22 June 2001 16:35

CHAPTER THREE

CHAR DRIVERS

The goal of this chapter is to write a complete char device driver. We’ll develop a
character driver because this class is suitable for most simple hardware devices.
Char drivers are also easier to understand than, for example, block drivers or net-
work drivers. Our ultimate aim is to write a modularized char driver, but we won’t
talk about modularization issues in this chapter.

Throughout the chapter, we'll present code fragments extracted from a real device
driver: scull, short for Simple Character Utility for Loading Localities. scull is a char
driver that acts on a memory area as though it were a device. A side effect of this
behavior is that, as far as scull is concerned, the word device can be used inter-
changeably with “the memory area used by scull.”

The advantage of scull is that it isn’t hardware dependent, since every computer
has memory. scull just acts on some memory, allocated using kmalloc. Anyone can
compile and run scull, and scull is portable across the computer architectures on
which Linux runs. On the other hand, the device doesn’t do anything “useful”
other than demonstrating the interface between the kernel and char drivers and
allowing the user to run some tests.

The Design of scull

The first step of driver writing is defining the capabilities (the mechanism) the
driver will offer to user programs. Since our “device” is part of the computer’s
memory, we're free to do what we want with it. It can be a sequential or random-
access device, one device or many, and so on.

To make scull be useful as a template for writing real drivers for real devices, we’ll
show you how to implement several device abstractions on top of the computer
memory, each with a different personality.

The scull source implements the following devices. Each kind of device imple-
mented by the module is referred to as a type:

54

22 June 2001 16:35

Major and Minor Numbers

scullO to scull3

Four devices each consisting of a memory area that is both global and persis-
tent. Global means that if the device is opened multiple times, the data con-
tained within the device is shared by all the file descriptors that opened it.
Persistent means that if the device is closed and reopened, data isn’t lost. This
device can be fun to work with, because it can be accessed and tested using
conventional commands such as ¢p, cat, and shell I/O redirection; we’ll exam-
ine its internals in this chapter.

scullpipeO to scullpipe3

Four FIFO (first-in-first-out) devices, which act like pipes. One process reads
what another process writes. If multiple processes read the same device, they
contend for data. The internals of scullpipe will show how blocking and non-
blocking read and write can be implemented without having to resort to inter-
rupts. Although real drivers synchronize with their devices using hardware
interrupts, the topic of blocking and nonblocking operations is an important
one and is separate from interrupt handling (covered in Chapter 9).

scullsingle

scullpriv

sculluid

scullwuid
These devices are similar to scull0, but with some limitations on when an
open is permitted. The first (scullsingle) allows only one process at a time to
use the driver, whereas scullpriv is private to each virtual console (or X termi-
nal session) because processes on each console/terminal will get a different
memory area from processes on other consoles. sculluid and scullwuid can be
opened multiple times, but only by one user at a time; the former returns an
error of “Device Busy” if another user is locking the device, whereas the latter
implements blocking open. These variations of scull add more “policy” than
“mechanism;” this kind of behavior is interesting to look at anyway, because
some devices require types of management like the ones shown in these scu//
variations as part of their mechanism.

Each of the scull devices demonstrates different features of a driver and presents
different difficulties. This chapter covers the internals of scullO to skuli3; the more
advanced devices are covered in Chapter 5: scullpipe is described in “A Sample
Implementation: scullpipe” and the others in “Access Control on a Device File.”

Major and Minor Numbers

Char devices are accessed through names in the filesystem. Those names are
called special files or device files or simply nodes of the filesystem tree; they are
conventionally located in the /dev directory. Special files for char drivers are

55

22 June 2001 16:35

Chapter 3: Char Drivers

identified by a “c” in the first column of the output of /s - Block devices appear
in /dev as well, but they are identified by a “b.” The focus of this chapter is on
char devices, but much of the following information applies to block devices as
well.

If you issue the Is—/ command, you'll see two numbers (separated by a comma) in
the device file entries before the date of last modification, where the file length
normally appears. These numbers are the major device number and minor device
number for the particular device. The following listing shows a few devices as
they appear on a typical system. Their major numbers are 1, 4, 7, and 10, while
the minors are 1, 3, 5, 64, 65, and 129.

crw-rw-rw- 1 root root 1, 3 Feb 23 1999 null
Crw------- 1 root root 10, 1 Feb 23 1999 psaux
crw------- 1 rubini tty 4, 1 Aug 16 22:22 ttyl
crw-rw-rw- 1 root dialout 4, 64 Jun 30 11:19 ttysSO
crw-rw-rw- 1 root dialout 4, 65 Aug 16 00:00 ttysSl
Crw------- 1 root sys 7, 1 Feb 23 1999 wvcsl
Crw------- 1 root sys 7, 129 Feb 23 1999 wvcsal
crw-rw-rw- 1 root root 1, 5 Feb 23 1999 zero

The major number identifies the driver associated with the device. For example,
/dev/null and /dev/zero are both managed by driver 1, whereas virtual consoles
and serial terminals are managed by driver 4; similarly, both wvcs? and wvcsal
devices are managed by driver 7. The kernel uses the major number at open time
to dispatch execution to the appropriate driver.

The minor number is used only by the driver specified by the major number; other
parts of the kernel don’t use it, and merely pass it along to the driver. It is com-
mon for a driver to control several devices (as shown in the listing); the minor
number provides a way for the driver to differentiate among them.

Version 2.4 of the kernel, though, introduced a new (optional) feature, the device
file system or deyfs. If this file system is used, management of device files is sim-
plified and quite different; on the other hand, the new filesystem brings several
user-visible incompatibilities, and as we are writing it has not yet been chosen as a
default feature by system distributors. The previous description and the following
instructions about adding a new driver and special file assume that deyfs is not
present. The gap is filled later in this chapter, in “The Device Filesystem.”

When deufs is not being used, adding a new driver to the system means assigning
a major number to it. The assignment should be made at driver (module) initializa-
tion by calling the following function, defined in <linux/fs.h>:

int register_chrdev (unsigned int major, const char *name,
struct file_operations *fops);

56

22 June 2001 16:35

Major and Minor Numbers

The return value indicates success or failure of the operation. A negative return
code signals an error; a 0 or positive return code reports successful completion.
The major argument is the major number being requested, name is the name of
your device, which will appear in /proc/devices, and fops is the pointer to an
array of function pointers, used to invoke your driver’s entry points, as explained
in “File Operations,” later in this chapter.

The major number is a small integer that serves as the index into a static array of
char drivers; “Dynamic Allocation of Major Numbers” later in this chapter explains
how to select a major number. The 2.0 kernel supported 128 devices; 2.2 and 2.4
increased that number to 256 (while reserving the values 0 and 255 for future
uses). Minor numbers, too, are eight-bit quantities; they aren’t passed to regis-
ter_chrdev because, as stated, they are only used by the driver itself. There is
tremendous pressure from the developer community to increase the number of
possible devices supported by the kernel; increasing device numbers to at least 16
bits is a stated goal for the 2.5 development series.

Once the driver has been registered in the kernel table, its operations are associ-
ated with the given major number. Whenever an operation is performed on a char-
acter device file associated with that major number, the kernel finds and invokes
the proper function from the file_operations structure. For this reason, the
pointer passed to register_chrdev should point to a global structure within the
driver, not to one local to the module’s initialization function.

The next question is how to give programs a name by which they can request
your driver. A name must be inserted into the /dev directory and associated with
your driver’s major and minor numbers.

The command to create a device node on a filesystem is mknod, superuser privi-
leges are required for this operation. The command takes three arguments in addi-
tion to the name of the file being created. For example, the command

mknod /dev/scull0 c 254 0

creates a char device (¢) whose major number is 254 and whose minor number is
0. Minor numbers should be in the range 0 to 255 because, for historical reasons,
they are sometimes stored in a single byte. There are sound reasons to extend the
range of available minor numbers, but for the time being, the eight-bit limit is still
in force.

Please note that once created by mknod, the special device file remains unless it is
explicitly deleted, like any information stored on disk. You may want to remove
the device created in this example by issuing rm /dev/scullO.

Dynamic Allocation of Major Numbers

Some major device numbers are statically assigned to the most common devices. A
list of those devices can be found in Documentation/devices.txt within the kernel

57

22 June 2001 16:35

Chapter 3: Char Drivers

source tree. Because many numbers are already assigned, choosing a unique num-
ber for a new driver can be difficult—there are far more custom drivers than avail-
able major numbers. You could use one of the major numbers reserved for
“experimental or local use,” but if you experiment with several “local” drivers or
you publish your driver for third parties to use, you'll again experience the prob-
lem of choosing a suitable number.

Fortunately (or rather, thanks to someone’s ingenuity), you can request dynamic
assignment of a major number. If the argument major is set to 0 when you call
register_chrdev, the function selects a free number and returns it. The major num-
ber returned is always positive, while negative return values are error codes.
Please note the behavior is slightly different in the two cases: the function returns
the allocated major number if the caller requests a dynamic number, but returns 0
(not the major number) when successfully registering a predefined major number.

For private drivers, we strongly suggest that you use dynamic allocation to obtain
your major device number, rather than choosing a number randomly from the
ones that are currently free. If, on the other hand, your driver is meant to be use-
ful to the community at large and be included into the official kernel tree, you’ll
need to apply to be assigned a major number for exclusive use.

The disadvantage of dynamic assignment is that you can’t create the device nodes
in advance because the major number assigned to your module can’t be guaran-
teed to always be the same. This means that you won’t be able to use loading-on-
demand of your driver, an advanced feature introduced in Chapter 11. For normal
use of the driver, this is hardly a problem, because once the number has been
assigned, you can read it from /proc/devices.

To load a driver using a dynamic major number, therefore, the invocation of ins-
mod can be replaced by a simple script that after calling insmod reads
/proc/devices in order to create the special file(s).

A typical /proc/devices file looks like the following:

Character devices:
1 mem

2 pty

3 ttyp

4 ttyS

6 1lp

7 vcs

10 misc
13 input
14 sound
21 sg

180 usb

* Major numbers in the ranges 60 to 63, 120 to 127, and 240 to 254 are reserved for local
and experimental use: no real device will be assigned such major numbers.

58

22 June 2001 16:35

Major and Minor Numbers

Block devices:
2 fd
8 sd
11 sr
65 sd
66 sd

The script to load a module that has been assigned a dynamic number can thus be
written using a tool such as awk to retrieve information from /proc/devices in order
to create the files in /dev.

