower port numbers are reserved for the system,

and higher ones for user programs, but there are now so many Internet server programs which can

provide useful services that it’s difficult to know if your port number might not possibly also be

used by some other program, sometime in the future. The guideline is generally to choose a high

port number (in the thousands or ten thousands) which is not listed in /etc/services, and

hope for the best. For temporary servers on machines over which we have complete administrative

control, we are more or less free to choose any port number, since we can then simply kill any

other servers that want to use that port. You can get a list of all currently active ports with the fol-

lowing command: netstat -a -n.

Let’s now return to the flow of control for a typical server program. We just discussed how to

create a socket and assign it an IP address and port number. After creating the socket, we call

bind on it to bind it locally to the specified address. Contrast this with the client case: the client

called connect to establish a remote connection; the server calls bind to create a local recep-

tion point for a connection.

Next, the server calls listen on the socket to wait for incoming connections. The first

parameter is the socket; the second parameter is a backlog parameter specifying how many simul-

taneous pending connections may exist.

Then, we enter an infinite loop. The first command in the loop is accept. The accept

command accepts an incoming connection on the socket. If no connection is pending, the com-

mand blocks until a connection arrives; this means that the program code does not continue

execution until a connection is made from the outside.

As soon as a connection arrives, the accept command allows execution to continue.

accept returns a new socket, which is the new communication channel with the just-connected
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client. This means that immediately after connecting to the server port (in this example, 5559), the

client is actually immediately redirected to another free port (for instance, 55237). This process

happens automatically through the accept call. The redirection is needed because if the communi-

cation with the client took place on the original port, no other clients could connect. This means

that the server port is exclusively for handling incoming connections; ongoing “conversations”

with clients take place after connection on a separate socket, created and returned by the accept

call.

After accepting the connection on a new socket, we have an interesting quandary that the

server must now respond to any queries which the newly connected client made, but it must also

continue to monitor and accept connections on the original port. As more and more clients con-

nect, the server would have more and more work to manage. The standard way of handling this is

to spawn a new process at the operating system level to handle the newly connected client, while

the original server process continues to handle incoming connections on the server port. The

Linux command to spawn a new process is fork. The fork function creates an almost identical

copy of a process, called the child process, and both copies continue execution after the fork

command. The original process, called the parent process, differs from the child process in only

one way: the return value for fork in the parent is non-zero and represents the process ID number

of the child process; the return value for fork in the child process is always zero. Therefore, we

call fork and check the return value. If it is non-zero, then we are the parent process, and con-

tinue waiting for connections with the accept function. If it is zero, then we are the child

process, and must respond to the newly connected client.

NOTE Note that by using fork, we can in general create multi-threaded programs, not just
servers. For instance, we might want to have enemy artificial intelligence routines running in a
separate process parallel to the main game code. Synchronizing separate concurrent pro-
cesses, however, is always the problem with multi-threading.

The section of the server that carries on a conversation with the client is similar to the correspond-

ing section in the client. We simply use the send and recv functions to send and receive data to

and from the client. Whatever the server sends with send is received by the client with recv;

whatever the client sends with send is received by the server with recv.

The sample server ends the connection whenever it detects that the client has sent a string

starting with the characters “quit”.

Listing 8-7: server.cc
#include <sys/socket.h>
#include <sys/types.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>

main() {
int mysocket;
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struct sockaddr_in addr;

addr.sin_family = AF_INET;
addr.sin_port = htons(5559);
inet_aton("127.0.0.1", &addr.sin_addr);
mysocket = socket(PF_INET, SOCK_STREAM, getprotobyname("IP")->p_proto);
bind(mysocket, (sockaddr *)&addr, sizeof(addr));
listen(mysocket, 10);

struct sockaddr_in newaddr;
while(1) {
int newsock;
socklen_t addrlen;
newsock = accept(mysocket, (sockaddr *)&newaddr, &addrlen);

if(fork()==0) {
char msg[512];
sprintf(msg,"Welcome to SimonServer v0.0");
send(newsock, msg, strlen(msg), 0);

while(1) {
char buf[256];
int size;
size = recv(newsock, buf, sizeof(buf), 0);
buf[size] = 0;
char buf2[512];
sprintf(buf2,"Simon says: %s", buf);
send(newsock, buf2, strlen(buf2), 0);
if(strncmp(buf,"quit",4)==0) {
send(newsock, "bye", 4, 0);
shutdown(newsock,2);
exit(0);

}
}

}
}
close(mysocket);

}

Running the Sample Server and Client
To run the client/server network program, first compile both the client and the server with make.

Then, type server& and press Enter. The ampersand causes the server program to run in the back-

ground. Next, type client and press Enter. You should see a brief welcome message from the

server. Then, anything you type will be sent to the server, and the server will repeat what you typed

to demonstrate that it received the data correctly. Try starting several instances of the client pro-

gram in different windows. Notice how several clients can connect simultaneously. When you are

done, you should kill the server. Determine its process number with the command ps x, and then

type kill PID, where PID is the process number of the server process.

Non-Blocking Operations
The socket operations as described above are blocking. That is, accept waits until a new con-

nection is present before proceeding, sendwaits for the data to be completely transmitted before
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proceeding, and recvwaits for a specified amount of data to be received before continuing. This

mode of operation mimics that of files.

However, with network traffic, it is sometimes more convenient to have non-blocking opera-

tions, where we can check for the presence of data, but still continue processing even if no data is

present. Doing such non-blocking I/O requires you to set the O_NONBLOCK flag on the socket

using the ioctl function; you then can use select to check for the presence (or absence) of

data on the socket. See the online manual page for socket for more details. An alternative to

polling is to have the operating system call a function of yours whenever data becomes available;

to do this, you must install a signal handler for signal SIGIO, a topic which is also documented in

the online manual.

What Data to Send
Before we close our discussion on IP networking, it’s worthwhile to mention exactly what data we

might wish to send over the network. In the case of interactive 3D applications, it is interesting to

allow multi-user environments where the actions of one user affect the appearance or state of the

virtual world for all other users. There are a number of ways we can achieve this effect. We can

have a peer-to-peer network, where every connected computer can inform other computers of

events which it generated, and must also receive events from all other computers to stay consis-

tent. We could also have one master computer and several slaves; the slaves all send their local

changes to the master, which then combines all the changes to form a new complete state of the

world, which is then uniformly transmitted to all slaves.

The information that is transmitted will typically involve the positions, orientations, and

states of all moveable or changeable objects in the world. A common misconception is that just the

(x,y,z) coordinates are sufficient to describe the complete state of each object; this ignores the ori-

entation of the object (is the bad guy facing me or not?) and the state of the object (is he wounded

or at full health? Crouching, running, or jumping? With or without the plasma rifle?). Any aspect

of any object that can change should be consistent across all participants’ machines, and must be

able to be transmitted over the network.

Another question is how often to transmit information among the computers in the network.

The finest level of control and accuracy is achieved when all computers are synchronized with one

another for every frame. This is probably the easiest kind of synchronization to implement. This

can be quite slow, however, and faster computers spend all of their time waiting on the slower ones

in this scheme. Another option is to only synchronize every few frames, but then the danger grows

that the worlds will slowly drift out of sync, requiring larger synchronization phases (i.e., more

transmission of data) at certain stages to ensure that everyone’s view of the world is identical.

Collision Detection
The topic of collision detection is a non-graphical technique which nonetheless is very important

for 3D graphics applications. Collision detection refers to the determination of whether two

objects in the 3D virtual world overlap, or not. Collision detection generally also requires some
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sort of collision response if we detect a collision, such as moving the objects apart again. Collision

detection algorithms are important for 3D graphics applications for two reasons:

� They allow us to impart a sense of physical reality to our virtual 3D worlds, greatly enhancing

the user’s sense of place in the virtual world.

� They illustrate useful geometric intersection techniques which are often also needed for

visual 3D graphics algorithms, such as ray tracing or shadow computation.

In this section, we’ll look at collision detection in general, and then develop a very simple colli-

sion detection and response system to prevent us from walking through walls in our virtual world.

We’ll also populate our virtual world with other moving objects that wander throughout the world,

using collision detection to keep them from walking through walls and each other.

Intersection Testing and Bounding Volumes
Collision detection essentially requires us to determine if two objects spatially overlap. Spatial

overlap is the same as intersection between any parts of the two objects. Since our objects are arbi-

trary, non-convex polygonal solids, one way of checking would be to test every polygon of one

object against every polygon of the other object, checking for intersection. With a large number of

objects, this sort of exhaustive testing quickly becomes impractical because of the explosive num-

ber of tests that need to be done. Furthermore, such precise collision detection is often not even

needed. It depends on the purpose of the collision detection. Often, in interactive 3D applications,

a primary goal of collision detection is simply to prevent objects as a whole from moving through

one another. This means that we can enclose the objects within simple, convex bounding volumes,

such as spheres or boxes, and check these bounding volumes for intersection. If the bounding vol-

umes do not intersect, then the objects do not intersect. If the bounding volumes intersect, the

objects might intersect. Depending on the application, we can then perform finer polygon-to-

polygon intersection tests to determine the exact collision points, or we can treat a bounding vol-

ume collision as an actual collision.
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Possible bounding volumes include spheres, axially aligned bounding boxes, or arbitrarily

oriented bounding boxes. Here, we’ll cover sphere-to-sphere, ray-to-polygon, ray-to-sphere, and

sphere- to-polygon collisions, all of which illustrate the basic intersection techniques needed for

the other methods.

Sphere-to-Sphere

Sphere-to-sphere intersection testing is almost trivial. We simply compute the distance between

the centers of the two spheres. If the distance is less than the sum of the two radii of the spheres,

then the spheres intersect; otherwise, they do not.

Ray-to-Polygon

Ray-to-polygon intersection testing is the next intersection test of interest, and is also used by

another test, the sphere-to-polygon test. A ray is a directed half-line starting at one point and mov-

ing infinitely in the direction of, through, and past a second point. With ray-to-polygon collision

detection, the ray goes from the old position of the object to the new position of the object. We

want to determine if this ray or line of movement intersects a particular polygon. This consists of
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Figure 8-3: Sphere-to-sphere
intersection testing is easy: use the
distance between the centers of
the spheres.



two steps: a test to see if the ray crosses the plane of the polygon, and if so, a second test to see if

the point of intersection actually lies within the polygon. For simplicity, we assume that the poly-

gons being tested are convex.

The first test is easy. We simply evaluate the plane equation twice, once with the first point

and once with the second point. If the signs of the results differ, the point moved from one side of

the plane to the other. This is because evaluating a plane equation with a point’s coordinates tells

us the position of the point relative to the plane.

If the sign changes, the segment of the ray between the starting and ending points crosses the

plane of the polygon, but not necessarily the polygon itself. The next test, therefore, is to compute

the actual intersection point between the ray and the polygon, and see if it lies within the polygon.
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Figure 8-4: The point has crossed from one side of
the polygon’s plane to the other.

Figure 8-5: Even if the point crosses the plane, it
may or may not cross the polygon. Here, the
point’s path does not cross the polygon.



We already know (or should know) how to compute the intersection of a line segment and a

plane, as we have already needed and used this for clipping polygons to arbitrary planes. In the

case of polygon clipping, each edge of a polygon is a line segment that has to be clipped against an

infinite plane; this requires us to find the exact intersection of the line segment and the plane. So,

we won’t repeat the math here.

Given the intersection point between the ray and the plane, we must now answer the new

question: does the point lie within the boundary of the polygon? The key to understanding how to

solve this problem is to realize that the computation is now essentially 2D. We know an intersec-

tion point on a plane; we also know the vertices of a polygon on that plane. The easiest way to do

the point-in-polygon test is to simply drop one of the coordinates x, y, or z for all points under con-

sideration. This essentially orthogonally projects the polygon and the point onto one of the planes

xy, yz, or xz. We choose which coordinate to drop based on the plane’s normal vector; the largest

component gets dropped, because a large normal vector component means there is little variation

or tilt of plane in that direction. Dropping the largest normal vector coordinate in this manner

yields the largest possible projected 2D polygon.

After projecting the polygon into 2D in this manner, we can then use the side_of_point
function (used during analytic 2D polygon clipping) to determine if the point is on the inside side

of each of the polygon’s edges. If so, then the point lies in the polygon in 2D, and therefore also

lies in the polygon in 3D, indicating that the ray under question does indeed intersect the 3D poly-

gon. If the point does not lie in the polygon in 2D, then the point does not lie in the polygon in 3D,

and no collision between the ray and the polygon occurred.

Two small but tricky implementation details arise with this method: the clockwise/counter-

clockwise orientation of the 2D polygons we create in this manner, and the y axis orientation.

Depending on the world space orientation of the polygon’s normal vector, the projected 2D poly-

gon may either be clockwise or counterclockwise when orthogonally projected onto 2D. Also,

dropping one coordinate (x, y, or z) means that we use the remaining two coordinate axes as a new

2D coordinate system, but these 2D coordinate systems have the positive y axis going upward,
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Figure 8-6: Projecting the 3D polygon and
the 3D plane intersection point into 2D to
test for containment in 2D. Here, we
orthogonally project the polygon onto the xz
plane, but we can also project onto the xy or
the yz plane; we use the polygon normal
vector to choose which plane to use.
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whereas the side_of_point function developed for screen-space polygon clipping assumes a

reversed-y coordinate system with positive values of y going downward. The class l3d_poly-
gon_3d_collidable contains commented code for dealing exactly with these details.

Using each edge of a polygon as the ray in the ray-to-polygon test allows us to test for poly-

gon-to-polygon penetration. If any one edge of a polygon intersects the other polygon, the two

polygons intersect; otherwise, they do not. Also, ray-to-polygon testing can be used for shadow

generation with light maps; the ray goes from the light source to each lumel in the scene; we check

this light ray against every polygon in the scene to see if the light reaches the lumel or not. See

Chapter 2 for a discussion of light mapped shadows.

Ray-to-Sphere

Ray-to-sphere intersection testing tests whether a ray intersects a sphere. We’re going to look at a

special case of this, which simply checks to see if a particular line segment (part of a ray) intersects

the sphere. One way to do this is as follows. Call the center of the sphere c, and the endpoints of the

line segment being tested a and b. Then, compute the vector c–a, which is the vector from the start

point of the segment to the sphere center. Next, compute the normalized vector v=b–a, which is the

unit vector from a to b. Take the dot product of these two vectors. Recall that the dot product of

two vectors, where one is of unit length, gives the length of the projection of the non-unit vector

onto the unit vector. Call the dot product of these two vectors t. t then represents the distance we

must travel from a along the vector b–a in order to reach the point on the line which is perpendicu-

larly nearest to the sphere’s center. This is because the dot product is a perpendicular vector

projection; here, we are perpendicularly projecting the vector to the sphere onto the line segment,

thus giving us the distance along the segment to this perpendicular point.

If the value of t is less than 0, then the nearest point to the sphere along the infinite line lies

before point a; thus, point a is the nearest point still on the line segment. If t is greater than 1, then

the nearest point on the infinite line lies after point b, meaning that the nearest point on the seg-
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Figure 8-7: Ray-to-sphere testing uses a
vector projection to find the nearest point on
the ray to the sphere, then checks the
distance of this nearest point to the sphere’s
center.



ment is point b. Otherwise, the nearest point lies between a and b, so we scale v by t and add it to

point a to get the intersection point a+vt.

At this point, we have the point along the line segment that is located nearest to the sphere’s

center. We then compute the distance between this nearest point and the sphere’s center. If this dis-

tance is less than the sphere’s radius, then the point lies within the sphere, indicating that the line

segment intersects the sphere. If the distance is greater than the sphere’s radius, then the nearest

point lies outside of the sphere, meaning that the entire line segment lies outside of the sphere, and

does not intersect it.

Sphere-to-Polygon

Sphere-to-polygon intersection testing is based on ray-to-polygon and ray-to-sphere intersection

tests. We can distinguish between two kinds of collision: moving collisions and static collisions.

We say that a moving collision occurs if the center of the sphere moves from one side of the poly-

gon to the other side, and the intersection of the ray going from the old sphere center to the new

sphere center lies within the polygon. In other words, a moving collision is detected in the same

way as a ray-to-polygon intersection, using the old and new positions of the sphere’s center as the

endpoints of the ray. Therefore, we already know how to perform this kind of collision test.

We say that a static collision occurs if the sphere’s center does not cross the plane of the poly-

gon, but the sphere nevertheless moves close enough to the polygon that it overlaps. This requires

some new computation: we must determine if any part of the polygon lies within the sphere’s

radius. If so, a collision has occurred between the sphere and the polygon; otherwise, none has

occurred.

The term “static collision” comes from the fact that a sphere might be embedded in a polygon

for several frames; the collision between the plane and the polygon did not necessarily just occur,

but might have been and might continue to stay that way for a while. Thus, the collision is a static

condition that currently exists. (An example of a continuous static collision is if the sphere is rest-

ing halfway within a portal polygon.) The term “moving collision” comes from the fact that a

sphere moving from one side of a polygon completely through to the other side has caused a colli-

sion because of the sphere’s movement between the last frame and the current one. This sort of

collision occurs between one frame and the next; unlike a static collision, it cannot exist for sev-

eral frames.
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Figure 8-8: A moving collision
(left) and a static collision
(right).



Detecting if a static collision occurred can be done in two steps. First of all, we compute

where the sphere intersects the plane of the polygon. If this intersection point lies within the poly-

gon, the sphere has collided with some interior portion of the polygon. Secondly, if the first test

fails, we must also compute if any edge of the polygon lies within the sphere. If so, then the sphere

has collided with some edge of the polygon. If both tests fail, the sphere and the polygon do not

intersect.

The first test computes the intersection between the sphere and the plane of the polygon. We

do this by computing the distance between the polygon and the plane, by evaluating the plane

equation with the center point of the sphere. Remember, the plane normal must be normalized for

this to work. If this computed distance is greater than the sphere’s radius, then the sphere does not

intersect the polygon’s plane at all, so no collision can occur, and we are done. Otherwise, if the

distance is less than the sphere’s radius, we calculate the point of intersection by starting at the

sphere’s center and adding a displacement vector with a direction exactly opposite to the plane’s

normal vector, and with a magnitude equal to the computed distance. This computation moves

from the sphere’s center exactly along the plane’s reversed normal vector towards the plane, end-

ing up at an intersection point exactly on the plane. This location is the first point of contact where

the sphere would intersect the plane of the polygon.

We then test this sphere intersection point for containment within the polygon, using the same

orthogonal 2D projection technique from the ray-to-polygon test. If the point lies within the poly-

gon, a collision occurred; if not, no collision occurred with the sphere and the interior of the

polygon. But the sphere might still be colliding with the edge of the polygon, leading to the last

test.

The second and last test computes to see if any edge of the polygon lies within the sphere,

relying on the ray-to-sphere test we looked at earlier. To do this, we process each edge of the poly-

gon individually. For each edge, we compute the nearest point on each edge to the sphere’s center,

using the method we used for ray-to-sphere intersection. After finding the nearest point on each

edge to the sphere’s center, we take the nearest point of all edges, which is then the nearest point to

the sphere on the entire polygon border. If this nearest point lies within the sphere, then some part

of some polygon edge lies within the sphere, and a collision with the polygon border has occurred.

If this nearest point lies outside of the sphere, then all points on all polygon edges lie outside of the

Chapter 8: Non-Graphical Techniques for Games and Interactive Environments 537

Figure 8-9: Computing the
intersection point between a
sphere and a plane. We start
at the sphere’s center, and
travel along the negative
plane normal vector by a
distance equal to the sphere’s
distance from the plane.



sphere, and no collision with the polygon boundary has occurred. Since the first test returned that

no collision occurred with the polygon interior, we know that no collision occurred at all between

the sphere and the polygon.

Tunneling and Sweep Tests
We implicitly addressed the problem of tunneling with the last collision test, sphere-to-polygon,

but it is important enough that we should explicitly mention it. The term “tunneling” refers to the

problem that objects moving with a high speed in a discrete computer simulation move from one

location to a spatially distant location instantaneously, without ever occupying any of the space in

between the old and the new positions. When the distance traveled by an object per frame remains

small relative to the size of the object and other objects, then no problems arise. But as soon as

objects start covering larger distances per time frame, the danger exists that the large discrete steps

taken by the object might cause it to move straight past objects with which it should have collided.

A simple example of this phenomenon is a fast-moving sphere approaching a plane. As long

as the sphere moves in discrete steps that are smaller than its diameter, we have no problem. But if

the sphere hops by a distance greater than its diameter, it can hop from one side of the plane to the

other without ever actually intersecting the plane.

NOTE The term tunneling comes from the field of quantum mechanics, in which it has been
experimentally established that electrons tunnel through barriers that are otherwise impene-
trable [MOEL99].

We implicitly solved this problem earlier by introducing the concept of moving collisions and

static collisions for the sphere-to-plane test. A moving collision detects exactly the case of a

sphere hopping across a plane.
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Figure 8-10: At low speeds, collisions are detected (left), but a high-speed sphere moves
from one side of a wall to the other side without ever touching it (right).



The problem also exists with sphere-to-sphere collisions. Two fast-moving spheres might

cross paths without ever colliding with one another, although they should actually have collided at

an earlier point in time.

For the sphere-to-sphere case, and in general for other bounding-volumes-to-bounding-

volume tests as well, we can detect this situation by using a sweep test. A sweep refers to the vol-

ume of space covered by a moving object between the object’s old position and its new position.

Sweep tests therefore must detect if a collision occurred at any point along the object’s trajecto-

ries. Let’s derive a sweep test for sphere-to-sphere intersection, which illustrates the general

methods used for developing such tests.

