
You’ve experienced the shiny, point-and-click surface
of your Linux computer—now dive below and explore
its depths with the power of the command line.

The Linux Command Line takes you from your very first
terminal keystrokes to writing full programs in Bash, the
most popular Linux shell. Along the way you’ll learn
the timeless skills handed down by generations of
gray-bearded, mouse-shunning gurus: file navigation,
environment configuration, command chaining, pattern
matching with regular expressions, and more.

In addition to that practical knowledge, author William
Shotts reveals the philosophy behind these tools and
the rich heritage that your desktop Linux machine has
inherited from Unix supercomputers of yore.

As you make your way through the book’s short, easily
digestible chapters, you’ll learn how to:

• Create and delete files, directories, and symlinks

• Administer your system, including networking,
package installation, and process management

B A N I S H Y O U R
M O U S E

B A N I S H Y O U R
M O U S E

• Use standard input and output, redirection, and
pipelines

• Edit files with Vi, the world’s most popular text editor

• Write shell scripts to automate common or boring tasks

• Slice and dice text files with cut, paste, grep, patch,
and sed

Once you overcome your initial “shell shock,” you’ll
find that the command line is a natural and expressive
way to communicate with your computer. Just don’t be
surprised if your mouse starts to gather dust.

A B O U T T H E A U T H O R

William E. Shotts, Jr., has been a software professional
and avid Linux user for more than 15 years. He has an
extensive background in software development, including
technical support, quality assurance, and documentation.
He is also the creator of LinuxCommand.org, a Linux
education and advocacy site featuring news, reviews,
and extensive support for using the Linux command line.

SHELVE IN
:

COM
PUTERS/LINUX

$49.95 ($52.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

FSC LOGO

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

A C O M P L E T E I N T R O D U C T I O N

T H E L I N U X
CO M M A N D L I N E

T H E L I N U X
CO M M A N D L I N E

W I L L I A M E . S H O T T S , J R .

T
H

E
 L

IN
U

X
 C

O
M

M
A

N
D

 L
IN

E
T

H
E

 L
IN

U
X

 C
O

M
M

A
N

D
 L

IN
E

S
H

O
T

T
S

THE LINUX COMMAND LINE

THE LINUX
COMMAND LINE

A C o m p l e t e
I n t r o d u c t i o n

b y W i l l i a m E . S h o t t s , J r .

San Francisco

THE LINUX COMMAND LINE. Copyright © 2012 by William E. Shotts, Jr.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

16 15 14 13 12 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-389-4
ISBN-13: 978-1-59327-389-7

Publisher: William Pollock
Production Editor: Serena Yang
Cover Design: Octopod Studios
Developmental Editor: Keith Fancher
Technical Reviewer: Therese Bao
Copyeditor: Ward Webber
Compositors: Serena Yang and Alison Law
Proofreader: Paula L. Fleming

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Shotts, William E.
 The Linux command line: a complete introduction / William E. Shotts, Jr.
 p. cm.
 Includes index.
 ISBN-13: 978-1-59327-389-7 (pbk.)
 ISBN-10: 1-59327-389-4 (pbk.)
 1. Linux. 2. Scripting Languages (Computer science) 3. Operating systems (Computers) I. Title.
 QA76.76.O63S5556 2011
 005.4'32--dc23
 2011029198

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

To Karen

B R I E F C O N T E N T S

Acknowledgments...xxiii

Introduction...xxv

PART 1: LEARNING THE SHELL

Chapter 1: What Is the Shell?...3

Chapter 2: Navigation..7

Chapter 3: Exploring the System...13

Chapter 4: Manipulating Files and Directories..25

Chapter 5: Working with Commands..39

Chapter 6: Redirection..49

Chapter 7: Seeing the World as the Shell Sees It..59

Chapter 8: Advanced Keyboard Tricks..69

Chapter 9: Permissions..77

Chapter 10: Processes...95

PART 2: CONFIGURATION AND THE ENVIRONMENT

Chapter 11: The Environment...109

Chapter 12: A Gentle Introduction to vi...121

Chapter 13: Customizing the Prompt...139

PART 3: COMMON TASKS AND ESSENTIAL TOOLS

Chapter 14: Package Management..149

Chapter 15: Storage Media...159

Chapter 16: Networking...175

Chapter 17: Searching for Files..187

Chapter 18: Archiving and Backup...201

Chapter 19: Regular Expressions..215

Chapter 20: Text Processing..233

Chapter 21: Formatting Output...267

Chapter 22: Printing...285

Chapter 23: Compiling Programs...297

PART 4: WRITING SHELL SCRIPTS

Chapter 24: Writing Your First Script..309

Chapter 25: Starting a Project..315

Chapter 26: Top-Down Design...325

Chapter 27: Flow Control: Branching with if..333

Chapter 28: Reading Keyboard Input..347

Chapter 29: Flow Control: Looping with while and until..357

Chapter 30: Troubleshooting..363

Chapter 31: Flow Control: Branching with case...375

Chapter 32: Positional Parameters..381

Chapter 33: Flow Control: Looping with for...393

Chapter 34: Strings and Numbers..399

Chapter 35: Arrays...415

Chapter 36: Exotica..423

Index...433

viii Brief Contents

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xxiii

INTRODUCTION xxv
Why Use the Command Line?...xxvi
What This Book Is About..xxvi
Who Should Read This Book..xxvii
What’s in This Book..xxvii
How to Read This Book..xxviii
Prerequisites..xxviii

PART 1
LEARNING THE SHELL

1
WHAT IS THE SHELL? 3
Terminal Emulators..3
Your First Keystrokes..4

Command History..4
Cursor Movement..4

Try Some Simple Commands..5
Ending a Terminal Session...6

2
NAVIGATION 7
Understanding the Filesystem Tree...7
The Current Working Directory...8
Listing the Contents of a Directory...8
Changing the Current Working Directory...9

Absolute Pathnames...9
Relative Pathnames..9
Some Helpful Shortcuts...10

3
EXPLORING THE SYSTEM 13
More Fun with ls...13

Options and Arguments..14
A Longer Look at Long Format...15

Determining a File’s Type with file...16
Viewing File Contents with less...17
A Guided Tour...19
Symbolic Links..22

4
MANIPULATING FILES AND DIRECTORIES 25
Wildcards..26
mkdir—Create Directories..28
cp—Copy Files and Directories..28
mv—Move and Rename Files...30
rm—Remove Files and Directories...31
ln—Create Links..32

Hard Links...32
Symbolic Links...32

Let’s Build a Playground...33
Creating Directories...33
Copying Files..33
Moving and Renaming Files..34
Creating Hard Links...35
Creating Symbolic Links..36
Removing Files and Directories..37

Final Note..38

5
WORKING WITH COMMANDS 39
What Exactly Are Commands?...40
Identifying Commands...40

type—Display a Command’s Type...40
which—Display an Executable’s Location...41

Getting a Command’s Documentation...41
help—Get Help for Shell Builtins..41
- -help—Display Usage Information...42
man—Display a Program’s Manual Page...42
apropos—Display Appropriate Commands...43
whatis—Display a Very Brief Description of a Command..44
info—Display a Program’s Info Entry..44
README and Other Program Documentation Files...45

Creating Your Own Commands with alias...46
Revisiting Old Friends..47

x Contents in Detail

6
REDIRECTION 49
Standard Input, Output, and Error...50

Redirecting Standard Output...50
Redirecting Standard Error..51
Redirecting Standard Output and Standard Error to One File..52
Disposing of Unwanted Output..52
Redirecting Standard Input..53

Pipelines..54
Filters...55
uniq—Report or Omit Repeated Lines...55
wc—Print Line, Word, and Byte Counts..55
grep—Print Lines Matching a Pattern..56
head/tail—Print First/Last Part of Files..56
tee—Read from Stdin and Output to Stdout and Files...57

Final Note..58

7
SEEING THE WORLD AS THE SHELL SEES IT 59
Expansion..59

Pathname Expansion..60
Tilde Expansion...61
Arithmetic Expansion..62
Brace Expansion..63
Parameter Expansion..64
Command Substitution..64

Quoting...65
Double Quotes..65
Single Quotes..67
Escaping Characters..67

Final Note..68

8
ADVANCED KEYBOARD TRICKS 69
Command Line Editing...70

Cursor Movement..70
Modifying Text..70
Cutting and Pasting (Killing and Yanking) Text..70

Completion..72
Using History..73

Searching History..74
History Expansion..75

Final Note..76

Contents in Detail xi

9
PERMISSIONS 77
Owners, Group Members, and Everybody Else..78
Reading, Writing, and Executing..79

chmod—Change File Mode..81
Setting File Mode with the GUI..84
umask—Set Default Permissions...84

Changing Identities...87
su—Run a Shell with Substitute User and Group IDs...87
sudo—Execute a Command as Another User..88
chown—Change File Owner and Group..90
chgrp—Change Group Ownership..91

Exercising Your Privileges..91
Changing Your Password...93

10
PROCESSES 95
How a Process Works...96

Viewing Processes with ps..96
Viewing Processes Dynamically with top...98

Controlling Processes...100
Interrupting a Process...101
Putting a Process in the Background...101
Returning a Process to the Foreground..102
Stopping (Pausing) a Process...102

Signals..103
Sending Signals to Processes with kill...103
Sending Signals to Multiple Processes with killall...106

More Process-Related Commands...106

PART 2
CONFIGURATION AND THE ENVIRONMENT

11
THE ENVIRONMENT 109
What Is Stored in the Environment?...110

Examining the Environment...110
Some Interesting Variables..111

How Is the Environment Established?...112
Login and Non-login Shells...112
What’s in a Startup File?..113

xii Contents in Detail

Modifying the Environment...115
Which Files Should We Modify?...115
Text Editors...115
Using a Text Editor...116
Activating Our Changes...118

Final Note..119

12
A GENTLE INTRODUCTION TO VI 121
Why We Should Learn vi...122
A Little Background...122
Starting and Stopping vi..122
Editing Modes..123

Entering Insert Mode..124
Saving Our Work..124

Moving the Cursor Around...125
Basic Editing..126

Appending Text...127
Opening a Line...127
Deleting Text...128
Cutting, Copying, and Pasting Text..129
Joining Lines..131

Search and Replace..131
Searching Within a Line...131
Searching the Entire File...131
Global Search and Replace..132

Editing Multiple Files...133
Switching Between Files..134
Opening Additional Files for Editing..134
Copying Content from One File into Another...135
Inserting an Entire File into Another..136

Saving Our Work...137

13
CUSTOMIZING THE PROMPT 139
Anatomy of a Prompt..139
Trying Some Alternative Prompt Designs..141
Adding Color...142
Moving the Cursor..144
Saving the Prompt...146
Final Note..146

Contents in Detail xiii

PART 3
COMMON TASKS AND ESSENTIAL TOOLS

14
PACKAGE MANAGEMENT 149
Packaging Systems..150
How a Package System Works...150

Package Files..150
Repositories...151
Dependencies..151
High- and Low-Level Package Tools..152

Common Package Management Tasks..152
Finding a Package in a Repository...152
Installing a Package from a Repository...153
Installing a Package from a Package File..153
Removing a Package..154
Updating Packages from a Repository..154
Upgrading a Package from a Package File...154
Listing Installed Packages..155
Determining Whether a Package Is Installed...155
Displaying Information About an Installed Package..155
Finding Which Package Installed a File..156

Final Note..156

15
STORAGE MEDIA 159
Mounting and Unmounting Storage Devices...160

Viewing a List of Mounted Filesystems..161
Determining Device Names...164

Creating New Filesystems..167
Manipulating Partitions with fdisk..167
Creating a New Filesystem with mkfs...169

Testing and Repairing Filesystems...170
Formatting Floppy Disks...171
Moving Data Directly to and from Devices...171
Creating CD-ROM Images...172

Creating an Image Copy of a CD-ROM..172
Creating an Image from a Collection of Files..172

Writing CD-ROM Images...173
Mounting an ISO Image Directly..173
Blanking a Rewritable CD-ROM...173
Writing an Image..173

Extra Credit..174

xiv Contents in Detail

16
NETWORKING 175
Examining and Monitoring a Network...176

ping—Send a Special Packet to a Network Host...176
traceroute—Trace the Path of a Network Packet..177
netstat—Examine Network Settings and Statistics...178

Transporting Files over a Network...179
ftp—Transfer Files with the File Transfer Protocol..179
lftp—A Better ftp..181
wget—Non-interactive Network Downloader..181

Secure Communication with Remote Hosts...182
ssh—Securely Log in to Remote Computers...182
scp and sftp—Securely Transfer Files..185

17
SEARCHING FOR FILES 187
locate—Find Files the Easy Way...188
find—Find Files the Hard Way...189

Tests...189
Actions...194
A Return to the Playground..198
Options..200

18
ARCHIVING AND BACKUP 201
Compressing Files...202

gzip—Compress or Expand Files...202
bzip2—Higher Compression at the Cost of Speed...204

Archiving Files..205
tar—Tape Archiving Utility..205
zip—Package and Compress Files...209

Synchronizing Files and Directories...211
rsync—Remote File and Directory Synchronization...212
Using rsync over a Network..213

19
REGULAR EXPRESSIONS 215
What Are Regular Expressions?..216
grep—Search Through Text..216
Metacharacters and Literals..217
The Any Character..218
Anchors...219

Contents in Detail xv

Bracket Expressions and Character Classes..220
Negation..220
Traditional Character Ranges..220
POSIX Character Classes..221

POSIX Basic vs. Extended Regular Expressions...224
Alternation...225
Quantifiers...226

?—Match an Element Zero Times or One Time..226
*—Match an Element Zero or More Times..227
+—Match an Element One or More Times..227
{ }—Match an Element a Specific Number of Times...228

Putting Regular Expressions to Work...229
Validating a Phone List with grep...229
Finding Ugly Filenames with find...230
Searching for Files with locate...230
Searching for Text with less and vim..231

Final Note..232

20
TEXT PROCESSING 233
Applications of Text...234

Documents..234
Web Pages...234
Email..234
Printer Output..234
Program Source Code..235

Revisiting Some Old Friends...235
cat—Concatenate Files and Print on Standard Output..235
sort—Sort Lines of Text Files..236
uniq—Report or Omit Repeated Lines...242

Slicing and Dicing..243
cut—Remove Sections from Each Line of Files..243
paste—Merge Lines of Files...246
join—Join Lines of Two Files on a Common Field...247

Comparing Text..249
comm—Compare Two Sorted Files Line by Line...249
diff—Compare Files Line by Line..250
patch—Apply a diff to an Original..253

Editing on the Fly..254
tr—Transliterate or Delete Characters...254
sed—Stream Editor for Filtering and Transforming Text...256
aspell—Interactive Spell Checker...263

Final Note..266
Extra Credit..266

xvi Contents in Detail

21
FORMATTING OUTPUT 267
Simple Formatting Tools...268

nl—Number Lines..268
fold—Wrap Each Line to a Specified Length...271
fmt—A Simple Text Formatter..271
pr—Format Text for Printing..274
printf—Format and Print Data..275

Document Formatting Systems...278
The roff Family and TEX..279
groff—A Document Formatting System..279

Final Note..283

22
PRINTING 285
A Brief History of Printing...286

Printing in the Dim Times...286
Character-Based Printers...286
Graphical Printers..287

Printing with Linux...288
Preparing Files for Printing...288

pr—Convert Text Files for Printing..288
Sending a Print Job to a Printer...290

lpr—Print Files (Berkeley Style)...290
lp—Print Files (System V Style)...291
Another Option: a2ps..292

Monitoring and Controlling Print Jobs..294
lpstat—Display Print System Status...294
lpq—Display Printer Queue Status...295
lprm and cancel—Cancel Print Jobs...296

23
COMPILING PROGRAMS 297
What Is Compiling?..298

Are All Programs Compiled?...299
Compiling a C Program...299

Obtaining the Source Code..300
Examining the Source Tree..301
Building the Program..302
Installing the Program...305

Final Note..306

Contents in Detail xvii

PART 4
WRITING SHELL SCRIPTS

24
WRITING YOUR FIRST SCRIPT 309
What Are Shell Scripts?...309
How to Write a Shell Script..310

Script File Format...310
Executable Permissions...311
Script File Location...311
Good Locations for Scripts..312

More Formatting Tricks..312
Long Option Names...313
Indentation and Line Continuation..313

Final Note..314

25
STARTING A PROJECT 315
First Stage: Minimal Document...315
Second Stage: Adding a Little Data...317
Variables and Constants..318

Creating Variables and Constants..318
Assigning Values to Variables and Constants..320

Here Documents...321
Final Note..323

26
TOP-DOWN DESIGN 325
Shell Functions..326
Local Variables...328
Keep Scripts Running...330
Final Note..332

27
FLOW CONTROL: BRANCHING WITH IF 333
Using if..334
Exit Status..334
Using test...336

File Expressions...336
String Expressions..338
Integer Expressions..340

xviii Contents in Detail

A More Modern Version of test...341
(())—Designed for Integers..342
Combining Expressions..343
Control Operators: Another Way to Branch...345
Final Note..346

28
READING KEYBOARD INPUT 347
read—Read Values from Standard Input..348

Options..351
Separating Input Fields with IFS...351

Validating Input..353
Menus...355
Final Note..356
Extra Credit..356

29
FLOW CONTROL: LOOPING WITH WHILE AND UNTIL 357
Looping...358
while...358
Breaking out of a Loop..360
until...361
Reading Files with Loops..362
Final Note..362

30
TROUBLESHOOTING 363
Syntactic Errors...363

Missing Quotes...364
Missing or Unexpected Tokens..365
Unanticipated Expansions...365

Logical Errors...366
Defensive Programming..367
Verifying Input...368

Testing...369
Stubs..369
Test Cases...369

Debugging...370
Finding the Problem Area...370
Tracing...371
Examining Values During Execution...373

Final Note..373

Contents in Detail xix

31
FLOW CONTROL: BRANCHING WITH CASE 375
case..376

Patterns...377
Combining Multiple Patterns..378

Final Note..379

32
POSITIONAL PARAMETERS 381
Accessing the Command Line...381

Determining the Number of Arguments...382
shift—Getting Access to Many Arguments...383
Simple Applications...384
Using Positional Parameters with Shell Functions..385

Handling Positional Parameters En Masse..385
A More Complete Application..387
Final Note..390

33
FLOW CONTROL: LOOPING WITH FOR 393
for: Traditional Shell Form..393
for: C Language Form...396
Final Note..397

34
STRINGS AND NUMBERS 399
Parameter Expansion...399

Basic Parameters...400
Expansions to Manage Empty Variables...400
Expansions That Return Variable Names...401
String Operations..402

Arithmetic Evaluation and Expansion...404
Number Bases...405
Unary Operators...405
Simple Arithmetic...405
Assignment...406
Bit Operations...408
Logic..409

bc—An Arbitrary-Precision Calculator Language..411
Using bc...412
An Example Script...413

Final Note..414
Extra Credit..414

xx Contents in Detail

35
ARRAYS 415
What Are Arrays?...415
Creating an Array...416
Assigning Values to an Array...416
Accessing Array Elements..417
Array Operations..418

Outputting the Entire Contents of an Array..419
Determining the Number of Array Elements...419
Finding the Subscripts Used by an Array..420
Adding Elements to the End of an Array...420
Sorting an Array..420
Deleting an Array..421

Final Note..422

36
EXOTICA 423
Group Commands and Subshells..423

Performing Redirections..424
Process Substitution..424

Traps...426
Asynchronous Execution..429

wait...429
Named Pipes...430

Setting Up a Named Pipe...431
Using Named Pipes...431

Final Note..432

INDEX 433

Contents in Detail xxi

A C K N O W L E D G M E N T S

I want to thank the following people who helped make
this book possible.

First, the people who inspired me: Jenny Watson, Acquisitions Editor
at Wiley Publishing, originally suggested that I write a shell-scripting book.
Though Wiley didn’t accept my proposal, it became the basis of this book.
John C. Dvorak, noted columnist and pundit, gave great advice. In an epis-
ode of his video podcast, “Cranky Geeks,” Mr. Dvorak described the process
of writing: “Hell. Write 200 words a day and in a year, you have a novel.”
This tip led me to write a page a day until I had a book. Dmitri Popov wrote
an article in Free Software Magazine titled “Creating a book template with
Writer,” which inspired me to use OpenOffice.org Writer for composing the
text. As it turned out, it worked wonderfully.

Next, the volunteers who helped me produce the original, freely distrib-
utable version of this book (available at LinuxCommand.org): Mark Polesky
performed an extraordinary review and test of the text. Jesse Becker, Tomasz
Chrzczonowicz, Michael Levin, and Spence Miner also tested and reviewed
portions of the text. Karen M. Shotts contributed a lot of hours editing my
original manuscript.

Next, the good folks at No Starch Press who worked long and hard mak-
ing the commercial version of my book: Serena Yang, Production Manager;
Keith Fancher, my editor; and the rest of the No Starch Press staff.

And lastly, the readers of LinuxCommand.org, who have sent me so
many kind emails. Their encouragement gave me the idea that I was really
on to something!

xxiv Acknowledgments

I N T R O D U C T I O N

I want to tell you a story. No, not the story of how,
in 1991, Linus Torvalds wrote the first version of the
Linux kernel. You can read that story in lots of Linux
books. Nor am I going to tell you the story of how,
some years earlier, Richard Stallman began the GNU Project to create a free
Unix-like operating system. That’s an important story too, but most other
Linux books have that one, as well. No, I want to tell you the story of how
you can take back control of your computer.

When I began working with computers as a college student in the late
1970s, there was a revolution going on. The invention of the microprocessor
had made it possible for ordinary people like you and me to actually own a
computer. It’s hard for many people today to imagine what the world was
like when only big business and big government ran all the computers. Let’s
just say you couldn’t get much done.

Today, the world is very different. Computers are everywhere, from tiny
wristwatches to giant data centers to everything in between. In addition to

ubiquitous computers, we also have a ubiquitous network connecting them
together. This has created a wondrous new age of personal empowerment
and creative freedom, but over the last couple of decades something else
has been happening. A single giant corporation has been imposing its con-
trol over most of the world’s computers and deciding what you can and can-
not do with them. Fortunately, people from all over the world are doing
something about it. They are fighting to maintain control of their com-
puters by writing their own software. They are building Linux.

Many people speak of “freedom” with regard to Linux, but I don’t think
most people know what this freedom really means. Freedom is the power to
decide what your computer does, and the only way to have this freedom is to
know what your computer is doing. Freedom is a computer that is without
secrets, one where everything can be known if you care enough to find out.

Why Use the Command Line?
Have you ever noticed in the movies when the “super hacker”—you know,
the guy who can break into the ultra-secure military computer in under 30
seconds—sits down at the computer, he never touches a mouse? It’s because
movie makers realize that we, as human beings, instinctively know the only
way to really get anything done on a computer is by typing on a keyboard.

Most computer users today are familiar with only the graphical user interface
(GUI) and have been taught by vendors and pundits that the command line
interface (CLI) is a terrifying thing of the past. This is unfortunate, because a
good command line interface is a marvelously expressive way of communi-
cating with a computer in much the same way the written word is for human
beings. It’s been said that “graphical user interfaces make easy tasks easy, while
command line interfaces make difficult tasks possible,” and this is still very
true today.

Since Linux is modeled after the Unix family of operating systems, it
shares the same rich heritage of command line tools as Unix. Unix came into
prominence during the early 1980s (although it was first developed a decade
earlier), before the widespread adoption of the graphical user interface and,
as a result, developed an extensive command line interface instead. In fact,
one of the strongest reasons early adopters of Linux chose it over, say, Win-
dows NT was the powerful command line interface, which made the “diffi-
cult tasks possible.”

What This Book Is About
This book is a broad overview of “living” on the Linux command line.
Unlike some books that concentrate on just a single program, such as the
shell program, bash, this book will try to convey how to get along with the
command line interface in a larger sense. How does it all work? What can it
do? What’s the best way to use it?

xxvi Introduction

This is not a book about Linux system administration. While any serious
discussion of the command line will invariably lead to system administration
topics, this book touches on only a few administration issues. It will, how-
ever, prepare the reader for additional study by providing a solid founda-
tion in the use of the command line, an essential tool for any serious system
administration task.

This book is very Linux-centric. Many other books try to broaden their
appeal by including other platforms, such as generic Unix and Mac OS X. In
doing so, they “water down” their content to feature only general topics. This
book, on the other hand, covers only contemporary Linux distributions. Ninety-
five percent of the content is useful for users of other Unix-like systems, but
this book is highly targeted at the modern Linux command line user.

Who Should Read This Book
This book is for new Linux users who have migrated from other platforms.
Most likely you are a “power user” of some version of Microsoft Windows.
Perhaps your boss has told you to administer a Linux server, or maybe you’re
just a desktop user who is tired of all the security problems and want to give
Linux a try. That’s fine. All are welcome here.

That being said, there is no shortcut to Linux enlightenment. Learning
the command line is challenging and takes real effort. It’s not that it’s so
hard, but rather it’s so vast. The average Linux system has literally thousands
of programs you can employ on the command line. Consider yourself warned:
Learning the command line is not a casual endeavor.

On the other hand, learning the Linux command line is extremely
rewarding. If you think you’re a “power user” now, just wait. You don’t know
what real power is—yet. And, unlike many other computer skills, knowledge
of the command line is long lasting. The skills learned today will still be use-
ful 10 years from now. The command line has survived the test of time.

It is also assumed that you have no programming experience—not to
worry. We’ll start you down that path as well.

What’s in This Book
This material is presented in a carefully chosen sequence, much as though
a tutor were sitting next to you, guiding you along. Many authors treat this
material in a “systematic” fashion, which makes sense from a writer’s per-
spective but can be very confusing to new users.

Another goal is to acquaint you with the Unix way of thinking, which
is different from the Windows way of thinking. Along the way, we’ll go on a
few side trips to help you understand why certain things work the way they
do and how they got that way. Linux is not just a piece of software; it’s also
a small part of the larger Unix culture, which has its own language and his-
tory. I might throw in a rant or two, as well.

Introduction xxvii

This book is divided into four parts, each covering some aspect of the
command line experience:

Part 1: Learning the Shell starts our exploration of the basic language of
the command line, including such things as the structure of commands,
filesystem navigation, command line editing, and finding help and doc-
umentation for commands.

Part 2: Configuration and the Environment covers editing configuration
files that control the computer’s operation from the command line.

Part 3: Common Tasks and Essential Tools explores many of the ordi-
nary tasks that are commonly performed from the command line. Unix-
like operating systems, such as Linux, contain many “classic” command-
line programs that are used to perform powerful operations on data.

Part 4: Writing Shell Scripts introduces shell programming, an admit-
tedly rudimentary, but easy to learn, technique for automating many
common computing tasks. By learning shell programming, you will
become familiar with concepts that can be applied to many other
programming languages.

How to Read This Book
Start at the beginning of the book and follow it to the end. It isn’t written
as a reference work; it’s really more like a story with a beginning, a middle,
and an end.

Prerequisites
To use this book, all you will need is a working Linux installation. You can
get this in one of two ways:

Install Linux on a (not so new) computer. It doesn’t matter which dis-
tribution you choose, though most people today start out with Ubuntu,
Fedora, or OpenSUSE. If in doubt, try Ubuntu first. Installing a modern
Linux distribution can be ridiculously easy or ridiculously difficult,
depending on your hardware. I suggest a desktop computer that is a
couple of years old and has at least 256MB of RAM and 6GB of free
hard disk space. Avoid laptops and wireless networks if at all possible,
as these are often more difficult to get working.

Use a live CD. One of the cool things you can do with many Linux distri-
butions is run them directly from a CD-ROM without installing them
at all. Just go into your BIOS setup, set your computer to “Boot from
CDROM,” insert the live CD, and reboot. Using a live CD is a great way

xxviii Introduction

to test a computer for Linux compatibility prior to installation. The dis-
advantage of using a live CD is that it may be very slow compared to hav-
ing Linux installed on your hard drive. Both Ubuntu and Fedora (among
others) have live CD versions.

Note: Regardless of how you install Linux, you will need to have occasional superuser (i.e.,
administrative) privileges to carry out the lessons in this book.

After you have a working installation, start reading and follow along
with your own computer. Most of the material in this book is “hands on,”
so sit down and get typing!

W H Y I D O N ’ T C A L L I T “ G N U / L I N U X ”

In some quarters, it’s politically correct to call the Linux operating system the
“GNU/Linux operating system.” The problem with “Linux” is that there is no
completely correct way to name it because it was written by many different people
in a vast, distributed development effort. Technically speaking, Linux is the name
of the operating system’s kernel, nothing more. The kernel is very important, of
course, since it makes the operating system go, but it’s not enough to form a
complete operating system.

Enter Richard Stallman, the genius-philosopher who founded the Free
Software movement, started the Free Software Foundation, formed the GNU
Project, wrote the first version of the GNU C Compiler (GCC), created the GNU
General Public License (the GPL), etc., etc. He insists that you call it “GNU/Linux”
to properly reflect the contributions of the GNU Project. While the GNU Pro-
ject predates the Linux kernel and the project’s contributions are extremely
deserving of recognition, placing them in the name is unfair to everyone else
who made significant contributions. Besides, I think “Linux/GNU” would be
more technically accurate since the kernel boots first and everything else runs
on top of it.

In popular usage, “Linux” refers to the kernel and all the other free and
open source software found in the typical Linux distribution—that is, the
entire Linux ecosystem, not just the GNU components. The operating system
marketplace seems to prefer one-word names such as DOS, Windows, Solaris,
Irix, AIX. I have chosen to use the popular format. If, however, you prefer to
use “GNU/Linux” instead, please perform a mental search and replace while
reading this book. I won’t mind.

Introduction xxix

PART 1
L E A R N I N G T H E S H E L L

W H A T I S T H E S H E L L ?

When we speak of the command line, we are really
referring to the shell. The shell is a program that takes
keyboard commands and passes them to the operating
system to carry out. Almost all Linux distributions sup-
ply a shell program from the GNU Project called bash.
The name bash is an acronym for Bourne Again Shell, a
reference to the fact that bash is an enhanced replace-
ment for sh, the original Unix shell program written
by Steve Bourne.

Terminal Emulators
When using a graphical user interface, we need another program called
a terminal emulator to interact with the shell. If we look through our desk-
top menus, we will probably find one. KDE uses konsole and GNOME uses
gnome-terminal, though it’s likely called simply “terminal” on our menu. A

number of other terminal emulators are available for Linux, but they all do
basically the same thing: give us access to the shell. You will probably develop
a preference for one or another based on the number of bells and whistles
it has.