The following script, scull_load, is part of the scull distribution. The user of a
driver that is distributed in the form of a module can invoke such a script from the
system’s rc.local file or call it manually whenever the module is needed.

#!/bin/sh
module="scull"
device="scull"
mode="664"

invoke insmod with all arguments we were passed
and use a pathname, as newer modutils don’t look in . by default
/sbin/insmod -f ./$module.o $* || exit 1

remove stale nodes
rm -f /dev/${device}[0-3]

major=‘awk "\\$2==\"S$module\" {print \\$1}" /proc/devices'

mknod /dev/${device}0 c¢ $major
mknod /dev/${device}l c Smajor
mknod /dev/${device}2 c Smajor
mknod /dev/${device}3 c S$major

w NN P o

give appropriate group/permissions, and change the group.

Not all distributions have staff; some have "wheel" instead.
group="staff"

grep ’'“staff:’ /etc/group > /dev/null || group="wheel"

chgrp $group /dev/${device}[0-3]
chmod $mode /dev/${device}[0-3]

The script can be adapted for another driver by redefining the variables and
adjusting the mknod lines. The script just shown creates four devices because four
is the default in the scull sources.

The last few lines of the script may seem obscure: why change the group and
mode of a device? The reason is that the script must be run by the superuser, so
newly created special files are owned by root. The permission bits default so that
only root has write access, while anyone can get read access. Normally, a device
node requires a different access policy, so in some way or another access rights
must be changed. The default in our script is to give access to a group of users,

59

22 June 2001 16:35

Chapter 3: Char Drivers

but your needs may vary. Later, in the section “Access Control on a Device File” in
Chapter 5, the code for sculluid will demonstrate how the driver can enforce its
own kind of authorization for device access. A scull_unload script is then available
to clean up the /dev directory and remove the module.

As an alternative to using a pair of scripts for loading and unloading, you could
write an init script, ready to be placed in the directory your distribution uses for
these scripts.” As part of the scull source, we offer a fairly complete and config-
urable example of an init script, called scull.init; it accepts the conventional argu-
ments—either “start” or “stop” or “restart”—and performs the role of both
scull_load and scull_unload.

If repeatedly creating and destroying /dev nodes sounds like overkill, there is a
useful workaround. If you are only loading and unloading a single driver, you can
just use rmmod and insmod after the first time you create the special files with
your script: dynamic numbers are not randomized, and you can count on the same
number to be chosen if you don’t mess with other (dynamic) modules. Avoiding
lengthy scripts is useful during development. But this trick, clearly, doesn’t scale to
more than one driver at a time.

The best way to assign major numbers, in our opinion, is by defaulting to dynamic
allocation while leaving yourself the option of specifying the major number at load
time, or even at compile time. The code we suggest using is similar to the code
introduced for autodetection of port numbers. The scull implementation uses a
global variable, scull_major, to hold the chosen number. The variable is initial-
ized to SCULL_MAJOR, defined in scull.h. The default value of SCULL_MAJOR in
the distributed source is 0, which means “use dynamic assignment.” The user can
accept the default or choose a particular major number, either by modifying the
macro before compiling or by specifying a value for scull_major on the ins-
mod command line. Finally, by using the scull_load script, the user can pass argu-
ments to insmod on scull_load’s command line.t

Here’s the code we use in scull’s source to get a major number:

result = register_chrdev(scull_major, "scull", &scull_fops);

if (result < 0) {

printk (KERN_WARNING "scull: can’t get major %d\n",scull_major) ;
return result;

}

if (scull_major == 0) scull_major = result; /* dynamic */

* Distributions vary widely on the location of init scripts; the most common directories
used are /etc/init.d, /etc/rc.d/init.d, and /sbin/init.d. In addition, if your script is to be run
at boot time, you will need to make a link to it from the appropriate run-level directory
G.e., .../rc3.d).

t The init script scull.init doesn’t accept driver options on the command line, but it sup-
ports a configuration file because it’s designed for automatic use at boot and shutdown
time.

60

22 June 2001 16:35

Major and Minor Numbers

Removing a Driver from the System

When a module is unloaded from the system, the major number must be released.
This is accomplished with the following function, which you call from the mod-
ule’s cleanup function:

int unregister_chrdev(unsigned int major, const char *name);

The arguments are the major number being released and the name of the associ-
ated device. The kernel compares the name to the registered name for that num-
ber, if any: if they differ, -EINVAL is returned. The kernel also returns ~-EINVAL if
the major number is out of the allowed range.

Failing to unregister the resource in the cleanup function has unpleasant effects.
/proc/devices will generate a fault the next time you try to read it, because one of
the name strings still points to the module’s memory, which is no longer mapped.
This kind of fault is called an oops because that’s the message the kernel prints
when it tries to access invalid addresses.”

When you unload the driver without unregistering the major number, recovery will
be difficult because the stremp function in unregister_chrdev must dereference a
pointer (name) to the original module. If you ever fail to unregister a major num-
ber, you must reload both the same module and another one built on purpose to
unregister the major. The faulty module will, with luck, get the same address, and
the name string will be in the same place, if you didn’t change the code. The safer
alternative, of course, is to reboot the system.

In addition to unloading the module, youll often need to remove the device files
for the removed driver. The task can be accomplished by a script that pairs to the
one used at load time. The script scull_unload does the job for our sample device;
as an alternative, you can invoke scull.init stop.

If dynamic device files are not removed from /dev, there’s a possibility of unex-
pected errors: a spare /dev/framegrabber on a developer’s computer might refer to
a fire-alarm device one month later if both drivers used a dynamic major number.
“No such file or directory” is a friendlier response to opening /dev/framegrabber
than the new driver would produce.

dev_t and kdev_t

So far we've talked about the major number. Now it's time to discuss the minor
number and how the driver uses it to differentiate among devices.

Every time the kernel calls a device driver, it tells the driver which device is being
acted upon. The major and minor numbers are paired in a single data type that the
driver uses to identify a particular device. The combined device number (the major

* The word oops is used as both a noun and a verb by Linux enthusiasts.

61

22 June 2001 16:35

Chapter 3: Char Drivers

and minor numbers concatenated together) resides in the field i_rdev of the
inode structure, which we introduce later. Some driver functions receive a pointer
to struct inode as the first argument. So if you call the pointer inode (as
most driver writers do), the function can extract the device number by looking at
inode->i_rdev.

Historically, Unix declared dev_t (device type) to hold the device numbers. It
used to be a 16-bit integer value defined in <sys/types.h>. Nowadays, more
than 256 minor numbers are needed at times, but changing dev_t is difficult
because there are applications that “know” the internals of dev_t and would
break if the structure were to change. Thus, while much of the groundwork has
been laid for larger device numbers, they are still treated as 16-bit integers for
now.

Within the Linux kernel, however, a different type, kdev_t, is used. This data
type is designed to be a black box for every kernel function. User programs do
not know about kdev_t at all, and kernel functions are unaware of what is inside
a kdev_t. If kdev_t remains hidden, it can change from one kernel version to
the next as needed, without requiring changes to everyone’s device drivers.

The information about kdev_t is confined in <linux/kdev_t.h>, which is
mostly comments. The header makes instructive reading if you're interested in the
reasoning behind the code. There’s no need to include the header explicitly in the
drivers, however, because <linux/fs.h> does it for you.

The following macros and functions are the operations you can perform on
kdev_t:

MAJOR (kdev_t dev) ;
Extract the major number from a kdev_t structure.

MINOR (kdev_t dev) ;
Extract the minor number.

MKDEV (int ma, int mi);
Create a kdev_t built from major and minor numbers.

kdev_t_to_nr (kdev_t dev) ;
Convert a kdev_t type to a number (a dev_t).

to_kdev_t (int dev);
Convert a number to kdev_t. Note that dev_t is not defined in kernel
mode, and therefore int is used.

As long as your code uses these operations to manipulate device numbers, it
should continue to work even as the internal data structures change.

62

22 June 2001 16:35

File Operations

File Operations

In the next few sections, we’ll look at the various operations a driver can perform
on the devices it manages. An open device is identified internally by a £ile struc-
ture, and the kernel uses the file_operations structure to access the driver’s
functions. The structure, defined in <linux/fs.h>, is an array of function point-
ers. Each file is associated with its own set of functions (by including a field called
f_op that points to a £ile_operations structure). The operations are mostly in
charge of implementing the system calls and are thus named open, read, and so
on. We can consider the file to be an “object” and the functions operating on it to
be its “methods,” using object-oriented programming terminology to denote
actions declared by an object to act on itself. This is the first sign of object-ori-
ented programming we see in the Linux kernel, and we’ll see more in later chap-
ters.

Conventionally, a file_operations structure or a pointer to one is called fops
(or some variation thereof); we've already seen one such pointer as an argument
to the register_chrdev call. Each field in the structure must point to the function in
the driver that implements a specific operation, or be left NULL for unsupported
operations. The exact behavior of the kernel when a NULL pointer is specified is
different for each function, as the list later in this section shows.

The file_operations structure has been slowly getting bigger as new func-
tionality is added to the kernel. The addition of new operations can, of course,
create portability problems for device drivers. Instantiations of the structure in
each driver used to be declared using standard C syntax, and new operations were
normally added to the end of the structure; a simple recompilation of the drivers
would place a NULL value for that operation, thus selecting the default behavior,
usually what you wanted.

Since then, kernel developers have switched to a “tagged” initialization format that
allows initialization of structure fields by name, thus circumventing most problems
with changed data structures. The tagged initialization, however, is not standard C
but a (useful) extension specific to the GNU compiler. We will look at an example
of tagged structure initialization shortly.

The following list introduces all the operations that an application can invoke on a
device. We've tried to keep the list brief so it can be used as a reference, merely
summarizing each operation and the default kernel behavior when a NULL pointer
is used. You can skip over this list on your first reading and return to it later.

The rest of the chapter, after describing another important data structure (the
file, which actually includes a pointer to its own file_operations), explains
the role of the most important operations and offers hints, caveats, and real code
examples. We defer discussion of the more complex operations to later chapters
because we aren’t ready to dig into topics like memory management, blocking
operations, and asynchronous notification quite yet.