Assume we have two moving spheres P and Q. Sphere P was initially located at location P0,

and travels at a velocity Vp towards its new position P1. Similarly, sphere Q begins at Q0 and trav-

els with velocity Vq towards its new position Q1. Let us adopt the convention that at time t=0, both

spheres were at their starting points, and at time t=1, both spheres were at their new positions. This

is standard parameterization. Then, the question is, is there any t such that the spheres collided?

We define a sphere collision in terms of the distance between the spheres’ centers. We can

compute the distance between two points as the square root of the dot product of an offset vector

with itself, where the offset vector is the vector from one sphere’s center to the other. Thus, at a

given time t, the distance between P and Q is given by:
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Figure 8-11: Two
high-speed spheres
sailing past one
another without
registering a
collision.

Equation 8-1



Here, d is the distance, and o is the offset vector. Notice that o depends on time, since the spheres

are moving. We take the current position of Q and subtract the current position of P to get the off-

set vector for a particular time, which we then use to compute the distance.

It turns out that the computations are easier if we take the square distance instead of the

distance:

Furthermore, we can rewrite o in vector form as follows:

The vector Vpq is just a shorthand way of writing Vq–Vp. The vector P0Q0 is shorthand for

Q0–P0. Remember, these are all known quantities.

By taking the dot product of the time-dependent offset vector o with itself, we can know the

squared distance between the two sphere centers for any value of t. To detect a collision, we want

to see if there exists any value of t where this squared distance equals the squared sum of the

sphere’s radii. If there is such a t, then at this time the spheres would be touching. Mathematically,

we can express this collision condition as follows.

We can rearrange the terms slightly:

Then, expanding the terms for o:

All values are known except for t. This is a quadratic equation in t, so to solve for t, we can use the

quadratic formula, which you may recall from high school algebra:

In the quadratic formula, a is the coefficient of the quadratic term t2, b is the coefficient of the lin-

ear term t, and c is the constant term. The portion under the radical, (b2–4ac)/2a, is called the

discriminant, and determines the number of solutions to the quadratic equation. If it is negative,

there are no solutions to the equation, meaning that the spheres do not ever collide if they travel

along their current paths. If it is zero, then there is exactly one solution, and if it is positive, then
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there are two solutions. (Recall that when a quadratic equation is plotted it yields a parabola; find-

ing the roots of the equation is equivalent to determining when the parabola crosses the x axis,

which can be either zero, one, or two times.)

So, if the discriminant is non-negative, we plug in the coefficients from Equation 8-6 and

solve for t. If t lies between 0 and 1, the spheres do indeed collide at time t. If there are two solu-

tions for t, then we take the smaller value, because the smaller value represents when the spheres

contact when they are moving toward each other, and the greater value represents when the

spheres are just leaving each other.

If t does not lie between 0 and 1, then the spheres would eventually collide, but they do not

collide along the small segment of their paths traveled during the time t=0 to t=1, which is all that

interests us for this frame. So in this case, no collision occurred for this frame.

Multiple Simultaneous Collisions and Collision
Response

This section deals with the two topics together: multiple simultaneous collisions and collision

response. We treat these topics together because they influence one another to some degree. Once

we detect that a collision occurred, we should do something about it. In general, this is completely

application-specific. For instance, if we are modeling a game where the player runs around col-

lecting coins to earn points, then when the player collides with a coin, we probably simply cause

the coin to disappear and add it to the player’s score. Collision response in this case is very simple.

Although collision response is application-specific, there is a very common class of collision

response that has a very simple goal: prevent objects from penetrating one another, in a physically

realistic way. This prevents objects from moving through one another, thus modeling the ordinary

physical reality that no two objects can occupy the same space at the same time.

Maintaining some semblance of physical reality when preventing collisions is important to

make the simulation believable. For instance, a physically unrealistic but very simple way of pre-

venting objects from colliding would be to instantaneously stop the motion of any object if that

motion would cause a collision. While this accomplishes the goal of preventing object penetra-

tions, ordinary objects change their positions, velocities, and accelerations when they collide; they

don’t just stop all motion instantaneously.

Allowing Penetration

One way of responding to collisions is to detect and allow object penetration, and to model the

result of the penetration as a spring force [SHAN98]. The penetrated object therefore pushes back

on the penetrating object like a spring, responding with more force with deeper penetration. With

such a system, we could account for multiple simultaneous collisions by adding the contributions

of each spring force.

A problem with this method is that if our time step is too large, an object might be allowed to

penetrate an object to a great depth, which would produce a tremendous spring force and cause the

object to fly back at a great speed. The best solution is to run the simulation code as fast as possible

so that the time steps are sufficiently small enough to prevent objects from moving so much in one
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time step that they penetrate deeply. But the problem can still crop up if the code slows down, forc-

ing the time step to increase. We can then compensate for the effects by using damping forces after

collision to ensure that the new velocities remain within reasonable bounds [SHAN98].

Avoiding Penetration with Temporal Search

Another method of collision response is to forbid object penetration with temporal search, and to

resolve each collision under the assumption that the colliding bodies are rigid. This usually

implies the use of rigid body dynamics; see the section later in this chapter titled “Physics.”

Key to this method is the prevention of collisions. To do this, if we detect a collision, then we

back up the clock and determine the exact time at which the collision occurred. We can do this ana-

lytically by solving for the geometric intersection time, as we did with the sweep test earlier.

Alternatively, if we do not know how to analytically solve for the collision time, we can perform a

binary search through time to find the collision time. This assumes that we know that the objects

are indeed colliding (for instance, because they are currently overlapping) but don’t know exactly

at what point in time they first collided. By itself, the temporal search method does not address

tunneling issues, and should be combined with some sort of (possibly inexact) sweep testing.

The idea behind the binary temporal search method is as follows. We know that the objects

weren’t colliding in the previous frame, and they are now. We also know the clock value at the pre-

vious non-colliding frame, and the clock value at the current colliding frame. So, based on the

previous non-colliding positions and velocities, we test the positions at different time values lying

between the non-colliding time value and the colliding time value. We search for the earliest time

value at which the objects were still not colliding, within a given temporal tolerance such as 0.1

seconds. A binary search is a natural solution here. If there was no collision at time t, and there was

a collision at time t+dt, then we check at time t+0.5dt. If the objects are still colliding, we back up

again in time by one-half of the previous temporal interval, to t+0.25dt; if no collision was found,

we step forward in time to t+0.75dt. We stop searching whenever the bounds of the temporal

search space differ by less than the tolerance.

Once we find the exact time (within the specified tolerance) at which a collision occurred, we

then must alter the velocities of the objects to prevent them from moving into one another. This

altering of the velocities should follow some physical laws to appear realistic, simulating the

impact of the two bodies (see the section titled “Physics”). By altering the velocities in a physi-

cally realistic manner, the objects will bounce away from each other at the exact instant of

collision, as opposed to afterwards as with the spring method. The new object velocities then

cause the objects to move in new directions, which avoids the collision.

Multiple simultaneous collisions in this system do not really exist; instead, we sort all colli-

sions temporally and resolve them on a pair-wise basis. We first find all collisions among all

objects in a pair-wise manner. In other words, we make a list of pairs of objects (A,B), where an

entry (A,B) in the list implies that A collides with B. We then determine the exact time at which

each such collision pair occurred, and sort these by time. We handle the earliest collision first,

altering the velocities of the objects to prevent the first collision. Then, we re-evaluate all other

collision pairs based on the new positions of the objects A and B given their new velocities. New

collisions can occur and old collisions can disappear as a result of the first collision response.
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After updating the collision list, we then again sort the list temporally and resolve the collisions in

temporal order until the list is empty.

It is possible that so many bodies collide in such a complex manner that the collision list can-

not be resolved in a reasonable amount of time; inherent numerical inaccuracy in the computations

also compounds the problem. We can try to circumvent this by preventing the routine from loop-

ing more than a fixed number of times; if we exceed this count and still weren’t able to resolve all

collisions, we can then resort to an emergency spatial search to position each object so that it no

longer collides with any other. We can do this by progressively bouncing each object farther and

farther away from the objects with which it collides, until it has bounced so far away that it no lon-

ger collides with them. The problem here is that we might have to bounce the objects very far from

one another, leading to physically unrealistic super-explosive behavior with complex collisions.

Again, use of a damping force after collision resolution can help reduce the velocities.

Now that we’ve covered some of the important collision detection principles, let’s look at

some sample classes and code which implement collision detection.

Class l3d_collidable
Class l3d_collidable represents an object which can be tested for collision against another

collidable object.

Abstract method detect_collision_with takes another l3d_collidable object

as a parameter. It returns whether or not the current object collides with the other object.

Member variables old_position and new_position represent the movement of the

object. old_position is the position in the previous frame; new position is the new posi-

tion to which the object wants to move. A collision may prevent the object from reaching its

originally specified new_position. In this case, new_position is changed to reflect the

actual new position to which the object is allowed to move. new_position may be changed

several times, if the object collides with many other objects along its path.

Member variable bounce is a vector representing a spring-like change in velocity resulting

from the collision. (Note that this modeling is oversimplified; see the section titled “Physics.”)

Member variable prevent_collision indicates whether the object should automati-

cally correct a collision once one is detected, so that the objects no longer collide.

Listing 8-8: collide.h
#ifndef __COLLIDE_H
#define __COLLIDE_H

#include "../tool_os/memman.h"
#include "../math/vector.h"
#include "../geom/point/point.h"

class l3d_collidable {
public:
l3d_point old_position, new_position;
l3d_vector bounce;
int prevent_collision;
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virtual int detect_collision_with(l3d_collidable *target) {return 0; };
};

#endif

Class l3d_collidable_sphere
Class l3d_collidable_sphere is a sphere that can test itself for collision against other

objects.

Member variable collision_sphere_radius is the radius of the sphere.

Overridden method detect_collision_with detects the collision of the sphere with

various types of other objects. Implemented are the sphere-plane, sphere-polygon, and sphere-

sphere tests described earlier. If member variable prevent_collision is true, then the

sphere’s position is corrected after a collision so that it no longer collides with the other object.

Also, the bounce vector is set to indicate the exact correction that was done.

Listing 8-9: colsph.h
#ifndef __COLSPH_H
#define __COLSPH_H

#include "collide.h"

class l3d_collidable_sphere :
virtual public l3d_collidable

{
public:
l3d_real collision_sphere_radius;
int detect_collision_with(l3d_collidable *target);

};

#endif

Listing 8-10: colsph.cc
#include "colsph.h"
#include "../geom/plane/plane.h"
#include "../geom/polygon/p3_coll.h"
#include "../tool_os/memman.h"

int l3d_collidable_sphere::detect_collision_with(l3d_collidable *target)
{
l3d_plane *plane;
l3d_polygon_3d_collidable *poly;
l3d_collidable_sphere *sphere;

if( (plane=dynamic_cast<l3d_plane *>(target)) ) {
l3d_real dist;

int status;
status = plane->intersect_with_segment(old_position, new_position);

if (
plane->side_of_point(old_position) >= 0 &&
plane->side_of_point(new_position) < 0 )

{
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#define EPSILON_COLLISION float_to_l3d_real(0.1)

bounce.set
(plane->intersection.X_ +
l3d_mulrr(plane->a, collision_sphere_radius + EPSILON_COLLISION) -
new_position.X_,

plane->intersection.Y_ +
l3d_mulrr(plane->b, collision_sphere_radius + EPSILON_COLLISION) -
new_position.Y_,

plane->intersection.Z_ +
l3d_mulrr(plane->c, collision_sphere_radius + EPSILON_COLLISION) -
new_position.Z_,

int_to_l3d_real(0));

if(prevent_collision) {
new_position = new_position + bounce;

}

return 1;
}else if ((dist=plane->side_of_point(new_position)) <collision_sphere_radius

&& dist>0
)

{

bounce.set
(l3d_mulrr(plane->a,

collision_sphere_radius - dist + EPSILON_COLLISION),
l3d_mulrr(plane->b,

collision_sphere_radius - dist + EPSILON_COLLISION),
l3d_mulrr(plane->c,

collision_sphere_radius - dist + EPSILON_COLLISION),
int_to_l3d_real(0));

if(prevent_collision) {
new_position = new_position + bounce;

}

return 2;

}
else return 0;

}
else if ( (poly = dynamic_cast<l3d_polygon_3d_collidable *>(target)) ) {

l3d_real dist;

int status;
status = poly->plane.intersect_with_segment(old_position, new_position);

if (
poly->plane.side_of_point(old_position) >= 0 &&
poly->plane.side_of_point(new_position) < 0 &&
poly->contains_point(poly->plane.intersection) )

{

bounce.set
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(poly->plane.intersection.X_ +
l3d_mulrr(poly->plane.a, collision_sphere_radius + EPSILON_COLLISION) -
new_position.X_,

poly->plane.intersection.Y_ +
l3d_mulrr(poly->plane.b, collision_sphere_radius + EPSILON_COLLISION) -
new_position.Y_,

poly->plane.intersection.Z_ +
l3d_mulrr(poly->plane.c, collision_sphere_radius + EPSILON_COLLISION) -
new_position.Z_,

int_to_l3d_real(0));

if(prevent_collision) {
new_position = new_position + bounce;

}

return 1;
}else if ((dist=poly->plane.side_of_point(new_position)) <collision_sphere_radius

&& dist>0
)

{

//- check for collision with polygon interior

l3d_point plane_intersection;
plane_intersection.set
(new_position.X_ + l3d_mulrr(dist, -poly->plane.a),
new_position.Y_ + l3d_mulrr(dist, -poly->plane.b),
new_position.Z_ + l3d_mulrr(dist, -poly->plane.c),
int_to_l3d_real(1));

if(poly->contains_point(poly->plane.intersection)) {
if(poly->contains_point(plane_intersection)) {

bounce.set
(l3d_mulrr(poly->plane.a,

collision_sphere_radius - dist + EPSILON_COLLISION),
l3d_mulrr(poly->plane.b,

collision_sphere_radius - dist + EPSILON_COLLISION),
l3d_mulrr(poly->plane.c,

collision_sphere_radius - dist + EPSILON_COLLISION),
int_to_l3d_real(0));

if(prevent_collision) {
new_position = new_position + bounce;

}

return 2;
}

//- check for collision with polygon edges

l3d_real smallest_dist = int_to_l3d_real(9999);
l3d_point nearest_point;
for(int ivtx=0; ivtx<poly->clip_ivertices->num_items; ivtx++) {
l3d_point a =
(**poly->vlist)[(*poly->clip_ivertices)[ivtx].ivertex].
transformed;
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int next_ivtx = poly->next_clipidx_right
(ivtx, poly->clip_ivertices->num_items);

l3d_point b =
(**poly->vlist)[(*poly->clip_ivertices)[next_ivtx].ivertex].
transformed;

l3d_point p = new_position;
l3d_vector c = p - a;
l3d_vector V = normalized(b-a);
l3d_real d = l3d_sqrt(dot(b-a,b-a));
l3d_real t = dot(V,c);

l3d_point pt;

if(t<0) {
pt = a;

}else if(t>d) {
pt = b;

}else {
pt = a + V*t;

}

l3d_real temp_dist;
temp_dist = l3d_sqrt(dot(pt-new_position,

pt-new_position));
if(temp_dist <smallest_dist)
{
smallest_dist = temp_dist;
nearest_point = pt;

}
}

if( smallest_dist < collision_sphere_radius) {
bounce.set
(l3d_mulrr(poly->plane.a,

collision_sphere_radius - dist + EPSILON_COLLISION),
l3d_mulrr(poly->plane.b,

collision_sphere_radius - dist + EPSILON_COLLISION),
l3d_mulrr(poly->plane.c,

collision_sphere_radius - dist + EPSILON_COLLISION),
int_to_l3d_real(0));

if(prevent_collision) {
new_position = new_position + bounce;

}

return 2;

}

else return 0;
}
else return 0;

}
return 0;

}
else if ( (sphere = dynamic_cast<l3d_collidable_sphere *>(target)) ) {

int result = 0;
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l3d_real dist;
dist = l3d_sqrt(dot(new_position - target->new_position,

new_position - target->new_position));

if(dist < collision_sphere_radius + sphere->collision_sphere_radius)
{
result = 1;

l3d_real bounce_dist = collision_sphere_radius
+ sphere->collision_sphere_radius
- dist;

bounce = normalized(new_position - sphere->new_position);
bounce.set(l3d_mulrr(bounce.X_, bounce_dist + EPSILON_COLLISION),

l3d_mulrr(bounce.Y_, bounce_dist + EPSILON_COLLISION),
l3d_mulrr(bounce.Z_, bounce_dist + EPSILON_COLLISION),
int_to_l3d_real(0));

if(prevent_collision) {
new_position = new_position + bounce;

}
}

return result;
}else {
printf("unknown collidable test sphere with ???");
return 0;

}

}

Class l3d_polygon_3d_collidable
Class l3d_polygon_3d_collidable is a polygon which can be tested for collision with

other objects.

Method contains_point determines if a particular point, which must lie within the plane

of the polygon, lies within the polygon itself. It uses the orthogonal projection method, which we

developed for the ray-polygon test, to eliminate one of the dimensions from consideration, then to

perform the point-in-polygon test in 2D. Method contains_point is called during the

sphere-polygon intersection test.

Listing 8-11: p3_coll.h
#ifndef __P3_COLL_H
#define __P3_COLL_H
#include "../../tool_os/memman.h"

#define __ACTIVE__P3_COLL_H

#include "p3_clip.h"
#include "../plane/plane.h"
#include "../../dynamics/collide.h"

class l3d_polygon_3d_collidable :
virtual public l3d_polygon_3d_clippable,
virtual public l3d_collidable

{
public:
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l3d_polygon_3d_collidable(void) : l3d_polygon_3d_clippable() {};

l3d_polygon_3d_collidable(int num_pts) :
l3d_polygon_3d(num_pts),
l3d_polygon_2d(num_pts),
l3d_polygon_3d_clippable(num_pts)

{};

int contains_point(const l3d_point &point);

l3d_polygon_3d_collidable(const l3d_polygon_3d_collidable &r);
l3d_polygon_2d *clone(void);

};

#undef __ACTIVE__P3_COLL_H

#endif

Listing 8-12: p3_coll.cc
#include "p3_coll.h"
#include "../../tool_os/memman.h"

int l3d_polygon_3d_collidable::contains_point(const l3d_point& point) {
int collindex[2];
int inside_side;

if(l3d_abs(plane.a) > l3d_abs(plane.b) &&
l3d_abs(plane.a) > l3d_abs(plane.c))

{
//- smallest variation in the a (x) direction (largest normal component);
//- drop it
collindex[0] = 2; //- z axis becomes new 2D x axis
collindex[1] = 1; //- y axis becomes new 2D y axis
//- NOTE: look at LHS system. drop x. you must use "y" as the vertical
//- axis and "z" as horiz. in order for left-right orientation to stay
//- the same.

//- if the dir. of the normal vector component you dropped is positive,
//- the orientation of the orthogonally-projected poly is clockwise
//- (the normal case for a LHS coordinate system) else counterclockwise.
//- BUT!! side_of_point assumes SCREEN-SPACE coords, i.e. +ve y axis is
//- DOWN, but here we are working in 3D space with one axis dropped,
//- giving an orthographically projected point with +ve y axis going UP.
//- so we flip our interpretation of "inside" and "outside" from the
//- result returned by side_of_point: we treat -1 as inside for normal
//- clockwise polys, and treat +1 as inside for reversed counterclockwise
//- polys.

if(plane.a > 0) inside_side = -1; else inside_side = 1;
}else if(l3d_abs(plane.b) > l3d_abs(plane.a) &&

l3d_abs(plane.b) > l3d_abs(plane.c) )
{
//- smallest variation in the b (y) direction (largest normal component);
//- drop it
collindex[0] = 0; //- x axis becomes new 2D x axis
collindex[1] = 2; //- z axis becomes new 2D y axis

//- if the dir. of the normal vector component you dropped is positive,
//- the orientation of the orthogonally-projected poly is clockwise
//- (the normal case for a LHS coordinate system) else counterclockwise.
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//- BUT!! side_of_point assumes SCREEN-SPACE coords, i.e. +ve y axis is
//- DOWN, but here we are working in 3D space with one axis dropped,
//- giving an orthographically projected point with +ve y axis going UP.
//- so we flip our interpretation of "inside" and "outside" from the
//- result returned by side_of_point: we treat -1 as inside for normal
//- clockwise polys, and treat +1 as inside for reversed counterclockwise
//- polys.
if(plane.b > 0) inside_side = -1; else inside_side = 1;

}else {
//- smallest variation in the c (z) direction (largest normal component);
//- drop it

collindex[0] = 0; //- x axis becomes new 2D x axis
collindex[1] = 1; //- y axis becomes new 2D y axis

//- here, because the +ve z-axis is pointing into the screen, then
//- if plane.c > 0 then the polygon is pointing AWAY from the
//- viewer, meaning that the orientation of the polygon is reversed
//- (i.e. clockwise), so normally inside_side would be -1. BUT,
//- due to the reversed-y system expected by side_of_point(),
//- inside_side gets negated again, giving 1.
if(plane.c > 0) inside_side = 1; else inside_side = -1;

}

int idx0, idx1;
idx0 = 0;
idx1 = next_clipidx_right(idx0, clip_ivertices->num_items);
l3d_point ortho_point, ortho_p1, ortho_p2;

ortho_point.set(point.a[collindex[0]],
point.a[collindex[1]],
int_to_l3d_real(0),
int_to_l3d_real(1));

int status=1;

int done=0;
while(!done) {
ortho_p1.set
( (**vlist)[(*clip_ivertices)[idx0].ivertex].transformed.a[collindex[0]],
(**vlist)[(*clip_ivertices)[idx0].ivertex].transformed.a[collindex[1]],
int_to_l3d_real(0),
int_to_l3d_real(1) );

ortho_p2.set
( (**vlist)[(*clip_ivertices)[idx1].ivertex].transformed.a[collindex[0]],
(**vlist)[(*clip_ivertices)[idx1].ivertex].transformed.a[collindex[1]],
int_to_l3d_real(0),
int_to_l3d_real(1) );

if ( side_of_point(&ortho_point, &ortho_p1, &ortho_p2) != inside_side ) {
status = 0;
done = 1;

}

if(idx1==0) {
done = 1;

}else {
idx0 = idx1;
idx1 = next_clipidx_right(idx0, clip_ivertices->num_items);
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}
}

return status;
}

l3d_polygon_2d* l3d_polygon_3d_collidable::clone(void) {
return new l3d_polygon_3d_collidable(*this);

}

l3d_polygon_3d_collidable::l3d_polygon_3d_collidable
(const l3d_polygon_3d_collidable &r)

: l3d_polygon_3d_clippable(r),
l3d_collidable(r)

{
}

Class l3d_polygon_3d_textured_lightmapped_collidable
Class l3d_polygon_3d_textured_lightmapped_collidable is a textured, light

mapped polygon against which a collision test can be performed. It implements no new function-

ality; it merely inherits from multiple base classes.

