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User Command Interface
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Chapter 7

Operating System

Chapters 1,9 File Manager

This pyramid graphically illustrates how the four components of every
operating system, the Memory Manager, Processor Manager, Device Manager,
and File Manager, support the User Command Intertace.

For more details see pages 3-5.
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Preface

We believe that operating systems can be understood and appreciated by
anyone who uses a computer. So we wrote a book that explains this very
technical subject in a not-so-technical manner, putting the concepts and the-
ories of operating systems into a concrete format that the reader can quickly
grasp.

For readers new to the subject, this text demonstrates what operating
systems are, what they do, how they do it, how their performance can be
evaluated, and how they compare with each other. In the following pages we
show the overall view and tell the readers where to find more detailed infor-
mation, if they so desire.

For those with more background, this text introduces the subject con-
cisely, describing the complexities of the operating system without going
into intricate detail. One might say this book leaves off where other operat-
ing systems textbooks begin.

Of course, we’ve made some assumptions about our audiences. First,
we assume our readers have some familiarity with computing systems. Sec-
ond, we assume they have a working knowledge of an operating system and
how it interacts with its users. We recommend (although we don’t require)
that readers be familiar with at least one operating system and one computer
language. In a few places we found it necessary to include examples using
assembler language to illustrate the inner workings of the operating systems.

vii
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For our readers who are unfamiliar with assembler we’ve added a prose de-
scription to each example that explains the events in more familiar terms.

Organization and Features

This book is structured to explain the functions of an operating system re-
gardless of the hardware that will house it. The organization addresses a
recurring problem with textbooks on technologies that continue to evolve—
that is, constant advances in the subject matter make the textbook outdated.
To address this problem we’ve divided the material into two sections: first,
the theory of the subject—which does not change much—and, second, the
specifics of operating systems—which change and evolve with the technol-
ogy. Our goal is to give readers the ability to apply the topics intelligently,
realizing that although the command, or series of commands, used by one
operating system may be slightly different from that of another, their goals
are the same and the functions of the operating systems are also the same.

Although it is more difficult to understand how operating systems
work than to memorize the details of a single operating system, it is a longer-
lasting achievement. It also pays off in the long run, because it allows one to
adapt as technology changes—as, inevitably, it does. Therefore, the purpose
of this book is to give users of computer systems a solid background in the
components of the operating system, their functions and goals, and how
they interact and interrelate.

Section I, the first nine chapters, describes the theory of operating sys-
tems. It concentrates on the four “managers” in turn and finally shows how
they work together. Section Il examines actual operating systems, how they
apply the theories presented in Section I, and how they compare with each
other.

The meat of the text begins in Chapters 2 and 3 with main memory
management because it is the simplest component of the operating system
to explain and has historically been tied to the advances from one operating
system to the next. We explain the role of the processor manager in Chapters
4, 5, and 6, first discussing simple systems and then expanding the discus-
sion to include multiuser systems. By the time we reach device management
in Chapter 7 and file management in Chapter 8 readers will have been intro-
duced to the complexities of large computing systems. Chapter 9 shows the
interaction among the four managers and some of the tradeoffs operating
system designers have to make to satisfy the needs of the users.

Each chapter includes key terms (definitions are available in the glos-
sary), and several chapter summaries include tables to compare facets of the
operating system that have already been discussed. For example, Table 3.8
compares memory allocation schemes that were discussed in Chapters 2
and 3.

Throughout the book we’ve added “‘real-life” examples toillustrate the
theory. This is an attempt on our part to bring the concepts closer to home.
Let no one confuse our conversational style with our considerable respect
for the subject matter. Operating systems is a complex subject that cannot
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be covered completely in these few pages. This textbook does not attempt to
give an in-depth treatise of operating systems theory and applications. This
is the overall view.

For our more technically oriented readers, the exercises at the ends of
Chapters 2 through 8 include problems for advanced students. Please note
that some of them assume knowledge that’s not presented in the book—but
they’re good for those who enjoy a challenge. We expect our more general
audience will cheerfully pass them by.

Section II looks at several specific operating systems and how they ap-
ply the theories discussed in Section I. The structure of each chapter is sim-
ilar so that each operating system can be roughly compared with the others.
We have tried to include the advantages and disadvantages of each. Again,
we must stress that this is a general discussion—an in-depth examination of
an operating system would require details based on its current standard ver-
sion, which can’t be done here. We strongly suggest that readers use our
discussion as a guide, a base to work from, when researching the pros and
cons of a specific operating system.

The text concludes with several reference aids. The extensive glossary
includes brief definitions for hundreds of terms used in these pages. Each of
these terms is boldfaced in text the first time it is used. Those terms that are
important within a chapter are listed at its conclusion as Key Terms. The
bibliography can guide the reader to basic research on the subject. Finally,
the appendices feature a guide to acronyms used by IBM mainframe operat-
ing systems and a “translation table” showing a few comparable commands
from the operating systems described in Section II. Caveat: the commands
in this table are not precisely comparable, but they can be used as a guide
from system to system. Of course, the command structure and syntax for
many systems vary from version to version, and the appendix can’t be con-
sidered a definitive guide. But for someone who is knowledgeable in one
system and anxious to try another our translation table should be of some
assistance.

Not included in this text is a discussion of databases and data struc-
tures, except as examples of process synchronization problems, because
they do not relate directly to operating systems. Also excluded are networks,
different protocols, and distributed processing because of the excessive de-
tail required to do justice to these topics. We suggest that readers begin by
learning the basics as presented in the following pages before pursuing these
complex subjects in depth.

Methods of Presentation

This text has a modular construction. Chapters 2 through 9 are the core of
the book; Chapter 1 may be assigned as preliminary reading or may be cov-
ered in the introductory lecture. The order of presentation in a classroom
does not need to follow the table of contents in sequence. Other than Chap-
ters 2 and 3, and Chapters 4 and 5, which are best understood when they are
presented in that order, an instructor can present the chapters in any order.
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Chapter 6 may be omitted for less technical audiences. In addition, instruc-
tors have the option of integrating one or all of the operating systems de-
scribed in Chapters 10 through 13 depending on the individual’s
preferences, the course direction, and time availability. For specific sugges-
tions see the Instructor’s Manual for this book.
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Section One
Operating
Systems
Theory

This section, the first nine chapters of the book, is an overview of operating
systems: what they are, how they work, their goals, and how they achieve
those goals. Each chapter covers a primary part of the operating system,
beginning with the management of main memory and moving on to proces-
sors, devices, and files. Finally, Chapter 9 explores system management and
the interaction of the operating system’s components.

Although this is a technical subject, we tried to include in our discus-
sions the definitions of the terms that might be unfamiliar to you. However,
it isn’t always possible to describe a function and define the technical terms
while keeping the explanation clear. Therefore, we’ve included an extensive
glossary at the end of this book for your reference. Items listed in the glos-
sary are indicated in text by boldface type.

For the purposes of this book we kept our descriptions and examples as
simple as possible so we could introduce you to the system’s complexities
without getting bogged down in the technical detail. Therefore, be aware_
that for almost every topic we’ll explain in the following pages there is much
more information we could have passed along, but didn’t. Our goal is to
introduce you to the subject, and we encourage you to pursue your interest
in other texts if you need more detail.

In Section Two we’ll look at specific operating systems and how they
apply the theory described in Section One.
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To understand the operating system is to understand the workings of the
entire computer system because it is the operating system that manages each
and every piece of hardware and software. In this text we'll explore what
operating systems are, how they work, what they do, and why.

In this chapter we'll show briefly how the operating system works and
how it has evolved. The following chapters will explore each component in
more depth and show how its function relates to the other parts of the oper-
ating system. In other words, we’ll see how the pieces work harmoniously
together to keep the computer system humming smoothly. Note: through-
out this text boldface type indicates terms that are defined in the glossary.

Let's begin with a definition: What is an operating system? To put it into
simplest terms. it is the “executive manager,” the part of the computing
system that manages all of the hardware and all of the software. To be spe-
cific, it controls every file, every device, every section of main memory, and
every nanosecond of processing time. It controls who can use the system and
how. In short, it’s the boss.
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Therefore, when the user sends a command the operating system must
make sure that the command is executed or, if it’s not executed, must ar-
range for the user to get a message explaining the error. This does not neces-
sarily mean that the operating system executes the command or sends the
error message—but it does control the parts of the system that do.

Operating System Components

The operating system is actually composed of four subsystems, each of

. which controls four distinct categories of computer system resources: main
memory, central processing unit, devices, and files. These four subsystems
are called the Memory Manager, Processor Manager, Device Manager, and
File Manager, and their interaction is shown in Figure 1.1.

Main
CPU Memory

P s B _——te———, _
Utility L1 : V_|deo
programs 1 | Processor Memory i display

1| Manager Manager :

1

: : — Keyboard

‘ :
Compilers : 1 ]
Interpreters — ! | Printer
Assemblers 1 :

1

1

i i Disk

! : drives

1 1

1 | File Device H
Parallel ™ Manager Manager 11— Modem
interface 1 1

1 Operating System J'

o o e e e

Other
I/0 devices

FIGURE 1.1 The operating system and its four subsystems.

Regardless of the size or configuration of the system, each of these sub-
system managers must perform these tasks:

1. Monitor its resources continuously

2. Enforce the policies that determine who gets what, when, and how much
3. Allocate the resource when it’s appropriate

4. Deallocate the resource, or reclaim it, when appropriate

For instance, the Memory Manager is in charge of main memory. It
checks the validity of each request for memory space, and, if it is a legal
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request, the Memory Manager allocates a portion that isn’t already in use.
In a multiuser environment it sets up a table to keep track of who is using
which section of memory. Finally, when the time comes to reclaim the
memory, it “deallocates” it.

Of course, one of the Memory Manager’s primary responsibilities is to
preserve the space in main memory that’s occupied by the operating system
itself—it can’t allow any part of it from being accidentally or intentionally
altered.

The Processor Manager decides how to allocate the central processing
unit (CPU). An important function of the Processor Manager is to keep
track of the status of each process (a process is defined as an “instance of
execution” of a program). It monitors whether the CPU is executing a pro-
cess or waiting for a READ or WRITE command to finish execution. Because it
handles the processes’ transitions from one state of execution to another, it
can be compared to a traffic controller. Once the Processor Manager allo-
cates the processor, it sets up the necessary registers and tables, and, when
the job is finished or the maximum amount of time has expired. it reclaims
the processor.

Conceptually, the Processor Manager has two levels of responsibility:
one is to handle the jobs as they enter the system and the other is to manage
each of the processes within those jobs. The first part is handled by the job
scheduler, the high-level portion of the Processor Manager, which accepts or
rejects the incoming jobs. The second part is handled by the process sched-
uler, the low-level portion of the Processor Manager, and decides-which pro-
cess gets the CPU and for how long.

The Device Manager monitors every device, channel, and control unit.
Its job is to choose the most efficient way to allocate all of the system’s de-
vices—yvideo display, keyboard, printer, disk drives, and modem—based on
a scheduling policy chosen by the system’s designers. The Device Manager
makes the allocation, starts its operation, and, finally, deallocates the device.

The fourth part, the File Manager, keeps track of every file in the sys-
tem, including utility programs; compilers, interpreters, and assemblers;
data files; and application programs. By using predetermined access poli-
cies, it enforces access restrictions on each file. (When it is created every file
is declared either system only, user only, group only, or general access, and
the operating system enforces these restrictions.) The File Manager also
controls the amount of flexibility each user is allowed with that file (such as
read only versus read and write only, or the authority to create and/or delete
records). The File Manager also allocates the resource by opening the file
and deallocates it by closing the file.

Machine Hardware

To appreciate the role of the operating system we need to define the essential
aspects of the computer system’s hardware, which is the physical machine
and its electronic components, including memory chips, input/output de-
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vices, storage devices, and the central processing unit. Hardware contrasts
with software, which refers to programs written for computer systems.

Main memory is where the data and instructions must reside in order
to be processed.

1/0 devices, short for “input/output devices,” include every peripheral
unit in the system, such as terminals, printers, card readers, disk drives,
drums, and magnetic tape devices.

The CPU is the central processing unit, the “brains,” with the circuitry
(sometimes called the “chips”) to control the interpretation and execution
of instructions. In essence it controls the operation of the entire computer
system. All storage references, data manipulations, and 1/0 operations are
initiated or performed by the CPU.

Figure 1.2 shows the hardware components of a computer system in a
typical “Input-Processing—Output™ configuration. The operating system
can be thought of as a layer over the hardware, in which each of the compo-
nents manages its allocated resource (memory, processor, devices, and files).

Video
screen

Video

interface
jmmmmmmm | I . Main
1 ! memo
1 [ Arithmetic : i
1 | logic unit 1
1 : Disk Disk
1 1 — -
H A Bus 1 controller drive
! control | f—
! ! Serial
!| Internal ' M interface [ Modem
1 | control 1
1 1
1 1

CPU 1 Parallel .

1
lemmm e T 1 interface [ FMte"

Keyboard

interface

|
Keyboard

FIGURE 1.2 A typical computer system hardware configuration.

Until 1975, computers were classified by their capacity and their price.
A mainframe was a large machine—both physically and in terms of internal
memory capacity. The IBM 360, introduced in 1964, is a classic example of
an early mainframe. The IBM 360 model 30, the smallest in the 360 family
(Prasad, 1989), required an air-conditioned room about 18 feet square to
house the CPU, operator’s console, printer, card reader, and keypunch ma-
chine. The CPU was 5 feet high and 6 feet wide and had an internal memory
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of 64K; its price tag was $200,000 in 1964 dollars. Because of its size and
price, its applications were generally limited to large computer centers be-
longing to the government, universities, and very large businesses.

The minicomputer was developed to meet the needs of smaller institu-
tions, those with only a few dozen users. One of the early minicomputers
was marketed by Digital Equipment Corporation to satisfy the needs of
large schools and small colleges that began offering computer science
courses in the early 1970s (its PDP-8, Peripheral Device Processor-8, was
priced at under $18,000). Minicomputers were smaller in size and memory
capacity and cheaper than a mainframe.

The microcomputer was developed for single users in the late 1970s;
Tandy Corporation and Apple Computer, Inc., were the first to offer
microcomputers for sale to the general public. The former targeted the small
business market, and the latter aimed for the elementary education market.
These early models had very little memory by today’s standards: 64K was
the maximum capacity. The physical size of microcomputers was less than
that of the minicomputers of that time, although it was larger than the
microcomputers of today.

Since the mid-1970s rapid advances in computer technology have
blurred the distinguishing characteristics of early machines (physical size,
cost, and memory capacity). Mainframes still have a large main memory,
but now they’re available in desk-sized cabinets. Minicomputers look like
microcomputers, and the smallest can now accomplish tasks once reserved
for mainframes. Today computers are classified by their memory capacity.
Of course, we emphasize that these are relative categories and what is
“large” today will eventually become “medium” and then “small” some-
time in the near future.

Types of Operating Systems

Operating systems for computers large and small fall into four distinct cate-
gories distinguished by their response time and how data is entered into the
system. They are: batch, interactive, real-time, and hybrid systems.

Batch systems date from the earliest computers, which relied on
punched cards or tape for input when a job was entered by assembling the
cards together into a “deck” and running the entire deck of cards through a
card reader as a group—a ““batch.” Present-day batch systems aren’t limited
to cards or tapes, but the jobs are still processed serially, without user inter-
action. The efficiency of the system was measured in throughput—the num-
ber of jobs completed in a given amount of time (for example, 30 jobs per
hour) and turnaround was measured in hours or even days. Today, it’s un-
common to find a system that is limited to batch programs.

Interactive systems (also called time-sharing systems) give a faster
turnaround than batch but are slower than the real-time systems we’ll talk
about next. They were introduced to satisfy the demands of users who
needed fast turnaround when they debugged their programs. The operating
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system required the development of time-sharing software that would allow
each user to interact directly with the computer system via commands en-
tered from a typewriter-like terminal (Shelly and Cashman, 1984). The in-
teractive operating system provides immediate feedback to the user, and
response time can be measured in minutes or seconds, depending on the
number of active users. A personal computer can be defined as a single-user
interactive system.

Real-time systems are the fastest of the four and are used in time-
critical environments where data must be processed extremely fast because
the output will influence immediate decisions. Real-time systems are used
for space flights, airport traffic control, high-speed aircraft, industrial pro-
cesses, sophisticated medical equipment, distribution of electricity, and
telephone switching. A real-time system must be 100% responsive, 100% of
the time, and response time is measured in fractions of a second, although
this is an ideal not often achieved in practice.

Hybrid systems are a combination of batch and interactive. They ap-
pear to be interactive because individual users can access the system via
terminals and get fast responses, but the system actually accepts and runs
batch programs in the background when the interactive load is light. A hy-
brid system takes advantage of the free time between demands for process-
ing to execute programs that need no significant operator assistance. Many
large computer systems are hybrid systems.

Brief History of Operating Systems Development

The evolution of operating systems parallels the evolution of the computers
they were designed to control.

The first generation of computers (1940-1955) was a time of vacuum
tube technology and computers the size of classrooms. Each computer was
unique in structure and purpose. There was little need for standard operat-
ing system software because each computer was restricted to a few profes-
sionals working on mathematical, scientific, or military applications and
they were all well aware of the idiosyncrasies of their hardware.

A typical program would include all of the instructions the computer
would need to perform the tasks required. It would give explicit directions
to the card reader (when to begin, how to interpret the data on the cards, and
when to end), to the CPU (how and where to store the instructions in mem-
ory, what to calculate, where to find the data, and where to send the output),
and to the output device (when to begin, how to print out the finished prod-
uct, how to format the page, and when to end).

The machines were operated by the programmers from the main con-
sole—it was a “hands on” process. In fact, to debug a program the program-
mer would stop the processor, read the contents of each register, make the
corrections in memory locations, and resume the operation. To run programs
the programmers would reserve the machine for the length of time they esti-
mated it would take the computer to execute the program. As a result the
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machine was poorly utilized. The CPU was processing for only a fraction of
the available time, and the entire system sat idle between reservations.

In time computer hardware and software became more standard, and
the execution of a program required fewer steps and less knowledge of the
internal workings of the computer:

« Assemblers and compilers were developed to translate into binary code
the English-like commands of the evolving high-level languages such as
FORTRAN.

« Rudimentary operating systems started to take shape with the creation of
macros, library programs, standard subroutines, and utility programs.

« Device driver subroutines were written to standardize the use of input and
output devices (see Chapter 7).

The disadvantage of the early programs was that they were designed to
use the available resources conservatively, but at the expense of understand-
ability, so the finished product was impossible to debug or adapt later on.

Second-generation computers (1955-1965) were developed to meet
the needs of a new market—businesses. The business environment placed
much more importance on the cost-effectiveness of the system. Computers
were still very expensive, especially when compared to other office equip-
ment (the IBM 7094 was priced at $200,000). Therefore, throughput had to
be maximized to make such an investment worthwhile for business use, and
that meant dramatically increasing the utilization of the system.

Two improvements were widely adopted: (1) computer operators were
hired to facilitate the machine’s operation and (2) job scheduling was insti-
tuted. Job scheduling is a productivity improvement scheme that groups
together programs with similar requirements. For example, the FORTRAN
programs would be run together while the FORTRAN compiler was still
resident in memory. Or, perhaps, all the jobs using the card reader for input
would be run together and those using the tape drive were run later. Some
operators found that a mix of I/O device requirements was the most effi-
cient; by mixing tape input programs with card input programs, the tapes
could be mounted or rewound while the card reader was busy.

Job scheduling introduced the need for “control cards,” which defined
the exact nature of each program and its requirements. This was one of the
first job control languages (JCL) that helped the operating system coordi-
nate and manage the system’s resources, by identifying the users and their
jobs and by specifying the resources required to execute the job.

Following is an example of a simple program set up for the DEC-10:

$J0B (insert user number) —identify job and user

$PASSWORD (insert user password) —positively identify user

$LANGUAGE (indicate compiler needed) <specify resource
[source deck]

$DATA —identify resource
[data deck]
$EOJ —identify end of job and release

resources
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But even with batching techniques the faster second-generation com-
puters allowed expensive time lags between the CPU and the I/O devices.
For example, a job with 1600 cards could take 79 seconds to be completely
read by the card reader and only 5 seconds of CPU time to assemble (com-
pile). That meant the CPU was idle 94% of the time and actually processing
only 6% of the time it was dedicated to that job.

Eventually, several factors helped improve the performance of the
CPU. First, the speed of I/O devices like tape drives, disks, and drums grad-
ually became faster.

Second, to use more of the available storage area in these devices,
records were “blocked” before they were retrieved or stored. (Blocking
means that several logical records are grouped within one physical record.)
Of course, when the records were retrieved they had to be “deblocked” be-
fore the program could use them. To aid programmers in these blocking and
deblocking functions, access methods were developed and added to the ob-
ject code by the linkage editor.

Third, to reduce the discrepancy in speed between 1/0 and CPU an
interface—called the “control unit”—was placed between them to perform
the function of buffering. A “buffer” is an interim storage area and it works
like this: as the slow input device reads a record the control unit places each
character of the record into the buffer. When the buffer is full the entire
record is quickly transmitted to the CPU. The process is just the opposite
for output devices: the CPU places into the buffer the entire record, which is
then passed on by the control unit at the slower rate required by the output
device. If a control unit has more than one buffer the I/O process can be
speeded up even more. For example, if the control unit has two buffers then,
while the first buffer is transmitting its contents to the CPU, the second can
be loaded. Ideally, by the time the first has been transmitted the second is
ready to go, and so on. This is illustrated in Figure 7.12. In this example,
input time is cut in half.

Fourth, an early form of “spooling” was developed by moving off-line
the operations of card reading, printing, and card punching. For example,
incoming jobs were transferred from card decks to tape off-line. Later, the
tapes were mounted on tape drives and read into the CPU at a speed much
faster than that of the card reader.

Also during the second generation techniques were developed to man-
age program libraries, create and maintain data files and indexes, random-
ize direct access addresses, and create and check file labels. Sequential,
indexed sequential, and direct access files were supported and facilitated by
standardized macros that relieved programmers of the need to write cus-
tomized open and close routines for each program.

Timer interrupts were developed to protect the CPU from infinite
loops on programs that were mistakenly instructed to execute a single series
of commands forever, and to allow sharing of jobs. A fixed amount of execu-
tion time was allocated to each program upon entry into the system. The
execution time was monitored by the operating system. If any programs
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were still running when the time expired, they were terminated and the
users were notified with an error message.

During the second generation programs were still run in serial batch
mode: one at a time. The next step toward better use of the system’s re-
sources was the move to shared processing.

Third-generation computers date from the mid-1960s. They were de-
signed with faster CPUs, but their speed caused problems with the relatively
slow I/0 devices. The solution was multiprogramming, which introduced
the concept of many programs sharing the attention of a single CPU.

The first multiprogramming systems allowed each program to be
serviced in turn, one after the other. The most common mechanism for im-
plementing multiprogramming was the introduction of the “interrupt” con-
cept. That’s where the CPU is notified of events needing operating systems
services. For example, when a program issues an I/O command it generates
an interrupt requesting the services of the I/O processor, and the CPU is
released to begin execution of the next job.

This was named passive multiprogramming because the operating sys-
tem didn’t control the interrupts but waited for each job to end an execution
sequence. It was less than ideal because if a job was “CPU-bound,” meaning
that it performed a great deal of nonstop processing before issuing an inter-
rupt, it would tie up the CPU for long periods of time while all other jobs
had to wait.

To counteract this effect the operating system was soon given a more
active role with the advent of active multiprogramming. The system allowed
each program to use only a preset slice of CPU time. When time expired the
job was interrupted and another job was allowed to begin execution. The
interrupted job had to wait its turn until it was allowed to resume execution
later. The idea of time slicing became common in many time-sharing
systems.

Program scheduling, which was begun with second-generation sys-
tems, was complicated by the fact that main memory was occupied by many
jobs. The solution was to sort the jobs into groups and then load the pro-
grams according to a preset rotation. The groups were usually determined
by priority or memory requirements—whatever was found to be the most
efficient use of the resources.

In addition to scheduling jobs, handling interrupts, and allocating
memory, the operating systems had to resolve conflicts when two jobs re-
quested the same device at the same time.

Few major advances were made in data management during this pe-
riod. Library functions and access methods were still the same as in the last
years of the second generation. The operating system for third-generation
machines consisted of many modules from which a user could select; thus
the total operating system was customized to suit its user’s needs. The most
used modules were made core resident (that is, they were loaded into main
memory), and those less frequently used resided in secondary storage and
were called in only as they were needed.
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Chapter Summary

Post-third generation computers, developed during the late 1970s, had
faster CPUs, resulting in even greater disparity between processing speed
and I/0 access time. Multiprogramming schemes to increase CPU usage
were difficult to implement because of the physical capacity of main mem-
ory, which was limited and very expensive.

The solution to this physical limitation was virtual memory (VM),
which took advantage of the fact that the CPU could process only one in-
struction at a time so the entire program didn’t have to reside in memory
before execution could begin. A system with virtual memory could divide
the programs into segments and keep them in secondary storage, bringing
each segment into memory only as it was needed. (Programmers of second-
generation computers had used this concept with the “roll in/roll out™ pro-
gramming method to execute programs that exceeded the physical memory
of those computers.)

At this time there was also growing attention to the need for data re-
source conservation. Database management software became a popular tool
because it organized data in an integrated manner, minimized redundancy,
and simplified updating and access of data. A number of query systems were
introduced, which allowed the casual, even novice, user to retrieve specific
pieces of the database. These queries were usually made via a terminal, and
this, in turn, mandated a growth in terminal support and data communica-
tion software.

Programmers became more removed from the intricacies of the com-
puter, and application programs started using English-like words, modular
structures and standard operations. This trend toward the use of standards
improved program management because program maintenance became
faster and easier.

Development in the 1980s dramatically improved the cost/perfor-
mance ratio of computer components. Hardware was more flexible, with
logical functions built on easily replaceable cards. It was also less costly, so
more operating system functions were made part of the hardware itself, giv-
ing rise to a new concept—firmware, a word used to indicate that a program
is permanently held in ROM (read only memory) as opposed to one held on
secondary storage. The job of the programmer, as it had been defined in the
previous years, changed dramatically because many programming func-
tions were being carried out by the system’s software, hence making the
programmer’s task simpler. Eventually the industry moved to “multipro-
cessing” (more than one processor), and more complex languages were de-
signed to coordinate the activities of the multiple processors servicing a
single job. As a result it became possible to execute programs in parallel, and
eventually operating systems for computers of every size were routinely ex-
pected to accommodate multiprocessing.

In this chapter we’ve touched on the overall function of operating systems
and how they have evolved to run increasingly complex computers. Of
course, we’ve only seen the general picture—an overview of the computer
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system and the role of the operating system. In the following chapters we’ll
explore in detail how each segment of the operating system works, its fea-
tures, functions, benefits, and costs.

We’ll begin with the part of the operating system that is the heart of
every computer, the module that manages main memory.

operating system I/0 devices

Memory Manager mainframe -
Processor Manager minicomputer

Device Manager microcomputer

File Manager batch system

main memory interactive system
central processing unit (CPU) real-time system
hardware hybrid system

software
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The management of main memory is critical. In fact, the performance of the
entire system has historically been directly dependent on two things: how
much memory is available and how it is optimized while jobs are being pro-
cessed.

This chapter introduces thc Memory Manager and four types of mem-
ory aliocation schemes: single-user systems, fixed partitions, dynamic parti-
tions, and refocatable dynamic partitions. We start with the most simple—
it’s the one used in the earliest generations of computer systems and, having
come full circle. it’s also the one currently used by many single-user
microcomputers today.

Single-User Contiguous Scheme

14

The first memory allocation scheme worked like this: each program to be
processed was loaded in its entirety into memory and allocated as much
contiguous space in memory as it needed. The key words here are entiret)
and contiguous. If the program was too large and didn’t fit the available
memory space. it couldn’t be executed. And, although early computers were
physically large. they had very little memory.
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This demonstrates a significant limiting factor of all computers—they
have only a finite amount of memory and if a program doesn’t fit, then ei-
ther the size of main memory must be increased or the program must be
modified—this latter by making it smaller or by using methods that allow
program segments (partitions made to the program) to be overlayed (the
transfer of segments of a program from secondary storage into main mem-
ory for execution, so that two or more segments occupy the same storage
locations at different times).

Even today’s single-user systems work the same way. Each user is
given access to all available main memory for each job, and jobs are pro-
cessed sequentially, one after the other. To allocate memory the operating
system uses a simple algorithm:

Aigorithm to Load a Job in a Single-User System

1 Store first memory location of program into base register
(for memory protection)
2 Set program counter (it keeps a running sum of the amount of
memory locations used by the program) equal to address of first
memory location
Load instructions of program
Increment program counter by number of bytes in instructions
Has the last instruction been reached?
if yes, then stop loading program
if no, then continue with step 6
6 Is program counter greater than memory size?
if yes, then stop loading
if no, then continue with step 7
7 Load instruction in memory
8 Go to step 3

AW

Notice that the amount of work done by the operating system’s Mem-
ory Manager is minimal, the code to perform the functions is straightfor-
ward, and the logic is quite simple. Only two hardware items are needed: a
register to store the “base address™ and an “accumulator” to keep track of
the size of the program as it’s being read into memory. Once the program is
entirely loaded into memory, it remains there until execution is complete,
either through normal termination or by intervention of the operating sys-
tem.

One of the major problems with this type of memory allocation
scheme is that it doesn’t support multiprogramming (discussed in detail in
Chapter 4); it can handle only one job at a time.

When they were first made available commercially in the late 1940s
and early 1950s, these single-user configurations were used in research insti-
tutions but proved unacceptable for the business community—it wasn’t
cost effective to spend almost $200,000 for a piece of equipment that could
be used by only one person at a time. Therefore, in the late 1950s and early
1960s a new scheme was needed to manage memory.

The next design used partitions to take advantage of the computer sys-
tem’s resources by overlapping independent operations.
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Fixed Partitions

The first attempt to allow for multiprogramming was to create fixed parti-
tions (also called static partitions) within the main memory—one partition
for each job. Because the size of each partition was designated when the
system was powered on, each partition could only be reconfigured when the
computer system was shut down, reconfigured, and restarted. Thus, once
the system was in operation the partition sizes remained static.

A critical factor was introduced with this scheme: protection of the
job’s memory space. Once a partition was assigned to a job, no other job
could be allowed to enter its boundaries, either accidentally or intentionally.
This problem of “partition intrusion” didn’t exist in single-user contiguous
allocation schemes because only one job was present in main memory at any
given time so only the portion of the operating system residing in main
memory had to be protected. However, for the fixed partition allocation
schemes, protection was mandatory for each partition present in main
memory. Typically this was the joint responsibility of the hardware of the
computer and the operating system (Madnick & Donovan, 1974).

The algorithm used to store jobs into memory requires a few more
steps than the one used for a single-user system because the size of the job
must be matched with the size of the partition to make sure it fits com-
pletely. Then, when a block of sufficient size is located, the status of the
partition must be checked to see if it’s available.

Algorithm to Load a Job in a Fixed Partition

1 Determine job’s requested memory size
2 If job_size > size of largest partition
then reject the job
print appropriate message to operator
go to step 1 to handle next job in line
else continue with step 3
3 Set counter to 1
4 Do while counter <= number of partitions in memory
If job_size > memory_partition_size(counter)
then counter = counter + 1
else
If memory_partition_status(counter) = “free”
then load job into memory_partition(counter)
change memory_partition_status(counter) to “busy”
go to step 1
else counter = counter + 1
end do
5 No partition available at this time, put job in waiting queue
6 Go to step 1

This partition scheme is more flexible than the single-user scheme be-
cause it allows several programs to be in memory at the same time. How-
ever, it still requires that the entire program be stored contiguously and in
memory from the beginning to the end of its execution. In order to allocate
memory space to jobs, the operating system’s Memory Manager must keepa
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table such as Table 2.1 with each memory partition size, its address, its ac-
cess restrictions, and its current status (free or busy).

TABLE 2.1 A simplified fixed partition memory table. (A more in-depth discussion on this topic is presented in

Chapter 8.)

Partition size Memory address Access Partition status
100K 200K Job 1 busy
25K 300K Job 4 busy
25K 325K free
50K 350K Job 2 busy

As each job terminates, the status of its memory partition is changed
from busy to free so an incoming job can be assigned to that partition.

The fixed partition scheme works well if all of the jobs run on the sys-
tem are of the same size or if the sizes are known ahead of time and don’t
vary between reconfigurations. Ideally, that would require accurate advance
knowledge of all the jobs to be run on the system in the coming hours, days,
or weeks. However, unless the operator can accurately predict the future,
the size of the partitions are determined in an arbitrary fashion and they
might be too small or too large for the jobs coming in.

There are significant consequences if the partition sizes are too small;
larger jobs will be rejected if they’re too big to fit into the largest partitions
or will wait if the large partitions are busy. As a result large jobs may have a
longer turnaround time due to waiting a long time for free partitions of suffi-
cient size.

On the other hand, if the partition sizes are too big, memory is wasted.
If a job does not occupy the entire partition, the unused memory in the
partition will remain idle; it can’t be given to another job because each parti-
tion is allocated to only one job at at time. It’s an indivisible unit. Figure 2.1
(page 18) demonstrates one such circumstance.