63

22 June 2001 16:35

Chapter 3: Char Drivers

The following list shows what operations appear in struct file_operations
for the 2.4 series of kernels, in the order in which they appear. Although there are
minor differences between 2.4 and earlier kernels, they will be dealt with later in
this chapter, so we are just sticking to 2.4 for a while. The return value of each
operation is 0 for success or a negative error code to signal an error, unless other-
wise noted.

loff_t (*1llseek) (struct file *, loff_t, int);

The /lseek method is used to change the current read/write position in a file,
and the new position is returned as a (positive) return value. The loff_t isa
“long offset” and is at least 64 bits wide even on 32-bit platforms. Errors are
signaled by a negative return value. If the function is not specified for the
driver, a seek relative to end-of-file fails, while other seeks succeed by modify-
ing the position counter in the file structure (described in “The file Struc-
ture” later in this chapter).

ssize_t (*read) (struct file *, char *, size_t, loff_t *);
Used to retrieve data from the device. A null pointer in this position causes the
read system call to fail with ~-EINVAL (“Invalid argument”). A non-negative
return value represents the number of bytes successfully read (the return value
is a “signed size” type, usually the native integer type for the target platform).

ssize_t (*write) (struct file *, const char *, size_t,
loff_t *);
Sends data to the device. If missing, ~-EINVAL is returned to the program call-
ing the write system call. The return value, if non-negative, represents the
number of bytes successfully written.

int (*readdir) (struct file *, wvoid *, filldir_ t);
This field should be NULL for device files; it is used for reading directories,
and is only useful to filesystems.

unsigned int (*poll) (struct file *, struct
poll_table_struct *);

The poll method is the back end of two system calls, poll and select, both used
to inquire if a device is readable or writable or in some special state. Either
system call can block until a device becomes readable or writable. If a driver
doesn’t define its poll method, the device is assumed to be both readable and
writable, and in no special state. The return value is a bit mask describing the
status of the device.

int (*ioctl) (struct inode *, struct file *, unsigned int,
unsigned long) ;
The ioctl system call offers a way to issue device-specific commands (like for-
matting a track of a floppy disk, which is neither reading nor writing). Addi-
tionally, a few joct/ commands are recognized by the kernel without referring

64

22 June 2001 16:35

File Operations

to the fops table. If the device doesn’t offer an joct/ entry point, the system
call returns an error for any request that isn’t predefined (-ENOTTY, “No such
ioctl for device”). If the device method returns a non-negative value, the same
value is passed back to the calling program to indicate successful completion.

int (*mmap) (struct file *, struct vm_area_struct *);
mmap is used to request a mapping of device memory to a process’s address
space. If the device doesn’t implement this method, the mmap system call
returns ~ENODEV.

int (*open) (struct inode *, struct file *);
Though this is always the first operation performed on the device file, the
driver is not required to declare a corresponding method. If this entry is NULL,
opening the device always succeeds, but your driver isn’t notified.

int (*flush) (struct file *);
The flush operation is invoked when a process closes its copy of a file
descriptor for a device; it should execute (and wait for) any outstanding oper-
ations on the device. This must not be confused with the fsync operation
requested by user programs. Currently, flush is used only in the network file
system (NFS) code. If flush is NULL, it is simply not invoked.

int (*release) (struct inode *, struct file *);
This operation is invoked when the file structure is being released. Like
open, release can be missing.”

int (*fsync) (struct inode *, struct dentry *, int);
This method is the back end of the fsync system call, which a user calls to
flush any pending data. If not implemented in the driver, the system call
returns —EINVAL.

int (*fasync) (int, struct file *, int);
This operation is used to notify the device of a change in its FASYNC flag.
Asynchronous notification is an advanced topic and is described in Chapter 5.
The field can be NULL if the driver doesn’t support asynchronous notification.

int (*lock) (struct file *, int, struct file_lock *);
The Jock method is used to implement file locking; locking is an indispensable
feature for regular files, but is almost never implemented by device drivers.

ssize_t (*readv) (struct file *, const struct iovec *,
unsigned long, loff t *);

ssize_t (*writev) (struct file *, const struct iovec *,
unsigned long, loff t *);

* Note that release isn’'t invoked every time a process calls close. Whenever a file struc-
ture is shared (for example, after a fork or a dup), release won't be invoked until all
copies are closed. If you need to flush pending data when any copy is closed, you
should implement the flush method.

65

22 June 2001 16:35

Chapter 3: Char Drivers

These methods, added late in the 2.3 development cycle, implement scat-
ter/gather read and write operations. Applications occasionally need to do a
single read or write operation involving multiple memory areas; these system
calls allow them to do so without forcing extra copy operations on the data.

struct module *owner;
This field isn’t a method like everything else in the file_operations struc-
ture. Instead, it is a pointer to the module that “owns” this structure; it is used
by the kernel to maintain the module’s usage count.

The scull device driver implements only the most important device methods, and
uses the tagged format to declare its file_operations structure:

struct file_operations scull_fops = {
llseek: scull_llseek,

read: scull_read,

write: scull_write,

ioctl: scull_ioctl,

open: scull_open,

release: scull_release,

Y

This declaration uses the tagged structure initialization syntax, as we described ear-
lier. This syntax is preferred because it makes drivers more portable across
changes in the definitions of the structures, and arguably makes the code more
compact and readable. Tagged initialization allows the reordering of structure
members; in some cases, substantial performance improvements have been real-
ized by placing frequently accessed members in the same hardware cache line.

It is also necessary to set the owner field of the file_operations structure. In
some kernel code, you will often see owner initialized with the rest of the struc-
ture, using the tagged syntax as follows:

owner: THIS_MODULE,

That approach works, but only on 2.4 kernels. A more portable approach is to use
the SET_MODULE_OWNER macro, which is defined in <linux/module.h>. scull
performs this initialization as follows:

SET_MODULE_OWNER (&scull_fops) ;

This macro works on any structure that has an owner field; we will encounter this
field again in other contexts later in the book.

The file Structure

struct file, defined in <linux/fs.h>, is the second most important data
structure used in device drivers. Note that a file has nothing to do with the

66

22 June 2001 16:35

The file Structure

FILEs of user-space programs. A FILE is defined in the C library and never
appears in kernel code. A struct file, on the other hand, is a kernel structure
that never appears in user programs.

The file structure represents an open file. (It is not specific to device drivers;
every open file in the system has an associated struct file in kernel space.) It
is created by the kernel on open and is passed to any function that operates on
the file, until the last close. After all instances of the file are closed, the kernel
releases the data structure. An open file is different from a disk file, represented by
struct inode.

In the kernel sources, a pointer to struct file is usually called either file or
filp (“file pointer”). We'll consistently call the pointer £ilp to prevent ambigui-
ties with the structure itself. Thus, file refers to the structure and filp to a
pointer to the structure.

The most important fields of struct file are shown here. As in the previous
section, the list can be skipped on a first reading. In the next section though,
when we face some real C code, we’ll discuss some of the fields, so they are here
for you to refer to.

mode_t f_mode;
The file mode identifies the file as either readable or writable (or both), by
means of the bits FMODE_READ and FMODE_WRITE. You might want to check
this field for read/write permission in your ioct/ function, but you don’t need
to check permissions for read and write because the kernel checks before
invoking your method. An attempt to write without permission, for example,
is rejected without the driver even knowing about it.

loff_t f_pos;
The current reading or writing position. Loff_t is a 64-bit value (long
long in gcc terminology). The driver can read this value if it needs to know
the current position in the file, but should never change it (read and write
should update a position using the pointer they receive as the last argument
instead of acting on £ilp->f_pos directly).

unsigned int f_flags;
These are the file flags, such as O_RDONLY, O_NONBLOCK, and O_SYNC. A
driver needs to check the flag for nonblocking operation, while the other flags
are seldom used. In particular, read/write permission should be checked using
f_mode instead of f_flags. All the flags are defined in the header
<linux/fcntl.h>.

67

22 June 2001 16:35

Chapter 3: Char Drivers

struct file_operations *f_op;

The operations associated with the file. The kernel assigns the pointer as part
of its implementation of open, and then reads it when it needs to dispatch any
operations. The value in £11p->f_op is never saved for later reference; this
means that you can change the file operations associated with your file when-
ever you want, and the new methods will be effective immediately after you
return to the caller. For example, the code for open associated with major
number 1 (/dewnull, /dev/zero, and so on) substitutes the operations in
filp->f_op depending on the minor number being opened. This practice
allows the implementation of several behaviors under the same major number
without introducing overhead at each system call. The ability to replace the
file operations is the kernel equivalent of “method overriding” in object-ori-
ented programming.

void *private_data;
The open system call sets this pointer to NULL before calling the open method
for the driver. The driver is free to make its own use of the field or to ignore
it. The driver can use the field to point to allocated data, but then must free
memory in the release method before the £ile structure is destroyed by the
kernel. private_data is a useful resource for preserving state information
across system calls and is used by most of our sample modules.

struct dentry *f_dentry;
The directory entry (dentry) structure associated with the file. Dentries are an
optimization introduced in the 2.1 development series. Device driver writers
normally need not concern themselves with dentry structures, other than to
access the inode structure as filp->f_dentry->d_inode.

The real structure has a few more fields, but they aren’t useful to device drivers.
We can safely ignore those fields because drivers never fill £ile structures; they
only access structures created elsewhere.

open and release

Now that we’ve taken a quick look at the fields, we’ll start using them in real scull
functions.

The open Method

The open method is provided for a driver to do any initialization in preparation for
later operations. In addition, open usually increments the usage count for the
device so that the module won’t be unloaded before the file is closed. The count,
described in “The Usage Count” in Chapter 2, is then decremented by the release
method.

68

22 June 2001 16:35

open and release

In most drivers, open should perform the following tasks:

e Increment the usage count

e Check for device-specific errors (such as device-not-ready or similar hardware
problems)

e Initialize the device, if it is being opened for the first time
e Identify the minor number and update the £_op pointer, if necessary
e Allocate and fill any data structure to be put in filp->private_data

In scull, most of the preceding tasks depend on the minor number of the device
being opened. Therefore, the first thing to do is identify which device is involved.
We can do that by looking at inode->i_rdev.