Listing 8-13: p3_cltex.h
#ifndef __P3_CLTEX_H
#define __P3_CLTEX_H
#include "../../tool_os/memman.h"

#include "p3_ltex.h"
#include "p3_coll.h"

class l3d_polygon_3d_textured_lightmapped_collidable :
virtual public l3d_polygon_3d_textured_lightmapped,
virtual public l3d_polygon_3d_collidable

{
public:
l3d_polygon_3d_textured_lightmapped_collidable
(int num_pts, l3d_surface_cache *scache);
virtual ~l3d_polygon_3d_textured_lightmapped_collidable
(void);

l3d_polygon_3d_textured_lightmapped_collidable
(const l3d_polygon_3d_textured_lightmapped_collidable &r);
l3d_polygon_2d *clone(void);

};

#endif

Listing 8-14: p3_cltex.cc
#include "p3_cltex.h"

#include "../../raster/ras3_sw.h"
#include "../../tool_os/memman.h"

#define EPSILON_VECTOR 0.001

l3d_polygon_3d_textured_lightmapped_collidable::
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l3d_polygon_3d_textured_lightmapped_collidable
(int num_pts, l3d_surface_cache *scache):

l3d_polygon_2d(),
l3d_polygon_3d(),
l3d_polygon_3d_clippable(),
l3d_polygon_3d_collidable(),
l3d_polygon_3d_textured(num_pts),
l3d_polygon_3d_textured_lightmapped(num_pts, scache)

{
}

l3d_polygon_3d_textured_lightmapped_collidable::
~l3d_polygon_3d_textured_lightmapped_collidable(void)
{
}

l3d_polygon_2d* l3d_polygon_3d_textured_lightmapped_collidable::clone(void) {
return new l3d_polygon_3d_textured_lightmapped_collidable(*this);

}

l3d_polygon_3d_textured_lightmapped_collidable::
l3d_polygon_3d_textured_lightmapped_collidable
(const l3d_polygon_3d_textured_lightmapped_collidable &r)

: l3d_polygon_2d(r),
l3d_polygon_3d(r),
l3d_polygon_3d_textured(r),
l3d_polygon_3d_textured_lightmapped(r),
l3d_polygon_3d_clippable(r),
l3d_polygon_3d_collidable(r),
l3d_texture_computer(r)

{
}

Class l3d_camera_collidable
Class l3d_camera_collidable is a camera which can collide with other objects. It inherits

from both l3d_camera and l3d_collidable_sphere.

The constructor sets the radius for the collision sphere.

Overridden method update sets the old and new positions for the camera, which are then

used during collision detection.

Listing 8-15: camcol.h
#ifndef __CAMCOL_H
#define __CAMCOL_H
#include "../tool_os/memman.h"

#include "camera.h"
#include "../dynamics/colsph.h"

class l3d_camera_collidable :
virtual public l3d_camera,
virtual public l3d_collidable_sphere

{
public:

l3d_camera_collidable(void) :
l3d_camera()
{collision_sphere_radius = int_to_l3d_real(5);
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};
virtual ~l3d_camera_collidable(void) {};
virtual int update(void) {
l3d_collidable::old_position = VRP;
int status=l3d_moveable::update();
l3d_collidable::new_position = VRP;
return status;

}
};
#endif

Class l3d_world_portal_textured_lightmapped_obj_
colldet

Class l3d_world_portal_textured_lightmapped_obj_colldet is not only the

longest class name in the book, it is also a world which implements simple collision detection on

the camera object, preventing the camera object from walking through walls. A crashing sound is

played for every collision.

Member variable sound_client is a pointer to a sound client object, which knows how to

interface to a sound server to play sounds.

The constructor deletes the camera object created by the base class constructor, and replaces it

with a new camera of type l3d_camera_collidable, which can collide with the environ-

ment. It also creates a sound client and asks the sound client to establish a connection with a sound

server. Currently the sound server is hard-coded to be on the local host at IP address 127.0.0.1, on

the RPlay port 5556.

Overridden method load_from_file is essentially the same as the inherited version,

except it creates polygons of type l3d_polygon_3d_textured_lightmapped_
collidable while reading the world file.

Overridden method update_all implements collision detection and response between the

camera and the geometry in the sector. First, we position all sector geometry into world space, then

merge the polygon lists for the sector and any moveable plug-in objects it might contain. Then, we

check the camera for collision against all polygons in the sector by calling method

detect_collision_with against every polygon in the sector. The camera’s inherited mem-

ber variable prevent_collision is set to 1 during these collision checks, meaning that the

camera’s position is corrected so as not to collide with any polygon in the sector. Since correcting

the camera’s position with respect to one polygon might make the position invalid with respect to

another polygon, we must again loop through all polygons whenever the camera’s position has

been corrected, eventually leading to a camera position not colliding with any polygon. If a colli-

sion was detected, we play a sound. Portal crossing is also newly implemented; a portal crossing is

defined as a moving collision with a portal. Earlier, we explicitly searched for containment of the

camera within all sectors to find out if the camera crossed into another sector. Now, we use the

technique of collision detection; if the camera’s line of movement crosses through a polygon por-

tal, which we test using the ray-polygon test, we set the current sector to the sector on the other

side of the crossed portal.
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Listing 8-16: w_pcoll.h
#ifndef __W_PCOLL_H
#define __W_PCOLL_H
#include "../../tool_os/memman.h"
#include "../../sound/soundclient.h"

#include "w_porlotex.h"

class l3d_world_portal_textured_lightmapped_obj_colldet :
public l3d_world_portal_textured_lightmapped_obj

{
public:
l3d_world_portal_textured_lightmapped_obj_colldet(int xsize, int ysize);
~l3d_world_portal_textured_lightmapped_obj_colldet(void);
void load_from_file(const char *fname);

void update_all(void);
l3d_sound_client *sound_client;

};

#endif

Listing 8-17: w_pcoll.cc
#include "w_pcoll.h"
#include "../object/ocoll.h"
#include "../polygon/p_portal.h"
#include <string.h>
#include "../polygon/p3_cltex.h"
#include "../polygon/p3_cflat.h"
#include "../polygon/p_cport.h"
#include "../../raster/ras_swl.h"
#include "../../view/camcol.h"
#include "../../dynamics/plugins/plugenv.h"
#include "../../system/fact0_4.h"
#include "../../tool_os/memman.h"

#include <sys/socket.h>
#include <sys/types.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <errno.h>

void l3d_world_portal_textured_lightmapped_obj_colldet::update_all(void) {
l3d_world_portal_textured_lightmapped_obj::update_all();
l3d_sector *sector;
sector = current_sector;
l3d_polygon_3d_node *n;

sector->reset();
if (sector->num_xforms) {
sector->transform(sector->modeling_xform);

}

l3d_polygon_3d_node *n_objects=0;
for(int i=0; i<sector->objects->num_items; i++) {
(*sector->objects)[i]->reset();
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if((*sector->objects)[i]->num_xforms) {
(*sector->objects)[i]->transform
((*sector->objects)[i]->modeling_xform);

}

if((*sector->objects)[i]->nonculled_polygon_nodes) {
l3d_polygon_3d_node *n_temp;
n_temp = (*sector->objects)[i]->nonculled_polygon_nodes;
while(n_temp->next) {
n_temp->polygon->set_transform_stage(sector->transform_stage);
n_temp=n_temp->next;

}
n_temp->next = n_objects;
if(n_objects) {n_objects->prev = n_temp; }
n_objects = (*sector->objects)[i]->nonculled_polygon_nodes;
n_objects->prev = NULL;

}
}

if(n_objects) {
l3d_polygon_3d_node *n_temp;
n_temp = sector->nonculled_polygon_nodes;
while(n_temp->next) {
n_temp=n_temp->next;

}
n_temp->next = n_objects;
n_objects->prev = n_temp;

}

int some_collision_occurred = 1;
int do_sound = 0;

l3d_camera_collidable *cam;
cam = dynamic_cast<l3d_camera_collidable *>(camera);

if(cam) {
l3d_point old_position = cam->old_position;

cam->prevent_collision = 1;

while(some_collision_occurred) {

some_collision_occurred = 0;

n = sector->nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_collidable *poly3;

poly3 = dynamic_cast<l3d_polygon_3d_collidable *>(n->polygon);
if(poly3 && cam &&

!(dynamic_cast<l3d_polygon_3d_portal *>(n->polygon)))
{

while(cam->detect_collision_with(poly3)) {
do_sound = 1;

const l3d_real damping_factor = float_to_l3d_real(0.0);
cam->VFW_velocity += l3d_mulrr(dot(cam->bounce, cam->VFW),

damping_factor);
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cam->VRI_velocity += l3d_mulrr(dot(cam->bounce, cam->VRI),
damping_factor);

cam->VUP_velocity += l3d_mulrr(dot(cam->bounce, cam->VUP),
damping_factor);

cam->VRP = cam->new_position;

some_collision_occurred = 1;
}

}

n=n->next;
}

}

cam->prevent_collision = 0;
l3d_point new_pos_with_portal_displacement
(cam->new_position.X_ + l3d_mulrr(float_to_l3d_real(5.0),

cam->VFW.X_),

cam->new_position.Y_ + l3d_mulrr(float_to_l3d_real(5.0),
cam->VFW.Y_),

cam->new_position.Z_ + l3d_mulrr(float_to_l3d_real(5.0),
cam->VFW.Z_),

int_to_l3d_real(1) ),

original__new_pos = cam->new_position;

n = sector->nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_portal_collidable *portal;

portal = dynamic_cast<l3d_polygon_3d_portal_collidable *>(n->polygon);
if(portal)
{

cam->new_position = new_pos_with_portal_displacement;

if(cam->detect_collision_with(portal) == 1) {
current_sector = portal->connected_sector;
break;

}
}

n=n->next;
}

cam->new_position = original__new_pos;

}

n = sector->nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_collidable *poly3;

poly3 = dynamic_cast<l3d_polygon_3d_collidable *>(n->polygon);
if(poly3 && cam) {

if (poly3->plane.side_of_point(cam->VRP) < 0) {
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}

}

n=n->next;
}

if(do_sound) {
char cmd[] = "play count=1 volume=64 sound=crash.au";
sound_client->send_command(cmd);

}
}

l3d_world_portal_textured_lightmapped_obj_colldet::
l3d_world_portal_textured_lightmapped_obj_colldet
(int xsize, int ysize)

: l3d_world_portal_textured_lightmapped_obj (xsize, ysize)
{
delete camera;
camera = new l3d_camera_collidable();

rasterizer_3d_imp->fovx = &(camera->fovx);
rasterizer_3d_imp->fovy = &(camera->fovy);

sound_client = factory_manager_v_0_4.sound_client_factory->create();
sound_client->connect("127.0.0.1 5556");

}

l3d_world_portal_textured_lightmapped_obj_colldet::
~l3d_world_portal_textured_lightmapped_obj_colldet(void)
{
delete sound_client;

}

void l3d_world_portal_textured_lightmapped_obj_colldet::
load_from_file(const char *fname)
{
FILE *fp;

int linesize=1536;
char line[1536];
int tex_count, snum;

fp = fopen("world.dat", "rb");

fgets(line,sizeof(line),fp);
sscanf(line,"%d", &tex_count);

for(int i=0; i<tex_count; i++) {
fgets(line,sizeof(line),fp);
while(line[strlen(line)-1] == '') {line[strlen(line)-1] = '0'; }

texture_loader->load(line);
int next_tex_index;
next_tex_index = tex_data.next_index();
tex_data[next_tex_index].width = texture_loader->width;
tex_data[next_tex_index].height = texture_loader->height;
tex_data[next_tex_index].data = texture_loader->data;
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}

screen->refresh_palette();

fgets(line,linesize,fp);
sscanf(line,"%d",&snum);

l3d_sector *current_sector=NULL;

for(int onum=0; onum<snum; onum++) {
char sname[80];
char keyword[80];
char plugin_name[1024];
char rest_parms[4096];
int numv, nump;
fgets(line, linesize, fp);
strcpy(keyword,"");
strcpy(sname,"");
strcpy(plugin_name,"");
strcpy(rest_parms,"");
sscanf(line,"%s %s %s",keyword, sname, plugin_name);

//- get rest parameters all in one string
char *tok;
tok=strtok(line, " "); //- skip keyword
tok=strtok(NULL, " "); //- skip object name
tok=strtok(NULL, " "); //- skip plugin name
tok=strtok(NULL, ""); //- rest of the line until newline
if(tok) {strncpy(rest_parms, tok, sizeof(rest_parms)); }

if(strcmp(keyword,"SECTOR")==0) {

fgets(line,linesize,fp);
sscanf(line, "%d %d", &numv, &nump);

l3d_sector *sector;
int new_onum;
objects[new_onum=objects.next_index()] = sector = new l3d_sector(numv);
current_sector = sector;

strcpy(objects[new_onum]->name, sname);

for(int v=0; v<numv; v++) {
int vn;
float vx, vy, vz;

fgets(line, linesize, fp);
sscanf(line, "%d %f %f %f", &vn, &vx, &vy, &vz);
(*(objects[new_onum]->vertices))[vn].original.set(float_to_l3d_real(vx),

float_to_l3d_real(vy),
float_to_l3d_real(vz),
int_to_l3d_real(1));

}

for(int p=0; p<nump; p++) {
int p_idx = objects[new_onum]->polygons.next_index();

char *s;
fgets(line, linesize, fp);
s = strtok(line, " ");
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if(strcmp(s,"GEOMPOLY")==0) {
int num_vtx;
l3d_polygon_3d_textured_lightmapped_collidable *pt;

s = strtok(NULL, " ");
sscanf(s, "%d", &num_vtx);
objects[new_onum]->polygons[p_idx] =
pt =
new l3d_polygon_3d_textured_lightmapped_collidable(num_vtx,scache);

objects[new_onum]->polygons[p_idx]->vlist =
&objects[new_onum]->vertices;

for(int vtx=0; vtx<num_vtx; vtx++) {
s = strtok(NULL, " ");
int iv;
sscanf(s, "%d", &iv);
(*(objects[new_onum]->polygons[p_idx]->ivertices))[
objects[new_onum]->polygons[p_idx]->ivertices->next_index()].ivertex = iv;

}

pt->fovx = &(camera->fovx);
pt->fovy = &(camera->fovy);
pt->screen_xsize = &(screen->xsize);
pt->screen_ysize = &(screen->ysize);

int tex_id = 0;
pt->texture = new l3d_texture;
pt->texture->tex_data = & tex_data[tex_id];
pt->texture->owns_tex_data = false;

pt->texture->O.original.set
(

(**pt->vlist)[ (*pt->ivertices)[0].ivertex ].original.X_,
(**pt->vlist)[ (*pt->ivertices)[0].ivertex ].original.Y_,
(**pt->vlist)[ (*pt->ivertices)[0].ivertex ].original.Z_,
int_to_l3d_real(1) );

pt->texture->U.original.set
(
(**pt->vlist)[ (*pt->ivertices)[1].ivertex ].original.X_,
(**pt->vlist)[ (*pt->ivertices)[1].ivertex ].original.Y_,
(**pt->vlist)[ (*pt->ivertices)[1].ivertex ].original.Z_,
int_to_l3d_real(1) );

l3d_point V_point(
(**pt->vlist)[ (*pt->ivertices)[pt->ivertices->num_items-1].ivertex ].original.X_,
(**pt->vlist)[ (*pt->ivertices)[pt->ivertices->num_items-1].ivertex ].original.Y_,
(**pt->vlist)[ (*pt->ivertices)[pt->ivertices->num_items-1].ivertex ].original.Z_,
int_to_l3d_real(1) );

l3d_vector
U_vector = pt->texture->U.original - pt->texture->O.original,

V_vector = V_point - pt->texture->O.original,
U_cross_V_vector = cross(U_vector, V_vector),

V_vector_new = normalized(cross(U_cross_V_vector,
U_vector)) *

sqrt(dot(U_vector,U_vector));

pt->texture->V.original = V_vector_new + pt->texture->O.original;

objects[new_onum]->polygons[p_idx]->compute_center();
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objects[new_onum]->polygons[p_idx]->compute_sfcnormal();

pt->compute_surface_orientation_and_size();

pt->plane.align_with_point_normal(pt->center.original, normalized(pt->sfcnormal.original -
pt->center.original));

}else if(strcmp(s,"GEOMPOLY_TEX")==0) {

int num_vtx;
l3d_polygon_3d_textured_lightmapped_collidable *pt;

s = strtok(NULL, " ");
sscanf(s, "%d", &num_vtx);
objects[new_onum]->polygons[p_idx] =
pt =
new l3d_polygon_3d_textured_lightmapped_collidable
(num_vtx, scache);

objects[new_onum]->polygons[p_idx]->vlist = &objects[new_onum]->vertices;

for(int vtx=0; vtx<num_vtx; vtx++) {
s = strtok(NULL, " ");
int iv;
sscanf(s, "%d", &iv);
(*(objects[new_onum]->polygons[p_idx]->ivertices))[
objects[new_onum]->polygons[p_idx]->ivertices->next_index()].ivertex = iv;

}
s = strtok(NULL, " ");

pt->fovx = &(camera->fovx);
pt->fovy = &(camera->fovy);
pt->screen_xsize = &(screen->xsize);
pt->screen_ysize = &(screen->ysize);

int tex_id;
sscanf(s, "%d", &tex_id);
pt->texture = new l3d_texture;
pt->texture->tex_data = & tex_data[tex_id];
pt->texture->owns_tex_data = false;
float x,y,z;
s = strtok(NULL, " ");
sscanf(s,"%f", &x);
s = strtok(NULL, " ");
sscanf(s,"%f", &y);
s = strtok(NULL, " ");
sscanf(s,"%f", &z);

pt->texture->O.original.set(float_to_l3d_real(x),
float_to_l3d_real(y),
float_to_l3d_real(z),
int_to_l3d_real(1));

s = strtok(NULL, " ");
sscanf(s,"%f", &x);
s = strtok(NULL, " ");
sscanf(s,"%f", &y);
s = strtok(NULL, " ");
sscanf(s,"%f", &z);
pt->texture->U.original.set(float_to_l3d_real(x),

float_to_l3d_real(y),
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float_to_l3d_real(z),
int_to_l3d_real(1));

s = strtok(NULL, " ");
sscanf(s,"%f", &x);
s = strtok(NULL, " ");
sscanf(s,"%f", &y);
s = strtok(NULL, " ");
sscanf(s,"%f", &z);
pt->texture->V.original.set(float_to_l3d_real(x),

float_to_l3d_real(y),
float_to_l3d_real(z),
int_to_l3d_real(1));

objects[new_onum]->polygons[p_idx]->compute_center();
objects[new_onum]->polygons[p_idx]->compute_sfcnormal();

pt->compute_surface_orientation_and_size();

pt->plane.align_with_point_normal(pt->center.original, normalized(pt->sfcnormal.original -
pt->center.original));

}else {
int num_vtx;

s = strtok(NULL, " ");
sscanf(s, "%d", &num_vtx);
objects[new_onum]->polygons[p_idx] = new l3d_polygon_3d_portal_collidable(num_vtx);
objects[new_onum]->polygons[p_idx]->vlist = &objects[new_onum]->vertices;
for(int vtx=0; vtx<num_vtx; vtx++) {
s = strtok(NULL, " ");
int iv;
sscanf(s, "%d", &iv);
(*(objects[new_onum]->polygons[p_idx]->ivertices))[
objects[new_onum]->polygons[p_idx]->ivertices->next_index()].ivertex = iv;

}

objects[new_onum]->polygons[p_idx]->compute_center();
objects[new_onum]->polygons[p_idx]->compute_sfcnormal();

s = strtok(NULL," ");
char *s2 = s + strlen(s)-1;
while(*s2=='' || *s2=='') {*s2=0; s2—; }
l3d_polygon_3d_portal *pp;
pp = dynamic_cast<l3d_polygon_3d_portal *>(objects[new_onum]->polygons[p_idx]);
if(pp) {strcpy(pp->connected_sector_name, s); }

}

}
}else if(strcmp(keyword,"ACTOR")==0) {
int new_onum;

objects[new_onum = objects.next_index()]
= (*current_sector->objects)[current_sector->objects->next_index()]
= new l3d_object_clippable_boundable_collidable(100);

strcpy(objects[new_onum]->name, sname);
strcpy(objects[new_onum]->plugin_name, plugin_name);
objects[new_onum]->parent = current_sector;

Chapter 8: Non-Graphical Techniques for Games and Interactive Environments 561



if(strlen(plugin_name)) {
objects[new_onum]->plugin_loader =
factory_manager_v_0_4.plugin_loader_factory->create();

objects[new_onum]->plugin_loader->load(plugin_name);
objects[new_onum]->plugin_constructor =
(void (*)(l3d_object *, void *))
objects[new_onum]->plugin_loader->find_symbol("constructor");

objects[new_onum]->plugin_update =
(void (*)(l3d_object *))
objects[new_onum]->plugin_loader->find_symbol("update");

objects[new_onum]->plugin_destructor =
(void (*)(l3d_object *))
objects[new_onum]->plugin_loader->find_symbol("destructor");

objects[new_onum]->plugin_copy_data =
(void (*)(const l3d_object *, l3d_object *))
objects[new_onum]->plugin_loader->find_symbol("copy_data");

l3d_plugin_environment *e = new l3d_plugin_environment
(texture_loader, screen->sinfo, scache, rest_parms);

if(objects[new_onum]->plugin_constructor) {
(*objects[new_onum]->plugin_constructor) (objects[new_onum],e);

}
}

}else if(strcmp(keyword,"CAMERA")==0) {

float posx,posy,posz;
float xaxis_x, xaxis_y, xaxis_z,
yaxis_x, yaxis_y, yaxis_z,
zaxis_x, zaxis_y, zaxis_z;
char *tok;

tok = strtok(rest_parms, " "); if(tok) {sscanf(tok, "%f", &posx); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &posy); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &posz); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_z); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_z); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_z); }

this->current_sector = current_sector;
camera->VRP.set(float_to_l3d_real(posx),

float_to_l3d_real(posy),
float_to_l3d_real(posz),
int_to_l3d_real(1));

camera->calculate_viewing_xform();
}

}

for(int ii=0; ii<objects.num_items; ii++) {
for(int pi=0; pi<objects[ii]->polygons.num_items; pi++) {
l3d_polygon_3d_portal *p;
if ((p = dynamic_cast<l3d_polygon_3d_portal *>(objects[ii]->polygons[pi]))) {
p->connected_sector = sector_by_name(p->connected_sector_name);

}
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}
}

}

Plug-in Object Seeker, Class
l3d_plugin_videoscape_mesh_seeker

Class l3d_plugin_videoscape_mesh_seeker is a plug-in data class used by the plug-in

seeker.so. The seeker plug-in is an object which randomly moves about the environment,

giving the appearance of seeking something. Real seeking behavior for a specific target could also

be programmed into the update routine.