This phenomenon of partial usage of fixed partitions and the coincid-
ing creation of unused spaces within the partition is called internal fragmen-
tation, and it’s one of the major drawbacks to the fixed partition memory
allocation scheme.

Dynamic Partitions

With dynamic partitions, available memory is still kept in contiguous blocks
but jobs are given only as much memory as they request when they are
Ioaded for processing. Although this is a significant improvement over fixed
partitions because memory isn’t wasted within the partition, it doesn’t en-
tirely eliminate the problem, as illustrated in Figure 2.2 (page 19).

As shown in Figure 2.2 a dynamic partition scheme fully utilizes mem-
ory when the first jobs are loaded. But as new jobs that are not of the same
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Job List:
J1 30K
J2 50K
J3 30K
J4 25K
QOriginal State After Job Entry
Job 1 (30K)
Partion 11 100K Parfition 1
Partifn2 | 25K Job4 (25K) |} Partition 2
Partion3| 25K }partition 3
Partition 4 Partition 4
50K Job 2 (50K)
Main Memory Main Memory

FIGURE 2.1 Main memory use during fixed partition allocation of Table 2.1. Job 3
must wait even though there's 70K of free space available in Partition 1
where Job 1 is only occupying 30K of the 100K available. The jobs are
allocated space on the basis of “first available partition of required size.”

size as those that just vacated memory enter the system, they are fit into the
available spaces on a “first-come first-served” (or other) basis. Therefore,
the subsequent allocation of memory creates fragments of free memory be-
tween blocks of allocated memory (Madnick & Donovan, 1974). This prob-
lem is called external fragmentation and, like internal fragmentation, it lets
memory go to waste.

In the last snapshot. (e) in Figure 2.2, there are three free partitions of
5K, 10K, and 20K—35K in all—enough to accommodate Job 8, which only
requires 30K. However they are not contiguous and. since the jobs are
loaded in a contiguous manner, this scheme forces Job 8 to wait.

Before we go to the next allocation scheme, let’s examine how the op-
erating system keeps track of the free sections of memory.

Best-Fit Versus First-Fit Allocation

For both fixed and dynamic memory allocation schemes, the operating sys-
tem must keep lists of each memory location noting which are free and
which are busy. Then as new jobs come into the system the free partitions
must be allocated.

These partitions may be allocated on a first-fit (first partition fitting
the requirements) or a best-fit (closest fit, the smallest partition fitting the
requirements) basis. For both schemes the Memory Manager organizes the
memory lists of the free and used partitions (free/busy) either by size or by
location. The best-fit allocation method keeps the free/busy lists in order by



Job List:
J1 10K
J2 15K
J3 20K
J4 50K

J5 5K
J6 30K
J7 10K
J8 30K

Operating System

Job1 (10K)

Job2 (15K)

Job3 (20K)

Job4 (50K)

Initial Job Entry
Memory Allocation

Job 3 ends

10K

20K

35K

55K

105

Job 1 ends

Job 4 ends

K

Operating System

Job5 (5K)

Job2 (15K)

Job 6 (30K)

After Job 3
has finished

FIGURE 2.2

Operating System
p g Syst 10K
20K
Job2 (15K)
35K
Job3 (20K)
55K
B 105K
After Job 1 and Job 4
have finished
10K
15K
20K
35K Job 7 (10K) arrives
Job 8 (30K) arrives
55K
85K
105K
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Job 5 (5K) arrives

Job 6 (30K) arrives

Operating System

Job5 (5K)

Job2 (15K)

Job7 (10K)

Job6 (30K)

After Job 7
has entered

Operating System
d 0 10K
20K
Job2 (15K)
35K
Job 3 (20K)
55K
Job6 (30K)
85K
c 105K
After Job 5 and Job 6
have entered
10K
15K
20K
35K Job 8 has to wait
45K
55K
85K
105K

Main memory use and fragmentation during dynamic partition alloca-
tion. Five snapshots of main memory as eight jobs are submitted for
processing. Job 8 has to wait even though there’s enough free memory
between partitions to accommodate it. The jobs are allocated space on
the basis of “first-come first-served.”
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size, smallest to largest. The first-fit method keeps the free/busy lists organ-
ized by memory locations, low-order memory to high-order memory. Each
has advantages depending on the needs of the particular allocation
scheme—nbest-fit usually makes the best use of memory space; first-fit is
faster in making the allocation.

To understand the trade-offs, imagine that you’ve turned your collec-
tion of books into a lending library. Let’s say you have books of all shapes
and sizes, and let’s also say there’s a continuous stream of people taking
books out and bringing them back—someone’s always waiting. It’s clear
that you’ll always be busy, and that’s good, but you never have time to re-
arrange the bookshelves.

You need a system. Your shelves have fixed partitions with a few tall
spaces for oversized books, several shelves for paperbacks, and lots of room
for textbooks. You’ll need to keep track of which spaces on the shelves are
full and where you have spaces for more. For the purposes of our example,
we’ll keep two lists: a free list with all of the available spaces, and a busy list
with all of the occupied spaces. Each list will include the size and location of
each space.

So as each book is removed from its shelf you’ll update both lists by
removing the space from the busy list and adding it to the free list. Then as
your books are returned and placed back on a shelf, the two lists will be
updated again.

There are two ways to organize your lists—by size or by location. If
they’re organized by size, the spaces for the smallest books are at the top of
the list and those for the largest are at the bottom. When they’re organized
by location, the spaces closest to your lending desk are at the top of the list
and the areas farthest away are at the bottom. Which option is best? It de-
pends on what you want to optimize: space or speed of allocation.

If the lists are organized by size, you’re optimizing your shelf space: as
books arrive, you’ll be able to put them in the spaces that fit them best. This
is a best-fit scheme. If a paperback is returned, you’ll place it on a shelf with
the other paperbacks or at least with other small books. Similarly, oversized
books will be shelved with other large books. Your lists make it easy to find
the smallest available empty space where the book can fit. The disadvantage
of this system is that you’re wasting time looking for the best space. Your
other customers have to wait for you to put each book away, so you won’t be
able to process as many customers as you could with the other kind of list.

In the second case, a list organized by shelf location, you’re optimizing
the time it takes you to put books back on the shelves. This is a first-fit
scheme. This system ignores the size of the book that you’re trying to put
away. If the same paperback book arrives, you can quickly find it an empty
space. In fact, any nearby empty space will suffice if it’s large enough, even
an encyclopedia rack can be used if it’s close to your desk because you are
optimizing the time it takes you to reshelve the books.

Of course, this is a fast method of shelving books, and if speed is im-
portant it’s the best of the two alternatives. It is not a good choice if your
shelf space is limited or if many large books are returned because large
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books must wait for the large spaces. If all of your large spaces are filled with
small books, the customers returning large books must wait until a suitable
space becomes available. (If only you had time to rearrange the books and
compact your collection.)

Table 2.2 shows how a large job can have problems with a first-fit mem-
ory allocation list.

TABLE 2.2 First-fit free list. Job 2 claimed the first partition large enough to accommodate it, but by doing so it
took the last block large enough to accommodate Job 3, so Job 3 (indicated by the asterisk) must
wait even though there’s 75K of unused memory space. Notice that the list is ordered according to
memory location.

Job List:
JI 10K
J2 20K
J3 30K *
J4 10K
Memory
Memory block Job Internal
location size number Job size Status  fragmentation
10K 30K J1 10K busy 20K
40K 15K J4 10K busy 5K
55K 50K J2 20K busy 30K
105K 20K free

Total Available: 115K Total Used: 40K

Jobs 1, 2, and 4 are able to enter the system and begin execution; Job 3
has to wait even though, if all of the fragments of memory were added to-
gether, there would be more than enough room to accommodate it. First-fit
is fast in allocation, but it is not always efficient.

On the other hand, the same job list using a best-fit scheme would use
memory more efficiently, as shown in Table 2.3. In this particular case a
best-fit scheme would yield better memory utilization.

Memory use has been increased but the memory allocation process
takes more time. What’s more, while internal fragmentation has been di-
minished, it hasn’t been completely eliminated.

The first-fit algorithm assumes that the Memory Manager keeps two
lists, one for free memory blocks and one for busy memory blocks. The oper-
ation consists of a simple loop that compares the size of each job to
the size of each memory block until a block is found that’s large enough to fit
the job. Then the job is stored into that block of memory, and the Memory
Manager moves out of the loop to fetch the next job from the entry queue. If
the entire list is searched in vain, then the job is placed into a waiting queue.
The Memory Manager then fetches the next job and repeats the process
(Madnick & Donovan, 1974).
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The algorithms for best-fit and first-fit are very different. Here’s how
first-fit is implemented.

First-Fit Algorithm

1 Set counter to 1
2 Do while counter <= number of blocks in memory
If job_size > memory_size(counter)
then counter = counter + 1

else
load job into memory_size(counter)
adjust free/busy memory lists
go to step 4
End do

Put job in waiting queue
Go fetch next job

W

TABLE 2.3 Best-fit free list. Job 1 is allocated to the closest-fitting free partition, as are Job 2 and Job 3. Job 4 is
allocated to the only available partition although it is not the best-fitting one. In this scheme all jobs
are served without waiting. Notice that the list is ordered according to memory size It uses memory
more efficiently but it is slower to implement.

Job List:
J1 10K
J2 20K
J3 30K
J4 10K
Memory Memory Job Internal
location block size number Job size Status  fragmentation
40K 15K J1 10K busy 5K
105K 20K J2 20K busy none
10K 30K J3 30K busy none
55K 50K J4 10K busy 40K

Total Available: 115K Total Used: 70K

In Table 2.4 a request for a block of 200 spaces has just been given to
the Memory Manager. (The spaces may be words, bytes, or any other
unit the system handles.) Using the first-fit algorithm and starting from the
top of the list, the Memory Manager locates the first block of memory large
enough to accommodate the job, which is at location 6785. The job is then
loaded, starting at location 6785 and occupying the next 200 spaces. The
next step is to adjust the free list to indicate that the block of free memory
now starts at location 6985 (not 6785 as before) and that it contains only
400 spaces (not 600 as before).

The algorithm for best-fit is slightly more complex because the goal is
to find the smallest memory block into which the job will fit (Madnick &
Donovan, 1974).
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TABLE 24 Memory request satisfied using first-fit algorithm. The original free list before and after the request
has been satisfied. (Note: All values are in decimal notation unless specifically noted.)

Before request Afier request
Beginning Memory block Beginning Memory block

address size address size
4075 105 4075 105
5225 5 5225 5
6785 600 * 6985 400
7560 20 7560 20
7600 205 7600 205
10250 4050 10250 4050
15125 230 15125 230
24500 1000 24500 1000

Best-Fit Algorithm

Initialize memory_block(0) = 99999
Compute initial _memory_waste = memory_block(0) — job_size
Initialize subscript = 0
Set counter to |
Do while counter <= number of blocks in memory
If job_size > memory_size(counter)
Then counter = counter + 1
Else
memory._waste = memory_size(counter) — job_size
If initial_memory_waste > memory_waste
Then subscript = counter
initial _memory_waste = memory_waste
counter = counter + 1
End do
6 If subscript = 0
Then put job in waiting queue
Else
load job into memory_size(subscript)
adjust free/busy memory lists
7 Go fetch next job

Vb WN -

One of the problems with the best-fit algorithm is that the entire table
must be searched before the allocation can be made because the memory
blocks are physically stored in sequence according to their location in mem-
ory (and not by memory block sizes as shown in Table 2.3). The system
could execute an algorithm to continuously rearrange the list in ascending
order by memory block size, but that would add more overhead and might
not be an efficient use of processing time in the long run.

As above, the best-fit algorithm is illustrated showing only the list of
free memory blocks. Table 2.5 shows the free list after the best-fit block has
been allocated to the same request presented in Table 2.4.

In Table 2.5, a request for a block of 200 spaces has just been given to
the Memory Manager. Using the best-fit algorithm and starting from the top
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TABLE 25 Memory request satisfied using best-fit algorithm The original free list before and after the request
has been satisfied.

Before request After request
Beginning Memory block Beginning Memory block

address size address size
4075 105 4075 105
5225 5 5225 5
6785 600 6785 600
7560 20 7560 20
7600 205 * 7800 5
10250 4050 10250 4050
15125 230 15125 230
24500 1000 24500 1000

of the list, the Memory Manager searches the entire list and locates a block
of memory starting at location 7600, which is the smallest block that’s large
enough to accommodate the job. The choice of this block minimizes the
wasted space (only 5 spaces are wasted, which is less than in the four alterna-
tive blocks). The job is then stored, starting at location 7600 and occupying
the next 200 spaces. Now the free list must be adjusted to show that the
block of free memory starts at location 7800 (not 7600 as before) and that it
contains only 5 spaces (not 205 as before).

Which is best, first-fit or best-fit? For many years there was no way to
answer such a general question because performance depends on the job
mix. Note that while the best-fit resulted in a better “fit,” it also resulted
(and does so in the general case) in a smaller “free” space (5 spaces), which is
known as a “sliver.” In recent years access times have become so fast that
the scheme that saves the more valuable resource, memory space, may be
the best in some cases. Research continues to focus on finding the optimum
allocation scheme. This includes optimum page size—a fixed allocation
scheme that we will cover in the next chapter and which is the key to im-
proving the performance of the best-fit allocation scheme.

Deallocation

Until now we’ve considered only the problem of how memory blocks are
allocated, but eventually there comes a time when memory space must be
released, or deallocated.

For a fixed partition system, the process is quite straightforward.
When the job is completed the Memory Manager resets the status of the
memory block where the job was stored to “free.” Any code, for example,
binary values with 0 indicating free and I indicating busy, may be used so
the mechanical task of deallocating a block of memory is relatively simple.

A dynamic partition system uses a more complex algorithm because
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the algorithm tries to combine free areas of memory whenever possible.
Therefore, the system must be prepared for three alternative situations
(Madnick & Donovan, 1974):

1. When the block to be deallocated is adjacent to another free block;
2. When the block to be deallocated is between two free blocks;
3. When the block to be deallocated is isolated from other free blocks.

The deallocation algorithm must be prepared for all three eventualities
with a set of nested conditionals. The following algorithm is based on the
fact that memory locations are listed using a lowest to highest address
scheme. The algorithm would have to be modified to accommodate a differ-
ent organization of memory locations.

Algorithm to Deallocate Memory Blocks

If job_location is adjacent to one or more free blocks
Then
If job_location is between two free blocks
Then merge all three blocks into one
memory_size{(counter—1) = memory_size(counter—1) +
job_size + memory_size(counter+1)
Set status of memory_size(counter+1) to null entry
Else merge both blocks into one
memory_size(counter—1 )=memory _size(counter—1)+job_size
Else search for null entry in free memory list
Enter job_size and beginning_address in the entry slot
Set its status to “free”

Here “job_size” is the amount of memory being released by the termi-
nating job and “beginning_address” is where the first instruction of the job
was located.

Table 2.6 shows how deallocation occurs in a dynamic memory allocation
system when the job to be deallocated is next to one free memory block.

Using the deallocation algorithm presented above, the system sees that
the memory to be released is next to a free memory block, which starts at
location 7800. Therefore the list must be changed to reflect the starting ad-
dress of the new free block, 7600, which used to be the address of the first
instruction of the job that just released this block. In addition, the memory
block size for this new free space must be changed to show its new size, that
is, the combined total of the two free partitions (200 + 5).

Now the free list looks like the one in Table 2.7.

When the deallocated memory space is between two memory blocks. the
process is similar, as shown in Table 2.8.

Using the deallocation algorithm, the system learns that the memory
to be deallocated is between two free blocks of memory. Therefore, the sizes
of the three free partitions (20 + 20 4+ 205) must be combined and the total
stored with the smallest beginning address, 7560.
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TABLE 2.6 Original free list before deallocation. Asterisk indicates free memory block adjacent to “‘soon-to-be-

free” memory block.

Beginning address Memory block size Status
4075 105 F
5225 5 F
6785 600 F
7560 20 F
(7600) (200) (busy)!
* 7800 5 F
10250 4050 F
15125 230 F
24500 1000 F

! Although this entry isn’t in the free list, it has been inserted here for clarity. The job size is
200 and its beginning location is 7600.

TABLE 2.7 Free list after deallocation. Asterisk indicates free memory block after changes have occurred

Beginning address Memory block size Status

4075 105 F

5225 5 F

6785 600 F

7560 20 F

* 7600 205 F
10250 4050 F

15125 230 F

24500 1000 F

TABLE 2.8 Original free list before deallocation. Asterisks indicate the free memory blocks adjacent to the

“soon-to-be-free” memory block.

Beginning address Memory block size Status
4075 105 F
5225 5 F
6785 600 F
* 7560 20 F
(7580) (20) (busy)!
* 7600 205 F
10250 4050 F
15125 230 F
24500 1000 F

! Although this entry isn’t in the free list, it has been inserted here for clarity. The job size is 20
and its beginning location is 7580.
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Because the entry at location 7600 has been combined with the previ-
ous entry we must “empty out” this entry, and we do that by changing the
status to N, for null entry, with no beginning address and no memory block
size as indicated by an asterisk in Table 2.9. This avoids rearranging the list
at the expense of memory.

TABLE 2.9 Free list after a job has released memory.

Beginning address Memory block size Status

4075 105 F

5225 5 F

6785 600 F

7560 245 F

* N
10250 4050 F

15125 230 F

24500 1000 F

Situation 3 The third alternative is when the space to be released is isolated from all

other free areas.

For this example we need to know more about how the “busy” mem-
ory list is configured. To simplify matters let’s look at the busy list for the
memory area between locations 7560 and 10250. Remember that starting at
7560 there’s a free memory block of 245, so the busy memory area includes
everything from location 7805 (7560 + 245) to 10250, which is the address
of the next free block. The free list and busy list are shown in Table 2.10 and
Table 2.11.

TABLE 2.10 Original free list before deallocation.

Beginning address Memory block size Status

4075 105 F

5225 5 F

6785 600 F

7560 245 F

N

10250 4050 F

15125 230 F

24500 1000 F

Using the deallocation algorithm, the system learns that the memory
block to be released is not adjacent to any free blocks of memory; it is be-
tween two other busy areas. Therefore it must search the table for a null
entry: N.



28 Chapter Two

TABLE 2.11 Busy memory list. The job to be deallocated is of size 445 and begins at location 8805. Asterisk
indicates “‘soon-to-be-free” memory block.

Beginning address Memory block size Status
7805 1000 B
* 8805 445 B
9250 1000 B

The scheme presented in this example creates null entries in both the
busy and free lists during the process of allocation or deallocation of mem-
ory. An example of a null entry occurring as a result of deallocation was
presented in Situation #2. A null entry in the busy list occurs when a mem-
ory block between two other busy memory blocks is returned to the free list
(as shown in Table 2.11). This mechanism ensures that all blocks are entered
in the lists according to their memory location (beginning address) from
smallest to largest.

When the null entry is found, the beginning memory location of the
terminating job is entered in the beginning address column, the job size is
entered under the memory block size column, and the status is changed
from N to F to indicate that a new block of memory is free and available, as
shown in Tables 2.12 and 2.13.

TABLE2.12 Free list after the job has released its memory. Asterisk indicates “new free block” entry replacing

null entry.

Beginning address Memory block size Status

4075 105 F

5225 5 F

6785 600 F

7560 245 F

* 8805 445 F
10250 4050 F

15125 230 F

24500 1000 F

TABLE 2.13 Busy list after the job has released its memory. Asterisk indicates *“new”” null entry in busy list.

Beginning address Memory block size Status
7805 1000 B
* N

9250 1000 B
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Relocatable Dynamic Partitions

Both of the fixed and dynamic memory allocation schemes described thus
far shared some unacceptable fragmentation characteristics that had to be
resolved before the number of jobs waiting to be accepted became unwieldy.
In addition, there was a growing need to use all the “slivers” of memory
often left over.

The solution to both problems was the development of relocatable dy-
namic partitions. With this memory allocation scheme, the Memory Man-
ager relocates programs to gather together all of the empty blocks and
compact them to make one block of memory that’s large enough to accom-
modate some or all of the jobs waiting to get in.

The compaction of memory, sometimes referred to as “garbage collec-
tion,” is performed by the operating system to reclaim fragmented sections
of the memory space. Remember our earlier example of the makeshift lend-
ing library? If you stopped lending books for a few moments and rearranged
the books into the most efficient order, you would be compacting your col-
lection. But this demonstrates its disadvantage—it’s an overhead process,
so that while compaction is being done everything else must wait.

Compaction isn’t an easy task. First every program in memory must be
relocated so they’re contiguous, and then every address, and every reference
to an address, within each program must be adjusted to account for the pro-
gram’s new location in memory. However, all other values within the pro-
gram (such as data values) must be left alone. In other words, the operating
system must distinguish between addresses and data values, and the distinc-
tions are not obvious once the program has been loaded into memory.

To appreciate the complexity of relocation, let’s look at a typical pro-
gram. Remember, all numbers are stored in memory as binary values, and
in any given program instruction it’s not uncommon to find addresses as
well as data values. For example, an assembly language program might in-
clude the instruction to add the integer 1 to I. The source code instruction
looks like this:

ADDI I,1

However, after it has been translated into actual code it could look like
this (for readability purposes the values are represented here in octal code,
not binary):

000007 271 01 0 00 0O0COO1

It’s not immediately obvious which are addresses and which are in-
struction codes or data values. In fact, the address is the number on the left
(000007). The instruction code is next (271), and the data value is on the
right (000001).

The operating system can tell the function of each group of digits by its
location in the line and the operation code. However, if the program is to be
moved to another place in memory each address must be identified, or
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flagged. So later the amount of memory locations by which the program has
been displaced must be added to (or subtracted from) all of the original ad-
dresses in the program.

This becomes particularly important when the program includes loop
sequences, decision sequences, and branching sequences, as well as data ref-
erences. If, by chance, all the addresses were not adjusted by the same value,
the program would branch to the wrong section of the program or to a sec-
tion of another program, or it would reference the wrong data.

The program in Figure 2.3 shows how the operating system flags the
addresses so they can be adjusted if and when a program is relocated.

Internally, the addresses are marked with a special symbol (indicated
in Figure 2.3 by apostrophes) so the Memory Manager will know to adjust
them by the value stored in the relocation register. All of the other values

The original assembly language program looks like this:

A: EXP 132,144,125,110 sthe data values
BEGIN: MOVEI 1,0 ;initialize register 1
MOVEIL 2,0 ;initialize register 2
LOOP:  ADD 2,AC(1) ;add (A + reg 1) to reg. 2
ADDI 1,1 ;add 1 to reg 1
CAIG 1,4-1 ;is reg 1> 4-1?
JUMPA LOOP ;if not, go to lLoop
MOVE 3,2 ;if so, move reg 2 to reg 3
IDIVI1 3,4 ;divide reg 3 by 4,
;remainder to register 4
EXIT send
END

Once it’s loaded into memory it looks like this:

000000' 000000 000132 A: EXP 132,144,125,110
000001" 000000 000144
000002' 000000 000125
000003" 000000 000110

000004° 201 01 O 00 000000 BEGIN: MOVEIL 1,0
000005' 201 02 0 00 0OOOOO MOVEIL 2,0
000006' 270 02 C 01 000OOO" LOOP:  ADD 2,AC(1)
000007* 271 01 © 00 000001 ADDI 1,1
000008' 307 01 0 00 000003 CAIG 1,4-1
000009' 324 00 O 00 0O0006! JUMPA LOOP
000010’ 200 03 0 00 000002 MOVE 3,2
000011' 231 03 0 00 000004 IDIVI 3,4
000012" 047 00 O 00 000012 EXIT

000000 END

FIGURE 2.3 This program was run on a DEC-system 1099 tri-processor with
TOPS-10 monitor version 7.01A operating system. (Note: all of the
relocatable addresses have been marked with a special symbol,
which is indicated by the printer as an apostrophe.)
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Operating System | 4o« Operating System | 4o«
Job 1 (8K) 18K Job1 (8K) 18K
Job 4 (32K) Job 4 (32K)
50K 50K
Job 2 (16K) Job2 (16K)
Job 6. Now Job 6
requiring 84K 66K can be 66K
of memory, accommodated
is next in the
arrival quewe. Job 5 (48K) Job5 (48K)
Since there is
no single block 114K 114K
big enough to
accommodate this
request, memory
must be compacted
Job 6 (B4K)
198K
B 210K C 210K

Memory layout after compaction Memory layout after

Job 6 has been loaded

FIGURE 2.4 Dynamic allocation of memory and the results of compaction.

(data values) are not marked and won't be changed after relocation. Other
numbers in the program. those indicating instructions. registers, or con-
stants used in the instruction, are also left alone.

Figure 2.4 illustrates what happens to a program in memory during
compaction and relocation.

QOur discussion raises three questions:

1. What goes on behind the scenes when relocation and compaction take
place?

2. What keeps track of how far each job has moved from its original storage
arca?

3. What lists have to be updated?

The last question is easiest to answer. After relocation and compac-
tion. both the free list and the busy list are updated. The free list is changed
to show the partition for the new block of free memory: the one formed as a
result of compaction that will be located in memory starting after the last
location used by the last job. The busy list is changed to show the new loca-
tions for all of the jobs already in process that were relocated. Each job will
have a new address except for those that were already residing at the lowest
memory locations.

To answer the other two questions we must learn more about the hard-
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Operating System 10K

Job 1 (BK) 18K
30K
31744 —+{ Load 4, 53248
Job 4
— (32K)
53248 37 62K
Relocation regisier 92K

Job2 (16K)

etc.

FIGURE 2.5 Contents of relocation register and close-up of Job 4 memory area be-
fore relocation.

ware components of a computer, specifically the registers. Special-purpose
registers are used to help with the relocation. In some computers two special
registers are set aside for this purpose: the bounds register and the reloca-
tion register.

The bounds register is used to store the highest (or lowest, depending
on the specific system) location in memory accessible by each program. This
ensures that, during execution, a program won’t try to access memory loca-
tions that don’t belong to it—that is, those that are *“out of bounds.”™ The
relocation register contains the value that must be added to each address
referenced in the program so it will be able to access the correct memory
addresses after relocation. If the program isn't relocated, the value stored in
the program’s relocation register is zero.

Figures 2.5 and 2.6 illustrate what happens during relocation by using
the relocation register (all values in decimal form).

Originally, Job 4 was loaded into memory starting at memory location
30K. (K =1024 bytes so the exact starting address is: 30 X 1024 = 30,7200 It
required a block of memory of 32K (or 32 X 1024 = 32,768) addressable
locations. Therefore, when it was originally loaded, the job occupied the
space from memory location 30720 to memory location 63488-1. Now, sup-
pose that within the program, at memory location 31744, there’s an instruc-
tion that looks like this:

LOAD 4,ANSWER

This assembly language command asks that the data value known as
ANSWER be loaded into Register 4 for later computation. ANSWER, the value
37, is stored at memory location 53248. (In this example Register 4 is a
working/computation register, which is distinct from either the relocation
or the bounds register.)

After relocation, Job 4 has been moved to a new starting memory ad-
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_Operating System | 4
Job 1 (8K) 18K
19456 —] Load 4, 53248
" Job 4
40960 37 tons
50K
Job2 (16K)
66K
Relocation register Job5 (48K)
-12288

etc.

FIGURE 2.6 Contents of relocation register and close-up of Job 4 memory area after
relocation.

dress of 18K (or 18 * 1024 = 18,432). Of course, the job still has its 32K
addressable locations, so it now occupies memory from location 18432 to
location 51200-1, and, thanks to the relocation register, all of the addresses
will be adjusted accordingly.

What does the relocation register contain? In this example it contains
the value —12288. As calculated previously, 12288 is the size of the free
block that has been *moved forward” toward the high addressable end of
memory. The sign is negative because Job 4 has been “‘moved back,™ closer
to the low addressable end of memory.

However, the program instruction (LOAD 4,ANSWER) has not been
changed. The original address 53248 where ANSWER had been stored re-
mains the same in the program no matter how many times it is relocated.
Before the instruction is executed, however, the “true™ address must be
computed by adding the value stored in the relocation register to the address
found at that instruction. If the addresses are not adjusted by the value
stored in the relocation register, then even though memory location 31744
is still part of the job's accessible set of memory locations, it would not con-
tain the LOAD command. Not only that, but location 53248 is now “out of
bounds.” The instruction that was originally at 31744 has been moved to
location 19456. That's because all of the instructions in this program have
been *moved back™ by 12K (12 * 1024 = 12,288), which is the size of the
free block. Therefore, location 53248 has been displaced by — 12288 and
ANSWMER, the data value 37, is now located at address 40960.

In effect. by compacting and relocating, the Memory Manager opti-
mizes the use of memory and thus improves throughput—one of the mea-
sures of system performance. An unfortunate side effect is that more
overhead is incurred than with the two previous memory allocation
schemes. The crucial factor here is the timing of the compaction—when and
how often it should be done. There are three options.
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Chapter Summary

Key Terms

One approach is to do it when a certain percentage of memory be-
comes busy, say 75%. The disadvantage of this approach is that the system
would incur unnecessary overhead if no jobs were waiting to use the remain-
ing 25%.

A second approach is to compact memory only when there are jobs
waiting to get in. This would entail constant checking of the entry queue,
which might result in unnecessary overhead and slow down the processing
of jobs already in the system.

A third approach is to do it after a prescribed amount of time has
elapsed. If the amount of time chosen is too small, however, then the system
will spend more time on compaction than on processing. If it’s too large, too
many jobs will congregate in the waiting queue and the advantages of
recompaction are lost.

As you can see, each option has its good points and its bad points. The
best choice for any system is decided by the operating system designer who,
based on the job mix and other factors, tries to optimize both processing
time and memory use while keeping overhead as low as possible.

Four memory management techniques were presented in this chapter: sin-
gle-user systems, fixed partitions, dynamic partitions, and relocatable dy-
namic partitions. They have three things in common: they all require that
the entire program (1) be loaded into memory, (2) be stored contiguously,
and (3) remain in memory until the job is completed.

Consequently, each puts severe restrictions on the size of the jobs be-
cause they can only be as large as the biggest partitions in memory.

These schemes were sufficient for the first three generations of com-
puters, which processed jobs in batch mode. Turnaround time was mea-
sured in hours, or sometimes days, but that was a period when users
expected such delays between the submission of their jobs and pick up of
output. As we’ll see in the next chapter, a new trend emerged during the
third-generation computers of the late 1960s and early 1970s: users were
able to connect directly with the central processing unit via remote job entry
stations, loading their jobs from on-line terminals that could interact more
directly with the system. New methods of memory management were
needed to accommodate them.

We'll see that the memory allocation schemes that followed had two
new things in common. First, programs didn’t have to be stored in contiguous
memory locations: they could be divided into “segments” of variable sizes or
“pages” of equal size. Each page, or segment, could be stored wherever there
was an empty block big enough to hold it. Second, all the pages, or segments,
did not have to reside in memory during the execution of the job. These were
significant advances for system designers, operators, and users alike.

memory allocation schemes multiprogramming
single-user systems fixed partitions
address internal fragmentation
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dynamic partitions relocatable dynamic partitions
first-come first-served compaction

external fragmentation relocation

first-fit memory allocation bounds register

best-fit allocation relocation register
deallocation K

1. Explain the following:

a. Multiprogramming. Why is it used?

b. Internal fragmentation. How does it occur?

c¢. External fragmentation. How does it occur?

d. Compaction. Why is it needed?

e. Relocation. How often should it be performed?

. Describe the major disadvantages for each of the four memory allocation

schemes presented in the chapter.
Describe the major advantages for each of the memory allocation
schemes presented in the chapter.
Given the following information:

Job list Memory list
Job stream Memory requested Memory blocks Size
Job 1 740K Block 1 610K (low-order memory)
Job 2 500K Block 2 850K
Job 3 700K Block 3 700K (high-order memory)

Do the following:

a. Use the best-fit algorithm to allocate the memory blocks to the three
arriving jobs.

b. Use the first-fit algorithm to allocate the memory blocks to the three
arriving jobs.

Given the following information:

Job list Memory list
Job stream Memory requested Memory blocks Size
Job 1 700K Block 1 610K (low-order memory)
Job 2 500K Block 2 850K
Job 3 740K Block 3 700K (high-order memory)

Do the following:

a. Use the best-fit algorithm to allocate the memory blocks to the three
arriving jobs.

b. Use the first-fit algorithm to allocate the memory blocks to the three
arriving jobs.
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Advanced Exercises

“Next-fit™ is an allocation algorithm that keeps track of the last allocated

partition and starts searching from that point on when a new job arrives.

a. What might be an advantage of this algorithm?

b. How would it compare to best-fit and first-fit for the conditions given
in exercise 4?

c. How would it compare to best-fit and first-fit for the conditions given
in exercise 5?

- “Worst-fit” is an allocation algorithm that is the opposite of best-fit. It

allocates the largest free block to a new job.

a. What might be an advantage of this algorithm?

b. How would it compare to best-fit and first-fit for the conditions given
in exercise 4?

c. How would it compare to best-fit and first-fit for the conditions given
in exercise 5?

. The relocation example presented in the chapter implies that compac-

tion is done entirely in memory, without secondary storage. Can all free
sections of memory be merged into one contiguous block using this ap-
proach? Why or why not?