Your First Keystrokes
So let’s get started. Launch the terminal emulator! Once it comes up, you
should see something like this:

[me@linuxbox ~]$

This is called a shell prompt, and it appears whenever the shell is ready
to accept input. While it may vary in appearance somewhat, depending on
the distribution, it will usually include your username@machinename, followed
by the current working directory (more about that in a little bit) and a dol-
lar sign.

If the last character of the prompt is a hash mark (#) rather than a dol-
lar sign, the terminal session has superuser privileges. This means that either
we are logged in as the root user or we’ve selected a terminal emulator that
provides superuser (administrative) privileges.

Assuming that things are good so far, let’s try some typing. Enter some
gibberish at the prompt like so:

[me@linuxbox ~]$ kaekfjaeifj

Since this command makes no sense, the shell tells us so and gives us
another chance:

bash: kaekfjaeifj: command not found
[me@linuxbox ~]$

Command History
If we press the up-arrow key, we see that the previous command kaekfjaeifj
reappears after the prompt. This is called command history. Most Linux distri-
butions remember the last 500 commands by default. Press the down-arrow
key, and the previous command disappears.

Cursor Movement
Recall the previous command with the up-arrow key again. Now try the left-
and right-arrow keys. See how we can position the cursor anywhere on the
command line? This makes editing commands easy.

4 Chapter 1

A F E W W O R D S A B O U T M I C E A N D F O C U S

While the shell is all about the keyboard, you can also use a mouse with your
terminal emulator. A mechanism built into the X Window System (the under-
lying engine that makes the GUI go) supports a quick copy-and-paste tech-
nique. If you highlight some text by holding down the left mouse button and
dragging the mouse over it (or double-clicking a word), it is copied into a buf-
fer maintained by X. Pressing the middle mouse button will cause the text to be
pasted at the cursor location. Try it.

Don’t be tempted to use CTRL-C and CTRL-V to perform copy and paste
inside a terminal window. They don’t work. For the shell, these control codes
have different meanings that were assigned many years before Microsoft Win-
dows came on the scene.

Your graphical desktop environment (most likely KDE or GNOME), in
an effort to behave like Windows, probably has its focus policy set to “click to
focus.” This means for a window to get focus (become active), you need to
click it. This is contrary to the traditional X behavior of “focus follows mouse,”
which means that a window gets focus when the mouse just passes over it. The
window will not come to the foreground until you click it, but it will be able to
receive input. Setting the focus policy to “focus follows mouse” will make using
terminal windows easier. Give it a try. I think if you give it a chance, you will
prefer it. You will find this setting in the configuration program for your win-
dow manager.

Try Some Simple Commands
Now that we have learned to type, let s try a few simple commands. The first
one is date. This command displays the current time and date:

[me@linuxbox ~]$ date
Thu Oct 25 13:51:54 EDT 2012

A related command is cal, which, by default, displays a calendar of the
current month:

[me@linuxbox ~]$ cal
 October 2012
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

What Is the Shell? 5

To see the current amount of free space on your disk drives, enter df:

[me@linuxbox ~]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5012392 9949716 34% /
/dev/sda5 59631908 26545424 30008432 47% /home
/dev/sda1 147764 17370 122765 13% /boot
tmpfs 256856 0 256856 0% /dev/shm

Likewise, to display the amount of free memory, enter the free
command:

[me@linuxbox ~]$ free
 total used free shared buffers cached
Mem: 513712 503976 9736 0 5312 122916
-/+ buffers/cache: 375748 137964
Swap: 1052248 104712 947536

Ending a Terminal Session
We can end a terminal session by either closing the terminal emulator win-
dow or entering the exit command at the shell prompt:

[me@linuxbox ~]$ exit

T H E C O N S O L E B E H I N D T H E C U R T A I N

Even if we have no terminal emulator running, several terminal sessions con-
tinue to run behind the graphical desktop. Called virtual terminals or virtual
consoles, these sessions can be accessed on most Linux distributions by pressing
CTRL-ALT-F1 through CTRL-ALT-F6 on most systems. When a session is accessed, it
presents a login prompt into which we can enter our username and password.
To switch from one virtual console to another, press ALT and F1–F6. To return
to the graphical desktop, press ALT-F7.

6 Chapter 1

N A V I G A T I O N

The first thing we need to learn (besides just typing)
is how to navigate the filesystem on our Linux sys-
tem. In this chapter we will introduce the following
commands:

pwd—Print name of current working directory.

cd—Change directory.

ls—List directory contents.

Understanding the Filesystem Tree
Like Windows, a Unix-like operating system such as Linux organizes its files
in what is called a hierarchical directory structure. This means that they are organ-
ized in a tree-like pattern of directories (sometimes called folders in other
systems), which may contain files and other directories. The first directory
in the filesystem is called the root directory. The root directory contains files
and subdirectories, which contain more files and subdirectories, and so on.

Note that unlike Windows, which has a separate filesystem tree for each
storage device, Unix-like systems such as Linux always have a single filesystem
tree, regardless of how many drives or storage devices are attached to the
computer. Storage devices are attached (or more correctly, mounted) at vari-
ous points on the tree according to the whims of the system administrator, the
person (or persons) responsible for the maintenance of the system.

The Current Working Directory
Most of us are probably familiar with a graphical
file manager, which represents the filesystem tree,
as in Figure 2-1. Notice that the tree is usually shown
upended, that is, with the root at the top and the
various branches descending below.

However, the command line has no pictures,
so to navigate the filesystem tree, we need to think
of it in a different way.

Imagine that the filesystem is a maze shaped
like an upside-down tree and we are able to stand
in the middle of it. At any given time, we are inside
a single directory and we can see the files contained
in the directory and the pathway to the directory
above us (called the parent directory) and any sub-
directories below us. The directory we are standing in is called the current
working directory. To display the current working directory, we use the pwd
(print working directory) command:

[me@linuxbox ~]$ pwd
/home/me

When we first log in to our system (or start a terminal emulator session),
our current working directory is set to our home directory. Each user account
is given its own home directory, which is the only place the user is allowed
to write files when operating as a regular user.

Listing the Contents of a Directory
To list the files and directories in the current working directory, we use the
ls command:

[me@linuxbox ~]$ ls
Desktop Documents Music Pictures Public Templates Videos

Actually, we can use the ls command to list the contents of any direct-
ory, not just the current working directory, and it can do many other fun
things as well. We’ll spend more time with ls in Chapter 3.

8 Chapter 2

Figure 2-1: Filesystem tree
as shown by a graphical
file manager

Changing the Current Working Directory
To change your working directory (where we are standing in our tree-
shaped maze) we use the cd command: Type cd followed by the pathname
of the desired working directory. A pathname is the route we take along the
branches of the tree to get to the directory we want. Pathnames can be spe-
cified in one of two ways, as absolute pathnames or as relative pathnames.
Let’s deal with absolute pathnames first.

Absolute Pathnames
An absolute pathname begins with the root directory and follows the tree
branch by branch until the path to the desired directory or file is com-
pleted. For example, there is a directory on your system in which most of
your system’s programs are installed. The pathname of that directory is
/usr/bin. This means from the root directory (represented by the leading
slash in the pathname) there is a directory called usr that contains a direct-
ory called bin.

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin
[me@linuxbox bin]$ ls

...Listing of many, many files ...

Now we can see that we have changed the current working directory to
/usr/bin and that it is full of files. Notice how the shell prompt has changed?
As a convenience, it is usually set up to automatically display the name of
the working directory.

Relative Pathnames
Where an absolute pathname starts from the root directory and leads to its
destination, a relative pathname starts from the working directory. To do this,
it uses a couple of special symbols to represent relative positions in the file-
system tree. These special symbols are . (dot) and .. (dot dot).

The . symbol refers to the working directory and the .. symbol refers
to the working directory’s parent directory. Here is how it works. Let’s
change the working directory to /usr/bin again:

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Navigation 9

Okay, now let’s say that we wanted to change the working directory to
the parent of /usr/bin, which is /usr. We could do that two different ways,
either with an absolute pathname:

[me@linuxbox bin]$ cd /usr
[me@linuxbox usr]$ pwd
/usr

or with a relative pathname:

[me@linuxbox bin]$ cd ..
[me@linuxbox usr]$ pwd
/usr

Two different methods produce identical results. Which one should we
use? The one that requires the least typing!

Likewise, we can change the working directory from /usr to /usr/bin in
two different ways, either by using an absolute pathname:

[me@linuxbox usr]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

or with a relative pathname:

[me@linuxbox usr]$ cd ./bin
[me@linuxbox bin]$ pwd
/usr/bin

Now, there is something important that I must point out here. In almost
all cases, you can omit the ./ because it is implied. Typing

[me@linuxbox usr]$ cd bin

does the same thing. In general, if you do not specify a pathname to some-
thing, the working directory will be assumed.

Some Helpful Shortcuts
In Table 2-1 we see some useful ways the current working directory can be
quickly changed.

Table 2-1: cd Shortcuts

Shortcut Result

cd Changes the working directory to your home directory.

cd - Changes the working directory to the previous working
directory.

cd ~username Changes the working directory to the home directory of
username. For example, cd ~bob changes the directory to
the home directory of user bob.

10 Chapter 2

I M P O R T A N T F A C T S A B O U T F I L E N A M E S

Filenames that begin with a period character are hidden. This only
means that ls will not list them unless you say ls -a. When your account
was created, several hidden files were placed in your home directory to
configure things for your account. Later on we will take a closer look at
some of those files to see how you can customize your environment. In
addition, some applications place their configuration and settings files
in your home directory as hidden files.

Filenames and commands in Linux, as in Unix, are case sensitive. The file-
names File1 and file1 refer to different files.

Linux has no concept of a “file extension” like some other operating sys-
tems. You may name files any way you like. The contents and/or purpose
of a file is determined by other means. Although Unix-like operating sys-
tems don’t use file extensions to determine the contents/purpose of files,
some application programs do.

Though Linux supports long filenames that may contain embedded spaces
and punctuation characters, limit the punctuation characters in the names
of files you create to period, dash (hyphen), and underscore. Most impor-
tantly, do not embed spaces in filenames. Embedding spaces in filenames
will make many command line tasks more difficult, as we will discover in
Chapter 7. If you want to represent spaces between words in a filename,
use underscore characters. You will thank yourself later.

Navigation 11

E X P L O R I N G T H E S Y S T E M

Now that we know how to move around the filesystem,
it’s time for a guided tour of our Linux system. Before
we start, however, we’re going to learn some more
commands that will be useful along the way:

ls—List directory contents.

file—Determine file type.

less—View file contents.

More Fun with ls
ls is probably the most used command and for good reason. With it, we can
see directory contents and determine a variety of important file and direct-
ory attributes. As we have seen, we can simply enter ls to see a list of files
and subdirectories contained in the current working directory:

[me@linuxbox ~]$ ls
Desktop Documents Music Pictures Public Templates Videos

Besides the current working directory, we can specify the directory to
list, like so:

me@linuxbox ~]$ ls /usr
bin games kerberos libexec sbin src
etc include lib local share tmp

or even specify multiple directories. In this example we will list both
the user’s home directory (symbolized by the ~ character) and the /usr
directory:

[me@linuxbox ~]$ ls ~ /usr
/home/me:
Desktop Documents Music Pictures Public Templates Videos
/usr:
bin games kerberos libexec sbin src
etc include lib local share tmp

We can also change the format of the output to reveal more detail:

[me@linuxbox ~]$ ls -l
total 56
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Desktop
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Documents
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Music
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Pictures
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Public
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Templates
drwxrwxr-x 2 me me 4096 2012-10-26 17:20 Videos

By adding -l to the command, we changed the output to the long
format.

Options and Arguments
This brings us to a very important point about how most commands work.
Commands are often followed by one or more options that modify their
behavior and, further, by one or more arguments, the items upon which
the command acts. So most commands look something like this:

command -options arguments

Most commands use options consisting of a single character preceded
by a dash, such as -l. But many commands, including those from the GNU
Project, also support long options, consisting of a word preceded by two dashes.
Also, many commands allow multiple short options to be strung together. In
this example, the ls command is given two options, the l option to produce
long format output, and the t option to sort the result by the file’s modifica-
tion time:

[me@linuxbox ~]$ ls -lt

14 Chapter 3

We’ll add the long option --reverse to reverse the order of the sort:

[me@linuxbox ~]$ ls -lt --reverse

The ls command has a large number of possible options. The most
common are listed in Table 3-1.

Table 3-1: Common ls Options

Option Long Option Description

-a --all List all files, even those with names that begin
with a period, which are normally not listed
(i.e., hidden).

-d --directory Ordinarily, if a directory is specified, ls
will list the contents of the directory, not the
directory itself. Use this option in conjunction
with the -l option to see details about the
directory rather than its contents.

-F --classify This option will append an indicator character
to the end of each listed name (for example, a
forward slash if the name is a directory).

-h --human-readable In long format listings, display file sizes in
human-readable format rather than in bytes.

-l Display results in long format.

-r --reverse Display the results in reverse order. Normally,
ls displays its results in ascending alpha-
betical order.

-S Sort results by file size.

-t Sort by modification time.

A Longer Look at Long Format
As we saw before, the -l option causes ls to display its results in long format.
This format contains a great deal of useful information. Here is the Examples
directory from an Ubuntu system:

-rw-r--r-- 1 root root 3576296 2012-04-03 11:05 Experience ubuntu.ogg
-rw-r--r-- 1 root root 1186219 2012-04-03 11:05 kubuntu-leaflet.png
-rw-r--r-- 1 root root 47584 2012-04-03 11:05 logo-Edubuntu.png
-rw-r--r-- 1 root root 44355 2012-04-03 11:05 logo-Kubuntu.png
-rw-r--r-- 1 root root 34391 2012-04-03 11:05 logo-Ubuntu.png
-rw-r--r-- 1 root root 32059 2012-04-03 11:05 oo-cd-cover.odf
-rw-r--r-- 1 root root 159744 2012-04-03 11:05 oo-derivatives.doc
-rw-r--r-- 1 root root 27837 2012-04-03 11:05 oo-maxwell.odt
-rw-r--r-- 1 root root 98816 2012-04-03 11:05 oo-trig.xls

Exploring the System 15

-rw-r--r-- 1 root root 453764 2012-04-03 11:05 oo-welcome.odt
-rw-r--r-- 1 root root 358374 2012-04-03 11:05 ubuntu Sax.ogg

Let’s look at the different fields from one of the files and examine their
meanings in Table 3-2.

Table 3-2: ls Long Listing Fields

Field Meaning

-rw-r—r-- Access rights to the file. The first character indicates
the type of file. Among the different types, a leading
dash means a regular file, while a d indicates a
directory. The next three characters are the access
rights for the file’s owner, the next three are for mem-
bers of the file’s group, and the final three are for
everyone else. The full meaning of this is discussed
in Chapter 9.

1 File’s number of hard links. See the discussion of links
at the end of this chapter.

root The user name of the file’s owner.

root The name of the group that owns the file.

32059 Size of the file in bytes.

2012-04-03 11:05 Date and time of the file’s last modification.

oo-cd-cover.odf Name of the file.

Determining a File’s Type with file
As we explore the system, it will be useful to know what files contain. To
do this, we will use the file command to determine a file’s type. As we dis-
cussed earlier, filenames in Linux are not required to reflect a file’s con-
tents. For example, while a filename like picture.jpg would normally be
expected to contain a JPEG compressed image, it is not required to in
Linux. We can invoke the file command this way:

file filename

When invoked, the file command will print a brief description of the
file’s contents. For example:

[me@linuxbox ~]$ file picture.jpg
picture.jpg: JPEG image data, JFIF standard 1.01

16 Chapter 3

There are many kinds of files. In fact, one of the common ideas in Unix-
like operating systems such as Linux is that “everything is a file.” As we pro-
ceed with our lessons, we will see just how true that statement is.

While many of the files on your system are familiar, for example MP3
and JPEG files, many kinds are a little less obvious, and a few are quite
strange.

Viewing File Contents with less
The less command is a program to view text files. Throughout our Linux
system, there are many files that contain human-readable text. The less pro-
gram provides a convenient way to examine them.

Why would we want to examine text files? Because many of the files that
contain system settings (called configuration files) are stored in this format,
being able to read them gives us insight about how the system works. In
addition, many of the actual programs that the system uses (called scripts)
are stored in this format. In later chapters, we will learn how to edit text
files in order to modify system settings and write our own scripts, but for
now we will just look at their contents.

W H A T I S “ T E X T ” ?

There are many ways to represent information on a computer. All methods
involve defining a relationship between the information and some numbers
that will be used to represent it. Computers, after all, understand only num-
bers, and all data is converted to numeric representation.

Some of these representation systems are very complex (such as com-
pressed video files), while others are rather simple. One of the earliest and
simplest is called ASCII text. ASCII (pronounced “As-Key”) is short for Amer-
ican Standard Code for Information Interchange. This simple encoding
scheme was first used on Teletype machines.

Text is a simple one-to-one mapping of characters to numbers. It is very
compact. Fifty characters of text translate to fifty bytes of data. It is not the same
as text in a word processor document such as one created by Microsoft Word or
OpenOffice.org Writer. Those files, in contrast to simple ASCII text, contain
many non-text elements that are used to describe their structure and format-
ting. Plain ASCII text files contain only the characters themselves and a few
rudimentary control codes like tabs, carriage returns, and linefeeds.

Throughout a Linux system, many files are stored in text format, and many
Linux tools work with text files. Even Windows recognizes the importance of
this format. The well-known Notepad program is an editor for plain ASCII text
files.

Exploring the System 17

The less command is used like this:

less filename

Once started, the less program allows you to scroll forward and back-
ward through a text file. For example, to examine the file that defines all
the system’s user accounts, enter the following command:

[me@linuxbox ~]$ less /etc/passwd

Once the less program starts, we can view the contents of the file. If the
file is longer than one page, we can scroll up and down. To exit less, press
the Q key.

Table 3-3 lists the most common keyboard commands used by less.

Table 3-3: less Commands

Command Action

PAGE UP or b Scroll back one page.

PAGE DOWN or
Spacebar

Scroll forward one page.

Up Arrow Scroll up one line.

Down Arrow Scroll down one line.

G Move to the end of the text file.

1G or g Move to the beginning of the text file.

/characters Search forward to the next occurrence of characters.

n Search for the next occurrence of the previous search.

h Display help screen.

q Quit less.

L E S S I S M O R E

The less program was designed as an improved replacement of an earlier Unix
program called more. Its name is a play on the phrase “less is more”—a motto of
modernist architects and designers.

less falls into the class of programs called pagers, programs that allow the
easy viewing of long text documents in a page-by-page manner. Whereas the
more program could only page forward, the less program allows paging both
forward and backward and has many other features as well.

18 Chapter 3

A Guided Tour
The filesystem layout on your Linux system is much like that found on other
Unix-like systems. The design is actually specified in a published standard
called the Linux Filesystem Hierarchy Standard. Not all Linux distributions con-
form to the standard exactly, but most come pretty close.

Next, we are going to wander around the filesystem ourselves to see
what makes our Linux system tick. This will give you a chance to practice
your navigation skills. One of the things we will discover is that many of the
interesting files are in plain, human-readable text. As we go about our tour,
try the following:

1. cd into a given directory.

2. List the directory contents with ls -l.

3. If you see an interesting file, determine its contents with file.

4. If it looks as if it might be text, try viewing it with less.

Note: Remember the copy-and-paste trick! If you are using a mouse, you can double-click a
filename to copy it and middle-click to paste it into commands.

As we wander around, don’t be afraid to look at stuff. Regular users are
largely prohibited from messing things up. That’s the system administrator’s
job! If a command complains about something, just move on to something
else. Spend some time looking around. The system is ours to explore.
Remember, in Linux, there are no secrets!

Table 3-4 lists just a few of the directories we can explore. Feel free to
try more!

Table 3-4: Directories Found on Linux Systems

Directory Comments

/ The root directory, where everything begins.

/bin Contains binaries (programs) that must be present for the
system to boot and run.

/boot Contains the Linux kernel, initial RAM disk image (for
drivers needed at boot time), and the boot loader.

Interesting files:
/boot/grub/grub.conf or menu.lst, which are used to
configure the boot loader
/boot/vmlinuz, the Linux kernel

Exploring the System 19

(continued)

Table 3-4 (continued)

Directory Comments

/dev This is a special directory that contains device nodes.
“Everything is a file” also applies to devices. Here is
where the kernel maintains a list of all the devices it
understands.

/etc The /etc directory contains all of the system-wide
configuration files. It also contains a collection of shell
scripts that start each of the system services at boot time.
Everything in this directory should be readable text.

Interesting files: While everything in /etc is interesting,
here are some of my all-time favorites:

/etc/crontab, a file that defines when automated jobs
will run
/etc/fstab, a table of storage devices and their
associated mount points
/etc/passwd, a list of the user accounts

/home In normal configurations, each user is given a directory
in /home. Ordinary users can write files only in their
home directories. This limitation protects the system from
errant user activity.

/lib Contains shared library files used by the core system
programs. These are similar to DLLs in Windows.

/lost+found Each formatted partition or device using a Linux file-
system, such as ext3, will have this directory. It is used
in the case of a partial recovery from a filesystem cor-
ruption event. Unless something really bad has hap-
pened to your system, this directory will remain empty.

/media On modern Linux systems the /media directory will
contain the mount points for removable media such
as USB drives, CD-ROMs, etc. that are mounted
automatically at insertion.

/mnt On older Linux systems, the /mnt directory contains
mount points for removable devices that have been
mounted manually.

/opt The /opt directory is used to install “optional” software.
This is mainly used to hold commercial software products
that may be installed on your system.

20 Chapter 3

Table 3-4 (continued)

Directory Comments

/proc The /proc directory is special. It’s not a real filesystem in
the sense of files stored on your hard drive. Rather, it is
a virtual filesystem maintained by the Linux kernel. The
“files” it contains are peepholes into the kernel itself. The
files are readable and will give you a picture of how the
kernel sees your computer.

/root This is the home directory for the root account.

/sbin This directory contains “system” binaries. These are
programs that perform vital system tasks that are
generally reserved for the superuser.

/tmp The /tmp directory is intended for storage of temporary,
transient files created by various programs. Some con-
figurations cause this directory to be emptied each time
the system is rebooted.

/usr The /usr directory tree is likely the largest one on a Linux
system. It contains all the programs and support files
used by regular users.

/usr/bin /usr/bin contains the executable programs installed
by your Linux distribution. It is not uncommon for this
directory to hold thousands of programs.

/usr/lib The shared libraries for the programs in /usr/bin.

/usr/local The /usr/local tree is where programs that are not
included with your distribution but are intended for
system-wide use are installed. Programs compiled from
source code are normally installed in /usr/local/bin.
On a newly installed Linux system, this tree exists, but it
will be empty until the system administrator puts some-
thing in it.

/usr/sbin Contains more system administration programs.

/usr/share /usr/share contains all the shared data used by
programs in /usr/bin. This includes things like default
configuration files, icons, screen backgrounds, sound
files, etc.

/usr/share/doc Most packages installed on the system will include some
kind of documentation. In /usr/share/doc, we will find
documentation files organized by package.

Exploring the System 21

(continued)

Table 3-4 (continued)

Directory Comments

/var With the exception of /tmp and /home, the directories
we have looked at so far remain relatively static; that is,
their contents don’t change. The /var directory tree is
where data that is likely to change is stored. Various
databases, spool files, user mail, etc. are located here.

/var/log /var/log contains log files, records of various system
activity. These are very important and should be mon-
itored from time to time. The most useful one is /var/
log/messages. Note that for security reasons on some
systems, you must be the superuser to view log files.

Symbolic Links
As we look around, we are likely to see a directory listing with an entry
like this:

lrwxrwxrwx 1 root root 11 2012-08-11 07:34 libc.so.6 -> libc-2.6.so

Notice how the first letter of the listing is l and the entry seems to
have two filenames? This is a special kind of a file called a symbolic link (also
known as a soft link or symlink). In most Unix-like systems it is possible to
have a file referenced by multiple names. While the value of this may not
be obvious now, it is really a useful feature.

Picture this scenario: A program requires the use of a shared resource
of some kind contained in a file named foo, but foo has frequent version
changes. It would be good to include the version number in the filename
so the administrator or other interested party could see what version of foo
is installed. This presents a problem. If we change the name of the shared
resource, we have to track down every program that might use it and change
it to look for a new resource name every time a new version of the resource
is installed. That doesn’t sound like fun at all.

Here is where symbolic links save the day. Let’s say we install version 2.6
of foo, which has the filename foo-2.6, and then create a symbolic link simply
called foo that points to foo-2.6. This means that when a program opens the
file foo, it is actually opening the file foo-2.6. Now everybody is happy. The
programs that rely on foo can find it, and we can still see what actual version
is installed. When it is time to upgrade to foo-2.7, we just add the file to our
system, delete the symbolic link foo, and create a new one that points to the
new version. Not only does this solve the problem of the version upgrade,
but it also allows us to keep both versions on our machine. Imagine that
foo-2.7 has a bug (damn those developers!) and we need to revert to the old

22 Chapter 3

version. Again, we just delete the symbolic link pointing to the new version
and create a new symbolic link pointing to the old version.

The directory listing above (from the /lib directory of a Fedora system)
shows a symbolic link called libc.so.6 that points to a shared library file called
libc-2.6.so. This means that programs looking for libc.so.6 will actually get the
file libc-2.6.so. We will learn how to create symbolic links in the next chapter.

H A R D L I N K S

While we are on the subject of links, we need to mention that there is a second
type of link called a hard link. Hard links also allow files to have multiple names,
but they do it in a different way. We’ll talk more about the differences between
symbolic and hard links in the next chapter.

Exploring the System 23

M A N I P U L A T I N G F I L E S A N D
DIRECTORIES

At this point, we are ready for some real work! This
chapter will introduce the following commands:

cp—Copy files and directories.

mv—Move/rename files and directories.

mkdir—Create directories.

rm—Remove files and directories.

ln—Create hard and symbolic links.

These five commands are among the most frequently used Linux com-
mands. They are used for manipulating both files and directories.

Now, to be frank, some of the tasks performed by these commands are
more easily done with a graphical file manager. With a file manager, we can
drag and drop a file from one directory to another, cut and paste files,
delete files, and so on. So why use these old command-line programs?

The answer is power and flexibility. While it is easy to perform simple
file manipulations with a graphical file manager, complicated tasks can be
easier with the command-line programs. For example, how could we copy
all the HTML files from one directory to another—but only those that do
not exist in the destination directory or are newer than the versions in the
destination directory? Pretty hard with a file manager. Pretty easy with the
command line:

cp -u *.html destination

Wildcards
Before we begin using our commands, we need to talk about the shell fea-
ture that makes these commands so powerful. Because the shell uses file-
names so much, it provides special characters to help you rapidly specify
groups of filenames. These special characters are called wildcards. Using
wildcards (also known as globbing) allows you to select filenames based on
patterns of characters. Table 4-1 lists the wildcards and what they select.

Table 4-1: Wildcards

Wildcard Matches

* Any characters

? Any single character

[characters] Any character that is a member of the set characters

[!characters] Any character that is not a member of the set characters

[[:class:]] Any character that is a member of the specified class

Table 4-2 lists the most commonly used character classes.

Table 4-2: Commonly Used Character Classes

Character Class Matches

[:alnum:] Any alphanumeric character

[:alpha:] Any alphabetic character

[:digit:] Any numeral

[:lower:] Any lowercase letter

[:upper:] Any uppercase letter

26 Chapter 4

Using wildcards makes it possible to construct very sophisticated selec-
tion criteria for filenames. Table 4-3 lists some examples of patterns and
what they match.

Table 4-3: Wildcard Examples

Pattern Matches

* All files

g* Any file beginning with g

b*.txt Any file beginning with b followed by any
characters and ending with .txt

Data??? Any file beginning with Data followed by
exactly three characters

[abc]* Any file beginning with either a, b, or c

BACKUP.[0-9][0-9][0-9] Any file beginning with BACKUP. followed by
exactly three numerals

[[:upper:]]* Any file beginning with an uppercase letter

[![:digit:]]* Any file not beginning with a numeral

*[[:lower:]123] Any file ending with a lowercase letter or the
numerals 1, 2, or 3

Wildcards can be used with any command that accepts filenames as
arguments, but we’ll talk more about that in Chapter 7.

C H A R A C T E R R A N G E S

If you are coming from another Unix-like environment or have been reading
some other books on this subject, you may have encountered the [A-Z] or the
[a-z] character range notations. These are traditional Unix notations and
worked in older versions of Linux as well. They can still work, but you have to
be very careful with them because they will not produce the expected results
unless properly configured. For now, you should avoid using them and use
character classes instead.

Manipulating Files and Directories 27

W I L D C A R D S W O R K I N T H E G U I T O O

Wildcards are especially valuable, not only because they are used so frequently
on the command line but also because they are supported by some graphical
file managers.

In Nautilus (the file manager for GNOME), you can select files using
Edit Select Pattern. Just enter a file selection pattern with wildcards, and
the files in the currently viewed directory will be highlighted for selection.

In some versions of Dolphin and Konqueror (the file managers for KDE),
you can enter wildcards directly on the location bar. For example, if you
want to see all the files starting with a lowercase u in the /usr/bin directory,
enter /usr/bin/u* in the location bar, and it will display the result.

Many ideas originally found in the command line interface make their way
into the graphical interface, too. It is one of the many things that make the
Linux desktop so powerful.

mkdir—Create Directories
The mkdir command is used to create directories. It works like this:

mkdir directory...

A note on notation: In this book, when three periods follow an argument
in the description of a command (as above), it means that the argument can
be repeated; thus, in this case,

mkdir dir1

would create a single directory named dir1, while

mkdir dir1 dir2 dir3

would create three directories named dir1, dir2, and dir3.

cp—Copy Files and Directories
The cp command copies files or directories. It can be used two differ-
ent ways:

cp item1 item2

to copy the single file or directory item1 to file or directory item2 and:

cp item... directory

to copy multiple items (either files or directories) into a directory.

28 Chapter 4

Tables 4-4 and 4-5 list some of the commonly used options (the short
option and the equivalent long option) for cp.

Table 4-4: cp Options

Option Meaning

-a, --archive Copy the files and directories and all of their attributes,
including ownerships and permissions. Normally,
copies take on the default attributes of the user per-
forming the copy.

-i, --interactive Before overwriting an existing file, prompt the user for
confirmation. IIf this option is not specified, cp will
silently overwrite files.

-r, --recursive Recursively copy directories and their contents. This
option (or the -a option) is required when copying
directories.

-u, --update When copying files from one directory to another, copy
only files that either don’t exist or are newer than the
existing corresponding files in the destination directory.

-v, --verbose Display informative messages as the copy is performed.