Member variables plugin_env, tex_data, mesh_fname, texcoord_fname, and

texture_fname are the same as with the Videoscape plug-in vidmesh.

Enumeration movement_states defines the allowable movement states for the seeker.

NONE means no movement; the AROUND_ states indicate rotation around one of the seeker’s

local coordinate axes; and the ALONG_ states indicate movement in the direction of one of the

seeker’s local coordinate axes.

Member variable tick_count is a count of frames indicating how long the current move-

ment state has been executed.

Member variable max_ticks is a count of frames indicating the duration of the current

movement state.

Member variable turning_velocity represents how rapidly the object rotates about its

current rotation axis, in degrees per frame.

Member variable moving_velocity represents how rapidly the object moves along its

current movement axis, in world units per frame. Note that the use of frame-based velocities is not

physically realistic; see the particle system program in Chapter 7 and the section titled “Physics”

for information on more physically realistic simulation.

The plug-in constructor is identical to the vidmesh constructor, except it also specifies a

bounding sphere for collision detection purposes.

The plug-in update function handles object movement and collision detection. Object

movement is handled by extracting the axes of the local object coordinate system from the object’s

composite transformation matrix. To do this, we interpret the matrix as a coordinate system and

use the first three columns of the matrix as the vectors VRI, VUP, and VFW, and the last column as

VRP. Then, based on the current movement state, we multiply the current rotation matrix with a

new matrix for the new rotation or translation, and save the new matrix as the composite transfor-

mation matrix. Contrast this orientation and movement method with the approach of the camera,

which explicitly stored orientation as VRI, VUP, and VFW vectors. As we now see, these vectors

can also be extracted from a transformation matrix, and do not need to be stored explicitly (though

we might still want to for clarity).
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NOTE Small numerical inaccuracies during computation mean that we should, from time
to time, ensure that all of the axis vectors in the matrix are orthogonal and of length one, a
process called orthonormalization. We can do this by normalizing VRI and VUP, computing
VFW as the cross product of VRI and VUP, then recomputing VUP as the cross product of VFW
and VRI. At this point all three vectors should be at right angles to one another, and should be
of length one.

Collision detection in update is almost identical to that for the class l3d_camera_
collidable. We check the object’s bounding sphere against all polygons in the environment,

and ensure that it collides with none. Additionally, we ensure that the object does not collide with

any other plug-in objects in the environment. We use an explosion_factor variable to

iteratively increase the size of the spring-like bounces which we perform after a collision is

detected. In this way, multiple simultaneous collisions are eventually resolved by pushing the col-

liding objects apart again.

Collision detection is also used to detect when the object crosses through a portal from one

sector into another. If this occurs, the object deletes itself from the previous sector’s object list, and

enters itself into the new sector’s object list. This is so that when the new containing sector is

drawn, it also correctly draws the object which just entered the sector.

The plug-in destructor and copy data functions are essentially identical to those of

vidmesh.

Listing 8-18: seeker.h
#include "../../../dynamics/plugins/plugenv.h"
#include "../../../dynamics/colsph.h"

class l3d_texture_data;

typedef enum _movement_states
{NONE,AROUND_VFW,AROUND_VRI,AROUND_VUP,ALONG_VFW,ALONG_VRI,ALONG_VUP}
movement_states;

static const movement_states states_array[]=
{NONE,AROUND_VFW,AROUND_VRI,AROUND_VUP,
ALONG_VFW,ALONG_VRI,ALONG_VUP};

class l3d_plugin_videoscape_mesh_seeker
{
public:
l3d_plugin_environment *plugin_env;
l3d_texture_data *tex_data;

l3d_plugin_videoscape_mesh_seeker(l3d_plugin_environment *env);
virtual ~l3d_plugin_videoscape_mesh_seeker(void);
char mesh_fname[1024], texcoord_fname[1024], texture_fname[1024];

int tick_count, max_ticks;
movement_states movement_state;
int turning_velocity;
l3d_real moving_velocity;

};
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Listing 8-19: seeker.cc
#include "../../../system/sys_dep.h"
#include "../../../geom/object/ocoll.h"
#include "../../../geom/object/sector.h"
#include "../../../geom/texture/texload.h"
#include "../../../geom/polygon/p3_ltex.h"
#include "../../../dynamics/plugins/plugenv.h"
#include <stdlib.h>
#include <string.h>
#include "seeker.h"

l3d_plugin_videoscape_mesh_seeker::l3d_plugin_videoscape_mesh_seeker
(l3d_plugin_environment *env)
{
plugin_env = env;
tex_data = NULL;

}

l3d_plugin_videoscape_mesh_seeker::~l3d_plugin_videoscape_mesh_seeker(void) {
if(tex_data) delete tex_data;
delete plugin_env;

}

extern "C" {

void constructor(l3d_object *target, void *data) {
l3d_object_clippable_boundable_collidable *obj;
obj = dynamic_cast<l3d_object_clippable_boundable_collidable *> (target);

obj->collision_sphere_radius = int_to_l3d_real(4);

l3d_plugin_environment *env = (l3d_plugin_environment *)data;
l3d_plugin_videoscape_mesh_seeker *mesh;

target->plugin_data = mesh = new l3d_plugin_videoscape_mesh_seeker(env);
l3d_texture_loader *l = env->texloader;

mesh->tick_count = 0;
mesh->max_ticks = rand() % 50 + 10;
mesh->movement_state = states_array[rand()%7];

char rest_parms[4096];
strncpy(rest_parms, (char *)env->data, sizeof(rest_parms));
char *tok;

float posx,posy,posz;
float xaxis_x, xaxis_y, xaxis_z,
yaxis_x, yaxis_y, yaxis_z,
zaxis_x, zaxis_y, zaxis_z;
l3d_matrix position, orientation;
strcpy(mesh->mesh_fname,"");
strcpy(mesh->texcoord_fname,"");
strcpy(mesh->texture_fname,"");
position.set(int_to_l3d_real(1),

int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1),
int_to_l3d_real(0),
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int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1));

orientation = position;

tok = strtok(rest_parms, " "); if(tok) {sscanf(tok, "%f", &posx); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &posy); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &posz); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_x); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_y); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &xaxis_z); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &yaxis_z); }
tok = strtok(NULL, " "); if(tok) {sscanf(tok, "%f", &zaxis_z); }

tok = strtok(NULL, " ");
if(tok) {strncpy(mesh->mesh_fname, tok, sizeof(mesh->mesh_fname)); }
tok = strtok(NULL, " ");
if(tok) {strncpy(mesh->texture_fname, tok, sizeof(mesh->texture_fname)); }
tok = strtok(NULL, " ");
if(tok) {strncpy(mesh->texcoord_fname, tok, sizeof(mesh->texcoord_fname)); }

l->load(mesh->texture_fname);
mesh->tex_data = new l3d_texture_data;
mesh->tex_data->width = l->width;
mesh->tex_data->height = l->height;
mesh->tex_data->data = l->data;

FILE *fp;
FILE *fp_texcoord;
fp = fopen(mesh->mesh_fname, "rt");
fp_texcoord = fopen(mesh->texcoord_fname, "rt");
char line[4096];
if(fp) {
fgets(line, sizeof(line), fp);
fgets(line, sizeof(line), fp);

int num_vert;
sscanf(line, "%d", &num_vert);
int i;

delete target->vertices;
target->vertices =
new l3d_two_part_list<l3d_coordinate> ( num_vert );

for(i=0; i<num_vert; i++) {
fgets(line, sizeof(line), fp);
float x,y,z;
sscanf(line, "%f %f %f", &x, &y, &z);

//- change from blender's right-handed +z-up system to a
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//- left-handed +y-up system
(*target->vertices)[i].original.set
(float_to_l3d_real(x),
float_to_l3d_real(z),
float_to_l3d_real(y),
float_to_l3d_real(1.));

}

while(!feof(fp)) {
fgets(line, sizeof(line), fp);
if(feof(fp)) break;

char *tok;

int numv;
tok = strtok(line, " ");
sscanf(tok, "%d", &numv);

l3d_polygon_3d_textured *p;
int polygon_idx = target->polygons.next_index();
target->polygons[polygon_idx] = p =

new l3d_polygon_3d_textured(numv);
target->polygons[polygon_idx]->vlist = &target->vertices;

for(i=0; i<numv; i++) {
int cur_iv=0;

tok = strtok(NULL," ");
if(tok) {
int ivtx;
sscanf(tok,"%d", &ivtx);
cur_iv=target->polygons[polygon_idx]->ivertices->next_index();
(*(target->polygons[polygon_idx]->ivertices)) [cur_iv].ivertex
= ivtx;

}

if(fp_texcoord) {
char texcoord_line[1024];
float u,v;
fgets(texcoord_line, sizeof(texcoord_line), fp_texcoord);
sscanf(texcoord_line, "%f %f", &u,&v);

((l3d_polygon_ivertex_textured *)
(&((*(target->polygons[polygon_idx]->ivertices))[cur_iv])))
->tex_coord.X_ = float_to_l3d_real(u);
((l3d_polygon_ivertex_textured *)
(&((*(target->polygons[polygon_idx]->ivertices))[cur_iv])))
->tex_coord.Y_ = float_to_l3d_real(1.0 - v);
((l3d_polygon_ivertex_textured *)
(&((*(target->polygons[polygon_idx]->ivertices))[cur_iv])))
->tex_coord.W_ = int_to_l3d_real(1);

}
}

//- now reverse the list IN-PLACE; for this we need one temp swap
//- variable, which we allocate (virtually from the list, i.e. we
//- let the type of the temp object be allocated by the list itself)
//- here:
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l3d_polygon_ivertex *
swap_iv =
&((*(target->polygons[polygon_idx]->ivertices))
[target->polygons[polygon_idx]->ivertices->next_index()]);

for(i=0; i<numv/2; i++) {
*swap_iv = (*(target->polygons[polygon_idx]->ivertices))[i];
(*(target->polygons[polygon_idx]->ivertices))[i] =
(*(target->polygons[polygon_idx]->ivertices))[numv-1 - i];

(*(target->polygons[polygon_idx]->ivertices))[numv-1 - i] =
*swap_iv;

//- don't swap the tex coords (i.e. swap them back)

if(fp_texcoord) {
((l3d_polygon_ivertex_textured *)
( & (*(target->polygons[polygon_idx]->ivertices))[numv-1 - i]))
->tex_coord =
((l3d_polygon_ivertex_textured *)
( & (*(target->polygons[polygon_idx]->ivertices))[i]))
->tex_coord;

((l3d_polygon_ivertex_textured *)
( & (*(target->polygons[polygon_idx]->ivertices))[i]))
->tex_coord =
((l3d_polygon_ivertex_textured *) swap_iv)->tex_coord;

}
}

if(fp_texcoord) {

((l3d_polygon_ivertex_textured *)swap_iv)->tex_coord =
((l3d_polygon_ivertex_textured *)
( & (*(target->polygons[polygon_idx]->ivertices))[0] ))
->tex_coord;

for(i=0; i<numv-1; i++) {

((l3d_polygon_ivertex_textured *)
( & (*(target->polygons[polygon_idx]->ivertices))[i] ))
->tex_coord =
((l3d_polygon_ivertex_textured *)
( & (*(target->polygons[polygon_idx]->ivertices))[i+1] ))
->tex_coord;

}

((l3d_polygon_ivertex_textured *)
( & (*(target->polygons[polygon_idx]->ivertices))[i] ))->tex_coord =
((l3d_polygon_ivertex_textured *)swap_iv)->tex_coord;

}

target->polygons[polygon_idx]->ivertices->num_items =
target->polygons[polygon_idx]->ivertices->num_items - 1;

p->texture = new l3d_texture;
p->texture->tex_data = mesh->tex_data;
p->texture->owns_tex_data = false;

//- no texture coord file found, so assign default tex coordinates
if(!fp_texcoord) {
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p->texture->O = (**(target->polygons[polygon_idx]->vlist))
[(*(target->polygons[polygon_idx]->ivertices))[0].ivertex];

p->texture->U = (**(target->polygons[polygon_idx]->vlist))
[(*(target->polygons[polygon_idx]->ivertices))[1].ivertex];

p->texture->V = (**(target->polygons[polygon_idx]->vlist))
[(*(target->polygons[polygon_idx]->ivertices))
[p->ivertices->num_items - 1].ivertex];

p->assign_tex_coords_from_tex_space(*p->texture);
}

target->polygons[polygon_idx]->compute_center();
target->polygons[polygon_idx]->compute_sfcnormal();

p->plane.align_with_point_normal(p->center.original, normalized(p->sfcnormal.original -
p->center.original));

}
target->num_xforms = 2;

orientation.set
(float_to_l3d_real(xaxis_x),
float_to_l3d_real(yaxis_x),
float_to_l3d_real(zaxis_x),
int_to_l3d_real(0),
float_to_l3d_real(xaxis_y),
float_to_l3d_real(yaxis_y),
float_to_l3d_real(zaxis_y),
int_to_l3d_real(0),
float_to_l3d_real(xaxis_z),
float_to_l3d_real(yaxis_z),
float_to_l3d_real(zaxis_z),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1));

target->modeling_xforms[0] =
orientation;

position.set(int_to_l3d_real(1),
int_to_l3d_real(0),
int_to_l3d_real(0),
float_to_l3d_real(posx),
int_to_l3d_real(0),
int_to_l3d_real(1),
int_to_l3d_real(0),
float_to_l3d_real(posy),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1),
float_to_l3d_real(posz),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(0),
int_to_l3d_real(1));

target->modeling_xforms[1] = position;
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target->modeling_xform = target->modeling_xforms[1] |
target->modeling_xforms[0];

}

if(fp) fclose(fp);
if(fp_texcoord) fclose(fp_texcoord);

}

void update(l3d_object *target) {
l3d_object_clippable_boundable_collidable *obj;
obj = dynamic_cast<l3d_object_clippable_boundable_collidable *> (target);

l3d_plugin_videoscape_mesh_seeker *mesh;
mesh = (l3d_plugin_videoscape_mesh_seeker *)target->plugin_data;

l3d_point pos;
l3d_vector move;

pos.set(target->modeling_xform.a[0][3],
target->modeling_xform.a[1][3],
target->modeling_xform.a[2][3],
target->modeling_xform.a[3][3]);

if(mesh->movement_state == NONE) {
}else if(mesh->movement_state == AROUND_VRI) {
l3d_vector rot;
rot.set(target->modeling_xform.a[0][0],

target->modeling_xform.a[1][0],
target->modeling_xform.a[2][0],
target->modeling_xform.a[3][0]);

target->modeling_xform =
target->modeling_xform | l3d_mat_rotu(rot, mesh->turning_velocity);

}else if(mesh->movement_state == AROUND_VUP) {
l3d_vector rot;
rot.set(target->modeling_xform.a[0][1],

target->modeling_xform.a[1][1],
target->modeling_xform.a[2][1],
target->modeling_xform.a[3][1]);

target->modeling_xform =
target->modeling_xform | l3d_mat_rotu(rot, mesh->turning_velocity);

}else if(mesh->movement_state == AROUND_VFW) {
l3d_vector rot;
rot.set(target->modeling_xform.a[0][2],

target->modeling_xform.a[1][2],
target->modeling_xform.a[2][2],
target->modeling_xform.a[3][2]);

target->modeling_xform =
target->modeling_xform | l3d_mat_rotu(rot, mesh->turning_velocity);

}else if(mesh->movement_state == ALONG_VFW) {
move.set(target->modeling_xform.a[0][0],

target->modeling_xform.a[1][0],
target->modeling_xform.a[2][0],
target->modeling_xform.a[3][0]);

move.set(l3d_mulrr(mesh->moving_velocity, move.X_),
l3d_mulrr(mesh->moving_velocity, move.Y_),
l3d_mulrr(mesh->moving_velocity, move.Z_),
int_to_l3d_real(0));

}else if(mesh->movement_state == ALONG_VRI) {
move.set(0,0,0,0);
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move.set(target->modeling_xform.a[0][1],
target->modeling_xform.a[1][1],
target->modeling_xform.a[2][1],
target->modeling_xform.a[3][1]);

move.set(l3d_mulrr(mesh->moving_velocity, move.X_),
l3d_mulrr(mesh->moving_velocity, move.Y_),
l3d_mulrr(mesh->moving_velocity, move.Z_),
int_to_l3d_real(0));

}else if(mesh->movement_state == ALONG_VUP) {
move.set(0,0,0,0);
move.set(target->modeling_xform.a[0][2],

target->modeling_xform.a[1][2],
target->modeling_xform.a[2][2],
target->modeling_xform.a[3][2]);

move.set(l3d_mulrr(mesh->moving_velocity, move.X_),
l3d_mulrr(mesh->moving_velocity, move.Y_),
l3d_mulrr(mesh->moving_velocity, move.Z_),
int_to_l3d_real(0));

}

l3d_polygon_3d_node *n;
l3d_sector *sector;
sector = dynamic_cast<l3d_sector *> (target->parent);

sector->reset();

int some_collision_occurred = 1;

pos = pos + move;
obj->new_position = pos;

obj->prevent_collision = 1;
l3d_real explosion_factor = int_to_l3d_real(0.1);

while(some_collision_occurred) {

some_collision_occurred = 0;

n = sector->nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_collidable *poly3;

poly3 = dynamic_cast<l3d_polygon_3d_collidable *>(n->polygon);
if(poly3 &&

!(dynamic_cast<l3d_polygon_3d_portal *>(n->polygon)))
{

while(obj->detect_collision_with(poly3)) {

pos =
obj->new_position =
obj->new_position + obj->bounce * explosion_factor;

some_collision_occurred = 1;
explosion_factor = l3d_mulri(explosion_factor,2);

}
}

n=n->next;
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}

for(int iobj=0; iobj<sector->objects->num_items; iobj++) {
if( (*sector->objects)[iobj] != target ) {
l3d_object_clippable_boundable_collidable *obj2;
obj2 = dynamic_cast<l3d_object_clippable_boundable_collidable *>

( (*sector->objects)[iobj] );
if(obj2) {
if(obj->detect_collision_with(obj2)) {
pos =
obj->new_position =
obj->new_position + obj->bounce * explosion_factor;

some_collision_occurred = 1;
explosion_factor = l3d_mulri(explosion_factor,2);

}
}

}
}

}

target->modeling_xform.a[0][3] = pos.a[0];
target->modeling_xform.a[1][3] = pos.a[1];
target->modeling_xform.a[2][3] = pos.a[2];
target->modeling_xform.a[3][3] = pos.a[3];

obj->prevent_collision = 0;

n = sector->nonculled_polygon_nodes;
while(n) {
l3d_polygon_3d_portal_collidable *portal;

portal = dynamic_cast<l3d_polygon_3d_portal_collidable *>(n->polygon);
if(portal) {
if(obj->detect_collision_with(portal) == 1) {

printf("CROSSING PORTAL INTO %p", portal->connected_sector);

target->parent = portal->connected_sector;

int idx;
for(idx=0; idx<sector->objects->num_items; idx++) {
if((*sector->objects)[idx] == target) {
int idx2;
for(idx2=idx; idx2<sector->objects->num_items-1; idx2++) {
(*sector->objects)[idx2] = (*sector->objects)[idx2+1];

}
(*sector->objects)[idx2] = NULL;
break;

}
}
sector->objects->num_items—;

sector = portal->connected_sector;
sector->objects->next_index();

(*sector->objects)[sector->objects->num_items-1] =
dynamic_cast<l3d_object_clippable_boundable *>(target);
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break;
}

}

n=n->next;
}

mesh->tick_count++;
if(mesh->tick_count > mesh->max_ticks) {
mesh->tick_count = 0;
mesh->max_ticks = rand()%50 + 50;
mesh->turning_velocity = rand()%5;
mesh->moving_velocity = l3d_mulri(float_to_l3d_real(0.5),(rand()%5)+2);

if(rand()%2) {
mesh->movement_state = states_array[rand()%7];
if(mesh->movement_state == NONE ||

mesh->movement_state == ALONG_VFW ||
mesh->movement_state == ALONG_VRI
)

{
mesh->movement_state = ALONG_VUP;

}
}else {
mesh->movement_state = ALONG_VUP;

}
}

}

void destructor(l3d_object *target) {
delete (l3d_plugin_videoscape_mesh_seeker *) target->plugin_data;

}

void copy_data(l3d_object *target, l3d_object *copy_target) {
l3d_plugin_videoscape_mesh_seeker *mesh;
mesh = (l3d_plugin_videoscape_mesh_seeker *) target->plugin_data;

l3d_plugin_environment *new_env;
l3d_plugin_videoscape_mesh_seeker *new_mesh;

new_env = mesh->plugin_env->clone();
new_env->data = mesh->plugin_env->data;
new_mesh = new l3d_plugin_videoscape_mesh_seeker(new_env);

strcpy(new_mesh->mesh_fname, mesh->mesh_fname);
strcpy(new_mesh->texture_fname, mesh->texture_fname);
strcpy(new_mesh->texcoord_fname, mesh->texcoord_fname);

l3d_texture_loader *l = new_mesh->plugin_env->texloader;
l->load(new_mesh->texture_fname);
new_mesh->tex_data = new l3d_texture_data;
new_mesh->tex_data->width = l->width;
new_mesh->tex_data->height = l->height;
new_mesh->tex_data->data = l->data;

for(int i=0; i<copy_target->polygons.num_items; i++) {
l3d_polygon_3d_textured *pt;
pt = dynamic_cast<l3d_polygon_3d_textured *>( copy_target->polygons[i]);
if(pt) {
pt->texture->tex_data = new_mesh->tex_data;
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pt->texture->owns_tex_data = false;
}

}

copy_target->plugin_data = (void *)new_mesh;
}

}

Sample Program: collide
As is usual with l3d programs, once the supporting lower-level classes are in place, the actual

application program is simple. Program collide creates an instance of the new world class with

collision detection, then asks it to load itself from disk. This causes creation of the appropriate

collidable polygons and a collidable camera. Furthermore, the world file contains references to

plug-in objects of type seeker, which also know how to collide themselves with the environ-

ment. The main program file also plays some background music stored in audio file

bgmusic.au.