One way to compact memory would be to copy all existing jobs to a sec-
ondary storage device and then reload them contiguously into main
memory, thus creating one free block after all jobs have been recopied
(and relocated) into memory. Is this viable? Could you devise a better
way to compact memory? Write your algorithm and explain why it is
better.

10. Given the following memory configuration:

Operating System
p g Sys 20K
Job 1 (10K) 30K
50K
Job2 (15K) 65K
75K
Job3 (45K)
120K
200K

At this point, Job 4 arrives requesting a block of 100K Answer the fol-
lowing:
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a. Can Job 4 be accommodated? Why or why not?

b. If relocation is used, what are the contents of the relocation registers
for Job 1, Job 2, and Job 3 after recompaction?

c. What are the contents of the relocation register for Job 4 after it has
been loaded into memory?

d. The instruction ADDI 4,10 is part of Job 1 and was originally loaded
into memory location 22K. What is its new location after compac-
tion?

e. The instruction MUL 4,NUMBER is part of Job 2 and was originally
loaded into memory location 55K. What is its new location after
compaction?

f. The instruction MOVE 3,SUM is part of Job 3 and was originally
loaded into memory location 80K. What is its new location after
compaction?

g- If SUM was originally loaded into memory location 110K, what is its
new location after compaction?

h. If the instruction MOVE 3,SUM is stored as follows (this is in octal
instead of binary for compactness):

200 03 00 334000

where the rightmost value indicates the memory location where SUM
is stored, what would that value be after compaction?

You have been given the job to determine if the current fixed partition

memory configuration in your computer system should be changed.

a. What information do you need to help you make that decision?

b. How would you go about collecting this information?

c. Once you had the information, how would you determine the best
configuration for your system?

Here is a long-term project. Use the information that follows to com-
plete this exercise.
Job list Memory list
Job stream number  Time  Jobsize  Memory block Size
1 5 5760 1 9500
2 4 4190 2 7000
3 8 3290 3 4500
4 2 2030 4 8500
5 2 2550 5 3000
6 6 6990 6 9000
7 8 8940 7 1000
8 10 740 8 5500
9 7 3930 9 1500
10 6 6890 10 500
11 5 6580
12 8 3820
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Job list
Job stream number Time  Job size
13 9 9140
14 10 420
15 10 220
16 7 7540
17 3 3210
18 1 1380
19 9 9850
20 3 3610
21 7 7540
22 2 2710
23 8 8390
24 5 5950
25 10 760

At one large batch-processing computer installation the management
wants to decide what storage placement strategy will yield the best pos-
sible performance. The installation runs a large real storage (as opposed
to “virtual” storage, which will be covered in the following chapter)
computer under fixed partition multiprogramming. Each user program
runs in a single group of contiguous storage locations. Users state their
storage requirements and time units for CPU usage on their Job Con-
trol Card (it used to, and still does work this way, although cards may
not be used). The operating system allocates each user the appropriate
partition and starts up the user’s job. The job remains in memory until
completion. A total of 50,000 memory locations are available, divided
into blocks as indicated in the table above.

a. Write (or calculate) an event-driven simulation to help you decide
which storage placement strategy should be used at this installation.
Your program would use the job stream and memory partitioning as
indicated previously. Run the program until all jobs have been exe-
cuted with the memory as is (in order by address). This will give you
the first-fit type performance results.

b. Sort the memory partitions by size and run the program a second
time; this will give you the best-fit performance results.

For both parts a. and b. you are investigating the performance of the

system using a typical job stream by measuring:

1. Throughput (how many jobs are processed per given time unit)

2. Storage utilization (percentage of partitions never used, percent-
age of partitions heavily used, etc.)

3. Waiting queue length

4. Waiting time in queue

S. Internal fragmentation
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Given that jobs are served on a first-come first-served basis:

c. Explain how the system handles conflicts when jobs are put into a
waiting queue and there are still jobs entering the system-—who goes
first?

d. Explain how the system handles the “job clocks,” which keep track
of the amount of time each job has run, and the “wait clocks,” which
keep track of how long each job in the waiting queue has to wait.

e. Since this is an event-driven system, explain how you define “event”
and what happens in your system when the event occurs.

f. Look at the results from the best-fit run and compare them with the
results from the first-fit run. Explain what the results indicate about
the performance of the system for this job mix and memory organi-
zation. Is one method of partitioning better than the other? Why or
why not? Could you recommend one method over the other given
your sample run? Would this hold in all cases? Write some conclu-
sions and recommendations.

Suppose your system (as explained in exercise 12) now has a “spooler”

(storage area in which to temporarily hold jobs) and the job scheduler

can choose which will be served from among 25 resident jobs. Suppose

also that the first-come first-served policy is replaced with a “faster-job
first-served™ policy. This would require that a sort by time be per-

formed on the job file before running the program. Does this make a

difference in the results? Does it make a difference in your analysis?

Does it make a difference in your conclusions and recommendations?

The program should be run twice to test this new policy with both best-

fit and first-fit.

Suppose your spooler (as described in exercise 13) replaces the previous

policy with one of “smallest-job first-served.” This would require that a

sort by job size be performed on the job file before running the program.

How do the results compare to the previous two sets of results? Will

your analysis change? Will your conclusions change? The program

should be run twice to test this new policy with both best-fit and first-fit.
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In the previous chapter we looked at the first memory allocation schemes.
Each one required that the Memory Manager store the entire program in
main memory in contiguous locations, and as we pointed out each scheme
solved some problems but created others. such as fragmentation or the over-
head of relocation.

In this chapter we’ll examine more sophisticated memory allocation
schemes that first remove the restriction of storing the programs contigu-
ously and then eliminate the requirement that the entire program reside in
memory during its execution. These four schemes are paged, demand pag-
ing, segmented. and segmented/demand paged allocation. Finally. we’ll dis-
cuss virtual memory and how it affects main memory allocation.

Paged Memory Allocation

40

Paged memory allocation is based on the concept of dividing each incoming
job into pages of equal size. Some operating systems choose a page size
that’s the same as the memory block size and which is also the same size as
the sections of the disk on which the job is stored.

The sections of a disk are called **sectors™ (sometimes called
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“blocks™), and the sections of main memory are called page frames. The
scheme works quite efficiently when the pages, sectors, and page frames are
all the same size. The exact size (the number of bytes that can be stored in
each of them) is usually determined by the disk’s sector size. Therefore, one
sector will hold one page of job instructions and fit into one page frame of
memory.

Before executing a program, the Memory Manager prepares it by:

. Determining the number of pages in the program;

. Locating enough empty page frames in main memory;

. Loadingall of the program’s pages into them (in “static’ paging the pages
need not be contiguous).

W N

When the program is initially prepared for loading its pages are in logi-
cal sequence—the first pages contain the first lines of the program and the
last page has the last lines. But the loading process is different from the
schemes we studied in Chapter 2 because the pages do not have to be loaded
in adjacent memory blocks. In fact, each page can be stored in any available
page frame anywhere in main memory (Madnick & Donovan, 1974).

The primary advantage of storing programs in noncontiguous loca-
tions is that main memory is used more efficiently because an empty page
frame can be used by any page of any job. In addition, the compaction
scheme used for relocatable partitions is eliminated because there’s no ex-
ternal fragmentation between page frames (and no internal fragmentation in
most pages).

However, with every new solution comes a new problem: because a
job’s pages can be located anywhere in main memory, the Memory Manager
now needs a mechanism to keep track of them—and that means enlarging
the size and complexity of the operating system software, which increases
overhead.

The example in Figure 3.1 shows how the Memory Manager keeps
track of a program that’s four pages long. To simplify the arithmetic, we’ve
arbitrarily set the page size at 100 lines (or bytes). Job 1 is 350 lines (or
bytes) long and is being readied for execution.

Notice in Figure 3.1 that the last page (Page 3) is not fully utilized
because the job is less than 400 lines—the last page uses only 50 of the 100
lines available. In fact, very few jobs would perfectly fill all of the pages, so
internal fragmentation is still a problem (but only in the last page of a job).

In Figure 3.1 (with seven free page frames), the operating system can
accommodate jobs that vary in size from 1 to 700 lines because they can be
stored in the seven empty page frames. But a job that’s larger than 700 lines
can’t be accommodated until Job 1 ends its execution and releases the four
page frames it occupies. And a job that’s larger than 1100 lines will never fit
into memory. Therefore, although paged memory allocation offers the ad-
vantage of noncontiguous storage, it still requires that the entire job be
stored in memory during its execution, in this scheme.

Figure 3.1 used arrows and lines to show how a job’s pages fit into page
frames in memory, but the Memory Manager uses tables to keep track of
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Job 1 Main Memory  Page frame noJ
First 100 lines Page 0 — Operating System ?
2
Second 100 lines Page 1— 3
4
Third 100 lines Page 2 Job 1 - Page 2 5
6
Remaining 50 lines Page 3 7
Wasted space —— | Job 1 - Page 0 8
9
— | Job 1 - Page 1 10
Job 1 -Page 3 11
12
'Each page frame can
hold 100 lines.
FIGURE 3.1 Job 1 has been divided into four pages, which are mapped into main
memory.

them. There are essentially three tables that perform this function: Job Ta-
ble (JT), Page Map Table (PMT), and Memory Map Table (MMT). All three
tables reside in the part of main memory that’s reserved for the operating
system.

The Job Table contains two entries for each active job: the size of the
job and the memory location where its Page Map Table is stored. This is a
dynamic list that grows as jobs are loaded into the system and shrinks as
they're later completed.

TABLE 3.1 This section of the Job Table (a) initially has three entries, one for each job in process. When the
second job ends, (b) its entry in the table is released and it is replaced (c) by information on the next
job that is processed.

Job Table Job Table Job Table
Job size  PMT location  Job size PMT location  Job size PMT location
400 3096 400 3096 400 3096
200 3100 700 3100
500 3150 500 3150 500 3150
(a) (b) (c)

Each active job has its own Page Map Table that contains the vital
information for each page: the page number and its corresponding page
frame memory address. Actually, the PMT includes only one entry per page.
The page numbers are sequential (Page 0, Page 1, Page 2, through the last
page) so it isn’t necessary to list each page number in the PMT. The first
entry in the PMT lists the page frame memory address for Page 0, the sec-
ond entry is the address for Page 1, and so on.
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The Memory Map Table has one entry for each page frame listing the
location and free/busy status for each one.

At compilation time every job is divided into pages. Using Job 1 from
Figure 3.1 we can see how this works:

Page 0 contains line numbers from 1 to 100

Page 1 contains line numbers from 101 to 200
Page 2 contains line numbers from 201 to 300
Page 3 contains line numbers from 301 to 350

As you can see, the program has 350 lines, but when they’re stored the
system numbers them starting from 0 through 349, so they’re referred to by
the system as line 0 through line 349. The ““1-based” counting is used here
for simplicity.

The displacement, or offset, of a line (that is, how far away a line is
from the beginning of its page) is the factor used to locate that line within its
page frame. It’s a relative factor.

For example, lines 0, 100, 200, and 300 are the first lines for pages O, 1,
2, and 3 respectively so each has a displacement of zero. This is shown in
Figure 3.2. Likewise, if the operating system needed to access line 214 it
would first go to page 2 and then go to line 14 (the fifteenth line).

Page 0 Displacement
0 BEGIN 0
1 1
Job 1 2 2
1 BEGN |
2 —
3 H
l 99 99
i nt
99 Page 1 Displaceme
100 100 0
101 3 101 1
102 2
199 -
200 199 99
201
l Page 2
Page 3 Displacement
300 0
350 END 301 1
302

2

l

349 END | 49

FIGURE 3.2 Job 1is 350 lines long and divided into four pages of 100 lines each
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EXAMPLE 1

EXAMPLE 2

The first line of each page has a displacement of zero, the second line
has a displacement of one, and so on to the last line (or byte) that has a
displacement of 99. So once the operating system finds the right page, it can
access a line using the job’s relative position within its page.

In this example, it’s easy for us to see, intuitively, that all of the line
numbers less than 100 will be on Page 0, all line numbers greater than or
equal to 100 but less than 200 will be on Page 1, and so on. (That’s the
advantage of choosing a fixed page size, e.g., 100 lines.) The operating sys-
tem uses an algorithm to calculate the page and displacement; it’s a simple
arithmetic calculation.

To find the address of a given program line, the line number is divided
by the page size, keeping the remainder as an integer. The resulting quotient
is the page number and the remainder is the displacement within that page.
When it’s set up as a long division problem, it looks like this:

page number
page size)line number to be located
&(2(_
XXX
XXX

displacement

For example, if we use 100 lines as the page size, the page number and the
displacement (the location within that page) of Line 214 would be calcu-
lated like this:

2
100)214
200

14

The quotient (2) is the page number and the remainder (14) is the dis-
placement. So the line is located on Page 2, 15 lines (Line 14) from the top of
the page.

Likewise, we could calculate the page number and displacement of Line 36
by dividing 36 by 100. We find that the page number is 0 and the displace-
ment is 36. So the line will be found on Page 0, Line 36, the 37th line from
the top of the page.

Using the concepts just presented, and using the same parameters
from Example 1, answer these questions:

1. Could the operating system (or the hardware) get a page number that’s
greater than 3, if the program intended Line 214?

2. If it did, what should the operating system do?

3. Could the operating system get a remainder of more than 997

4. What is the smallest remainder possible?
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The answers are:

1. No, not if the application program was written correctly. (For the excep-
tion, see exercise 14 at the end of this chapter.)

2. Send an error message and stop processing the program (the page is “out-
of-bounds™).

3. Not if it divides correctly.

4. Zero.

In actuality, the division is carried out in the hardware but the operat-
ing system is responsible for maintaining the tables (allocating and deallo-
cating storage).

This procedure gives the location of the line with respect to the job’s
pages. However, these pages are only relative; each page is actually stored in
a page frame that can be located anywhere in available main memory.
Therefore, the algorithm needs to be expanded to find the exact location of
the line in main memory. To do so, we need to correlate each of the job’s
pages with their page frame numbers via the Page Map Table.

For example, if we look at the PMT for Job 1 from Figure 3.1, we see
that it looks like the data in Table 3.2.

TABLE 3.2 Page Map Table for Job 1 in Figure 3.1.

Step 1

Step 2

Job page no. Page frame no.
0 8
1 10
2 5
3 11

In Example 1, we were looking for an instruction with a displacement
of 14 on Page 2. To find its exact location in memory, the operating system
(or the hardware) has to do the following.

Do the arithmetic computation from the algorithm described previously to
determine the page number and displacement of the line. (In actuality, the
operating system identifies the lines, or data values and instructions, as ad-
dresses [bytes or words]. We refer to them here as “lines” to make them
easier to explain.)

Page number = the integer quotient from the division of the job space ad-
dress by the page size
Displacement = the remainder from the page number division above

The computation shows that the page number is 2 and the displace-
ment is 14.

Refer to this job’s PMT and find out which- page frame contains Page 2.
According to Table 3.2, Page 2 is located in Page Frame 5.
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Step 3 Get the address of the beginning of the page frame by multiplying the page

Step 4

frame number by the page frame size.
ADDR_PAGE_FRAME = PAGE_FRAME_NUM * PAGE_SIZE

Now add the displacement (calculated in step 1) to the starting address of
the page frame to compute the precise location in memory of the line:

INSTR_ADDR_IN_MEM = ADDR_PAGE_FRAME + DISPL

The result of this maneuver tells us exactly where Line 14 is located in
main memory.

Figure 3.3 follows the hardware (and the operating system) as it runs
an assembly language program that instructs the system to load into Regis-
ter 1 the value found at Line 518.

Job 1 Main Memory Page frame no.
Line no. Instruction/Data 0 0
001 BEGIN 512 1
1024 2
025 LOAD R1, 518 1536 | Job 1 - Page 1 3
2048 4
518 3792 2560 | Job 1—Page 0 5
{ 3072 6
PMT for Job 1 3584 7
Page no. | Page frame number i 8
0 5 5
1 3

FIGURE 3.3 Job 1 with its Page Map Table. Main memory showing allocation of page
frames to Job 1.

In Figure 3.3 the page frame sizes in main memory are set at 512 bytes
each and the page size is 512 bytes for this system. From the PMT we can see
that this job has been divided into two pages. To find the exact location of
Line 518 (where the system will find the value to load into Register 1), the
system will do the following:

1. Compute the page number and displacement: the page number is 1, the
displacement is 6.

2. Go to the Page Map Table and retrieve the appropriate page frame num-
ber for Page 1. It’s Page Frame 3.

3. Compute the starting address of the page frame by multiplying the page
frame number times the page frame size: (3 * 512 = 1536).

4. Calculate the exact address of the instruction in main memory by adding
the displacement to the starting address: (1536 + 6 = 1542). Therefore,
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memory address 1542 holds the value that should be loaded into Regis-
ter 1.

As you can see, this is a lengthy operation. Every time an instruction is
executed, or a data value is used, the operating system (or the hardware)
must translate the job space address, which is relative, into its physical ad-
dress, which is absolute. This is called “resolving the address” or address
resolution. Of course, all of this processing is overhead, which takes process-
ing capability away from the jobs waiting to be completed. However, in
most systems the hardware does the paging, although the operating system
is involved in dynamic paging, which will be covered later.

The advantage of a paging scheme is that it allows jobs to be allocated
in noncontiguous memory locations so that memory is used more efficiently
and more jobs can fit in the main memory (which is synonymous). However,
there are disadvantages: overhead is increased and internal fragmentation is
still a problem, although only in the last page of each job. The key to the
success of this scheme is the size of the page: a page size too small will gener-
ate very long PMTs while a page size too large will result in excessive inter-
nal fragmentation. Determining the best page size isn’t easy—there are no
hard and fast rules that will guarantee optimal utilization of resources—and
it’s a problem we’ll see again as we examine other paging alternatives. The
best size depends on the actual job environment, the nature of the jobs being
processed, and the constraints placed on the system.

Demand paging introduced the concept of loading only a part of the pro-
gram into memory for processing. It was the first widely used scheme that
removed the restriction of having the entire job in memory from the begin-
ning to the end of its processing. With demand paging, jobs are still divided
into equally sized pages that initially reside in secondary storage. When the
Job begins to run, its pages are brought into memory only as they are needed.

Demand paging takes advantage of the fact that programs are written
sequentially so that while one section, or module, is being processed all of
the other modules are idle (Madnick & Donovan, 1974). Not all the pages
are necessary at once, for example:

1. User-written error handling modules are processed only when a
specific error is detected during execution. (For instance, they are often used
to indicate to the operator that input data was incorrect or that a computa-
tion resulted in an invalid answer). If no error occurs, and we hope this is
generally the case, these instructions are never processed.

2. Many modules are mutually exclusive. For example, if the input
module is active then the processing module isn’t being used. Similarly, if
the processing module is active then the output module is idle.

3. Certain program options are either mutually exclusive or not al-
ways accessible. This is easiest to visualize in menu-driven programs. For
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example, a program used to maintain a data file may give the user four
choices:

DATA FILE MAINTENANCE MENU

SELECT ONE:
1) To add a new record
2) To delete existing records
3) To update existing records
4) To return to previous menu

PLEASE ENTER YOUR CHOICE: ————__

FIGURE 3.4 Menu-driven programs allow users to work with only one program
module at a time.

The system of Figure 3.4 allows the operator to make only one selec-
tion at a time. If the user selects number 1 then only the module with the
program instructions to add new records to the file will be used, so only that
module needs to be in memory. All of the other modules can remain in sec-
ondary storage until they are called from the menu.

4. Many tables are assigned a large fixed amount of address space even
though only a fraction of the table is actually used. For example, a symbol
table for an assembler might be prepared to handle 100 symbols. If only 10
symbols are used then 90% of the table remains unused.

One of the most important innovations of demand paging was that it
made virtual memory widely available. (Virtual memory is explained in de-
tail at the conclusion of this chapter.) The demand paging scheme allows the
user to run jobs with less main memory than would be required if the oper-
ating system was using the paged memory allocation scheme described ear-
lier. In fact, a demand paging scheme can give the appearance of an almost-
infinite or nonfinite amount of physical memory when, in reality, physical
memory is significantly less than infinite.

The key to the successful implementation of this scheme is the use of a
high-speed direct access storage device that can work directly with the CPU.
That’s vital because pages must be passed quickly from secondary storage to
main memory and back again.

How and when the pages are passed (or “swapped™) depends on
predefined policies that determine when to make room for needed pages
and how to do so. The operating system relies on tables (the Job Table, the
Page Map Table, and the Memory Map Table) to implement the algorithm.
These tables are basically the same as for paged memory allocation but with
the addition of three new fields for each page in the PMT: one to determine
if the page being requested is already in memory or not; a second to deter-
mine if the page contents have been modified or not; and a third to deter-
mine if the page has been referenced recently.
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The first field tells the system where to find each page. If it’s already in
memory, the system will be spared the time required to bring it from sec-
ondary storage. It’s faster for the operating system to scan a table located in
main memory than it is to retrieve a page from a disk.

The second field, noting if the page has been modified, is used to save
time when pages are removed from main memory and returned to second-
ary storage. If the contents of the page haven’t been modified then the page
doesn’t need to be rewritten to secondary storage. The original, already
there, is correct.

The third field, which indicates any recent activity, is used to deter-
mine which pages show the most processing activity, and which are rela-
tively inactive. This information is used by several page-swapping policy
schemes to determine which pages should remain in main memory and
which should be swapped out when the system needs to make room for
other pages being requested.

For example in Figure 3.5, the number of total job pages is 15, and the
number of total available page frames is 12. (The operating system occupies
the first four of the 16 page frames in main memory.)

Assuming the processing status illustrated in Figure 3.5, what happens
when Job 4 requests that Page 3 be brought into memory and there are no
empty page frames available?

To move in 2 new page, a resident page must be swapped back into
secondary storage. Specifically, that includes copying the resident page to
the disk (if it was modified), and writing the new page into the empty page
frame. Such a swap requires close interaction between hardware compo-
nents, software algorithms, and policy schemes.

The hardware components generate the address of the required page,
find the page number, and determine whether or not it’s already in memory.
The following steps make up the hardware instruction processing cycle.

Start processing instruction
Generate data address
Compute page number
If page is in memory
then
get data and finish instruction
advance to next instruction
return to step 1

AW —

clse
generate page interrupt
call page interrupt handler

The same process is followed when “fetching” an instruction.

When the test fails (meaning that the page is in secondary storage, but
not in memory), the operating system software takes over. The section of the
operating system that resolves these problems is called the page interrupt
handler. It determines if there are empty page frames in memory so the re-
quested page can be immediately copied from secondary storage. If all page
frames are busy, the page interrupt handler must decide which page will be
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Job 1 Job 1 PMT
Page O PO| Y 5
Page 1 P1] Y 9
Page 2 p2| Y 7
Page 3 P3| Y 12
| L page frame no.
reler_epced
;?2{’.};‘:’“ Main Memory Page frame no.

Job 2 Job 2 PMT 0
Page 0 PO| Y 10 Operating System
Page 1 P1| Y 14 :
Job 3 Job 3 PMT Job 3-P0O 4
Page 0 PO| Y 4 Job 1-PO 5
Page 1 P1] Y 8 Job4 -PO 6
Page 2 P2| Y 11 Job 1-P2 7

Job3-P1 8
Job 4 Job 4 PMT Job1-P1 9
Page 0 PO| Y 6 Job 2-P0O 10
Page 1 P1| Y 13 Job3-P2 1"
Page 2 P2| Y 15 Job 1-P3 12
Page 3 P3| N Job4-P1 13
Page 4 P4| N Job2-P1 14
Page 5 PS| N Job4-P2 15

1Y = yes (in memory);
N = no (not in memory).
FIGURE 3.5 Demand paging. How four jobs are mapped into main memory. (Note:
the Page Map Tables have been simplified in this illustration.)

swapped out. (This decision is directly dependent on the predefined policy
for page removal.) Then the swap is made.

Before continuing. three tables must be updated: the Page Map Tables
for both jobs (the PMT with the page that was swapped out and the PMT
with the page that was swapped in) and the Memory Map Table. Finally, the
instruction that was interrupted is resumed and processing continues. The
algorithm for the page interrupt handler is shown on the next page.

Although demand paging is a solution to inefficient memory utiliza-
tion. it’s not free of problems. When there is an excessive amount of page
swapping back and forth between main memory and secondary storage. the
operation becomes inefficient. This is a phenomenon called thrashing. It
uses a great deal of the computer’s energy but accomplishes very little and
it’s caused when a page is removed from memory but is called back shortly
thereafter. Thrashing can occur across jobs, when a large number of jobs are
vying for a relatively few number of free pages (the ratio of job pages to free
memory page frames is high), or it can happen within a job, for example. in
loops that cross page boundaries. We can demonstrate this with a simple
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Page Interrupt Handler Algorithm

1 If there is no free page frame
then
select page to be swapped out using page removal algorithm
update job’s Page Map Table
if contents of page had been changed then
write page to disk
end if
end if
2 Use page number from step 3 on page 49 above to get disk
address where requested page is stored (the File Manager, to be
discussed later, uses the page number to get the disk address)
Read page into memory
Update job’s Page Map Table
Update Memory Map Table
Restart interrupted instruction

AWK bW

example: suppose the beginning of a loop falls at the bottom of a page, and is
completed at the top of the next page, as in this FORTRAN program:

DO I = 1,100 Page O
K=1%T1
M=Ax*x]I Page 1
WRITE (6,%) I,K,M

END DO

FIGURE 3.6 An example of demand paging that results in a page swap each time
the loop is executed and results in thrashing. If only a single page
frame is available, this program will have one page fault each time
the loop is executed.

The situation in Figure 3.6 assumes there’s only one empty page frame
available. The first page is loaded into memory and execution begins, but
after executing the last command on Page 0, the page is swapped out to
make room for Page 1. Now execution can continue with the first command
on Page 1, but at the END DO statement, Page 1 must be swapped out so Page
0 can be brought back in to continue the loop. Before this program is com-
pleted, swapping will have occurred 100 times (unless another page frame
becomes free so both pages can reside in memory at the same time). A fail-
ure to find a page in memory is often called a page fault and this example
would generate 100 page faults (and “swaps”™).

In extreme cases, the rate of useful computation could be degraded by
a factor of 100. Ideally, a demand paging scheme is most efficient when users
are aware of the page size used by their operating system and are careful to
design their programs to keep page faults to a minimum, but in reality this is
not often feasible.
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Page Replacement Policies and Concepts

As we just learned, the policy that selects the page to be removed, the page
replacement policy, is crucial to the efficiency of the system, and the algo-
rithm to do that must be carefully selected.

Several such algorithms exist and it’s a subject that enjoys a great deal
of theoretical attention and research. Two of the most well-known are first-
in first-out (FIFO) and least-recently-used (LRU). The first-in first-out pol-
icy is based on the theory that the best page to remove is the one that has
been in memory the longest. The least-recently-used policy chooses the
pages least recently accessed to be swapped out.

To illustrate the difference between FIFO and LRU, let’s imagine a
dresser drawer filled with your favorite sweaters. The drawer is full, but that
didn’t stop you from buying a new sweater. Now you have to put it away.
Obviously, it won’t fit in your sweater drawer unless you take something
out, but which sweater should you remove to the storage closet? Your deci-
sion will be based on a “sweater removal policy.”

You could take out your oldest sweater (the one that was ““first in”)
figuring that you probably won’t use it again—hoping you won’t discover in
the following days that it’s your most used, most treasured possession. Or,
you could remove the sweater that you haven’t worn recently and has been
idle for the longest amount of time (the one that was “least recently used”).
It’s readily identifiable because it’s at the bottom of the drawer. But just
because it hasn’t been used recently doesn’t mean that a once-a-year occa-
sion won’t demand its appearance soon.

What guarantee do you have that once you’ve made your choice you
won’t be trekking to the storage closet to retrieve the sweater you stored
yesterday? You could become a victim of thrashing.

Which is the best policy? It depends on the weather, the wearer, and
the wardrobe. Of course, one option is to get another drawer. For an operat-
ing system (or a computer), this is the equivalent of having more accessible
memory, and we’ll explore that option after we discover how to more effec-
tively use the memory we already have.

The examples presented in the following sections related to FIFO and
LRU have been adapted from Madnick & Donovan (1974).

First-In First-Out

The first-in first-out (FIFO) page replacement policy will remove the pages
that have been in memory the longest.

To show how the FIFO algorithm works, let’s follow a job of four pages
as it’s processed by a system with only two available page frames. Let’s
watch how each of the program’s pages are swapped into and out of memory
and count the number of page interrupts. Then we’ll compute the failure
rate and success rate.

Note: Tables 3.3 and 3.4 are simplified illustrations of how page re-
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moval works. In reality, each of the four pages retains its place in secondary
storage. And while pages are in memory, they’re never swapped between
page frames—they’re moved from Page Frame 1 to Page Frame 2 in this
example for illustration purposes only. In reality they constitute the page
frame request queue.

In Table 3.3 the job will request that its pages be processed in the fol-
lowing order:

A, B, A, C, A, B, D, B, A, C, D

When both page frames are occupied, each new page brought into
memory will cause an existing one to be swapped out to secondary storage.
A page interrupt, which we’ll identify with an asterisk (*), is generated when
a new page is brought into memory (whether a page is swapped out or not).

TABLE 3.3 Memory management using a FIFO page removal policy.

Main
memory

Page Requests A B A C A B D B A C D
Page Interrupts * * * * * * * * *
Contents of
Page Frame 1 A B B C A B D D A C D
Contents of
Page Frame 2 A A B C A B B D A C
Contents of A
Secondary B
Storage: cC ¢ ¢ € A B C A A B B A
D D D D D D D C C C D B

The efficiency of this configuration is dismal: there are nine page inter-
rupts out of 11 page requests. This is due to the few page frames available
and the need for many new pages. To calculate the failure rate, we divide the
number of page requests into the number of interrupts. The failure rate of
this system is 9/11, which is 82%. Stated another way, the success rate is
2/11, or 18%. A failure rate this high is usually unacceptable.

We’re not saying FIFO is bad. We chose this example to show how FIFO
works, not to diminish its appeal as a swapping policy. The high failure rate
here is caused by both the limited amount of memory available and the order
in which pages are requested by the program. The page order can’t be changed
by the system, although the size of main memory can be changed. But buying
more memory may not always be the best solution—especially when you
have many users and each one wants an unlimited amount of memory. There
is no guarantee that buying more memory will always result in better perfor-
mance; this is known as the FIFO anomaly or Belady’s anomaly).

Least Recently Used

The least recently used (LRU) page replacement policy swaps out the pages
that show the least amount of recent activity, figuring that these pages are
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the least likely to be used again in the immediate future. Conversely, if a
page is used, it’s likely to be used again soon; this is the basis for the “theory
of locality”” which will be explained later in this chapter.
To see how it works, let’s follow the same job of Table 3.3 but using the
LRU policy. The results are shown in Table 3.4. For illustration purposes,
we’ll move each page to Page Frame 1 as it’s requested. When each page is
retained, it “goes” to the head of the queue (Page Frame 1). Remember that
in a working system pages are not swapped between page frames. In reality,
a queue of the requests is kept in FIFO order, or a “‘time stamp” of when the
job entered the system is saved, or a “mark” in the job’s PMT is made peri-
odically to implement this policy.

TABLE 3.4 Memory management using a LRU page removal policy.

Page Requests A B A C A B D B A C D
Page Interrupts * oox * * % * * ox
Contents of
Main Page Frame 1 A B A C A B D B A C D
memory Contents of
Page Frame 2 A B A C A B D B A C
Contents of A
Secondary B
Storage: c ¢ ¢ ¢ B B C A A C B A
D D D D D D D C C D D B

The efficiency of this configuration is only slightly better than with
FIFO. Here, there are eight page interrupts out of 11 page requests, so the
failure rate is 8/11, or 73%. In this example, an increase in main memory by
one page frame would increase the success rate of both FIFO and LRU
(you’ll have the opportunity to calculate the exact increase in exercises 6 and
7 at the end of this chapter). However, we can’t conclude on the basis of only
one example that one policy is better than the others. In fact, LRU is a stack
algorithm removal policy, which functions in such a way that increasing
main memory will cause either a decrease, or the same number, of page
interrupts. In other words, an increase in memory will never cause an in-
crease in the number of page interrupts.

On the other hand, it has been shown (Belady, Nelson, & Shelder,
1969) that under certain circumstances adding more memory can, in rare
cases, actually cause an increase in page interrupts when using a FIFO pol-
icy. As noted before, it’s called the FIFO anomaly. But although it’s an un-
usual occurrence, the fact that it exists, coupled with the fact that pages are
removed regardless of their activity (as was the case in Table 3.3), has re-
moved FIFO from the most favored policy position it held in some cases.

Other page removal algorithms, MRU (most recently used) and LFU
(least frequently used), are given as exercises at the end of this chapter.
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The Mechanics of Paging

Before the Memory Manager can determine which pages will be swapped
out, it needs specific information about each page in memory—information
included in the Page Map Tables.

For example, in Figure 3.5, the Page Map Table for Job | included
three bits: the status bit, the referenced bit, and the modified bit (these were
the three middle columns: the two empty columns and the Y/N [in memory
or not] column), but the representation of the table was simplified for illus-
tration purposes; it would look something like the one in Table 3.5.