Table 4-5: cp Examples

Command Results

cp file1 file2 Copy file1 to file2. IIf file2 exists, it is overwritten
with the contents of file1. If file2 does not exist, it
is created.

cp -i file1 file2 Same as above, except that if file2 exists, the user is
prompted before it is overwritten.

cp file1 file2 dir1 Copy file1 and file2 into directory dir1. dir1 must
already exist.

cp dir1/* dir2 Using a wildcard, all the files in dir1 are copied into
dir2. dir2 must already exist.

cp -r dir1 dir2 Copy directory dir1 (and its contents) to directory
dir2. If directory dir2 does not exist, it is created and
will contain the same contents as directory dir1.

Manipulating Files and Directories 29

mv—Move and Rename Files
The mv command performs both file moving and file renaming, depending
on how it is used. In either case, the original filename no longer exists after
the operation. mv is used in much the same way as cp:

mv item1 item2

to move or rename file or directory item1 to item2 or

mv item... directory

to move one or more items from one directory to another.
mv shares many of the same options as cp, as shown in Tables 4-6 and 4-7.

Table 4-6: mv Options

Option Meaning

-i, --interactive Before overwriting an existing file, prompt the user for
confirmation. IIf this option is not specified, mv will
silently overwrite files.

-u, --update When moving files from one directory to another, move
only files that either don’t exist in the destination
directory or are newer than the existing corresponding
files in the destination directory.

-v, --verbose Display informative messages as the move is
performed.

Table 4-7: mv Examples

Command Results

mv file1 file2 Move file1 to file2. IIf file2 exists, it is overwritten
with the contents of file1. If file2 does not exist, it is
created. IIn either case, file1 ceases to exist.

mv -i file1 file2 Same as above, except that if file2 exists, the user is
prompted before it is overwritten.

mv file1 file2 dir1 Move file1 and file2 into directory dir1. dir1 must
already exist.

mv dir1 dir2 Move directory dir1 (and its contents) into directory
dir2. If directory dir2 does not exist, create directory
dir2, move the contents of directory dir1 into dir2, and
delete directory dir1.

30 Chapter 4

rm—Remove Files and Directories
The rm command is used to remove (delete) files and directories, like this:

rm item...

where item is the name of one or more files or directories.

B E C A R E F U L W I T H R M !

Unix-like operating systems such as Linux do not have an undelete command.
Once you delete something with rm, it’s gone. Linux assumes you’re smart and
you know what you’re doing.

Be particularly careful with wildcards. Consider this classic example. Let’s
say you want to delete just the HTML files in a directory. To do this, you type:

rm *.html

which is correct, but if you accidentally place a space between the * and the
.html like so:

rm * .html

the rm command will delete all the files in the directory and then complain that
there is no file called .html.

Here is a useful tip: Whenever you use wildcards with rm (besides carefully
checking your typing!), test the wildcard first with ls. This will let you see the
files that will be deleted. Then press the up arrow key to recall the command
and replace the ls with rm.

Tables 4-8 and 4-9 list some of the common options for rm.

Table 4-8: rm Options

Option Meaning

-i, --interactive Before deleting an existing file, prompt the user for
confirmation. IIf this option is not specified, rm will
silently delete files.

-r, --recursive Recursively delete directories. This means that if a
directory being deleted has subdirectories, delete
them too. To delete a directory, this option must be
specified.

-f, --force Ignore nonexistent files and do not prompt. This
overrides the --interactive option.

-v, --verbose Display informative messages as the deletion is
performed.

Manipulating Files and Directories 31

Table 4-9: rm Examples

Command Results

rm file1 Delete file1 silently.

rm -i file1 Before deleting file1, prompt the user for
confirmation.

rm -r file1 dir1 Delete file1 and dir1 and its contents.

rm -rf file1 dir1 Same as above, except that if either file1 or dir1
does not exist, rm will continue silently.

ln—Create Links
The ln command is used to create either hard or symbolic links. It is used in
one of two ways:

ln file link

to create a hard link and

ln -s item link

to create a symbolic link where item is either a file or a directory.

Hard Links
Hard links are the original Unix way of creating links; symbolic links are
more modern. By default, every file has a single hard link that gives the file
its name. When we create a hard link, we create an additional directory
entry for a file. Hard links have two important limitations:

A hard link cannot reference a file outside its own filesystem. This
means a link cannot reference a file that is not on the same disk parti-
tion as the link itself.

A hard link cannot reference a directory.

A hard link is indistinguishable from the file itself. Unlike a directory
list containing a symbolic link, a directory list containing a hard link shows
no special indication of the link. When a hard link is deleted, the link is
removed, but the contents of the file itself continue to exist (that is, its space
is not deallocated) until all links to the file are deleted.

It is important to be aware of hard links because you might encounter
them from time to time, but modern practice prefers symbolic links, which
we will cover next.

Symbolic Links
Symbolic links were created to overcome the limitations of hard links. Sym-
bolic links work by creating a special type of file that contains a text pointer

32 Chapter 4

to the referenced file or directory. In this regard they operate in much the
same way as a Windows shortcut, though of course they predate the Win-
dows feature by many years. ;-)

A file pointed to by a symbolic link and the symbolic link itself are
largely indistinguishable from one another. For example, if you write some-
thing to the symbolic link, the referenced file is also written to. However,
when you delete a symbolic link, only the link is deleted, not the file itself.
If the file is deleted before the symbolic link, the link will continue to exist
but will point to nothing. In this case, the link is said to be broken. In many
implementations, the ls command will display broken links in a distinguish-
ing color, such as red, to reveal their presence.

The concept of links can seem confusing, but hang in there. We’re
going to try all this stuff and it will, hopefully, become clear.

Let’s Build a Playground
Since we are going to do some real file manipulation, let’s build a safe place
to “play” with our file manipulation commands. First we need a directory to
work in. We’ll create one in our home directory and call it playground.

Creating Directories
The mkdir command is used to create a directory. To create our playground
directory, we will first make sure we are in our home directory and then cre-
ate the new directory:

[me@linuxbox ~]$ cd
[me@linuxbox ~]$ mkdir playground

To make playground a little more interesting, let’s create a couple of dir-
ectories inside it called dir1 and dir2. To do this, we will change our current
working directory to playground and execute another mkdir:

[me@linuxbox ~]$ cd playground
[me@linuxbox playground]$ mkdir dir1 dir2

Notice that the mkdir command will accept multiple arguments, allowing
us to create both directories with a single command.

Copying Files
Next, let’s get some data into our playground. We’ll do this by copying a
file. Using the cp command, we’ll copy the passwd file from the /etc directory
to the current working directory.

[me@linuxbox playground]$ cp /etc/passwd .

Manipulating Files and Directories 33

Notice how we used the shorthand for the current working directory,
the single trailing period. So now if we perform an ls, we will see our file:

[me@linuxbox playground]$ ls -l
total 12
drwxrwxr-x 2 me me 4096 2012-01-10 16:40 dir1
drwxrwxr-x 2 me me 4096 2012-01-10 16:40 dir2
-rw-r--r-- 1 me me 1650 2012-01-10 16:07 passwd

Now, just for fun, let’s repeat the copy using the -v option (verbose) to
see what it does:

[me@linuxbox playground]$ cp -v /etc/passwd .
`/etc/passwd' -> `./passwd'

The cp command performed the copy again, but this time it displayed
a concise message indicating what operation it was performing. Notice that
cp overwrote the first copy without any warning. Again, this is a case of cp
assuming that you know what you’re doing. To get a warning, we’ll include
the -i (interactive) option:

[me@linuxbox playground]$ cp -i /etc/passwd .
cp: overwrite `./passwd'?

Responding to the prompt by entering a y will cause the file to be over-
written; any other character (for example, n) will cause cp to leave the file
alone.

Moving and Renaming Files
Now, the name passwd doesn’t seem very playful and this is a playground, so
let’s change it to something else:

[me@linuxbox playground]$ mv passwd fun

Let’s pass the fun around a little by moving our renamed file to each of
the directories and back again:

[me@linuxbox playground]$ mv fun dir1

moves it first to directory dir1. Then

[me@linuxbox playground]$ mv dir1/fun dir2

moves it from dir1 to dir2. Then

[me@linuxbox playground]$ mv dir2/fun .

34 Chapter 4

finally brings it back to the current working directory. Next, let’s see the
effect of mv on directories. First we will move our data file into dir1 again:

[me@linuxbox playground]$ mv fun dir1

and then move dir1 into dir2 and confirm it with ls:

[me@linuxbox playground]$ mv dir1 dir2
[me@linuxbox playground]$ ls -l dir2
total 4
drwxrwxr-x 2 me me 4096 2012-01-11 06:06 dir1
[me@linuxbox playground]$ ls -l dir2/dir1
total 4
-rw-r--r-- 1 me me 1650 2012-01-10 16:33 fun

Note that because dir2 already existed, mv moved dir1 into dir2. If
dir2 had not existed, mv would have renamed dir1 to dir2. Lastly, let’s put
everything back:

[me@linuxbox playground]$ mv dir2/dir1 .
[me@linuxbox playground]$ mv dir1/fun .

Creating Hard Links
Now we’ll try some links. First the hard links: We’ll create some links to our
data file like so:

[me@linuxbox playground]$ ln fun fun-hard
[me@linuxbox playground]$ ln fun dir1/fun-hard
[me@linuxbox playground]$ ln fun dir2/fun-hard

So now we have four instances of the file fun. Let’s take a look at our
playground directory:

[me@linuxbox playground]$ ls -l
total 16
drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir1
drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir2
-rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard

One thing you notice is that the second field in the listing for fun and
fun-hard both contain a 4, which is the number of hard links that now exist
for the file. You’ll remember that a file will always have at least one link
because the file’s name is created by a link. So, how do we know that fun
and fun-hard are, in fact, the same file? In this case, ls is not very helpful.
While we can see that fun and fun-hard are both the same size (field 5), our
listing provides no way to be sure they are the same file. To solve this prob-
lem, we’re going to have to dig a little deeper.

Manipulating Files and Directories 35

When thinking about hard links, it is helpful to imagine that files are
made up of two parts: the data part containing the file’s contents and the
name part, which holds the file’s name. When we create hard links, we are
actually creating additional name parts that all refer to the same data part.
The system assigns a chain of disk blocks to what is called an inode, which is
then associated with the name part. Each hard link therefore refers to a spe-
cific inode containing the file’s contents.

The ls command has a way to reveal this information. It is invoked with
the -i option:

[me@linuxbox playground]$ ls -li
total 16
12353539 drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir1
12353540 drwxrwxr-x 2 me me 4096 2012-01-14 16:17 dir2
12353538 -rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun
12353538 -rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard

In this version of the listing, the first field is the inode number, and as
we can see, both fun and fun-hard share the same inode number, which con-
firms they are the same file.

Creating Symbolic Links
Symbolic links were created to overcome the two disadvantages of hard
links: Hard links cannot span physical devices, and hard links cannot refer-
ence directories, only files. Symbolic links are a special type of file that con-
tains a text pointer to the target file or directory.

Creating symbolic links is similar to creating hard links:

[me@linuxbox playground]$ ln -s fun fun-sym
[me@linuxbox playground]$ ln -s ../fun dir1/fun-sym
[me@linuxbox playground]$ ln -s ../fun dir2/fun-sym

The first example is pretty straightforward: We simply add the -s option
to create a symbolic link rather than a hard link. But what about the next
two? Remember, when we create a symbolic link, we are creating a text
description of where the target file is relative to the symbolic link. It’s eas-
ier to see if we look at the ls output:

[me@linuxbox playground]$ ls -l dir1
total 4
-rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 6 2012-01-15 15:17 fun-sym -> ../fun

The listing for fun-sym in dir1 shows that it is a symbolic link by the lead-
ing l in the first field and the fact that it points to ../fun, which is correct.
Relative to the location of fun-sym, fun is in the directory above it. Notice
too, that the length of the symbolic link file is 6, the number of characters
in the string ../fun rather than the length of the file to which it is pointing.

36 Chapter 4

When creating symbolic links, you can use either absolute pathnames,
like this:

[me@linuxbox playground]$ ln -s /home/me/playground/fun dir1/fun-sym

or relative pathnames, as we did in our earlier example. Using relative path-
names is more desirable because it allows a directory containing symbolic
links to be renamed and/or moved without breaking the links.

In addition to regular files, symbolic links can also reference directories:

[me@linuxbox playground]$ ln -s dir1 dir1-sym
[me@linuxbox playground]$ ls -l
total 16
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2012-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2
-rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2012-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 3 2012-01-15 15:15 fun-sym -> fun

Removing Files and Directories
As we covered earlier, the rm command is used to delete files and directories.
We are going to use it to clean up our playground a little bit. First, let’s
delete one of our hard links:

[me@linuxbox playground]$ rm fun-hard
[me@linuxbox playground]$ ls -l
total 12
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2012-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2
-rw-r--r-- 3 me me 1650 2012-01-10 16:33 fun
lrwxrwxrwx 1 me me 3 2012-01-15 15:15 fun-sym -> fun

That worked as expected. The file fun-hard is gone and the link count
shown for fun is reduced from four to three, as indicated in the second
field of the directory listing. Next, we’ll delete the file fun, and just for
enjoyment, we’ll include the -i option to show what that does:

[me@linuxbox playground]$ rm -i fun
rm: remove regular file `fun'?

Enter y at the prompt, and the file is deleted. But let’s look at the out-
put of ls now. Notice what happened to fun-sym? Since it’s a symbolic link
pointing to a now nonexistent file, the link is broken:

[me@linuxbox playground]$ ls -l
total 8
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2012-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2
lrwxrwxrwx 1 me me 3 2012-01-15 15:15 fun-sym -> fun

Manipulating Files and Directories 37

Most Linux distributions configure ls to display broken links. On a
Fedora box, broken links are displayed in blinking red text! The presence of
a broken link is not in and of itself dangerous, but it is rather messy. If we
try to use a broken link, we will see this:

[me@linuxbox playground]$ less fun-sym
fun-sym: No such file or directory

Let’s clean up a little. We’ll delete the symbolic links:

[me@linuxbox playground]$ rm fun-sym dir1-sym
[me@linuxbox playground]$ ls -l
total 8
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir1
drwxrwxr-x 2 me me 4096 2012-01-15 15:17 dir2

One thing to remember about symbolic links is that most file opera-
tions are carried out on the link’s target, not the link itself. However, rm is
an exception. When you delete a link, it is the link that is deleted, not the
target.

Finally, we will remove our playground. To do this, we will return to our
home directory and use rm with the recursive option (-r) to delete play-
ground and all of its contents, including its subdirectories:

[me@linuxbox playground]$ cd
[me@linuxbox ~]$ rm -r playground

C R E A T I N G S Y M L I N K S W I T H T H E G U I

The file managers in both GNOME and KDE provide an easy and automatic
method of creating symbolic links. With GNOME, holding the CTRL and SHIFT
keys while dragging a file will create a link rather than copying (or moving)
the file. In KDE, a small menu appears whenever a file is dropped, offering a
choice of copying, moving, or linking the file.

Final Note
We’ve covered a lot of ground here, and the information may take a while
to fully sink in. Perform the playground exercise over and over until it makes
sense. It is important to get a good understanding of basic file manipulation
commands and wildcards. Feel free to expand on the playground exercise
by adding more files and directories, using wildcards to specify files for vari-
ous operations. The concept of links may be a little confusing at first, but
take the time to learn how they work. They can be a real lifesaver.

38 Chapter 4

W O R K I N G W I T H C O M M A N D S

Up to this point, we have seen a series of mysterious
commands, each with its own mysterious options and
arguments. In this chapter, we will attempt to remove
some of that mystery and even create some of our
own commands. The commands introduced in this
chapter are these:

type—Indicate how a command name is interpreted.

which—Display which executable program will be executed.

man—Display a command’s manual page.

apropos—Display a list of appropriate commands.

info—Display a command’s info entry.

whatis—Display a very brief description of a command.

alias—Create an alias for a command.

What Exactly Are Commands?
A command can be one of four things:

An executable program like all those files we saw in /usr/bin. Within this
category, programs can be compiled binaries, such as programs written in
C and C++, or programs written in scripting languages, such as the shell,
Perl, Python, Ruby, and so on.

A command built into the shell itself. bash supports a number of com-
mands internally called shell builtins. The cd command, for example, is a
shell builtin.

A shell function. Shell functions are miniature shell scripts incorporated
into the environment. We will cover configuring the environment and
writing shell functions in later chapters, but for now just be aware that
they exist.

An alias. An alias is a command that we can define ourselves, built from
other commands.

Identifying Commands
It is often useful to know exactly which of the four kinds of commands is
being used, and Linux provides a couple of ways to find out.

type—Display a Command’s Type
The type command is a shell builtin that displays the kind of command the
shell will execute, given a particular command name. It works like this:

type command

where command is the name of the command you want to examine. Here are
some examples:

[me@linuxbox ~]$ type type
type is a shell builtin
[me@linuxbox ~]$ type ls
ls is aliased to `ls --color=tty'
[me@linuxbox ~]$ type cp
cp is /bin/cp

Here we see the results for three different commands. Notice that the ls
command (taken from a Fedora system) is actually an alias for the ls com-
mand with the --color=tty option added. Now we know why the output from
ls is displayed in color!

40 Chapter 5

which—Display an Executable’s Location
Sometimes more than one version of an executable program is installed on
a system. While this is not very common on desktop systems, it’s not unusual
on large servers. To determine the exact location of a given executable, the
which command is used:

[me@linuxbox ~]$ which ls
/bin/ls

which works only for executable programs, not builtins or aliases that
are substitutes for actual executable programs. When we try to use which
on a shell builtin (for example, cd), we get either no response or an error
message:

[me@linuxbox ~]$ which cd
/usr/bin/which: no cd in (/opt/jre1.6.0_03/bin:/usr/lib/qt-3.3/bin:/usr/kerber
os/bin:/opt/jre1.6.0_03/bin:/usr/lib/ccache:/usr/local/bin:/usr/bin:/bin:/home
/me/bin)

This is a fancy way of saying “command not found.”

Getting a Command’s Documentation
With this knowledge of what a command is, we can now search for the docu-
mentation available for each kind of command.

help—Get Help for Shell Builtins
bash has a built-in help facility for each of the shell builtins. To use it, type
help followed by the name of the shell builtin. For example:

[me@linuxbox ~]$ help cd
cd: cd [-L|-P] [dir]
Change the current directory to DIR. The variable $HOME is the default DIR.
The variable CDPATH defines the search path for the directory containing DIR.
Alternative directory names in CDPATH are separated by a colon (:). A null
directory name is the same as the current directory, i.e. `.'. If DIR begins
with a slash (/), then CDPATH is not used. If the directory is not found, and
the shell option `cdable_vars' is set, then try the word as a variable name.
If that variable has a value, then cd to the value of that variable. The -P
option says to use the physical directory structure instead of following
symbolic links; the -L option forces symbolic links to be followed.

A note on notation: When square brackets appear in the description of
a command’s syntax, they indicate optional items. A vertical bar character
indicates mutually exclusive items. An example is the cd command above:
cd [-L|-P] [dir].

This notation says that the command cd may be followed optionally
by either a -L or a -P and further, optionally followed by the argument dir.

Working with Commands 41

While the output of help for the cd command is concise and accurate, it
is by no means a tutorial, and as we can see, it also seems to mention a lot of
things we haven’t talked about yet! Don’t worry. We’ll get there.

--help—Display Usage Information
Many executable programs support a --help option that displays a descrip-
tion of the command’s supported syntax and options. For example:

[me@linuxbox ~]$ mkdir --help
Usage: mkdir [OPTION] DIRECTORY...
Create the DIRECTORY(ies), if they do not already exist.

 -Z, --context=CONTEXT (SELinux) set security context to CONTEXT
Mandatory arguments to long options are mandatory for short options too.
 -m, --mode=MODE set file mode (as in chmod), not a=rwx – umask
 -p, --parents no error if existing, make parent directories as
 needed
 -v, --verbose print a message for each created directory
 --help display this help and exit
 --version output version information and exit
Report bugs to <bug-coreutils@gnu.org>.

Some programs don’t support the --help option, but try it anyway. Often
it results in an error message that will reveal the same usage information.

man—Display a Program’s Manual Page
Most executable programs intended for command-line use provide a formal
piece of documentation called a manual or man page. A special paging pro-
gram called man is used to view them, like this:

man program

where program is the name of the command to view.
Man pages vary somewhat in format but generally contain a title, a syn-

opsis of the command’s syntax, a description of the command’s purpose,
and a listing and description of each of the command’s options. Man pages,
however, do not usually include examples, and they are intended as a refer-
ence, not a tutorial. As an example, let’s try viewing the man page for the ls
command:

[me@linuxbox ~]$ man ls

On most Linux systems, man uses less to display the manual page, so all
of the familiar less commands work while displaying the page.

The “manual” that man displays is broken into sections and covers not
only user commands but also system administration commands, program-
ming interfaces, file formats, and more. Table 5-1 describes the layout of
the manual.

42 Chapter 5

Table 5-1: Man Page Organization

Section Contents

1 User commands

2 Programming interfaces for kernel system calls

3 Programming interfaces to the C library

4 Special files such as device nodes and drivers

5 File formats

6 Games and amusements such as screensavers

7 Miscellaneous

8 System administration commands

Sometimes we need to look in a specific section of the manual to find
what we are looking for. This is particularly true if we are looking for a file
format that is also the name of a command. If we don’t specify a section num-
ber, we will always get the first instance of a match, probably in section 1. To
specify a section number, we use man like this:

man section search_term

For example:

[me@linuxbox ~]$ man 5 passwd

will display the man page describing the file format of the /etc/passwd file.

apropos—Display Appropriate Commands
It is also possible to search the list of man pages for possible matches based
on a search term. Though crude, this approach is sometimes helpful. Here
is an example of a search for man pages using the search term floppy:

[me@linuxbox ~]$ apropos floppy
create_floppy_devices (8) - udev callout to create all possible
 floppy device based on the CMOS type
fdformat (8) - Low-level formats a floppy disk
floppy (8) - format floppy disks
gfloppy (1) - a simple floppy formatter for the GNOME
mbadblocks (1) - tests a floppy disk, and marks the bad
 blocks in the FAT
mformat (1) - add an MSDOS filesystem to a low-level
 formatted floppy disk

The first field in each line of output is the name of the man page, and
the second field shows the section. Note that the man command with the -k
option performs exactly the same function as apropos.

Working with Commands 43

whatis—Display a Very Brief Description of a Command
The whatis program displays the name and a one-line description of a man
page matching a specified keyword:

[me@linuxbox ~]$ whatis ls
ls (1) - list directory contents

T H E M O S T B R U T A L M A N P A G E O F T H E M A L L

As we have seen, the manual pages supplied with Linux and other Unix-like sys-
tems are intended as reference documentation and not as tutorials. Many man
pages are hard to read, but I think that the grand prize for difficulty has to go
to the man page for bash. As I was doing my research for this book, I gave it a
careful review to ensure that I was covering most of its topics. When printed,
it’s over 80 pages long and extremely dense, and its structure makes absolutely
no sense to a new user.

On the other hand, it is very accurate and concise, as well as being
extremely complete. So check it out if you dare, and look forward to the day
when you can read it and it all makes sense.

info—Display a Program’s Info Entry
The GNU Project provides an alternative to man pages called info pages. Info
pages are displayed with a reader program named, appropriately enough,
info. Info pages are hyperlinked much like web pages. Here is a sample:

File: coreutils.info, Node: ls invocation, Next: dir invocation, Up:
Directory listing

10.1 `ls': List directory contents
==================================

The `ls' program lists information about files (of any type, including
directories). Options and file arguments can be intermixed arbitrarily, as
usual.

 For non-option command-line arguments that are directories, by default `ls'
lists the contents of directories, not recursively, and omitting files with
names beginning with `.'. For other non-option arguments, by default `ls'
lists just the filename. If no non-option argument is specified, `ls' operates
on the current directory, acting as if it had been invoked with a single
argument of `.'.

 By default, the output is sorted alphabetically, according to the
--zz-Info: (coreutils.info.gz)ls invocation, 63 lines --Top----------

44 Chapter 5

The info program reads info files, which are tree-structured into indi-
vidual nodes, each containing a single topic. Info files contain hyperlinks
that can move you from node to node. A hyperlink can be identified by its
leading asterisk and is activated by placing the cursor upon it and pressing
the ENTER key.

To invoke info, enter info followed optionally by the name of a pro-
gram. Table 5-2 lists commands used to control the reader while displaying
an info page.

Table 5-2: info Commands

Command Action

? Display command help.

PAGE UP or BACKSPACE Display previous page.

PAGE DOWN or Spacebar Display next page.

n Next—Display the next node.

p Previous—Display the previous node.

u Up—Display the parent node of the currently
displayed node, usually a menu.

ENTER Follow the hyperlink at the cursor location.

q Quit.

Most of the command-line programs we have discussed so far are part
of the GNU Project’s coreutils package, so you can find more information
about them by typing

[me@linuxbox ~]$ info coreutils

which will display a menu page containing hyperlinks to documentation for
each program provided by the coreutils package.

README and Other Program Documentation Files
Many software packages installed on your system have documentation files
residing in the /usr/share/doc directory. Most of these are stored in plaintext
format and can be viewed with less. Some of the files are in HTML format
and can be viewed with a web browser. We may encounter some files ending
with a .gz extension. This indicates that they have been compressed with the
gzip compression program. The gzip package includes a special version of
less called zless, which will display the contents of gzip-compressed text
files.

Working with Commands 45

Creating Your Own Commands with alias
Now for our very first experience with programming! We will create a com-
mand of our own using the alias command. But before we start, we need to
reveal a small command-line trick. It’s possible to put more than one com-
mand on a line by separating each command with a semicolon character. It
works like this:

command1; command2; command3...

Here’s the example we will use:

[me@linuxbox ~]$ cd /usr; ls; cd -
bin games kerberos lib64 local share tmp
etc include lib libexec sbin src
/home/me
[me@linuxbox ~]$

As we can see, we have combined three commands on one line. First we
change directory to /usr, then we list the directory, and finally we return to
the original directory (by using cd -) so we end up where we started. Now
let’s turn this sequence into a new command using alias. The first thing we
have to do is dream up a name for our new command. Let’s try test. Before
we do that, it would be a good idea to find out if the name test is already
being used. To find out, we can use the type command again:

[me@linuxbox ~]$ type test
test is a shell builtin

Oops! The name test is already taken. Let’s try foo:

[me@linuxbox ~]$ type foo
bash: type: foo: not found

Great! foo is not taken. So let’s create our alias:

[me@linuxbox ~]$ alias foo='cd /usr; ls; cd -'

Notice the structure of this command:

alias name='string'

After the command alias we give the alias a name followed immediately
(no whitespace allowed) by an equal sign, which is followed immediately by a
quoted string containing the meaning to be assigned to the name. After we
define our alias, it can be used anywhere the shell would expect a command.

46 Chapter 5

Let’s try it:

[me@linuxbox ~]$ foo
bin games kerberos lib64 local share tmp
etc include lib libexec sbin src
/home/me
[me@linuxbox ~]$

We can also use the type command again to see our alias:

[me@linuxbox ~]$ type foo
foo is aliased to `cd /usr; ls ; cd -'

To remove an alias, the unalias command is used, like so:

[me@linuxbox ~]$ unalias foo
[me@linuxbox ~]$ type foo
bash: type: foo: not found

While we purposely avoided naming our alias with an existing com-
mand name, it is sometimes desirable to do so. This is often done to apply a
commonly desired option to each invocation of a common command. For
instance, we saw earlier how the ls command is often aliased to add color
support:

[me@linuxbox ~]$ type ls
ls is aliased to `ls --color=tty'

To see all the aliases defined in the environment, use the alias com-
mand without arguments. Here are some of the aliases defined by default
on a Fedora system. Try to figure out what they all do:

[me@linuxbox ~]$ alias
alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls --color=tty'

There is one tiny problem with defining aliases on the command line.
They vanish when your shell session ends. In a later chapter we will see how
to add our own aliases to the files that establish the environment each time
we log on, but for now, enjoy the fact that we have taken our first, albeit
tiny, step into the world of shell programming!

Revisiting Old Friends
Now that we have learned how to find the documentation for commands, go
and look up the documentation for all the commands we have encountered
so far. Study what additional options are available and try them out!

Working with Commands 47

R E D I R E C T I O N

In this lesson we are going to unleash what may be
the coolest feature of the command line: I/O redirec-
tion. The I/O stands for input/output, and with this
facility you can redirect the input and output of
commands to and from files, as well as connect multiple commands to
make powerful command pipelines. To show off this facility, we will intro-
duce the following commands:

cat—Concatenate files.

sort—Sort lines of text.

uniq—Report or omit repeated lines.

wc—Print newline, word, and byte counts for each file.

grep—Print lines matching a pattern.

head—Output the first part of a file.

tail—Output the last part of a file.

tee—Read from standard input and write to standard output and files.

Standard Input, Output, and Error
Many of the programs that we have used so far produce output of some
kind. This output often consists of two types. First, we have the program’s
results; that is, the data the program is designed to produce. Second, we
have status and error messages that tell us how the program is getting along.
If we look at a command like ls, we can see that it displays its results and its
error messages on the screen.

Keeping with the Unix theme of “everything is a file,” programs such
as ls actually send their results to a special file called standard output (often
expressed as stdout) and their status messages to another file called standard
error (stderr). By default, both standard output and standard error are linked
to the screen and not saved into a disk file.

In addition, many programs take input from a facility called standard
input (stdin), which is, by default, attached to the keyboard.

I/O redirection allows us to change where output goes and where input
comes from. Normally, output goes to the screen and input comes from the
keyboard, but with I/O redirection we can change that.

Redirecting Standard Output
I/O redirection allows us to redefine where standard output goes. To
redirect standard output to another file instead of the screen, we use the >
redirection operator followed by the name of the file. Why would we want
to do this? It’s often useful to store the output of a command in a file. For
example, we could tell the shell to send the output of the ls command to
the file ls-output.txt instead of the screen:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Here, we created a long listing of the /usr/bin directory and sent the
results to the file ls-output.txt. Let’s examine the redirected output of the
command:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 167878 2012-02-01 15:07 ls-output.txt

Good—a nice, large, text file. If we look at the file with less, we will
see that the file ls-output.txt does indeed contain the results from our ls
command:

[me@linuxbox ~]$ less ls-output.txt

Now, let’s repeat our redirection test but this time with a twist. We’ll
change the name of the directory to one that does not exist:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt
ls: cannot access /bin/usr: No such file or directory

50 Chapter 6

We received an error message. This makes sense because we specified
the nonexistent directory /bin/usr, but why was the error message displayed
on the screen rather than being redirected to the file ls-output.txt ? The answer
is that the ls program does not send its error messages to standard output.
Instead, like most well-written Unix programs, it sends its error messages to
standard error. Since we redirected only standard output and not standard
error, the error message was still sent to the screen. We’ll see how to redirect
standard error in just a minute, but first, let’s look at what happened to our
output file:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 0 2012-02-01 15:08 ls-output.txt

The file now has zero length! This is because, when we redirect output
with the > redirection operator, the destination file is always rewritten from
the beginning. Since our ls command generated no results and only an
error message, the redirection operation started to rewrite the file and then
stopped because of the error, resulting in its truncation. In fact, if we ever
need to actually truncate a file (or create a new, empty file) we can use a
trick like this:

[me@linuxbox ~]$ > ls-output.txt

Simply using the redirection operator with no command preceding it
will truncate an existing file or create a new, empty file.