Listing 8-20: main.cc, main program file for program collide
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

#include "../lib/geom/object/object3d.h"
#include "../lib/geom/polygon/p_flat.h"
#include "../lib/geom/polygon/p_portal.h"
#include "../lib/tool_2d/screen.h"
#include "../lib/tool_os/dispatch.h"
#include "../lib/raster/rasteriz.h"
#include "../lib/tool_2d/scrinfo.h"
#include "../lib/geom/world/world.h"
#include "../lib/system/fact0_4.h"
#include "../lib/geom/texture/texload.h"
#include "../lib/geom/texture/tl_ppm.h"
#include "../lib/pipeline/pi_lwor.h"
#include "../lib/geom/world/w_pcoll.h"

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

main() {
factory_manager_v_0_4.choose_factories();

l3d_dispatcher *d;
l3d_pipeline_world_lightmapped *p;
l3d_world_portal_textured_lightmapped_obj_colldet w(320,240);
void *startinfo;

w.load_from_file("world.dat");
w.camera->near_z = float_to_l3d_real(0.5);
w.camera->far_z = int_to_l3d_real(5000);

//- start background music
char cmd[] = "play count=9999 volume=128 sound=bgmusic.au";
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w.sound_client->send_command(cmd);

printf("current sector %s", w.current_sector->name);
d = factory_manager_v_0_4.dispatcher_factory->create();

p = new l3d_pipeline_world_lightmapped(&w);
d->pipeline = p;
d->event_source = w.screen;

d->start();

delete p;
delete d;

//- stop background music
char cmd2[] = "stop bgmusic.au";
w.sound_client->send_command(cmd2);

}

Run the program as follows:

1. Change to the program directory by typing cd $L3D/binaries/linux_x/float/app/collide and

pressing Enter.

2. Kill any existing instances of the RPlay sound server by typing killall -9 rplayd and pressing

Enter.

3. Start the RPlay sound server in the current directory by typing rplayd and pressing Enter.

4. Type collide to start the program and press Enter.

The only reason you have to kill and restart the RPlay sound server is because the new world class

specifies the unqualified filename (without a directory) crash.au to be played whenever a col-

lision occurred. The program specifies the filename without a directory name because the actual

directory name depends on where you unpacked the files from the CD onto your hard drive. One

way around this would be for the program to call an operating system routine to determine the cur-

rent directory in which it was started, and to add this directory prefix to all filenames sent to the

sound server.

NOTE The background music file bgmusic.au was produced as follows. First, I connected
the output from my electric guitar (actually, from the effects box) to the input of my sound
card. Then, I used wavrec to start recording from the sound card, and played a riff on the
guitar. Next, I used sox to convert the .wav file to a raw file, then used dd to manually trim the
length of the sample so that it would loop correctly (determined by listening to the resulting
raw file). With the proper length sample, I then used cat to place several copies of the loop
into a second, longer raw file. I again ran sox on the raw file to add an additional echo effect
of 410 milliseconds. Finally, I converted the file from raw format into the .au format, one of
the many formats supported by RPlay. Ordinarily, you would probably use a graphical editing
tool to do such sound editing, but I didn’t have one handy; it’s also possible to do it all from
the command line.

After starting the program, move around as usual. Press p, r to place lamps as desired. Notice that

you cannot walk through walls (in most cases; we’ll discuss that in a moment). Also notice the

three seeker objects that randomly wander around the environment. They also do not move

through the walls or each other. The seeker objects can freely move from one sector into another
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through the portals, just as you can. Note that since their movement is completely random, the

seeker objects often get stuck in corners for several seconds at a time—they try to move forward

directly into the corner, for instance.

This program shows you how to combine all of the elements we have seen in this chapter and,

for that matter, in this book. Let’s recap the important techniques used: portals, texture mapping,

light mapping, reading data from a world file, collision detection, portal crossing, and movement

of plug-in objects based on their local coordinate axes.

More Advanced Collision Detection and Response
The sample program collide has a few shortcomings which deserve mention. Let’s look at

some of these, and see how we could improve the program.

First of all, the collision detection only takes place for the current sector. This means it is

sometimes rarely possible for you or the seeker objects to slip outside of the room geometry by

moving quickly through a portal. Since collision detection only occurs within the current sector,

your new position is found to be valid with respect to all geometry in the current sector, even

though it might place you outside of the geometry of the adjoining sector beyond the portal.

Solving this would require us to detect all collisions with portals, and for each portal, to check col-

lision against the connected sector’s geometry as well.

The collision detection as implemented involves many redundant checks. Each object checks

itself to see if it collided with any other members of the environment. This is slower than necessary

because if object A already checked itself for collisions with object B, then object B no longer

needs to check itself against object A. The current approach simplified the code because it allowed

each object, programmed in a plug-in file, to check itself against the world. A more efficient

approach introduces the concept of a higher-level collision detector, which checks for collisions

among all objects in the currently active sectors, ensuring that each object pair (A,B) is checked

only once, then resolves each collision independently. In other words, by moving the collision

detection and response outside of the objects into a higher level, we can view the problem in the

broader context of the sector and reduce the number of collision checks that must be done.
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The collision detection also does not handle tunneling. An analytical sphere-sphere sweep test

could detect such high-speed collisions.

The collision response as programmed is not physically realistic. If a collision is detected

based on an object’s movement, the object is only allowed to move as far as is possible without a

collision, and an artificial bounce is added to change the object’s velocity. This is unrealistic

because the change in velocity is arbitrary, and because for two colliding objects, only one of them

(the first one checked) gets affected by the collision. In other words, an object changes its own

velocity if it notices it would have collided with another object, but in reality, both objects

involved in a collision should respond to the collision. Also, all velocities were expressed in terms

of change per frame, instead of the more physically realistic change per second.

Just as suggested for the collision detection system, we can also move collision response out

of the domain of responsibility for each individual object, and introduce a higher-level collision

response system. If we move the collision response out of the objects into a higher level in the

code, this means that there must be some universal set of rules, independent of the objects

involved, governing how we handle a collision between any two arbitrary objects. Fortunately,

hundreds of years of scientific thinking provide us with a very practical and generally applicable

set of rules to govern collisions: Newtonian dynamics. This is our next topic.

Physics
Physics is a very broad field. By providing us with mathematical models of the way the real world

behaves, the field of physics allows 3D graphics programs to simulate not only the visual appear-

ance, but also the static and dynamic properties of the real world. This can create very engaging

and interesting 3D programs, because they look and act natural in subtle ways.

We already saw how a simple physical simulation can lead to impressive results with the par-

ticle system simulation, where our particles were subjected to gravity and were allowed to bounce.

Let’s take a look at some basic physics concepts that we use to create physically realistic

simulations.

It should be mentioned at this point that we simply don’t have the space here to cover physics

in any depth. The purpose of this section is to give you an idea of some of the important aspects, so

you can experiment and study further on your own.

Some Basic Concepts
With a few basic concepts, we can produce some physically realistic results. Some important

results from Newtonian dynamics follow.

� Velocity causes an object to change position over time. Mathematically, velocity is the deriva-

tive of position over time: v=dp/dt. Conversely, the change in position is the integral of veloc-

ity with respect to time: dp=�v dt. Using a simple first-order numerical integration scheme, we

can say that p'=p+v�dt. Here, p' is the new position, v is the velocity in meters/second, and dt

is the elapsed time since the last frame, in seconds. This is the formula we used to compute the

new positions for the particle system program.
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� Acceleration causes velocity to change over time. Mathematically, acceleration is the deriva-

tive of velocity over time: a=dv/dt. Conversely, the change in velocity is the integral of accel-

eration with respect to time: dv=�a dt. Again using a simple first-order integration scheme, we

have v'=v+a�dt. This is the formula we used to compute the new velocities for the particle sys-

tem program.

� Applying forces to objects changes their acceleration. Mathematically, F=ma. F is the force

applied to an object, m is the object’s mass, and a is the object’s acceleration.

In general, then, to model physics, we should model our objects as having a certain mass. By

applying forces to an object, we change its acceleration. This indirectly, over time, causes a

change in the velocity, which again over time causes a change in the position.

We should usually use forces to (indirectly) change the positions of objects in our world,

rather than arbitrarily changing positions and velocities. There is, however, one notable exception:

the contact forces that result from collisions. The problem is that with collision detection, we find

the exact instant at which objects begin to touch. At this exact instant, the bodies must change

direction to avoid a collision, but the correct way of doing this (applying a force) won’t work,

because force can only change an object’s position indirectly over time. In the case of a collision,

there is no time available to apply a force; the velocities must change instantaneously. We can

model this with an instantaneous impulse force, which changes the velocities instantly. At the time

of collision, the effective end result is a reversal of the relative velocity of the two objects. The

exact change in velocity for each object depends on the objects’ masses, the normal vector to the

surface at the collision, and if any energy was lost during the collision. We can also take rotational

effects into account. This requires us to express the angular velocity and acceleration of a body, as

well the distribution of its mass.

Energy should always be conserved after any collision. No energy really gets lost in the real

world; it always gets converted to another form. Therefore, we should make sure that all energy is

accounted for. This again implies that we should be careful when applying forces and responding

to collisions; we should base our computations on real physics equations.

Rigid Body Dynamics
The field of rigid body dynamics is generally the place to start in order to find information useful

for 3D physical simulations. Dynamics is the field of physics dealing with motion and its causes; it

relies on kinematics, which deals with the description of motion. Rigid body dynamics describes

motion and its causes for objects whose shape or mass distribution does not change over time. For

instance, a billiard ball is essentially a rigid body; when striking another billiard ball, it does not

change shape. A lump of raw dough is not a rigid body; it changes shape when it strikes the floor.

Rigid body dynamics can produce very realistic simulations; it follows that it is a very broad and

involved field.

At this point, let’s look back at the particle system program, which was the only program in

this book that used real physical simulation to control motion. We mentioned that the handling of

the particles was overly simplified, even though the results looked reasonably realistic. Now, with

an understanding of collision detection and physics, we can understand more clearly the short-

comings of the approach taken in the particle system program.
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1. The particles had neither volume nor mass, and could not collide with one another. Collision

detection was performed only with the floor. Real collision detection among multiple objects

would be more realistic.

2. Collision response consisted of resetting the particle’s position whenever it was found to be

invalid. More realistic would be a calculation of the exact collision time, either analytically or

with a temporal binary search, and appropriate handling of the collision with an instantaneous

impulse force at the exact time of the collision, based on the exact contact points of the colli-

sion. Collisions among multiple objects would need to be handled, by temporally sorting the

collisions or by using additive spring forces.

3. The particles had no volume, no shape, and no mass. Making the objects massive would allow

for realistic transfer of energy during collision response. Giving the objects shape and volume

would allow for rotational effects to occur—for instance, a box spinning away if it is hit at its

corner.

Other than rigid body dynamics, some other interesting areas of physical modeling include

deformable objects which can be crushed or squashed, jointed objects such as humans or robot

arms, cloth modeling, and objects that can disintegrate or explode in a physically realistic manner.

Simulating such physical behavior is no small affair, and involves quite complex mathematics and

processing power. But since processors get faster all the time, these effects will someday be as

commonplace as the texture mapped polygon.

Real-Time Update and Numerical Integration
For interactive 3D applications, it is most interesting if the physical simulations occur in real time.

This means that our velocity and acceleration vectors should be expressed in terms of change per

unit of physical time, in other words, change per second. The particle system program illustrated

how to do this by keeping track of the clock time at the last frame and subtracting it from the cur-

rent clock time to determine the elapsed time.

The particle system program in Chapter 7 used a simple method of computing the new posi-

tion and velocity based on the old values, called Euler integration. This method works by

multiplying the previous velocity by the elapsed time to get the change in distance, and multiply-

ing the acceleration by the change in time to get the change in velocity. This simple method can

introduce errors into the computation which grow larger over time. Let’s look at a simple example

to understand the problem.

We’ll start with the same example from the particle system. Assume that we have a particle

with an initial velocity of 10m/s in the positive y direction, that gravity is the only force acting on

the particle, and that 0.25 seconds have elapsed since the last time we called the update routine.

The change in distance is the elapsed time multiplied by velocity: 10m/s*0.25s = 2.5m. The

change in velocity is the elapsed time multiplied by the gravitational acceleration: 0.25s*

(–9.8m/s2)=–2.45m/s.

The problem is that we updated the position based on the velocity multiplied by the elapsed

time. This multiplication assumes that the velocity was constant during the elapsed time. But, it

was not constant; it was being changed continuously by acceleration caused by the force of
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gravity. At the last instant we left the previous frame, the velocity was 10m/s, but this doesn’t

mean that in the 0.25 elapsed seconds the particle was traveling a full 10m/s the entire time. For

instance, at 0.1 seconds, it was only traveling at 9.02m/s. Even at an earlier time of 0.01 seconds, it

was traveling at 9.902m/s. Indeed, for any measurable time interval after the last frame, the veloc-

ity was not 10m/s because of the presence of the gravitational force, causing an acceleration. This

means that by computing the change in distance since the last frame as 10m/s*0.25s, we are over-

estimating the distance the particle traveled (overestimating only in this particular case; in general,

we can over- or underestimate). Such an error adds up over time, causing so-called numerical inte-

grator drift. Fundamentally, the problem is that we have quantities such as position, velocity, and

acceleration, that change continuously over time, but we are only discretely approximating the

values with constant values. In actuality, we are integrating the quantities, which are differential

equations, over time. This is a concept from calculus, which effectively gives the area underneath

the curve of the integrated quantity (this is the geometric interpretation of an integral). We can’t

circumvent the discreteness of the computation, but we could use a higher order integration

scheme, where the continuous curved change of the time-dependent quantity within the discrete

time interval is also taken into account.

All integration schemes suffer from some degree of instability, but Euler integration is partic-

ularly sensitive. If the time intervals between successive frames are too large, then the error

introduced by assuming a linear motion during the time interval also becomes large. This is the

same phenomenon which causes tunneling effects. With physics routines, this can cause objects to

be at positions they shouldn’t be. If the position of an object influences other objects, then these

other objects will also be at the wrong positions, with wrong velocities and accelerations. Even-

tually, the cumulative error grows too large, and the entire system becomes unstable and behaves

in an unrealistic manner.

NOTE The sensitivity on the size of the time step leads to the notion of a stability condition
which must be satisfied for the numerical integration to converge to the true solution. In one
numerical weather prediction project with which I was involved, this stability condition was
called the Courant-Friedrichs-Lewy (CFL) stability condition, in recognition of some of the
earliest scientists who grappled with these problems. This numerical weather prediction pack-
age also had to integrate quantities over time; if the time step was too large, the whole
solution became unstable.

Artificial Intelligence
One exciting area which can also make 3D applications more believable is the field of artificial

intelligence. Artificial intelligence (AI) can be seen as the study of how to make computers

respond in a way which seems intelligent to a human viewer. In the context of interactive 3D appli-

cations, especially games, this means creating entities within the virtual world that appear to be

alive and appear to act in a way that a human might act. For instance, the seeker objects in the sam-

ple program collide were not intelligent. They randomly rotated and moved around, even

trying to move ahead straight into a wall. A human would probably not do this.
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In games, an important part of AI is path finding. Objects need to move from one area of the

world into another to accomplish certain goals. Research from the area of robotics has led to

results in this area which can be equally well applied to 3D programs. We already saw one path

finding routine when we discussed camera tracking. In fact, camera tracking can be considered a

simple form of AI. The camera has to decide for itself how to keep the subject in sight. Sometimes,

the path finding problem is reduced from 3D to 2D; in other words, the objects are restricted to

finding paths in 2D rather than in 3D. This can make algorithms simpler, since 2D path finding is

essentially a 2D maze-solving problem. Artificial Intelligence, Second Edition by Elaine Rich and

Kevin Knight describes two ways of performing path finding: the use of potential fields, where an

object is attracted to its target and repelled from obstacles, and the use of visibility graphs, where

every vertex of all geometry within the scene is connected to all other vertices visible from that

vertex [RICH91]. Visibility between two vertices also means that a free path exists between those

two vertices; thus, the shortest path in the visibility graph from the object to the target is traversed.

Since the object is probably surrounded by a bounding sphere, it cannot travel all the way up to

each point in the visibility graph (because it collides with the polygon first), so we can artificially

displace all vertices from their polygons by the radius of the bounding sphere when forming the

visibility graph. This forms a configuration space, which is a modified version of the actual under-

lying space used for path finding.

AI also often involves constructing graphs and searching these graphs for one solution or for

the optimal solution to a problem. Visibility graphs are one example of this; the optimal solution in

this case is the shortest path, but any solution that leads to the target is also correct. Graph search-

ing can be done in typical exhaustive depth-first or breadth-first manner. A better technique from

the field of AI is the “best first search,” in which the potential cost of each of the next possible

nodes is evaluated, and the most promising, least cost node is selected next. If searching one

branch becomes less and less promising, the search for that branch is temporarily suspended as

other, more promising paths are explored. We might even end up coming back to the originally

suspended branch, because it might again become more promising than all other branches. This is

a simplification of the well-known (in the field of AI) algorithm called the “A* algorithm.”

Some non-procedural languages can be used for more natural expression and implementation

of goal-directed behavior. Examples include the languages PROLOG and LISP, both of which

have been used widely in the field of AI. Interestingly, Makefiles are also non-procedural in a very

similar way; the goal is to compile the target program, and the inference rules are the dependencies

we provide. Goal-directed AI programming can take a similar form, where the computer might try

to reason why you have hidden for several seconds behind a wall without firing. Maybe you have

no ammunition, or maybe you are planning an ambush. We can program rules in a non-procedural

language to allow the computer to draw conclusions based on its observations.

AI can also mean introducing imperfection into computer behavior. A human does not always

act predictably, or always hit the target. By introducing some random elements into the logic, and

allowing for some autonomous decision making, behavior can appear more naturally intelligent.

Using a state machine and having a stock of predefined behaviors to choose from is another

useful technique. For instance, if we are modeling the behavior of a dog, he might have the states

SLEEPING, HUNGRY, ANGRY, FRIENDLY, and so forth. There would be definite transitions
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from state to state depending on external inputs—the passage of time, the actions of the player and

other objects, and so forth. Then, depending on the state, the dog would respond differently to its

surroundings. If you walk past a dog in the FRIENDLY state, he might jump up in greeting, or do

nothing. If you walk past a dog in the ANGRY state, he might start to chase you, or bite you. Even if

there are no inputs from the environment, the state can still control behavior to give the appearance

that the object is still active and thinking.

Finally, AI doesn’t have to be complex to be effective. Try observing behavior, asking why

you would or would not do something that way, and then try to program the correct behavior. For

instance, take the seeker objects from the collide program. Why do they appear unintelligent?

They have no goal. Also, their random rotations appear odd. So, a first pass at making them more

intelligent would be to give them some goals—for instance, stay within a certain distance of the

player. We could also reduce the probability of random rotations, and always ensure that the object

returns to an upright orientation within, say, 10 seconds. This would make the objects “prefer” to

remain upright, much as a human will tend to prefer viewing a scene upright.

AI, like physics, is a vast field. As you can guess, we’ve only barely scratched the surface

here.

Summary
This chapter discussed some non-graphical techniques useful for interactive 3D programs. In par-

ticular, we looked at:

� Digital sound and the RPlay sound server

� TCP/IP networking with sockets

� Collision detection

� Physics

� Artificial intelligence

Using these techniques can help 3D programs become more immersive and engaging 3D

environments.