TABLE 3.5 Page Map Table for Job 1 in Figure 3.5.

Page Status bit Referenced bir  Modified bit Page frame
0 1 1 1 5
1 1 0 0 9
2 1 0 0 7
3 1 1 0 12

As we said before, the status bit indicates whether the page is currently
in memory or not. The referenced bit indicates whether the page has been
“called” (referenced) recently. This bit is important because it’s used by the
LRU algorithm to determine which pages should be swapped out.

The modified bit indicates whether or not the contents of the page
have been altered and is used to determine if the page must be rewritten to
secondary storage when it’s swapped out before its page frame is released (a
page frame whose contents have not been modified can be overwritten di-
rectly). That’s because when a page is swapped into memory, it isn’t re-
moved from secondary storage. The page is merely copied—the original
remains intact in secondary storage. Therefore, if the page isn’t altered
while it’s in main memory (in which case the modified bit remains un-
changed, zero), the page needn’t be copied back to secondary storage when
it’s swapped out of memory—the page that’s already there is correct. How-
ever, if modifications were made to the page, the new version of the page
must be written over the older version—and that takes time.

Each of the bits can be either 0 or 1 as shown in Table 3.6.

TABLE 3.6 Meaning of the bits in the Page Map Table. (The order in this table is that of Figure 3.5.)

Status bit Modified bit Referenced bit
Value Meaning Value Meaning Value Meaning
0 not in memory 0 not modified 0 not called

1 resides in memory 1 was modified 1 was called




56 Chapter Three

The status bit for all pages in memory is 1. A page must be in memory
before it can be swapped out so all of the candidates for swapping have a 1 in
this column. The other two bits can be either 0 or 1, so there are four possi-
ble combinations of the referenced and modified bits:

TABLE 3.7 Four possible combinations of modified and referenced bits.

Modified Referenced Meaning
Case 1 0 0 not modified AND not referenced
Case 2 0 1 not modified BUT was referenced
Case 3 | 0 was modified BUT not referenced [impossible?)]
Case 4 1 1 was modified AND was referenced

The FIFO algorithm uses only the modified bit and status bits when
swapping pages, but the LRU looks at all three before deciding which pages
to swap out.

Which page would the LRU policy choose first to swap? Of the four
cases described in Table 3.7, it would choose pages in Case | as the ideal
candidates for removal because they’ve been neither modified nor refer-
enced. That means that they wouldn’t need to be rewritten to secondary
storage, and they haven’t been referenced recently. So the pages with zeros
for these two bits would be the first to be swapped out.

What’s the next most likely candidate? The LRU policy would choose
Case 3 next because the other two, Case 2 and Case 4, were recently refer-
enced. The bad news is that Case 3 pages have been modified so it’ll take
more time to swap them out. By process of elimination, then, we can say
that Case 2 is the third choice and Case 4 would be the pages least likely to
be removed.

You may have noticed that Case 3 presents an interesting situation:
apparently these pages have been modified without being referenced. How
is that possible? The key lies in how the referenced bit is manipulated by the
operating system. When the pages are brought into memory, they’re all usu-
ally referenced at least once and that means that all of the pages soon have a
referenced bit of 1. Of course the LRU algorithm would be defeated if every
page indicated that it had been referenced. Therefore, to make sure the ref-
erenced bit actually indicates recently referenced, the operating system peri-
odically resets it to 0. Then as the pages are referenced during processing the
bit is changed from O to | and the LRU policy is able to identify which pages
actually are frequently referenced. As you can imagine, there’s one brief in-
stant, just after the bits are reset, in which all of the pages (even the active
pages) have reference bits of 0 and are vulnerable. But as processing contin-
ues, the most-referenced pages soon have their bits reset to | so the risk is
minimized.
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The Working Set

One innovation that improved the performance of demand paging schemes
was the concept of the working set. A job’s working set is the set of pages
residing in memory that can be accessed directly without incurring a page
fault.

When a user requests execution of a program, the first page is loaded
into memory and execution continues as more pages are loaded: those con-
taining variable declarations, others containing instructions, others con-
taining data, and so on. After a while, most programs reach a fairly stable
state and processing continues smoothly with very few additional page
faults. At this point the job’s working set is in memory, and the program
won’t generate many page faults until it gets to another phase requiring a
different set of pages to do the work—a different working set.

Of course, it’s possible that a poorly structured program could require
that every one of its pages be in memory before processing can begin.

Fortunately, most programmers structure their work, and this leads to
a ““locality of reference” during the program’s execution, meaning that dur-
ing any phase of its execution the program references only a small fraction of
its pages. For example, if a job is executing a loop then the instructions
within the loop are referenced extensively while those outside the loop
aren’t used at all until the loop is completed—that’s locality of reference.
The same applies to sequential instructions, subroutine calls (within the
subroutine), stack implementations, or access to variables acting as coun-
ters or sums, or multidimensional variables such as arrays and tables (only a
few of the pages are needed to handle the references).

It would be convenient if all of the pages in a job’s working set were
loaded into memory at one time to minimize the number of page faults and
to speed up processing. But that’s easier said than done. To do so the system
needs definitive answers to some difficult questions: How many pages com-
prise the working set? What’s the maximum number of pages the operating
system will allow for a working set?

The second question is particularly important in time-sharing systems,
which regularly swap jobs (or pages of jobs) into memory and back to sec-
ondary storage to accommodate the needs of many users. The problem is
this: every time a job is re-loaded back into memory (or has pages swapped)
it has to generate several page faults until its working set is back in memory
and processing can continue. It’s a time-consuming task for the CPU, which
can’t be processing jobs during the time it takes to process each page fault as
shown in Figure 3.7.

Execute  Page wait Time
30 ms 300 ms

FIGURE 3.7 Time required to process page faults.
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One solution adopted by many paging systems is to begin by identify-
ing each job’s working set and then loading it into memory in its entirety
before allowing execution to begin. This is difficult to do before a job is
executed but can be identified as its execution proceeds.

In a time-sharing system this means the operating system must keep
track of the size and identity of every working set, making sure that the jobs
destined for processing at any one time won’t exceed the available memory.
Some operating systems use a variable working set size and either increase it
when necessary (the job requires more processing) or decrease it when nec-
essary. This may mean that the number of jobs in memory will need to be
reduced if, by doing so, the system can ensure the completion of each job
and the subsequent release of its memory space.

We’ve looked at several examples of demand paging memory alloca-
tion schemes. Demand paging had two advantages. It was the first scheme in
which a job was no longer constrained by the size of physical memory; it
introduced the concept of virtual memory. The second advantage was that it
utilized memory more efficiently than the previous schemes because the sec-
tions of a job that were used seldom or not at all (such as error routines)
weren’t loaded into memory unless they were specifically requested. Its dis-
advantage was the increased overhead caused by the tables and the page
interrupts. The next allocation scheme built on the advantages of both pag-
ing and dynamic partitions.

Segmented Memory Allocation

The concept of segmentation is based on the common practice by program-
mers of structuring their programs in modules—logical groupings of code.
With segmented memory allocation, each job is divided into several seg-
ments of different sizes, one for each module which contains pieces that per-
form related functions. A subroutine is an example of one such logical group.
This is fundamentally different from a paging scheme, which divides the job
into several pages all of the same size each of which often contains pieces
from more than one program module.

A second important difference is that main memory is no longer di-
vided into page frames because the size of each segment is different—some
are large and some are small. Therefore, as with the dynamic partitions dis-
cussed in Chapter 2, memory is allocated in a dynamic manner.

When a program is compiled or assembled, the segments are set up
according to the program’s structural modules. Each segment is numbered
and a Segment Map Table (SMT) is generated for each job; it contains the
segment numbers, their lengths, access rights, status, and (when each is
loaded into memory) its location in memory. Figures 3.8 and 3.9 show a job,
Job 1, composed of a main program and two subroutines, together with its
Segment Map Table and actual main memory allocation.
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Main Program Subroutine A Subroutine B

99

Segment 2

199

Segment 1

349

Segment 0

FIGURE 3.8 Segmented memory allocation. Job 1 includes a main program, Subrou-
tine A, and Subroutine B, so it's divided into three segments.

Segment Map Table for Job 1

0 f 0
: Main Program Segment no. | Size | Status' | Access? %%ng
0 aso | v E 4000 Operating
1 200 | Y E 7000 H System
— 2 100 [ N E _
3000
Empty
4000 -
: Main
349 program
0| subroutinea |—
: Other
i programs
— 7000 —_—
Subroutine A
199
0 Other
: Subroutine B programs
99 4
Job 1 Main Memory
1Y = in memory;

N = not in memory.
2E = Execute only.

FIGURE 3.9 The Segment Map Table tracks each of the segments for Job 1.
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As in demand paging, the referenced, modified, and status bits are
used in segmentation and appear in the SMT but they aren’t shown in Fig-
ures 3.9 and 3.11.

The Memory Manager needs to keep track of the segments in memory
and this is done with three tables combining aspects of both dynamic parti-
tions and demand paging memory management:

1. The Job Table lists every job in process (one for the whole system).

2. The Segment Map Table lists details about each segment (one for each
job).

3. The Memory Map Table monitors the allocation of main memory (one
for the whole system).

Like demand paging, the instructions within each segment are ordered
sequentially, but the segments don’t need to be stored contiguously in mem-
ory. We only need to know where each segment is stored. The contents of the
segments themselves are contiguous (in this scheme).

To access a specific location within a segment we can perform an oper-
ation similar to the one used for paged memory management. The only dif-
ference is that we work with segments instead of pages. The addressing
scheme requires the segment number and the displacement within that seg-
ment, and, because the segments are of different sizes, the displacement
must be verified to make sure it isn’t outside of the segment’s range.

In Figure 3.10, Segment 1 is (includes all of) Subroutine A so the sys-
tem finds the beginning address of Segment 1, address 7000, and it begins
there. If the instruction requested that processing begin at Line 100 of Sub-
routine A (which is possible in languages that support multiple entries into
subroutines) then, to locate that line in memory, the Memory Manager
would need to add 100 (the displacement) to 7000 (the beginning address of
Segment 1). In code it would look like this:

ACTUAL_MEM_LOC = BEGIN_MEM_LOC_OF_SEG + DISPLACEMENT

Can the displacement be larger than the size of the segment? No, not if
the program is coded correctly; however, accidents do happen and the
Memory Manager must always guard against this possibility by checking the
displacement against the size of the segment, verifying that it’s not out of
bounds.

To access a location in memory when using either paged or segmented
memory management, the address is composed of two entries: the page or
segment number and the displacement. Therefore, it’s a two-dimensional
addressing scheme: SEGMENT NUMBER—DISPLACEMENT.

The disadvantage of any allocation scheme in which memory is parti-
tioned dynamically is the return of external fragmentation. Therefore,
recompaction of available memory is necessary from time to time (if that
schema is used).

As you can see, there are many similarities between paging and seg-
mentation, so they’re often confused. The major difference is a conceptual
one: pages are physical units that are invisible to the user’s program and of
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Main Program Segment Map Table for Job 1
0 Segment Size Memory 0
50 | Call Subroutine A no. e address
: 0 350 (S| S{g| [ 4000 Operating
1 200 [ 2| 5|5| 3| 7000 I System
Cia|lole
2 100 [a || = || 6000 3000
4000
Call Subroutine A | 4050
l Main Program 4349
349
Subroutine A
0 6000
: Subroutine B
E ' ubroutine 6099
100 | Call Subroutine B
: 7000
199 | Subroutine A
) Call SubroutineB 7100
Subroutine B 7199
0
99
Job 1 Main Memory

FIGURE 3.10 During execution, the main program calls Subroutine A, which triggers
the SMT to look up its location in memory.

fixed sizes; segments are logical units that are visible to the user's program
and of variable sizes.

Segmented/Demand Paged Memory Allocation

The segmented/demand paged memory allocation scheme evolved from the
two we've just discussed. It’s a combination of segmentation and demand
paging, and it offers the logical benefits of segmentation as well as the physi-
cal benefits of paging. The logic isn’t new. The algorithms used by the de-
mand paging and segmented memory management schemes are applied
here with only minor modifications.

This allocation scheme doesn’t keep each segment as a single contigu-
ous unit but subdivides it into pages of equal size. smaller than most seg-
ments, and more easily manipulated than whole segments. Therefore, many
of the problems of segmentation (compaction, external fragmentation, and
secondary storage handling) are removed because the pages are of fixed
length.
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Active Job Table Segment Map Tables Page Map Tables Main Memory
Job 0 Job 0/Segment 0
Job | Pointer to Segment Segment | Pointer to Page no. | Page Frame no. 0
no. | Map Table no. Page Map Table 0 7 — 1 | Operating System
0 0 1 4 2
L L Job 0/Segment 1 3,| Job (/Seg 1/Pg 0
2 2 0 3 4 | Job 0/Seg 0/Pg 1
5
Job 1 ; E 6
0 7 | Job 0/Seg 0/Pg 0
. 1 - Job 0/Segment 2 I 8 | Job 0/Seg 2/Pg 0
N 2 0 8 9
3 1 13 10
Job 1/Segment 0 _l 11 | Job 0/Seg 1/Pg 1
0 12
1 13 | Job 0/Seg 2/Pg 1
14
Job N 2
0 Job 1/Segment 1
1 0
2 1
3 Job 1ISeg:ment 3
4
0
1
2

FIGURE 3.11 How the Job Table, Segment Map Table, Page Map Table, and main
memory interact in a segment/paging scheme.

This scheme requires four tables:

. The Job Table lists every job in process (one for the whole system).
. The Segment Map Table lists details about each segment (one for each
job).
3. The Page Map Table lists details about every page (one for each seg-
ment).
4. The Memory Map Table monitors the allocation of the page frames in
main memory (one for the whole system).

Note that the tables in Figure 3.11 have been simplified. The SMT
actually includes additional information regarding protection (such as the
authority to read, write, execute, and delete parts of the file), as well as
which users have access to that segment (user only, group only, or every-
onc—some systems call these access categories “owner,” “group,” and
“world,” respectively). In addition, the PMT includes the status, modified,
and referenced bits.

To access a location in memory, the system must locate the address
which is composed of three entries: segment number, page number within

[\
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that segment, and displacement within that page. It’s a three-dimensional
addressing scheme: SEGMENT NUMBER—PAGE NUMBER—DIS-
PLACEMENT.

The major disadvantages of this memory allocation scheme are the
overhead required for the extra tables and the time required to reference the
segment table and the page table. To minimize the number of references,
many systems use associative memories to speed up the process.

Associative memory is a name given to several registers that are allo-
cated to each job that’s active. Their task is to associate several segment and
page numbers belonging to the job being processed with their main memory
addresses. These associative registers reside in main memory, and the exact
number of registers varies from system to system.

To appreciate the role of associative memory, it’s important to under-
stand how the system works with segments and pages. In general, when a job
is allocated to the CPU its Segment Map Table is loaded into main memory
while the Page Map Tables are loaded only as needed. As pages are swapped
between main memory and secondary storage all tables are updated.

Here’s a typical procedure: when a page is first requested, the job’s
SMT is searched to locate its PMT; then the PMT is loaded and searched to
determine the page’s location in memory. If the page isn’t in memory, then a
page interrupt is issued, the page is brought into memory, and the table is
updated. (As the example indicates, loading the PMT can cause a page inter-
rupt, or fault, as well.) This process is just as tedious as it sounds, but it gets
easier. Since this segment’s PMT (or part of it) now resides in memory, any
other requests for pages within this segment can be quickly accommodated
because there’s no need to bring the PMT into memory. However, accessing
these tables (SMT and PMT) is time-consuming.

That’s the problem addressed by associative memory, which stores in
memory the information related to the most-recently-used pages. Then
when a page request is issued, two searches begin—one through the segment
and page tables and one through the contents of the associative registers.

If the search of the associative registers is successful, then the search
through the tables is stopped (or eliminated) and the address translation is
performed using the information in the associative registers. However, if
the search of associative memory fails, no time is lost because the search
through the SMTs and PMTs has already begun (in this schema). When this
search is successful and the main memory address from the PMT has been
determined, the address is used to continue execution of the program and
the reference is also stored in one of the associative registers. If all of the
associative registers are full, then an LRU (or other) algorithm is used and
the least-recently-referenced associative register is used to hold the informa-
tion on this requested page.

For example, a system with eight associative registers per job will use
them to store the SMT and PMT for the last eight pages referenced by that
job. When an address needs to be translated from segment and page num-
bers to a memory location, the system will look first in the eight associative
registers. If a match is found the memory location is taken from the associa-
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tive register; if there is no match then the SMTs and PMTs will continue to
be searched and the new information will be stored in one of the eight regis-
ters as a result.

If a job is swapped out to secondary storage during its execution, then
all of the information stored in its associative registers is saved, as well as
the current PMT and SMT, so the displaced job can be resumed quickly
when the CPU is reallocated to it. The primary advantage of a large associa-
tive memory is increased speed. The disadvantage is the high cost of the
complex hardware required to perform the parallel searches. In some sys-
tems the searches do not run in parallel, but the search of the SMT and PMT
follows the search of the associative registers.

Virtual Memory

Demand paging made it possible for a program to execute even though only
a part of it was loaded into main memory. In effect it removed the restric-
tion imposed on maximum program size. The capability of moving pages at
will between two storage areas (main memory and secondary storage) gave
way to a new concept appropriately named virtual memory. It gives the users
the appearance that their programs are being completely loaded in main
memory during their entire processing time—a feat that would require an
incredible amount of main memory—while, in reality, only a portion of
each is stored there.

Until the implementation of virtual memory, the problem of making
programs fit into available memory was left to the users. In the early days,
programmers had to limit the size of their programs to make them fit into
main memory, but sometimes that wasn’t possible because the amount of
memory allocated to them was too small to get the job done. Clever pro-
grammers solved the problem by writing *““tight” programs wherever possi-
ble. It was the size of the program that counted most—and the instructions
for these tight programs were nearly impossible for anyone but their authors
to understand or maintain. The useful life of the program was limited to the
employment of its programmer.

During the second generation, programmers started dividing their
programs into sections that resembled working sets, or really segments,
called ““overlays.” The program could begin with only the first overlay
loaded into memory. As the first section neared completion it would in-
struct the system to lay the second section of code over the first section al-
ready in memory. Then the second section would be processed. As that
section would finish, it would call in the third section to be overlayed, and so
on until the program was finished. Some programs had multiple overlays in
main memory at once.

Although the swapping of overlays between main memory and sec-
ondary storage was done by the system, the tedious task of dividing the
program into sections was done by the programmer. It was the concept of
overlays that suggested paging and segmentation and led to virtual mem-
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ory, which was then implemented through demand paging and segmenta-
tion schemes.

Segmentation allowed for “sharing” of files among users (see exercise 12
for an example). This means that the shared segment contains: (1) an area
where unchangeable (called “reentrant™) code is stored, and (2) several data
areas, one for each user. In this schema, users share the code, which cannot be
modified, and can modify the information stored in their own data area as
needed without affecting the data stored in other users’ data areas.

Before virtual memory, sharing meant that copies of files were stored
in each user’s account. This allowed them to load their own copy and work
on it at any time. This scheme created a great deal of unnecessary system
cost—the I/0 overhead in loading the copies and the extra secondary stor-
age needed. With virtual memory, those costs are substantially reduced
because shared programs and subroutines are loaded “on demand,” satis-
factorily reducing the storage requirements of main memory (although this
is accomplished at the expense of the Memory Map Table).

Virtual memory works well in a multiprogramming environment be-
cause most programs spend a lot of time waiting—they wait for I/O to be
performed; they wait for pages to be swapped in or out; and, in a time-
sharing environment, they wait when their “time slice is up” (their turn to
use the processor is expired). In a multiprogramming environment, the
waiting time isn’t lost, and the CPU simply moves to another job; this was
the advantage of partitions.

Virtual memory has increased the use of several programming tech-
niques. For instance, it aids the development of large software systems be-
cause individual pieces can be developed independently and linked together
later on.

Virtual memory management has several advantages:

1. A job’ssize is no longer restricted to the size of main memory (or the free
space within main memory).

2. Memory is used more efficiently because the only sections of a job stored
in memory are those needed immediately while those not needed remain
in secondary storage.

3. It allows an unlimited amount of multiprogramming (which can apply to
many jobs, as in dynamic and static partitioning, or many users in a
time-sharing environment).

4. It eliminates external fragmentation and minimizes internal fragmenta-
tion by combining segmentation and paging (internal fragmentation oc-
curs in the program).

5. It allows for the sharing of code and data.

6. It facilitates dynamic linking of program segments.

The advantages far outweigh these disadvantages:

. Increased hardware costs.
Increased overhead for handling paging interrupts.
. Increased software complexity to prevent thrashing.
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Chapter Summary The Memory Manager has the task of allocating memory to each job to be
executed, and reclaiming it when execution is completed.

Each of the schemes we’ve discussed in Chapters 2 and 3 was designed
to address a different set of pressing problems but, as we’ve seen, when some
problems were solved, others were created. Table 3.8 shows how they com-

pare.

TABLE 3.8 Comparison of memory allocation schemes discussed in Chapters 2 and 3.

Scheme

Problem solved

Problem created

Changes in software

Single-user Contiguous

Fixed Partitions

Dynamic Partitions

Relocatable Dynamic
Partitions

Paged

Demand Paging

Segmented

Segmented/Demand
Paged

Idle CPU time

Internal fragmentation
Internal fragmentation

Need for compaction

Job size no longer
limited to memory size

More efficient memory
use

Allows large-scale
multiprogramming and
time-sharing

Internal fragmentation
Dynamic linking
Sharing of segments

Large virtual memory
Segment loaded on
demand

Job size limited to
physical memory size
CPU often idle

Internal fragmentation
Job size limited to
partition size

External fragmentation

Compaction overhead
Job size limited to
physical memory size

Memory needed for
tables

Job size limited to
physical memory size

Internal fragmentation
returns

Larger number of tables

Possibility of thrashing

Overhead required by
page interrupts

Necessary paging
hardware

Difficulty managing
variable-length
segments in secondary
storage

External fragmentation

Table handling overhead
Memory needed for page
and segment tables

None

Add Processor Scheduler
Add protection handler

None
Compaction algorithm

Algorithms to handle
Page Map Tables

Page replacement
algorithm

Search algorithm for
pages in secondary
Storage

Dynamic linking
package

Two-dimensional
addressing scheme

Three-dimensional
addressing scheme

The Memory Manager is only one of four “managers” that make up
the operating system. Once the jobs are loaded into memory using a mem-
ory allocation scheme, the Processor Manager must allocate the processor to
process each job in the most efficient manner possible. We’ll see how that’s

done in the next chapter.
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Key Terms  paged memory allocation page replacement policies

pages first-in first-out (FIFO) policy
page frames least-recently-used (LRU) policy
Job Table (JT) FIFO anomaly
Page Map Table (PMT) working set
Memory Map Table (MMT) segmented memory allocation
displacement segments
address resolution Segment Map Table (SMT)
demand paging allocation segmented/demand paged memory
page interrupt handler allocation
thrashing associative memory
page swap virtual memory
page fault

Exercises 1. Explain the differences between a page and a segment.

2.

List the advantages and disadvantages for each of the memory manage-

ment schemes presented in this chapter. (Although this was done in the

summary, expand on it.)

What purpose does the modified bit serve in a demand paging system?

Answer these questions:

a. What is the cause of thrashing?

b. How does the operating system detect thrashing?

¢. Once thrashing is detected, what can the operating system do to
eliminate it?

What purpose does the referenced bit serve in a demand paging system?

. Given that main memory is composed of three page frames for public

use and that a program requests pages in the following order:
dcbadcedcbae

a. Using the FIFO page removal algorithm, do a page trace analysis
indicating page faults with asterisks (*). Then compute the failure
and success ratios.

b. Increase the size of memory so it contains four page frames for pub-
lic use. Using the same page requests as above and FIFO, do another
page trace analysis and compute the failure and success ratios.

c. Did the result correspond with your intuition? Explain.

Given that main memory is composed of three page frames for public

use and that a program requests pages in the following order:

abacabdbacd

a. Using the FIFO page removal algorithm, do a page trace analysis
indicating page faults with asterisks (*). Then compute the failure
and success ratios.

b. Using the LRU page removal algorithm do a page trace analysis and
compute the failure and success ratios.

¢. Which is better? Why do you think it’s better? Can you make general
statements from this example? Why or why not?
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8.

10.

11.

12.

d. Let’s define “most-recently-used” (MRU) as a page removal algo-
rithm that removes from memory the most recently used page. Do a
page trace analysis using the same page requests as before and com-
pute the failure and success ratios.

e. Which of the three page removal algorithms is best, and why do you
think so?

To implement LRU each page needs a referenced bit. If we wanted to

implement a “least-frequently-used”” (LFU) page removal algorithm

where the page that was used the least would be removed from memory,
what would we need to add to the tables? What software modifications
would have to be made to support this new algorithm?

Given that main memory is composed of four page frames for public
use, use the following table to answer all parts of this problem:
Time when Time when
Page frame loaded last referenced  Referenced bit  Modified bit
0 126 279 0 0
1 230 280 1 0
2 120 282 1 1
3 160 290 1 1

a. The contents of which page frame would be swapped out by FIFO?

b. The contents of which page frame would be swapped out by LRU?

¢. The contents of which page frame would be swapped out by MRU?

d. The contents of which page frame would be swapped out by LFU?

Given that main memory is composed of four page frames and that a

program has been divided into eight pages (numbered O through 7):

a. How many page faults will occur using FIFO with a request list of:
0,1,7,2,3,2,7,1, 0, 3 if the four page frames are initially
empty?

b. How many page faults will occur with the same conditions but using
LRU?

Given three subroutines of 700, 200, and 500 words each, if segmenta-

tion is used then the total memory needed is the sum of the three sizes

(if all three routines are loaded). However, if paging is used then some

storage space is lost because subroutines rarely fill the last page com-

pletely, and that results in internal fragmentation.

Determine the total amount of wasted memory due to internal fragmen-

tation when the three subroutines are loaded into memory using each of

the following page sizes:

a. 200 words

b. 500 words

¢. 600 words

d. 700 words

Given the following Segment Map Tables for two jobs:
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SMT for Job 1 SMT for Job 2
Segment no. Memory location  Segment no. Memory location
0 4096 0 2048
1 6144 1 6144
2 9216 2 9216
3 2048
4 7168

a. Which segments, if any, are shared between the two jobs?

b. Ifthe segment now located at 7168 is swapped out and later reloaded
at 8192, and the segment now at 2048 is swapped out and reloaded
at 1024, show the new segment tables.

This problem will study the effect of changing page sizes in a demand

paging system.

The following sequence of requests for program words is taken from a

460-word program: 10, 11, 104, 170, 73, 309, 185, 245, 246,

434, 458, 364. Main memory can hold a total of 200 words for this

program and the page frame size will match the size of the pages into

which the program has been divided.

Calculate the page numbers according to the page size; divide by the

page size, and the quotient gives the page number. The number of page

frames in memory is the total number, 200, divided by the page size.

For example, in problem a. the page size is 100, this means that requests

10 and 11 are on Page 0, and requests 104 and 170 are on Page 1. The

number of page frames is two.

a. Find the success frequency for the request list using a FIFO replace-
ment algorithm and a page size of 100 words (there are two page
frames).

b. Find the success frequency for the request list using a FIFO replace-
ment algorithm and a page size of 50 words (10 pages, 0 through 9).

¢. Find the success frequency for the request list using a FIFO replace-
ment algorithm and a page size of 200 words.

d. What do your results indicate? Can you make any general state-
ments about what happens when page sizes are halved or doubled?

e. Are there any overriding advantages in using smaller pages? What
are the offsetting factors? Remember that transferring 200 words of
information takes less than twice as long as transferring 100 words
because of the way secondary storage devices operate (the “transfer”
rate is higher than the “access™ [search/find] rate).

f. Repeat (a) through (c) above, using a main memory of 400 words.
The size of each page frame will again correspond to the size of the
page.

g. What happened when more memory was given to the program? Can
you make some general statements about this occurrence? What
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h.

changes might you expect to see if the request list was much longer,
as it would be in real life?

Could this request list happen during the execution of a real pro-
gram? Explain.

Would you expect the success rate of an actual program under sim-
ilar conditions to be higher or lower than the one in this problem?

14. Given the following information for an assembly language program:

Job size = 3126 bytes

Page size = 1042 bytes

instruction at memory location 532:  Load 1, 2098
instruction at memory location 1156: Add 1, 4087
instruction at memory location 2086: Sub 1, 1052

data at memory location 1052: 015672
data at memory location 2098: 114321
data at memory location 4087: 077435

a.
b.

How many pages are needed to store the entire job?

Compute the page number and displacement for each of the byte
addresses where the data is stored (remember that page numbering
starts at zero).

. Determine if the page number and displacements are legal for this

job.

. Explain why the page number and displacement may not be legal for

this job.

. Indicate what action the operating system might take when a page

number is not legal.
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In the last two chapters we explained how main memory is allocated to the
system’s users. In this chapter we’ll see how the Processor Manager allocates
a single CPU to execute the jobs of those users.

In single-user systems. the processor is busy only when the user is exe-
cuting a job—at all other times it is idle. Processor management in this envi-
ronment is simple. However. when there are many users with many jobs on
the system (this is known as a multiprogramming environment) the proces-
sor must be allocated to each job in a fair and efficient manner. and this can
be a complex task as we’ll see in this chapter.

Before we begin. let’s clearly define some of the terms we'll be using in
the following pages. The processor. also known as the CPU (for central pro-
cessing unit), is the part of the machine that does the calculations and exe-
cutes the programs. A process is a single instance of an executable
program—for example. a single mathematical calculation is a process. (IBM
prefers to use the term *“‘task™ instead of process, and UNIVAC calls it an
*“activity.”) A job. or program in an operating systems environment, is a unit
of work that’s submitted by the user.

Multiprogramming requires that the processor be *“‘allocated™ to each
job or to each process for a period of time and **deallocated™ at an appropri-
ate moment. If the processor is deallocated during a program'’s execution, it

n
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must be done in such a way that it can be restarted later as easily as possible.
It’s a delicate procedure. To demonstrate, let’s look at an everyday example.

Here you are, confident you can put together a toy despite the warning
that “some assembly is required.” Armed with the instructions and lots of
patience, you embark on your task—to read the directions, collect the nec-
essary tools, follow each step in turn, and turn out the finished product.

The first step is to “join Part A to Part B with a 2-inch screw,” and as
you complete it you check off Step 1 as “done.™ Inspired by your success,
you move on to Step 2 and then Step 3. You’ve only just completed the third
step when a neighbor is injured while working with a power tool and cries
for help.

Quickly you check off Step 3 in the directions so you know where you
left off, then you drop your tools and race to your neighbor’s side. After all,
someone’s immediate need is more important than your eventual success
with the toy. Now you find yourself engaged in a very different task: follow-
ing the instructions in a first-aid book using bandages and antiseptic.

Once the injury has been successfully treated you return to your previ-
ous job. As you pick up your tools you refer to the instructions and see that
you should begin with Step 4. You then continue with this project until it is
finally completed.

In operating system terminology, you played the part of the CPU or
processor. There were two programs, or jobs—one was the mission to assem-
ble the toy and the second was to bandage the injury. When you were assem-
bling the toy (Job A) each of the steps you performed was a process. The call
for help was an interrupt and when you left the toy to treat your wounded
friend, you left for a higher priority program. When you were interrupted,
you performed a context switch when you marked Step 3 as the last com-
pleted instruction and put down your tools. Attending to the neighbor’s in-
jury became Job B. While you were executing the first-aid instructions each
of the steps you executed was again a process. And, of course, when each of
the two jobs was completed it was finished or terminated.

The Processor Manager would identify the series of events as follows:

get the input for Job A (find the instructions in the box)

identify resources (collect the necessary tools)

execute the process (follow each step in turn)

interrupt (neighbor calls)

context switch to Job B (mark your place in the instruc-
tions)

get the input for Job B (find your first-aid book)

identify resources (collect the medical supplies)

execute the process (follow each first-aid step)

terminate Job B (return home)

context switch to Job A (prepare to resume assembly)

resume executing interrupted process (follow remaining steps in turn)
terminate Job A (turn out the finished toy)
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As we’ve shown, a single processor can be shared by several jobs, or
several processes, but if, and only if, the operating system has a scheduling
policy as well as a scheduling algorithm to determine when to stop working
on one job and proceed to another.

In this example, the scheduling algorithm was based on priority: you
worked on the processes belonging to Job A until a higher priority job came
along. Although this was a good algorithm in this case, a priority-based
scheduling algorithm isn’t always best as we’ll see later in this chapter.

Job Scheduling Versus Process Scheduling

The Processor Manager is a composite of two submanagers: one in charge of
job scheduling and the other in charge of process scheduling. They’re known
as the Job Scheduler and the Process Scheduler.

Typically a user views a job either as a series of global job steps—com-
pilation, loading, and execution—or as one all-encompassing step: execu-
tion. However, the scheduling of jobs is actually handled on two levels by
most operating systems. If we return to the example presented earlier, we
can see that a hierarchy exists between the Job Scheduler and the Process
Scheduler.