So, how can we append redirected output to a file instead of overwriting
the file from the beginning? For that, we use the >> redirection operator,
like so:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt

Using the >> operator will result in the output being appended to the
file. If the file does not already exist, it is created just as though the > oper-
ator had been used. Let’s put it to the test:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 503634 2012-02-01 15:45 ls-output.txt

We repeated the command three times, resulting in an output file three
times as large.

Redirecting Standard Error
edirecting standard error lacks the ease of using a dedicated redirection
operator. To redirect standard error we must refer to its file descriptor. A pro-
gram can produce output on any of several numbered file streams. While

Redirection 51

we have referred to the first three of these file streams as standard input,
output, and error, the shell references them internally as file descriptors
0, 1, and 2, respectively. The shell provides a notation for redirecting files
using the file descriptor number. Since standard error is the same as file
descriptor 2, we can redirect standard error with this notation:

[me@linuxbox ~]$ ls -l /bin/usr 2> ls-error.txt

The file descriptor 2 is placed immediately before the redirection oper-
ator to perform the redirection of standard error to the file ls-error.txt.

Redirecting Standard Output and Standard Error to One File
There are cases in which we may wish to capture all of the output of a com-
mand to a single file. To do this, we must redirect both standard output and
standard error at the same time. There are two ways to do this. First, here is
the traditional way, which works with old versions of the shell:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt 2>&1

Using this method, we perform two redirections. First we redirect
standard output to the file ls-output.txt, and then we redirect file descriptor
2 (standard error) to file descriptor 1 (standard output) using the nota-
tion 2>&1.

Note: Notice that the order of the redirections is significant. The redirection of standard error
must always occur after redirecting standard output or it doesn’t work. In the example
above, > ls-output.txt 2>&1 redirects standard error to the file ls-output.txt, but if
the order is changed to 2>&1 > ls-output.txt, standard error is directed to the screen.

Recent versions of bash provide a second, more streamlined method for
performing this combined redirection:

[me@linuxbox ~]$ ls -l /bin/usr &> ls-output.txt

In this example, we use the single notation &> to redirect both standard
output and standard error to the file ls-output.txt.

Disposing of Unwanted Output
Sometimes silence really is golden, and we don’t want output from a com-
mand—we just want to throw it away. This applies particularly to error and
status messages. The system provides a way to do this by redirecting output
to a special file called /dev/null. This file is a system device called a bit bucket,
which accepts input and does nothing with it. To suppress error messages
from a command, we do this:

[me@linuxbox ~]$ ls -l /bin/usr 2> /dev/null

52 Chapter 6

/ D E V / N U L L I N U N I X C U L T U R E

The bit bucket is an ancient Unix concept, and due to its universality it has
appeared in many parts of Unix culture. So when someone says he is send-
ing your comments to “dev null,” now you know what it means. For more
examples, see the Wikipedia article at http://en.wikipedia.org/wiki/Dev/null.

Redirecting Standard Input
Up to now, we haven’t encountered any commands that make use of stand-
ard input (actually we have, but we’ll reveal that surprise a little bit later), so
we need to introduce one.

cat—Concatenate Files
The cat command reads one or more files and copies them to standard out-
put like so:

cat [file...]

In most cases, you can think of cat as being analogous to the TYPE com-
mand in DOS. You can use it to display files without paging. For example,

[me@linuxbox ~]$ cat ls-output.txt

will display the contents of the file ls-output.txt. cat is often used to display
short text files. Since cat can accept more than one file as an argument, it can
also be used to join files together. Say we have downloaded a large file that
has been split into multiple parts (multimedia files are often split this way on
Usenet), and we want to join them back together. If the files were named

movie.mpeg.001 movie.mpeg.002 ... movie.mpeg.099

we could rejoin them with this command:

[me@linuxbox ~]$ cat movie.mpeg.0* > movie.mpeg

Since wildcards always expand in sorted order, the arguments will be
arranged in the correct order.

This is all well and good, but what does this have to do with standard
input? Nothing yet, but let’s try something else. What happens if we enter
cat with no arguments?

[me@linuxbox ~]$ cat

Nothing happens—it just sits there like it’s hung. It may seem that way,
but it’s really doing exactly what it’s supposed to.

If cat is not given any arguments, it reads from standard input, and
since standard input is, by default, attached to the keyboard, it’s waiting
for us to type something!

Redirection 53

Try this:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.

Next, type CTRL-D (i.e., hold down the CTRL key and press D) to tell cat
that it has reached end-of-file (EOF) on standard input:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

In the absence of filename arguments, cat copies standard input to
standard output, so we see our line of text repeated. We can use this beha-
vior to create short text files. Let’s say that we wanted to create a file called
lazy_dog.txt containing the text in our example. We would do this:

[me@linuxbox ~]$ cat > lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Enter the command followed by the text we want to place in the file.
Remember to type CTRL-D at the end. Using the command line, we have
implemented the world’s dumbest word processor! To see our results, we
can use cat to copy the file to standard output again:

[me@linuxbox ~]$ cat lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Now that we know how cat accepts standard input in addition to file-
name arguments, let’s try redirecting standard input:

[me@linuxbox ~]$ cat < lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Using the < redirection operator, we change the source of standard
input from the keyboard to the file lazy_dog.txt. We see that the result is the
same as passing a single filename argument. This is not particularly useful
compared to passing a filename argument, but it serves to demonstrate
using a file as a source of standard input. Other commands make better
use of standard input, as we shall soon see.

Before we move on, check out the man page for cat, as it has several
interesting options.

Pipelines
The ability of commands to read data from standard input and send to
standard output is utilized by a shell feature called pipelines. Using the pipe
operator | (vertical bar), the standard output of one command can be piped
into the standard input of another.

command1 | command2

54 Chapter 6

To fully demonstrate this, we are going to need some commands.
Remember how we said there was one we already knew that accepts stand-
ard input? It’s less. We can use less to display, page by page, the output of
any command that sends its results to standard output:

[me@linuxbox ~]$ ls -l /usr/bin | less

This is extremely handy! Using this technique, we can conveniently
examine the output of any command that produces standard output.

Filters
Pipelines are often used to perform complex operations on data. It is pos-
sible to put several commands together into a pipeline. Frequently, the com-
mands used this way are referred to as filters. Filters take input, change it
somehow, and then output it. The first one we will try is sort. Imagine we
want to make a combined list of all of the executable programs in /bin and
/usr/bin, put them in sorted order, and then view the list:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | less

Since we specified two directories (/bin and /usr/bin), the output of ls
would have consisted of two sorted lists, one for each directory. By including
sort in our pipeline, we changed the data to produce a single, sorted list.

uniq—Report or Omit Repeated Lines
The uniq command is often used in conjunction with sort. uniq accepts a
sorted list of data from either standard input or a single filename argument
(see the uniq man page for details) and, by default, removes any duplicates
from the list. So, to make sure our list has no duplicates (that is, any pro-
grams of the same name that appear in both the /bin and /usr/bin director-
ies) we will add uniq to our pipeline:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | less

In this example, we use uniq to remove any duplicates from the output
of the sort command. If we want to see the list of duplicates instead, we add
the -d option to uniq like so:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq -d | less

wc—Print Line, Word, and Byte Counts
The wc (word count) command is used to display the number of lines,
words, and bytes contained in files. For example:

[me@linuxbox ~]$ wc ls-output.txt
 7902 64566 503634 ls-output.txt

Redirection 55

In this case it prints out three numbers: lines, words, and bytes con-
tained in ls-output.txt. Like our previous commands, if executed without
command-line arguments, wc accepts standard input. The -l option limits
its output to only report lines. Adding it to a pipeline is a handy way to
count things. To see the number of items we have in our sorted list, we
can do this:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | wc -l
2728

grep—Print Lines Matching a Pattern
grep is a powerful program used to find text patterns within files, like this:

grep pattern [file...]

When grep encounters a “pattern” in the file, it prints out the lines con-
taining it. The patterns that grep can match can be very complex, but for
now we will concentrate on simple text matches. We’ll cover the advanced
patterns, called regular expressions, in Chapter 19.

Let’s say we want to find all the files in our list of programs that have the
word zip in the name. Such a search might give us an idea of which programs
on our system have something to do with file compression. We would do this:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

There are a couple of handy options for grep: -i, which causes grep to
ignore case when performing the search (normally searches are case sensit-
ive) and -v, which tells grep to print only lines that do not match the pattern.

head/tail—Print First/Last Part of Files
Sometimes you don’t want all the output from a command. You may want
only the first few lines or the last few lines. The head command prints the
first 10 lines of a file, and the tail command prints the last 10 lines. By
default, both commands print 10 lines of text, but this can be adjusted
with the -n option:

[me@linuxbox ~]$ head -n 5 ls-output.txt
total 343496
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [

56 Chapter 6

-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2011-11-26 14:27 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
[me@linuxbox ~]$ tail -n 5 ls-output.txt
-rwxr-xr-x 1 root root 5234 2011-06-27 10:56 znew
-rwxr-xr-x 1 root root 691 2009-09-10 04:21 zonetab2pot.py
-rw-r--r-- 1 root root 930 2011-11-01 12:23 zonetab2pot.pyc
-rw-r--r-- 1 root root 930 2011-11-01 12:23 zonetab2pot.pyo
lrwxrwxrwx 1 root root 6 2012-01-31 05:22 zsoelim -> soelim

These can be used in pipelines as well:

[me@linuxbox ~]$ ls /usr/bin | tail -n 5
znew
zonetab2pot.py
zonetab2pot.pyc
zonetab2pot.pyo
zsoelim

tail has an option that allows you to view files in real time. This is use-
ful for watching the progress of log files as they are being written. In the
following example, we will look at the messages file in /var/log. Superuser
privileges are required to do this on some Linux distributions, because the
/var/log/messages file may contain security information.

[me@linuxbox ~]$ tail -f /var/log/messages
Feb 8 13:40:05 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 13:40:05 twin4 dhclient: bound to 192.168.1.4 -- renewal in 1652
seconds.
Feb 8 13:55:32 twin4 mountd[3953]: /var/NFSv4/musicbox exported to both
192.168.1.0/24 and twin7.localdomain in 192.168.1.0/24,twin7.localdomain
Feb 8 14:07:37 twin4 dhclient: DHCPREQUEST on eth0 to 192.168.1.1 port 67
Feb 8 14:07:37 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 14:07:37 twin4 dhclient: bound to 192.168.1.4 -- renewal in 1771
seconds.
Feb 8 14:09:56 twin4 smartd[3468]: Device: /dev/hda, SMART Prefailure
Attribute: 8 Seek_Time_Performance changed from 237 to 236
Feb 8 14:10:37 twin4 mountd[3953]: /var/NFSv4/musicbox exported to both
192.168.1.0/24 and twin7.localdomain in 192.168.1.0/24,twin7.localdomain
Feb 8 14:25:07 twin4 sshd(pam_unix)[29234]: session opened for user me by
(uid=0)
Feb 8 14:25:36 twin4 su(pam_unix)[29279]: session opened for user root by
me(uid=500)

Using the -f option, tail continues to monitor the file and when new
lines are appended, they immediately appear on the display. This continues
until you type CTRL-C.

tee—Read from Stdin and Output to Stdout and Files
In keeping with our plumbing analogy, Linux provides a command called
tee which creates a “T” fitting on our pipe. The tee program reads standard
input and copies it to both standard output (allowing the data to continue
down the pipeline) and to one or more files. This is useful for capturing a
pipeline’s contents at an intermediate stage of processing. Here we repeat

Redirection 57

one of our earlier examples, this time including tee to capture the entire
directory listing to the file ls.txt before grep filters the pipeline’s contents:

[me@linuxbox ~]$ ls /usr/bin | tee ls.txt | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

Final Note
As always, check out the documentation of each of the commands we have
covered in this chapter. We have seen only their most basic usage, and they
all have a number of interesting options. As we gain Linux experience, we
will see that the redirection feature of the command line is extremely useful
for solving specialized problems. Many commands make use of standard
input and output, and almost all command-line programs use standard
error to display their informative messages.

L I N U X I S A B O U T I M A G I N A T I O N
When I am asked to explain the difference between Windows and Linux, I
often use a toy analogy.

Windows is like a Game Boy. You go to the store and buy one all shiny new
in the box. You take it home, turn it on, and play with it. Pretty graphics, cute
sounds. After a while, though, you get tired of the game that came with it, so
you go back to the store and buy another one. This cycle repeats over and over.
Finally, you go back to the store and say to the person behind the counter, “I
want a game that does this!” only to be told that no such game exists because
there is no “market demand” for it. Then you say, “But I only need to change
this one thing!” The person behind the counter says you can’t change it. The
games are all sealed up in their cartridges. You discover that your toy is limited
to the games that others have decided that you need and no more.

Linux, on the other hand, is like the world’s largest Erector Set. You open
it up, and it’s just a huge collection of parts—a lot of steel struts, screws, nuts,
gears, pulleys, and motors and a few suggestions on what to build. So you start
to play with it. You build one of the suggestions and then another. After a while
you discover that you have your own ideas of what to make. You don’t ever have
to go back to the store, because you already have everything you need. The
Erector Set takes on the shape of your imagination. It does what you want.

Your choice of toys is, of course, a personal thing, so which toy would you
find more satisfying?

58 Chapter 6

SEEING THE WORLD AS
THE SHELL SEES IT

In this chapter we are going to look at some of the
“magic” that occurs on the command line when you
press the ENTER key. While we will examine several
interesting and complex features of the shell, we will
do it with just one new command:

echo—Display a line of text.

Expansion
Each time you type a command line and press the ENTER key, bash performs
several processes upon the text before it carries out your command. We’ve
seen a couple of cases of how a simple character sequence, for example *,
can have a lot of meaning to the shell. The process that makes this happen
is called expansion. With expansion, you enter something, and it is expanded
into something else before the shell acts upon it. To demonstrate what we

mean by this, let’s take a look at the echo command. echo is a shell builtin
that performs a very simple task: It prints out its text arguments on standard
output.

[me@linuxbox ~]$ echo this is a test
this is a test

That’s pretty straightforward. Any argument passed to echo gets dis-
played. Let’s try another example:

[me@linuxbox ~]$ echo *
Desktop Documents ls-output.txt Music Pictures Public Templates Videos

So what just happened? Why didn’t echo print *? As you recall from our
work with wildcards, the * character means “match any characters in a file-
name,” but what we didn’t see in our original discussion was how the shell
does that. The simple answer is that the shell expands the * into something
else (in this instance, the names of the files in the current working direct-
ory) before the echo command is executed. When the ENTER key is pressed,
the shell automatically expands any qualifying characters on the command
line before the command is carried out, so the echo command never saw
the *, only its expanded result. Knowing this, we can see that echo behaved
as expected.

Pathname Expansion
The mechanism by which wildcards work is called pathname expansion. If
we try some of the techniques that we employed in our earlier chapters, we
will see that they are really expansions. Given a home directory that looks
like this:

[me@linuxbox ~]$ ls
Desktop ls-output.txt Pictures Templates
Documents Music Public Videos

we could carry out the following expansions:

[me@linuxbox ~]$ echo D*
Desktop Documents

and

[me@linuxbox ~]$ echo *s
Documents Pictures Templates Videos

or even

[me@linuxbox ~]$ echo [[:upper:]]*
Desktop Documents Music Pictures Public Templates Videos

60 Chapter 7

And looking beyond our home directory:

[me@linuxbox ~]$ echo /usr/*/share
/usr/kerberos/share /usr/local/share

P A T H N A M E E X P A N S I O N O F H I D D E N F I L E S

As we know, filenames that begin with a period character are hidden. Path-
name expansion also respects this behavior. An expansion such as

echo *

does not reveal hidden files.
It might appear at first glance that we could include hidden files in an

expansion by starting the pattern with a leading period, like this:

echo .*

It almost works. However, if we examine the results closely, we will see that
the names . and .. will also appear in the results. Since these names refer to the
current working directory and its parent directory, using this pattern will likely
produce an incorrect result. We can see this if we try the command

ls -d .* | less

To correctly perform pathname expansion in this situation, we have to
employ a more specific pattern. This will work correctly:

ls -d .[!.]?*

This pattern expands into every filename that begins with a period, does
not include a second period, contains at least one additional character, and
may be followed by any other characters.

Tilde Expansion
As you may recall from our introduction to the cd command, the tilde char-
acter (~) has a special meaning. When used at the beginning of a word, it
expands into the name of the home directory of the named user or, if no
user is named, the home directory of the current user:

[me@linuxbox ~]$ echo ~
/home/me

If user foo has an account, then

[me@linuxbox ~]$ echo ~foo
/home/foo

Seeing the World as the Shell Sees It 61

Arithmetic Expansion
The shell allows arithmetic to be performed by expansion. This allows us to
use the shell prompt as a calculator:

[me@linuxbox ~]$ echo $((2 + 2))
4

Arithmetic expansion uses the following form:

$((expression))

where expression is an arithmetic expression consisting of values and arith-
metic operators.

Arithmetic expansion supports only integers (whole numbers, no deci-
mals) but can perform quite a number of different operations. Table 7-1
lists a few of the supported operators.

Table 7-1: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division (But remember, because expansion supports only integer
arithmetic, results are integers.)

% Modulo, which simply means remainder

** Exponentiation

Spaces are not significant in arithmetic expressions, and expressions
may be nested. For example, multiply 52 by 3:

[me@linuxbox ~]$ echo $(($((5**2)) * 3))
75

Single parentheses may be used to group multiple subexpressions. With
this technique, we can rewrite the example above and get the same result
using a single expansion instead of two:

[me@linuxbox ~]$ echo $(((5**2) * 3))
75

Here is an example using the division and remainder operators. Notice
the effect of integer division:

[me@linuxbox ~]$ echo Five divided by two equals $((5/2))
Five divided by two equals 2

62 Chapter 7

[me@linuxbox ~]$ echo with $((5%2)) left over.
with 1 left over.

Arithmetic expansion is covered in greater detail in Chapter 34.

Brace Expansion
Perhaps the strangest expansion is called brace expansion. With it, you can
create multiple text strings from a pattern containing braces. Here’s an
example:

[me@linuxbox ~]$ echo Front-{A,B,C}-Back
Front-A-Back Front-B-Back Front-C-Back

Patterns to be brace expanded may contain a leading portion called a
preamble and a trailing portion called a postscript. The brace expression itself
may contain either a comma-separated list of strings or a range of integers
or single characters. The pattern may not contain embedded whitespace.
Here is an example using a range of integers:

[me@linuxbox ~]$ echo Number_{1..5}
Number_1 Number_2 Number_3 Number_4 Number_5

Here we get a range of letters in reverse order:

[me@linuxbox ~]$ echo {Z..A}
Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

Brace expansions may be nested:

[me@linuxbox ~]$ echo a{A{1,2},B{3,4}}b
aA1b aA2b aB3b aB4b

So what is this good for? The most common application is to make lists
of files or directories to be created. For example, if we were photographers
and had a large collection of images that we wanted to organize by years and
months, the first thing we might do is create a series of directories named in
numeric year-month format. This way, the directory names will sort in chrono-
logical order. We could type out a complete list of directories, but that’s a lot
of work and it’s error prone too. Instead, we could do this:

[me@linuxbox ~]$ mkdir Pics
[me@linuxbox ~]$ cd Pics
[me@linuxbox Pics]$ mkdir {2009..2011}-0{1..9} {2009..2011}-{10..12}
[me@linuxbox Pics]$ ls
2009-01 2009-07 2010-01 2010-07 2011-01 2011-07
2009-02 2009-08 2010-02 2010-08 2011-02 2011-08
2009-03 2009-09 2010-03 2010-09 2011-03 2011-09
2009-04 2009-10 2010-04 2010-10 2011-04 2011-10
2009-05 2009-11 2010-05 2010-11 2011-05 2011-11
2009-06 2009-12 2010-06 2010-12 2011-06 2011-12

Pretty slick!

Seeing the World as the Shell Sees It 63

Parameter Expansion
We’re only going to touch briefly on parameter expansion in this chapter,
but we’ll be covering it extensively later. It’s a feature that is more useful in
shell scripts than directly on the command line. Many of its capabilities have
to do with the system’s ability to store small chunks of data and to give each
chunk a name. Many such chunks, more properly called variables, are avail-
able for your examination. For example, the variable named USER contains
your username. To invoke parameter expansion and reveal the contents of
USER, you would do this:

[me@linuxbox ~]$ echo $USER
me

To see a list of available variables, try this:

[me@linuxbox ~]$ printenv | less

You may have noticed that with other types of expansion, if you mis-
type a pattern, the expansion will not take place and the echo command will
simply display the mistyped pattern. With parameter expansion, if you mis-
spell the name of a variable, the expansion will still take place but will result
in an empty string:

[me@linuxbox ~]$ echo $SUER

[me@linuxbox ~]$

Command Substitution
Command substitution allows us to use the output of a command as an
expansion:

[me@linuxbox ~]$ echo $(ls)
Desktop Documents ls-output.txt Music Pictures Public Templates Videos

One of my favorites goes something like this:

[me@linuxbox ~]$ ls -l $(which cp)
-rwxr-xr-x 1 root root 71516 2012-12-05 08:58 /bin/cp

Here we passed the results of which cp as an argument to the ls com-
mand, thereby getting the listing of the cp program without having to know
its full pathname. We are not limited to just simple commands. Entire
pipelines can be used (only partial output shown):

[me@linuxbox ~]$ file $(ls /usr/bin/* | grep zip)
/usr/bin/bunzip2: symbolic link to `bzip2'
/usr/bin/bzip2: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV
), dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped
/usr/bin/bzip2recover: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped
/usr/bin/funzip: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV

64 Chapter 7

), dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped
/usr/bin/gpg-zip: Bourne shell script text executable
/usr/bin/gunzip: symbolic link to `../../bin/gunzip'
/usr/bin/gzip: symbolic link to `../../bin/gzip'
/usr/bin/mzip: symbolic link to `mtools'

In this example, the results of the pipeline became the argument list of
the file command.

There is an alternative syntax for command substitution in older shell
programs that is also supported in bash. It uses back quotes instead of the dol-
lar sign and parentheses:

[me@linuxbox ~]$ ls -l `which cp`
-rwxr-xr-x 1 root root 71516 2012-12-05 08:58 /bin/cp

Quoting
Now that we’ve seen how many ways the shell can perform expansions, it’s
time to learn how we can control it. For example, take this:

[me@linuxbox ~]$ echo this is a test
this is a test

Or this:

[me@linuxbox ~]$ echo The total is $100.00
The total is 00.00

In the first example, word splitting by the shell removed extra whitespace
from the echo command’s list of arguments. In the second example, para-
meter expansion substituted an empty string for the value of $1 because it
was an undefined variable. The shell provides a mechanism called quoting
to selectively suppress unwanted expansions.

Double Quotes
The first type of quoting we will look at is double quotes. If you place text
inside double quotes, all the special characters used by the shell lose their
special meaning and are treated as ordinary characters. The exceptions are
$ (dollar sign), \ (backslash), and ` (back tick). This means that word split-
ting, pathname expansion, tilde expansion, and brace expansion are sup-
pressed, but parameter expansion, arithmetic expansion, and command
substitution are still carried out. Using double quotes, we can cope with file-
names containing embedded spaces. Say we were the unfortunate victim of
a file called two words.txt. If we tried to use this on the command line, word
splitting would cause this to be treated as two separate arguments rather
than the desired single argument:

[me@linuxbox ~]$ ls -l two words.txt
ls: cannot access two: No such file or directory
ls: cannot access words.txt: No such file or directory

Seeing the World as the Shell Sees It 65

By using double quotes, we stop the word splitting and get the desired
result; further, we can even repair the damage:

[me@linuxbox ~]$ ls -l "two words.txt"
-rw-rw-r-- 1 me me 18 2012-02-20 13:03 two words.txt
[me@linuxbox ~]$ mv "two words.txt" two_words.txt

There! Now we don’t have to keep typing those pesky double quotes.
Remember: Parameter expansion, arithmetic expansion, and command

substitution still take place within double quotes:

[me@linuxbox ~]$ echo "$USER $((2+2)) $(cal)"
me 4 February 2012
Su Mo Tu We Th Fr Sa
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29

We should take a moment to look at the effect of double quotes on
command substitution. First let’s look a little deeper at how word splitting
works. In our earlier example, we saw how word splitting appears to remove
extra spaces in our text:

[me@linuxbox ~]$ echo this is a test
this is a test

By default, word splitting looks for the presence of spaces, tabs, and
newlines (linefeed characters) and treats them as delimiters between words.
This means that unquoted spaces, tabs, and newlines are not considered
to be part of the text. They serve only as separators. Since they separate the
words into different arguments, our example command line contains a com-
mand followed by four distinct arguments. If we add double quotes, how-
ever, word splitting is suppressed and the embedded spaces are not treated
as delimiters; rather, they become part of the argument:

[me@linuxbox ~]$ echo "this is a test"
this is a test

Once the double quotes are added, our command line contains a com-
mand followed by a single argument.

The fact that newlines are considered delimiters by the word splitting
mechanism causes an interesting, albeit subtle, effect on command substitu-
tion. Consider the following:

[me@linuxbox ~]$ echo $(cal)
February 2012 Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29
[me@linuxbox ~]$ echo "$(cal)"

66 Chapter 7

 February 2012
Su Mo Tu We Th Fr Sa
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29

In the first instance, the unquoted command substitution resulted in
a command line containing 38 arguments; in the second, the result was a
command line with 1 argument that includes the embedded spaces and
newlines.

Single Quotes
If we need to suppress all expansions, we use single quotes. Here is a compar-
ison of unquoted, double quotes, and single quotes:

[me@linuxbox ~]$ echo text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER
text /home/me/ls-output.txt a b foo 4 me
[me@linuxbox ~]$ echo "text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER"
text ~/*.txt {a,b} foo 4 me
[me@linuxbox ~]$ echo 'text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER'
text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER

As we can see, with each succeeding level of quoting, more and more
expansions are suppressed.

Escaping Characters
Sometimes we want to quote only a single character. To do this, we can pre-
cede a character with a backslash, which in this context is called the escape
character. Often this is done inside double quotes to selectively prevent an
expansion.

[me@linuxbox ~]$ echo "The balance for user $USER is: \$5.00"
The balance for user me is: $5.00

It is also common to use escaping to eliminate the special meaning of a
character in a filename. For example, it is possible to use characters in file-
names that normally have special meaning to the shell. These would include
$, !, &, (a space), and others. To include a special character in a filename,
you can do this:

[me@linuxbox ~]$ mv bad\&filename good_filename

To allow a backslash character to appear, escape it by typing \\. Note
that within single quotes, the backslash loses its special meaning and is
treated as an ordinary character.

Seeing the World as the Shell Sees It 67

B A C K S L A S H E S C A P E S E Q U E N C E S

In addition to its role as the escape character, the backslash is also used as part
of a notation to represent certain special characters called control codes. The first
32 characters in the ASCII coding scheme are used to transmit commands to
teletype-like devices. Some of these codes are familiar (tab, backspace, line-
feed, and carriage return), while others are not (null, end-of-transmission,
and acknowledge), as shown in Table 7-2.

Table 7-2: Backslash Escape Sequences

Escape Sequence Meaning

\a Bell (“alert”—causes the computer to beep)

\b Backspace

\n Newline (on Unix-like systems, this produces a linefeed)

\r Carriage return

\t Tab

This table lists some of the common backslash escape sequences. The idea
behind using the backslash originated in the C programming language and has
been adopted by many others, including the shell.

Adding the -e option to echo will enable interpretation of escape sequences.
You may also place them inside $' '. Here, using the sleep command, a simple
program that just waits for the specified number of seconds and then exits, we
can create a primitive countdown timer.

sleep 10; echo -e "Time's up\a"

We could also do this:

sleep 10; echo "Time's up" $'\a'

Final Note
As we move forward with using the shell, we will find that expansions and
quoting will be used with increasing frequency, so it makes sense to get a
good understanding of the way they work. In fact, it could be argued that
they are the most important subjects to learn about the shell. Without a
proper understanding of expansion, the shell will always be a source of
mystery and confusion, and much of its potential power will be wasted.

68 Chapter 7

A D V A N C E D K E Y B O A R D
T R I C K S

I often kiddingly describe Unix as “the operating sys-
tem for people who like to type.” Of course, the fact
that it even has a command line is a testament to that.
But command line users don’t like to type that much.
Why else would so many commands have such short
names, like cp, ls, mv, and rm?

In fact, one of the most cherished goals of the command line is laziness—
doing the most work with the fewest keystrokes. Another goal is never hav-
ing to lift your fingers from the keyboard—never reaching for the mouse. In
this chapter, we will look at bash features that make keyboard use faster and
more efficient.

The following commands will make an appearance:

clear—Clear the screen.

history—Display the contents of the history list.

Command Line Editing
bash uses a library (a shared collection of routines that different programs
can use) called Readline to implement command line editing. We have
already seen some of this. We know, for example, that the arrow keys move
the cursor, but there are many more features. Think of these as additional
tools that we can employ in our work. It’s not important to learn all of them,
but many of them are very useful. Pick and choose as desired.

Note: Some of the key sequences below (particularly those that use the ALT key) may be inter-
cepted by the GUI for other functions. All of the key sequences should work properly
when using a virtual console.

Cursor Movement
Table 8-1 lists the keys used to move the cursor.

Table 8-1: Cursor Movement Commands

Key Action

CTRL-A Move cursor to the beginning of the line.

CTRL-E Move cursor to the end of the line.

CTRL-F Move cursor forward one character; same as the right arrow key.

CTRL-B Move cursor backward one character; same as the left arrow key.

ALT-F Move cursor forward one word.

ALT-B Move cursor backward one word.

CTRL-L Clear the screen and move the cursor to the top left corner. The
clear command does the same thing.

Modifying Text
Table 8-2 lists keyboard commands that are used to edit characters on the
command line.