One last chapter remains in this book. In it, we speculate about the future of Linux 3D graph-

ics programming, including a peek at two high-level 3D content development systems for Linux

which can greatly reduce the amount of programming needed to get a complex 3D application,

such as a game, up and running. Does this mean that everything you’ve read in this book can be

forgotten, because the content development system does all the work for you? Read on, and find

out, in the exciting and long-awaited conclusion to our journey through Linux and 3D graphics

programming.
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C h a p t e r 9

What Lies Ahead?What Lies Ahead?

T
his chapter aims to give you a glance at some exciting trends affecting Linux 3D graphics

programming. We begin by looking at two content development systems currently available

for Linux. We then make some speculations about future directions of 3D graphics. Finally,

we review the contents of this book within the context of 3D graphics programming in general.

Content Development Systems
In this section, we’ll take a brief look at two 3D content development systems. Here, the term 3D

content development system refers to a visual 3D environment that allows the creation of interac-

tive content with a minimum of programming. Such systems show us the direction that future 3D

development might take.

Game Blender/Blender 2.0
Blender 2.0, also called Game Blender, is a version of Blender that includes some support for cre-

ating interactive content. We don’t have the space in this book to go over the complete details of

the entire system. What we can do is go over a quick example of how to create a simple game in

Blender, so that you can see how the system works and experiment further on your own.

NOTE To execute the following tutorial, you must download the Game Blender system (ver-
sion 2.0 or higher) from the Blender home page, http://www.blender.nl. The program
is free of charge.

The following tutorial shows you how to create a simple world in Blender and navigate through it

in real time.

1. Start Blender and clear the screen by pressing Ctrl+x, Enter. Select and delete the default

plane object. Ensure you are in top view: press 7 on the numeric keypad.

2. Add a large cube object by selecting Add, Mesh, Cube from the Toolbox (press Space).

Scale the cube so that it is approximately 15 units long on each side. Exit EditMode.
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3. Change to the RealtimeButtons by pressing F8. Click the Sector button in the upper left of the

ButtonsWindow. This sets the large cube mesh to be a sector.

NOTE Starting with version 2.11, Blender has done away with explicit marking of sectors,
so you do not need to execute the previous step with Blender 2.11 or higher.

4. In the 3DWindow, add an Icosphere by selecting Add, Mesh, Icosphere from the Toolbox.

Select subdivision 2, and press Enter. Drag the topmost vertex of the sphere slightly forward,

so that the sphere has a discernible tip. Exit EditMode. Ensure the sphere is still selected.
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5. In the RealtimeButtons, click the Actor button to flag the sphere as an actor. Then click the

MainActor button, which marks the sphere as the main actor in the game. Also click the

Dynamic button, which allows the object to be controlled by the Blender dynamics system.

NOTE Blender 2.11 has a new interface for the rigid body dynamics subsystem. There is no
MainActor button. Also, click the RigidBody button to allow the sphere to be controlled as a
rigid body by the physics subsystem.

6. Move the cursor into the ButtonsWindow and maximize it by pressing Ctrl+Down Arrow.

We are now going to program in the keyboard handler so that we can move the sphere around

with the keyboard. Doing this requires us to create sensors, controllers, and actuators.

7. In the Sensors column click the Add button four times. Do the same in the Controllers and

Actuators columns. This creates four sensors, four controllers, and four actuators. We are

going to have four keys which we use to control the sphere, and thus, four objects of each type.

8. Notice the small pebble to the right of each sensor, and the small hole to the left of each con-

troller. Left-click the pebble and drag it into the hole, creating a link between sensor and

controller. Do this for all controllers. Also repeat the procedure with the controllers and the

actuators.
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9. Notice that each sensor contains a pop-up menu field with the value “Always.” Change each

of these fields to contain the value “Keyboard”: Click on each field, notice the menu which

appears, and select Keyboard.

10. Assign each keyboard sensor a different key as follows. Click on the Key field for the first

sensor. Notice the message “Press any key.” Press Left Arrow. Notice that “Leftarrow”
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appears in the field. Do the same for the remaining three sensors, with keys Right Arrow, Up

Arrow, and Down Arrow.

11. Change the actuators to respond to the keys as follows. For the first actuator, type 1.00 in the

third torque field. For the second actuator, type -1.00 in the third torque field. For the third

actuator, type 1.00 in the second force field. For the fourth actuator, type -1.00 in the second

force field. The fields in the actuators allow you to apply forces and torques to the object

whenever the sensor fires. The three fields represent x, y, and z components of the applied

force.
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12. Restore the ButtonsWindow to its original size by pressing Ctrl+Down Arrow.

13. In the 3DWindow, add another cube object, slightly smaller than the original cube. Flip all

vertex normals to point inside by typing a until all vertices are selected (yellow), then press

Ctrl+Shift+n and press Enter to flip the normals. Exit EditMode. Ensure the cube object is

still selected.

14. Move the mouse cursor over the ButtonsWindow, and press Home. This ensures that all but-

tons are visible. Then, click the button Prop. This marks the smaller cube as an object within

the larger sector.

NOTE Blender 2.11 has eliminated the Prop button; props do not need to be explicitly
marked.

15. In the 3DWindow, select the camera object by right-clicking. In the RealtimeButtons, click

Actor. Add a sensor, controller, and actuator, and link them together. Leave the sensor type

with its default value “Always.”

16. Change the actuator to be of type “Camera”: Click on the pop-up menu that reads “Object,”

and notice the menu which appears. Select Camera. This type of actuator causes the camera

to follow a target object.

17. In the actuator field OB:, type Sphere. This is the name of the Icosphere object we added ear-

lier, and is the object that the camera will track. In field Height:, type 5.00. In field Min:, type

5.00. In field Max:, type 10.00. These set the constraints on the camera position with respect

to the target object.
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18. In the 3DWindow, switch to camera view by pressing 0 on the numeric keypad. Press Shift+p

to start playing the game.

19. Press the arrow keys to move the sphere through the environment. Notice that the camera

tracks the object automatically, that you cannot move through the walls or floor of the envi-

ronment, and that gravity forces are applied. Press Esc to end the simulation.
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NOTE In Blender 2.11 the sphere will bounce up and down upon hitting the ground,
because of the default collision handling parameters. You can correct this by explicitly specify-
ing the material properties of the sphere and/or the surrounding cube through the
MaterialButtons.

TIP You can also run the simulation from any other viewpoint, not just camera view. For
instance, top view is useful for getting a bird’s-eye picture of the environment.

A few notes on the system are in order:

� You can run the game in textured mode (press Alt+z), but this requires a hardware accelerator

for acceptable performance.

� Python scripting support is planned to allow for game logic to be coded in the Python lan-

guage. Preliminary support already exists.

� The visibility scheme is apparently a modified portal scheme where the portals are the faces of

the bounding boxes, as discussed in Chapter 8.

This simple example gives you an idea of how the Game Blender system works. The system is

very visual, using links connected via drag-and-drop in the RealtimeButtons. A system that

achieves similar goals but which takes a different approach is offered by World Foundry, which

we look at next.

World Foundry
World Foundry is an open source (GPL) package that enables non-programmers to create 3D envi-

ronments and games. It combines a powerful 3D engine with an external level editing system and

an internal scripting system.

NOTE The World Foundry project (http://www.worldfoundry.org) currently needs
interested 3D programmers to assist in porting and extending the engine and tools.
You—yes, you!—can help in this process. World Foundry is an extremely powerful system; I
have not seen any other open source projects which rival it. Furthermore, World Foundry is
cross platform, meaning that games can be developed for Linux and Windows.

The Blender system for assigning behaviors to objects involved visually dragging links to connect

sensors, controllers, and actuators. In contrast to this, the World Foundry approach uses scripts to

control behavior. The scripting language is a dialect of Scheme, which is a variant of LISP. World

Foundry provides a number of example scripts for common behaviors. Creation and placement of

geometry in 3D space within World Foundry is still done visually, in a 3D level editing program.

(Indeed, I am attempting to adapt Blender to be used for exactly this purpose.)

One can argue whether scripting or a visual system is more flexible. My personal opinion as a

programmer is that for real reuse and modularity with complex structures, there is no substitute for

using a programming language. Formal languages allow us to express and manage complexity in a

precise way. Visual development tools usually are good for rapid development, but are poor when

it comes to reusable structure. It could be argued, however, that the types of structures created with

a visual system are inherently simple, because the underlying system hides the complexity. You’ll

have to decide for yourself which system best suits your needs, your style, and your project. It
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should be stressed, though, that neither Blender nor World Foundry use exclusively one paradigm

or the other; each tool combines both visual and scripting elements in its own unique way to

enable creation of content.

Let’s briefly mention the key features of the World Foundry system, then go over the creation

of a sample level in World Foundry.

NOTE The material for this section was adapted, with permission, from the World Foundry
reference manual.

The features of the World Foundry system include:

� A variety of core game objects such as moving and static platforms, monetary units, projec-

tiles and other weapons, shadows, enemies, object generators, shields, activation boxes, vehi-

cles, cameras, main characters, particle systems, and so forth

� Animated textures for video walls or organic models such as lava and clouds

� Level of detail support including billboards and reduced polygon models

� Streamed textures and/or models allowing very complicated worlds to fit within small

amounts of memory

� User controllable physics parameters and three-tier collision detection

� Paths to constrain object movement to a predefined course of motion (multiple movement

handlers, including path, physics, stationary, and script controlled)

� Scripting language for controlling object behavior; inter-object communication allows

objects to query the status of other objects and of the level

� User controllable camera tracking with a sophisticated Director/Camera Shot model

� Cross platform development of games, with main targets being Windows and Linux
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Now, let’s look at the creation of a simple level in World Foundry.

NOTE The instructions presented here were written for this book by the primary World
Foundry programmer and architect, Kevin Seghetti, and are based on the Windows version of
World Foundry, which currently uses 3D Studio Max as the level editor. Although the World
Foundry engine already runs on Linux, the development tools are still being ported; I am
attempting to help with the level editing portion of the conversion process, and am currently
focusing on attempting to use Blender for this purpose, though a long-term solution will prob-
ably use a different and open source 3D modeling package. Therefore, the instructions here
might change slightly in the final level editing system. The goal here is to show you fundamen-
tally how level editing works in World Foundry.

This assumes you already have a working knowledge of 3D Studio Max.

1. Pull down the Preferences menu, and select System Unit Scale. Check the Metric check box,

and make sure that Meters appears in the pull-down box. This is important; none of your lev-

els will work correctly unless you perform this step (only required once after 3D Studio Max

is installed).

2. Pull down the Views menu, and select Units Set up. Check the Metric check box, and make

sure that Meters appears in the pull-down box. You can use any units you like, but this tutorial

uses meters.

3. Start by creating a floor, to prevent other things from falling out of the world. Create a box and

name it Floor01. An example size to use is 10 meters wide and half a meter thick.

4. Select the World Foundry Attributes plug-in by clicking on the Utilities tab (looks like a ham-

mer) in Max, then selecting the Attributes plug-in (you might need to click the More button

and find it in the list).

5. Ensuring the floor object is still activated, make it a StatPlat object by pulling down the drop-

down menu just under the Copy and Paste buttons. (Objects default to Disabled, which means

they get ignored by the engine.)
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6. This level will have a single room that contains all of the objects. Create a box called Room01

which contains the floor and ample space above it (for instance, 6 meters). Assign it the Room

class with the Attributes plug-in. To make it easier to see inside of the room I always set the

room object to a material which has an opacity of 10% or so: select the room object, click on

the material editor button, set the opacity to 10, and click the Assign material to selection

button.
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7. Now add a player-controlled character. Anywhere within the room and above the floor, create

a box of roughly humanoid size (half a meter wide and two meters tall), name it Player01, and

assign it the Player class. In order to receive and process joystick messages, our Player object

will need a simple input-handling script. This would look as follows.

(
include objects.id
include ../mailbox.def
include ../joystick.def
include ../user.def
( write-mailbox self INPUT ( read-mailbox self HARDWARE_JOYSTICK1 ) )
)

Enter this script into the player as follows: select the player, then in the Attributes editor

open the Common roll up, click the check box left of Script to enable it (from here forward

always turn on the left check box first to enable the field being edited), then click on the

New button on the right. This will open a text editor; type or paste in the above script. Then

close the editor (it will ask if you want to save your changes; select Yes). Finally, turn on

the Script Controls Input check box just below Script.
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Figure 9-13: Room object,
set to class Room, with
opacity set to 10%.
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8. Now we need to set up a camera shot so we can see our room. Create a small box somewhere

in the room (its size and location aren’t important for this example), and name it Camshot01.

Assign it the Camshot class.

9. We need to create a special object to tell the Camshot where its subject is (where to look and

where to focus). Create a small box a few meters away from Camshot01, name it Target01,

and assign it the Target class. The distance and direction between the Camshot object and the

Target object define the camera-to-subject spatial relationship. We also need to tell the

Camshot which object in the levels is its target, so select Camshot01 and set Camshot—Look

At to Target01. Do the same for Camshot—Follow. Then set Camshot—Track Object to

Player01. This will set up a simple static camera shot.
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10. Camera shots are activated by a special kind of Activation Box object, called an ActboxOR

(short for Activation Box with Object Reference). Create a box that encloses the floor and

player objects, but is itself contained by the Room box. Name it Cambox01 and assign it the

ActboxOR class. We want this activation box to activate Camshot01 any time that Player01 is

inside of Cambox01, so set ActBoxOR—Mailbox to 1021 (the mailbox to write CamShot ref-

erences to; see reference manual for details), Object to Camshot01, Activated By to Actor,

and Actor to Player01.
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target and tracking fields
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purple object is the
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the target, and the blue
object is the player.



11. Also set this object to have a low opacity via the materials editor. Another good trick is to hide

the room and camera act box to make it easier to see the objects inside of the room: click on

the display tab (looks like a monitor), select the room object, click hide selected, select the

camera act box, click hide selected.

12. Finally, we need to create a few objects which must exist somewhere in the level. (Their

actual position is unimportant, as is their size; they hold data that the game engine will need

when you run the level.) Create a small box somewhere in the Room, name it Camera01, and

assign it the Camera class. Create another one named Levelobj and assign it the LevelObj

class. Create a third called Matte01 and assign it the Matte class.
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13. That’s all. Save your work, and export it as a World Foundry LVL file using Export from the

File menu.

As you can see, creating levels with World Foundry is also done by using a level editing tool to

place objects in 3D space. The main difference with the Blender system is that linkage and control

of game objects occurs through scripting rather than through lines and fields on the display.

World Foundry has plans for adding wizards that automate common level-building tasks.

Blender has plans for allowing Python scripted control of the game world. In a sense, both projects

seem to converge towards the same goals, but from different directions. It should again be noted

that World Foundry, like the source code in this book, is an open source (GPL) project and can use

your help as a 3D programmer.

What Does This Mean for 3D Programmers?
While 3D content creation systems represent a fascinating and exciting way of creating interactive

3D applications, it is important to realize that the paradigms for interactive 3D content creation are

still fairly young. Therefore, these packages show one possible direction for 3D development to

take, but are not the ultimate answer to 3D.

In the end, it is the 3D programmers who create these systems in the first place, and who can

extend these systems to introduce new features or even to establish new paradigms and ways of

thinking about 3D content creation. A 3D content creation tool can help you realize your ideas
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more quickly, but 3D programming knowledge allows you to use these systems to their full extent.

So, don’t think that the presence of these development kits obviates the need for 3D programming.

No off-the-shelf (or off-the-Internet) program can be everything to everyone. It follows that there

is always room for improvement in any 3D program, even in polished 3D content creation

systems.

As a 3D programmer, you can make such improvements. If you learn about a new and inter-

esting 3D rendering or visibility technique, then by all means try to implement it. Try to integrate it

into your favorite 3D program. Discuss the idea with the author of a 3D content creation system,

and see if it is possible to incorporate it. Consider the content creation tools as just that—tools.

Good programmers understand the tools they use. They are able, willing, and eager to look under

the hood, understand the program structure and concepts, and make improvements.

Without third-party tools, you would have to program all of your 3D tools yourself, which

takes time. On the other hand, without 3D programming knowledge, you would be at the mercy of

your tools; a program bug or lack of an important feature could be crippling for a project depend-

ing on that feature. Only the combination of good tools and a solid foundation in 3D programming

equip you to tackle any problem and any project in the field of 3D graphics.

The Future
Chaos theory tells us that, in the long run, we can never predict anything about the future with any

accuracy. Nevertheless, that never stopped anyone from trying, myself included. What follows are

some speculations about possible future trends in the field of interactive 3D graphics, under Linux

and in general.

Physically based simulations have already started to increase in number, and this trend will

surely continue. There are already plug-in physics libraries that interface with an existing 3D

library to add physics capabilities to the engine. Good simulation of rigid body dynamics will

probably remain the focus for some time to come, but even items such as cloth are being animated

in real time.

The field of VSD remains wide open for research. Scenes can always become more complex,

meaning that efficient ways of culling large invisible parts of the scene are vital. The use of bill-

board-like techniques (collectively called image-based rendering) and dynamic LOD schemes

can offer good visual quality while greatly reducing the work that needs to be done.

Simulating humans is always a challenging goal, one which everyone seems to strive for.

Facial animation, character animation, inverse kinematics, and physically based modeling of

humans are all topics which have received and will receive much attention. Human-like behavior,

in other words AI, will also remain important.

Non-polygonal representations of data have been on the rise. Curved surfaces, voxels, and

subdivision surfaces are some of the techniques being used today.

Content creation tools have started to change the way that 3D programs are created. There is

still no universal paradigm that can be applied, but the tools do provide interesting approaches.

Finally, people will always want larger, more detailed virtual worlds. Developing algorithms

to deal with such large data sets is challenging. Also, there is the question of how to generate such
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large worlds in the first place. Some pseudorandom techniques can be used to deterministically

generate huge amounts of data automatically, such as landscapes. Data for real-world locations

can also be generated automatically from satellite and photographic information. As the demand

for larger worlds grows, so will the need for such automated algorithms. Networking large virtual

worlds is also an interesting issue. There is still no universally accepted standard for transmitting

3D content over the WWW, nor for networking various participants into collective virtual worlds.

We can expect to see much work done in the network sector, since networking has the potential to

make interactive 3D graphics environments available to practically every computer user.

Summary
In this chapter, we took a quick look at two 3D content development systems currently available

for Linux. We saw how to create worlds in Game Blender and in World Foundry. We noted that

World Foundry is an open source project, released under the GPL, which could use your skills as a

3D programmer. We finally speculated about the future directions 3D graphics programming may

take.

Perspective
It is only appropriate that a book on 3D graphics ends with a section entitled “Perspective.”

Indeed, perspective is the one common thread running through all areas of 3D graphics. It is the

compelling visual cue which creates the illusion of depth; it is the single most important formula

in 3D graphics; it is the visual and geometric phenomenon which causes the non-linearity of z in

screen space. Now, let’s try to put the contents of this book into perspective, in the broader field of

3D graphics as a whole.

We can broadly classify 3D graphics into a spectrum with three categories: high-end graphics,

real-time graphics, and network graphics. This book focused on real-time 3D graphics under

Linux; we looked at the techniques and tools needed to produce interactive 3D programs with

acceptable visual quality and interactive frame rates. This is the middle of the spectrum.

High-end graphics is at the high end of the spectrum. It typically involves algorithms which

produce extremely high-quality photorealistic or hyper-realistic images, but which require enor-

mous amounts of time and space to create. As processors get faster and as algorithms improve,

techniques trickle down from the high-end scene into the real-time scene.

At the low end of the spectrum is network graphics. 3D graphics designed to be viewed from

or manipulated through a WWW browser are typically much simpler than the models for real-time

and high-end graphics, for two reasons. First, the transmission time for the data over the network

must be minimized, leading to smaller and simpler models. Second, the target computer on which

the network graphics are ultimately displayed is often not as powerful as a graphics workstation.

In a network environment, we can make no assumptions about the computing power of the

viewer’s computer. Therefore, network graphics models are often optimized for the lowest-end

machine.
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We therefore can see an interesting progression of technology from the high-end scene, into

the real-time scene, and finally into the network scene. Compare the visual quality of a ray-traced

image exhibiting radiosity and light diffraction with the visual quality of a typical 3D game. Then,

compare the visual quality of a 3D game with that of a VRML display in a WWW browser. The

technological status of each arena becomes clear. Each area has its own constraints and its own

goals, but when hardware or software technology improves, all three ranges of the spectrum bene-

fit simultaneously, causing a migration of technology from the higher to the lower levels.

Thus, the contents of this book fit into the middle of the 3D graphics spectrum. Look at tech-

niques from the high end to understand what might affect real-time 3D graphics in the future. Try

to implement current techniques on the low end to make 3D graphics available to the net at large.

Having put the contents of this book into perspective, I can now in good conscience bring this

chapter and the book to a close. I sincerely hope you have enjoyed our journey together through

the exciting territory of Linux 3D graphics programming. From here, you are on your own. Hope-

fully, the material and code in this book have provided you with enough information and

inspiration to create your own exciting 3D programs. 3D graphics is a very exciting, very

dynamic, and very rewarding area. I encourage you to continue your exploration of the field, and

also to share your work with the Linux 3D graphics community at large. Check out this book’s

web site at http://www.linux3dgraphicsprogramming.org, where you can find

more information, leave feedback, submit and download improvements to the l3d library, or join

an open source project. Remember, your own ideas, algorithms, and programs all can make a dif-

ference. You can help shape the future of Linux 3D graphics.
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A p p e n d i x

CD Installation

License

T
he source code in this book was written by myself, Norman Lin, and is Copyright 2000

Norman Lin. This version of the source code has been released under the GNU General

Public License (GPL). Please read the file l3d/COPYING on the CD-ROM. The other

software packages on the CD-ROM (such as Blender, RPlay, Calc, and so forth), located in direc-

tory software, were written by other individuals or companies and may be subject to other

licenses; read the documentation for each software package carefully.