The scheduling of the two “jobs,” assemble the toy and bandage the
injury, was on a first-come first-served and priority basis. Each job is initi-
ated by the Job Scheduler based on a certain criteria. Once a job is selected
for execution, the Process Scheduler determines when each step, or set of
steps, 1s executed—a decision that’s also based on certain criteria. When
you started assembling the toy, each step in the assembly instructions would
have been selected for execution by the Process Scheduler.

Therefore, each job (or program) passes through a hierarchy of manag-
ers. Since the first one it encounters is the Job Scheduler, this is also called
the high-level scheduler, which is only concerned with selecting jobs from a
queue of incoming jobs and placing them in the process queue, whether
batch or interactive, based on each job’s characteristics. The Job Sched-
uler’s goal is to put the jobs in a sequence that will use all of the system’s
resources as fully as possible.

This is an important function. For example, if the Job Scheduler se-
lected several jobs to run consecutively and each had a lot of 1/0 then the
I/0 devices would be kept very busy and the CPU might be busy handling
the 1/0, if an 1/0 controller were not used, so that little computation might
get done. On the other hand, if the Job Scheduler selected several consecu-
tive jobs with a great deal of computation, then the CPU would be very busy
but the 1/0 devices would be idle waiting for I/O requests. Therefore, the
Job Scheduler strives for a balanced mix of jobs that require large amounts
of I/0 interaction and jobs that require large amounts of computation. Its
goal is to keep most of the components of the computer system busy most of
the time.
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Process Scheduler

Most of this chapter is dedicated to the Process Scheduler because after a
job has been placed on the READY queue by the Job Scheduler, it’s the Pro-
cess Scheduler that takes over. It determines which jobs will get the CPU,
when, and for how long. It also decides when processing should be inter-
rupted, determines which queues the job should be moved to during its exe-
cution, and recognizes when a job has concluded and should be terminated.

The Process Scheduler is the low-level scheduler that assigns the CPU
to execute the processes of those jobs placed on the ready queue by the Job
Scheduler. This becomes a crucial function when the processing of several
jobs has to be orchestrated—just as when you had to set aside your assembly
and rush to help your neighbor.

To schedule the CPU, the Process Scheduler takes advantage of a com-
mon trait among most computer programs: they alternate between CPU cy-
cles and I/0O cycles. Notice that the following job has one relatively long
CPU cycle and two very brief 1/0 cycles:

READ A,B == ]/O cycle

C =A+B

E _ :5;8)-(: CPU cycle

F=D/E

WRITEA,B,C,D,E,F ==1/Ocycle

STOP == terminate execution
END

Although the duration and frequency of CPU cycles vary from pro-
gram to program, there are some general tendencies that can be exploited
when selecting a scheduling algorithm. For example, I/0-bound jobs (such
as printing a series of documents) have many brief CPU cycles and long I/0
cycles, whereas CPU-bound jobs (such as finding the first 300 prime num-
bers) have long CPU cycles and shorter 1/0 cycles. The total effect of all
CPU cycles, from both 1/0-bound and CPU-bound jobs, approximates a
Poisson distribution curve as shown in Figure 4.1.

In a highly interactive environment there’s also a third layer of the
Processor Manager called the middle-level scheduler. In some cases, espe-
cially when the system is overloaded, the middle-level scheduler finds it is
advantageous to remove active jobs from memory to reduce the degree of
multiprogramming and thus allow jobs to be completed faster. The jobs that
are swapped out and eventually swapped back in are managed by the mid-
dle-level scheduler.

In a single-user environment, there’s no distinction made between job
and process scheduling because only one job is active in the system at any
given time. So the CPU and all other resources are dedicated to that job
until it is completed.
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Frequency

o

0 CPU Cycle Duration

FIGURE 4.1 Distribution of CPU cycle times. This distribution shows that there is a
greater number of jobs requesting short CPU cycles (the frequency
peaks close to the low end of the CPU cycle axis), and a lesser number
of jobs requesting long CPU cycles.

Job and Process Status

As a job moves through the system it’s always in one of five states (or at least
three) as it changes from HOLD to READY to RUNNING to WAITING and even-
tually to FINISHED. These are called the job status or the process status.
Here’s how the job status changes when a user submits a job to the sys-
tem via batch or interactive mode. When the job is accepted by the system it’s
put on HOLD and placed in a queue. In some systems the job spooler (or disk
controller) creates a table with the characteristics of each job in the queue and
notes the important features of the job, such as an estimate of CPU time,
priority, special I/0 devices required, and maximum memory required. This
table is used by the Job Scheduler to decide which job is to be run next.

Job Scheduler Process Scheduler Job Scheduler
(balancing use (algorithm) Process Scheduler
of resources: (release resources)

memory, devices)

HOLD | READY RUNNING FINISHED

Process Scheduler
(time interrupt,

Process Scheduler PP Process Scheduler

(signal from device priority interrupt) (/0 request,
manager or page page fault)
interrupt handler)

WAITING

FIGURE 4.2 A typical job (or process) changes status as it moves through the sys-
tem from HOLD to FINISHED.
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From HOLD, the job moves to READY when it’s ready to run but is wait-
ing for the CPU. In some systems, the job (or process) might be placed on
the READY list directly. RUNNING, of course, means that the job is being pro-
cessed. In a single processor system this is one “job” or process. WAITING
means that the job can’t continue until a specific resource is allocated or an
170 operation has finished. Upon completion, the job is FINISHED and re-
turned to the user.

The transition from one job or process status to another is initiated by
either the Job Scheduler or the Process Scheduler:

The transition from HOLD to READY is initiated by the Job Scheduler accord-
ing to some predefined policy. At this point the availability of enough
main memory and any requested devices are checked.

The transition from READY to RUNNING is handled by the Process Scheduler
according to some predefined algorithm (i.e., FCFS, SIN, priority
scheduling, SRT, or round robin—all of which will be discussed
shortly).

The transition from RUNNING back to READY is handled by the Process
Scheduler according to some predefined time limit, or other criterion,
for example, a “priority” interrupt.

The transition from RUNNING to WAITING is handled by the Process Sched-
uler and is initiated by an instruction in the job such as a command to
READ, WRITE, or other 1/0 request, or one that requires a page fetch.

The transition from WAITING to READY is handled by the Process Scheduler
and is initiated by a signal from the I/0 device manager that the I/0
request has been satisfied and the job can continue. In the case of a
page fetch, the page interrupt handler will signal that the page is now in
memory and the process can be placed on the READY queue.

Eventually, the transition from RUNNING to FINISHED is initiated by the
Process Scheduler or the Job Scheduler either when (1) the job is suc-
cessfully completed and it ends execution or (2) the operating system
indicates that an error has occurred and the job is being terminated
prematurely.

Process Control Blocks

Each process in the system is represented by a data structure called a Pro-
cess Control Block (PCB) that performs the same function as a traveler’s
passport. The PCB (illustrated in Figure 4.3) contains the basic information
about the job such as what it is, where it’s going, how much of its processing
has been completed, where it’s stored, and how much it has “spent™ in uti-
lizing resources.

Process Identification Each job is uniquely identified by the user’s
identification and a pointer connecting it to its descriptor (supplied by the
Job Scheduler when the job first enters the system and is placed on HOLD).

Process Status This indicates the current status of the job—HOLD,
READY, RUNNING, or WAITING—and the resources responsible for that status.
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Process Identification

Process Status

Process State:

O Process Status Word
O Register Contents

O Main Memory

O Resources

O Process Priority

Accounting

FIGURE 4.3 Contents of each job’s Process Control Block.

Process State This contains all of the information needed to indicate
the current state of the job such as:

Process Status Word, which is the current instruction counter and register
contents when the job isn’t running but is either on HOLD or is READY
or WAITING. If the job is RUNNING this information is left undefined.

Register contents if the job has been interrupted and is waiting to resume
processing.

Main memory, pertinent information, including the address where the job is
stored and, in the case of virtual memory, the mapping between virtual
and physical memory locations.

Resources, information about all allocated to this job. Each resource has an
identification field listing its type and a field describing details of its
allocation such as the sector address on a disk. These resources can be
hardware units (disk drives, or printers, for example) or files.

Process priority used by systems using a priority scheduling algorithm to
select which job will be run next.

Accounting Contains information used mainly for billing purposes
and performance measurement. It indicates what kind of resources the job
used and for how long. Typical charges include:

1. Amount of CPU time used from beginning to end of its execution.

2. Total time the job was in the system until it exited.

3. Main storage occupancy, how long the job stayed in memory until it fin-
ished execution. This is usually a combination of time and space used,
for example, in a paging system it may be recorded in units of page-
seconds.

4. Secondary storage used during execution. This again is recorded as a
combination of time and space use.

5. System programs used such as compilers, editors, or utilities.

6. Number and type of I/O operations, including I/Q transmission time,
that includes utilization of channels, control units, and devices.

7. Time spent waiting for /0 completion.
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8. Number of input records read (specifically those entered on-line or com-
ing from optical scanners, card readers, or other input devices), and
number of output records written (specifically those sent to the line
printer). This last one distinguishes between secondary storage devices
and typical I/0 devices.

PCBs and Queueing

A job’s PCB is created when the Job Scheduler accepts the job and is up-
dated as the job progresses from the beginning to the end of its execution.

Queues use PCBs to track jobs the same way customs officials use pass-
ports to track international visitors. The PCB contains all of the data about
the job needed by the operating system to manage the processing of the job.
As the job moves through the system its progress is noted in the PCB.

The PCBs, not the jobs, are linked to form the queues as shown in
Figure 4.4. Although each PCB is not drawn in detail the reader should
imagine each queue as a linked list of PCBs. The PCBs for every ready job
are linked on the READY queue, and all of the PCBs for the jobs just entering
the system are linked on the HOLD queue. The jobs that are WAITING, how-
ever, are linked together by “reason for waiting,” so the PCBs for the jobs in
this category are linked into several queues. For example, the PCBs for jobs
that are waiting for 1/0 on a specific disk drive are linked together while
those waiting for the line printer are linked in a different queue. These
queues need to be managed in an orderly fashion and that’s determined by
the process scheduling policies and algorithms.

Job Process
scheduler scheduler
From user ==> HOLD ———— READY —— RUNNING ——— FINISHED

/ L time |

interrupt

WAITING Page interrupt

1/O request

Disk I/0 queue

Tape I/0 queue

Printer 1/0 queue

Other I/0 queue

il

FIGURE 4.4 (Queuing paths from HOLD to FINISHED.
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Process Scheduling Policies

In a multiprogramming environment, there are usually more jobs to be exe-
cuted than could possibly be run at one time. Before the operating system
can schedule them, it needs to resolve three limitations of the system: (1)
there is a finite number of resources (such as disk drives, printers, and tape
drives); (2) some resources, once they’re allocated, can’t be shared with an-
other job (such as printers); and (3) some resources require operator inter-
vention—that is, they can’t be reassigned automatically from job to job
(such as tape drives).

What’s a “good” process scheduling policy? There are several criteria
that come to mind, but notice in the list below that some of them contradict
each other:

e Maximize throughput by running as many jobs as possible in a given
amount of time. This could be accomplished easily by running only short
jobs or by running jobs without interruptions.

» Minimize response time by quickly turning around interactive re-
quests. This could be done by running only interactive jobs and letting the
batch jobs wait until the interactive load ceases.

» Minimize turnaround time by moving entire jobs in and out of the
system quickly. This could be done by running all batch jobs first (because
batch jobs can be grouped to run more efficiently than interactive jobs).

» Minimize waiting time by moving jobs out of the READY queue as
quickly as possible. This could only be done by reducing the number of users
allowed on the system so the CPU would be available immediately when-
ever a job entered the READY queue.

e Maximize CPU efficiency by keeping the CPU busy 100% of the
time. This could be done by running only CPU-bound jobs (and not 1/0O-
bound jobs).

« Ensure fairness for all jobs by giving everyone an equal amount of
CPU and I/0 time. This could be done by not giving special treatment to
any job, regardless of its processing characteristics or priority.

As we can see from this list, if the system favors one type of user then it
hurts another or doesn’t efficiently use its resources. The final decision rests
with the system designer, who must determine which criteria are most im-
portant for that specific system. For example, you might decide to “maxi-
mize CPU utilization while minimizing response time and balancing the
use of all system components through a mix of I/O-bound and CPU-bound
jobs.” So you would select the scheduling policy that most closely satisfies
your criteria.

Although the Job Scheduler selects jobs to ensure that the READY and
I/0 queues remain balanced, there are instances when a job claims the CPU
for a very long time before issuing an 1/0 request. If 1/0 requests are being
satisfied (this is done by an 1/0 controller and will be discussed later), this
extensive use of the CPU will build up the READY queue while emptying out
the I/0 queues, which creates an unacceptable imbalance in the system.
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To solve this problem the Process Scheduler often uses a timing mech-
anism and periodically interrupts running processes when a predetermined
slice of time has expired. When that happens, the scheduler suspends all
activity on the currently running job and reschedules it into the READY
queue; it will be continued later. The CPU is now allocated to another job
that runs until one of three things happens: the timer goes off, the job issues
an I/O command, or the job is finished. Then the job moves to the READY
queue, the WAIT queue, or the FINISHED queue, respectively. An 1/O re-
quest is called a “natural wait” in multiprogramming environments (it al-
lows the processor to be allocated to another job).

A scheduling strategy that interrupts the processing of a job and trans-
fers the CPU to another job is called a preemptive scheduling policy, and itis
widely used in time-sharing environments. The alternative, of course, is a
nonpreemptive scheduling policy, which functions without external inter-
rupts (interrupts external to the job). Therefore once a job captures the pro-
cessor and begins execution, it remains in the RUNNING state uninterrupted
until it issues an I/O request (natural wait) or it is finished (with exceptions
made for infinite loops, which are interrupted by both preemptive and non-
preemptive policies).

Process Scheduling Algorithms

The Process Scheduler relies on a process scheduling algorithm, based on a
specific policy, to allocate the CPU and move jobs through the system.

Early operating systems used nonpreemptive policies designed to
move batch jobs through the system as efficiently as possible. Most current
systems, with their emphasis on interactive use and response time, use an
algorithm that takes care of the immediate requests of interactive users.

Here are six process scheduling algorithms that have been used exten-
sively.

First Come First Served

First come first served (FCFS) is a nonpreemptive scheduling algorithm that
handles jobs according to their arrival time: the earlier they arrive, the
sooner they’re served. It’s a very simple algorithm to implement because it
uses a FIFO type of queue. This algorithm is fine for most batch systems, but
it is unacceptable for interactive systems because interactive users expect
quick response times.

With FCFS, as a new job enters the system its PCB is linked to the end
of the READY queue and it is removed from the front of the queue when the
processor becomes available—that is, after it has processed all of the jobs
before it in the queue.

In a strictly FCFS system there are no WAIT queues (each job is runto
completion), although there may be systems in which control (“context’) is
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switched on a natural wait (I/O request) and then the job resumes on I/O
completion.

The following examples presume a strictly FCFS environment (no
multiprogramming). Turnaround time is unpredictable with the FCFS pol-
icy; consider the following three jobs:

Job A has a CPU cycle of 15 milliseconds.
Job B has a CPU cycle of 2 milliseconds.
Job C has a CPU cycle of 1 millisecond.

For each job the CPU cycle contains both the actual CPU usage and the
I/0O requests. That is, it is the total run time. Using a FCFS algorithm with an
arrival sequence of A, B, C the time line (Gantt Chart) is shown in Figure 4.5.

Job Job Job
A B C
0 15 17 18

FIGURE 4.5 Time line for job sequence A, B, C using the FCFS algorithm.

If all three jobs arrive almost simultaneously, we can calculate that the
turnaround time for Job A is 15, for Job B is 17, and for Job C is 18. So the
average turnaround time is:

15+ 137 +18 _ ¢ 67

However, if the jobs arrived in a different order, say C, B, A, then the
results using the same FCFS algorithm would be as shown in Figure 4.6.

Job | Job Job
C (B A

0 1 3 18
FIGURE 4.6 Time line for job sequence C, B, A using the FCFS algorithm.

In this example, the turnaround time for Job A is 18, for Job B is 3, and
for Job C is 1 and the average turnaround time is:

18+3+1
3

That’s quite an improvement over the first sequence. Unfortunately,
these two examples illustrate the primary disadvantage of using the FCFS
concept—the average turnaround times vary widely and are seldom mini-
mized. In fact, when there are three jobs in the READY queue, the system has
only a 1 in 6 chance of running the jobs in the most advantageous sequence
(C, B, A). With four jobs the odds fall to 1 in 24, and so on.

If one job monopolizes the system, the extent of its overall effect on

=173



82 Chapter 4

system performance depends on the scheduling policy and whether the job
is CPU-bound or I/O-bound. While a job with a long CPU cycle (in this
example Job A) is using the CPU, the other jobs in the system are waiting for
processing or finishing their I/O requests (if an I/O controller is used) and
Joining the READY queue to wait for their turn to use the processor. If the /0
requests are not being serviced, the I/0 queues would remain stable while
the READY list “grew” (with new arrivals). In extreme cases, the READY
queue could fill to capacity while the 1/0 queues would be empty, or stable,
and the 1/0 devices would sit idle.

On the other hand, if the job is processing a lengthy I/O cycle, the I/O
queues quickly build to overflowing and the CPU could be sitting idle (if an
I/0O controller is used). This situation is eventually resolved when the 1/0-
bound job finishes its I/O cycle, the queues start moving again, and the sys-
tem can recover from the bottleneck.

In a strictly FCFS algorithm, neither situation occurs. However, the
turnaround time is variable (unpredictable). For this reason, FCFS is a less
attractive algorithm than one that would serve the shortest job first, as the
next scheduling algorithm does, even in a nonmultiprogramming environ-
ment.

Shortest Job Next

Shortest job next (SJN) is a nonpreemptive scheduling algorithm (also
known as shortest job first, or SJF) that handles jobs based on the length of
their CPU cycle time. It’s easiest to implement in batch environments
where the estimated CPU time required to run the job is given in advance
by each user at the start of each job. However, it doesn’t work in interactive
systems because users don’t estimate in advance the CPU time required to
run their jobs. For example, here are four batch jobs, all in the READY queue,
for which the CPU cycle, or run time, is estimated as follows:

Job- A B C D
CPUcycle: 5 2 6 4

The SIN algorithm would review the four jobs and schedule them for
processing in this order: B, D, A, C. Their time line is shown in Figure 4.7.

Job Job Job Job
B D A C

0 2 6 1 17
FIGURE 4.7 Time line for job sequence B, D, A, C using the SJN algorithm.

The average turnaround time is:

246+ 11+17 _

2 9.0
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Let’s take a minute to see why this algorithm can be proved to be opti-
mal and will consistently give the minimum average turnaround time. We’ll
use the example above to derive a general formula.

If we look at Figure 4.7 we can see that Job B finishes in its given time
(2), Job D finishes in its given time plus the time it waited for B to run (4 +
2), Job A finishes in its given time plus D’s time plus B’s time (5 + 4 + 2), and
Job C finishes in its given time plus that of the previous three (6 + 5 + 4 + 2).
So when calculating the average we have:

[+ (@ +2D)+(B5+4+2)+(6+5+4+2)] —9
4

.0

As you can see, the time for the first job appears in the equation four
times—once for each job. Similarly. the time for the second job appears
three times (the number of jobs minus one). The time for the third job ap-
pears twice (number of jobs minus 2) and the time for the fourth job appears
only once (number of jobs minus 3).

So the above equation can be rewritten as:

[4X2+3X4+2X5+1X6] —9
4

.0

Because the time for the first job appears in the equation four times, it
has four times the effect on the average time than does the length of the
fourth job, which appears only once. Therefore, if the first job requires the
shortest computation time, followed in turn by the other jobs, ordered from
shortest to longest, then the result will be the smallest possible average. The
formula for the average is as follows:

[ti(n) + ta2(n—=1) + t:(n=2) + . . . +1.(1)]
n

where # is the number of jobs in the queue and #; (= 1,2,3, . . . ,n) is
the length of the CPU cycle for each of the jobs.

However, the SIN algorithm is optimal only when all of the jobs are
available at the same time and the CPU estimates are available and accu-
rate.

Priority Scheduling

Priority Scheduling is a nonpreemptive algorithm and one of the most com-
mon scheduling algorithms in batch systems, even though it may give slower
turnaround to some users. This algorithm gives preferential treatment to
important jobs. It allows the programs with the highest priority to be pro-
cessed first, and they aren’t interrupted until their CPU cycles (run times)
are completed or a natural wait occurs. If two or more jobs with equal prior-
ity are present in the READY queue, the processor is allocated to the one that
arrived first (first come first served within priority).

Priorities can be assigned by a system administrator using characteris-
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tics extrinsic to the jobs; for example, they can be assigned based on the
position of the user (researchers first. students last) or, in commercial envi-
ronments, they can be purchased by the users who pay more for higher pri-
ority to guarantee the fastest possible processing of their jobs. With a
priority algorithm, jobs are usually linked to one of several READY queues by
the Job Scheduler based on their priority so the Process Scheduler manages
multiple READY queues instead of just one. Details about multiple queues
are presented later in this chapter.

Priorities can also be determined by the Processor Manager based on
characteristics intrinsic to the jobs such as:

* Memory requirements. Jobs requiring large amounts of memory
could be allocated lower priorities than those requesting small amounts of
memory, or vice-versa.

* Number and type of peripheral devices. Jobs requiring many periph-
eral devices would be allocated lower priorities than those requesting fewer
devices.

* Total CPU time. Jobs having a long CPU cycle, or estimated run
time, would be given lower priorities than those having a brief estimated
run time.

» Amount of time already spent in the system. This is the total amount
of elapsed time since the job was accepted for processing. Some systems
increase the priority of jobs that have been in the system for an unusually
long time to expedite their exit. This is known as “aging.”

These criteria are used to determine default priorities in many sys-
tems. The default priorities can be overruled by specific priorities named by
users.

There are also preemptive priority schemes. These will be discussed
later in this chapter in the section on multiple queues.

Shortest Remaining Time

Shortest remaining time (SRT) is the preemptive version of the SIN algo-
rithm. The processor is allocated to the job closest to completion—but even
this job can be preempted if a newer job in the READY queue has a “time to
completion™ that’s shorter.

This algorithm can’t be implemented in an interactive system because
it requires advance knowledge of the CPU time required to finish each job.
It is often used in batch environments, when it is desirable to give preference
to short jobs, even though SRT involves more overhead than SIN because
the operating system has to frequently monitor the CPU time for all the Jobs
in the READY queue and must perform “context switching™ for the jobs be-
ing swapped (“switched™) at preemption time (not necessarily swapped out
to the disk, although this might occur as well).

The example in Figure 4.8 shows how the SRT algorithm works with
four jobs that arrived in quick succession (1 CPU cycle apart).
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Arrival time: O 1 2
Job: A B C
CPUcycle: 6 3 1

H2 0w

Here Job A is preempted by Job B because Job B has less CPU time remaining.

Here Job B is preempted by Job C because Job C
has less CPU time remaining.

Now Job B can resume because Job C has finished.

Job D runs next because it needs less CPU time

to finish than does Job A.
Here Job A is finally allowed to finish.
/
Job [Job |Job |Job Job Job
A B C B D A
0 1 2 3 5 9 14

FIGURE 4.8 Time line for job sequence A, B, C, D using the preemptive SRT algorithm.

In this case the turnaround time is the completion time of each job
minus its arrival time:

Job A B C D
Turnaround: 14 4 1 6

So the average turnaround time is:

w = 6.25
How does that compare to the same problem using the nonpreemptive
SIN policy? Figure 4.9 shows the same situation using SJN.

Job Job | Job Job
A C B D

0 6 7 10 14

FIGURE 4.9 Time line for the same job sequence A, B, C, D using the nonpreemptive
SJN algorithm.

In this case the turnaround time is:

Job A B C D
Turnaround: 6 9 5 11

So the average turnaround time is:

6+9-|;15+11 _ 775
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Note in Figure 4.9 that initially A is the only job in the READY queue so
it runs first and continues until it’s finished because SIN is a nonpreemptive
algorithm. The next job to be run is C because when Job A is finished (at
time 6), all of the other jobs (B, C, and D) have arrived. Of those three, C is
the one with the shortest CPU cycle so it is the next one run, then B, and
finally D.

Therefore, with this example SRT at 6.25 is faster than SIN at 7.75.
However, we neglected to include the time required by the SRT algorithm to
do the context switching. Context switching is required by all preemptive
algorithms. When Job A is preempted, all of its processing information
must be saved in its PCB for later when Job A’s execution is to be continued,
and the contents of Job B’s PCB are loaded into the appropriate registers so
it can start running again; this is a context switch. Later when Job A is once
again assigned to the processor another context switch is performed; this
time the information from the preempted job is stored in its PCB, and the
contents of Job A’s PCB are loaded into the appropriate registers.

How the context switching is actually done depends on the architec-
ture of the CPU; in many systems there are special instructions that provide
quick saving and restoring of information. The switching is designed to be
performed efficiently but, no matter how fast it is, it still takes valuable CPU
time. So although SRT appears to be faster, in a real operating environment
its advantages are diminished by the time spent in context switching. A pre-
cise comparison of SRT and SIN would have to include the time required to
do the context switching.

Round Robin

Round robin is a preemptive process scheduling algorithm that is used exten-
sively in interactive systems because it’s easy to implement and it isn’t
based on job characteristics but on a predetermined slice of time that’s
given to each job to ensure that the CPU is equally shared among all active
processes and isn’t monopolized by any one job.

This time slice is called a time quantum and its size is crucial to the
performance of the system. It usually varies from 100 milliseconds to 1 or2
seconds (Pinkert & Wear, 1989).

Jobs are placed in the READY queue using a first-come first-served
scheme and the Process Scheduler selects the first job from the front of the
queue, sets the timer to the time quantum, and allocates the CPU to this job.
If processing isn’t finished when time expires, the job is preempted and put
at the end of the READY queue and its information is saved in its PCB.

In the event that the job’s CPU cycle is shorter than the time quantum,
then one of two actions will take place: (1) if this is the job’s last CPU cycle
and the job is finished, then all resources allocated to it are released and the
completed job is returned to the user; (2) if the CPU cycle has been inter-
rupted by an I/0 request, then information about the job is saved in its PCB
and it is linked at the end of the appropriate 1/0 queue. Later, when the 1/0
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request has been satisfied, it is returned to the end of the READY queue to
await allocation of the CPU.

The example in Figure 4.10 illustrates a round robin algorithm with a
time slice of 4 milliseconds (I/O requests are ignored):

Arrivaltime: 0 1 2 3

Job: A B C D

CPUcycle: 8 4 9 5
Job Job Job Job Job Job Job] Job

A B c D A C D (C
8 12 16 20 24 25 26
FIGURE 4.10 Time line for job sequence A, B, C, D using the preemptive round robin
algorithm.

The turnaround time is the completion time minus the arrival time:

Job- A B C D
Turnaround: 20 7 24 22

So the average turnaround time is:

2047424422 _ 555

Note that in Figure 4.10 Job A was preempted once because it needed
8 milliseconds to complete its CPU cycle, while Job B terminated in one
time quantum. Job C was preempted twice because it needed 9 milliseconds
to complete its CPU cycle, and Job D was preempted once because it needed
5 milliseconds. In their last execution or swap into memory, both Jobs D
and C used the CPU for only 1 millisecond and terminated before their last
time quantum expired, releasing the CPU sooner.

The efficiency of round robin depends on the size of the time quantum
in relation to the average CPU cycle. If the quantum is too large—that is, if
it’s larger than most CPU cycles—then the algorithm reduces to the FCFS
scheme. If the quantum is too small, then the amount of context switching
slows down the execution of the jobs and the amount of overhead is dramat-
ically increased, as the three examples in Figure 4.11 demonstrate. Job A
has a CPU cycle of 8 milliseconds. The amount of context switching in-
creases as the time quantum decreases in size.

In Figure 4.11 the first case (a) has a time quantum of 10 milliseconds
and there is no context switching (and no overhead). The CPU cycle ends
shortly before the time quantum expires and the job runs to completion. For
this job with this time quantum, there is no difference between the round
robin algorithm and the FCFS algorithm.

In the second case (b), with a time quantum of 5 milliseconds, there is
one context switch. The job is preempted once when the time quantum ex-
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Job A
a)
0 8
time quantum = 10
Job A Job A
b)
0 5 8

time quantum =5

Job A Job A Job A Job A Job A Job A Job A Job A

c)

0 1 2 3 4 5 6 7 8
time quantum =1

FIGURE 4.11 Context switches for Job A with three different time quantums.

pires so there is some overhead for context switching and there would be a
delayed turnaround based on the number of other jobs in the system.

In the third case (c), with a time quantum of | millisecond, there are
seven context switches because the job is preempted every time the time
guantum expires; overhead becomes costly and turnaround time suffers ac-
cordingly.

What’s the best time quantum size? The answer should be predictable
by now: it depends on the system. If it’s an interactive environment the
system is expected to respond quickly to its users especially when they make
simple requests. If it’s a batch system, response time is not a factor (turn-
around is) and overhead becomes very important.

Here are two general rules of thumb for selecting the “proper” time
quantum: (1) it should be long enough to allow 80% of the CPU cycles to run
to completion, and (2) it should be at least 100 times longer than the time
required to perform one context switch. These rules are used in some sys-
tems, but they are not inflexible (Finkel, 1986).

Multiple Level Queues

Multiple level queues isn’t really a separate scheduling algorithm but works
in conjunction with several of the other schemes already discussed and is
found in systems with jobs that can be grouped according to a common
characteristic. We’ve already introduced at least one kind of multiple level
gueue—that of a priority-based system with different queues for each prior-
ity level.

Another kind of system might gather all of the CPU-bound jobs in one
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queue and all I/O-bound jobs in another. The Process Scheduler then alter-
nately selects jobs from each queue to keep the system balanced.

A third common example is one used in a hybrid environment that
supports both batch and interactive jobs. The batch jobs are put in one
queue called the “background queue” while the interactive jobs are put in a
“foreground queue™ and are treated more favorably than those on the back-
ground queue.

All of these examples have one thing in common: the scheduling policy is
based on some predetermined scheme that allocates special treatment to the
jobs in each queue. Within each queue, the jobs are served in FCFS fashion.

Multiple queues raise some interesting questions.

» Is the processor allocated to the jobs in the first queue until it is empty
before moving to the next queue or does it “travel” from queue to queue
until the last job on the last queue has been served and then go back to
serve the first job on the first queue, or something in between?

« Is this fair to those who have earned, or paid for, a higher priority?

« Is it fair to those in a low priority queue?

« If the processor is allocated to the jobs on the first queue and it never
empties out, when will the jobs in the last queues be served?

« Can the jobs in the last queues get “time off for good behavior” and even-
tually move to better queues?

The answers depend on the policy used by the system to service the
queues. There are four primary methods to the movement: not allowing
movement between queues; moving jobs from queue to queue; moving jobs
from queue to queue and increasing the time quantums for “lower™ queues;
and giving special treatment to jobs that have been in the system for a long
time. The latter is known as aging. The following examples are derived from
Yourdon (1972).

No movement between queues is a very simple policy that rewards
those who have high-priority jobs. The processor is allocated to the jobs in
the high-priority queue in FCFS fashion and it is allocated to jobs in lower
priority queues only when the high-priority queues are empty. This policy
can be justified if there are relatively few users with high-priority jobs so the
top queues quickly empty out, allowing the processor to spend a fair amount
of time running the low-priority jobs.

Movement between queues is a policy that adjusts the priorities as-
signed to each job: high-priority jobs are treated like all the others once they
are in the system (their initial priority may be favorable). When a time
quantum interrupt occurs, the job is preempted and it is moved to the end of
the next lower queue. A job may also have its priority increased; for exam-
ple. when it issues an I/O request before its time quantum has expired.

This policy is fairest in a system in which the jobs are handled accord-
ing to their computing cycle characteristics: CPU-bound or I/0O-bound. This
assumes that a job that exceeds its time quantum is CPU-bound and will
require more CPU allocation than one that requests I/O before the time
quantum expires. Therefore, the CPU-bound jobs are placed at the end of
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the next lower queue when they’re preempted because of the expiration of
the time quantum, while I/O-bound jobs are returned to the end of the next
higher level queue once their I/0O request has finished. This facilitates 1/0-
bound jobs (and is good in interactive systems).

Variable time quantum per queue is a variation of the Movement Be-
tween Queues and it allows for faster turnaround of CPU-bound jobs.

In this scheme, each of the queues is given a time quantum twice as
long as the previous queue. The highest queue might have a time quantum
of 100 milliseconds. So the second-highest queue would have a time quan-
tum of 200 milliseconds, the third would have 400 milliseconds, and so on.
If there are enough queues, the lowest one might have a relatively long time
quantum of 3 seconds or more.

If a job doesn’t finish its CPU cycle in the first time quantum, it is
moved to the end of the next lower level queue and when the processor is
next allocated to it, the job executes for twice as long as before. With this
scheme a CPU-bound job can execute for longer and longer periods of time,
thus improving its chances of finishing faster.