We've already talked about how the kernel doesn’t use the minor number of the
device, so the driver is free to use it at will. In practice, different minor numbers
are used to access different devices or to open the same device in a different way.
For example, /deuv/st0 (minor number 0) and /dev/st1 (minor 1) refer to different
SCSI tape drives, whereas /deu/nstO (minor 128) is the same physical device as
/dev/stO, but it acts differently (it doesn’t rewind the tape when it is closed). All of
the tape device files have different minor numbers, so that the driver can tell them
apart.

A driver never actually knows the name of the device being opened, just the
device number—and users can play on this indifference to names by aliasing new
names to a single device for their own convenience. If you create two special files
with the same major/minor pair, the devices are one and the same, and there is no
way to differentiate between them. The same effect can be obtained using a sym-
bolic or hard link, and the preferred way to implement aliasing is creating a sym-
bolic link.

The scull driver uses the minor number like this: the most significant nibble
(upper four bits) identifies the type (personality) of the device, and the least signif-
icant nibble (lower four bits) lets you distinguish between individual devices if the
type supports more than one device instance. Thus, scu/lO is different from
scullpipeO in the top nibble, while scull0 and scull1 differ in the bottom nibble.”
Two macros (TYPE and NUM) are defined in the source to extract the bits from a
device number, as shown here:

#define TYPE(dev) (MINOR(dev) >> 4) /* high nibble */
#define NUM(dev) (MINOR(dev) & 0xf) /* low nibble */

* Bit splitting is a typical way to use minor numbers. The IDE driver, for example, uses the
top two bits for the disk number, and the bottom six bits for the partition number.

69

22 June 2001 16:35

Chapter 3: Char Drivers

For each device type, scull defines a specific file_operations structure, which
is placed in £ilp->f_op at open time. The following code shows how multiple
fops are implemented:

struct file_operations *scull_fop_arrayl[]={
&scull_fops, /* type 0 */
&scull_priv_fops, /* type 1 */
&scull_pipe_fops, /* type 2 */
&scull_sngl_fops, /* type 3 */
&scull_user_fops, /* type 4 */
&scull_wusr_fops /* type 5 */

}i

#define SCULL_MAX_TYPE 5

/* In scull_open, the fop_array is used according to TYPE(dev) */
int type = TYPE(inode->i_rdev) ;

if (type > SCULL_MAX_TYPE) return -ENODEV;
filp->f_op = scull_fop_arrayl[typel;

The kernel invokes open according to the major number; scull uses the minor
number in the macros just shown. TYPE is used to index into scull_fop_array
in order to extract the right set of methods for the device type being opened.

In scull, £ilp->f_op is assigned to the correct file_operations structure as
determined by the device type, found in the minor number. The open method
declared in the new fops is then invoked. Usually, a driver doesn’t invoke its
own fops, because they are used by the kernel to dispatch the right driver
method. But when your open method has to deal with different device types, you
might want to call fops->open after modifying the fops pointer according to
the minor number being opened.

The actual code for scull_open follows. It uses the TYPE and NUM macros defined
in the previous code snapshot to split the minor number:

int scull_open(struct inode *inode, struct file *filp)
{

Scull_Dev *dev; /* device information */

int num = NUM(inode->i_rdev) ;

int type = TYPE(inode->i_rdev) ;

/*

* If private data is not valid, we are not using devfs

* so use the type (from minor nr.) to select a new f_op

*/
if (!filp->private_data && type) {

if (type > SCULL_MAX_ TYPE) return -ENODEV;

filp->f_op = scull_fop_arrayltypel;

return filp->f_ op->open(inode, filp); /* dispatch to specific open */
}

70

22 June 2001 16:35

open and release

/* type 0, check the device number (unless private_data valid) */
dev = (Scull_Dev *)filp->private_data;

if (!dev) {

if (num >= scull_nr_ devs) return -ENODEV;

dev = &scull_devices[num];

filp->private_data = dev; /* for other methods */

}

MOD_INC_USE_COUNT; /* Before we maybe sleep */

/* now trim to 0 the length of the device if open was write-only */
if ((filp->f_flags & O_ACCMODE) == O_WRONLY) {

if (down_interruptible (&dev->sem)) {

MOD_DEC_USE_COUNT;

return -ERESTARTSYS;

}

scull_trim(dev); /* ignore errors */

up (&dev->sem) ;

}

return 0; /* success */

}

A few explanations are due here. The data structure used to hold the region of
memory is Scull_Dev, which will be introduced shortly. The global variables
scull_nr_devs and scull_devices[] (all lowercase) are the number of
available devices and the actual array of pointers to Scull_Dev.

The calls to down_interruptible and up can be ignored for now; we will get to
them shortly.

The code looks pretty sparse because it doesn’t do any particular device handling
when open is called. It doesn’t need to, because the scull0-3 device is global and
persistent by design. Specifically, there’s no action like “initializing the device on
first open” because we don’t keep an open count for sculls, just the module usage
count.

Given that the kernel can maintain the usage count of the module via the owner
field in the file_operations structure, you may be wondering why we incre-
ment that count manually here. The answer is that older kernels required modules
to do all of the work of maintaining their usage count—the owner mechanism
did not exist. To be portable to older kernels, scull increments its own usage
count. This behavior will cause the usage count to be too high on 2.4 systems, but
that is not a problem because it will still drop to zero when the module is not
being used.

The only real operation performed on the device is truncating it to a length of
zero when the device is opened for writing. This is performed because, by design,
overwriting a pscull device with a shorter file results in a shorter device data area.
This is similar to the way opening a regular file for writing truncates it to zero
length. The operation does nothing if the device is opened for reading.

71

22 June 2001 16:35

Chapter 3: Char Drivers

We'll see later how a real initialization works when we look at the code for the
other scull personalities.

The release Method

The role of the release method is the reverse of open. Sometimes you'll find that
the method implementation is called device_close instead of
device_release. Either way, the device method should perform the following
tasks:

e Deallocate anything that open allocated in £filp->private_data
e Shut down the device on last close
e Decrement the usage count

The basic form of scull has no hardware to shut down, so the code required is
minimal:*

int scull_release(struct inode *inode, struct file *filp)
{

MOD_DEC_USE_COUNT;

return 0;

}

It is important to decrement the usage count if you incremented it at open time,
because the kernel will never be able to unload the module if the counter doesn’t
drop to zero.

How can the counter remain consistent if sometimes a file is closed without hav-
ing been opened? After all, the dup and fork system calls will create copies of
open files without calling open; each of those copies is then closed at program ter-
mination. For example, most programs don’t open their stdin file (or device), but
all of them end up closing it.

The answer is simple: not every close system call causes the release method to be
invoked. Only the ones that actually release the device data structure invoke the
method—hence its name. The kernel keeps a counter of how many times a file
structure is being used. Neither fork nor dup creates a new f£ile structure (only
open does that); they just increment the counter in the existing structure.

The close system call executes the release method only when the counter for the
file structure drops to zero, which happens when the structure is destroyed.
This relationship between the release method and the close system call guarantees
that the usage count for modules is always consistent.

* The other flavors of the device are closed by different functions, because scull_open sub-
stituted a different £i1p->£f_op for each device. We’ll see those later.

72

22 June 2001 16:35

scull’s Memory Usage

Note that the flush method is called every time an application calls close. However,
very few drivers implement flush, because usually there’s nothing to perform at
close time unless release is involved.

As you may imagine, the previous discussion applies even when the application
terminates without explicitly closing its open files: the kernel automatically closes
any file at process exit time by internally using the close system call.

scull’s Memory Usage

Before introducing the read and write operations, we'd better look at how and
why scull performs memory allocation. “How” is needed to thoroughly understand
the code, and “why” demonstrates the kind of choices a driver writer needs to
make, although scull is definitely not typical as a device.

This section deals only with the memory allocation policy in scull and doesn’t
show the hardware management skills you'll need to write real drivers. Those
skills are introduced in Chapter 8, and in Chapter 9. Therefore, you can skip this
section if you're not interested in understanding the inner workings of the mem-
ory-oriented scull driver.

The region of memory used by scull, also called a device here, is variable in
length. The more you write, the more it grows; trimming is performed by overwrit-
ing the device with a shorter file.

The implementation chosen for scull is not a smart one. The source code for a
smart implementation would be more difficult to read, and the aim of this section
is to show read and write, not memory management. That's why the code just
uses kmalloc and kfree without resorting to allocation of whole pages, although
that would be more efficient.

On the flip side, we didn’t want to limit the size of the “device” area, for both a
philosophical reason and a practical one. Philosophically, it's always a bad idea to
put arbitrary limits on data items being managed. Practically, scull can be used to
temporarily eat up your system’s memory in order to run tests under low-memory
conditions. Running such tests might help you understand the system’s internals.
You can use the command cp /dev/zero /dev/scullO to eat all the real RAM with
scull, and you can use the dd utility to choose how much data is copied to the
scull device.

In scull, each device is a linked list of pointers, each of which points to a
Scull_Dev structure. Each such structure can refer, by default, to at most four
million bytes, through an array of intermediate pointers. The released source uses
an array of 1000 pointers to areas of 4000 bytes. We call each memory area a
quantum and the array (or its length) a gquantum set. A scull device and its mem-
ory areas are shown in Figure 3-1.

73

22 June 2001 16:35

Chapter 3: Char Drivers

Scull_Dev
next
data [

[] a—
Quantum set M
[]
Individual .
quanta

Figure 3-1. The layout of a scull device

The chosen numbers are such that writing a single byte in scu/l consumes eight or
twelve thousand bytes of memory: four thousand for the quantum and four or
eight thousand for the quantum set (according to whether a pointer is represented
in 32 bits or 64 bits on the target platform). If, instead, you write a huge amount of
data, the overhead of the linked list is not too bad. There is only one list element
for every four megabytes of data, and the maximum size of the device is limited
by the computer’s memory size.

Choosing the appropriate values for the quantum and the quantum set is a ques-
tion of policy, rather than mechanism, and the optimal sizes depend on how the
device is used. Thus, the scull driver should not force the use of any particular val-
ues for the quantum and quantum set sizes. In scull, the user can change the val-
ues in charge in several ways: by changing the macros SCULL_QUANTUM and
SCULL_QSET in scull.h at compile time, by setting the integer values
scull_guantum and scull_gset at module load time, or by changing both
the current and default values using ioct/ at runtime.

Using a macro and an integer value to allow both compile-time and load-time con-
figuration is reminiscent of how the major number is selected. We use this tech-
nique for whatever value in the driver is arbitrary, or related to policy.