Essentially, the GPL allows you to use this software in your own projects, but also requires

you to make the source code to such projects available under the GPL. The GPL therefore encour-

ages the sharing of information and source code among software developers. The GNU/Linux

operating system was written in this spirit; developing the code in this book would not have been

possible without the availability of free, open source, high-quality software and tools. Releasing

my code under the GPL is my way of giving something back to the community. Check out this

book’s web site, http://www.linux3dgraphicsprogramming.org, to find the latest

source code and related information. You can also download or submit your own source code

improvements to l3d (via a common CVS repository), leave your comments, discuss the material

with others, or join an open source project. I encourage you to do all of these things.

Note that the GPL permits you to sell your programs for a fee, even those programs that are

based off of l3d or other GPL source code. The “free” in free software refers to freedom, not price.

The purpose of requiring you to provide source code is not to try to prevent you from earning

money based on the sale of your software; the purpose is to ensure that users of your program

receive the same freedoms that you receive when you choose to use GPL source code as a basis for

your own code. You must therefore make the source code to your software available so that others

have the freedom to analyze, modify, improve, and use your software, just as you have the free-

dom to analyze, modify, improve, or use the software in this book.

Contents of the CD-ROM
Here is a brief list of some of the more important software and files included on the CD-ROM.

There is, in reality, much more software on the CD-ROM (since the Linux operating system and
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tools are included), but here the focus is on the software and files relevant to 3D graphics

programming.

� l3d library and sample programs

� Color versions of all the figures from the book

� Animated videos of 3D concepts to supplement the static 2D figures, in AVI format

� Xanim: Video file player to play the AVI files

� Blender 1.80: Complete 3D modeling and animation suite

� World Foundry: 3D game development kit designed to enable non-programmers to construct

complete 3D games

� Cygnus gcc: C++ compiler and tools for Microsoft Windows (can be used to port l3d to

Windows)

� GIMP: GNU Image Manipulation Program, for editing 2D images

� Mesa: OpenGL compatible library

� GLUT: Mark Kilgard’s GL Utility Toolkit

� Calc 2.02f: Symbolic algebra system

� RPlay: Digital sound server

� XFree86 4.0: Free X Window System with support for 3D hardware acceleration in a window

For those software packages or libraries distributed under the GPL, you can obtain the source code

by following the links on this book’s web site, http://www.linux3dgraphicspro-
gramming.org.

Quick Start Guide
This section describes the essential information to install the software on the CD-ROM. It reviews

the locations of files on the CD-ROM and basic installation instructions, including the order in

which the various software packages should be installed.

This section assumes you already have a working Linux installation with the X Window Sys-

tem (XFree86) installed. If this is not the case, first install Linux and then the X Window System.

Exactly how to do this depends on your particular Linux distribution; see your system documenta-

tion for details.

Directories

The directories on the CD-ROM are organized as follows:

� l3d: Contains all of the example programs in the book and the l3d library, in .tar.gz
format.

� software: Contains all of the third-party software and extra libraries used in the book,

including Blender, GIMP, Mesa, RPlay, Calc, and XFree86 4.0.

� figures: Contains color versions of all of the figures and equations in the book, in PCX

format.

604 Appendix

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



� videos: Contains animated 3D videos illustrating 3D concepts, to supplement the flat 2D

pictures in the book.

Installing the Sample Programs and Other Software

1. You must already have a Linux system up and running, with the following software already

installed: gcc 2.95, an X Server (e.g., XFree86 3.3.5), Mesa, and GLUT. All modern Linux

distributions include these libraries. If your Linux distribution does not include some of these

packages, you must find them from another source (e.g., download from the Internet) and

install them manually. The following software is also useful: GIMP, the Gnu Image Manipu-

lation Program, for editing 2D images such as texture maps; and the PPM utilities for

converting PPM files to other formats from the command line.

2. Mount the CD-ROM to make it accessible: mount /cdrom.

3. Type export LD_LIBRARY_PATH=/usr/local/lib. This allows the supplementary librar-

ies, installed into this directory in the next step, to be located by other programs during the

installation process.

4. Install each of the following supplementary libraries in the following order: glib-
1.2.8.tar.gz, gtk+-1.2.8.tar.gz, libsigc++-1.0.1.tar.gz, gtkmm-
1.2.1.tar.gz, and rplay-3.2.0b5.tgz. All of these libraries are located in

/cdrom/software. The first four are needed by the Blender attributes editor program of

Chapter 6; the last library is the RPlay sound server described in Chapter 8.

4a. Make a temporary directory to contain the files during installation. For instance, to install the

glib library, type mkdir glib_work. Change to the directory you just created: cd glib_work.

4b. Unpack the files into the current work directory. Type tar xzvf /cdrom/software/LIB.tgz,

where LIB is the name of the library being installed (e.g., glib-1.2.8.tar.gz). This

should create a new subdirectory, such as glib-1.2.8. Change to this directory: type cd

glib-1.2.8.

4c. If desired, read the documentation for the software package. Typically, this documentation

will be distributed among a number of text files: the files README (describing the purpose of

the software), INSTALL (installation instructions), and COPYING (software license agree-

ment) are common. There may also be a subdirectory doc/ in which additional

documentation is located.

4d. Compile the library. Type ./configure; make. (Though all of the libraries listed above require

the configuration step with configure, not all software requires this step, in which case you

would simply type make.) Compilation should complete without errors. If an error occurs,

examine carefully the output of the command to determine the reason for failure, correct this,

and try again. One possible reason for failure is the absence of other libraries required by the

library being compiled. In this case, you must install the prerequisite libraries first.

4e. After successful compilation, install the library. Type su and press Enter, enter the root pass-

word, and press Enter. You are now the superuser. Type make install to install the compiled

binaries into the proper locations on the system. Type exit to end the superuser session.
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4f. Remove the temporary work directory. Assuming the temporary work directory was

glib_work, type cd ../.. to change to the original top-level directory from which you started

the installation. Then, type rm -rf glib_work to remove the work directory.

4g. Repeat this process for each of the supplemental libraries to be installed.

5. Install the l3d sample programs as follows.

5a. Choose a directory where you want to install the sample programs, create it, and change to it.

For instance, mkdir l3d;cd l3d.

5b. Set the L3D environment variable to point to the l3d directory, which is the current directory

into which you are about to unpack the sample programs. Type export L3D=`pwd` and press

Enter. Note that the quotation marks are single back-quotes, not normal quotes.

5c. Unpack the sample programs: tar xzvf /cdrom/l3d/l3d-0.5.tar.gz.

NOTE It is recommended that you recompile the sample programs as described in the steps
below. However, the CD-ROM also contains precompiled binary versions of the programs.

5d. Edit the file Makefile.vars to set up the proper directory names for your system. The

defaults work for the Debian GNU/Linux system, but may need to be changed for other Linux

distributions. In particular, the variable GLIDEDIR should be set to the directory containing

the Glide libraries, in case you are using Glide for 3DFX hardware acceleration.

MESAINCLUDEDIR should point to the directory containing the Mesa include files.

MESALIBDIR should point to the directory containing the Mesa binary library files

libGL.a, libGLU.a, and libglut.a. The standard values should be correct for most

systems.

5e. Type make -f makeall.lnx to build all of the sample programs. Remember, compiling the

blend_at program requires that the following libraries be installed: glib 1.2.8, gtk+

1.2.8, libsigc++ 1.0.1, and gtkmm 1.2.1.

6. Install Blender. Blender installation is different than installation of the other packages

because Blender is distributed without source code in a precompiled binary form. Install

Blender as follows.

6a. Make a directory to store the Blender files, and change to it. For instance, type mkdir

blender1.80; cd blender1.80.

6b. Unpack the Blender executable files into the current directory. Type tar zxvf /cdrom/soft-

ware/blender/blender1.80-linux-glibc2.1.2-i386.tar.gz. This creates a new subdirectory.

Change to this subdirectory: type cd blender1.80-linux-glibc2.1.2-i386.

6c. Set the Blender environment variable to point to the current directory containing the Blender

files. Type export BLENDERDIR=`pwd`. Note the back-quotes.

6d. To start Blender, type ./blender in the Blender directory.

To install any other programs and libraries in the directory software unpack each .tar.gz
file into a separate directory, and read the installation instructions for each package.
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Troubleshooting the Sample Programs
If you have problems running the sample programs, here are some tips for finding the problem.

� Ensure that the DISPLAY environment variable is set correctly and that you can start other X

programs from the command line.

� Ensure that all required libraries (Mesa, GLUT, RPlay, glib, GTK) have been installed.

� Ensure that any data files needed by the program are accessible or in the current directory.

Such files include texture image files, texture coordinate files, object mesh files, world data

files, and plug-in shared library files.

� Ensure that world data files and mesh files contain no invalid polygons. An example of an

invalid polygon would be one with only two vertices, since a valid polygon must contain at

least three vertices.

� If all else fails, try compiling the sample code with debugging. Edit the file

Makefile.vars, uncomment the line containing “DEBUG=-g,” and comment out all

other lines referencing “DEBUG.” (In Makefiles, the comment character is the pound sign #.)

Then, type cd $L3D;make clean;make -f makeall.lnx to recompile all programs with

debugging. Finally, execute the program in question with the debugger to determine exactly

where the program crashes and why.

Some Comments on the Sample Programs
This section lists some various observations about the l3d code and the sample programs in the

book.

The source code on the CD-ROM has additional comments within the C++ source code

which, for space reasons, were omitted in the listings in the book. This removal of comments was

done via an automated Perl program, so you can be sure that the code contents of the listings in the

book are identical to those on the CD-ROM. The only difference is that there are ample comments

in the code on the CD-ROM.

As mentioned in the introduction, the structure of l3d emphasizes a bottom-up approach

where all code is understandable within the context of one chapter. This leads to heavy use of vir-

tual functions. This results in code which is slightly slower than it could be if all of the virtual

function calls were eliminated. For instance, the virtual call to fog_native for each pixel

within the inner loop of the z buffered rasterizer incurs quite a performance overhead. Also, the

members of all list objects are accessed through abstract pointers. For instance, theivertex lists

within the polygons initially contain simple integer objects, but later get extended to contain inte-

ger index and texture coordinate information. To avoid newly declaring the lists (and rewriting all

code using the lists) in derived polygon classes, the lists are essentially virtual; only the objects are

swapped out. This is quite convenient in terms of programming, but is somewhat inefficient; in

reality, we practically always store texture coordinates with the vertex indices, so there is no rea-

son (other than pedagogical) to maintain both the simple and the texturedivertex class with the

corresponding virtual references. Similarly, our 3D objects contain virtual lists of polygons,

although the most commonly used polygons are textured, light mapped polygons. Eliminating
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some of the virtual function calls and abstract references leads to less flexible but possibly faster

code.

The Mesa 3D rasterizer class uses 2D clipping and a reverse projection to obtain the original

3D coordinates of the 2D points (needed for perspective correct texture mapping and z buffering).

A more efficient approach is to do all the clipping in 3D, meaning that we always have the original

3D coordinate of every single vertex plotted in 2D (which is not the case for new vertices created

during 2D as opposed to 3D clipping). The reason that l3d uses the 2D clipping and reverse projec-

tion strategy is, again, pedagogical: we covered 2D clipping first, then for texture mapping we

needed the original 3D coordinates based on the 2D clipped coordinates. But, after realizing later

that we can do all the clipping in 3D, we can actually do away with the 2D clipping entirely, which

can lead to more efficient code because we don’t need to do any more reverse projections.

Again, check this book’s web site at http://www.linux3dgraphicsprogram-
ming.org to see the latest version of the l3d code, which may incorporate some of the

improvements above.

Hardware Acceleration
In general, l3d programs can all take advantage of hardware acceleration by using OpenGL as the

rasterization layer. This means that OpenGL must be configured to use hardware acceleration in

order for l3d programs to use hardware acceleration.

There are two ways for you to use hardware acceleration. The first way requires a 3DFX

graphics card, the Glide library, and a Mesa distribution compiled with Glide support. This means

that you need to manually install Glide and compile Mesa; see the Mesa documentation for more

information. There are many versions of the Glide library, for different generations of 3DFX hard-

ware. I have included two versions of Glide on the CD-ROM, which should work with Voodoo

and Voodoo3 cards. If you have a different 3DFX card, check out the web site http://
linux.3dfx.com to download the proper version of Glide for yourself. After installing Glide

and compiling Mesa to use Glide, you must edit the file $L3D/Makefile.vars to point to the

correct directories. VariableGLIDEDIR should point to the directory containing the Glide library;

MESAINCLUDEDIR should point to the directory containing the include files used to compile

Mesa; and MESALIBDIR should point to the directory containing the new, 3DFX-enabled Mesa

libraries. Also, you must uncomment the line starting with “GLIDE_LIBS,” to cause l3d pro-

grams to be linked with the Glide library. After following these steps, you can use 3DFX/Glide

hardware acceleration.

The second way of using hardware acceleration involves using XFree86 4.0 and the Direct

Rendering Infrastructure (DRI). This requires you to compile the XFree86 4.0 system (included

on the CD-ROM) with support for your 3D graphics card, and for you to use the special DRI

Mesa/OpenGL libraries, which use the DRI to communicate directly with the underlying graphics

hardware. This is similar to using Mesa to access 3DFX hardware through Glide, but with broader

support for various hardware and with the ability to display accelerated 3D graphics within a win-

dow, as opposed to full-screen. Using the DRI for hardware acceleration does not require you to

change the file Makefile.vars. However, you do need to ensure that the DRI OpenGL librar-

ies, which use hardware acceleration, are dynamically linked to your executable program. To test

608 Appendix



this, type ldd PROGRAM, where PROGRAM is the name of the executable program which

should use hardware acceleration. You should see a line indicating that the libGL.so file is

dynamically linked with the libGL.so file from the Xfree86 4.0 directory. If some other

libGL.so file is linked, then this other OpenGL library will most likely be unable to use the DRI

hardware acceleration. To control which directories are searched during dynamic linking, set the

environment variable LD_LIBRARY_PATH. See the man page on the dynamic linker ld.so for

more information. The XFree86 4.0 documentation also provides information on troubleshooting

the DRI.

TIP The Utah-GLX project contains drivers for some 3D cards which are not yet supported
by the DRI. Eventually, the Utah-GLX drivers will be integrated into the DRI, but until this hap-
pens, you may still find it useful to use the Utah-GLX drivers directly. The home page for the
Utah-GLX project is http://utah-glx.sourceforge.net.

Porting the Code to Microsoft Windows
The l3d code has been designed so that it can be easily ported to other operating systems, such as

Microsoft Windows. With a few exceptions, the sample programs in this book compile and run

under Windows. However, support for Windows has not been a primary concern for l3d, since it

was written to illustrate graphics programming under Linux, and since I have neither installed nor

need any Microsoft products whatsoever on my main computer. Under the (not necessarily true)

assumption that Microsoft and Windows continue to maintain some short-term market relevance,

it might be interesting for you to make your programs available under Microsoft Windows as well.

To compile the code under Microsoft Windows, you can use the Cygnus GCC compiler,

included on the CD-ROM in directory software/ms-win. This is a free C++ compiler and

debugger which runs under Microsoft Windows and which can be used to compile the l3d code.

Be sure also to read and install the OpenGL header files and libraries included with the Cygnus

GCC compiler. The OpenGL files are located in the archive file opengl-1.2.1- 1.tar.gz
on the CD-ROM.

The file makecyg.bat is a batch file which compiles all of the examples for Microsoft

Windows by using the Cygnus GCC compiler. The following are Windows-specific source code

files, which you should use as a starting point for understanding the ported code:

� fwin.cc, fwin.h: factory classes for creating Microsoft Windows factories

� sc_mswin.h, sc_mswin.cc: screen classes for creating a 2D output window using a

device-independent bitmap (DIB) section

� dis_mswin.h, dis_mswin.cc: dispatcher classes for event handling under Microsoft

Windows

� sc_wogl.h, sc_wogl.cc, sc_wzogl.h, sc_wzogl.cc: screen classes for creating

an output window using OpenGL under Windows
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The binaries directory for Windows object and executable files is $L3D/binaries/cygwin.

The porting was performed by duplicating the directory structure from the Linux directory, and by

editing the Makefiles as necessary.

By default, the Windows code is compiled with both a software renderer and an

OpenGL-based renderer. This means that you should have OpenGL and the GLUT libraries

installed on your system. OpenGL libraries should come standard with the operating system, and

are also distributed as specialized drivers with any modern 3D graphics card. The GLUT library

(file GLUT32.DLL) is included in the file opengl-1.2.1-1.tar.gz included with the

Cygnus GCC compiler on the CD-ROM. If your OpenGL driver supports hardware acceleration,

then the l3d programs will also run with hardware acceleration under Microsoft Windows. In the

unlikely event that you do not have any OpenGL libraries at all installed on your system, you can

change the Makefiles to compile and link without the OpenGL-specific files; in other words, it is

also possible to compile l3d using purely software rendering under Windows.

Plug-ins do not yet work with the Microsoft Windows version of the code. There appears to be

some difficulty in using Linux-style plug-ins with Cygnus GCC. For this reason, any programs

using plug-ins will not currently work under Windows. Currently, the code is relying on an emula-

tion of the Linux dlopen system call to load the libraries. However, Windows has its own

dynamic library loading mechanism, LoadLibrary, which could be used instead.

NOTE Using a scripting language for dynamic behavior instead of plug-ins would avoid
the problems of system-specific dynamic library conventions, but with a possibly slower
run-time performance.

Be sure to check this book’s web site at http://www.linux3dgraphicsprogram-
ming.org to see the status of the Microsoft Windows l3d code and to download the latest

version. Alternatively, you can choose to abandon Microsoft Windows entirely, which for the long

term may be a better solution.

Tools Used to Prepare this Book
At the suggestion of my technical editor, Kevin Seghetti, I’ll now briefly go over the tools used to

prepare this book.

This book was written using exclusively Linux tools. The Linux distribution was SuSE 6.3,

though I am currently in the process of migrating to Debian, because of Debian’s clear commit-

ment to the free software community.

The text was prepared using Corel WordPerfect 8 for Linux. I would have preferred to have

written the text in LyX, which is a front end to the LaTeX document preparation system often used

in academic circles. However, at the time of this writing, there exists no reliable way of converting

LyX/LaTeX files to the proprietary word processing format required by my publisher. Sure, there

were several tools that could do most of the conversion (latex2html, for instance), but after

trying around five different packages, I found no solution that preserved fonts, lists, indentation,
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headers, and so forth. So I used WordPerfect, which could export files in exactly the format

needed by the publisher.

The program listings were stored separately from the text, as subdocuments. A Perl script

stripped extraneous comments from all source code files and converted the ASCII source code

files into RTF files. The RTF files were then linked into the master document. The code snippets

within the text were delimited by specially formatted comments in the code; another Perl script

then extracted these regions, and again created RTF files which could be bound into the master

document. The scripts are in the l3d distribution, as files make_clean.sh, no_dou-
ble_space.pl, and snippets.pl. Whenever I needed to update the source code, I would

then merely run my scripts again, and the updated source code was automatically rebound into the

master document.

The 2D figures were generated using Xfig, a very flexible object-based (as opposed to

bitmap) drawing program. The class diagrams were generated manually with TCM, the Toolkit

for Conceptual Modeling. Other promising class diagram tools include Argo/UML (which I did

not use because it focuses on Java), and doxygen (which automatically produces excellent docu-

mentation from uncommented C++ code, and which I will probably use in the future). The 3D

figures were generated with Blender. The animations on the CD-ROM were also created with

Blender. Post-processing work on the figures was done with GIMP.

The equations were generated using LyX, an almost WYSIWYG environment for LaTeX. I

created one LyX file containing all equations for a particular chapter. Next, I exported the LyX file

as a LaTeX file. Then, I used latex2html to convert the LaTeX code into HTML; latex2html has

the wonderful feature that it automatically converts LaTeX equations into bitmap image files.

These bitmap image files were then renamed into the eqnxx-xx files on the CD-ROM.

To manage the large number of figures and equations for each chapter, I again wrote a Perl

script which read an input file containing a list of all the figures for the chapter, in order. These fig-

ures were then converted into the format needed by the publisher and assigned sequential

filenames. This way, I could work on the figures separately, with different file formats, and not

worry about their exact order. If a figure got added or deleted, I simply made the appropriate

change to the list of figures, and all the figures got assigned the correct numbers during the next

run of the script. The PBM utilities were used within the script file to convert the varying image

file formats into one common format.

Resources
The following is a list of some printed and online resources which may be of use to you as you con-

tinue to explore—and hopefully, advance the state of—Linux 3D graphics. The next section is a

comprehensive list of the specific literature referenced in this book, but this section aims to pres-

ent you with some more generally useful resources.
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3D Graphics Programming
Computer Graphics, Principles and Practice by James Foley, Andries van Dam, Steven

Feiner, and John Hughes. Regarded by many as a classic in the field, this book cov-

ers an extremely broad range of topics relevant to 2D and 3D graphics

programmers. Practically every important topic is covered, even if briefly. This

book has a somewhat mathematical slant to it.

OpenGL Programming Guide by Mason Woo, Jackie Neider, and Tom Davis. This is the

definitive guide to programming with OpenGL.

Real-Time Rendering, by Tomas Möller and Eric Haines. This book contains numerous

algorithms and concepts required for rendering high-quality graphics in real time. It

is currently (March, 2001) one of the more up-to-date books in the field, and is a

good collection of the most useful contemporary techniques.

http://www.graphicspapers.com. This site contains a very large searchable

database of academic papers dealing with 3D graphics.

http://www.flipcode.com. This site offers many tutorials and columns relevant

to programming real-time 3D graphics and games.