Aging is used to ensure that jobs in the lower level queues will eventu-
ally complete their execution. The operating system keeps track of each
job’s waiting time and when a job gets too old, that is, when it reaches a
certain time limit, it moves the job to the next highest queue, and so on until
it reaches the top queue. A more drastic aging policy is one that moves the
“old” job directly from the lowest queue to the end of the topmost queue.
Regardless of its actual implementation, an aging policy guards against the
indefinite postponement of unwieldy jobs. As you might expect, indefinite
postponement means that a job’s execution is delayed indefinitely because it
is repeatedly preempted so other jobs can be processed. (We all know exam-
ples of an unpleasant task that’s been indefinitely postponed to make time
for a more appealing pastime). Eventually the situation could lead to the old
job’s “starvation.” Indefinite postponement is a major problem when allo-
cating resources and one that will be discussed in detail in Chapter 5.

A Word About Interrupts

We first encountered interrupts in Chapter 3 when the Memory Manager
issued page interrupts to accommodate job requests. In this chapter we ex-
amined another type of interrupt that occurs when the time quantum ex-
pires and the processor is deallocated from the running job and allocated to
another one.

There are other interrupts that are caused by events internal to the
process. I/0 interrupts are issued when a READ or WRITE command is issued.
(We’ll explain them in detail in Chapter 7.) Internal interrupts, also called
synchronous interrupts, also occur as a direct result of the arithmetic opera-
tion or job instruction currently being processed.

Illegal arithmetic operations such as the following can generate inter-
rupts:
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« Attempts to divide by zero;
 Floating point operations generating an overflow or underflow;
+ Fixed-point addition or subtraction that causes an arithmetic overflow.

Illegal job instructions such as the following can also generate inter-
rupts:

« Attempts to access protected or nonexistent storage locations;

+ Attempts to use an undefined operation code;

« Operating on invalid data;

« Attempts to make system changes. such as trying to change the size of the
time quantum.

The control program that handles the interruption sequence of events
is called the interrupt handler. When the operating system detects a nonre-
coverable error, the interrupt handler typically follows this sequence:

1. The type of interrupt is described and stored—to be passed on to the user
as an error message.

2. The state of the interrupted process is saved, including the value of the
program counter, the mode specification, and the contents of all regis-
ters.

3. The interrupt is processed: the error message and state of the interrupted
process are sent to the user; program execution is halted; any resources
allocated to the job are released: and the job exits the system.

4. The processor resumes normal operation.

If we’re dealing only with internal interrupts. which are nonrecover-
able, the job is terminated in Step 3. However, when the interrupt handler is
working with an I/0O interrupt, time quantum, or other recoverable inter-
rupt, Step 3 simply halts the job and moves it to the appropriate I/0 device
queue, or READY queue (on “time out™). Later, when the I/0 request is fin-
ished, the job is returned to the READY queue. If it was a time out (quantum
interrupt), the job (or process) is already on the READY queue.

The Processor Manager must allocate the CPU among all the system’s users.
In this chapter we’ve made the distinction between job scheduling, the selec-
tion of incoming jobs based on their characteristics, and process scheduling,
the instant-by-instant allocation of the CPU. We’ve also described how in-
terrupts are generated and resolved by the interrupt handler.

Each of the scheduling algorithms presented in this chapter has unique
characteristics, objectives, and applications. A system designer can choose
the best policy and algorithm only after carefully evaluating their strengths
and weaknesses. Table 4.1 shows how the algorithms presented in this chap-
ter compare.

In the next chapter we’ll explore the demands placed on the Processor
Manager as it attempts to synchronize execution of all the jobs in the
system.
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TABLE 4.1 Comparison of scheduling algorithms.

Algorithm Policy type Best for Disadvantages Advantages
FCFS nonpreemptive batch unpredictable turn- easy to implement
around times
SIN nonpreemptive batch indefinite postpone- minimizes average waiting time
ment of some jobs
Priority nonpreemptive batch indefinite postpone- ensures fast completion of impor-
scheduling ment of some jobs tant jobs
SRT preemptive batch overhead incurred by ensures fast completion of short
context switching jobs
Round preemptive interactive requires selection of provides reasonable response time
robin “good” time quantum to interactive users; provides
“fair” CPU allocation
Multiple preemptive/ batch/ overhead incurred by flexible scheme; counteracts indefi-
level nonpreemptive interactive  monitoring of queues nite postponement with aging or
queues other queue movement; gives
“fair” treatment to CPU-bound
jobs by incrementing time quan-
tums on lower priority queues or
other queue movement
Key Terms multiprogramming response time
processor first come first served (FCFS)
process shortest job next (SJN)

Exercises

Job Scheduler

Process Scheduler

high-level scheduler

low-level scheduler
1/0-bound

CPU-bound

middle-level scheduler

job status

process status

Process Control Block (PCB)
queue

process scheduling policy
preemptive scheduling policy
nonpreemptive scheduling policy
process scheduling algorithms

turnaround time
priority scheduling
shortest remaining time (SRT)
context switching

round robin

time slice

time quantum

multiple level queues
aging

indefinite postponement
interrupts

internal interrupts
synchronous interrupts
interrupt handler

1. What information about a job needs to be kept in the PCB?

2. What information about a process needs to be saved, changed or up-
dated when context switching takes place?

3. Five jobs are in the READY queue waiting to be processed. Their esti-
mated CPU cycles are as follows: 10, 3, 5, 6, and 2. Using SJN, in what
order should they be processed to minimize average waiting time?

4. A job running in a system, with variable time quantums per queue,
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needs 30 milliseconds to run to completion. If the first queue has a time
quantum of 5 milliseconds and each gueue thereafter has a time quan-
tum that is twice as large as the previous one, how many times will the
job be interrupted and on which queue will it finish its execution?

. The following diagram (adapted from Madnick & Donovan, 1974) isa
simplified process model of you, in which there are only two states:
sleeping and waking.

Sleeping

Alarm clock rings

You make the transition from waking to sleeping when you are
tired, and from sleeping to waking when the alarm clock goes off.
a. Add three more states to the diagram (for example, one might be

eating).

b. State all of the possible transitions among the five states.
. What is the relationship between turnaround time, CPU cycle time, and
waiting time? Write an equation to express this relationship. if possible.
. Given the following information:

Job # Arrival time CPU cycle
1 0 10
2 1 2
3 2 3
4 3 1
5 4 5

Draw a time line for each of the following scheduling algorithms.
(It may be helpful to first compute a start and finish time for each job.)
a. FCEFS
b. SJIN (in this you may want to re-order the jobs)
c. SRT
d. Round robin (using a time quantum of 2, ignore context switching

and natural wait)

. Using the same information given for exercise 7, complete the chart by
computing waiting time and turnaround time for every job for each of
the following scheduling algorithms (ignoring context switching over-
head).
a. FCES
b. SIN
c. SRT
d. Round robin (using a time quantum of 2)
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Advanced Exercises

10.

11.

12.

13.

14.

Using the same information given for exercise 7, compute the average
waiting time and average turnaround time for each of the following
scheduling algorithms and determine which one gives the best results.
a. FCEFS

b. SIN

c. SRT

d. Round robin (using a time quantum of 2)

Consider a variation of round robin in which a process that has used its
full time quantum is returned to the end of the READY queue, while one
that has used half of its time quantum is returned to the middle of the
queue and one that has used one-fourth of its time quantum goes to a
place one-fourth of the distance away from the beginning of the queue.
a. What is the objective of this scheduling policy?

b. Discuss the advantage and disadvantage of its implementation.

In a single-user dedicated system, such as a personal computer, it’s easy
for the user to determine when a job is caught in an infinite loop. The
typical solution to this problem is for the user to manually intervene
and terminate the job. What mechanism would you implement in the
Process Scheduler to automate the termination of a job that’s in an infi-
nite loop? Take into account jobs that legitimately use large amounts of
CPU time, for example, one “finding the first 10,000 prime numbers.”
Some guidelines for selecting the “right” time quantum were given in
this chapter. As a system designer, how would you know when you have
chosen the “best™ time quantum? What factors would make this time
quantum best from the user’s point of view? What factors would make
this time quantum best from the system’s point of view?

Using the process state diagrams of Figure 4.2, explain why there’s no
transition:

a. From the READY state to the WAITING state.

b. From the WAITING state to the RUNNING state.

Write a program that will simulate FCFS, SIN, SRT, and round robin
scheduling algorithms. For each algorithm, the program should com-
pute waiting time and turnaround time for every job as well as the aver-
age waiting time and average turnaround time. The average values
should be consolidated in a table for easy comparison. You may use the
following data to test your program:

Arrival time CPU cycle (in milliseconds)
0 6
3 2
5 1
9 7
10 5
12 3
14 4
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Arrival time CPU cycle (in milliseconds)
16 5
17 7
19 2

time quantum for round robin = 4 milliseconds
context switching time = 0

15. Using your program from exercise 14, change the context switching
time to 0.4 milliseconds. Compare outputs from both runs and discuss
which would be the best policy. Describe any drastic changes encoun-
tered or a lack of changes and why.
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Conditions for Deadlock
-Mutual Exclusion
-Resource Holding

-No Preemption
-Circular Wait

Process Management

Deadlock
Dealing with Deadlock
-Prevention
-Avoidance
-Detection

-Recovery

Starvation

We've already looked at two aspects of resource sharing—memory manage-
ment and processor sharing. In this chapter, we'll address the problems
caused when many processes compete for relatively few resources and the
system is unable to service all of the processes in the system.

A lack of process synchronization can result in two extreme conditions:
deadlock or starvation.

In early operating systems. deadlockh was known by the more descrip-
tive phrase deadly embrace. It's a systemwide tangle of resource requests
that begins when two or more jobs are put on hold, each waiting for a vital
resource to become available. The problem builds when the resources
needed by those jobs are the resources held by other jobs that are also wait-
ing to run but cannot because they're waiting for other unavailable re-
sources. The jobs come to a standstill. The deadlock is complcte if the
remainder of the system comes to a standstill as well. Usually the situation
can’t be resolved by the operating system and requires outside intervention
by either operators or users who must take drastic actions. such as manually
preempting or terminating a job.

A deadlock is most easily described with an example—a narrow stair-
case in a building (we’ll return to this example throughout this chapter). The
staircase was built as a fire escape route, but people working in the building
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often take the stairs instead of waiting for the slow elevators. Traffic on the
staircase moves well unless two people, traveling in opposite directions,
need to pass on the stairs; there’s room for only one person on each step.
There’s a landing between each floor and it’s wide enough for passing, but
the stairs are not. Problems occur when someone going up the stairs meets
someone coming down. and each refuses to retreat to a wider place. This
creates a deadlock, which is the subject of much of our discussion on process
synchronization.

On the other hand, if a few patient people wait on the landing for a
break in the opposing traffic, and that break never comes, they could wait
there forever. That’s starvation, an extreme case of indefinite postpone-
ment, and it is discussed near the conclusion of this chapter.

Deadlock is more serious than indefinite postponement or starvation be-
cause it affects more than one job. Because resources are being tied up, the
entire system (not just a few programs), is affected. The example most often
used to illustrate deadlock is a traffic jam.

As shown in Figure 5.1 (page 98) there’s no simple and immediate so-
lution to a deadlock: no one can move forward until someone moves out of
the way, but no one can move out of the way until either someone advances
or the rear of a line moves back. Obviously it requires an outside interven-
tion to remove one of the four vehicles from an intersection or to make a
line move back. Only then can the deadlock be resolved.

Deadlocks were infrequent in early batch systems in which users
would include in the job control cards that preceded the job a complete list
of the specific system resources (tape drives, disks, printers, etc.) required to
run the job. The operating system would then make sure that all requested
resources were available and allocated to that job before moving the job to
the READY queue; and then the system did not release these resources until
the job was completed. If the resources weren’t available, the job wasn’t
moved to the READY gueue until they were.

Deadlocks became more prevalent with the growing use of interactive
systems because they are more flexible than batch environments. Interac-
tive systems generally improve the use of resources through dynamic re-
source sharing, but it’s this resource-sharing capability that also increases
the possibility of deadlocks.

Seven Cases of Deadlock

A deadlock usually occurs when nonsharable, nonpreemptable resources,
such as files, printers, or tape drives are allocated to jobs that eventually re-
quire other nonsharable, nonpreemptive resources—resources that have
been locked by other jobs. However, deadlocks aren’t restricted to files, print-
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FIGURE 5.1 A classic case of deadlock. This is “gridlock,” where all the cars are
entangled.

ers, and tape drives. They can also occur on sharable resources such as disks
and databases, as we’ll see in the following examples (Bic & Shaw, 1988).

Case 1: Deadlocks on File Requests

If jobs are allowed to request and hold files for the duration of their execu-
tion, a deadlock can occur. For example, consider the case of a home con-
struction company with two application programs, purchasing (P1) and
sales (P2), which are active at the same time. They each need to access two
files, inventory (F1) and suppliers (F2), to update daily transactions. One
day the system deadlocks when the following sequence of events takes place.

1. Purchasing (P1) accesses the supplier file (F2) to place an order for more
lumber.

2. Sales (P2) accesses the inventory file (F1) to reserve the parts that will be
required to build the home ordered that day.

3. Purchasing (P1) doesn’t release the supplier file (F2) but requests the in-
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ventory file (F1) to verify the quantity of lumber on hand before placing
its order for more, but P1 is blocked because F1 is being held by P2.

4. Meanwhile, sales (P2) doesn’t release the inventory file (F1) but requests
the supplier file (FF2) to check the schedule of a subcontractor. At this
point P2 is also blocked because F2 is being held by P1. Figure 5.2 shows
the deadlock.

.~ Fl
Requested ’,’ Allocated
l,
P1 P2
U4
I,,
Allocated F2 *“ Requested

FIGURE 5.2 A deadlock in action, using a modified representation of directed graphs
that will be discussed in more detail in the “‘Modeling Deadlocks™ section.

Any other programs that require F1 or F2 will be put on hold as long as
this situation continues. This deadlock will remain until one of the two pro-
grams is withdrawn or forcibly removed and its file is released. Only then
can the other program continue and the system return to normal.

Case 2: Deadlocks in Databases
A deadlock can also occur if two processes access and lock records in a data-
base.

To appreciate the following scenario it is necessary to remember that
database queries and transactions are often relatively brief processes that
either search or modify parts of a database. Requests usually arrive at ran-
dom and may be interleaved arbitrarily.

Locking is a technique used to guarantee the integrity of the data
through which the user locks out all other users while working with the data-
base. Locking can be done at three different levels: the entire database can
be locked for the duration of the request; a subsection of the database can be
locked; or only the individual record can be locked until the process is com-
pleted. If the entire database is locked (the most extreme and most success-
ful solution) it prevents a deadlock from occurring but access to the
database is restricted to one user at a time and, in a multiuser environment,
response times are significantly slowed; this then is normally an unaccept-
able solution. When the locking is performed on only part of the database,
access time is improved but the possibility of a deadlock is increased be-
cause different processes sometimes need to work with several parts of the
database at the same time.

Here’s a system that locks each record when it is accessed until the
process is completed. There are two processes (P1 and P2) each of which
needs to update two records (R1 and R2) and the following sequence leads
to a deadlock:
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1. P1 accesses R1 and locks it.
2. P2 accesses R2 and locks it.
3. P1 requests R2, which is locked by P2.
4. P2 requests R1, which is locked by P1.

An alternative, of course, is not to use locks—but that leads to other
difficulties. If locks are not used to preserve their integrity, the updated re-
cords in the database might include only some of the data—and their con-
tents would depend on the order in which each process finishes its
execution. This is known as a “race” between processes and is illustrated in
the following example.

Let’s say you are a veteran student who knows the university maintains
most of its files on a database that can be accessed by several different pro-
grams, including one for grades and another listing home addresses. Let’s say
you’re a student on the move so you send the university a change of address
form at the end of the fall term, shortly after grades are submitted. And one
fateful day both programs race to access your record in the database:

1. The grades process (P1) is the first to access your record (R1) and it cop-
ies the record to its work area.

2. The address process (P2) accesses your record (R1) and copies it to its
work area.

3. P1 changes R1 by entering your grades for the fall term and calculating
your new grade average.

4. P2 changes R1 by updating the address field.

5. P1 finishes its work first and rewrites its version of your record back to
the database. Your grades have been changed, but your address hasn’t.

6. P2 finishes and rewrites its updated record back to the database. Your
address has been changed, but your grades haven’t. According to the
database you didn’t attend school this term.

Figure 5.3 illustrates this process and the outcome of the race.

If we reverse the order and say that P2 won the race, your grades will
be updated but not your address. Depending on your success in the class-
room you might prefer one mishap over the other, but from the operating
system’s point of view either alternative is unacceptable because incorrect
data is allowed to pollute the database. The system can’t allow the integrity
of the database to depend on a random sequence of events.

Case 3: Deadlocks in Dedicated Device Allocation
The use of a group of dedicated devices can deadlock the system.

Let’s say two users from the local board of education are each running
a program (P1 and P2), and both programs will eventually need two tape
drives to copy files from one tape to another. The system is small, however,
and when the two programs are begun, only two tape drives are available
and they’re allocated on an “as requested” basis. Soon the following se-
quence transpires:

1. P1 requests tape drive 1 and gets it.
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Original Record
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ADDR: 5th Ave
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P1 rewrites rech Jones
to database with GPA=30 P2 rewrites record
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Jones
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Final Record

FIGURE 5.3 [f P1 finishes first it will win the race but its version of the record will
soon be overwritten by P2.

2. P2 requests tape drive 2 and gets it.
3. P1 requests tape drive 2 but is blocked.
4. P2 requests tape drive 1 but is blocked.

Neither job can continue because each is waiting for the other to finish
and release its tape drive—an event that will never occur. A similar series of
events could deadlock any group of dedicated devices.

Case 4: Deadlocks in Multiple Device Allocation
Deadlocks aren’t restricted to processes contending for the same type of de-
vice; they can happen when several processes request, and hold on to, dedi-
cated devices while other processes act in a similar manner.

Consider the case of an engineering design firm with three programs
(P1, P2, and P3) and three dedicated devices: tape drive, printer, and plot-
ter. The following sequence of events will result in deadlock:

P1 requests and gets the tape drive.

P2 requests and gets the printer.

P3 requests and gets the plotter.

P1 requests the printer but is blocked.
P2 requests the plotter but is blocked.

P3 requests the tape drive but is blocked.

A e

Figure 5.4 depicts this problem graphically.



102 Chapter Five

Allocated ° ==« Requested
~

~,
N

LY
Tape .
Drive Printer
:
Requested |‘ Allocated
Ps @
I,,
Allocated Plotter [~ Requested

FIGURE 5.4 Three devices deadlocked by three processes. The dashed and solid
lines, as well as the arrows, have the same meaning as those used in
Figure 5.2.

As in the earlier examples, none of the jobs can continue because each
is waiting for a resource being held by another.

Case 5: Deadlocks in Spooling
Although in the previous example the printer was a dedicated device, most
systems have transformed the printer into a sharable device (also known as
a “virtual device”) by installing a high-speed device, a disk, between it and
the CPU. The disk accepts output from several users and acts as a temporary
storage area for all output until the printer is ready to accept it. This process
is called spooling. If the printer needs all of a job’s output before it will begin
printing, but the spooling system fills the available disk space with only par-
tially completed output, then a deadlock can occur. It happens like this.

Let’s say it’s one hour before the big project is due for a computer class.
Twenty-six frantic programmers key in their final changes and, with only
minutes to spare, issue print commands. The spooler receives the pages one
at a time from each of the students but the pages are received separately,
several page one’s, page two’s, etc. The printer is ready to print the first
completed program it gets, but as the spooler canvases its files it has the first
page for many programs but the last page for none of them. Alas, the spooler
is full of partially completed output so no other pages can be accepted, but
none of the jobs can be printed out (which would release their disk space)
because the printer only accepts completed output files. An unfortunate
state of affairs.

This scenario isn’t limited to printers. Any part of the system that re-
lies on spooling, such as one that handles incoming jobs or transfers files
over a network, is vulnerable to such a deadlock.

Case 6: Deadlocks in Disk Sharing
Disks are designed to be shared, so it’s not uncommon for two processes to
be accessing different areas of the same disk. Without controls to regulate
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the use of the disk drive, competing processes could send conflicting com-
mands and deadlock the system.

For example, at an insurance company the system performs many
daily transactions. One day the following series of events ties up the system:

1. Process P1 wishes to show a payment so it issues a command to read the
balance, which is stored in cylinder 20 of a disk pack.

2. While the control unit is moving the arm to cylinder 20, P1 is put on hold
and the I/0 channel is free to process the next I/0 request.

3. P2 gains control of the I/0 channel and issues a command to write some-
one else’s payment to a record stored in cylinder 310. If the command is
not “locked out,” P2 will be put on hold while the control unit moves the
arm to cylinder 310.

4. Because P2 is “on hold,” the channel is free to be captured again by P1
which reconfirms its command to “read from cylinder 20.”

5. Since the last command from P2 had forced the arm mechanism to cylin-
der 310, the disk control unit begins to reposition the arm to cylinder 20
to satisfy P1. The 1/0 channel would be released because P1 is once again
put on hold, so 1t could be captured by P2 which issues a WRITE com-
mand only to discover that the arm mechanism needs to be repositioned.

As a result, the arm is in a constant state of motion, moving back and
forth between cylinder 20 and cylinder 310 as it responds to the two com-
peting commands, but satisfies neither, as shown in Figure 5.5.

Main memory
, Read records Cylinder 310
at cylinder 20 Cylinder 20
I/D Disk
2. writetofile | channel —| control
at cylinder 310 unit

(- PP

0
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~

Disk

FIGURE 5.5 The I/0 channel and disk control unit can work independently from the
CPU, so a new command can be waiting before the first one is com-
pleted and create a deadlock.

Case 7: Deadlocks in a Network

A network that’s congested or has a large percentage of its I/0 buffer space
full can be deadlocked if it doesn’t have protocols to control the flow of
messages through the network.

For example, a medium-sized word processing center has seven com-
puters on a network, each on different nodes. C1 receives messages from
nodes C2, C6, and C7 and sends messages to only one: C2. C2 receives mes-
sages from nodes C1, C3, and C4 and sends messages to C1 and C3. The
direction of the arrows in Figure 5.6 indicates the flow of messages.
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FIGURE 5.6 Typical network flow. Each circle represents a node; each line repre-
sents a communication line; arrows indicate the direction of the flow of
traffic.

Messages received by C1 from C6 and C7 and destined for C2 are buff-
ered in an output queue. Messages received by C2 from C3 and C4 and
destined for C1 are buffered on an output queue. As the traffic increases. the
length of each output queue increases until all of the available buffer space is
filled. At this point C1 can’t accept any more messages (from C2 or any
other computer) because there’s no more buffer space available to store
them. For the same reason, C2 can’t accept any messages from C1 or any
other computer, not even a request to send. The communication path be-
tween C1 and C2 becomes deadlocked and since C1 can receive messages
only from C6 and C7 those routes also become deadlocked. C1 can’t send
word to C2 about the problem and so the deadlock can’t be resolved without
outside intervention.

Conditions for Deadlock

In each of these seven cases, the deadlock involved the interaction of several
processes and resources, but each deadlock was preceded by the simul-
taneous occurrence of four conditions that the operating system (or other
systems) could have recognized: mutual exclusion, resource holding, no pre-
emption, and circular wait.

To illustrate them, let’s review the staircase example from the begin-
ning of the chapter and identify the four conditions required for a deadlock.
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When two people met between landings they couldn’t pass because the steps
can hold only one person at a time. Mutual exclusion, the act of al-
lowing only one person (or process) to have access to a step (or re-
source), is the first condition for deadlock.

When two people met on the stairs and each one held ground and waited for
the other to retreat that was an example of resource holding (as op-
posed to resource sharing), the second condition for deadlock.

In this example, each step was dedicated to the climber (or the descender); it
was allocated to the holder for as long as needed. This is called no pre-
emption, the lack of temporary reallocation of resources, and is the
third condition for deadlock.

These three lead to the fourth condition of circular wait in which each per-
son (or process) involved in the impasse is waiting for another to vol-
untarily release the step (or resource) so that at least one will be able to
continue on and eventually arrive at the destination.

All four conditions are required for the deadlock to occur and as long as
all four conditions are present the deadlock will continue; but if one condi-
tion can be removed the deadlock will be resolved. In fact, if the four condi-
tions can be prevented from ever occurring at the same time, deadlocks can
be prevented, but although the concept is obvious it isn’t easy to implement.

Modeling Deadlocks

Holt (1972) showed how the four conditions can be modeled using directed
graphs. (We used modified directed graphs in Figures 5.2 and 5.4.) These
graphs use two kinds of symbols: processes represented by circles and re-
sources represented by squares. A solid line from a resource to a process
means that the process is holding that resource. A solid line from a process
to a resource means that the process is waiting for that resource. The direc-
tion of the arrow indicates the flow. If there’s a cycle in the graph then
there’s a deadlock involving the processes and the resources in the cycle, as
shown in Figure 5.7c.

R1

7 ()

R2

{a) (b) (c)

FIGURE 5.7 In (a) process P1 is holding resource R1. In (b) process P1 is waiting for
resource R1. In (c) P1 holds R1 and is waiting for R2, while P2 holds R2
and is waiting for R1—creating a deadlock.
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The following system has three processes—P1, P2, P3—and three re-
sources—R 1, R2, R3—each of a different type: printer, tape drive, and plot-
ter. Because there is no specified order in which the requests are handled
we’ll look at three different possible scenarios using graphs to help us detect
any deadlocks.

The first scenario is:

P1 requests and is allocated the printer R1.

P1 releases the printer R1.

P2 requests and is allocated the tape drive R2.
P2 releases the tape drive R2.

P3 requests and is allocated the plotter R3.

P3 releases the plotter R3.

A

This is shown in Figure 5.8. Therefore, we can safely conclude that a
deadlock can’t occur even if each process requests every resource if the re-
sources are released before the next process requests them.

][] [r] [r] [w] [w]
ONONORONONG,

FIGURE 5.8 The system will stay free of deadlocks if all resources are released
before they’re requested by the next process.

Now, consider a second scenario:

P1 requests and is allocated R1.
P2 requests and is allocated R2.
P3 requests and is allocated R3.
P1 requests R2.
P2 requests R3.
P3 requests R1.

A

This is shown in Figure 5.9. In this case there is a deadlock because
every process is waiting for a resource being held by one of the other pro-
cesses, but none will be released without operator intervention.

FIGURE 5.9 A deadlocked system; note the circular wait.
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Here’s a third scenario:

P1 requests and is allocated R1.

P1 requests and is allocated R2.

P2 requests R1.

P3 requests and is allocated R3.

P1 releases R1, which is allocated to P2.
P3 requests R2.

P1 releases R2, which is allocated to P3.

w] [re)} [
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(b)
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[r1] |re R3
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FIGURE 5.10 After step 4 the diagram looks like (a) and P2 is blocked because P1 is
holding onto R1. However, step 5 breaks the impasse and the diagram
soon looks like (b). Again there is a blocked process, P3, which must
wait for the release of R2 in step 7 when the diagram looks like (c).

In the scenario shown in Figure 5.10 the resources are released before
deadlock can occur.

The examples presented so far have examined cases in which one or
more resources of different types were allocated to a process. However, the
graphs can be expanded to include several resources of the same type, such
as tape drives, which can be allocated individually or in groups to the same
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process. These graphs cluster the devices of the same type into one node,
and the arrows show the links between the single resource and the processes
using it.

Figure 5.11 gives an example of a node with three resources of the
same type, each allocated to a different process. Although Figure 5.11(a)
seems to be stable (no deadlock can occur), this is not the case because if all
three processes request one more resource, without releasing the one they
are using, then deadlock will occur as shown in Figure 5.11(b).

(P—o o o }—()

{b)

FIGURE 5.11 (a) A fully allocated resource node; there are as many lines coming out
of it as there are units in it. The state of (a) is uncertain because a
request for another resource by all three processes would create a
deadlock, as shown in (b).

Strategies for Handling Deadlocks

As these examples show, the requests and releases are received in an unpre-
dictable order, which makes it very difficult to design a foolproof preventive
policy. In general, operating systems use one of three strategies to deal with
deadlocks:

1. Prevent one of the four conditions from occurring.
2. Avoid the deadlock if it becomes probable.
3. Detect the deadlock when it occurs and recover from it gracefully.

Prevention
To prevent a deadlock the operating system must eliminate one of the four
necessary conditions, a task complicated by the fact that the same condition
can’t be eliminated from every resource.

Mutual exclusion is necessary in any computer system because some
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resources such as memory, CPU, and dedicated devices must be exclusively
allocated to one user at a time. In the case of I/0O devices such as printers the
mutual exclusion may be bypassed by spooling so the output from many jobs
may be stored into separate temporary spool files at the same time, and each
complete output file is then selected for printing when the device is ready.
However. we may be trading one type of deadlock (Case 3: Deadlocks in Ded-
icated Device Allocation) for another (Case 5: Deadlocks in Spooling).

Resource holding, where a job holds on to one resource while waiting
for another one that’s not yet available, could be sidestepped by forcing each
job to request, at creation time, every resource it will need to run to comple-
tion. For example in a batch system, if every job is given as much memory as
it needs then the number of active jobs will be dictated by how many can fit
in memory—a policy that would significantly decrease the degree of multi-
programming. In addition, peripheral devices would be idle because they
would be allocated to a job even though they wouldn’t be used all the time.
As we’ve said before, this was used successfully in batch environments al-
though it reduced the effective use of resources and restricted the amount of
multiprogramming. But it doesn’t work as well in interactive systems.

No preemption could be bypassed by allowing the operating system to
deallocate resources from jobs. This can be done if the state of the job can be
easily saved and restored, as when a job is preempted in a round robin envi-
ronment or a page is swapped to secondary storage in a virtual memory
system. On the other hand, preemption of a dedicated I/O device (printer,
plotter, tape drive, and so on), or of files during the modification process,
can have some extremely unpleasant recovery tasks.

Circular wait can be bypassed if the operating system prevents the for-
mation of a circle. One such solution was proposed by Havender (1968) and
is based on a numbering system for the resources such as: printer = 1, disk =
2, tape = 3, plotter = 4, and so on. The system forces each job to request its
resources in ascending order: any “number one” devices required by the job
would be requested first; any “number two” devices would be requested
next; and so on. So if a job needed a printer and then a plotter, it would
request them in this order: printer (#1) first and then the plotter (#4). If the
job required the plotter first and then the printer, it would still request the
printer first (which is a #1) even though it wouldn’t be used right away. A job
could request a printer (#1) and then a disk (#2) and then a tape (#3), but if it
needed another printer (#1) late in its processing, it would still have to antic-
ipate that need when it requested the first one, and before it requested the
disk.

This scheme of *“hierarchical ordering” removes the possibility of a
circular wait and therefore guarantees the removal of deadlocks. It doesn’t
require that jobs state their maximum needs in advance, but it does require
that the jobs anticipate the order in which they will request resources. From
the perspective of a system designer, one of the difficulties with this scheme
is discovering the best order for the resources so the needs of the majority of
the users are satisfied. Another difficulty is that of assigning a ranking to
nonphysical resources such as files or locked database records where there is
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no basis for assigning a higher number to one over another (Lane & Moo-
ney, 1988).

Avoidance

Even if the operating system can’t remove one of the conditions for dead-
lock, it can avoid one if the system knows ahead of time the sequence of
requests associated with each of the active processes. As was illustrated in
the graphs presented in Figures 5.7 through 5.11 there exists at least one
allocation of resources sequence that will allow jobs to continue without
becoming deadlocked.

One such algorithm was proposed by Dijkstra (1965) to regulate re-
source allocation to avoid deadlocks. The Banker’s Algorithm is based on a
bank with a fixed amount of capital that operates on the following princi-
ples:

1. No customer will be granted a loan exceeding the bank’s total capital.

2. All customers will be given a maximum credit limit when opening an
account.

3. No customer will be allowed to borrow over the limit.

4. The sum of all loans won’t exceed the bank’s total capital.

Under these conditions the bank isn’t required to have on hand the
total of all maximum lending quotas before it can open up for business (we’ll
assume the bank will always have the same fixed total and we’ll disregard
interest charged on loans). For our example the bank has a total capital fund
of $10,000 and has three customers C1, C2. and C3 who have maximum
credit limits of $4,000, $5,000. and $8,000, respectively. Table 5.1 illus-
trates the state of affairs of the bank after some loans have been granted to
C2 and C3. This is called a safe state because the bank still has enough
money left to satisfy the maximum requests of C1, C2, or C3.

TABLES5.1 The bank started with $10,000 and has remaining capital of $4,000 after these loans. Therefore it’s in
a “safe state.”

Customer Loan amount Maximum credit Remaining credit
Cl 0 4,000 4,000
C2 2,000 5,000 3,000
C3 4,000 8.000 4.000

Total Loaned: $6,000
Total Capital Fund: $10,000

A few weeks later after more loans have been made, and some have
been repaid, the bank is in the unsafe state represented in Table 5.2.

This is an unsafe state because, with only $1,000 left, the bank can’t
satisfy anyone’s maximum request and if the bank lent the $1,000 to anyone
then it would be deadlocked (it can’t make a loan). An unsafe state doesn’t
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TABLE 5.2 The bank only has remaining capital of $1,000 after these loans and therefore is in an “‘unsafe state "

Customer Loan amount Maximum credit Remaining credit
Cl 2,000 4,000 2,000
C2 3,000 5,000 2,000
C3 4,000 8,000 4,000

Total Loaned: $9,000
Total Capital Fund: $10,000

necessarily lead to deadlock, but it does indicate that the system is an excel-
lent candidate for one. After all, none of the customers is required to request
the maximum, but the bank doesn’t know the exact amount that will even-
tually be requested, and as long as the bank’s capital is less than the maxi-
mum amount available for individual loans it can’t guarantee that it will be
able to fill the loan request.