The only question left is how the default numbers have been chosen. In this par-
ticular case, the problem is finding the best balance between the waste of memory
resulting from half-filled quanta and quantum sets and the overhead of allocation,
deallocation, and pointer chaining that occurs if quanta and sets are small.

74

scull’s Memory Usage

Additionally, the internal design of kmalloc should be taken into account. We
won't touch the point now, though; the innards of kmalloc are explored in “The
Real Story of kmalloc” in Chapter 7.

The choice of default numbers comes from the assumption that massive amounts
of data are likely to be written to scu/l while testing it, although normal use of the
device will most likely transfer just a few kilobytes of data.

The data structure used to hold device information is as follows:

typedef struct Scull_Dev {

void **data;

struct Scull_Dev *next; /* next list item */

int quantum; /* the current quantum size */

int gset; /* the current array size */

unsigned long size;

devfs_handle_t handle; /* only used if devfs is there */
unsigned int access_key; /* used by sculluid and scullpriv */
struct semaphore sem; /* mutual exclusion semaphore */

} Scull_Dev;

The next code fragment shows in practice how Scull_Dev is used to hold data.
The function scull_trim is in charge of freeing the whole data area and is invoked
by scull_open when the file is opened for writing. It simply walks through the list
and frees any quantum and quantum set it finds.

int scull_trim(Scull_Dev *dev)

{

Scull_Dev *next, *dptr;

int gset = dev->gset; /* "dev" is not null */
int i;

for (dptr = dev; dptr; dptr = next) { /* all the list items */
if (dptr->data) {
for (i = 0; 1 < gset; i++)
if (dptr->datalil)
kfree (dptr->datali]);
kfree (dptr->data) ;
dptr->data=NULL;
}
next=dptr->next;
if (dptr != dev) kfree(dptr); /* all of them but the first */
}
dev->size = 0;
dev->quantum = scull_guantum;
dev->gset = scull_gset;
dev->next = NULL;
return O0;

75

22 June 2001 16:35

22 June 2001 16:35

Chapter 3: Char Drivers

A Brief Introduction to Race Conditions

Now that you understand how scu/l’s memory management works, here is a sce-
nario to consider. Two processes, A and B, both have the same scull device open
for writing. Both attempt simultaneously to append data to the device. A new
quantum is required for this operation to succeed, so each process allocates the
required memory and stores a pointer to it in the quantum set.

The result is trouble. Because both processes see the same scull device, each will
store its new memory in the same place in the quantum set. If A stores its pointer
first, B will overwrite that pointer when it does its store. Thus the memory allo-
cated by A, and the data written therein, will be lost.

This situation is a classic race condition; the results vary depending on who gets
there first, and usually something undesirable happens in any case. On uniproces-
sor Linux systems, the scull code would not have this sort of problem, because
processes running kernel code are not preempted. On SMP systems, however, life
is more complicated. Processes A and B could easily be running on different pro-
cessors and could interfere with each other in this manner.

The Linux kernel provides several mechanisms for avoiding and managing race
conditions. A full description of these mechanisms will have to wait until Chapter
9, but a beginning discussion is appropriate here.

A semaphore is a general mechanism for controlling access to resources. In its sim-
plest form, a semaphore may be used for mutual exclusion; processes using
semaphores in the mutual exclusion mode are prevented from simultaneously run-
ning the same code or accessing the same data. This sort of semaphore is often
called a mutex, from “mutual exclusion.”

Semaphores in Linux are defined in <asm/semaphore.h>. They have a type of
struct semaphore, and a driver should only act on them using the provided
interface. In scull, one semaphore is allocated for each device, in the Scull_Dev
structure. Since the devices are entirely independent of each other, there is no
need to enforce mutual exclusion across multiple devices.

Semaphores must be initialized prior to use by passing a numeric argument to
sema_init. For mutual exclusion applications (i.e., keeping multiple threads from
accessing the same data simultaneously), the semaphore should be initialized to a
value of 1, which means that the semaphore is available. The following code in
scull’s module initialization function (scull_inif) shows how the semaphores are
initialized as part of setting up the devices.

for (i=0; i < scull_nr_devs; i++) {
scull_devices[i].quantum = scull_guantum;
scull_devices[i].gset = scull_gset;
sema_init (&scull_devices[i].sem, 1);

}

76

22 June 2001 16:35

A Brief Introduction to Race Conditions

A process wishing to enter a section of code protected by a semaphore must first
ensure that no other process is already there. Whereas in classical computer sci-
ence the function to obtain a semaphore is often called P, in Linux you’ll need to
call down or down_interruptible. These functions test the value of the semaphore
to see if it is greater than 0; if so, they decrement the semaphore and return. If the
semaphore is 0, the functions will sleep and try again after some other process,
which has presumably freed the semaphore, wakes them up.

The down_interruptible function can be interrupted by a signal, whereas down
will not allow signals to be delivered to the process. You almost always want to
allow signals; otherwise, you risk creating unkillable processes and other undesir-
able behavior. A complication of allowing signals, however, is that you always
have to check if the function (here down_interruptible) was interrupted. As usual,
the function returns 0 for success and nonzero in case of failure. If the process is
interrupted, it will not have acquired the semaphores; thus, you won'’t need to call
up. A typical call to invoke a semaphore therefore normally looks something like
this:

if (down_interruptible (&sem))
return -ERESTARTSYS;

The -ERESTARTSYS return value tells the system that the operation was inter-
rupted by a signal. The kernel function that called the device method will either
retry it or return ~EINTR to the application, according to how signal handling has
been configured by the application. Of course, your code may have to perform
cleanup work before returning if interrupted in this mode.

A process that obtains a semaphore must always release it afterward. Whereas
computer science calls the release function V, Linux uses #p instead. A simple call
like

up (&sem) ;

will increment the value of the semaphore and wake up any processes that are
waiting for the semaphore to become available.

Care must be taken with semaphores. The data protected by the semaphore must
be clearly defined, and all code that accesses that data must obtain the semaphore
first. Code that uses down_interruptible to obtain a semaphore must not call
another function that also attempts to obtain that semaphore, or deadlock will
result. If a routine in your driver fails to release a semaphore it holds (perhaps as a
result of an error return), any further attempts to obtain that semaphore will stall.
Mutual exclusion in general can be tricky, and benefits from a well-defined and
methodical approach.

In scull, the per-device semaphore is used to protect access to the stored data. Any
code that accesses the data field of the Scull_Dev structure must first have

77

22 June 2001 16:35

Chapter 3: Char Drivers

obtained the semaphore. To avoid deadlocks, only functions that implement
device methods will try to obtain the semaphore. Internal routines, such as
scull_trim shown earlier, assume that the semaphore has already been obtained.
As long as these invariants hold, access to the Scull_Dev data structure is safe
from race conditions.

read and write

The read and write methods perform a similar task, that is, copying data from and
to application code. Therefore, their prototypes are pretty similar and it’'s worth
introducing them at the same time:

ssize_t read(struct file *filp, char *buff,
size_t count, loff_t *offp);

ssize_t write(struct file *filp, const char *buff,
size_t count, loff_t *offp);

For both methods, £i1p is the file pointer and count is the size of the requested
data transfer. The buff argument points to the user buffer holding the data to be
written or the empty buffer where the newly read data should be placed. Finally,
offp is a pointer to a “long offset type” object that indicates the file position the
user is accessing. The return value is a “signed size type;” its use is discussed later.

As far as data transfer is concerned, the main issue associated with the two device
methods is the need to transfer data between the kernel address space and the
user address space. The operation cannot be carried out through pointers in the
usual way, or through memcpy. User-space addresses cannot be used directly in
kernel space, for a number of reasons.

One big difference between kernel-space addresses and user-space addresses is
that memory in user-space can be swapped out. When the kernel accesses a user-
space pointer, the associated page may not be present in memory, and a page
fault is generated. The functions we introduce in this section and in “Using the
ioctl Argument” in Chapter 5 use some hidden magic to deal with page faults in
the proper way even when the CPU is executing in kernel space.

Also, it’s interesting to note that the x86 port of Linux 2.0 used a completely differ-
ent memory map for user space and kernel space. Thus, user-space pointers
couldn’t be dereferenced at all from kernel space.

If the target device is an expansion board instead of RAM, the same problem
arises, because the driver must nonetheless copy data between user buffers and
kernel space (and possibly between kernel space and I/O memory).

Cross-space copies are performed in Linux by special functions, defined in
<asm/uaccess.h>. Such a copy is either performed by a generic (memcpy-like)
function or by functions optimized for a specific data size (char, short, int,
long); most of them are introduced in “Using the ioctl Argument” in Chapter 5.

78

22 June 2001 16:35

read and write

The code for read and write in scull needs to copy a whole segment of data to or
from the user address space. This capability is offered by the following kernel
functions, which copy an arbitrary array of bytes and sit at the heart of every read
and write implementation:

unsigned long copy_to_user(void *to, const void *from,
unsigned long count) ;

unsigned long copy_ from_user (void *to, const void *from,
unsigned long count) ;

Although these functions behave like normal memcpy functions, a little extra care
must be used when accessing user space from kernel code. The user pages being
addressed might not be currently present in memory, and the page-fault handler
can put the process to sleep while the page is being transferred into place. This
happens, for example, when the page must be retrieved from swap space. The net
result for the driver writer is that any function that accesses user space must be
reentrant and must be able to execute concurrently with other driver functions
(see also “Writing Reentrant Code” in Chapter 5). That's why we use semaphores
to control concurrent access.

The role of the two functions is not limited to copying data to and from user-
space: they also check whether the user space pointer is valid. If the pointer is
invalid, no copy is performed; if an invalid address is encountered during the
copy, on the other hand, only part of the data is copied. In both cases, the return
value is the amount of memory still to be copied. The scull code looks for this
error return, and returns —~EFAULT to the user if it’s not 0.

The topic of user-space access and invalid user space pointers is somewhat
advanced, and is discussed in “Using the ioctl Argument” in Chapter 5. However,
it's worth suggesting that if you don’t need to check the user-space pointer you
can invoke copy_to_user and _ _copy_from_user instead. This is useful, for

example, if you know you already checked the argument.

As far as the actual device methods are concerned, the task of the read method is
to copy data from the device to user space (using copy_to_user), while the write
method must copy data from user space to the device (using copy_from_user).
Each read or write system call requests transfer of a specific number of bytes, but
the driver is free to transfer less data—the exact rules are slightly different for
reading and writing and are described later in this chapter.