Cutting and Pasting (Killing and Yanking) Text
The Readline documentation uses the terms killing and yanking to refer to
what we would commonly call cutting and pasting. Table 8-3 lists the com-
mands for cutting and pasting. Items that are cut are stored in a buffer
called the kill-ring.

70 Chapter 8

Table 8-2: Text Editing Commands

Key Action

CTRL-D Delete the character at the cursor location.

CTRL-T Transpose (exchange) the character at the cursor location with
the one preceding it.

ALT-T Transpose the word at the cursor location with the one pre
ceding it.

ALT-L Convert the characters from the cursor location to the end of
the word to lowercase.

ALT-U Convert the characters from the cursor location to the end of
the word to uppercase.

Table 8-3: Cut and Paste Commands

Key Action

CTRL-K Kill text from the cursor location to the end of line.

CTRL-U Kill text from the cursor location to the beginning of the line.

ALT-D Kill text from the cursor location to the end of the current word.

ALT-BACKSPACE Kill text from the cursor location to the beginning of the cur
rent word. If the cursor is at the beginning of a word, kill the
previous word.

CTRL-Y Yank text from the kill-ring and insert it at the cursor location.

T H E M E T A K E Y

If you venture into the Readline documentation, which can be found in the
“READLINE” section of the bash man page, you will encounter the term meta
key. On modern keyboards this maps to the ALT key, but it wasn’t always so.

Back in the dim times (before PCs but after Unix) not everybody had their
own computer. What they might have had was a device called a terminal. A ter-
minal was a communication device that featured a text-display screen and a
keyboard and had just enough electronics inside to display text characters and
move the cursor around. It was attached (usually by serial cable) to a larger
computer or the communication network of a larger computer. There were
many different brands of terminals, and they all had different keyboards and
display feature sets. Since they all tended to at least understand ASCII, software

Advanced Keyboard Tricks 71

developers wanting portable applications wrote to the lowest common denom-
inator. Unix systems have a very elaborate way of dealing with terminals and
their different display features. Since the developers of Readline could not be
sure of the presence of a dedicated extra control key, they invented one and
called it meta. While the ALT key serves as the meta key on modern keyboards,
you can also press and release the ESC key to get the same effect as holding
down the ALT key if you’re still using a terminal (which you can still do in
Linux!).

Completion
Another way that the shell can help you is through a mechanism called com-
pletion. Completion occurs when you press the TAB key while typing a com-
mand. Let’s see how this works. Say your home directory looks like this:

[me@linuxbox ~]$ ls
Desktop ls-output.txt Pictures Templates Videos
Documents Music Public

Try typing the following but don’t press the ENTER key:

[me@linuxbox ~]$ ls l

Now press the TAB key:

[me@linuxbox ~]$ ls ls-output.txt

See how the shell completed the line for you? Let’s try another one.
Again, don’t press ENTER:

[me@linuxbox ~]$ ls D

Press TAB:

[me@linuxbox ~]$ ls D

No completion—just a beep. This happened because D matches more
than one entry in the directory. For completion to be successful, the “clue”
you give it has to be unambiguous. We can go further:

[me@linuxbox ~]$ ls Do

Then press TAB:

[me@linuxbox ~]$ ls Documents

The completion is successful.

72 Chapter 8

While this example shows completion of pathnames, which is comple-
tion’s most common use, completion will also work on variables (if the
beginning of the word is a $), usernames (if the word begins with ~), com-
mands (if the word is the first word on the line), and hostnames (if the
beginning of the word is @). Hostname completion works only for host-
names listed in /etc/hosts.

A number of control and meta key sequences are associated with com-
pletion (see Table 8-4).

Table 8-4: Completion Commands

Key Action

ALT-? Display list of possible completions. On most systems you can
also do this by pressing the TAB key a second time, which is
much easier.

ALT-* Insert all possible completions. This is useful when you want to
use more than one possible match.

There quite a few more that I find rather obscure. You can see a list in
the bash man page under the “READLINE” section.

P R O G R A M M A B L E C O M P L E T I O N

Recent versions of bash have a facility called programmable completion. Program-
mable completion allows you (or, more likely, your distribution provider) to
add additional completion rules. Usually this is done to add support for specific
applications. For example, it is possible to add completions for the option list
of a command or match particular file types that an application supports.
Ubuntu has a fairly large set defined by default. Programmable completion is
implemented by shell functions, a kind of mini shell script that we will cover in
later chapters. If you are curious, try

set | less

and see if you can find them. Not all distributions include them by default.

Using History
As we discovered in Chapter 1, bash maintains a history of commands that
have been entered. This list of commands is kept in your home directory
in a file called .bash_history. The history facility is a useful resource for redu-
cing the amount of typing you have to do, especially when combined with
command-line editing.

Advanced Keyboard Tricks 73

Searching History
At any time, we can view the contents of the history list:

[me@linuxbox ~]$ history | less

By default, bash stores the last 500 commands you have entered. We will
see how to adjust this value in Chapter 11. Let’s say we want to find the com-
mands we used to list /usr/bin. Here is one way we could do this:

[me@linuxbox ~]$ history | grep /usr/bin

And let’s say that among our results we got a line containing an interest-
ing command like this:

 88 ls -l /usr/bin > ls-output.txt

The number 88 is the line number of the command in the history list.
We could use this immediately with another type of expansion called history
expansion. To use our discovered line, we could do this:

[me@linuxbox ~]$!88

bash will expand !88 into the contents of the 88th line in the history list.
We will cover other forms of history expansion a little later.

bash also provides the ability to search the history list incrementally. This
means that we can tell bash to search the history list as we enter characters,
with each additional character further refining our search. To start an incre-
mental search, enter CTRL-R followed by the text you are looking for. When
you find it, you can either press ENTER to execute the command or press
CTRL-J to copy the line from the history list to the current command line.
To find the next occurrence of the text (moving “up” the history list), press
CTRL-R again. To quit searching, press either CTRL-G or CTRL-C. Here we see
it in action:

[me@linuxbox ~]$

First press CTRL-R:

(reverse-i-search)`':

The prompt changes to indicate that we are performing a reverse incre-
mental search. It is “reverse” because we are searching from “now” to some
time in the past. Next, we start typing our search text, which in this example
is /usr/bin:

(reverse-i-search)`/usr/bin': ls -l /usr/bin > ls-output.txt

74 Chapter 8

Immediately, the search returns its result. Now we can execute
the command by pressing ENTER, or we can copy the command to our
current command line for further editing by pressing CTRL-J. Let’s copy
it. Press CTRL-J:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Our shell prompt returns, and our command line is loaded and ready
for action!

Table 8-5 lists some of the keystrokes used to manipulate the history list.

Table 8-5: History Commands

Key Action

CTRL-P Move to the previous history entry. Same action as the up arrow.

CTRL-N Move to the next history entry. Same action as the down arrow.

ALT-< Move to the beginning (top) of the history list.

ALT-> Move to the end (bottom) of the history list; i.e., the current
command line.

CTRL-R Reverse incremental search. Searches incrementally from the
current command line up the history list.

ALT-P Reverse search, non-incremental. With this key, type the search
string and press ENTER before the search is performed.

ALT-N Forward search, non-incremental.

CTRL-O Execute the current item in the history list and advance to the next
one. This is handy if you are trying to re-execute a sequence of
commands in the history list.

History Expansion
The shell offers a specialized type of expansion for items in the history list
by using the ! character. We have already seen how the exclamation point
can be followed by a number to insert an entry from the history list. There
are a number of other expansion features (see Table 8-6).

I would caution against using the !string and !?string forms unless you
are absolutely sure of the contents of the history list items.

Many more elements are available in the history expansion mechanism,
but this subject is already too arcane and our heads may explode if we con-
tinue. The “HISTORY EXPANSION” section of the bash man page goes into
all the gory details. Feel free to explore!

Advanced Keyboard Tricks 75

Table 8-6: History Expansion Commands

Sequence Action

!! Repeat the last command. It is probably easier to press the up
arrow and ENTER.

!number Repeat history list item number.

!string Repeat last history list item starting with string.

!?string Repeat last history list item containing string.

S C R I P T

In addition to the command history feature in bash, most Linux distributions
include a program called script, which can be used to record an entire shell
session and store it in a file. The basic syntax of the command is

script [file]

where file is the name of the file used for storing the recording. If no file is
specified, the file typescript is used. See the script man page for a complete list
of the program’s options and features.

Final Note
In this chapter we have covered some of the keyboard tricks that the shell
provides to help hardcore typists reduce their workloads. I suspect that as
time goes by and you become more involved with the command line, you
will refer to this chapter to pick up more of these tricks. For now, consider
them optional and potentially helpful.

76 Chapter 8

P E R M I S S I O N S

Operating systems in the Unix tradition differ from
those in the MS-DOS tradition in that they are not
only multitasking systems but also multiuser systems.

What exactly does this mean? It means that more than one person can
use the computer at the same time. While a typical computer will likely have
only one keyboard and monitor, it can still be used by more than one user.
For example, if a computer is attached to a network or the Internet, remote
users can log in via ssh (secure shell) and operate the computer. In fact,
remote users can execute graphical applications and have the graphical out-
put appear on a remote display. The X Window System supports this as part
of its basic design.

The multiuser capability of Linux is not a recent “innovation” but rather
a feature that is deeply embedded into the design of the operating system.
Considering the environment in which Unix was created, this makes perfect
sense. Years ago, before computers were “personal,” they were large, expens-
ive, and centralized. A typical university computer system, for example, con-
sisted of a large central computer located in one building and terminals
located throughout the campus, each connected to the large central com-
puter. The computer would support many users at the same time.

In order to make this practical, a method had to be devised to protect
the users from each other. After all, the actions of one user could not be
allowed to crash the computer, nor could one user interfere with the files
belonging to another user.

In this chapter we are going to look at this essential part of system secur-
ity and introduce the following commands:

id—Display user identity.

chmod—Change a file’s mode.

umask—Set the default file permissions.

su—Run a shell as another user.

sudo—Execute a command as another user.

chown—Change a file’s owner.

chgrp—Change a file’s group ownership.

passwd—Change a user’s password.

Owners, Group Members, and Everybody Else
When we were exploring the system back in Chapter 4, we may have
encountered the following problem when trying to examine a file such
as /etc/shadow:

[me@linuxbox ~]$ file /etc/shadow
/etc/shadow: regular file, no read permission
[me@linuxbox ~]$ less /etc/shadow
/etc/shadow: Permission denied

The reason for this error message is that, as regular users, we do not
have permission to read this file.

In the Unix security model, a user may own files and directories. When
a user owns a file or directory, the user has control over its access. Users
can, in turn, belong to a group consisting of one or more users who are given
access to files and directories by their owners. In addition to granting access
to a group, an owner may also grant some set of access rights to everybody,
which in Unix terms is referred to as the world. To find out information
about your identity, use the id command:

[me@linuxbox ~]$ id
uid=500(me) gid=500(me) groups=500(me)

Let’s look at the output. When user accounts are created, users are
assigned a number called a user ID, or uid. This is then, for the sake of the
humans, mapped to a username. The user is assigned a primary group ID, or
gid, and may belong to additional groups. The previous example is from a
Fedora system. On other systems, such as Ubuntu, the output may look a
little different.

78 Chapter 9

[me@linuxbox ~]$ id
uid=1000(me) gid=1000(me)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(
plugdev),108(lpadmin),114(admin),1000(me)

As we can see, the uid and gid numbers are different. This is simply
because Fedora starts its numbering of regular user accounts at 500, while
Ubuntu starts at 1000. We can also see that the Ubuntu user belongs to a lot
more groups. This has to do with the way Ubuntu manages privileges for sys-
tem devices and services.

So where does this information come from? Like so many things in
Linux, it comes from a couple of text files. User accounts are defined in
the /etc/passwd file, and groups are defined in the /etc/group file. When
user accounts and groups are created, these files are modified along with
/etc/shadow, which holds information about the user’s password. For each
user account, the /etc/passwd file defines the user (login) name, the uid,
the gid, the account’s real name, the home directory, and the login shell.
If you examine the contents of /etc/passwd and /etc/group, you will notice
that besides the regular user accounts there are accounts for the superuser
(uid 0) and various other system users.

In Chapter 10, when we cover processes, you will see that some of these
other “users” are, in fact, quite busy.

While many Unix-like systems assign regular users to a common group
such as users, modern Linux practice is to create a unique, single-member
group with the same name as the user. This makes certain types of permis-
sion assignment easier.

Reading, Writing, and Executing
Access rights to files and directories are defined in terms of read access,
write access, and execution access. If we look at the output of the ls com-
mand, we can get some clue as to how this is implemented:

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2012-03-06 14:52 foo.txt

The first 10 characters of the listing are
the file attributes (see Figure 9-1). The first
of these characters is the file type. Table 9-1
lists the file types you are most likely to see
(there are other, less common types too).

The remaining nine characters of the
file attributes, called the file mode, represent
the read, write, and execute permissions
for the file’s owner, the file’s group owner,
and everybody else.

Permissions 79

Figure 9-1: Breakdown of file
attributes

When set, the r, w, and x mode attributes have certain effects on files
and directories, as shown in Table 9-2.

Table 9-1: File Types

Attribute File Type

- A regular file.

d A directory.

l A symbolic link. Notice that with symbolic links, the remaining file
attributes are always rwxrwxrwx and are dummy values. The real
file attributes are those of the file the symbolic link points to.

c A character special file. This file type refers to a device that
handles data as a stream of bytes, such as a terminal or modem.

b A block special file. This file type refers to a device that handles
data in blocks, such as a hard drive or CD-ROM drive.

Table 9-2: Permission Attributes

Attribute Files Directories
r Allows a file to be opened and read. Allows a directory’s

contents to be listed if
the execute attribute is
also set.

w Allows a file to be written to or trun-
cated; however, this attribute does not
allow files to be renamed or deleted.
The ability to delete or rename files is
determined by directory attributes.

Allows files within a
directory to be created,
deleted, and renamed if
the execute attribute is
also set.

x Allows a file to be treated as a pro-
gram and executed. Program files writ-
ten in scripting languages must also
be set as readable to be executed.

Allows a directory to
be entered; e.g.,
cd directory.

Table 9-3 shows some examples of file attribute settings.

Table 9-3: Permission Attribute Examples

File Attributes Meaning

-rwx------ A regular file that is readable, writable, and executable by
the file’s owner. No one else has any access.

-rw------- A regular file that is readable and writable by the file’s
owner. No one else has any access.

80 Chapter 9

Table 9-3 (continued)

File Attributes Meaning

-rw-r--r-- A regular file that is readable and writable by the file’s
owner. Members of the file’s owner group may read the file.
The file is world readable.

-rwxr-xr-x A regular file that is readable, writable, and executable by
the file’s owner. The file may be read and executed by
everybody else.

-rw-rw---- A regular file that is readable and writable by the file’s
owner and members of the file’s owner group only.

Lrwxrwxrwx A symbolic link. All symbolic links have “dummy” permis-
sions. The real permissions are kept with the actual file
pointed to by the symbolic link.

drwxrwx--- A directory. The owner and the members of the owner group
may enter the directory and create, rename, and remove
files within the directory.

drwxr-x--- A directory. The owner may enter the directory and create,
rename, and delete files within the directory. Members of the
owner group may enter the directory but cannot create,
delete, or rename files.

chmod—Change File Mode
To change the mode (permissions) of a file or directory, the chmod com-
mand is used. Be aware that only the file’s owner or the superuser can
change the mode of a file or directory. chmod supports two distinct ways of
specifying mode changes: octal number representation and symbolic repres-
entation. We will cover octal number representation first.

Octal Representation
With octal notation we use octal numbers to set the pattern of desired per-
missions. Since each digit in an octal number represents three binary digits,
this maps nicely to the scheme used to store the file mode. Table 9-4 shows
what we mean.

Table 9-4: File Modes in Binary and Octal

Octal Binary File Mode

0 000 ---

1 001 --x

2 010 -w-

Permissions 81

(continued)

Table 9-4 (continued)

Octal Binary File Mode

3 011 -wx

4 100 r--

5 101 r-x

6 110 rw-

7 111 rwx

W H A T T H E H E C K I S O C T A L ?
Octal (base 8) and its cousin hexadecimal (base 16) are number systems often
used to express numbers on computers. We humans, owing to the fact that we
(or at least most of us) were born with 10 fingers, count using a base 10 num-
ber system. Computers, on the other hand, were born with only one finger and
thus do all all their counting in binary (base 2). Their number system has only
two numerals, zero and one. So in binary, counting looks like this: 0, 1, 10, 11,
100, 101, 110, 111, 1000, 1001, 1010, 1011 . . .

In octal, counting is done with the numerals zero through seven, like so:
0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21 . . .

Hexadecimal counting uses the numerals zero through nine plus the let-
ters A through F : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13 . . .

While we can see the sense in binary (since computers have only one fin-
ger), what are octal and hexadecimal good for? The answer has to do with
human convenience. Many times, small portions of data are represented on
computers as bit patterns. Take for example an RGB color. On most computer
displays, each pixel is composed of three color components: 8 bits of red, 8 bits
of green, and 8 bits of blue. A lovely medium blue would be a 24-digit number:
010000110110111111001101.

How would you like to read and write those kinds of numbers all day? I
didn’t think so. Here’s where another number system would help. Each digit in
a hexadecimal number represents four digits in binary. In octal, each digit rep-
resents three binary digits. So our 24-digit medium blue could be condensed to
a 6-digit hexadecimal number: 436FCD. Since the digits in the hexadecimal
number “line up” with the bits in the binary number, we can see that the red
component of our color is 43, the green 6F, and the blue CD.

These days, hexadecimal notation (often called hex) is more common than
octal, but as we shall soon see, octal’s ability to express three bits of binary is
very useful.

By using three octal digits, we can set the file mode for the owner,
group owner, and world.

82 Chapter 9

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2012-03-06 14:52 foo.txt
[me@linuxbox ~]$ chmod 600 foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw------- 1 me me 0 2012-03-06 14:52 foo.txt

By passing the argument 600, we were able to set the permissions of
the owner to read and write while removing all permissions from the group
owner and world. Though remembering the octal-to-binary mapping may
seem inconvenient, you will usually have to use only a few common ones:
7 (rwx), 6 (rw-), 5 (r-x), 4 (r--), and 0 (---).

Symbolic Representation
chmod also supports a symbolic notation for specifying file modes. Symbolic
notation is divided into three parts: whom the change will affect, which opera-
tion will be performed, and which permission will be set. To specify who is
affected, a combination of the characters u, g, o, and a is used, as shown in
Table 9-5.

Table 9-5: chmod Symbolic Notation

Symbol Meaning

u Short for user but means the file or directory owner.

g Group owner.

o Short for others but means world.

a Short for all; the combination of u, g, and o.

If no character is specified, all will be assumed. The operation may be
a + indicating that a permission is to be added, a - indicating that a permis-
sion is to be taken away, or a = indicating that only the specified permissions
are to be applied and that all others are to be removed.

Permissions are specified with the r, w, and x characters. Table 9-6 lists
some examples of symbolic notation.

Table 9-6: chmod Symbolic Notation Examples

Notation Meaning

u+x Add execute permission for the owner.

u-x Remove execute permission from the owner.

+x Add execute permission for the owner, group, and world.
Equivalent to a+x.

Permissions 83

(continued)

Table 9-6 (continued)

Notation Meaning

o-rw Remove the read and write permissions from anyone besides
the owner and group owner.

go=rw Set the group owner and anyone besides the owner to have
read and write permission. If either the group owner or world
previously had execute permissions, remove them.

u+x,go=rx Add execute permission for the owner and set the permissions
for the group and others to read and execute. Multiple speci-
fications may be separated by commas.

Some people prefer to use octal notation; some folks really like the sym-
bolic. Symbolic notation does offer the advantage of allowing you to set a
single attribute without disturbing any of the others.

Take a look at the chmod man page for more details and a list of options.
A word of caution regarding the --recursive option: It acts on both files and
directories, so it’s not as useful as one would hope because we rarely want
files and directories to have the same permissions.

Setting File Mode with the GUI
Now that we have seen how the permis-
sions on files and directories are set, we can
better understand the permission dialogs
in the GUI. In both Nautilus (GNOME)
and Konqueror (KDE), right-clicking a
file or directory icon will expose a prop-
erties dialog. Figure 9-2 is an example
from KDE 3.5.

Here we can see the settings for the
owner, group, and world. In KDE, click-
ing the Advanced Permissions button
brings up another dialog that allows you
to set each of the mode attributes indi-
vidually. Another victory for understand-
ing brought to us by the command line!

umask—Set Default Permissions
The umask command controls the default
permissions given to a file when it is
created. It uses octal notation to express
a mask of bits to be removed from a file’s
mode attributes.

84 Chapter 9

Figure 9-2: KDE 3.5 File Properties
dialog

Let’s take a look:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ umask
0002
[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2012-03-06 14:53 foo.txt

We first removed any existing copy of foo.txt to make sure we were start-
ing fresh. Next, we ran the umask command without an argument to see the
current value. It responded with the value 0002 (the value 0022 is another
common default value), which is the octal representation of our mask. We
then created a new instance of the file foo.txt and observed its permissions.

We can see that both the owner and group get read and write permis-
sions, while everyone else gets only read permission. World does not have
write permission because of the value of the mask. Let’s repeat our example,
this time setting the mask ourselves:

[me@linuxbox ~]$ rm foo.txt
[me@linuxbox ~]$ umask 0000
[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-rw- 1 me me 0 2012-03-06 14:58 foo.txt

When we set the mask to 0000 (effectively turning it off), we see that the
file is now world writable. To understand how this works, we have to look at
octal numbers again. If we expand the mask into binary and then compare
it to the attributes, we can see what happens:

Original file mode --- rw- rw- rw-

Mask 000 000 000 010

Result --- rw- rw- r--

Ignore for the moment the leading 0s (we’ll get to those in a minute) and
observe that where the 1 appears in our mask, an attribute was removed—in
this case, the world write permission. That’s what the mask does. Everywhere
a 1 appears in the binary value of the mask, an attribute is unset. If we look
at a mask value of 0022, we can see what it does:

Original file mode --- rw- rw- rw-

Mask 000 000 000 010

Result --- rw- rw- r--

Permissions 85

Again, where a 1 appears in the binary value, the corresponding attrib-
ute is unset. Play with some values (try some 7s) to get used to how this
works. When you’re done, remember to clean up:

[me@linuxbox ~]$ rm foo.txt; umask 0002

Most of the time you won’t have to change the mask; the default pro-
vided by your distribution will be fine. In some high-security situations, how-
ever, you will want to control it.

S O M E S P E C I A L P E R M I S S I O N S

Though we usually see an octal permission mask expressed as a three-digit
number, it is more technically correct to express it in four digits. Why?
Because, in addition to read, write, and execute permissions, there are
some other, less-used permission settings.

The first of these is the setuid bit (octal 4000). When applied to an execut-
able file, it sets the effective user ID from that of the real user (the user actually
running the program) to that of the program’s owner. Most often this is given
to a few programs owned by the superuser. When an ordinary user runs a pro-
gram that is setuid root, the program runs with the effective privileges of the
superuser. This allows the program to access files and directories that an
ordinary user would normally be prohibited from accessing. Clearly, because
this raises security concerns, the number of setuid programs must be held to an
absolute minimum.

The second less-used setting is the setgid bit (octal 2000). This, like the setuid
bit, changes the effective group ID from that of the real group ID of the user to that
of the file owner. If the setgid bit is set on a directory, newly created files in the
directory will be given the group ownership of the directory rather the group
ownership of the file’s creator. This is useful in a shared directory when mem-
bers of a common group need access to all the files in the directory, regardless
of the file owner’s primary group.

The third is called the sticky bit (octal 1000). This is a holdover from
ancient Unix, where it was possible to mark an executable file as “not swap-
pable.” On files, Linux ignores the sticky bit, but if applied to a directory, it pre-
vents users from deleting or renaming files unless the user is either the owner
of the directory, the owner of the file, or the superuser. This is often used to
control access to a shared directory, such as /tmp.

Here are some examples of using chmod with symbolic notation to set these
special permissions. First, assign setuid to a program:

chmod u+s program

Next, assign setgid to a directory:

chmod g+s dir

86 Chapter 9

Finally, assign the sticky bit to a directory:

chmod +t dir

By viewing the output from ls, you can determine the special permissions.
Here are some examples. First, a program that is setuid:

-rwsr-xr-x

Now, a directory that has the setgid attribute:

drwxrwsr-x

Finally, a directory with the sticky bit set:

drwxrwxrwt

Changing Identities
At various times, we may find it necessary to take on the identity of another
user. Often we want to gain superuser privileges to carry out some adminis-
trative task, but it is also possible to “become” another regular user to per-
form such tasks as testing an account. There are three ways to take on an
alternate identity:

Log out and log back in as the alternate user.

Use the su command.

Use the sudo command.

We will skip the first technique because we know how to do it and it
lacks the convenience of the other two. From within your own shell session,
the su command allows you to assume the identity of another user and either
start a new shell session with that user’s ID or issue a single command as that
user. The sudo command allows an administrator to set up a configuration
file called /etc/sudoers and define specific commands that particular users
are permitted to execute under an assumed identity. The choice of which
command to use is largely determined by which Linux distribution you use.
Your distribution probably includes both commands, but its configuration
will favor either one or the other. We’ll start with su.

su—Run a Shell with Substitute User and Group IDs
The su command is used to start a shell as another user. The command syn-
tax looks like this:

su [-[l]] [user]

Permissions 87

If the -l option is included, the resulting shell session is a login shell for
the specified user. This means that the user’s environment is loaded and the
working directory is changed to the user’s home directory. This is usually
what we want. If the user is not specified, the superuser is assumed. Notice
that (strangely) the -l may be abbreviated as -, which is how it is most often
used. To start a shell for the superuser, we would do this:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]#

After entering the command, we are prompted for the superuser’s pass-
word. If it is successfully entered, a new shell prompt appears indicating that
this shell has superuser privileges (the trailing # rather than a $) and that
the current working directory is now the home directory for the superuser
(normally /root). Once in the new shell, we can carry out commands as the
superuser. When finished, enter exit to return to the previous shell:

[root@linuxbox ~]# exit
[me@linuxbox ~]$

It is also possible to execute a single command rather than starting a
new interactive command by using su this way:

su -c 'command'

Using this form, a single command line is passed to the new shell for
execution. It is important to enclose the command in quotes, as we do not
want expansion to occur in our shell but rather in the new shell:

[me@linuxbox ~]$ su -c 'ls -l /root/*'
Password:
-rw------- 1 root root 754 2011-08-11 03:19 /root/anaconda-ks.cfg

/root/Mail:
total 0
[me@linuxbox ~]$

sudo—Execute a Command as Another User
The sudo command is like su in many ways but has some important addi-
tional capabilities. The administrator can configure sudo to allow an ordin-
ary user to execute commands as a different user (usually the superuser) in
a very controlled way. In particular, a user may be restricted to one or more
specific commands and no others. Another important difference is that the
use of sudo does not require access to the superuser’s password. To authen-
ticate using sudo, the user enters his own password. Let’s say, for example,
that sudo has been configured to allow us to run a fictitious backup program
called backup_script, which requires superuser privileges.

88 Chapter 9

With sudo it would be done like this:

[me@linuxbox ~]$ sudo backup_script
Password:
System Backup Starting...

After entering the command, we are prompted for our password (not
the superuser’s), and once the authentication is complete, the specified
command is carried out. One important difference between su and sudo is
that sudo does not start a new shell, nor does it load another user’s environ-
ment. This means that commands do not need to be quoted any differently
than they would be without using sudo. Note that this behavior can be over-
ridden by specifying various options. See the sudo man page for details.

To see what privileges are granted by sudo, use the -l option to list them:

[me@linuxbox ~]$ sudo -l
User me may run the following commands on this host:
 (ALL) ALL

U B U N T U A N D S U D O

One of the recurrent problems for regular users is how to perform certain tasks
that require superuser privileges. These tasks include installing and updating
software, editing system configuration files, and accessing devices. In the Win-
dows world, this is often done by giving users administrative privileges. This
allows users to perform these tasks. However, it also enables programs executed
by the user to have the same abilities. This is desirable in most cases, but it also
permits malware (malicious software) such as viruses to have free run of the
computer.

In the Unix world, there has always been a larger division between reg-
ular users and administrators, owing to the multiuser heritage of Unix. The
approach taken in Unix is to grant superuser privileges only when needed.
To do this, the su and sudo commands are commonly used.

Up until a few of years ago, most Linux distributions relied on su for this
purpose. su didn’t require the configuration that sudo required, and having
a root account is traditional in Unix. This introduced a problem. Users were
tempted to operate as root unnecessarily. In fact, some users operated their sys-
tems as the root user exclusively, because it does away with all those annoying
“permission denied” messages. This is how you reduce the security of a Linux
system to that of a Windows system. Not a good idea.

When Ubuntu was introduced, its creators took a different tack. By default,
Ubuntu disables logins to the root account (by failing to set a password for the
account) and instead uses sudo to grant superuser privileges. The initial user
account is granted full access to superuser privileges via sudo and may grant sim-
ilar powers to subsequent user accounts.

Permissions 89

chown—Change File Owner and Group
The chown command is used to change the owner and group owner of a file
or directory. Superuser privileges are required to use this command. The
syntax of chown looks like this:

chown [owner][:[group]] file...

chown can change the file owner and/or the file group owner depending
on the first argument of the command. Table 9-7 lists some examples.

Table 9-7: chown Argument Examples

Argument Results

bob Changes the ownership of the file from its current owner to
user bob.

bob:users Changes the ownership of the file from its current owner to
user bob and changes the file group owner to group users.

:admins Changes the group owner to the group admins. The file owner
is unchanged.

bob: Change the file owner from the current owner to user bob and
changes the group owner to the login group of user bob.

Let’s say that we have two users: janet, who has access to superuser priv-
ileges, and tony, who does not. User janet wants to copy a file from her home
directory to the home directory of user tony. Since user janet wants tony to
be able to edit the file, janet changes the ownership of the copied file from
janet to tony:

[janet@linuxbox ~]$ sudo cp myfile.txt ~tony
Password:
[janet@linuxbox ~]$ sudo ls -l ~tony/myfile.txt
 -rw-r--r-- 1 root root 8031 2012-03-20 14:30 /home/tony/myfile.txt
[janet@linuxbox ~]$ sudo chown tony: ~tony/myfile.txt
[janet@linuxbox ~]$ sudo ls -l ~tony/myfile.txt
 -rw-r--r-- 1 tony tony 8031 2012-03-20 14:30 /home/tony/myfile.txt

Here we see user janet copy the file from her directory to the home
directory of user tony. Next, janet changes the ownership of the file from root
(a result of using sudo) to tony. Using the trailing colon in the first argument,
janet also changed the group ownership of the file to the login group of tony,
which happens to be group tony.