If we substitute jobs for customers and dedicated devices for dollars
we can apply the same banking principles to an operating system. In this
example the system has ten devices.

Table 5.3 shows our system in a safe state while Table 5.4 depicts the
same system in an unsafe state. As before, a safe state is one in which at least
one job can finish because there are enough available resources to satisfy its
maximum needs. Then, using the resources released by the finished job, the
maximum needs of another job can be filled and that job can be finished,
and so on until all jobs are done.

TABLE 5.3 Resource assignments after initial allocations. A safe state: six devices are allocated and four units
are still available.

Job no. Devices allocated Maximum required Remaining needs
1 0 4 4
2 2 5 3
3 4 8 4

Total no. devices allocated: 6
Total devices in system: 10

The operating system must be sure never to satisfy a request that
moves it from a safe state to an unsafe one. Therefore, as user’s requests are
satisfied, the operating system must identify the job with the smallest num-
ber of remaining resources and make sure that the number of available re-
sources is always equal to, or greater than, the number needed for this job to
run to completion. Requests that would place the safe state in jeopardy must
be blocked by the operating system until they can be safely accommodated.
If the system is always kept in a safe state, all requests will eventually be
satisfied and a deadlock is avoided.
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TABLE 5.4 Resource assignments after later allocations. An unsafe state: only one unit is available but every job
requires at least two to complete its execution.

Job no. Devices allocated Maximum required Remaining needs
1 2 4 2
2 3 5 2
3 4 8 4

Total no. devices allocated: 9
Total devices in system: 10

If this elegant solution is expanded to work with several classes of re-
sources the system sets up a “resource assignment table” for each type of
resource and tracks each table to keep the system in a safe state.

Although the Banker’s Algorithm has been used to avoid deadlocks in
systems with a few resources, it isn’t always practical for most systems for
several reasons (Tanenbaum, 1987):

1. As they enter the system jobs must state in advance the maximum num-
ber of resources needed. As we’ve said before, this isn’t practical in inter-
active systems,

2. The number of total resources for each class must remain constant. If a
device breaks and becomes suddenly unavailable the algorithm won't
work (the system may already be in an unsafe state).

3. The number of jobs must remain fixed, something that isn’t possible in
interactive systems where the number of active jobs is constantly chang-
ing.

4. The overhead cost incurred by running the avoidance algorithm can be
quite high when there are many active jobs and many devices because it
has to be invoked for every request.

5. Resources aren’t well utilized because the algorithm assumes the worst
case and, as a result, keeps vital resources unavailable to guard against
unsafe states.

6. Scheduling suffers as a result of the poor utilization and jobs are kept
waiting for resource allocation. A steady stream of jobs asking for a few
resources can cause the indefinite postponement of a more complex job
requiring many resources.

Detection

The directed graphs presented earlier in this chapter showed how the exis-
tence of a circular wait indicated a deadlock, so it’s reasonable to conclude
that deadlocks can be detected by building directed resource graphs and
looking for cycles. Unlike the avoidance algorithm, which must be per-
formed every time there is a request, the algorithm used to detect circularity
can be executed whenever it is appropriate: every hour, once a day, only
when the operator notices that throughput has deteriorated, or when an an-
gry user complains.
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The detection algorithm can be explained by using directed resource
graphs and “reducing” them. The steps to reduce a graph are these (Lane &
Mooney, 1988): °

. Find a process that is currently using a resource and not waiting for one.
This process can be removed from the graph (by disconnecting the link
tying the resource to the process), and the resource can be returned to the
“available list.”” This is possible because the process would eventually
finish and return the resource.

. Find a process that’s waiting only for resource classes that aren’t fully
allocated. This process isn’t contributing to deadlock since it would
eventually get the resource it’s waiting for, finish its work, and return the
resource to the “available list.”
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FIGURE 5.12 The system is deadlock-free because the graph can be completely
reduced.
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3. Go back to Step 1 and continue the loop until all lines connecting re-
sources to processes have been removed.

If there are any lines left, this indicates that the request of the process
in question can’t be satisfied and that a deadlock exists. Figure 5.12 illus-
trates a system in which three processes—P1, P2, and P3—and three re-
sources—R1, R2, and R3—aren’t deadlocked.

Figure 5.12 shows the stages of a graph reduction from (a), the original
state. In (b) the link between P3 and R3 can be removed because P3 isn’t
waiting for any other resources to finish, so R3 is released and allocated to
P2 (Step 1). In (c) the links between P2 and R3 and between P2 and R2 can
be removed because P2 has all of its requested resources and can run to
completion—and then R2 can be allocated to P1. Finally in (d) the links
between P1 and R2 and between P1 and R1 can be removed because P1 has
all of its requested resources and can finish successfully. Therefore, the
graph is completely resolved. In Figure 5.13, the same system is deadlocked.

(2 ()

(FO—{r]  [r]
(2)
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FIGURE 5.13 The graph can’t be reduced any further, indicating a deadlock.

The deadlocked system in Figure 5.13 can’t be reduced. In (a) the link
between P3 and R3 can be removed because P3 isn’t waiting for any other
resource, so R3 is released and allocated to P2. But in (b) P2 has only two of
the three resources it needs to finish and it is waiting for R1. But R1 can’t be
released by P1 because P1 is waiting for R2, which is held by P2; moreover,
P1 can’t finish because it is waiting for P2 to finish (and release R2), and P2
can’t finish because it’s waiting for R1. This is a circular wait.

Recovery

Once a deadlock has been detected it must be untangled and the system
returned to normal as quickly as possible. There are several recovery algo-
rithms, but they all have one feature in common: they all require at least one
victim, an expendable job, which, when removed from the deadlock, will
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free the system. Unfortunately for the victim removal generally requires
that the job be restarted from the beginning or from a convenient midpoint
(Calingaert, 1982).

The first and simplest recovery method, and the most drastic, is to
terminate all of the jobs active in the system and restart them from the be-
ginning.

The second method is to terminate only the jobs involved in the dead-
lock and ask their users to resubmit them.

The third method is to identify which jobs are involved in the dead-
lock and terminate them one at a time, checking to see if the deadlock is
eliminated after each removal, until the deadlock has been resolved. Once
the system is freed, the remaining jobs are allowed to complete their pro-
cessing and later the halted jobs are started again from the beginning.

The fourth method can be put into effect only if the job keeps a record,
a snapshot, of its progress so it can be interrupted and then continued with-
out starting again from the beginning of its execution. The snapshot is like
the landing in our staircase example: instead of forcing the deadlocked stair-
climbers to return to the bottom of the stairs, they need to retreat only to the
nearest landing and wait until the others have passed. Then the climb can be
resumed. In general, this method is favored for long-running jobs to help
them make a speedy recovery.

Until now we’ve offered solutions involving the jobs caught in the
deadlock. The next two methods concentrate on the nondeadlocked jobs
and the resources they hold. One of them, the fifth method in our list, selects
a nondeadlocked job, preempts the resources it’s holding, and allocates
them to a deadlocked process so it can resume execution, thus breaking the
deadlock. The sixth method stops new jobs from entering the system, which
allows the nondeadlocked jobs to run to completion so they’ll release their
resources. Eventually, with fewer jobs in the system, competition for re-
sources is curtailed so the deadlocked processes get the resources they need
to run to completion. This method is the only one listed here that doesn’t
rely on a victim, and it’s not guaranteed to work unless the number of avail-
able resources surpasses that needed by at least one of the deadlocked jobs
to run (this is possible with multiple resources).

Several factors must be considered to select the victim that will have
the least-negative effect on the system. The most common are:

1. The priority of the job under consideration—high-priority jobs are usu-
ally untouched.

2. CPU time used by job—jobs close to completion are usually left alone.

3. The number of other jobs that would be affected if this job were selected
as the victim.

In addition, programs working with databases also deserve special treat-
ment. Jobs that are modifying data shouldn’t be selected for termination be-
cause the consistency and validity of the database would be jeopardized.
Fortunately, designers of many database systems have included sophisticated
recovery mechanisms so damage to the database is minimized if a transaction
is interrupted or terminated before completion (Finkel, 1986).
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Starvation

So far we have concentrated on deadlocks, the result of liberal allocation of
resources. At the opposite end is starvation, the result of conservative allo-
cation of resources where a single job is prevented from execution because
it’s kept waiting for resources that never become available. To illustrate this,
the case of “the dining philosophers” was introduced by Dijkstra (1968).

Five philosophers are sitting at a round table, each in deep thought,
and in the center lies a bowl of spaghetti that is accessible to everyone. There
are forks on the table—one between each philosopher, as illustrated in Fig-
ure 5.14. Local custom dictates that each philosopher must use two forks,
the forks on either side of the plate, to eat the spaghetti, but there are only
five forks—not the ten it would require for all five thinkers to eat at once—
and that’s unfortunate for Philosopher 2.

F5 F

F3
FIGURE 5.14 The dining philosophers’ table, before the meal begins.

When they sit down to dinner, Philosopher 1 (P1) s the first to take the
two forks (F1 and F5) on either side of the plate and begins to eat. Inspired
by his colleague, Philosopher 3 (P3) does likewise, using F2 and F3. Now
Philosopher 2 (P2) decides to begin the meal but is unable to start because
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no forks are available: F1 has been allocated to P1 and F2 has been allocated
to P3, and the only remaining fork can be used only by P4 or P5. So Philoso-
pher 2 must wait.

Soon, P3 finishes eating, puts down his two forks and resumes his pon-
dering. Should the fork beside him (F2), that’s now free, be allocated to the
hungry philosopher (P2)? Although it’s tempting, such a move would be a
bad precedent because if the philosophers are allowed to tie up resources
with only the hope that the other required resource will become available,
the dinner could easily slip into an unsafe state; it would be only a matter of
time before each philosopher held a single fork—and nobody could eat. So
the resources are allocated to the philosophers only when both forks are
available at the same time. The status of the “system” is illustrated in Figure
5.15.

*Waiting for F1

F4 F2

F3

FIGURE 5.15 Each philosopher must have both forks to begin eating, the one on the
right and the one on the left. Unless the resources, the forks, are allo-
cated fairly, some philosophers may starve.

P4 and P5 are quietly thinking and P1 is still eating when P3 (who
should be full) decides to eat some more and because the resources are free
he is able to take F2 and F3 once again. Soon thereafter, P1 finishes and
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Chapter Summary

Key Terms

releases F1 and F5, but P2 is still not able to eat because F2 is now allocated.
This scenario could continue forever, and as long as P1 and P3 alternate
their use of the available resources P2 must wait. P1 and P3 can eat any time
they wish while P2 starves—only inches from nourishment.

In a computer environment, the resources are like forks and the com-
peting processes are like dining philosophers. If the resource manager
doesn’t watch for starving processes and jobs, and plan for their eventual
completion, they could remain in the system forever waiting for the right
combination of resources.

To address this problem, an algorithm designed to detect starving jobs
can be implemented, which tracks how long each job has been waiting for
resources (this is the same as aging described in Chapter 4). Once starvation
has been detected, the system can block new jobs until the starving jobs have
been satisfied. This algorithm must be monitored closely: if it’s done too
often then new jobs will be blocked too frequently and throughput will be
diminished. If it’s not done often enough starving jobs will remain in the
system for an unacceptably long period of time.

Every operating system must dynamically allocate a limited number of re-
sources while avoiding the two extremes of deadlock and starvation.

In this chapter we discussed several methods of dealing with dead-
locks: prevention, avoidance, and detection and recovery. Deadlocks can be
prevented by not allowing the four conditions of a deadlock to occur in the
system at the same time. By eliminating at least one of the four conditions
(mutual exclusion, resource holding, no preemption, and circular wait) the
system can be kept deadlock-free. As we’ve seen, the disadvantage of a pre-
ventive policy is that each of these conditions is vital to different parts of the
system at least some of the time, so prevention algorithms are complex and
to routinely execute them involves high overhead.

Deadlocks can be avoided by clearly identifying safe states and unsafe
states and requiring the system to keep enough resources in reserve to guar-
antee that all the jobs active in the system can run to completion. The disad-
vantage of an avoidance policy is that the system’s resources aren’t allocated
to their fullest potential.

If a system doesn’t support prevention or avoidance then it must be
prepared to detect and recover from the deadlocks that occur. Unfortu-
nately, this option usually relies on the selection of at least one “victim”—a
job that must be terminated before it finishes execution and restarted from
the beginning.

In the next chapter we’ll look at problems related to the synchroniza-
tion of processes in a multiprocessing environment.

process synchronization starvation
deadly embrace locking
deadlock race
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spooling avoidance
mutual exclusion detection
resource holding recovery
no preemption safe state
circular wait unsafe state
directed graphs victim
prevention

Exerclses 1. What are the major differences between deadlock. starvation, and race?

2. Give some “real life examples (not related to a computer system envi-
ronment) of deadlock, starvation, and race.

3. Select one example of deadlock from Exercise 2 and list the four neces-
sary conditions needed for the deadlock.

4. Suppose the narrow staircase (used as an example in the beginning of
this chapter) has become a major source of aggravation. Design an algo-
rithm for using it so that both deadlock and starvation are not possible.

5. The following figure shows a tunnel going through a mountain and two
streets parallel to each other at each entrance/exit of the tunnel. Traffic
lights are located at each end of the tunnel to control the crossflow of
traffic through each intersection.

Independence
Tunnel

Mount George

a. Can deadlock occur? How and under what circumstances?
b. How can deadlock be detected?
¢. Give a solution 1o prevent deadlock but watch out for starvation.
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6. Consider the following directed resource graph:

pEeFp

Is this system deadlocked?

Are there any blocked processes?

What is the resulting graph after reduction by P1?

What is the resulting graph after reduction by P2?

Both P1 and P2 have requested R2:

1. What is the status of the system if P2’s request is granted before
P1’s?

2. What is the status of the system if P1’s request is granted before
P2’s?

7. Consider the following directed resource graph:

&

Is this system, as a whole, deadlocked?

Are there any deadlocked processes?

Three processes—P1. P2, and P3—are requesting resources from

R2.

1. Which requests would you satisfy to minimize the number of pro-
cesses involved in the deadlock?

2. Which requests would you satisfy to maximize the number of
processes involved in deadlock?

Can the graph be reduced, partially or totally?

Can the deadlock be resolved without selecting a victim?
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8. Consider a computing system with 13 tape drives. All jobs running on
this system require a maximum of 5 tape drives to complete but they
each run for long periods of time with just 4 drives and request the fifth
one only at the very end of the run. The job stream is endless.

a. If your operating system supports a very conservative device alloca-
tion policy no job will be started unless all tapes requested have been
allocated to it for the duration of its run:

1. What is the maximum number of jobs that can be active at once?

2. What are the minimum and maximum number of tape drives
that may be idle as a result of this policy?

3. Explain your answer.

b. If your operating system supports the Banker’s Algorithm:

1. What is the maximum number of jobs that can be in progress at
once?

2. What are the minimum and maximum number of tape drives
that may be idle as a result of this policy?

3. Explain your answer.

For the systems described in exercises 9 through 11, given that all of the

devices are of the same type, and using the definitions presented in the

discussion of the Banker’s Algorithm, answer these questions.

a. Determine the “remaining needs” for each job in each system.

b. Determine whether each of the systems is safe or unsafe.

c. If the system is in a safe state, list the sequence of requests and re-
leases that will make it possible for all processes to run to comple-
tion.

d. If the system is in an unsafe state, show how it’s possible for dead-
lock to occur.

9. System number 1 has 12 devices; only 1 is available.

Devices Maximum Remaining
Job no. allocated required needs
1 5 6
2 4 7
3 2 6
4 0 2

10. System number 2 has 14 devices; only 2 are available.

Devices Maximum Remaining
Job no. allocated required needs
1 5 8
3 9

3 4 8
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Advanced Exercises

11

12

13

14.

15.

16.

. System number 3 has 12 devices; only 2 are available.
Devices Maximum Remaining
Job no. allocared required needs
1 5 8
2 4 6
3 1 4

. Suppose you are an operating system designer and have been ap-
proached by the operator to help solve the recurring deadlock problem
in your installation’s spooling system. What features might you incor-
porate into the operating system so that deadlocks in the spooling sys-
tem can be resolved without loss of work done by the processes
involved?

. A system in an unsafe state is not necessarily deadlocked. Explain why

this is true. Give an example of a system in an unsafe state and show

how all the processes could complete without having deadlock occur-
ring.

State how you would design and implement a mechanism to allow the

operating system to detect which of the processes are starving.

Given the four primary types of resources—CPU, memory, storage de-

vices, and files—select for each one the most suitable technique for

fighting deadlock and briefly explain why it is your choice.

State the limitations imposed on programs (and on systems) that have

to follow a hierarchical ordering of resources, for example: disks, print-

ers, terminals, and files.
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Concurrent Processes
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“ Concurrent rocesses

Master/Slave
Loosely Coupled Configurations
ymmetric
Test & Seat .

WAIT & SIGNAL Synchronization

Semaphores
Producers & Consumers Cooperation
Readers & Writers
Concurrent Programming

In Chapters 4 and 5 we described systems that used only one CPU. In this
chapter we’ll look at multiprocessing systems, those with more than one
CPU. We'll discuss the reasons for their development. their advantages. and
their problems.

As we'll see in this chapter, the key to multiprocessing has been the
object of extensive research. We’ll examinc several configurations of proces-
sors and we’'ll also review the classic problems of concurrent processes. such
as: *producers and consumers.” the *“‘readers and writers™ and the “missed
waiting customer.” While the problems occur in single processor systems,
they are presented here because they apply to multiprocesses in general.
whether they involve a single processor (with two or more processes) or
more than one processor (hence multiprocesses). The chapter concludes
with a brief look at the Ada programming language and concurrent process-
ing programming,

What Is Parallel Processing?

Parallel processing. also called multiprocessing. is a situation in which two
Or MOore processors operate in unison. That means two or more CPUs are

123
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executing instructions simultaneously. Therefore, with more than one pro-
cess executing at the same time, each CPU can have a process in the
RUNNING state at the same time. For multiprocessing systems, the Processor
Manager has to coordinate the activity of each processor, as well as synchro-
nize the interaction among the CPUs.

The complexities of the Processor Manager’s task when dealing with
multiple processors or multiple processes are easily illustrated with an ex-
ample: You’re late for an early afternoon appointment and you’re in danger
of missing lunch, so you get in line for the drive-through window of the local
fast-food shop. When you place your order, the order clerk confirms your
request, tells you how much it will cost, and asks you to drive to the pick-up
window where a cashier collects your money and hands over your order.
All’s well and once again you’re on your way—driving and thriving. You
just witnessed a well-synchronized multiprocessing system. Although you
came in contact with just two processors—the order clerk and the cashier—
there were at least two other processors behind the scenes who cooperated to
make the system work—the cook and the bagger.

The fast-food restaurant is similar to an information retrieval system
in which Processor 1 (the order clerk) accepts the query, checks for errors,
and passes the request on to Processor 2 (the bagger). Processor 2 (the bag-
ger) searches the database for the required information (the hamburger).
Processor 3 (the cook) retrieves the data from the database (the meat to cook
for the hamburger) if it’s kept off-line in secondary storage. Once the data is
gathered (the hamburger is cooked). it’s placed where Processor 2 can get it
(in the hamburger bin). Processor 2 (the bagger) passes it on to Processor 4
(the cashier). Processor 4 (the cashier) routes the response (your order) back
to the originator of the request—you.

Synchronization is the key to the system’s success because many things
can go wrong in a multiprocessing system: What if the communications sys-
tem broke down and you couldn’t speak with the order clerk? What if the
cook produced hamburgers at full speed all day, even during slow periods?
What would happen to the extra hamburgers? What if the cook got badly
burned and couldn’t cook anymore? What would the bagger do if there were
no hamburgers? What if the cashier decided to take your money but didn’t
give you any food? Obviously, the system won’t work unless every processor
communicates and cooperates with every other processor.

Multiprocessors were developed for high-end models of IBM main-
frames and VAX computers where the operating system treated additional
CPUs as another resource that could be scheduled for work. These systems,
some with as few as two CPUs, have been in use for many years (Lane &
Mooney, 1988).

Since the mid-1980s when the costs of CPU hardware declined, multi-
processor systems with dozens of CPUs have found their way into business
environments. What’s more, systems containing tens of thousands of CPUs
(systems that had once been available only for research) can now be found in
production environments. Today multiprocessor systems are available on
systems of every size (Lane & Mooney, 1988).
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There were two major forces behind the development of multiprocess-
ing: to enhance throughput and to increase computing power. And there are
two primary benefits: increased reliability and faster processing.

The reliability stems from the availability of more than one CPU: if
one processor fails the others can continue to operate and absorb the load.
This isn’t simple to do; the system must be carefully designed so that, first,
the failing processor can inform the other processors to take over and, sec-
ond, the operating system can restructure its resource allocation strategies
so the remaining system doesn’t become overloaded.

The increased processing speed is achieved because instructions can
be processed in parallel, two or more at a time, and it’s done in one of sev-
eral ways. Some systems allocate a CPU to each program or job. Others
allocate a CPU to each working set or parts of it. Still others subdivide indi-
vidual instructions so each subdivision can be processed simultaneously
(this is called “concurrent programming,” which we’ll discuss in detail at
the conclusion of this chapter).

Increased flexibility brings increased complexity, however, and two
major challenges are how to connect the processors (configurations) and
how to orchestrate their interaction. This latter issue, the orchestration of
the interaction, applies to multiple interacting processes as well. (It might
help if you think of each process as being run on a separate processor al-
though, in reality, there is only one doing all the work.)

Typical Multiprocessing Configurations

Much depends on how the multiple processors are configured within the
system. Three typical configurations are: master/slave, loosely coupled, and
symmetric.

Master/Slave Configuration

The master/slave multiprocessing system is an asymmetric configuration.
Conceptually it’s a single-processor system with additional *“slave™ proces-
sors, each of which is managed by the primary “master” processor. The
master processor is responsible for managing the entire system: all files, all
devices, memory, and all processors. Therefore it maintains the status of all
processes in the system, performs storage management activities, schedules
the work for the other processors, and executes all control programs. This
configuration is well-suited for computing environments in which process-
ing time is divided between front-end and back-end processors; in these
cases the front-end processor takes care of the interactive users and quick
jobs, and the back-end processor takes care of those with long jobs using the
batch mode.

Figure 6.1 (page 126) shows a typical master/slave configuration. The
primary advantage of this configuration is its simplicity. However it has
three serious disadvantages:
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1. Its reliability is no higher than for a single processor system because if the
master processor fails, the entire system fails.

2. It can lead to poor use of resources because if a slave processor should

become free while the master processor is busy, the slave must wait until
the master becomes free and can assign more work to it.

3. It increases the number of interrupts because all slave processors must
interrupt the master processor every time they need operating system
intervention, such as for I/O requests. This creates long queues at the
master processor level when there are many processors and many inter-
rupts.

Master Processor 1
Processor
Processor 2

1/0
Devices

Main
Memory

FIGURE 6.1 “Master/slave” multiprocessing configuration.

Loosely Coupled Configuration

The loosely coupled configuration features several complete computer sys-
tems, each with its own memory, 1/0 devices, CPU, and operating system,
as shown in Figure 6.2.

Memory Memory Memory

110 110 1/0
Devices Devices Devices

FIGURE 6.2 Loosely coupled multiprocessing configuration.

It is called loosely coupled because each processor controls its own re-
sources—its own files and its own 1/0 devices—and that means that each
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processor maintains its own commands and I/O management tables. The
only difference between a loosely coupled multiprocessing system and a col-
lection of independent single processing systems is that each processor can
communicate and cooperate with the others.

When a job arrives for the first time, it’s assigned to one processor.
Once allocated, the job will remain with the same processor until it’s fin-
ished. Therefore each processor must have “global” tables that indicate to
which processor each job has been allocated.

To keep the system well-balanced and to assure the best use of re-
sources, job scheduling is based on several requirements and policies. For
example, new jobs might be assigned to the processor with the lightest load
or the best combination of output devices available.

This system isn’t prone to catastrophic system failures because even
when a single processor fails the others can continue to work independently
from it. However, it can be difficult to detect when a processor has failed.

Symmetric Configuration

The symmetric configuration is best implemented if the processors are all of
the same type. It has four advantages over loosely coupled: (1) it’s more
reliable; (2) it uses resources effectively; (3) it can balance loads well; and (4)
it can degrade gracefully in the event of a failure (Forinash, 1987). However,
it is the most difficult to implement because the processes must be well-
synchronized to avoid the problems of races and deadlocks that we dis-
cussed in Chapter 5.

In a symmetric configuration processor scheduling is decentralized (as
depicted in Figure 6.3). A single copy of the operating system and a global
table listing each process and its status is stored in a common area of mem-
ory so every processor has access to it. Each processor uses the same sched-
uling algorithm to select which process it will run next.

1/0
Devices

FIGURE 6.3 Symmetric multiprocessing with homogeneous processors.

Processor 1
Processor 2

Main
Memory

Whenever a process is interrupted, whether it’s because of an I/0O re-
quest or another type of interrupt, its processor updates the corresponding
entry in the process list and finds another process to run. This means that
the processors are kept quite busy. But it also means that any given job or
task may be executed by several different processors during its run time.
And because each processor has access to all I/O devices and can reference
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any storage unit, there are more conflicts as several processors try to access
the same resource at the same time.

This presents the obvious need for algorithms to resolve conflicts be-
tween processors—that’s “process synchronization.”

Process Synchronization Software

The success of process synchronization hinges on the capability of the oper-
ating system to make a resource unavailable to other processes while it’s
being used by one of them. These “resources” can include I/O devices, a
location in storage, or a data file. In essence, the used resource must be
locked away from other processes until it is released. Only when it is re-
leased is a waiting process allowed to use the resource. This is where syn-
chronization is critical. A mistake could leave a job waiting indefinitely.

It is the same thing that happens in a crowded ice cream parlor. Cus-
tomers take a number to be served. The numbers on the wall are changed by
the clerks who pull a chain to increment them as they attend to each cus-
tomer. But what happens when there is no synchronization between serving
the customers and changing the number? Chaos. This is the case of the
“missed waiting customer” (Madnick & Donovan, 1974).

Let’s say your number is 75. Clerk 1 is waiting on customer 73 and
Clerk 2 is waiting on customer 74. On the wall the sign says “Now Serving
#74” and you’re ready with your order. Clerk 2 finishes with customer 74
and pulls the chain to “Now Serving #75”—but just then the clerk is called
to the telephone (an interrupt). Meanwhile Clerk 1 pulls the chain and pro-
ceeds to wait on #76—and you’re history. If you’re quick you can correct the
mistake gracefully, but when it happens in a computer system the outcome
isn’t as easily remedied.

Consider the scenario in which Processor 1 and Processor 2 finish with
their current jobs at the same time. To run the next job each processor must:

1. Consult the list of jobs to see which one should be run next;
2. Retrieve the job for execution;

3. Increment the READY list to the next job;

4. Execute it.

Both go to the READY list to select a job. Processor 1 sees that Job 74 is
the next job to be run, and goes to retrieve it. A moment later, Processor 2
also selects Job 74 and goes to retrieve it. Shortly thereafter, Processor 1,
having retrieved Job 74, returns to the READY list and increments it moving
Job 75 to the top. A moment later Processor 2 returns: it has also retrieved
Job 74 and is ready to process it, so it increments the READY list and now Job
76 is moved to the top and becomes the next job in line to be processed. Job
75 has become the “missed waiting customer” and will never be pro-
cessed—an unacceptable state of affairs.

There are several other places where this problem can occur: memory



Concurrent Processes 129

and page allocation tables, I/0O tables, application databases, and any shared
resource.

Obviously, this situation calls for synchronization. Several synchroni-
zation mechanisms are available to provide cooperation and communica-
tion among processes. The common element in all synchronization schemes
is to allow a process to finish work on a critical region of the program before
other processes have access to it. This is applicable both to multiprocessors
and to two or more processes in a single-processor (time-shared) processing
system. It is called a critical region because its execution must be handled as
a unit. As we’ve seen, the processes within a critical region can’t be inter-
leaved without threatening the integrity of the operation.

Synchronization is sometimes implemented as a “lock-and-key” ar-
rangement: before a process can work on a critical region, it’s required to get
the “key.” And once it has the key, all other processes are “locked out” until
it finishes when it unlocks the entry to the critical region and returns the key
so another process can get the key and begin work. This sequence consists of
two actions: (1) the process must first see if the key is available and (2) if it is
available, it must pick it up and put it in the lock to make it unavailable to
all other processes. For this scheme to work both actions must be performed
in a single machine cycle; otherwise it is conceivable that while the first pro-
cess is ready to pick up the key, another one would find the key available and
prepare to pick up the key—and each could block the other from proceeding
any further.

Several locking mechanisms have been developed including test-and-
set, WALT and SIGNAL, and semaphores.

Test-and-Set

Test-and-set is a single indivisible machine instruction known simply as
“TS” and was introduced by IBM for its multiprocessing System 360/370
computers. In a single machine cycle it tests to see if the key is available and,
if it 1s, sets it to “unavailable.”

The actual key is a single bit in a storage location that can contain a
zero (if it’s free) or a one (if busy). We can consider TS to be a function
subprogram that has one parameter (the storage location) and returns one
value (the condition code: busy/free), with the exception that it takes only
one machine cycle.

Therefore a process (P1) would test the condition code using the TS
instruction before entering a critical region. If no other process was in this
critical region, then P1 would be allowed to proceed and the condition code
would be changed from zero to one. Later when P1 exits the critical region
the condition code is reset to zero so another process can enter. On the other
hand, if P1 finds a busy condition code, then it’s placed in a “waiting loop”
where it continues to test the condition code and waits until it’s free (Calin-
gaert, 1982).

Although it’s a simple procedure to implement, and works well for a
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small number of processes, test-and-set has two major drawbacks. First,
when many processes are waiting to enter a critical region, starvation could
occur because the processes gain access in an arbitrary fashion. Unless a
first-come first-served policy were set up, some processes could be favored
over others. A second drawback is that waiting processes remain in unpro-
ductive, resource-consuming wait loops. This i1s known as busy waiting—
which not only consumes valuable processor time but also relies on the com-
peting processes to test the key, something that is best handled by the oper-
ating system or the hardware.

WAIT and SIGNAL

WAIT and SIGNAL is a modification of test-and-set that’s designed to remove
busy waiting. Two new operations, which are mutually exclusive and be-
come part of the process scheduler’s set of operations, are WAIT and SIGNAL.

WAIT is activated when the process encounters a busy condition code.
WAILT sets the process’s process control block (PCB) to the blocked state and
links it to the queue of processes waiting to enter this particular critical
region. The Process Scheduler then selects another process for execution.
SIGNAL is activated when a process exits the critical region and the condi-
tion code is set to “free.” It checks the queue of processes waiting to enter
this critical region and selects one, setting it to the READY state. Eventually
the Process Scheduler will choose this process for running. The addition of
the operations WAIT and SIGNAL free the processes from the “busy wait”
dilemma and return control to the operating system, which can then run
other jobs while the waiting processes are idle (WALT).

Semaphores

A semaphore is a nonnegative integer variable that’s used as a flag (Calin-
gaert, 1982).

The most well-known semaphores are the flag-like signaling devices
used by railroads to indicate whether or not a section of track is clear. When
the arm of the semaphore is raised, the track is clear and the train can pro-
ceed. When the arm is lowered, the track is busy and the train must wait
until the arm is raised, as shown in Figure 6.4.

In an operating system a semaphore performs a similar function: it
signals if and when a resource is free and can be used by a process. Dijkstra
(1965) introduced two operations to operate the semaphore to overcome the
process synchronization problem we’ve discussed. Dijkstra called them P
and V and that’s how they’re known today. The P stands for the Dutch word
proberen (to test) and the V stands for verhogen (to increment). The P and V
operations do just that: they test and increment.

Here’s how they work. If we let s be a semaphore variable, then the V
operation on s is simply to increment s by 1. The action can be stated as:
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V() si=s+1

(a) Stop (b) All Clear

FIGURE 6.4 The semaphore used by railroads indicates if the train can proceed. If it
is raised the train can continue, but when it's lowered an oncoming train
is expected.

This in turn necessitates a fetch, increment, and store sequence. Like
the test-and-set operation, the V operation must be performed as a single
indivisible action to avoid deadlocks. And that means that s cannot be ac-
cessed by any other process during the operation.

The operation P on s is to test the value of s and, if it’s not zero, to
decrement it by one. The action can be stated as

P(s):If s>0thens:=s—1

which involves a test, fetch, decrement, and store sequence. Again this se-
quence must be performed as an indivisible action in a single machine cycle
or have it arranged that the process cannot take action until the operation (P
or V) is finished.

The operations P and V are executed by the operating system in re-
sponse to calls issued by any one process naming a semaphore as parameter
(this alleviates the process from having control). If s =0, the process calling
on the P operation must wait until the operation can be executed and that’s
not until s > 0.