Whatever the amount of data the methods transfer, they should in general update
the file position at *offp to represent the current file position after successful
completion of the system call. Most of the time the offp argument is just a
pointer to £ilp->f_pos, but a different pointer is used in order to support the
pread and pwrite system calls, which perform the equivalent of Iseek and read or
write in a single, atomic operation.

Figure 3-2 represents how a typical read implementation uses its arguments.

79

22 June 2001 16:35

Chapter 3: Char Drivers

ssize_t dev_readgstruct file *filq,lchar *bufvlsize_t count, loff t *ppos);

struct file

Buffer Buffer
L (in the driver) (in the
f_flags application
s or libc) | i
"
£_pos copy_to_user()
Kernel Space User Space

(nonswappable) (swappable)

Figure 3-2. The arguments to read

Both the read and write methods return a negative value if an error occurs. A
return value greater than or equal to 0 tells the calling program how many bytes
have been successfully transferred. If some data is transferred correctly and then
an error happens, the return value must be the count of bytes successfully trans-
ferred, and the error does not get reported until the next time the function is
called.

Although kernel functions return a negative number to signal an error, and the
value of the number indicates the kind of error that occurred (as introduced in
Chapter 2 in “Error Handling in init_module”), programs that run in user space
always see —1 as the error return value. They need to access the errno variable to
find out what happened. The difference in behavior is dictated by the POSIX call-
ing standard for system calls and the advantage of not dealing with errno in the
kernel.

The read Method

The return value for read is interpreted by the calling application program as fol-
lows:

e If the value equals the count argument passed to the read system call, the
requested number of bytes has been transferred. This is the optimal case.

80

22 June 2001 16:35

read and write

e If the value is positive, but smaller than count, only part of the data has been
transferred. This may happen for a number of reasons, depending on the
device. Most often, the application program will retry the read. For instance, if
you read using the fread function, the library function reissues the system call
till completion of the requested data transfer.

e If the value is 0, end-of-file was reached.

e A negative value means there was an error. The value specifies what the error
was, according to <linux/errno.h>. These errors look like ~-EINTR (inter-
rupted system call) or -EFAULT (bad address).

What is missing from the preceding list is the case of “there is no data, but it may
arrive later.” In this case, the read system call should block. We won’t deal with
blocking input until “Blocking I/O” in Chapter 5.

The scull code takes advantage of these rules. In particular, it takes advantage of
the partial-read rule. Each invocation of scull_read deals only with a single data
quantum, without implementing a loop to gather all the data; this makes the code
shorter and easier to read. If the reading program really wants more data, it reiter-
ates the call. If the standard I/O library (i.e., fread and friends) is used to read the
device, the application won'’t even notice the quantization of the data transfer.

If the current read position is greater than the device size, the read method of
scull returns 0 to signal that there’s no data available (in other words, we're at
end-of-file). This situation can happen if process A is reading the device while
process B opens it for writing, thus truncating the device to a length of zero. Pro-
cess A suddenly finds itself past end-of-file, and the next read call returns 0.

Here is the code for read:

ssize_t scull_read(struct file *filp, char *buf, size_t count,
loff_t *f_pos)

{

Scull_Dev *dev = filp->private_data; /* the first list item */
Scull_Dev *dptr;

int quantum = dev->quantum;

int gset = dev->gset;

int itemsize = quantum * gset; /* how many bytes in the list item */
int item, s_pos, g pos, rest;

ssize_t ret = 0;

if (down_interruptible (&dev->sem))
return -ERESTARTSYS;
if (*f_pos >= dev->size)
goto out;
if (*f_pos + count > dev->size)
count = dev->size - *f_pos;
/* find list item, gset index, and offset in the quantum */
item = (long)*f_pos / itemsize;
rest = (long)*f_pos % itemsize;

81

Chapter 3: Char Drivers

s_pos = rest / quantum; g _pos = rest % quantum;

/* follow the list up to the right position (defined elsewhere) */
dptr = scull_follow(dev, item);

if (!dptr->data)

goto out; /* don’t fill holes */

if (!dptr->datals_pos])

goto out;

/* read only up to the end of this quantum */
if (count > quantum - g pos)

count = quantum - g_pos;

if (copy_to_user (buf, dptr->datals_posl+qg pos, count)) {
ret = -EFAULT;
goto out;
}
*f_pos += count;
ret = count;

out:
up (&dev->sem) ;
return ret;

The write Method

write, like read, can transfer less data than was requested, according to the follow-
ing rules for the return value:

e If the value equals count, the requested number of bytes has been trans-
ferred.

e If the value is positive, but smaller than count, only part of the data has been
transferred. The program will most likely retry writing the rest of the data.

e If the value is 0, nothing was written. This result is not an error, and there is
no reason to return an error code. Once again, the standard library retries the
call to write. We'll examine the exact meaning of this case in “Blocking I/O” in
Chapter 5, where blocking write is introduced.

e A negative value means an error occurred,; like for read, valid error values are
those defined in <linux/errno.h>.

Unfortunately, there may be misbehaving programs that issue an error message
and abort when a partial transfer is performed. This happens because some pro-
grammers are accustomed to seeing write calls that either fail or succeed com-
pletely, which is actually what happens most of the time and should be supported
by devices as well. This limitation in the scull implementation could be fixed, but
we didn’t want to complicate the code more than necessary.

82

22 June 2001 16:35

read and write

The scull code for write deals with a single quantum at a time, like the read
method does:

ssize_t scull _write(struct file *filp, const char *buf, size_t count,
loff_t *f_pos)

Scull_Dev *dev = filp->private_data;

Scull_Dev *dptr;

int quantum = dev->quantum;

int gset = dev->gset;

int itemsize = quantum * gset;

int item, s_pos, Q _pos, rest;

ssize_t ret = -ENOMEM; /* value used in "goto out" statements */

if (down_interruptible (&dev->sem))
return -ERESTARTSYS;

/* find list item, gset index and offset in the qguantum */
item = (long)*f_pos / itemsize;

rest = (long)*f_pos % itemsize;

s_pos = rest / quantum; g pos = rest % quantum;

/* follow the list up to the right position */

dptr = scull_follow(dev, item);

if (!dptr->data) {

dptr->data = kmalloc(gset * sizeof (char *), GFP_KERNEL) ;
if (!dptr->data)
goto out;

memset (dptr->data, 0, gset * sizeof(char *));

}

if (!dptr->datals_pos]) {

dptr->datals_pos] = kmalloc (quantum, GFP_KERNEL) ;
if (!dptr->datals_pos])
goto out;

}

/* write only up to the end of this quantum */

if (count > gquantum - g pos)

count = quantum - g _pos;

if (copy_from user (dptr->datals_pos]l+qg pos, buf, count)) {
ret = -EFAULT;
goto out;
}
*f_pos += count;
ret = count;

/* update the size */
if (dev->size < *f_pos)
dev-> size = *f_pos;

83

22 June 2001 16:35

22 June 2001 16:35

Chapter 3: Char Drivers

out:
up (&dev->sem) ;
return ret;

}

readv and writev

Unix systems have long supported two alternative system calls named readv and
writev. These “vector” versions take an array of structures, each of which contains
a pointer to a buffer and a length value. A readv call would then be expected to
read the indicated amount into each buffer in turn. writev, instead, would gather
together the contents of each buffer and put them out as a single write operation.

Until version 2.3.44 of the kernel, however, Linux always emulated readv and
writev with multiple calls to read and write. If your driver does not supply meth-
ods to handle the vector operations, they will still be implemented that way. In
many situations, however, greater efficiency is achieved by implementing readv
and writev directly in the driver.

The prototypes for the vector operations are as follows:

ssize_t (*readv) (struct file *filp, const struct iovec *iov,
unsigned long count, loff_t *ppos);

ssize_t (*writev) (struct file *filp, const struct iovec *iov,
unsigned long count, loff_t *ppos);

Here, the £ilp and ppos arguments are the same as for read and write. The
iovec structure, defined in <linux/uio.h>, looks like this:

struct iovec

{

void *iov_base;
_ _kernel_size_t iov_len;
}i

Each iovec describes one chunk of data to be transferred; it starts at iov_base
(in user space) and is 1ov_1len bytes long. The count parameter to the method
tells how many iovec structures there are. These structures are created by the
application, but the kernel copies them into kernel space before calling the driver.

The simplest implementation of the vectored operations would be a simple loop
that just passes the address and length out of each iovec to the driver’s read or
write function. Often, however, efficient and correct behavior requires that the
driver do something smarter. For example, a writev on a tape drive should write
the contents of all the 1ovec structures as a single record on the tape.

Many drivers, though, will gain no benefit from implementing these methods
themselves. Thus, scull omits them. The kernel will emulate them with read and
write, and the end result is the same.

84

22 June 2001 16:35

The Device Filesystem

Playing with the New Devices

Once you are equipped with the four methods just described, the driver can be
compiled and tested; it retains any data you write to it until you overwrite it with
new data. The device acts like a data buffer whose length is limited only by the
amount of real RAM available. You can try using c¢p, dd, and input/output redirec-
tion to test the driver.

The free command can be used to see how the amount of free memory shrinks
and expands according to how much data is written into scull.

To get more confident with reading and writing one quantum at a time, you can
add a printk at an appropriate point in the driver and watch what happens while
an application reads or writes large chunks of data. Alternatively, use the strace
utility to monitor the system calls issued by a program, together with their return
values. Tracing a ¢p or an Is -I > /dev/scull0 will show quantized reads and writes.
Monitoring (and debugging) techniques are presented in detail in the next chapter.

The Device Filesystem

As suggested at the beginning of the chapter, recent versions of the Linux kernel
offer a special filesystem for device entry points. The filesystem has been available
for a while as an unofficial patch; it was made part of the official source tree in
2.3.46. A backport to 2.2 is available as well, although not included in the official
2.2 kernels.

Although use of the special filesystem is not widespread as we write this, the new
features offer a few advantages to the device driver writer. Therefore, our version
of scull exploits deuvfs if it is being used in the target system. The module uses ker-
nel configuration information at compile time to know whether particular features
have been enabled, and in this case we depend on CONFIG_DEVFS_FS being
defined or not.