Notice that after the first use of sudo, janet was not prompted for her
password? This is because sudo, in most configurations, “trusts” you for sev-
eral minutes (until its timer runs out).

90 Chapter 9

chgrp—Change Group Ownership
In older versions of Unix, the chown command changed only file ownership,
not group ownership. For that purpose a separate command, chgrp, was
used. It works much the same way as chown, except for being more limited.

Exercising Your Privileges
Now that we have learned how this permissions thing works, it’s time to
show it off. We are going to demonstrate the solution to a common problem
—setting up a shared directory. Let’s imagine that we have two users named
bill and karen. They both have music CD collections and wish to set up a
shared directory, where they will each store their music files as Ogg Vorbis
or MP3. User bill has access to superuser privileges via sudo.

The first thing that needs to happen is the creation of a group that will
have both bill and karen as members. Using GNOME’s graphical user man-
agement tool, bill creates a group called music and adds users bill and karen
to it, as shown in Figure 9-3.

Figure 9-3: Creating a new group with GNOME

Next, bill creates the directory for the music files:

[bill@linuxbox ~]$ sudo mkdir /usr/local/share/Music
Password:

Since bill is manipulating files outside his home directory, superuser
privileges are required. After the directory is created, it has the following
ownerships and permissions:

[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxr-xr-x 2 root root 4096 2012-03-21 18:05 /usr/local/share/Music

Permissions 91

As we can see, the directory is owned by root and has 755 permissions.
To make this directory shareable, bill needs to change the group ownership
and the group permissions to allow writing:

[bill@linuxbox ~]$ sudo chown :music /usr/local/share/Music
[bill@linuxbox ~]$ sudo chmod 775 /usr/local/share/Music
[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxrwxr-x 2 root music 4096 2012-03-21 18:05 /usr/local/share/Music

So what does this all mean? It means that we now have a directory
/usr/local/share/Music that is owned by root and allows read and write access
to group music. Group music has members bill and karen; thus bill and karen
can create files in directory /usr/local/share/Music. Other users can list the
contents of the directory but cannot create files there.

But we still have a problem. With the current permissions, files and dir-
ectories created within the Music directory will have the normal permissions
of the users bill and karen:

[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ ls -l /usr/local/share/Music
-rw-r--r-- 1 bill bill 0 2012-03-24 20:03 test_file

Actually there are two problems. First, the default umask on this system is
0022, which prevents group members from writing files belonging to other
members of the group. This would not be a problem if the shared direct-
ory contained only files, but since this directory will store music and music
is usually organized in a hierarchy of artists and albums, members of the
group will need the ability to create files and directories inside directories
created by other members. We need to change the umask used by bill and
karen to 0002 instead.

Second, each file and directory created by one member will be set to the
primary group of the user, rather than the group music. This can be fixed by
setting the setgid bit on the directory:

[bill@linuxbox ~]$ sudo chmod g+s /usr/local/share/Music
[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxrwsr-x 2 root music 4096 2012-03-24 20:03 /usr/local/share/Music

Now we test to see if the new permissions fix the problem. bill sets his
umask to 0002, removes the previous test file, and creates a new test file and
directory:

[bill@linuxbox ~]$ umask 0002
[bill@linuxbox ~]$ rm /usr/local/share/Music/test_file
[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ mkdir /usr/local/share/Music/test_dir
[bill@linuxbox ~]$ ls -l /usr/local/share/Music
drwxrwsr-x 2 bill music 4096 2012-03-24 20:24 test_dir
-rw-rw-r-- 1 bill music 0 2012-03-24 20:22 test_file
[bill@linuxbox ~]$

92 Chapter 9

Both files and directories are now created with the correct permissions
to allow all members of the group music to create files and directories inside
the Music directory.

The one remaining issue is umask. The necessary setting lasts only until
the end of the session and then must be reset. In Chapter 11, we’ll look at
making the change to umask permanent.

Changing Your Password
The last topic we’ll cover in this chapter is setting passwords for yourself
(and for other users if you have access to superuser privileges). To set or
change a password, the passwd command is used. The command syntax
looks like this:

passwd [user]

To change your password, just enter the passwd command. You will be
prompted for your old password and your new password:

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:

The passwd command will try to enforce use of “strong” passwords. This
means it will refuse to accept passwords that are too short, are too similar to
previous passwords, are dictionary words, or are too easily guessed:

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:
BAD PASSWORD: is too similar to the old one
New UNIX password:
BAD PASSWORD: it is WAY too short
New UNIX password:
BAD PASSWORD: it is based on a dictionary word

If you have superuser privileges, you can specify a username as an argu-
ment to the passwd command to set the password for another user. Other
options are available to the superuser to allow account locking, password
expiration, and so on. See the passwd man page for details.

Permissions 93

P R O C E S S E S

Modern operating systems are usually multitasking,
meaning that they create the illusion of doing more
than one thing at once by rapidly switching from one
executing program to another. The Linux kernel
manages this through the use of processes. Processes
are how Linux organizes the different programs wait-
ing for their turn at the CPU.

Sometimes a computer will become sluggish, or an application will stop
responding. In this chapter, we will look at some of the tools available at the
command line that let us examine what programs are doing and how to ter-
minate processes that are misbehaving.

This chapter will introduce the following commands:

ps—Report a snapshot of current processes.

top—Display tasks.

jobs—List active jobs.

bg—Place a job in the background.

fg—Place a job in the foreground.

kill—Send a signal to a process.

killall—Kill processes by name.

shutdown—Shut down or reboot the system.

How a Process Works
When a system starts up, the kernel initiates a few of its own activities as pro-
cesses and launches a program called init. init, in turn, runs a series of shell
scripts (located in /etc) called init scripts, which start all the system services.
Many of these services are implemented as daemon programs, programs that
just sit in the background and do their thing without having any user inter-
face. So even if we are not logged in, the system is at least a little busy per-
forming routine stuff.

The fact that a program can launch other programs is expressed in the
process scheme as a parent process producing a child process.

The kernel maintains information about each process to help keep
things organized. For example, each process is assigned a number called a
process ID (PID). PIDs are assigned in ascending order, with init always get-
ting PID 1. The kernel also keeps track of the memory assigned to each pro-
cess, as well as the processes’ readiness to resume execution. Like files,
processes also have owners and user IDs, effective user IDs, and so on.

Viewing Processes with ps
The most commonly used command to view processes (there are several)
is ps. The ps program has a lot of options, but in it simplest form it is used
like this:

[me@linuxbox ~]$ ps
 PID TTY TIME CMD
 5198 pts/1 00:00:00 bash
10129 pts/1 00:00:00 ps

The result in this example lists two processes: process 5198 and pro-
cess 10129, which are bash and ps respectively. As we can see, by default ps
doesn’t show us very much, just the processes associated with the current
terminal session. To see more, we need to add some options, but before we
do that, let’s look at the other fields produced by ps. TTY is short for teletype
and refers to the controlling terminal for the process. Unix is showing its age
here. The TIME field is the amount of CPU time consumed by the process. As
we can see, neither process makes the computer work very hard.

96 Chapter 10

If we add an option, we can get a bigger picture of what the system is
doing:

[me@linuxbox ~]$ ps x
 PID TTY STAT TIME COMMAND
 2799 ? Ssl 0:00 /usr/libexec/bonobo-activation-server –ac
 2820 ? Sl 0:01 /usr/libexec/evolution-data-server-1.10 --
15647 ? Ss 0:00 /bin/sh /usr/bin/startkde
15751 ? Ss 0:00 /usr/bin/ssh-agent /usr/bin/dbus-launch --
15754 ? S 0:00 /usr/bin/dbus-launch --exit-with-session
15755 ? Ss 0:01 /bin/dbus-daemon --fork --print-pid 4 –pr
15774 ? Ss 0:02 /usr/bin/gpg-agent -s –daemon
15793 ? S 0:00 start_kdeinit --new-startup +kcminit_start
15794 ? Ss 0:00 kdeinit Running...
15797 ? S 0:00 dcopserver –nosid

and many more...

Adding the x option (note that there is no leading dash) tells ps to show
all of our processes regardless of what terminal (if any) they are controlled
by. The presence of a ? in the TTY column indicates no controlling terminal.
Using this option, we see a list of every process that we own.

Since the system is running a lot of processes, ps produces a long list. It
is often helpful to pipe the output from ps into less for easier viewing. Some
option combinations also produce long lines of output, so maximizing the
terminal emulator window may be a good idea, too.

A new column titled STAT has been added to the output. STAT is short for
state and reveals the current status of the process, as shown in Table 10-1.

Table 10-1: Process States

State Meaning

R Running. The process is running or ready to run.

S Sleeping. The process is not running; rather, it is waiting for an event,
such as a keystroke or network packet.

D Uninterruptible sleep. Process is waiting for I/O such as a disk drive.

T Stopped. Process has been instructed to stop (more on this later).

Z A defunct or “zombie” process. This is a child process that has
terminated but has not been cleaned up by its parent.

< A high-priority process. It’s possible to grant more importance to a
process, giving it more time on the CPU. This property of a process is
called niceness. A process with high priority is said to be less nice
because it’s taking more of the CPU’s time, which leaves less for
everybody else.

N A low-priority process. A process with low priority (a nice process)
will get processor time only after other processes with higher priority
have been serviced.

Processes 97

The process state may be followed by other characters. These indicate
various exotic process characteristics. See the ps man page for more detail.

Another popular set of options is aux (without a leading dash). This
gives us even more information:

[me@linuxbox ~]$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 2136 644 ? Ss Mar05 0:31 init
root 2 0.0 0.0 0 0 ? S< Mar05 0:00 [kt]
root 3 0.0 0.0 0 0 ? S< Mar05 0:00 [mi]
root 4 0.0 0.0 0 0 ? S< Mar05 0:00 [ks]
root 5 0.0 0.0 0 0 ? S< Mar05 0:06 [wa]
root 6 0.0 0.0 0 0 ? S< Mar05 0:36 [ev]
root 7 0.0 0.0 0 0 ? S< Mar05 0:00 [kh]

and many more...

This set of options displays the processes belonging to every user. Using
the options without the leading dash invokes the command with “BSD-style”
behavior. The Linux version of ps can emulate the behavior of the ps pro-
gram found in several Unix implementations. With these options, we get the
additional columns shown in Table 10-2.

Table 10-2: BSD-Style ps Column Headers

Header Meaning

USER User ID. This is the owner of the process.

%CPU CPU usage as a percent.

%MEM Memory usage as a percent.

VSZ Virtual memory size.

RSS Resident Set Size. The amount of physical memory (RAM) the
process is using in kilobytes.

START Time when the process started. For values over 24 hours, a date
is used.

Viewing Processes Dynamically with top
While the ps command can reveal a lot about what the machine is doing, it
provides only a snapshot of the machine’s state at the moment the ps com-
mand is executed. To see a more dynamic view of the machine’s activity, we
use the top command:

[me@linuxbox ~]$ top

The top program displays a continuously updating (by default, every
3 seconds) display of the system processes listed in order of process activity.

98 Chapter 10

Its name comes from the fact that the top program is used to see the “top”
processes on the system. The top display consists of two parts: a system sum-
mary at the top of the display, followed by a table of processes sorted by
CPU activity:

top - 14:59:20 up 6:30, 2 users, load average: 0.07, 0.02, 0.00
Tasks: 109 total, 1 running, 106 sleeping, 0 stopped, 2 zombie
Cpu(s): 0.7%us, 1.0%sy, 0.0%ni, 98.3%id, 0.0%wa, 0.0%hi, 0.0%si
Mem: 319496k total, 314860k used, 4636k free, 19392k buff
Swap: 875500k total, 149128k used, 726372k free, 114676k cach

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 6244 me 39 19 31752 3124 2188 S 6.3 1.0 16:24.42 trackerd
11071 me 20 0 2304 1092 840 R 1.3 0.3 0:00.14 top
 6180 me 20 0 2700 1100 772 S 0.7 0.3 0:03.66 dbus-dae
 6321 me 20 0 20944 7248 6560 S 0.7 2.3 2:51.38 multiloa
 4955 root 20 0 104m 9668 5776 S 0.3 3.0 2:19.39 Xorg
 1 root 20 0 2976 528 476 S 0.0 0.2 0:03.14 init
 2 root 15 -5 0 0 0 S 0.0 0.0 0:00.00 kthreadd
 3 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migratio
 4 root 15 -5 0 0 0 S 0.0 0.0 0:00.72 ksoftirq
 5 root RT -5 0 0 0 S 0.0 0.0 0:00.04 watchdog
 6 root 15 -5 0 0 0 S 0.0 0.0 0:00.42 events/0
 7 root 15 -5 0 0 0 S 0.0 0.0 0:00.06 khelper
 41 root 15 -5 0 0 0 S 0.0 0.0 0:01.08 kblockd/
 67 root 15 -5 0 0 0 S 0.0 0.0 0:00.00 kseriod
 114 root 20 0 0 0 0 S 0.0 0.0 0:01.62 pdflush
 116 root 15 -5 0 0 0 S 0.0 0.0 0:02.44 kswapd0

The system summary contains a lot of good stuff; see Table 10-3 for a
rundown.

Table 10-3: top Information Fields

Row Field Meaning

1 top Name of the program.

14:59:20 Current time of day.

up 6:30 This is called uptime. It is the amount of time since
the machine was last booted. In this example, the
system has been up for 6½ hours.

2 users Two users are logged in.

load average: Load average refers to the number of processes
that are waiting to run; that is, the number of pro-
cesses that are in a runnable state and are sharing
the CPU. Three values are shown, each for a differ-
ent period of time. The first is the average for the
last 60 seconds, the next the previous 5 minutes,
and finally the previous 15 minutes. Values under
1.0 indicate that the machine is not busy.

Processes 99

(continued)

Table 10-3 (continued)

Row Field Meaning

2 Tasks: This summarizes the number of processes and their
various process states.

0.7%us 0.7% of the CPU is being used for user processes.
This means processes outside of the kernel itself.

1.0%sy 1.0% of the CPU is being used for system (kernel)
processes.

0.0%ni 0.0% of the CPU is being used by nice (low-priority)
processes.

98.3%id 98.3% of the CPU is idle.

0.0%wa 0.0% of the CPU is waiting for I/O.

4 Mem: Shows how physical RAM is being used.

5 Swap: Shows how swap space (virtual memory) is
being used.

The top program accepts a number of keyboard commands. The two
most interesting are h, which displays the program’s help screen, and q,
which quits top.

Both major desktop environments provide graphical applications that
display information similar to top (in much the same way that Task Manager
in Windows does), but I find that top is better than the graphical versions
because it is faster and consumes far fewer system resources. After all, our
system monitor program shouldn’t add to the system slowdown that we are
trying to track.

Controlling Processes
Now that we can see and monitor processes, let’s gain some control over
them. For our experiments, we’re going to use a little program called xlogo
as our guinea pig. The xlogo program is a sample program supplied with the
X Window System (the underlying engine that makes the graphics on our
display go), which simply displays a resizable window containing the X logo.
First, we’ll get to know our test subject:

[me@linuxbox ~]$ xlogo

After we enter the command, a small window containing the logo
should appear somewhere on the screen. On some systems, xlogo may
print a warning message, but it may be safely ignored.

100 Chapter 10

Note: If your system does not include the xlogo program, try using gedit or kwrite instead.

We can verify that xlogo is running by resizing its window. If the logo is
redrawn in the new size, the program is running.

Notice how our shell prompt has not returned? This is because the shell
is waiting for the program to finish, just like all the other programs we have
used so far. If we close the xlogo window, the prompt returns.

Interrupting a Process
Let’s observe what happens when we run xlogo again. First, enter the xlogo
command and verify that the program is running. Next, return to the ter-
minal window and press CTRL-C.

[me@linuxbox ~]$ xlogo
[me@linuxbox ~]$

In a terminal, pressing CTRL-C interrupts a program. This means that we
politely asked the program to terminate. After we pressed CTRL-C, the xlogo
window closed and the shell prompt returned.

Many (but not all) command-line programs can be interrupted by using
this technique.

Putting a Process in the Background
Let’s say we wanted to get the shell prompt back without terminating the
xlogo program. We’ll do this by placing the program in the background.
Think of the terminal as having a foreground (with stuff visible on the sur-
face, like the shell prompt) and a background (with hidden stuff below the
surface). To launch a program so that it is immediately placed in the back-
ground, we follow the command with an ampersand character (&):

[me@linuxbox ~]$ xlogo &
[1] 28236
[me@linuxbox ~]$

After the command was entered, the xlogo window appeared and the
shell prompt returned, but some funny numbers were printed too. This
message is part of a shell feature called job control. With this message, the
shell is telling us that we have started job number 1 ([1]) and that it has PID
28236. If we run ps, we can see our process:

[me@linuxbox ~]$ ps
 PID TTY TIME CMD
10603 pts/1 00:00:00 bash
28236 pts/1 00:00:00 xlogo
28239 pts/1 00:00:00 ps

Processes 101

The shell’s job control facility also gives us a way to list the jobs that
have been launched from our terminal. Using the jobs command, we can
see the following list:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &

The results show that we have one job, numbered 1, that it is running,
and that the command was xlogo &.

Returning a Process to the Foreground
A process in the background is immune from keyboard input, including any
attempt to interrupt it with a CTRL-C. To return a process to the foreground,
use the fg command, as in this example:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &
[me@linuxbox ~]$ fg %1
xlogo

The command fg followed by a percent sign and the job number (called
a jobspec) does the trick. If we have only one background job, the jobspec is
optional. To terminate xlogo, type CTRL-C.

Stopping (Pausing) a Process
Sometimes we’ll want to stop a process without terminating it. This is often
done to allow a foreground process to be moved to the background. To stop
a foreground process, type CTRL-Z. Let’s try it. At the command prompt, type
xlogo, press the ENTER key, and then type CTRL-Z:

[me@linuxbox ~]$ xlogo
[1]+ Stopped xlogo
[me@linuxbox ~]$

After stopping xlogo, we can verify that the program has stopped by
attempting to resize the xlogo window. We will see that it appears quite
dead. We can either restore the program to the foreground, using the fg
command, or move the program to the background with the bg command:

[me@linuxbox ~]$ bg %1
[1]+ xlogo &
[me@linuxbox ~]$

As with the fg command, the jobspec is optional if there is only one job.
Moving a process from the foreground to the background is handy if we

launch a graphical program from the command but forget to place it in the
background by appending the trailing &.

102 Chapter 10

Why would you want to launch a graphical program from the com-
mand line? There are two reasons. First, the program you wish to run might
not be listed on the window manager’s menus (such as xlogo).

Second, by launching a program from the command line, you might be
able to see error messages that would be invisible if the program were launched
graphically. Sometimes, a program will fail to start up when launched from
the graphical menu. By launching it from the command line instead, we may
see an error message that will reveal the problem. Also, some graphical pro-
grams have many interesting and useful command-line options.

Signals
The kill command is used to “kill” (terminate) processes. This allows us to
end the execution of a program that is behaving badly or otherwise refuses
to terminate on its own. Here’s an example:

[me@linuxbox ~]$ xlogo &
[1] 28401
[me@linuxbox ~]$ kill 28401
[1]+ Terminated xlogo

We first launch xlogo in the background. The shell prints the jobspec and
the PID of the background process. Next, we use the kill command and spe-
cify the PID of the process we want to terminate. We could also have specified
the process using a jobspec (for example, %1) instead of a PID.

While this is all very straightforward, there is more to it. The kill com-
mand doesn’t exactly “kill” processes; rather it sends them signals. Signals
are one of several ways that the operating system communicates with pro-
grams. We have already seen signals in action with the use of CTRL-C and
CTRL-Z. When the terminal receives one of these keystrokes, it sends a signal
to the program in the foreground. In the case of CTRL-C, a signal called INT
(Interrupt) is sent; with CTRL-Z, a signal called TSTP (Terminal Stop) is sent.
Programs, in turn, “listen” for signals and may act upon them as they are
received. The fact that a program can listen and act upon signals allows it
to do things like save work in progress when it is sent a termination signal.

Sending Signals to Processes with kill
The most common syntax for the kill command looks like this:

kill [-signal] PID...

If no signal is specified on the command line, then the TERM (Termin-
ate) signal is sent by default. The kill command is most often used to send
the signals shown in Table 10-4.

Processes 103

Table 10-4: Common Signals

Number Name Meaning

1 HUP Hang up. This is a vestige of the good old days
when terminals were attached to remote computers
with phone lines and modems. The signal is used
to indicate to programs that the controlling ter-
minal has “hung up.” The effect of this signal can
be demonstrated by closing a terminal session.
The foreground program running on the terminal
will be sent the signal and will terminate.

This signal is also used by many daemon
programs to cause a reinitialization. This means
that when a daemon is sent this signal, it will
restart and reread its configuration file. The
Apache web server is an example of a daemon
that uses the HUP signal in this way.

2 INT Interrupt. Performs the same function as the CTRL-C
key sent from the terminal. It will usually terminate
a program.

9 KILL Kill. This signal is special. Whereas programs may
choose to handle signals sent to them in different
ways, including by ignoring them altogether, the
KILL signal is never actually sent to the target
program. Rather, the kernel immediately termin-
ates the process. When a process is terminated in
this manner, it is given no opportunity to “clean
up” after itself or save its work. For this reason, the
KILL signal should be used only as a last resort
when other termination signals fail.

15 TERM Terminate. This is the default signal sent by
the kill command. If a program is still “alive”
enough to receive signals, it will terminate.

18 CONT Continue. This will restore a process after a STOP
signal.

19 STOP Stop. This signal causes a process to pause
without terminating. Like the KILL signal, it is not
sent to the target process, and thus it cannot be
ignored.

104 Chapter 10

Let’s try out the kill command:

[me@linuxbox ~]$ xlogo &
[1] 13546
[me@linuxbox ~]$ kill -1 13546
[1]+ Hangup xlogo

In this example, we start the xlogo program in the background and then
send it a HUP signal with kill. The xlogo program terminates, and the shell
indicates that the background process has received a hangup signal. You
may need to press the ENTER key a couple of times before you see the mes-
sage. Note that signals may be specified either by number or by name,
including the name prefixed with the letters SIG :

[me@linuxbox ~]$ xlogo &
[1] 13601
[me@linuxbox ~]$ kill -INT 13601
[1]+ Interrupt xlogo
[me@linuxbox ~]$ xlogo &
[1] 13608
[me@linuxbox ~]$ kill -SIGINT 13608
[1]+ Interrupt xlogo

Repeat the example above and try out the other signals. Remember, you
can also use jobspecs in place of PIDs.

Processes, like files, have owners, and you must be the owner of a pro-
cess (or the superuser) in order to send it signals with kill.

In addition to the signals listed in Table 10-4, which are most often used
with kill, other signals are frequently used by the system. Table 10-5 lists the
other common signals.

Table 10-5: Other Common Signals

Number Name Meaning

3 QUIT Quit.

11 SEGV Segmentation violation. This signal is sent if a
program makes illegal use of memory; that is, it
tried to write somewhere it was not allowed to.

20 TSTP Terminal stop. This is the signal sent by the terminal
when CTRL-Z is pressed. Unlike the STOP signal, the
TSTP signal is received by the program but the pro-
gram may choose to ignore it.

28 WINCH Window change. This is a signal sent by the system
when a window changes size. Some programs,
like top and less, will respond to this signal by
redrawing themselves to fit the new window
dimensions.

Processes 105

For the curious, a complete list of signals can be seen with the following
command:

[me@linuxbox ~]$ kill -l

Sending Signals to Multiple Processes with killall
It’s also possible to send signals to multiple processes matching a specified
program or username by using the killall command. Here is the syntax:

killall [-u user] [-signal] name...

To demonstrate, we will start a couple of instances of the xlogo program
and then terminate them:

[me@linuxbox ~]$ xlogo &
[1] 18801
[me@linuxbox ~]$ xlogo &
[2] 18802
[me@linuxbox ~]$ killall xlogo
[1]- Terminated xlogo
[2]+ Terminated xlogo

Remember, as with kill, you must have superuser privileges to send sig-
nals to processes that do not belong to you.

More Process-Related Commands
Since monitoring processes is an important system administration task,
there are a lot of commands for it. Table 10-6 lists some to play with.

Table 10-6: Other Process-Related Commands

Command Description

pstree Outputs a process list arranged in a tree-like pattern showing
the parent/child relationships between processes.

vmstat Outputs a snapshot of system resource usage including
memory, swap, and disk I/O. To see a continuous display,
follow the command with a time delay (in seconds) for updates
(e.g., vmstat 5). Terminate the output with CTRL-C.

xload A graphical program that draws a graph showing system load
over time.

tload Similar to the xload program, but draws the graph in the
terminal. Terminate the output with CTRL-C.

106 Chapter 10

PART 2
C O N F I G U R A T I O N A N D T H E

E N V I R O N M E N T

T H E E N V I R O N M E N T

As we discussed earlier, the shell maintains a body of
information during our shell session called the envi-
ronment. Data stored in the environment is used by
programs to determine facts about our configuration.
While most programs use configuration files to store program settings, some
programs will also look for values stored in the environment to adjust their
behavior. Knowing this, we can use the environment to customize our shell
experience.

In this chapter, we will work with the following commands:

printenv—Print part or all of the environment.

set—Set shell options.

export—Export environment to subsequently executed programs.

alias—Create an alias for a command.

What Is Stored in the Environment?
The shell stores two basic types of data in the environment, although, with
bash, the types are largely indistinguishable. They are environment variables
and shell variables. Shell variables are bits of data placed there by bash, and
environment variables are basically everything else. In addition to variables,
the shell also stores some programmatic data, namely aliases and shell func-
tions. We covered aliases in Chapter 5, and shell functions (which are related
to shell scripting) will be covered in Part 4.

Examining the Environment
To see what is stored in the environment, we can use either the set built in
bash or the printenv program. The set command will show both the shell and
environment variables, while printenv will display only the latter. Since the
list of environment contents will be fairly long, it is best to pipe the output
of either command into less:

[me@linuxbox ~]$ printenv | less

Doing so, we should get something that looks like this:

KDE_MULTIHEAD=false
SSH_AGENT_PID=6666
HOSTNAME=linuxbox
GPG_AGENT_INFO=/tmp/gpg-PdOt7g/S.gpg-agent:6689:1
SHELL=/bin/bash
TERM=xterm
XDG_MENU_PREFIX=kde-
HISTSIZE=1000
XDG_SESSION_COOKIE=6d7b05c65846c3eaf3101b0046bd2b00-1208521990.996705-11770561
99
GTK2_RC_FILES=/etc/gtk-2.0/gtkrc:/home/me/.gtkrc-2.0:/home/me/.kde/share/confi
g/gtkrc-2.0
GTK_RC_FILES=/etc/gtk/gtkrc:/home/me/.gtkrc:/home/me/.kde/share/config/gtkrc
GS_LIB=/home/me/.fonts
WINDOWID=29360136
QTDIR=/usr/lib/qt-3.3
QTINC=/usr/lib/qt-3.3/include
KDE_FULL_SESSION=true
USER=me
LS_COLORS=no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;01:cd=40;33
;01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe:

What we see is a list of environment variables and their values. For
example, we see a variable called USER, which contains the value me. The
printenv command can also list the value of a specific variable:

[me@linuxbox ~]$ printenv USER
me

110 Chapter 11

The set command, when used without options or arguments, will dis-
play both the shell and environment variables, as well as any defined shell
functions.

[me@linuxbox ~]$ set | less

Unlike printenv, its output is courteously sorted in alphabetical order.
It is also possible to view the contents of a single variable using the echo

command, like this:

[me@linuxbox ~]$ echo $HOME
/home/me

One element of the environment that neither set nor printenv displays is
aliases. To see them, enter the alias command without arguments:

[me@linuxbox ~]$ alias
alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls --color=tty'
alias vi='vim'
alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot --show-
tilde'

Some Interesting Variables
The environment contains quite a few variables, and though your environ-
ment may differ from the one presented here, you will likely see the vari-
ables shown in Table 11-1 in your environment.

Table 11-1: Environment Variables

Variable Contents

DISPLAY The name of your display if you are running a graphical
environment. Usually this is :0, meaning the first display
generated by the X server.

EDITOR The name of the program to be used for text editing.

SHELL The name of your shell program.

HOME The pathname of your home directory.

LANG Defines the character set and collation order of your language.

OLD_PWD The previous working directory.

PAGER The name of the program to be used for paging output. This is
often set to /usr/bin/less.

PATH A colon-separated list of directories that are searched when you
enter the name of an executable program.

The Environment 111

(continued)

Table 11-1 (continued)

Variable Contents

PS1 Prompt String 1. This defines the contents of your shell prompt.
As we will later see, this can be extensively customized.

PWD The current working directory.

TERM The name of your terminal type. Unix-like systems support many
terminal protocols; this variable sets the protocol to be used
with your terminal emulator.

TZ Specifies your time zone. Most Unix-like systems maintain the
computer’s internal clock in Coordinated Universal Time (UTC)
and then display the local time by applying an offset specified
by this variable.

USER Your username.

Don’t worry if some of these values are missing. They vary by
distribution.

How Is the Environment Established?
When we log on to the system, the bash program starts and reads a series
of configuration scripts called startup files, which define the default envi-
ronment shared by all users. This is followed by more startup files in our
home directory that define our personal environment. The exact sequence
depends on the type of shell session being started.

Login and Non-login Shells
There are two kinds of shell sessions: a login shell session and a non-login
shell session.

A login shell session is one in which we are prompted for our username and
password; for example, when we start a virtual console session. A non-login
shell session typically occurs when we launch a terminal session in the GUI.

Login shells read one or more startup files, as shown in Table 11-2.

Table 11-2: Startup Files for Login Shell Sessions

File Contents

/etc/profile A global configuration script that applies to all users.

~/.bash_profile A user’s personal startup file. Can be used to extend or
override settings in the global configuration script.

112 Chapter 11

Table 11-2 (continued)

File Contents

~/.bash_login If ~/.bash_profile is not found, bash attempts to read this
script.

~/.profile If neither ~/.bash_profile nor ~/.bash_login is found, bash
attempts to read this file. This is the default in Debian-based
distributions, such as Ubuntu.

Non-login shell sessions read the startup files as shown in Table 11-3.

Table 11-3: Startup Files for Non-Login Shell Sessions

File Contents

/etc/bash.bashrc A global configuration script that applies to all users.

~/.bashrc A user’s personal startup file. Can be used to extend or
override settings in the global configuration script.

In addition to reading the startup files above, non-login shells inherit
the environment from their parent process, usually a login shell.

Take a look at your system and see which of these startup files you have.
Remember: Since most of the filenames listed above start with a period
(meaning that they are hidden), you will need to use the -a option when
using ls.