3D Modeling
Blender v1.5 Manual by Ton Roosendaal. This is the definitive guide to using Blender.

See also http://www.blender.nl.

Das Blender Buch by Carsten Wartmann. This book provides a practical introduction and

guide to using Blender, with several hands-on tutorials. (In German.)

Digital Character Animation 2, Volume 1: Essential Techniques by George Maestri. This

platform-independent book illustrates the fundamentals of character animation with

plenty of exercises and illustrations. Character animation is not easy, but this book

helps you understand and master the difficulties.

Looking Good in 3D by Andrew Reese. This practice-oriented book explains basic princi-

ples of 3D imagery and illustrates which 3D graphics techniques to use in order to

create effective presentations.

Drawing on the Right Side of the Brain by Betty Edwards. This book deals with develop-

ing the visual skills to become a good 2D artist. While it doesn’t directly deal with

computer graphics, the visual skills you can learn from this book are very effective

for all types of visual expression, including 3D modeling.

Keys to Drawing by Bert Dodson. This book, too, does not deal directly with computer

graphics, but offers a number of useful tips or “keys” to creating effective 2D art.
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3D Information and Applications
http://www.linux3dgraphicsprogramming.org. This is the home page for

the book, and provides links to many other resources, as well as discussion forums,

hourly updated Linux 3D news, tutorials, articles, code repositories, and more.

Check it out!

http://www.worldfoundry.org. This is the home page for the World Foundry

system described in Chapter 9, a game development kit allowing creation of sophis-

ticated, multi-platform 3D games with no programming.

http://www.blender.nl. This is the official home page of the Blender 3D render-

ing, animation, and game development suite.

http://www.opengl.org. The OpenGL home page provides news, links, and sam-

ple code dealing with OpenGL.

http://mesa3d.sourceforge.net. The Mesa home page provides news and the

latest version of the Mesa library, which is effectively compatible with OpenGL.

http://sunsite.auc.dk/linuxgames. The Linux Games Development Center

provides articles and news for developers of games under Linux.

General Programming
The X Window System: Programming and Applications with Xt by Douglas Young and

John Pew. This book provides an introduction to programming the X Window

System.

The C++ Programming Language by Bjarne Stroustrup. This is, of course, the definitive

reference on the C++ language.

Object-Oriented Software Construction by Bertrand Meyer. This book is a comprehensive

treatment of the subject of object orientation and how it improves software quality.

The book is very readable, yet also provides rigorous treatment of what object ori-

entation actually is, and its relationship to other software methodologies and to the

field of scientific study as a whole. While much literature attempts to make object

orientation appear easy, this book does not shy away from showing the true, subtle,

real-world difficulties of software construction, and how object orientation attacks

these problems head-on.

Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Rich-

ard Helm, Ralph Johnson, and John Vlissides. This landmark book documented for

the first time the concept of a design pattern, presented a catalog of reusable pat-

terns, and encouraged the use of this technique for object-oriented development.

Data Structures and Program Design by Robert Kruse. This introduction to data struc-

tures describes many of the fundamental structures of computer science, which are

essential in programs of all kinds, including 3D programs.
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Other
University Physics by Francis W. Sears, Mark W. Zemansky, and Hugh D. Young. This

undergraduate-level text provides a useful introduction to the field of physics, some

of which can be applied to computer simulations.

The Guitar Handbook by Ralph Denyer. I have found that good programmers are often

also good artists—musically, visually, or otherwise. If you write interactive 3D pro-

grams such as games, you might also need to write music to accompany these

programs. This book, while focusing on the guitar, provides a good treatment of

music theory as well, which is useful for composing music of all kinds.

http://www.debian.org. This is the home page for the Debian GNU/Linux distri-

bution of the Linux operating system.

http://www.gnu.org. This is the home page of the GNU project, which is a pivotal

proponent of free software (free as in freedom), and whose software forms a large

and important part of the GNU/Linux operating system. The GNU project is the

source of the GNU General Public License, or GPL, under which much Linux soft-

ware has been released.
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An asterisk indicates the reference includes code segments.

/dev/audio file, 517
2D graphics, 1-2
2D lumel space, converting to 3D camera space, 159
3D camera space, converting from 2D lumel space, 159
3D content development system, 583, 598-599
3D graphics, 3-4
3D graphics coordinate system, 4-5
3D morphing, 39-40, 41-47*
3D polygons, associating textures to, 96-98
3D rasterizer, abstract, 98-101*
3D rasterizer implementation,

Mesa/OpenGL, 115-129*
software, 101-113*

3D vector, 6
3DWindow, 33

acceleration, 578
Actor attributes, 439-440
actors, creating room with, 463-473
AI, 580-582
alpha channel, 485
ambient light, 50
animation tutorial, 180-201*
anti-aliasing, 345
arbitrarily oriented bounding box, 231-232
arm Ikas, creating, 184
artificial intelligence, see AI
attribute system, 431-433
attributes,

associating with meshes, 431-433
mesh, 437-440
parsing, 440-446*
used with VidscParser.pm, 437-440
working with, 473-474

axially aligned bounding box, 232
axis-aligned billboards, 484-485
axis-aligned BSP tree, 302-303

back-face culling, 207
example program, 209-214*
of portals, 314

back-facing polygons, 207-208
determining, 208-209

base, 181
billboards, 484-486, 506
binary space partitioning tree, see BSP tree
binary temporal search method, 542
binutils, 32

blend_at tool, 433-434, 446
configuring, 434-436
testing, 436
using to create room with actors, 463-473

Blender,
as a world editing system, 364-367
interface, 33
keystroke commands, 35
steps for creating worlds, 474-475
using to align portals, 374-382
using to create portals, 371-374
windows, 33-34

Blender attributes editor, see blend_at tool
Blender models, exporting to Videoscape format, 36
Blender tutorials

creating 3D morph targets, 161-180*
modeling walking human figure, 180-201*

Blender 2.0, using, 583-590
blender_config class, 447-448*
blender_controller class, 448-449*
blender_xcontroller class, 449-463*
body Ika, creating, 185
bone, 181
bounding sphere, 225

checking, 225-227
computing, 227-228

bounding volume, 225, 231-232, 531-532
and BSP trees, 275-276

BSP tree, 268-270 see also axis-aligned BSP tree, leafy
BSP tree, mini BSP tree

and bounding volumes, 275-276
and dimensions, 306
example program, 276-293*
level of detail techniques, 507-508
representing volume with, 304-306
traversing, 274-275
using for world editing, 476
using to pre-sort polygons, 271-274
using to represent polyhedral solid, 303-306

bump map, 499
bump mapping, 499-500
ButtonsWindow, 33

Calc tool, 79
commands, 81-82
features, 83-85
using, 79-82
using to solve systems of equations, 85-86
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using to solve texture mapping equations, 86-89
camera coordinates, defining frustum in, 218-220
camera position and portals, 315-316
camera tracking, 512-513
CD-ROM, installing, 603-609
cell, 308
chain, 181
character animation, 180
character special device, 517
characters, 180
child process, 528
client, IP, 524-525
clipping, 25-26

portals, 314-315
clouds, simulating, 497-498
collision detection, 530-531

testing for intersection, 532-538
collision detection example program, 574-576*

optimizing, 576-577
collision response, 531, 541
collisions,

multiple, 541, 542-543
types of, 536

column vector notation, 6
common palette, generating, 73
compatible morph targets, 161
configuration space, 581
control net, 503
controlling script, 429-430*
convexity, 209, 295

of portals, 315
coordinate system in 3D graphics, 4-5
correctness, VSD, 204
cubic environment mapping, 482-483
curved surfaces, 501-504
cyclic overlap, 243-244

diffuse reflection, 50-54
diffuse surfaces, 50
digital sound, see sound
dimensions and BSP trees, 306
dispatcher, 17

creating, 18
starting, 18

display list, 125
double buffering, 2
dynamic lighting, 58-59
dynamics, 578

edge collapse, 506-507
effector, 181
efficiency, VSD, 204-205
Emacs editor, 32
environment map, 481
environment mapping, 480-484
Euler integration, 490
event dispatcher, 18

extrusion, creating portals via, 371-374

factories, choosing, 13-14
factory management, 24-25
factory manager, 13

for z buffering, 261-263*
FileWindow, 33
find, 32
fire effects, 498-499
fixed-point arithmetic, 29
FK, 181-182

programming, 200-201
flat shading, 61
float type, 29
floating-point arithmetic, 29
fog effects, 59-60, 499
forward kinematics, see FK
fractal landscapes, 510
free edge, 379-370
front-facing polygons, determining, 208-209
frustum, computing in world coordinates, 220-221

Game Blender, using, 583-590
gcc, 32
gdb, 32
Gimbal lock, 385
Glade, 446
Gouraud shading, 61-62
graphical techniques, 501-513
gravity, 488

half space, 268
splitting, 268-269

haptic devices, 516
hardware acceleration, 2
hashes, 387-388
height field, 509
hidden surface removal, see HSR
hierarchical view frustum culling, 223-225
hierarchy, creating for Ikas, 185-187
homogenous coordinates, 6
HSR, 205
hyperplanes, 306

IK, 181-182
programming, 200-201

IK chain, 181
Ika, 181

associating with mesh, 189-190
parenting into hierarchy, 185-187

Ika chains, 181
animating, 188-189
creating, 183, 184-185
moving, 181-182, 183

Ika meshes, importing, 192
ImageSelectWindow, 34
ImageWindow, 33
info command, 32
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InfoWindow, 33
intersection testing, 532-538
inverse, see matrix inverse
inverse kinematics, see IK
IP address, 526-527
IP client, 524-525
IP server, 526-528
IpoWindow, 33

joints, 181

l3d directory structure, 12
l3d example program, 8-11*
l3d program structure, 13-19
l3d_bounding_sphere class, 228-231*
l3d_bsptree class, 277-285*

leafy BSP tree methods, 296-297
l3d_camera_collidable class, 552-553*
l3d_collidable class, 543-544*
l3d_collidable_sphere class, 544-548*
l3d_coordinate class, 25
l3d_dispatcher class, 20
l3d_event_source class, 19
l3d_factory_manager class, 24
l3d_factory_manager_v_0_3 class, 261-263*
l3d_halfspace class, 277-278*, 285
l3d_list class, 25

using, 26
l3d_matrix class, 28
l3d_object class, 28
l3d_pipeline class, 15, 19
l3d_pipeline_world class, 29
l3d_pipeline_world_lightmapped class, 351-353*
l3d_plugin_videoscape_mesh_seeker class, 563-574*
l3d_point class, 25
l3d_polygon_2d class, 28
l3d_polygon_3d class, 28
l3d_polygon_3d_collidable class, 548-551*
l3d_polygon_3d_flatshaded class, 28
l3d_polygon_3d_portal class, 322-323*
l3d_polygon_3d_textured class, 96-97
l3d_polygon_3d_textured_lightmapped class, 142-145*
l3d_polygon_3d_textured_lightmapped_collidable class,

551-552*
l3d_polygon_ivertex class, 96
l3d_polygon_ivertex_textured class, 96
l3d_polygon_ivertex_textured_items_factory class, 96
l3d_rasterizer_2d class, 23
l3d_rasterizer_2d_imp class, 23
l3d_rasterizer_2d_mesa_imp class, 23
l3d_rasterizer_2d_sw_imp class, 23
l3d_rasterizer_2d_sw_lighter_imp class, 344-351*
l3d_rasterizer_3d class, 98-100*
l3d_rasterizer_3d_imp class, 98-100*
l3d_rasterizer_3d_mesa_imp class, 115-124*
l3d_rasterizer_3d_sw_imp class, 101-113*
l3d_rasterizer_3d_zbuf_mesa_imp class, 258-261*

l3d_rasterizer_3d_zbuf_sw_imp class, 248-257*
l3d_real type, 29

using, 30
l3d_screen class, 20-21

merging with l3d_screen_info class, 21
l3d_screen_info class, 21-22

merging with l3d_screen class, 21
l3d_screen_info_indexed class, 22
l3d_screen_info_rgb class, 22
l3d_screen_zbuf_mesa class, 258-261*
l3d_sector class, 323-329*
l3d_sound_client class, 521-522*
l3d_sound_server_rplay class, 522-524*
l3d_surface class, 138-141*
l3d_surface_cache class, 141, 142-145*
l3d_texture class, 66-68*
l3d_texture_computer class, 67-68*
l3d_texture_data class, 66-68
l3d_texture_loader class, 68-69*
l3d_texture_loader_ppm class, 69-73*
l3d_texture_space class, 66-68*
l3d_two_part_list class, 25

using, 26-27
l3d_vector class, 28
l3d_viewing_frustum class, 221-222*
l3d_world class, 29
l3d_world_backface class, 214-218*
l3d_world_bsptree class, 286-290*
l3d_world_frustum class, 236-242*
l3d_world_portal_textured_lightmapped_obj class,

329-344*
l3d_world_portal_textured_lightmapped_obj_colldet

class, 553-563*
Lambert’s law, 53
Lambertian surfaces, 53
landscapes,

generating fractal, 510
level of detail techniques, 511
rendering, 511
storing, 509-510

leafy BSP tree, 294-295, 304-305
creating, 295-296
example program, 297-302*
methods for, 296-297

left-handed coordinate system, 4-5
leg Ikas, creating, 183-184
lens flare, 486-487
level editing, see world editing
level editor, see world editor
level of detail techniques, see LOD techniques
light intensity, 48

computing, 319-320
light mapping, 64, 135-136

and texture mapping example program, 151-159*
implementing in software, 136-146
implementing with hardware, 147-151
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light maps, 63-64
and shadows, 159-160
rasterizing, 147

light rays, 3
light sources, computing multiple, 57
light table, see lighting table
light,

computing 49-59
rendering techniques, 60-64
shading techniques, 60-64

lighting models, 49-59
lighting table, 48
limb, 181
Linux

resources, 611-616
tools, 32, 610-611

LOD models, computing, 506-509
LOD techniques, 505-506

for landscapes, 511
lumel, 63

magic edges, 431, 433
magic vertices, 431
make utility, 32
man command, 32
material parameters, 50
matrices, 6
matrix

inverse, 7-8
multiplication, 6
properties, 7-8
transformations, 6-7

matte surfaces, 50
Mesa, 2

using to draw texture mapped polygons, 115-129*
z buffering in, 257-261*

Mesa/OpenGL 3D rasterizer implementation, 115-129*
mesh attributes, 437-440
meshes,

associating attributes with, 431-433
associating with Ika, 189-190
defining, 162-163
deforming, 165-167
exporting, 190-191

Microsoft Windows, porting code to, 609-610
mini BSP tree, 303
MIP map, 508
MIP mapping, 508-509
mirror, portal-based, 320
model, texturing, 191-192
morph targets,

exporting, 173
inserting, 163-165

morphing, 39
example program, 41-47*
tutorial, 161-180*

movie, loading, 198-199
moving collision, 536
multi-pass rendering, 500-501
multiple light sources, computing, 57
multiple sounds, playing, 518-519
multi-texturing, 501

natural phenomena, simulating, 497-499
near z clipping of portals, 316-318
network,

exchanging data on, 530
interface, 526

non-blocking operations, 529-530
non-convex sector-based partitioning for world editing,

476-477
non-splitting nodes, 304
numerical integration, 579-580

objects, specifying, 28-29
occlusion-based algorithms, 356-357
occlusion map, 356
octree, 306-308

using for world editing, 476
OopsWindow, 33
OpenGL, 2

z buffering in, 257-261*
orthonormalization, 564
overdraw, 243

painter’s algorithm, 242-245, 274-275
parent process, 528
particle systems, 487-488

and physics, 488, 496
example program, 490-496*

particles, 487
patch, 501-502
path finding, 581
penetration,

allowing, 541-542
avoiding, 542-543

Perl generator module, 422
Perl modules, 388, 390

Actor.pm, 408-410*
errGen.pm, 426-429*
Facet.pm, 392-398*
l3dGen.pm, 422-426*
Portal.pm, 400*
Sector.pm, 400-408*
Texture.pm, 398-400*
Vertex.pm, 390-392*
VidscParser.pm, 415-422*
World.pm, 410-415*

Perl parsing module, 415
Perl portalization system, 389-390

executing, 429-430*
Perl scripts, using to convert Videoscape files, 387-389
Perl structural modules, 390
perspective correction, 126
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perspective projection, 5-6
Phong illumination, 55
Phong shading, 63
physics,

and particle systems, 488, 496
basic concepts, 577-578

pipeline, 14
creating, 18

pipeline subclass, declaring, 14-17
planar geometric perspective projection, 4
point light source, 50-51
points, 4

specifying, 25
polygon soup, 290
polygons,

clipping, 25-26
pre-sorting, 271-274
specifying, 28

port, 519
portable pixmap format, see PPM
portal algorithm components, 308-310
portal connectivity, 370-371
portal rendering and other rendering methods, 321-322
portal world example program, 353-355*
portal-based mirror, 320
portalization, 385

in Perl, 389-390
portals, 309

advantages and disadvantages, 313-314
aligning, 374-382
and camera position, 315-316
and near z plane, 316-318
back-face culling, 314
clipping, 314-315
creating, 371-374
generating shadows with, 318-320
rendering, 310-313
working with, 382-385

PPM, 68
utilities, 73-74

PPM files, converting, 73
principle of locality, 272
projection, 4

perspective, 5-6

radial fog, 59-60
radiosity, 58
raw format, 518
ray tracing, 58, 357, 480-481
ray-to-polygon intersection testing, 532-535
ray-to-sphere intersection testing, 535-536
real-time update, 489, 579-580
reflection vector, 55

computing, 55-57
rendering

landscapes, 511

light, 60-64
multi-pass, 500-501

rendering methods, combining, 321-322
reverse projection, 127-128
right-handed coordinate system, 5
rigid body dynamics, 578-579
root, 181
rotoscoping, 197-200
RPlay server, 519

using TCP/IP with, 520-521

sample programs
backface, 209-214*
bsp, 276-293*
client, 525-526*
collide, 574-576*
drawdot, 8-11*
frustum, 233-236*
ika, 193-197*
leafybsp, 297-302*
lightmap, 151-159*
morph3d, 40- 47*
particle, 490-496*
playtest, 520-521*
porlotex, 353-355*
server, 526-529*
square, 518*
textest, 129-135*
texzbuf, 263-264
vids3d, 175-179*

screen coordinates, converting to texture coordinates,
89-92

screen space coordinates, converting to world space
coordinates, 127-128

screen-aligned billboards, 484-485
sector, 308
Sector attributes, 437-439
seen light rays, 3
self lighting, 49
SequenceWindow, 33
server, IP, 526-528
shading techniques, 60-64
shadows, 159-160

generating with portals, 318-320
skeleton, 185
sky effects, 498
smoke effects, 498
smoothing groups, 62
socket, 520
sound, 516-519

example program, 518*
sounds, playing multiple, 518-519
SoundWindow, 33
space partitioning, 268-271
span buffering, 264-266
spatial partitioning, 308
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using for world editing, 475-476
special effects, 480-501
specular reflection, 55-57
sphere checking, 225-227
sphere map, 483
sphere mapping, 483
sphere-to-polygon intersection testing, 536-538
sphere-to-sphere intersection testing, 532
spherical environment mapping, 483
splitting nodes, 304
splitting plane, 268, 271-272

choosing, 272-274
spring force, 541-542
sprites, 484
square wave, 517
stability condition, 580
static collision, 536
static lighting, 58
strategy design pattern, 20
subdivision surfaces, 503-504
surface, 136-138
surface cache, 138, 141-142
sweep, 539
sweep test, 539-541

TCP/IP networking, 524
using with RPlay, 520-521

texels, 64
texture coordinates,

assigning in Blender, 167-173
converting screen coordinates to, 89-92
mapping to integer indices, 92-93

texture data, storing, 66-68*
texture definition triangle, 393
texture information, exporting, 174-175
texture mapping, 64-65

and light mapping example program, 151-159*
example program, 129-135*
pixel-level strategy, 89-93
strategy, 65, 94-95
vertex-level strategy, 93-96

texture mapping equations, solving with Calc, 86-89
texture objects, 125
texture space, 64

defining, 74-75
texture space and world space, mapping between, 76-89
textured room, creating with blend_at tool, 463-473
textures, 64

applying in Blender, 167-173
associating with 3D polygons, 96-98
defining, 65-74
loading, 68-73*

TextWindow, 33
tiles, 509-510
triangle strip, 502-503
tunneling, 538-541

two-part vertex lists, 26-27

updating in real time, 489

vector operations, 5
vectors, 4
velocity, 577
vertex class, 447*
vertex keys, 163
vertex lists, specifying, 25
vertices, specifying, 25
VFW axis, 41
Videoscape files, converting with Perl scripts, 387-389
Videoscape format, exporting Blender models to, 36
view frustum, 218

defining, 218-220
view frustum clipping, 233
view frustum culling, 218

example program, 233-236*
hierarchical, 223-225

view volume, 218
visual surface determination, see VSD
VRI axis, 41
VRML format, 174-175
VSD, 203

goals of, 204-207
VUP axis, 41

water, simulating, 499
world, 29
world coordinates, computing frustum in, 220-221
world design process, 367-368
world editing, 360

solutions, 360-363, 475-477
world editing system,

data flow, 368-369
requirements, 363-364
using Blender as, 364-367

world editor, 360
adapting, 362-363
custom, 361-362

world file, 36
generating, 385-386

world file format, 343-344
World Foundry, 590-591

using, 591-598
world partitioning techniques, 206-207
world space and texture space, mapping between, 76-89
world space coordinates, converting from screen space

coordinates, 127-128

z buffer, 245
z buffer algorithm, 245-246

advantages and disadvantages, 246-247
z buffer rasterizer implementation,

Mesa/OpenGL, 257-261*
software, 248-257*

z buffering, factory managers for, 261-263*
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