As shown in Table 6.1, P3 is placed in the WAIT state (for the sema-
phore) on State 4. As also shown in Table 6.1, for States 6 and 8, when a
process exits the critical region, the value of s is reset to 1. This, in turn,
triggers the awakening of one of the blocked processes, its entry into the
critical region, and the resetting of s to zero. In State 7, P1 and P2 are not
trying to do processing in that critical region and P4 is still blocked
(Madnick & Donovan, 1974).

After State 5 of Table 6.1 the longest waiting process, P3, was the one
selected to enter the critical region, but that isn’t necessarily the case unless
the system is using a first-in first-out selection policy. In fact, the choice of
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TABLE 6.1 The sequence of states for four processes calling P and V operations on the binary semaphore s.
(Note: the value of the semaphore before the operation is on the line preceding the operation. The
current value is on the same line.)

Actions Results
Running in
State Calling critical Blocked Value
number process Operation region Oons o's
0 1
1 Pl P (s) Pl 0
2 Pl V(s) 1
3 P2 P (s) P2 0
4 P3 P (s) P2 P3 0
5 P4 P (s) P2 P3, P4 0
6 P2 V (s) P3 P4 0
7 P3 P4 0
8 P3 vV (s) P4 0
9 P4 V() 1

which job will be processed next depends on the algorithm used by this por-
tion of the Process Scheduler.

As you can see from Table 6.1, P and V operations on semaphore s
enforce the concept of mutual exclusion, which is necessary to avoid having
two operations attempt to execute at the same time. The name traditionally
given to this semaphore in the literature is mutex and it stands for MUTual
EXclusion. So the operations become:

P(mutex): if mutex > 0 then mutex: = mutex — 1
V(mutex): mutex: = mutex + 1

In Chapter 5 we talked about the requirement for mutual exclusion
when several jobs were trying to access the same shared physical resources.
The concept is the same here, but we have several processes trying to access
the same shared critical region. The procedure can generalize to semaphores
having values greater than zero and one.

Thus far we’ve looked at the problem of mutual exclusion presented by
interacting parallel processes using the same shared data at different rates of
execution. This can apply to several processes on more than one processor,
or interacting (codependent) processes on a single processor. In this case the
concept of a ““critical region” becomes necessary because it ensures that par-
allel processes will modify shared data only while in the critical region.

In sequential computations mutual exclusion is achieved automatically
because each operation is handled in order, one at a time. However, in paral-
lel computations the order of execution can change, so mutual exclusion must
be explicitly stated and maintained. In fact, the entire premise of parallel pro-
cesses hinges on the requirement that all operations on common variables
consistently exclude one another over time (Brinch Hansen, 1973).
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Process Cooperation

There are occasions when several processes work directly together to com-
plete a common task. Two famous examples are the problems of “producers
and consumers™ and “readers and writers.” Each case requires both mutual
exclusion and synchronization, and they are implemented by using sema-
phores.

Producers and Consumers

The classic problem of producers and consumers is one in which one process
produces some data that another process consumes later. Although we’ll de-
scribe the case with one producer and one consumer, it can be expanded to
several pairs of producers and consumers.

Let’s return for a moment to the fast-food fiasco from the beginning of
this chapter because the synchronization between two of the processors (the
cook and the bagger) represents a significant problem in operating systems.
The cook produces hamburgers to be consumed by the bagger. Both proces-
sors have access to one common area, the hamburger bin, which can hold
only a finite number of hamburgers (this is called a buffer area). The binis a
necessary storage area because the speed at which hamburgers are produced
is independent from the speed at which they are consumed.

Problems arise at two extremes: when the producer attempts to add to
an already full bin (as when the cook tries to put one more hamburger into a
full bin) and when the consumer attempts to draw from an empty bin (as
when the bagger tries to take a hamburger that hasn’t been made yet). In real
life, the people watch the bin and if it’s empty or too full the problem is recog-
nized and quickly resolved. However, in a computer system it is not so easy.

Consider the case of the prolific CPU: the CPU can generate output
data much faster than a line printer can print it. Therefore, since this in-
volves a producer and a consumer of two different speeds, we need a buffer
where the producer can temporarily store data that can be retrieved by the
consumer at a more appropriate speed. Figure 6.5 shows three typical buffer

states.
Buffer

(a) Producer —v| l—' Consumer
Buffer

(b) Producer —{ ]—’ Consumer
Buffer

(c) Producer —{ I-—o Consumer

FIGURE 6.5 The buffer can be in any one of these three states: (a) full buffer, (b)
partially empty buffer, or (c) empty buffer.
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Since the buffer can hold only a finite amount of data, the synchroniza-
tion process must delay the producer from generating more data when the
buffer is full. And it must also be prepared to delay the consumer from re-
trieving data when the buffer is empty. This task can be implemented by two
counting semaphores—one to indicate the number of full positions in the
buffer and the other to indicate the number of empty positions in the buffer.

A third semaphore, mutex, will ensure mutual exclusion between pro-
cesses. Here are the definitions of the producer and consumer processes:

PRODUCER CONSUMER

produce data P (full)

P (empty) P (mutex)

P (mutex) read data from buffer
write data into buffer V (mutex)

V (mutex) V (empty)

V (full) consume data

Here are the definitions of the variables and functions used in the fol-
lowing algorithm:

Given: Full, Empty, Mutex defined as semaphores
n: maximum number of positions in the buffer
V (x): x:=x+1(xis any variable defined as a semaphore)
P(x): ifx>0thenx:=x—1
COBEGIN and COEND are delimiters used to indicate sections of code to be
done concurrently
mutex = 1 means the process is allowed to enter critical region

And here is the algorithm that implements the interaction between
producer and consumer:

empty:= n
ful,= 0
mutex:= 1
COBEGIN
repeat until no more data PRODUCER
repeat until buffer is empty CONSUMER
COEND

The processes (producer and consumer) then execute as described pre-
viously. You can try the code with n = 3, or try an alternate order of execu-
tion to see how it actually works.

The concept of producer/consumer can be extended to buffers that hold
records or other data, as well as other situations in which direct process-to-
process communication of messages is required.

Readers and Writers

The problem of readers and writers was first formulated by Courtois,
Heymans, and Parnas (1971) and arises when two types of processes need to
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access a shared resource such as a file or database. They called these pro-
cesses “readers” and “writers.”

An airline reservation system is a good example. The readers are those
who want flight information. They’re called readers because they only read
the existing data; they don’t modify it. And because no one is changing the
database, the system can allow many readers to be active at the same time—
there’s no need to enforce mutual exclusion among them.

The writers are those who are making reservations on a particular
flight. Writers must be carefully accommodated because they are modifying
existing data in the database. The system can’t allow someone to be writing
while someone else is reading (or writing). Therefore it must enforce mutual
exclusion if there are groups of readers and a writer, and also if there are
several writers, in the system. Of course the system must be fair when it
enforces its policy to avoid indefinite postponement of readers or writers.

In the original paper, Courtois, Heymans, and Parnas offered two solu-
tions using P and V operations. The first gives priority to readers over writ-
ers so readers are kept waiting only if a writer is actually modifying the data.
However, this policy results in writer starvation if there is a continuous
stream of readers. The second policy gives priority to the writers. In this
case as soon as a writer arrives, any readers that are already active are al-
lowed to finish processing, but all additional readers are put on hold until
the writer is done. Obviously this policy results in reader starvation if a con-
tinuous stream of writers is present. Either scenario is unacceptable.

To prevent either type of starvation from occurring Hoare (1974) pro-
posed the following combination priority policy. When a writer is finished,
any and all readers who are waiting, or “on hold,” are allowed to read. Then,
when that group of readers is finished the writer who is “on hold” can begin,
and any new readers who arrive in the meantime aren’t allowed to start until
the writer is finished.

The state of the system can be summarized by four counters initialized
to zero:

1. Number of readers who have requested a resource and haven’t yet re-
leased it (R 1=0):

2. Number of readers who are using a resource and haven’t yet released it
(R2=0);

3. Number of writers who have requested a resource and haven’t yet re-
leased it (W1=0);

4. Number of writers who are using a resource and haven't yet released it
(W2=0).

This can be implemented using two semaphores to ensure mutual ex-
clusion between readers and writers. A resource can be given to all readers
(R1=R2), provided that no writers are processing (W2=0). A resource can
be given to a writer, provided that no readers are reading (R2=0) and no
writers are writing (W2=0).

Readers must always call two procedures: the first checks whether the
resources can be immediately granted for reading; and then, when the re-
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source is released, the second checks to see if there are any writers waiting,
The same holds true for writers. The first procedure must determine if the
resource can be immediately granted for writing, and then, upon releasing
the resource, the second procedure will find out if any readers are waiting.

Concurrent Programming

Until now we’ve looked at multiprocessing as several jobs executing at the
same time on a single processor (which interacts with I/0 processors, for
example) or on multiprocessors. Multiprocessing can also refer to one job
using several processors to execute sets of instructions in parallel. The con-
cept isn’t new, but it requires a programming language and a computer sys-
tem that can support this type of construct. This type of system is referred to
as a concurrent processing system.

Applications of Concurrent Programming

Most monoprogramming languages are serial in nature—instructions are
executed one at a time. Therefore, to resolve an arithmetic expression, every
operation is done in sequence following the order prescribed by the pro-
grammer and compiler as shown in Table 6.2.

TABLE 6.2 The sequential computation of the expression requires several steps. (In this case there are seven
steps, but each step may involve more than one machine operation.)

Compute: A=3#* B * C + 4/ (D+E)*¥(F—G)

Step no. Operation Result
1 (F-G) Store difference in T1
2 (D+E) Store sum in T2
3 (T2)**(T1) Store power in T1
4 4/(T1) Store quotient in T2
5 3xB Store product in T1
6 (T1)*C Store product in T1
7 (T1YHT2) Store sum in A

For many computational purposes, serial processing is sufficient; it’s
easy to implement and fast enough for most users.

However, arithmetic expressions can be processed differently if we use
a language that allows for concurrent processing. Let’s define two terms—
COBEGIN and COEND—that will indicate to the compiler which instructions
can be processed concurrently; then we’ll rewrite our expression to take ad-
vantage of a concurrent processing compiler.
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COBEGIN

T1 = 3*B

T2 = D+E

T3 = F-G
COEND
COBEGIN

T4 = TI1*C

TS = T2**T3
COEND

A = T4+4/T5

As shown in Table 6.3, the first three operations can be done at the
same time (if our computer system has three processors). The next two oper-
ations are done at the same time, and the last expression is performed seri-
ally with the results of the first two steps.

TABLE 6.3 With concurrent processing the seven-step instruction can be processed in only four steps, which
reduces execution time.

Compute: A =3 * B * C + 4/ (D+E)**(F—G)

Step no. Processor Operation Result
1 1 3*B Store product in T1
2 (D+E) Store sum in T2
3 (F-G) Store difference in T3
2 1 (T1)*C Store product in T4
2 (T2)**(T3) Store power in TS
3 1 4/ (TS) Store quotient in T1
4 1 (T4yHT1) Store sum in A

With this system we’ve increased the computation speed, but we’ve
also increased the complexity of the programming language and the hard-
ware (both machinery and communication among machines). In fact, we’ve
also placed a large burden on the programmer—that of explicitly stating
which instructions can be executed in parallel. This is explicit parallelism.

Early concurrent processing programs relied on the programmer to
write the parallel instructions, but there were problems: coding was a time-
consuming task and led to missed opportunities for parallel processing. It
also led to errors where parallel processing was mistakenly indicated. And
from a maintenance standpoint the programs were difficult to modify. The
solution: automatic detection by the compiler of instructions that can be
performed in parallel. This is called implicit parallelism.

With a true concurrent processing system, the example presented in
Table 6.2 and Table 6.3 is coded as a single expression. It is the compiler that
translates the algebraic expression into separate instructions and decides
which can be performed in parallel and which serially.

For example, the equation Y =4 + B * C+ D could be rearranged by
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EXAMPLE 1: ARRAY
OPERATIONS

EXAMPLE 2: MATRIX
MULTIPLICATION

EXAMPLE 3: SEARCH-
ING DATABASES

EXAMPLE 4: SORTING/
MERGING FILES

the compiler as A + D + B * C so that two operations A + D and B * C would
be done in parallel leaving the final addition to be calculated last.

Concurrent processing can also dramatically reduce the complexity of
working with array operations within loops, of performing matrix multipli-
cation, of conducting parallel searches in databases, and of sorting or merg-
ing files. Some of these systems use parallel processors that execute the same
type of task (Ben-Ari, 1982).

To perform an array operation within a loop, the instruction might say:
Do I=1,3

A(D) = B(D)+C(I)
ENDDO

If we use three processors, the instruction can be performed in a single
step like this:

Processor #1 performs: A(1) = B(1)+C(1)

Processor #2 performs: A(2) = B(2)+((2)
Processor #3 performs: A(3) = B(3)+C(3)

To perform C= A X B where A and B represent two matrices:

Matrix A Matrix B
1 2 3 1 2 3
4 5 6 4 5 6
7 8 9 7 8 9

Several elements of the first row of matrix A could be multiplied by
corresponding elements of the first column of matrix B. This process could
be repeated until all the products for the first element of matrix C would be
computed and the result obtained by summing the products. The actual
number of products that could be computed at the same time would depend
on the number of processors available. Serially the answer can be computed
in 45 steps. With three processors it takes only 27 steps by doing the multi-
plications in parallel.

Searching is a common nonmathematical application of concurrent pro-
cessing. Each processor searches a different section of the database or file.
It’s a very fast way to find terms in a thesaurus, authors in a bibliographic
database, or terms in inverted files. (Inverted files are generated from full
document databases. Each record in an inverted file contains a subject term
and the document numbers where that subject is found.)

By dividing a large file into sections, each with its own processor, every sec-
tion can be sorted at the same time. Then pairs of sections can be merged
together until the entire file is whole again—and sorted (Ben-Ari, 1982).
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Ada

In the early 1970s the U.S. Department of Defense (DoD) needed a pro-
gramming language that could perform concurrent processing. They de-
cided to fight the rising cost of its software by commissioning the design of
an original language suited for embedded computer systems. These are sys-
tems that reside in jet aircraft or ships so they must be small and fast and
usually they must work with real-time constraints, fail-safe execution, and
nonstandard input and output devices; they must be able to manage concur-
rent activities, which requires parallel processing. The software took 10
years to complete. Ada, the final form of the high-level programming lan-
guage, was made available to the public in 1980 (MacLennan, 1987).

The language was named after Augusta Ada Byron, the Countess of
Lovelace and daughter of the renowned poet Lord Byron. She was a skilled
mathematician and is regarded as the world’s first programmer for her work
on Charles Babbage’s Analytical Engine in the 1830s. The Analytical Engine
was an early prototype of a computer (Barnes, 1980).

During the first 4-year span the specifications for the new language un-
derwent five sets of modifications, each more specific than the last. Some of
the general requirements placed on the design of the language were readabil-
ity and simplicity. Three more specific requirements were:

1. Its modules would support “information hiding” so the user would know
how to use a module (through the “information™ interface or argument
list) without knowing how the module achieved its result (the procedure).
Therefore, the user would have all the information needed to use a mod-
ule correctly, but no more, and the processor would have all the informa-
tion needed to process a module, but no more.

. It would contain mechanisms to implement concurrent programming.

Its design would make it easy to verify the correctness of a program (Mac-

Lennan, 1987).

w b

Ada was designed to be modular so several programmers can work on
sections of a large project independently of one another. Therefore, an Ada
program may contain one or more program units that can be compiled sepa-
rately and are typically composed of (1) a specification part, which has all
the information that must be visible to other units (the argument list) and
(2) a body part made up of implementation details that don’t need to be
visible to other units.

Program units can fall into any one of three types: “subprograms,”
which are executable algorithms, “packages,” which are collections of enti-
ties (i.e., procedures or functions), and “tasks,” which are concurrent com-
putations (MIL-STD-1815, 1982).

It 1s the task that is the heart of the language’s parallel processing abil-
ity—this is the basic unit that defines a sequence of instructions that may be
executed in parallel with other similar units.

The key is the synchronization of the tasks. To synchronize the concur-
rently executing processes several statements were designed. A “delay”



140 Chapter Six

Chapter Summary

statement 1s used to delay the execution of a task for a specified amount of
time. A “select” statement can be used to allow conditional or timed “entry
calls.” “Entry calls” are used by tasks to communicate between one another.
For example, a task will issue a call when it needs to “rendezvous” with
another task that has the entry declaration. While the rendezvous is in effect
the tasks are synchronized. The called task will accept the entry call when it
reaches a corresponding accept statement that specifies the actions to be
performed. After the rendezvous is completed both tasks (the one calling
and the one having the entry) may continue their execution. either in paral-
lel or independently (MIL-STD-1815).

An attractive feature of Ada is its ability to handle exceptional situa-
tions during execution of a program unit that would prevent its normal exe-
cution from continuing. These situations include arithmetic computations
that yield values that exceed the maximum or those that attempt to access
array elements using index values that exceed the size of the array. To han-
dle these problems, statements can be followed by “exception handlers,”
which indicate what to do when an exception occurs (MIL-STD-1815).

During the early stages of the project the Department of Defense real-
ized that their new language would prosper only if they could stifle the
growth of mutually incompatible subsets and supersets of the language—
enhanced versions of the standard compiler with extra “bells and whistles”
that make them incompatible with each other.

Therefore, the DoD officially registered the name “Ada™ as a trade-
mark so they can control the use of the name. They have rigidly controlled
which compilers can use the name and which cannot, thus guaranteeing that
anything called “Ada’ will be part of the standard language. To make sure
that a compiler implements Ada exactly as it’s designed, the DoD uses a
validation procedure that includes 2,500 tests. Several dozen compilers
have passed these tests and therefore are validated (MacLennan, 1987).

Is Ada the wave of the future? As of this writing, it is too early to tell
what impact Ada will have on those who don’t deal directly with the DoD. It
certainly has all the elements of a landmark language. Researchers find it
helpful because of its parallel processing power. Its modular design is ap-
pealing to application programmers and systems analysts alike. Its tasking
capabilities appeal to designers of database systems and others with applica-
tions that require parallel processing. Some universities have introduced
Ada courses to their students majoring in business computer information
systems. The Ada wave has begun—time will tell if it grows or wanes.

Multiprocessing systems have two or more CPUs that must be synchronized
by the Processor Manager. Each processor must communicate and cooper-
ate with the others. These systems can be configured in a variety of ways.
From the simplest to the most complex they are master/slave, loosely cou-
pled, and symmetric. By definition these are multiprocessing systems.

Multiprocessing also occurs in single processor systems between inter-
acting processes that obtain control of the CPU at different times.
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The success of any multiprocessing system depends on the success of
the system to synchronize the processors or processes and the system’s other
resources. The concept of mutual exclusion helps keep the processes having
the allocated resources from becoming deadlocked. Mutual exclusion is
maintained with a series of techniques including: test-and-set, WAIT and
SIGNAL, and semaphores (P, V, and mutex).

Hardware and software mechanisms are used to synchronize the many
processes but they must be careful to avoid the typical problems of synchro-
nization: missed waiting customers, the synchronization of producers and
consumers, and the mutual exclusion of readers and writers.

In the next chapter we’ll look at the module of the operating system
that manages the printers. disk drives. tape drives, and terminals: the De-
vice Manager.

parallel processing \%

multiprocessing mutex

master/slave configuration producers and consumers
loosely coupled configuration readers and writers
symmetric configuration concurrent processing
process synchronization COBEGIN

critical region COEND

test-and-set explicit parallelism

busy waiting implicit parallelism
WAIT and SIGNAL Ada

semaphores concurrent programming
P

1. What is the central goal of most multiprocessing systems?

2. What is the meaning of the term “busy waiting”?

3. Explain the need for mutual exclusion.

4. Describe “explicit parallelism.”

5. Describe “implicit parallelism.”

6. Rewrite each of the following arithmetic expressions to take advantage
of concurrent processing and then code each one. Use the terms
COBEGIN and COEND to delimit the sections of concurrent code.

a) (X(Y*Z*W#*R)+M+N+P)
b) (J+K*L*M=*N)*I)

7. Use the P and V semaphore operations to simulate the traffic flow at the
intersection of two one-way streets. The following rules should be satis-
fied:
¢ Only one car can be crossing at any given time.
¢ A car should be allowed to cross the intersection only if there are no

cars coming from the other street.
» When cars are coming from both streets, they should take turns to pre-
vent indefinite postponements in either street.
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Advanced Exercises

8.

10.

11.

12.

Consider the following program segments for two different processes
executing concurrently:

Pl P2
DO A=1,3 D0 B=1,3
x=x+1 x=x+1
ENDDO ENDDO

where B and A are not shared variables, but x starts at zero and is a
shared variable.

If the processes P1 and P2 execute only once at any speed, what
are the possible resulting values of x? Explain your answers.

. Examine one of the programs you have written recently and indicate

which operations could be executed concurrently. How long did it take
you to do this? When might it be a good idea to write your programs in
such a way that they can be run concurrently?

Constider the following segment taken from a FORTRAN program:

DO I=1,12
READ *,x
IF (x .EQ. 0) Y(I) = O
IF (x .NE. D) Y(I) = 10

ENDDO

a. Recode it so it’ll run more efficiently in a single-processor system.

b. Given that a multiprocessing environment with four symmetrical
processors is available, recode the segment as an efficient concurrent
program that performs the same function as the original FORTRAN
program.

c. Given that all processors have identical capabilities, compare the
execution speeds of the original FORTRAN segment with the execu-
tion speeds of your segments for parts (a) and (b).

Dijkstra introduced the Sleeping Barber Problem (Dijkstra, 1965): A

barbershop is divided into two rooms. The waiting room has # chairs

and the work room only has the barber chair. When the waiting room is
empty, the barber goes to sleep in the barber chair. If a customer comes
in and the barber is asleep, he knows it’s his turn to get his hair cut. So
he wakes up the barber and takes his turn in the barber chair. But if the
waiting room is not empty then the customer must take a seat in the
waiting room and wait his turn.

Write a program that will coordinate the barber and his customers.

Patil introduced the Cigarette Smokers Problem (Patil, 1971): Three

smokers and a supplier make up this system. Each smoker wants to roll

a cigarette and smoke it immediately. However, to smoke a cigarette the

smoker needs three ingredients—paper, tobacco, and a match—and to

the great discomfort of everyone involved, each smoker has only one of
the ingredients: Smoker 1 has lots of paper; Smoker 2 has lots of to-
bacco; and Smoker 3 has the matches. And, of course, the rules of the
group don’t allow hoarding, swapping, or sharing.

All three ingredients are provided by the supplier, who doesn’t
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smoke, and he has an infinite amount of all three items. But he only
provides two of them at a time—and only when no one is smoking.
Here’s how it works. The supplier randomly selects and places two dif-
ferent items on the table (which is accessible to all three smokers), and
the smoker with the remaining ingredient immediately takes them,
rolls, and smokes a cigarette. When he’s finished smoking he signals the
supplier who then places another two randomly selected items on the
table, and so on.

Write a program that will synchronize the supplier with the smok-

ers. Keep track of how many cigarettes each smoker consumes. Is this a
fair supplier? Why or why not?
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Chapter 7
Device Management
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To put it simply: the Device Manager manages every peripheral device of
the system. To do this, the Device Manager must maintain a delicate bal-
ance of supply and demand—balancing the system’s finite supply of devices
with the users’ infinite demand for them.

Device management involves four basic functions: (1) tracking the sta-
tus of each device (such as tape drives, disk drives, printers, plotters, and
terminals). (2) using preset policics to determine which process will get a
device and for how long: (3) allocating the devices: and (4) deallocating
them at two levels—at the process level when an I/0 command has been
executed and the device is temporarily released and at the job level when the
job is finished and the device is permanently released.

The system’s peripheral devices generally fall into one of three categories:
dedicated. shared, and virtual. The differences are a function of the character-
istics of the devices as well as how they're managed by the Device Manager.

Dedicated devices are assigned to only one job at a time; they serve that
job for the entire time it's active. Some devices demand this kind of alloca-
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tion scheme, such as tape drives, printers, and plotters because it would be
awkward to let several users share them. A shared plotter might produce
half of one user’s graph and half of another. The disadvantage of dedicated
devices is that they must be allocated to a single user for the duration of a
job’s execution, and that can be quite inefficient, especially when the device
isn’t used 100% of the time. Devices from the next two device categories are
generally preferred.

Shared devices can be assigned to several processes. For instance, a
disk pack, or any other direct access storage device, can be shared by several
processes at the same time by interleaving their requests, but this interleav-
ing must be carefully controlled by the Device Manager. All conflicts—such
as when Process A and Process B each need to read from the same disk
pack—must be resolved based on predetermined policies to decide which
request will be handled first. We’ll examine some of these policies later in
this chapter.

Virtual devices are a combination of the first two: they’re dedicated
devices that have been transformed into shared devices. For example, print-
ers (which are dedicated devices) are converted into sharable devices
through a spooling program that reroutes all print requests to a disk. Only
when all of a job’s output is complete, and the printer is ready to print out
the entire document, is the output sent to the printer for printing. (This
procedure has to be managed carefully to prevent the occurrence of a dead-
locked system as we explained in Chapter 5.) Because disks are sharable
devices, this technique can convert one printer into several “virtual” print-
ers, thus improving both its performance and use. Spooling is a technique
that is often used to speed up slow dedicated I/0 devices.

Every device is different. The most important differences among them
are their speeds and degrees of sharability. By minimizing the variances
among the devices, a system’s overall efficiency can be dramatically im-
proved.

Storage media are divided into two groups: sequential access media,
which store records sequentially, one after the other; and direct access stor-
age devices (DASD), which can store either sequential or direct access files
on disks or drums. There is a vast difference in their speed and sharability.

Sequential Access Storage Media

Magnetic tape was first developed for early computer systems for routine
secondary storage.

Records on magnetic tapes are stored serially, one after the other, and
each record can be of any length. The length is usually determined by the
application program. Each record can be identified by its position on the
tape. Therefore, to access a single record the tape must be mounted and
“fast-forwarded” from its beginning until the desired position is located.
This is a time-consuming process as it can take several minutes to read the
entire tape.
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To see just how long it takes, let’s look at a typical large computer sys-
tem that uses a reel of tape /2 inch wide and 2400 feet long (see Figure 7.1).
Data is recorded on eight of the nine parallel tracks that run the length of the
tape. (The ninth track holds a parity bit; a parity bit is used for routine error
checking.)

<—Parity

Character Representation

/]

Characters

FIGURE 7.1 Nine-track magnetic tape with three characters recorded using odd parity.

The number of characters that can be recorded per inch is determined
by the density of the tape, such as 1600 or 6250 bytes per inch (bpi). For
example, if you had records of 160 characters each and were storing them on
a tape with a density of 1600 bpi, then theoretically you could store ten
records on one inch of tape. However, in actual practice it would depend on
how you decided to store the records: individually or grouped into blocks. If
the records are stored individually, each record would need to be separated
by a space to indicate its starting place and ending place. If the records are
stored in blocks, then the entire block is preceded by a space and followed by
a space, but the individual records are stored sequentially within the block.

To appreciate the difference between the two alternatives, let’s take a
minute to look at the mechanics of reading and writing on magnetic tape.
Magnetic tape moves under the read/write head only when there’s a need to
access a record; at all other times it’s standing still. So the tape moves in
jerks: read a record and stop, read another record and stop again, and so on.
Records would be written in the same way.

The tape needs time and space to stop, so a gap is inserted between
each record. This interrecord gap (IRG) is about ¥ inch long regardless of
the sizes of the records it separates. Therefore, if ten records are stored indi-
vidually, there will be nine '2-inch IRGs between each record. (In this exam-
ple we assume the records are only Y10 inch each.)

In Figure 7.2, 5Y%: inches of tape were required to store one inch of
data—not a very eflicient way to use the storage medium.

An alternative is to group the records into blocks before recording
them on tape. This is called blocking and it’s performed when the file is
created. (Of course, you must take care to “deblock” them later.)

The number of records in a block is usually determined by the applica-
tion program, and it’s often set to take advantage of the transfer rate, which
is the density of the tape, multiplied by the tape transport speed, which is the
speed of the tape:

transfer rate = density X transport speed
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Record 1
Record 2
Record 3
Record 4
Record 5

IRG IRG IRG IRG

FIGURE 7.2 IRGs in magnetic tape. Each record requires only e inch of tape for a
total of one inch. When these records are stored individually on mag-

netic tape, each is separated by an IRG, which add up to 4"z inches of
tape. This totals 5v. inches of tape.

A typical transport speed is 200 inches per second. Therefore, at 1600
bpi. a total of 320.000 bytes can be transferred in one second, so theoreti-
cally the optimal size of a block is 320,000 bytes. But there's a catch: this
technique requires that the entire block be read into a buffer in main mem-
ory, so the buffer must be at least as large as the block. In actual operating
environments the buffers range from 1000 to 2000 bytes, so most blocks are
1K to 2K.

Notice in Figure 7.3 that the gap (now called an interblock gap or IBG)
is still %2 inch long, but the data from each ten records is now stored on only
one inch of tape—so we’ve used only 1Y: inches of tape (instead of the 5%

inches used in Figure 7.2). and we've wasted only %2 inch of tape (instead of
4/ inches).

1BG

Record 1
Record 6
Record 10

1 Block of 10 Records 1 Block of 10 Records

FIGURE 7.3 IBGs in magnetic tape. Two blocks stored on magnetic tape, separated
by an interblock gap (IBG) of ¥z inch. Each block holds ten records, each

of which is still Y4 inch. The block, however, is one inch, for a total of
2'%2 inches.

Blocking has two distinct advantages:

1. Fewer 1/0 operations are needed because a single READ command can
move an entire block, the physical record which includes several logical
records, into main memory.

2. Less tape is wasted because the size of the physical record exceeds the
size of the gap.

The two disadvantages of blocking seem mild by comparison:
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TABLE 7.1 Access times

1. Overhead and sofiware routines are needed for blocking, deblocking, and
record keeping.

2. Buffer space may be wasted if you need only one logical record but must
read an entire block to get it.

How long does it take to access a block or record on magnetic tape? Of
course it depends on where it’s located, but we can make some general calcu-
lations. A 2400-foot reel of tape with a tape transport speed of 200 inches
per second can be read without stopping in approximately 2!~ minutes.
Therefore, it would take 2!~ minutes to access the last record on the tape. On
the average, then, it would take 1% minutes to access a record. And to access
one record after another sequentially would take as long as it takes to start
and stop a tape—which is 0.003 seconds, or 3 milliseconds (ms).

As we can see from Table 7.1, access times can vary widely. That
makes magnetic tape a poor medium for routine secondary storage except
for files with very high sequential activity—that is, those requiring that 90
to 100% of the records be accessed sequentially during an application.

for 2400-foot magnetic tape at 200 inches/second.

Maximum access = 2.5 minutes
Average access = 1.25 minutes
Sequential access = 3 milliseconds

The advantage of magnetic tape is its compact storage capabilities, so it
is the preferred medium for many “backup” duties and long-term archival file
storage. For most other applications, a direct access medium is preferable.

Direct Access Storage Devices

Direct access storage devices (DASDs) are any devices that can directly read
or write to a specific place on a disk or drum. (They’re also called random
access storage devices.) They’re generally grouped into two major categories:
those with fixed read/write heads and those with movable read/write heads.
Although the variance in DASD access times isn’t as wide as with magnetic
tape, the location of the specific record still has a direct effect on the amount
of time required to access it.

Fixed-Head Drums and Disks

Fixed-head drums were developed in the early 1950s and their access times
of 5 to 25 ms were considered very fast. Early versions of the IBM 650, for
example, used a drum with a storage capacity of 2000 bytes, which was in-
creased to 4000 bytes for later models. The speed of this device was on the
order of 200 rpm, which was considered high when compared to only 50-60
rpm for other drums of that time. By the late 1970s the storage capacity of
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drums had increased to 1 megabyte and their speed was almost 3000 rpm
(Habermann, 1976).

A drum resembles a giant coffee can covered with magnetic film and
formatted so the tracks run around it (as shown in Figure 7.4). Data is re-
corded serially on each track by the read/write head positioned over it.

Rotation
ssnem——— 3

Head1 |F—= Track 1

Head 2 | Track 2

Fixed Head3 | Track 3
Read/Write < Head4 | Track 4
Heads Head5 |=>1_ Track 5
Head 6 | ="  Track6

| Head 7 =21 Track7

FIGURE 7.4 A fixed-head drum with seven read/write heads, one per track.

Drums of this type were very fast but also very expensive and they did
not hold as much data as other DASDs so their popularity waned.

Fixed-head disks use a similar concept but on a different plane. Each
disk looks like a phonograph record album covered with magnetic film that
has been formatted, usually on both sides, into concentric circles. Each cir-
cle is a track. Data is recorded serially on each track by the fixed read/write
head positioned over it. Again, there’s one head for each track.

A fixed-head disk, shown in Figure 7.5, is also very fast—faster than
the movable-head disks we’ll talk about in a minute. Its major disadvan-
tages are its high cost and its reduced storage space compared to a movable-
head disk (because the tracks must be positioned farther apart to accommo-
date the width of the read/write heads).

Fixed Read/Write Heads

Track 2
wk 1

FIGURE 7.5 A fixed-head disk with four read/write heads, one per track.
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Fixed-head disks are used today only when extremely high perfor-
mance