The ~/.bashrc file is probably the most important startup file from the
ordinary user’s point of view, since it is almost always read. Non-login shells
read it by default, and most startup files for login shells are written in such a
way as to read the ~/.bashrc file as well.

What’s in a Startup File?
If we take a look inside a typical .bash_profile (taken from a CentOS-4 system),
it looks something like this:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin
export PATH

The Environment 113

Lines that begin with a # are comments and are not read by the shell.
These are there for human readability. The first interesting thing occurs
on the fourth line, with the following code:

if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

This is called an if compound command, which we will cover fully when we
get to shell scripting in Part 4, but for now we will translate:

If the file "~/.bashrc" exists, then
read the "~/.bashrc" file.

We can see that this bit of code is how a login shell gets the contents of
.bashrc. The next thing in our startup file has to do with the PATH variable.

Ever wonder how the shell knows where to find commands when we
enter them on the command line? For example, when we enter ls, the shell
does not search the entire computer to find /bin/ls (the full pathname of
the ls command); rather, it searches a list of directories that are contained
in the PATH variable.

The PATH variable is often (but not always, depending on the distribu-
tion) set by the /etc/profile startup file and with this code:

PATH=$PATH:$HOME/bin

PATH is modified to add the directory $HOME/bin to the end of the
list. This is an example of parameter expansion, which we touched on in
Chapter 7. To demonstrate how this works, try the following:

[me@linuxbox ~]$ foo="This is some"
[me@linuxbox ~]$ echo $foo
This is some
[me@linuxbox ~]$ foo=$foo" text."
[me@linuxbox ~]$ echo $foo
This is some text.

Using this technique, we can append text to the end of a variable’s
contents.

By adding the string $HOME/bin to the end of the PATH variable’s contents,
the directory $HOME/bin is added to the list of directories searched when a
command is entered. This means that when we want to create a directory
within our home directory for storing our own private programs, the shell
is ready to accommodate us. All we have to do is call it bin, and we’re ready
to go.

Note: Many distributions provide this PATH setting by default. Some Debian-based distribu-
tions, such as Ubuntu, test for the existence of the ~/bin directory at login and
dynamically add it to the PATH variable if the directory is found.

114 Chapter 11

Lastly, we have this:

export PATH

The export command tells the shell to make the contents of PATH avail-
able to child processes of this shell.

Modifying the Environment
Since we know where the startup files are and what they contain, we can
modify them to customize our environment.

Which Files Should We Modify?
As a general rule, to add directories to your PATH or define additional envi-
ronment variables, place those changes in .bash_profile (or equivalent,
according to your distribution—for example, Ubuntu uses .profile). For
everything else, place the changes in .bashrc. Unless you are the system
administrator and need to change the defaults for all users of the system,
restrict your modifications to the files in your home directory. It is certainly
possible to change the files in /etc such as profile, and in many cases it would
be sensible to do so, but for now let’s play it safe.

Text Editors
To edit (i.e., modify) the shell’s startup files, as well as most of the other
configuration files on the system, we use a program called a text editor. A
text editor is a program that is, in some ways, like a word processor in that
it allows you to edit the words on the screen with a moving cursor. It differs
from a word processor by supporting only pure text, and it often contains
features designed for writing programs. Text editors are the central tool
used by software developers to write code and by system administrators to
manage the configuration files that control the system.

A lot of text editors are available for Linux; your system probably has
several installed. Why so many different ones? Probably because program-
mers like writing them, and since programmers use editors extensively, they
like to express their own desires as to how editors should work.

Text editors fall into two basic categories: graphical and text based.
GNOME and KDE both include some popular graphical editors. GNOME
ships with an editor called gedit, which is usually called Text Editor in
the GNOME menu. KDE usually ships with three, which are (in order of
increasing complexity) kedit, kwrite, and kate.

There are many text-based editors. The popular ones you will encounter
are nano, vi, and emacs. The nano editor is a simple, easy-to-use editor designed
as a replacement for the pico editor supplied with the PINE email suite. The
vi editor (on most Linux systems replaced by a program named vim, which is
short for Vi IMproved) is the traditional editor for Unix-like systems. It is the

The Environment 115

subject of Chapter 12. The emacs editor was originally written by Richard
Stallman. It is a gigantic, all-purpose, does-everything programming environ-
ment. Though readily available, it is seldom installed on most Linux systems
by default.

Using a Text Editor
All text editors can be invoked from the command line by typing the name
of the editor followed by the name of the file you want to edit. If the file
does not already exist, the editor will assume that you want to create a new
file. Here is an example using gedit:

[me@linuxbox ~]$ gedit some_file

This command will start the gedit text editor and load the file named
some_file, if it exists.

All graphical text editors are pretty self-explanatory, so we won’t cover
them here. Instead, we will concentrate on our first text-based text editor,
nano. Let’s fire up nano and edit the .bashrc file. But before we do that, let’s
practice some safe computing. Whenever we edit an important configura-
tion file, it is always a good idea to create a backup copy of the file first. This
protects us in case we mess the file up while editing. To create a backup of
the .bashrc file, do this:

[me@linuxbox ~]$ cp .bashrc .bashrc.bak

It doesn’t matter what you call the backup file; just pick an understand-
able name. The extensions .bak, .sav, .old, and .orig are all popular ways of
indicating a backup file. Oh, and remember that cp will overwrite existing files
silently.

Now that we have a backup file, we’ll start the editor:

[me@linuxbox ~]$ nano .bashrc

Once nano starts, we’ll get a screen like this:

 GNU nano 2.0.3 File: .bashrc

.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific aliases and functions

 [Read 8 lines]
^G Get Help^O WriteOut^R Read Fil^Y Prev Pag^K Cut Text^C Cur Pos
^X Exit ^J Justify ^W Where Is^V Next Pag^U UnCut Te^T To Spell

116 Chapter 11

Note: If your system does not have nano installed, you may use a graphical editor instead.

The screen consists of a header at the top, the text of the file being
edited in the middle, and a menu of commands at the bottom. Since nano
was designed to replace the text editor supplied with an email client, it is
rather short on editing features.

The first command you should learn in any text editor is how to exit the
program. In the case of nano, you press CTRL-X to exit. This is indicated in
the menu at the bottom of the screen. The notation ^X means CTRL-X. This is
a common notation for the control characters used by many programs.

The second command we need to know is how to save our work. With
nano it’s CTRL-O. With this knowledge under our belts, we’re ready to do
some editing. Using the down-arrow key and/or the page-down key, move
the cursor to the end of the file, and then add the following lines to the
.bashrc file:

umask 0002
export HISTCONTROL=ignoredups
export HISTSIZE=1000
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'

Note: Your distribution may already include some of these, but duplicates won’t hurt
anything.

Table 11-4 lists the meanings of our additions.

Table 11-4: Additions to Our .bashrc File

Line Meaning

Umask 0002 Sets the umask to solve the problem with
shared directories we discussed in
Chapter 9.

export HISTCONTROL=ignoredups Causes the shell’s history recording
feature to ignore a command if the same
command was just recorded.

export HISTSIZE=1000 Increases the size of the command history
from the default of 500 lines to 1000
lines.

alias l.='ls -d .* --color=auto' Creates a new command called l.,
which displays all directory entries that
begin with a dot.

alias ll='ls -l –color=auto' Creates a new command called ll,
which displays a long-format directory
listing.

The Environment 117

As we can see, many of our additions are not intuitively obvious, so it
would be a good idea to add some comments to our .bashrc file to help
explain things to the humans. Using the editor, change our additions to
look like this:

Change umask to make directory sharing easier
umask 0002

Ignore duplicates in command history and increase
history size to 1000 lines
export HISTCONTROL=ignoredups
export HISTSIZE=1000

Add some helpful aliases
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'

Ah, much better! With our changes complete, press CTRL-O to save our
modified .bashrc file and CTRL-X to exit nano.

Activating Our Changes
The changes we have made to our .bashrc will not take effect until we close
our terminal session and start a new one, because the .bashrc file is only read
at the beginning of a session. However, we can force bash to reread the mod-
ified .bashrc file with the following command:

[me@linuxbox ~]$ source .bashrc

After doing this, we should be able to see the effect of our changes. Try
out one of the new aliases:

[me@linuxbox ~]$ ll

W H Y C O M M E N T S A R E I M P O R T A N T

Whenever you modify configuration files, it’s a good idea to add some com-
ments to document your changes. Sure, you will remember what you changed
tomorrow, but what about six months from now? Do yourself a favor and add
some comments. While you’re at it, it’s not a bad idea to keep a log of what
changes you make.

Shell scripts and bash startup files use a # symbol to begin a comment.
Other configuration files may use other symbols. Most configuration files will
have comments. Use them as a guide.

You will often see lines in configuration files that are commented out to pre-
vent them from being used by the affected program. This is done to give the
reader suggestions for possible configuration choices or examples of correct

118 Chapter 11

configuration syntax. For example, the .bashrc file of Ubuntu 8.04 contains
these lines:

some more ls aliases
#alias ll='ls -l'
#alias la='ls -A'
#alias l='ls -CF'

The last three lines are valid alias definitions that have been commented
out. If you remove the leading # symbols from these three lines, a technique
called uncommenting, you will activate the aliases. Conversely, if you add a # sym-
bol to the beginning of a line, you can deactivate a configuration line while pre-
serving the information it contains.

Final Note
In this chapter we learned an essential skill—editing configuration files with
a text editor. Moving forward, as we read man pages for commands, take
note of the environment variables that commands support. There may be a
gem or two. In later chapters we will learn about shell functions, a powerful
feature that you can also include in the bash startup files to add to your
arsenal of custom commands.

The Environment 119

A G E N T L E I N T R O D U C T I O N
T O V I

There is an old joke about a visitor to New York City
asking a passerby for directions to the city’s famous
classical music venue:

Visitor: Excuse me, how do I get to Carnegie Hall?
Passerby: Practice, practice, practice!

Learning the Linux command line, like becoming an accomplished
pianist, is not something that we pick up in an afternoon. It takes years of
practice. In this chapter, we will introduce the vi (pronounced “vee eye”)
text editor, one of the core programs in the Unix tradition. vi is somewhat
notorious for its difficult user interface, but when we see a master sit down
at the keyboard and begin to “play,” we will indeed be witness to some great
art. We won’t become masters in this chapter, but when we are done, we will
know how to play “Chopsticks” in vi.

Why We Should Learn vi
In this modern age of graphical editors and easy-to-use text-based editors
such as nano, why should we learn vi? There are three good reasons:

vi is always available. This can be a lifesaver if we have a system with
no graphical interface, such as a remote server or a local system with a
broken X configuration. nano, while increasingly popular, is still not uni-
versal. POSIX, a standard for program compatibility on Unix systems,
requires that vi be present.

vi is lightweight and fast. For many tasks, it’s easier to bring up vi than it
is to find the graphical text editor in the menus and wait for its multiple
megabytes to load. In addition, vi is designed for typing speed. As we
shall see, a skilled vi user never has to lift his or her fingers from the
keyboard while editing.

We don’t want other Linux and Unix users to think we are sissies.

Okay, maybe two good reasons.

A Little Background
The first version of vi was written in 1976 by Bill Joy, a University of Califor-
nia, Berkeley student who later went on to co-found Sun Microsystems. vi
derives its name from the word visual, because it was intended to allow edit-
ing on a video terminal with a moving cursor. Before visual editors there
were line editors, which operated on a single line of text at a time. To specify
a change, we tell a line editor to go to a particular line and describe what
change to make, such as adding or deleting text. With the advent of video
terminals (rather than printer-based terminals like teletypes), visual editing
became possible. vi actually incorporates a powerful line editor called ex,
and we can use line-editing commands while using vi.

Most Linux distributions don’t include real vi; rather, they ship with an
enhanced replacement called vim (which is short for Vi IMproved) written by
Bram Moolenaar. vim is a substantial improvement over traditional Unix vi
and is usually symbolically linked (or aliased) to the name vi on Linux sys-
tems. In the discussions that follow, we will assume that we have a program
called vi that is really vim.

Starting and Stopping vi
To start vi, we simply enter the following:

[me@linuxbox ~]$ vi

122 Chapter 12

A screen like this should appear:

~
~
~ VIM - Vi Improved
~
~ version 7.1.138
~ by Bram Moolenaar et al.
~ Vim is open source and freely distributable
~
~ Sponsor Vim development!
~ type :help sponsor<Enter> for information
~
~ type :q<Enter> to exit
~ type :help<Enter> or <F1> for on-line help
~ type :help version7<Enter> for version info
~
~ Running in Vi compatible mode
~ type :set nocp<Enter> for Vim defaults
~ type :help cp-default<Enter> for info on this
~
~
~

Just as we did with nano earlier, the first thing to learn is how to exit. To
exit, we enter the following command (note that the colon character is part
of the command):

:q

The shell prompt should return. If, for some reason, vi will not quit
(usually because we made a change to a file that has not yet been saved),
we can tell vi that we really mean it by adding an exclamation point to the
command:

:q!

Note: If you get “lost” in vi, try pressing the ESC key twice to find your way again.

Editing Modes
Let’s start up vi again, this time passing to it the name of a nonexistent file.
This is how we can create a new file with vi:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ vi foo.txt

A Gentle Introduction to vi 123

If all goes well, we should get a screen like this:

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
"foo.txt" [New File]

The leading tilde characters (~) indicate that no text exists on that line.
This shows that we have an empty file. Do not type anything yet!

The second most important thing to learn about vi (after learning how
to exit) is that vi is a modal editor. When vi starts up, it begins in command
mode. In this mode, almost every key is a command, so if we were to start typ-
ing, vi would basically go crazy and make a big mess.

Entering Insert Mode
In order to add some text to our file, we must first enter insert mode. To do
this, we press the I key (i). Afterward, we should see the following at the bot-
tom of the screen if vim is running in its usual enhanced mode (this will not
appear in vi-compatible mode):

-- INSERT --

Now we can enter some text. Try this:

The quick brown fox jumped over the lazy dog.

To exit insert mode and return to command mode, press the ESC key.

Saving Our Work
To save the change we just made to our file, we must enter an ex command
while in command mode. This is easily done by pressing the : key. After
doing this, a colon character should appear at the bottom of the screen:

:

124 Chapter 12

To write our modified file, we follow the colon with a w, then ENTER:

:w

The file will be written to the hard drive, and we should get a confirma-
tion message at the bottom of the screen, like this:

"foo.txt" [New] 1L, 46C written

Note: If you read the vim documentation, you will notice that (confusingly) command mode
is called normal mode and ex commands are called command mode. Beware.

C O M P A T I B I L I T Y M O D E

In the example startup screen shown at the beginning of this section (taken
from Ubuntu 8.04), we see the text Running in Vi compatible mode. This means
that vim will run in a mode that is closer to the normal behavior of vi rather
than the enhanced behavior of vim. For purposes of this chapter, we will want
to run vim with its enhanced behavior. To do this, you have a couple of options:

Try running vim instead of vi (if that works, consider adding alias vi='vim'
to your .bashrc file).

Use this command to add a line to your vim configuration file:

echo "set nocp" >> ~/.vimrc

Different Linux distributions package vim in different ways. Some distribu-
tions install a minimal version of vim by default that supports only a limited set
of vim features. While performing the lessons that follow, you may encounter
missing features. If this is the case, install the full version of vim.

Moving the Cursor Around
While it is in command mode, vi offers a large number of movement com-
mands, some of which it shares with less. Table 12-1 lists a subset.

Table 12-1: Cursor Movement Keys

Key Moves the cursor

L or right arrow Right one character

H or left arrow Left one character

J or down arrow Down one line

K or up arrow Up one line

A Gentle Introduction to vi 125

(continued)

Table 12-1 (continued)

Key Moves the cursor

0 (zero) To the beginning of the current line

SHIFT-6 (^) To the first non-whitespace character on the current line

SHIFT-4 ($) To the end of the current line

W To the beginning of the next word or punctuation
character

SHIFT-W (W) To the beginning of the next word, ignoring punctu
ation characters

B To the beginning of the previous word or punctuation
character

SHIFT-B (B) To the beginning of the previous word, ignoring
punctuation characters

CTRL-F or PAGE DOWN Down one page

CTRL-B or PAGE UP Up one page

number-SHIFT-G To line number (for example, 1G moves to the first line
of the file)

SHIFT-G (G) To the last line of the file

Why are the H, J, K, and L keys used for cursor movement? Because
when vi was originally written, not all video terminals had arrow keys, and
skilled typists could use regular keyboard keys to move the cursor without
ever having to lift their fingers from the keyboard.

Many commands in vi can be prefixed with a number, as with the G
command listed in Table 12-1. By prefixing a command with a number,
we may specify the number of times a command is to be carried out. For
example, the command 5j causes vi to move the cursor down five lines.

Basic Editing
Most editing consists of a few basic operations such as inserting text, delet-
ing text, and moving text around by cutting and pasting. vi, of course, sup-
ports all of these operations in its own unique way. vi also provides a limited
form of undo. If we press the U key while in command mode, vi will undo
the last change that you made. This will come in handy as we try out some
of the basic editing commands.

126 Chapter 12

Appending Text
vi has several ways of entering insert mode. We have already used the i com-
mand to insert text.

Let’s go back to our foo.txt file for a moment:

The quick brown fox jumped over the lazy dog.

If we wanted to add some text to the end of this sentence, we would dis-
cover that the i command will not do it, because we can’t move the cursor
beyond the end of the line. vi provides a command to append text, the sens-
ibly named a command. If we move the cursor to the end of the line and
type a, the cursor will move past the end of the line, and vi will enter insert
mode. This will allow us to add some more text:

The quick brown fox jumped over the lazy dog. It was cool.

Remember to press the ESC key to exit insert mode.
Since we will almost always want to append text to the end of a line, vi

offers a shortcut to move to the end of the current line and start appending.
It’s the A command. Let’s try it and add some more lines to our file.

First, we’ll move the cursor to the beginning of the line using the 0
(zero) command. Now we type A and add the following lines of text:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Again, press the ESC key to exit insert mode.
As we can see, the A command is more useful because it moves the

cursor to the end of the line before starting insert mode.

Opening a Line
Another way we can insert text is by “opening” a line. This inserts a blank
line between two existing lines and enters insert mode. This has two
variants, as shown in Table 12-2.

Table 12-2: Line Opening Keys

Command Opens
o The line below the current line

O The line above the current line

A Gentle Introduction to vi 127

We can demonstrate this as follows: Place the cursor on Line 3 and then
type o.

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3

Line 4
Line 5

A new line was opened below the third line, and we entered insert
mode. Exit insert mode by pressing the ESC key. Type u to undo our change.

Type O to open the line above the cursor:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2

Line 3
Line 4
Line 5

Exit insert mode by pressing the ESC key and undo our change by
typing u.

Deleting Text
As we might expect, vi offers a variety of ways to delete text, all of which
contain one of two keystrokes. First, the X key will delete a character at the
cursor location. x may be preceded by a number specifying how many char-
acters are to be deleted. The D key is more general purpose. Like x, it may
be preceded by a number specifying the number of times the deletion is
to be performed. In addition, d is always followed by a movement command
that controls the size of the deletion. Table 12-3 lists some examples.

Place the cursor on the word It on the first line of our text. Type x
repeatedly until the rest of the sentence is deleted. Next, type u repeatedly
until the deletion is undone.

Note: Real vi supports only a single level of undo. vim supports multiple levels.

Table 12-3: Text Deletion Commands

Command Deletes
x The current character

3x The current character and the next two characters

dd The current line

5dd The current line and the next four lines

128 Chapter 12

Table 12-3 (continued)

Command Deletes
dW From the current cursor location to the beginning of the

next word

d$ From the current cursor location to the end of the current line

d0 From the current cursor location to the beginning of the line

d^ From the current cursor location to the first non-whitespace
character in the line

dG From the current line to the end of the file

d20G From the current line to the 20th line of the file

Let’s try the deletion again, this time using the d command. Again,
move the cursor to the word It and type dW to delete the word:

The quick brown fox jumped over the lazy dog. was cool.
Line 2
Line 3
Line 4
Line 5

Type d$ to delete from the cursor position to the end of the line:

The quick brown fox jumped over the lazy dog.
Line 2
Line 3
Line 4
Line 5

Type dG to delete from the current line to the end of the file:

~
~
~
~
~

Type u three times to undo the deletions.

Cutting, Copying, and Pasting Text
The d command not only deletes text, it also “cuts” text. Each time we use
the d command, the deletion is copied into a paste buffer (think clipboard)
that we can later recall with the p command to paste the contents of the buf-
fer after the cursor or with the P command to paste the contents before the
cursor.

A Gentle Introduction to vi 129

The y command is used to “yank” (copy) text in much the same way the
d command is used to cut text. Table 12-4 lists some examples combining
the y command with various movement commands.

Table12-4: Yanking Commands

Command Copies

yy The current line

5yy The current line and the next four lines

yW From the current cursor location to the beginning of the
next word

y$ From the current cursor location to the end of the current line

y0 From the current cursor location to the beginning of the line

y^ From the current cursor location to the first non-whitespace
character in the line

yG From the current line to the end of the file

y20G From the current line to the 20th line of the file

Let’s try some copy and paste. Place the cursor on the first line of the
text and type yy to copy the current line. Next, move the cursor to the last
line (G) and type p to paste the copied line below the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
The quick brown fox jumped over the lazy dog. It was cool.

Just as before, the u command will undo our change. With the cursor
still positioned on the last line of the file, type P to paste the text above the
current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
The quick brown fox jumped over the lazy dog. It was cool.
Line 5

Try out some of the other y commands in Table 12-4 and get to know
the behavior of both the p and P commands. When you are done, return the
file to its original state.

130 Chapter 12

Joining Lines
vi is rather strict about its idea of a line. Normally, it is not possible to move
the cursor to the end of a line and delete the end-of-line character to join
one line with the one below it. Because of this, vi provides a specific com-
mand, J (not to be confused with j, which is for cursor movement), to join
lines together.

If we place the cursor on line 3 and type the J command, here’s what
happens:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3 Line 4
Line 5

Search and Replace
vi has the ability to move the cursor to locations based on searches. It can
do this on either a single line or over an entire file. It can also perform text
replacements with or without confirmation from the user.

Searching Within a Line
The f command searches a line and moves the cursor to the next instance
of a specified character. For example, the command fa would move the
cursor to the next occurrence of the character a within the current line.
After performing a character search within a line, the search may be
repeated by typing a semicolon.

Searching the Entire File
To move the cursor to the next occurrence of a word or phrase, the / com-
mand is used. This works the same way as in the less program we covered in
Chapter 3. When you type the / command, a forward slash will appear at the
bottom of the screen. Next, type the word or phrase to be searched for, fol-
lowed by the ENTER key. The cursor will move to the next location contain-
ing the search string. A search may be repeated using the previous search
string with the n command. Here’s an example:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Place the cursor on the first line of the file. Type

/Line

A Gentle Introduction to vi 131

followed by the ENTER key. The cursor will move to line 2. Next, type n,
and the cursor will move to line 3. Repeating the n command will move the
cursor down the file until it runs out of matches. While we have so far used
only words and phrases for our search patterns, vi allows the use of regular
expressions, a powerful method of expressing complex text patterns. We will
cover regular expressions in some detail in Chapter 19.

Global Search and Replace
vi uses an ex command to perform search-and-replace operations (called
substitution in vi) over a range of lines or the entire file. To change the word
Line to line for the entire file, we would enter the following command:

:%s/Line/line/g

Let’s break this command down into separate items and see what each
one does (see Table 12-5).

Table12-5: An Example of Global Search-and-Replace Syntax

Item Meaning

: The colon character starts an ex command.

% Specifies the range of lines for the operation. % is a shortcut
meaning from the first line to the last line. Alternatively, the
range could have been specified 1,5 (because our file is five
lines long), or 1,$, which means “from line 1 to the last line in
the file.” If the range of lines is omitted, the operation is
performed only on the current line.

s Specifies the operation—in this case, substitution (search and
replace).

/Line/line/ The search pattern and the replacement text.

g This means global, in the sense that the substitution is per-
formed on every instance of the search string in each line.
If g is omitted, only the first instance of the search string on
each line is replaced.

After executing our search-and-replace command, our file looks like this:

The quick brown fox jumped over the lazy dog. It was cool.
line 2
line 3
line 4
line 5

132 Chapter 12

We can also specify a substitution command with user confirmation.
This is done by adding a c to the end of the command. For example:

:%s/line/Line/gc

This command will change our file back to its previous form; however,
before each substitution, vi stops and asks us to confirm the substitution
with this message:

replace with Line (y/n/a/q/l/^E/^Y)?

Each of the characters within the parentheses is a possible response, as
shown in Table 12-6.

Table 12-6: Replace Confirmation Keys

Key Action

y Perform the substitution.

n Skip this instance of the pattern.

a Perform the substitution on this and all subsequent
instances of the pattern.

q or ESC Quit substituting.

l Perform this substitution and then quit. Short for last.

CTRL-E, CTRL-Y Scroll down and scroll up, respectively. Useful for
viewing the context of the proposed substitution.

Editing Multiple Files
It’s often useful to edit more than one file at a time. You might need to
make changes to multiple files, or you may need to copy content from one
file into another. With vi we can open multiple files for editing by specifying
them on the command line:

vi file1 file2 file3...

Let’s exit our existing vi session and create a new file for editing. Type
:wq to exit vi, saving our modified text. Next, we’ll create an additional file
in our home directory that we can play with. We’ll create the file by captur-
ing some output from the ls command:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Let’s edit our old file and our new one with vi:

[me@linuxbox ~]$ vi foo.txt ls-output.txt

A Gentle Introduction to vi 133

vi will start up, and we will see the first file on the screen:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Switching Between Files
To switch from one file to the next, use this ex command:

:n

To move back to the previous file, use:

:N

While we can move from one file to another, vi enforces a policy that
prevents us from switching files if the current file has unsaved changes. To
force vi to switch files and abandon your changes, add an exclamation point
(!) to the command.

In addition to the switching method described above, vim (and some
versions of vi) provides some ex commands that make multiple files easier
to manage. We can view a list of files being edited with the :buffers com-
mand. Doing so will display a list of the files at the bottom of the display:

:buffers
 1 %a "foo.txt" line 1
 2 "ls-output.txt" line 0
Press ENTER or type command to continue

To switch to another buffer (file), type :buffer followed by the number
of the buffer you wish to edit. For example, to switch from buffer 1, which
contains the file foo.txt, to buffer 2, which contains the file ls-output.txt, we
would type this:

:buffer 2

and our screen now displays the second file.

Opening Additional Files for Editing
It’s also possible to add files to our current editing session. The ex com-
mand :e (short for edit) followed by a filename will open an additional file.
Let’s end our current editing session and return to the command line.

Start vi again with just one file:

[me@linuxbox ~]$ vi foo.txt

134 Chapter 12

To add our second file, enter:

:e ls-output.txt

and it should appear on the screen. The first file is still present, as we can
verify:

:buffers
 1 # "foo.txt" line 1
 2 %a "ls-output.txt" line 0
Press ENTER or type command to continue

Note: You cannot switch to files loaded with the :e command using either the :n or :N com-
mand. To switch files, use the :buffer command followed by the buffer number.

Copying Content from One File into Another
Often while editing multiple files, we will want to copy a portion of one file
into another file that we are editing. This is easily done using the usual yank
and paste commands we used earlier. We can demonstrate as follows. First,
using our two files, switch to buffer 1 (foo.txt) by entering

:buffer 1

This should give us the following:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Next, move the cursor to the first line and type yy to yank (copy)
the line.

Switch to the second buffer by entering

:buffer 2

The screen will now contain some file listings like this (only a portion is
shown here):

total 343700
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2012-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2011-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2011-05-04 17:43 aainfo

A Gentle Introduction to vi 135

Move the cursor to the first line and paste the line we copied from the
preceding file by typing the p command:

total 343700
The quick brown fox jumped over the lazy dog. It was cool.
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2012-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2011-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2011-05-04 17:43 aainfo

Inserting an Entire File into Another
It’s also possible to insert an entire file into one that we are editing. To
see this in action, let’s end our vi session and start a new one with just a
single file:

[me@linuxbox ~]$ vi ls-output.txt

We will see our file listing again:

total 343700
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2012-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2011-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2011-05-04 17:43 aainfo

Move the cursor to the third line and then enter the following ex
command:

:r foo.txt

The :r command (short for read) inserts the specified file before the
cursor position. Our screen should now look like this:

total 343700
-rwxr-xr-x 1 root root 31316 2011-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2011-12-09 13:39 411toppm
The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
-rwxr-xr-x 1 root root 111276 2012-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2010-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2011-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2011-05-04 17:43 aainfo

136 Chapter 12

Saving Our Work
Like everything else in vi, there are several ways to save our edited files. We
have already covered the ex command :w, but there are some others we may
also find helpful.

In command mode, typing ZZ will save the current file and exit vi. Like-
wise, the ex command :wq will combine the :w and :q commands into one
that will both save the file and exit.

The :w command may also specify an optional filename. This acts like a
Save As command. For example, if we were editing foo.txt and wanted to save
an alternative version called foo1.txt, we would enter the following:

:w foo1.txt

Note: While this saves the file under a new name, it does not change the name of the file you
are editing. As you continue to edit, you will still be editing foo.txt, not foo1.txt.

A Gentle Introduction to vi 137

CUSTOMIZING T H E P R O M P T

In this chapter we will look at a seemingly trivial
detail: our shell prompt. This examination will reveal
some of the inner workings of the shell and the ter-
minal emulator program itself.

Like so many things in Linux, the shell prompt is highly configurable,
and while we have pretty much taken it for granted, the prompt is a really
useful device once we learn how to control it.

Anatomy of a Prompt
Our default prompt looks something like this:

[me@linuxbox ~]$

Notice that it contains our username, our hostname, and our current
working directory, but how did it get that way? Very simply, it turns out. The

prompt is defined by an environment variable named PS1 (short for prompt
string 1). We can view the contents of PS1 with the echo command:

[me@linuxbox ~]$ echo $PS1
[\u@\h \W]\$

Note: Don’t worry if your results are not exactly the same as the example above. Every Linux
distribution defines the prompt string a little differently, some quite exotically.

From the results, we can see that PS1 contains a few of the characters we
see in our prompt, such as the square brackets, the @ sign, and the dollar
sign, but the rest are a mystery. The astute among us will recognize these as
backslash-escaped special characters like those we saw in Table 7-2. Table 13-1
is a partial list of the characters that the shell treats specially in the prompt
string.

Table 13-1: Escape Codes Used in Shell Prompts

Sequence Value Displayed

\a ASCII bell. This makes the computer beep when it is
encountered.