The main advantages of deufs are as follows:

e Device entry points in /dev are created at device initialization and removed at
device removal.

e The device driver can specify device names, ownership, and permission bits,
but user-space programs can still change ownership and permission (but not
the filename).

e There is no need to allocate a major number for the device driver and deal
with minor numbers.

As a result, there is no need to run a script to create device special files when a
module is loaded or unloaded, because the driver is autonomous in managing its
own special files.

85

22 June 2001 16:35

Chapter 3: Char Drivers

To handle device creation and removal, the driver should call the following func-
tions:

#include <linux/devfs_fs_kernel.h>

devfs_handle_t devfs_mk_dir (devfs_handle_t dir,
const char *name, void *info);

devfs_handle_t devfs_register (devfs_handle_t dir,
const char *name, unsigned int flags,
unsigned int major, unsigned int minor,
umode_t mode, void *ops, void *info);

void devfs_unregister (devfs_handle_t de);

The deyfs implementation offers several other functions for kernel code to use.
They allow creation of symbolic links, access to the internal data structures to
retrieve devfs_handle_t items from inodes, and other tasks. Those other func-
tions are not covered here because they are not very important or easily under-
stood. The curious reader could look at the header file for further information.

The various arguments to the register/unregister functions are as follows:
dir
The parent directory where the new special file should be created. Most

drivers will use NULL to create special files in /dev directly. To create an
owned directory, a driver should call devfs_mbk_dir.

name
The name of the device, without the leading /dev/. The name can include
slashes if you want the device to be in a subdirectory; the subdirectory is cre-
ated during the registration process. Alternatively, you can specify a valid dir
pointer to the hosting subdirectory.

flags
A Dbit mask of deufs flags. DEVFS_FL_DEFAULT can be a good choice, and
DEVFS_FL_AUTO_DEVNUM is the flag you need for automatic assignment of
major and minor numbers. The actual flags are described later.

major

minor
The major and minor numbers for the device. Unused if
DEVFS_FL_AUTO_DEVNUM is specified in the flags.

mode
Access mode of the new device.

ops
A pointer to the file operation structure for the device.

86

22 June 2001 16:35

The Device Filesystem

info
A default value for filp->private_data. The filesystem will initialize the
pointer to this value when the device is opened. The info pointer passed to
devfs_mk_dir is not used by deyfs and acts as a “client data” pointer.

de A “deufs entry” obtained by a previous call to devfs_register.

The flags are used to select specific features to be enabled for the special file
being created. Although the flags are briefly and clearly documented in
<linux/devfs_fs_kernel.h>, it's worth introducing some of them.

DEVFS_FL_NONE

DEVFS_FL_DEFAULT
The former symbol is simply 0, and is suggested for code readability. The lat-
ter macro is currently defined to DEVFS_FIL_NONE, but is a good choice to be
forward compatible with future implementations of the filesystem.

DEVFS_FL_AUTO_OWNER
The flag makes the device appear to be owned by the last uid/gid that opened
it, and read/write for anybody when no process has it opened. The feature is
useful for tty device files but is also interesting for device drivers to prevent
concurrent access to a nonshareable device. We'll see access policy issues in
Chapter 5.

DEVFS_FL_SHOW_UNREG

DEVFS_FL_HIDE
The former flag requests not to remove the device file from /dev when it is
unregistered. The latter requests never to show it in /dev. The flags are not
usually needed for normal devices.

DEVFS_FL_AUTO_DEVNUM
Automatically allocate a device number for this device. The number will
remain associated with the device name even after the devfs entry is unregis-
tered, so if the driver is reloaded before the system is shut down, it will
receive the same major/minor pair.

DEVFS_FL_NO_PERSISTENCE
Don’t keep track of this entry after it is removed. This flags saves some system
memory after module removal, at the cost of losing persistence of device fea-
tures across module unload/reload. Persistent features are access mode, file
ownership, and major/minor numbers.

It is possible to query the flags associated with a device or to change them at run-
time. The following two functions perform the tasks:

int devfs_get_flags (devfs_handle_t de, unsigned int *flags);
int devfs_set_flags (devfs_handle_t de, unsigned int flags);

87

22 June 2001 16:35

Chapter 3: Char Drivers

Using deuvfs in Practice

Because deyfs leads to serious user-space incompatibilities as far as device names
are concerned, not all installed systems use it. Independently of how the new fea-
ture will be accepted by Linux users, it’s unlikely you’ll write devfs-only drivers
anytime soon; thus, you'll need to add support for the “older” way of dealing with
file creation and permission from user space and using major/minor numbers in
kernel space.

The code needed to implement a device driver that only runs with deufs installed
is a subset of the code you need to support both environments, so we only show
the dual-mode initialization. Instead of writing a specific sample driver to try out
devfs, we added deufs support to the scull driver. If you load scull to a kernel that
uses devfs, you’ll need to directly invoke insmod instead of running the scull_load
script.

We chose to create a directory to host all scull special files because the structure of
deufs is highly hierarchical and there’s no reason not to adhere to this convention.
Moreover, we can thus show how a directory is created and removed.

Within scull_init, the following code deals with device creation, using a field
within the device structure (called handle) to keep track of what devices have
been registered:

/* If we have devfs, create /dev/scull to put files in there */
scull_devfs_dir = devfs_mk_dir (NULL, "scull", NULL);
if (!scull_devfs_dir) return -EBUSY; /* problem */

for (i=0; i < scull_nr_devs; i++) {
sprintf (devname, "%i", 1i);
devfs_register(scull_devfs_dir, devname,
DEVFS_FL_AUTO_DEVNUM,
0, 0, S_IFCHR | S_IRUGO | S_IWUGO,
&scull_fops,
scull_devices+i) ;

}

The previous code is paired by the two lines that are part of the following excerpt
from scull_cleanup:

if (scull_devices) {
for (i=0; i<scull_nr_devs; i++) {
scull_trim(scull_devices+i);
/* the following line is only used for devfs */
devfs_unregister (scull_devices[i] .handle) ;
}
kfree(scull_devices) ;

}

/* once again, only for devfs */
devfs_unregister (scull_devfs_dir);

88

The Device Filesystem

Part of the previous code fragments is protected by #ifdef CONFIG_DEVFS_FS.
If the feature is not enabled in the current kernel, scull will revert to regis-
ter_chrdev.

The only extra task that needs to be performed in order to support both environ-
ments is dealing with initialization of £ilp->f_ops and filp->private_data
in the open device method. The former pointer is simply not modified, since the
right file operations have been specified in deyfs_register. The latter will only need
to be initialized by the open method if it is NULL, since it will only be NULL if
deufs is not being used.

/*

* If private data is not valid, we are not using devfs

* so use the type (from minor nr.) to select a new f_op

*/
if (!filp->private_data && type) {

if (type > SCULL_MAX_ TYPE) return -ENODEV;

filp->f_op = scull_fop_arrayltypel;

return filp->f_ op->open(inode, filp); /* dispatch to specific open */
}

/* type 0, check the device number (unless private_data wvalid) */
dev = (Scull_Dev *)filp->private_data;
if (!dev) {

if (num >= scull_nr_devs) return -ENODEV;

dev = &scull_devices[num];

filp->private_data = dev; /* for other methods */

}

Once equipped with the code shown, the scu/l module can be loaded to a system
running deufs. It will show the following lines as output of Is -/ /dev/scull:

crw-rw-rw- 1 root root 144, 1 Jan 1 1970 O
crw-rw-rw- 1 root root 144, 2 Jan 1 1970 1
crw-rw-rw- 1 root root 144, 3 Jan 1 1970 2
crw-rw-rw- 1 root root 144, 4 Jan 1 1970 3
crw-rw-rw- 1 root root 144, 5 Jan 1 1970 pipeO
crw-rw-rw- 1 root <root 144, 6 Jan 1 1970 pipel
crw-rw-rw- 1 root <root 144, 7 Jan 1 1970 pipe2
crw-rw-rw- 1 root root 144, 8 Jan 1 1970 pipe3
crw-rw-rw- 1 root <root 144, 12 Jan 1 1970 priv
crw-rw-rw- 1 root <root 144, 9 Jan 1 1970 single
crw-rw-rw- 1 root root 144, 10 Jan 1 1970 user
crw-rw-rw- 1 root root 144, 11 Jan 1 1970 wuser

The functionality of the various files is the same as that of the “normal” scull mod-
ule, the only difference being in device pathnames: what used to be /dev/scullO is
now /dev/scull/O.

89

22 June 2001 16:35

22 June 2001 16:35

Chapter 3: Char Drivers

Portability Issues and devfs

The source files of scull are somewhat complicated by the need to be able to com-
pile and run well with Linux versions 2.0, 2.2, and 2.4. This portability requirement
brings in several instances of conditional compilation based on CON-
FIG_DEVFS_FS.

Fortunately, most developers agree that #ifdef constructs are basically bad when
they appear in the body of function definitions (as opposed to being used in
header files). Therefore, the addition of deyfs brings in the needed machinery to
completely avoid #ifdef in your code. We still have conditional compilation in
scull because older versions of the kernel headers can’t offer support for that.

If your code is meant to only be used with version 2.4 of the kernel, you can
avoid conditional compilation by calling kernel functions to initialize the driver in
both ways; things are arranged so that one of the initializations will do nothing at
all, while returning success. The following is an example of what initialization
might look like:

#include <devfs_fs_kernel.h>

int init_module()

{

/* request a major: does nothing if devfs is used */
result = devfs_register_chrdev(major, "name", &fops);
if (result < 0) return result;

/* register using devfs: does nothing if not in use */
devfs_register (NULL, "name", /* */);
return 0;

}

You can resort to similar tricks in your own header files, as long as you are careful
not to redefine functions that are already defined by kernel headers. Removing
conditional compilation is a good thing because it improves readability of the code
and reduces the amount of possible bugs by letting the compiler parse the whole
input file. Whenever conditional compilation is used, there is the risk of introduc-
ing typos or other errors that can slip through unnoticed if they happen in a place
that is discarded by the C preprocessor because of #ifdef.

This is, for example, how scull.h avoids conditional compilation in the cleanup
part of the program. This code is portable to all kernel versions because it doesn’t
depend on deufs being known to the header files:

#ifdef CONFIG_DEVFS_FS /* only if enabled, to avoid errors in 2.0 */
#include <linux/devfs_fs_kernel.h>

#else

typedef void * devfs_handle_t; /* avoid #ifdef inside the structure */
#endif

90

22 June 2001 16:35

Backward Compatibility

Nothing is defined in sysdep.h because it is very hard to implement this kind of
hack generically enough to be of general use. Each driver should arrange for its
own needs to avoid excessive #ifdef statements in function code. Also, we
chose not to support deyfs in the sample code for this book, with the exception of
scull. We hope this discussion is enough to help readers exploit deuyfs if they want
to; devfs support has been omitted from the rest of the sample files in order to
keep the code simple.

Backward Compatibility

This chapter, so far, has described the kernel programming interface for version
2.4 of the Linux kernel. Unfortunately, this interface has changed significantly over
the course of kernel development. These changes represent improvements in how
things are done, but, once again, they also pose a challenge for those who wish to
write drivers that are compatible across multiple versions of the kernel.

Insofar as this chapter is concerned, there are few noticeable differences between
versions 2.4 and 2.2. Version 2.2, however, changed many of the prototypes of the
file_operations methods from what 2.0 had; access to user space was greatly
modified (and simplified) as well. The semaphore mechanism was not as well
developed in Linux 2.0. And, finally, the 2.1 development series introduced the
directory entry (dentry) cache.

Changes in the File Operations Structure

A number of factors drove the changes in the file_operations methods. The
longstanding 2 GB file-size limit caused problems even in the Linux 2.0 days. As a
result, the 2.1 development series started using the 1off_t type, a 64-bit value, to
represent file positions and lengths. Large file support was not completely inte-
grated until version 2.4 of the kernel, but much of the groundwork was done ear-
lier and had to be accommodated by driver writers.

Another change introduced during 2.1 development was the addition of the
f_pos pointer argument to the read and write methods. This change was made to
support the POSIX pread and pwrite system calls, which explicitly set the file off-
set where data is to be read or written. Without these system calls, threaded pro-
grams can run into race conditions when moving around in files.

Almost all methods in Linux 2.0 received an explicit inode pointer argument. The
2.1 development series removed this parameter from several of the methods, since
it was rarely needed. If you need the inode pointer, you can still retrieve it from
the £ilp argument.

The end result is that the prototypes of the commonly used file_operations
methods looked like this in 2.0:

91

22 June 2001 16:35

Chapter 3: Char Drivers

int (*lseek) (struct inode *, struct file *, off_t, int);
Note that this method is called Iseek in Linux 2.0, instead of llseek. The name
change was made to recognize that seeks could now happen with 64-bit offset
values.

int (*read) (struct inode *, struct file *, char *, int);
int (*write) (struct inode *, struct file *, const char *,
int) ;
As mentioned, these functions in Linux 2.0 had the inode pointer as an argu-
ment, and lacked the position argument.

void (*release) (struct inode *, struct file *);
In the 2.0 kernel, the release method could not fail, and thus returned void.

There have been many other changes to the file_operations structure; we
will cover them in the following chapters as we get to them. Meanwhile, it is
worth a moment to look at how portable code can be written that accounts for the
changes we have seen so far. The changes in these methods are large, and there is
no simple, elegant way to cover them over.

The way the sample code handles these changes is to define a set of small wrap-
per functions that “translate” from the old API to the new. These wrappers are
only used when compiling under 2.0 headers, and must be substituted for the
“real” device methods within the file_operations structure. This is the code
implementing the wrappers for the scu/l driver:

/*

* The following wrappers are meant to make things work with 2.0 kernels
*/
#ifdef LINUX_20
int scull_lseek_20(struct inode *ino, struct file *f,

off_t offset, int whence)
{
return (int)scull_llseek(f, offset, whence);

}

int scull_read_20(struct inode *ino, struct file *f, char *buf,
int count)

{

return (int)scull_read(f, buf, count, &f->f_pos);

}

int scull_write_20(struct inode *ino, struct file *f, const char *b,
int c¢)

{

return (int)scull_write(f, b, c, &f->f_pos);

}

void scull_release_20(struct inode *ino, struct file *f)

{

92

22 June 2001 16:35

Backward Compatibility

scull_release(ino, f);

}

/* Redefine "real" names to the 2.0 ones */
#define scull_llseek scull_lseek_20

#define scull_read scull_read_20

#define scull_write scull_write_20

#define scull_release scull_release_20
#define llseek lseek

#endif /* LINUX_20 */

Redefining names in this manner can also account for structure members whose
names have changed over time (such as the change from Iseek to liseek).

Needless to say, this sort of redefinition of the names should be done with care;
these lines should appear before the definition of the file_operations struc-
ture, but after any other use of those names.

Two other incompatibilities are related to the file_operations structure. One
is that the flush method was added during the 2.1 development cycle. Driver writ-
ers almost never need to worry about this method, but its presence in the middle
of the structure can still create problems. The best way to avoid dealing with the

Slush method is to use the tagged initialization syntax, as we did in all the sample

source files.

The other difference is in the way an inode pointer is retrieved from a filp
pointer. Whereas modern kernels use a dentry (directory entry) data structure,
version 2.0 had no such structure. Therefore, sysdep.h defines a macro that should
be used to portably access an inode from a £ilp:

#ifdef LINUX_20

define INODE_FROM_F (filp) ((£filp)->f_inode)

#else

define INODE_FROM_F (filp) ((filp)->f_dentry->d_inode)
#endif

The Module Usage Count

In 2.2 and earlier kernels, the Linux kernel did not offer any assistance to modules
in maintaining the usage count. Modules had to do that work themselves. This
approach was error prone and required the duplication of a lot of work. It also
encouraged race conditions. The new method is thus a definite improvement.

Code that is written to be portable, however, must be prepared to deal with the
older way of doing things. That means that the usage count must still be incre-
mented when a new reference is made to the module, and decremented when
that reference goes away. Portable code must also work around the fact that the
owner field did not exist in the file_operations structure in earlier kernels.

93

22 June 2001 16:35

Chapter 3: Char Drivers

The easiest way to handle that is to use SET_MODULE_OWNER, rather than work-
ing with the owner field directly. In sysdep.h, we provide a null
SET_FILE_OWNER for kernels that do not have this facility.

Changes in Semaphore Support

Semaphore support was less developed in the 2.0 kernel; support for SMP systems
in general was primitive at that time. Drivers written for only that kernel version
may not need to use semaphores at all, since only one CPU was allowed to be
running kernel code at that time. Nonetheless, there may still be a need for
semaphores, and it does not hurt to have the full protection needed by later kernel
versions.

Most of the semaphore functions covered in this chapter existed in the 2.0 kernel.
The one exception is sema_init; in version 2.0, programmers had to initialize
semaphores manually. The sysdep.h header file handles this problem by defining a
version of sema_init when compiled under the 2.0 kernel:

#ifdef LINUX_ 20
ifdef MUTEX_LOCKED /* Only if semaphore.h included */
extern inline void sema_init (struct semaphore *sem, int val)
{
sem->count = val;
sem->waking = sem->lock = 0;
sem->wait = NULL;
}
endif
#endif /* LINUX_20 */

Changes in Access to User Space

Finally, access to user space changed completely at the beginning of the 2.1 devel-
opment series. The new interface has a better design and makes much better use
of the hardware in ensuring safe access to user-space memory. But, of course, the
interface is different. The 2.0 memory-access functions were as follows:

void memcpy fromfs(void *to, const void *from, unsigned long count);
void memcpy_tofs(void *to, const void *from, unsigned long count) ;

The names of these functions come from the historical use of the FS segment reg-
ister on the i386. Note that there is no return value from these functions; if the
user supplies an invalid address, the data copy will silently fail. sysdep.h hides the
renaming and allows you to portably call copy_to_user and copy_from_user.

94

Quick Reference

Quick Reference

This chapter introduced the following symbols and header files. The list of the
fields in struct file_operations and struct file is not repeated here.

#include <linux/fs.h>
The “file system” header is the header required for writing device drivers. All
the important functions are declared in here.

int register_chrdev(unsigned int major, const char
*name, struct file_operations *fops);
Registers a character device driver. If the major number is not O, it is used
unchanged; if the number is 0, then a dynamic number is assigned for this
device.

int unregister_chrdev (unsigned int major, const char *name);
Unregisters the driver at unload time. Both major and the name string must
contain the same values that were used to register the driver.

kdev_t inode->i_rdev;
The device “number” for the current device is accessible from the inode
structure.

int MAJOR (kdev_t dev) ;
int MINOR (kdev_t dev) ;
These macros extract the major and minor numbers from a device item.

kdev_t MKDEV (int major, int minor) ;
This macro builds a kdev_t data item from the major and minor numbers.

SET_MODULE_OWNER (struct file_operations *fops)
This macro sets the owner field in the given file_operations structure.

#include <asm/semaphore.h>
Defines functions and types for the use of semaphores.

void sema_init (struct semaphore *sem, int val);
Initializes a semaphore to a known value. Mutual exclusion semaphores are
usually initialized to a value of 1.

int down_interruptible (struct semaphore *sem) ;
void up (struct semaphore *sem) ;
Obtains a semaphore (sleeping, if necessary) and releases it, respectively.

#include <asm/segment.h>

#include <asm/uaccess.h>
segment.bh defines functions related to cross-space copying in all kernels up to
and including 2.0. The name was changed to waccess.h in the 2.1
development series.

95

22 June 2001 16:35

22 June 2001 16:35

Chapter 3: Char Drivers

unsigned long _ _copy_ from_user (void *to, const void *from,
unsigned long count) ;
unsigned long _ _copy_to_user (void *to, const void *from,

unsigned long count) ;
Copy data between user space and kernel space.

void memcpy_fromfs(void *to, const void *from, unsigned long
count) ;
void memcpy_ tofs(void *to, const void *from, unsigned long
count) ;
These functions were used to copy an array of bytes from user space to kernel
space and vice versa in version 2.0 of the kernel.

#include <linux/devfs_fs_kernel.h>

devfs_handle_t devfs_mk_dir (devfs_handle_t dir, const char
*name, void *info);

devfs_handle_t devfs_register (devfs_handle_t dir, const
char *name, unsigned int flags,

unsigned int major, unsigned int minor, umode_t mode, void
*ops, void *info);

void devfs_unregister (devfs_handle_t de);

These are the basic functions for registering devices with the device filesystem

(devfs).

96