\d Current date in day, month, date format; for example,
“Mon May 26”

\h Hostname of the local machine minus the trailing domain name

\H Full hostname

\j Number of jobs running in the current shell session

\l Name of the current terminal device

\n A newline character

\r A carriage return

\s Name of the shell program

\t Current time in 24-hour, hours:minutes:seconds format

\T Current time in 12-hour format

\@ Current time in 12-hour, AM/PM format

\A Current time in 24-hour, hours:minutes format

\u Username of the current user

\v Version number of the shell

\V Version and release numbers of the shell

\w Name of the current working directory

140 Chapter 13

Table 13-1 (continued)

Sequence Value Displayed

\W Last part of the current working directory name

\! History number of the current command

\# Number of commands entered during this shell session

\$ This displays a “$” character unless you have superuser
privileges. In that case, it displays a “#” instead.

\[This signals the start of a series of one or more non-printing
characters. It is used to embed non-printing control characters
that manipulate the terminal emulator in some way, such as
moving the cursor or changing text colors.

\] This signals the end of a non-printing character sequence.

Trying Some Alternative Prompt Designs
With this list of special characters, we can change the prompt to see the
effect. First, we’ll back up the existing string so we can restore it later. To
do this, we will copy the existing string into another shell variable that we
create ourselves:

[me@linuxbox ~]$ ps1_old="$PS1"

We create a new variable called ps1_old and assign the value of PS1 to it.
We can verify that the string has been copied by using the echo command:

[me@linuxbox ~]$ echo $ps1_old
[\u@\h \W]\$

We can restore the original prompt at any time during our terminal ses-
sion by simply reversing the process:

[me@linuxbox ~]$ PS1="$ps1_old"

Now that we are ready to proceed, let’s see what happens if we have an
empty prompt string:

[me@linuxbox ~]$ PS1=

If we assign nothing to the prompt string, we get nothing. No prompt
string at all! The prompt is still there but displays nothing, just as we asked it
to. Since this is kind of disconcerting to look at, we’ll replace it with a min-
imal prompt:

PS1="\$ "

Customizing the Prompt 141

That’s better. At least now we can see what we are doing. Notice the
trailing space within the double quotes. This provides the space between
the dollar sign and the cursor when the prompt is displayed.

Let’s add a bell to our prompt:

$ PS1="\a\$ "

Now we should hear a beep each time the prompt is displayed. This
could get annoying, but it might be useful if we needed notification when
an especially long-running command has been executed.

Next, let’s try to make an informative prompt with some hostname and
time-of-day information:

$ PS1="\A \h \$ "
17:33 linuxbox $

Adding time-of-day to our prompt will be useful if we need to keep track
of when we perform certain tasks. Finally, we’ll make a new prompt that is
similar to our original:

17:37 linuxbox $ PS1="<\u@\h \W>\$ "
<me@linuxbox ~>$

Try out the other sequences listed in Table 13-1 and see if you can come
up with a brilliant new prompt.

Adding Color
Most terminal emulator programs respond to certain non-printing character
sequences to control such things as character attributes (like color, bold
text, and the dreaded blinking text) and cursor position. We’ll cover cursor
position in a little bit, but first we’ll look at color.

T E R M I N A L C O N F U S I O N

Back in ancient times, when terminals were hooked to remote computers,
there were many competing brands of terminals and they all worked differ-
ently. They had different keyboards, and they all had different ways of inter-
preting control information. Unix and Unix-like systems have two rather
complex subsystems (called termcap and terminfo) to deal with the babel of ter-
minal control. If you look into the deepest recesses of your terminal emulator
settings, you may find a setting for the type of terminal emulation.

In an effort to make terminals speak some sort of common language,
the American National Standards Institute (ANSI) developed a standard set
of character sequences to control video terminals. Old-time DOS users will
remember the ANSI.SYS file that was used to enable interpretation of these
codes.

142 Chapter 13

Character color is controlled by sending the terminal emulator an ANSI
escape code embedded in the stream of characters to be displayed. The con-
trol code does not “print out” on the display; rather it is interpreted by the
terminal as an instruction. As we saw in Table 13-1, the \[and \] sequences
are used to encapsulate non-printing characters. An ANSI escape code begins
with an octal 033 (the code generated by the ESC key), followed by an optional
character attribute, followed by an instruction. For example, the code to set
the text color to normal (attribute = 0) black text is \033[0;30m.

Table 13-2 lists available text colors. Notice that the colors are divided
into two groups, differentiated by the application of the bold character
attribute (1), which creates the appearance of “light” colors.

Table13-2: Escape Sequences Used to Set Text Colors

Sequence Text Color

\033[0;30m Black

\033[0;31m Red

\033[0;32m Green

\033[0;33m Brown

\033[0;34m Blue

\033[0;35m Purple

\033[0;36m Cyan

\033[0;37m Light Gray

\033[1;30m Dark Gray

\033[1;31m Light Red

\033[1;32m Light Green

\033[1;33m Yellow

\033[1;34m Light Blue

\033[1;35m Light Purple

\033[1;36m Light Cyan

\033[1;37m White

Let’s try to make a red prompt (seen here as gray). We’ll insert the
escape code at the beginning:

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$ "
<me@linuxbox ~>$

Customizing the Prompt 143

That works, but notice that all the text that we type after the prompt
is also red. To fix this, we will add another escape code to the end of the
prompt that tells the terminal emulator to return to the previous color:

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$\[\033[0m\] "
<me@linuxbox ~>$

That’s better!
It’s also possible to set the text background color using the codes listed

in Table 13-3. The background colors do not support the bold attribute.

Table 13-3: Escape Sequences Used to Set Background Color

Sequence Background Color

\033[0;40m Black

\033[0;41m Red

\033[0;42m Green

\033[0;43m Brown

\033[0;44m Blue

\033[0;45m Purple

\033[0;46m Cyan

\033[0;47m Light Gray

We can create a prompt with a red background by applying a simple
change to the first escape code:

<me@linuxbox ~>$ PS1="\[\033[0;41m\]<\u@\h \W>\$\[\033[0m\] "
<me@linuxbox ~>$

Try out the color codes and see what you can create!

Note: Besides the normal (0) and bold (1) character attributes, text may also be given under-
score (4), blinking (5), and inverse (7) attributes. In the interests of good taste, many
terminal emulators refuse to honor the blinking attribute.

Moving the Cursor
Escape codes can be used to position the cursor. This is commonly used
to provide a clock or some other kind of information at a different location
on the screen, such as an upper corner, each time the prompt is drawn.
Table 13-4 lists the escape codes that position the cursor.

144 Chapter 13

Table 13-4: Cursor Movement Escape Sequences

Escape Code Action

\033[l;cH Move the cursor to line l and column c.

\033[nA Move the cursor up n lines.

\033[nB Move the cursor down n lines.

\033[nC Move the cursor forward n characters.

\033[nD Move the cursor backward n characters.

\033[2J Clear the screen and move the cursor to the upper-left corner
(line 0, column 0).

\033[K Clear from the cursor position to the end of the current line.

\033[s Store the current cursor position.

\033[u Recall the stored cursor position.

Using these codes, we’ll construct a prompt that draws a red bar at the
top of the screen containing a clock (rendered in yellow text) each time the
prompt is displayed. The code for the prompt is this formidable looking
string:

PS1="\[\033[s\033[0;0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]<\u@\h \W>\$ "

Table 13-5 takes a look at each part of the string to see what it does.

Table 13-5: Breakdown of Complex Prompt String

Sequence Action

\[Begins a non-printing character sequence. The real purpose
of this is to allow bash to correctly calculate the size of the
visible prompt. Without this, command line editing features
will improperly position the cursor.

\033[s Store the cursor position. This is needed to return to the
prompt location after the bar and clock have been drawn
at the top of the screen. Be aware that some terminal
emulators do not honor this code.

\033[0;0H Move the cursor to the upper-left corner, which is line 0,
column 0.

\033[0;41m Set the background color to red.

Customizing the Prompt 145

(continued)

Table 13-5 (continued)

Sequence Action

\033[K Clear from the current cursor location (the top-left corner)
to the end of the line. Since the background color is now
red, the line is cleared to that color, creating our bar. Note
that clearing to the end of the line does not change the
cursor position, which remains at the upper-left corner.

\033[1;33m Set the text color to yellow.

\t Display the current time. While this is a “printing” element,
we still include it in the non-printing portion of the prompt,
because we don’t want bash to include the clock when
calculating the true size of the displayed prompt.

\033[0m Turn off color. This affects both the text and the background.

\033[u Restore the cursor position saved earlier.

\] End the non-printing characters sequence.

<\u@\h \W>\$ Prompt string.

Saving the Prompt
Obviously, we don’t want to be typing that monster all the time, so we’ll
want to store our prompt someplace. We can make the prompt permanent
by adding it to our .bashrc file. To do so, add these two lines to the file:

PS1="\[\033[s\033[0;0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]<\u@\h \W>\$ "

export PS1

Final Note
Believe it or not, much more can be done with prompts involving shell
functions and scripts that we haven’t covered here, but this is a good start.
Not everyone will care enough to change the prompt, since the default
prompt is usually satisfactory. But for those of us who like to tinker, the
shell provides an opportunity for many hours of trivial fun.

146 Chapter 13

PART 3
C O M M O N T A S K S A N D

E S S E N T I A L T O O L S

P A C K A G E MANAGEMENT

If we spend any time in the Linux community, we
hear many opinions as to which of the many Linux
distributions is “best.” Often, these discussions get
really silly, focusing on such things as the prettiness
of the desktop background (some people won’t use
Ubuntu because of its default color scheme!) and
other trivial matters.

The most important determinant of distribution quality is the packag-
ing system and the vitality of the distribution’s support community. As we
spend more time with Linux, we see that its software landscape is extremely
dynamic. Things are constantly changing. Most of the top-tier Linux distri-
butions release new versions every six months and many individual program
updates every day. To keep up with this blizzard of software, we need good
tools for package management.

Package management is a method of installing and maintaining software
on the system. Today, most people can satisfy all of their software needs by
installing packages from their Linux distributor. This contrasts with the early
days of Linux, when one had to download and compile source code in order

to install software. Not that there is anything wrong with compiling source
code; in fact, having access to source code is the great wonder of Linux. It
gives us (and everybody else) the ability to examine and improve the system.
It’s just that working with a precompiled package is faster and easier.

In this chapter, we will look at some of the command-line tools used
for package management. While all of the major distributions provide
powerful and sophisticated graphical programs for maintaining the system,
it is important to learn about the command-line programs, too. They can
perform many tasks that are difficult (or impossible) to do using their
graphical counterparts.

Packaging Systems
Different distributions use different packaging systems, and as a general rule
a package intended for one distribution is not compatible with another dis-
tribution. Most distributions fall into one of two camps of packaging techno-
logies: the Debian .deb camp and the Red Hat .rpm camp. There are some
important exceptions, such as Gentoo, Slackware, and Foresight, but most
others use one of the two basic systems shown in Table 14-1.

Table 14-1: Major Packaging System Families

Packaging System Distributions (partial listing)

Debian style (.deb) Debian, Ubuntu, Xandros, Linspire

Red Hat style (.rpm) Fedora, CentOS, Red Hat Enterprise Linux, openSUSE,
Mandriva, PCLinuxOS

How a Package System Works
The method of software distribution found in the proprietary software
industry usually entails buying a piece of installation media such as an
“install disk” and then running an “installation wizard” to install a new
application on the system.

Linux doesn’t work that way. Virtually all software for a Linux system
is found on the Internet. Most of it is provided by the distribution vendor
in the form of package files, and the rest is available in source code form,
which can be installed manually. We’ll talk a little about how to install soft-
ware by compiling source code in Chapter 23.

Package Files
The basic unit of software in a packaging system is the package file. A package
file is a compressed collection of files that comprise the software package.
A package may consist of numerous programs and data files that support
the programs. In addition to the files to be installed, the package file also
includes metadata about the package, such as a text description of the

150 Chapter 14

package and its contents. Additionally, many packages contain pre- and
post-installation scripts that perform configuration tasks before and after
the package installation.

Package files are created by a person known as a package maintainer,
often (but not always) an employee of the distribution vendor. The package
maintainer gets the software in source code form from the upstream provider
(the author of the program), compiles it, and creates the package metadata
and any necessary installation scripts. Often, the package maintainer will
apply modifications to the original source code to improve the program’s
integration with the other parts of the Linux distribution.

Repositories
While some software projects choose to perform their own packaging and
distribution, most packages today are created by the distribution vendors
and interested third parties. Packages are made available to the users of a
distribution in central repositories, which may contain many thousands of
packages, each specially built and maintained for the distribution.

A distribution may maintain several different repositories for different
stages of the software development life cycle. For example, there will usually
be a testing repository, which contains packages that have just been built and
are intended for use by brave souls who are looking for bugs before the pack-
ages are released for general distribution. A distribution will often have a
development repository where work-in-progress packages destined for inclusion
in the distribution’s next major release are kept.

A distribution may also have related third-party repositories. These
are often needed to supply software that, for legal reasons such as patents
or Digital Rights Management (DRM) anticircumvention issues, cannot
be included with the distribution. Perhaps the best-known case is that of
encrypted DVD support, which is not legal in the United States. The third-
party repositories operate in countries where software patents and anti-
circumvention laws do not apply. These repositories are usually wholly
independent of the distribution they sup-port, and to use them one must
know about them and manually include them in the configuration files for
the package management system.

Dependencies
Programs seldom stand alone; rather, they rely on the presence of other
software components to get their work done. Common activities, such as
input/output for example, are handled by routines shared by many programs.
These routines are stored in what are called shared libraries, which provide
essential services to more than one program. If a package requires a shared
resource such as a shared library, it is said to have a dependency. Modern
package management systems all provide some method of dependency resolu-
tion to ensure that when a package is installed, all of its dependencies are
installed, too.

Package Management 151

High- and Low-Level Package Tools
Package management systems usually consist of two types of tools: low-level
tools that handle tasks such as installing and removing package files, and
high-level tools that perform metadata searching and dependency resolu-
tion. In this chapter, we will look at the tools supplied with Debian-style sys-
tems (such as Ubuntu and many others) and those used by recent Red Hat
products. While all Red Hat–style distributions rely on the same low-level
program (rpm), they use different high-level tools. For our discussion, we
will cover the high-level program yum, used by Fedora, Red Hat Enterprise
Linux, and CentOS. Other Red Hat–style distributions provide high-level
tools with comparable features (see Table 14-2).

Table14-2: Packaging System Tools

Distributions Low-Level Tools High-Level Tools

Debian style dpkg apt-get, aptitude

Fedora, Red Hat Enterprise
Linux, CentOS

rpm yum

Common Package Management Tasks
Many operations can be performed with the command-line package man-
agement tools. We will look at the most common. Be aware that the low-
level tools also support creation of package files, an activity outside the
scope of this book.

In the following discussion, the term package_name refers to the actual
name of a package, as opposed to package_file, which is the name of the file
that contains the package.

Finding a Package in a Repository
By using the high-level tools to search repository metadata, one can locate a
package based on its name or description (see Table 14-3).

Table 14-3: Package Search Commands

Style Command(s)

Debian apt-get update
apt-cache search search_string

Red Hat yum search search_string

152 Chapter 14

Example: Search a yum repository for the emacs text editor on a Red Hat
system:

yum search emacs

Installing a Package from a Repository
High-level tools permit a package to be downloaded from a repository and
installed with full dependency resolution (see Table 14-4).

Table 14-4: Package Installation Commands

Style Command(s)

Debian apt-get update
apt-get install package_name

Red Hat yum install package_name

Example: Install the emacs text editor from an apt repository on a
Debian-style system:

apt-get update; apt-get install emacs

Installing a Package from a Package File
If a package file has been downloaded from a source other than a reposit-
ory, it can be installed directly (though without dependency resolution)
using a low-level tool (see Table 14-5).

Table 14-5: Low-Level Package Installation Commands

Style Command

Debian dpkg --install package_file

Red Hat rpm -i package_file

Example: If the emacs-22.1-7.fc7-i386.rpm package file has been down-
loaded from a non-repository site, install it on a Red Hat system this way:

rpm -i emacs-22.1-7.fc7-i386.rpm

Note: Since this technique uses the low-level rpm program to perform the installation, no
dependency resolution is performed. If rpm discovers a missing dependency, rpm will
exit with an error.

Package Management 153

Removing a Package
Packages can be uninstalled using either the high-level or low-level tools.
The high-level tools are shown in Table 14-6.

Table14-6: Package Removal Commands

Style Command

Debian apt-get remove package_name

Red Hat yum erase package_name

Example: Uninstall the emacs package from a Debian-style system:

apt-get remove emacs

Updating Packages from a Repository
The most common package management task is keeping the system up-to-
date with the latest packages. The high-level tools can perform this vital task
in one single step (see Table 14-7).

Table 14-7: Package Update Commands

Style Command(s)

Debian apt-get update; apt-get upgrade

Red Hat yum update

Example: Apply any available updates to the installed packages on a
Debian-style system:

apt-get update; apt-get upgrade

Upgrading a Package from a Package File
If an updated version of a package has been downloaded from a non-
repository source, it can be installed, replacing the previous version (see
Table 14-8).

Table 14-8: Low-Level Package Upgrade Commands

Style Command

Debian dpkg --install package_file

Red Hat rpm -U package_file

154 Chapter 14

Example: Update an existing installation of emacs to the version con-
tained in the package file emacs-22.1-7.fc7-i386.rpm on a Red Hat system:

rpm -U emacs-22.1-7.fc7-i386.rpm

Note: dpkg does not have a specific option for upgrading a package versus installing one, as
rpm does.

Listing Installed Packages
The commands shown in Table 14-9 can be used to display a list of all the
packages installed on the system.

Table 14-9: Package Listing Commands

Style Command

Debian dpkg --list

Red Hat rpm -qa

Determining Whether a Package Is Installed
The low-level tools shown in Table 14-10 can be used to display whether a
specified package is installed.

Table 14-10: Package Status Commands

Style Command

Debian dpkg --status package_name

Red Hat rpm -q package_name

Example: Determine whether the emacs package is installed on a Debian-
style system:

dpkg --status emacs

Displaying Information About an Installed Package
If the name of an installed package is known, the commands shown in
Table 14-11 can be used to display a description of the package.

Table 14-11: Package Information Commands

Style Command

Debian apt-cache show package_name

Red Hat yum info package_name

Package Management 155

Example: See a description of the emacs package on a Debian-style
system:

apt-cache show emacs

Finding Which Package Installed a File
To determine which package is responsible for the installation of a particu-
lar file, the commands shown in Table 14-12 can be used.

Table 14-12: Package File Identification Commands

Style Command

Debian dpkg --search file_name

Red Hat rpm -qf file_name

Example: See which package installed the /usr/bin/vim file on a Red Hat
system:

rpm -qf /usr/bin/vim

Final Note
In the chapters that follow, we will explore many programs covering a wide
range of application areas. While most of these programs are commonly
installed by default, sometimes we may need to install additional packages.
With our newfound knowledge (and appreciation) of package management,
we should have no problem installing and managing the programs we need.

T H E L I N U X S O F T W A R E I N S T A L L A T I O N M Y T H

People migrating from other platforms sometimes fall victim to the myth that
software is somehow difficult to install under Linux and that the variety of
packaging schemes used by different distributions is a hindrance. Well, it is
a hindrance, but only to proprietary software vendors who wish to distribute
binary-only versions of their secret software.

The Linux software ecosystem is based on the idea of open source code. If
a program developer releases source code for a product, it is likely that a per-
son associated with a distribution will package the product and include it in the
repository. This method ensures that the product is well integrated into the dis-
tribution and the user is given the convenience of one-stop shopping for soft-
ware, rather than having to search for each product’s website.

Device drivers are handled in much the same way, except that instead
of being separate items in a distribution’s repository, they become part of the
Linux kernel itself. Generally speaking, there is no such thing as a “driver disk”

156 Chapter 14

in Linux. Either the kernel supports a device or it doesn’t, and the Linux ker-
nel supports a lot of devices. Many more, in fact, than Windows does. Of course,
this is no consolation if the particular device you need is not supported. When
that happens, you need to look at the cause. A lack of driver support is usually
caused by one of three things:

The device is too new. Since many hardware vendors don’t actively support
Linux development, it falls upon a member of the Linux community to
write the kernel driver code. This takes time.

The device is too exotic. Not all distributions include every possible device
driver. Each distribution builds its own kernels, and since kernels are very
configurable (which is what makes it possible to run Linux on everything
from wristwatches to mainframes), the distribution may have overlooked
a particular device. By locating and downloading the source code for the
driver, it is possible for you (yes, you) to compile and install the driver your-
self. This process is not overly difficult, but it is rather involved. We’ll talk
about compiling software in Chapter 23.

The hardware vendor is hiding something. It has neither released source
code for a Linux driver, nor has it released the technical documentation
for somebody else to create one. This means that the hardware vendor is
trying to keep the programming interfaces to the device a secret. Since we
don’t want secret devices in our computers, I suggest that you remove the
offending hardware and pitch it into the trash with your other useless items.

Package Management 157

S T O R A G E M E D I A

In previous chapters we’ve looked at manipulating data
at the file level. In this chapter, we will consider data at
the device level. Linux has amazing capabilities for
handling storage devices, whether physical storage
such as hard disks, network storage, or virtual storage
devices like RAID (redundant array of independent
disks) and LVM (logical volume manager).

However, since this is not a book about system administration, we will
not try to cover this entire topic in depth. What we will do is introduce some
of the concepts and key commands that are used to manage storage devices.

To carry out the exercises in this chapter, we will use a USB flash drive,
a CD-RW disc (for systems equipped with a CD-ROM burner), and a floppy
disk (again, if the system is so equipped).

We will look at the following commands:

mount—Mount a filesystem.

umount—Unmount a filesystem.

fdisk—Partition table manipulator.

fsck—Check and repair a filesystem.

fdformat—Format a floppy disk.

mkfs—Create a filesystem.

dd—Write block-oriented data directly to a device.

genisoimage (mkisofs)—Create an ISO 9660 image file.

wodim (cdrecord)—Write data to optical storage media.

md5sum—Calculate an MD5 checksum.

Mounting and Unmounting Storage Devices
Recent advances in the Linux desktop have made storage device manage-
ment extremely easy for desktop users. For the most part, we attach a device
to our system and it just works. Back in the old days (say, 2004), this stuff
had to be done manually. On non-desktop systems (i.e., servers) this is still
a largely manual procedure, because servers often have extreme storage
needs and complex configuration requirements.

The first step in managing a storage device is attaching the device to
the filesystem tree. This process, called mounting, allows the device to par-
ticipate with the operating system. As we recall from Chapter 2, Unix-like
operating systems, like Linux, maintain a single filesystem tree with devices
attached at various points. This contrasts with other operating systems such
as MS-DOS and Windows that maintain separate trees for each device (for
example C:\, D:\, etc.).

A file named /etc/fstab lists the devices (typically hard disk partitions)
that are to be mounted at boot time. Here is an example /etc/fstab file from
a Fedora 7 system:

LABEL=/12 / ext3 defaults 1 1
LABEL=/home /home ext3 defaults 1 2
LABEL=/boot /boot ext3 defaults 1 2
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0
LABEL=SWAP-sda3 swap swap defaults 0 0

Most of the filesystems listed in this example file are virtual and are not
applicable to our discussion. For our purposes, the interesting ones are the
first three:

LABEL=/12 / ext3 defaults 1 1
LABEL=/home /home ext3 defaults 1 2
LABEL=/boot /boot ext3 defaults 1 2

160 Chapter 15

These are the hard disk partitions. Each line of the file consists of six
fields, as shown in Table 15-1.

Table 15-1: /etc/fstab Fields

Field Contents Description

1 Device Traditionally, this field contains the actual name of
a device file associated with the physical device,
such as /dev/hda1 (the first partition of the master
device on the first IDE channel). But with today’s
computers, which have many devices that are hot
pluggable (like USB drives), many modern Linux
distributions associate a device with a text label
instead. This label (which is added to the storage
medium when it is formatted) is read by the oper-
ating system when the device is attached to the
system. That way, no matter which device file is
assigned to the actual physical device, it can still
be correctly identified.

2 Mount point The directory where the device is attached to the
filesystem tree

3 Filesystem type Linux allows many filesystem types to be mounted.
Most native Linux filesystems are ext3, but many
others are supported, such as FAT16 (msdos), FAT32
(vfat), NTFS (ntfs), CD-ROM (iso9660), etc.

4 Options Filesystems can be mounted with various options. It
is possible, for example, to mount filesystems as
read only or to prevent any programs from being
executed from them (a useful security feature for
removable media).

5 Frequency A single number that specifies if and when a file-
system is to be backed up with the dump command

6 Order A single number that specifies in what order file-
systems should be checked with the fsck command

Viewing a List of Mounted Filesystems
The mount command is used to mount filesystems. Entering the command
without arguments will display a list of the filesystems currently mounted:

[me@linuxbox ~]$ mount
/dev/sda2 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)

Storage Media 161

devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda5 on /home type ext3 (rw)
/dev/sda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
fusectl on /sys/fs/fuse/connections type fusectl (rw)
/dev/sdd1 on /media/disk type vfat (rw,nosuid,nodev,noatime,
uhelper=hal,uid=500,utf8,shortname=lower)
twin4:/musicbox on /misc/musicbox type nfs4 (rw,addr=192.168.1.4)

The format of the listing is device on mount_point type filesystem_type
(options). For example, the first line shows that device /dev/sda2 is mounted
as the root filesystem, is of type ext3, and is both readable and writable
(the option rw). This listing also has two interesting entries at the bottom.
The next-to-last entry shows a 2-gigabyte SD memory card in a card reader
mounted at /media/disk, and the last entry is a network drive mounted at
/misc/musicbox.

For our first experiment, we will work with a CD-ROM. First, let’s look at
a system before a CD-ROM is inserted:

[me@linuxbox ~]$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

This listing is from a CentOS 5 system that is using LVM to create its
root filesystem. Like many modern Linux distributions, this system will
attempt to automatically mount the CD-ROM after insertion. After we
insert the disc, we see the following:

[me@linuxbox ~]$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
/dev/hdc on /media/live-1.0.10-8 type iso9660 (ro,noexec,nosuid,nodev,uid=500)

We see the same listing as before, with one additional entry. At the end
of the listing, we see that the CD-ROM (which is device /dev/hdc on this sys-
tem) has been mounted on /media/live-1.0.10-8 and is type iso9660 (a CD-
ROM). For the purposes of our experiment, we’re interested in the name
of the device. When you conduct this experiment yourself, the device name
will most likely be different.

162 Chapter 15

Warning: In the examples that follow, it is vitally important that you pay close attention to
the actual device names in use on your system and do not use the names used in
this text!

Also, note that audio CDs are not the same as CD-ROMs. Audio CDs do not
contain filesystems and thus cannot be mounted in the usual sense.

Now that we have the device name of the CD-ROM drive, let’s unmount
the disc and remount it at another location in the filesystem tree. To do this,
we become the superuser (using the command appropriate for our system)
and unmount the disc with the umount (notice the spelling) command:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]# umount /dev/hdc

The next step is to create a new mount point for the disc. A mount point
is simply a directory somewhere on the filesystem tree. Nothing special about
it. It doesn’t even have to be an empty directory, though if you mount a
device on a non-empty directory, you will not be able to see the directory’s
previous contents until you unmount the device. For our purposes, we will
create a new directory:

[root@linuxbox ~]# mkdir /mnt/cdrom

Finally, we mount the CD-ROM at the new mount point. The -t option
is used to specify the filesystem type:

[root@linuxbox ~]# mount -t iso9660 /dev/hdc /mnt/cdrom

Afterward, we can examine the contents of the CD-ROM via the new
mount point:

[root@linuxbox ~]# cd /mnt/cdrom
[root@linuxbox cdrom]# ls

Notice what happens when we try to unmount the CD-ROM:

[root@linuxbox cdrom]# umount /dev/hdc
umount: /mnt/cdrom: device is busy

Why is this? We cannot unmount a device if the device is being used by
someone or some process. In this case, we changed our working directory to
the mount point for the CD-ROM, which causes the device to be busy. We
can easily remedy the issue by changing the working directory to something
other than the mount point:

[root@linuxbox cdrom]# cd
[root@linuxbox ~]# umount /dev/hdc

Now the device unmounts successfully.

Storage Media 163

W H Y U N M O U N T I N G I S I M P O R T A N T

If you look at the output of the free command, which displays statistics about
memory usage, you will see a statistic called buffers. Computer systems are
designed to go as fast as possible. One of the impediments to system speed
is slow devices. Printers are a good example. Even the fastest printer is extremely
slow by computer standards. A computer would be very slow indeed if it had to
stop and wait for a printer to finish printing a page. In the early days of PCs
(before multitasking), this was a real problem. If you were working on a spread-
sheet or text document, the computer would stop and become unavailable every
time you printed. The computer would send the data to the printer as fast as
the printer could accept it, but it was very slow because printers don’t print very
fast. This problem was solved by the advent of the printer buffer, a device contain-
ing some RAM memory, that would sit between the computer and the printer.
With the printer buffer in place, the computer would send the printer output
to the buffer, and it would quickly be stored in the fast RAM so the computer
could go back to work without waiting. Meanwhile, the printer buffer would
slowly spool the data to the printer from the buffer’s memory at the speed at
which the printer could accept it.

This idea of buffering is used extensively in computers to make them
faster. Don’t let the need to occasionally read or write data to or from slow
devices impede the speed of the system. Operating systems store data that has
been read from, and is to be written to, storage devices in memory for as long
as possible before actually having to interact with the slower device. On a Linux
system, for example, you will notice that the system seems to fill up memory the
longer it is used. This does not mean Linux is “using” all the memory, it means
that Linux is taking advantage of all the available memory to do as much buf-
fering as it can.

This buffering allows writing to storage devices to be done very quickly,
because the writing to the physical device is being deferred to a future time. In
the meantime, the data destined for the device is piling up in memory. From
time to time, the operating system will write this data to the physical device.

Unmounting a device entails writing all the remaining data to the device
so that it can be safely removed. If the device is removed without first being
unmounted, the possibility exists that not all the data destined for the device
has been transferred. In some cases, this data may include vital directory updates,
which will lead to filesystem corruption, one of the worst things that can happen
on a computer.

Determining Device Names
It’s sometimes difficult to determine the ameof a device. Back in the old
days, it wasn’t very hard. A device was always in the same place and didn’t
change. Unix-like systems like it that way. Back when Unix was developed,
“changing a disk drive” involved using a forklift to remove a washing

164 Chapter 15

machine–sized device from the computer room. In recent years, the typi-
cal desktop hardware configuration has become quite dynamic, and Linux
has evolved to become more flexible than its ancestors.

In the examples above, we took advantage of the modern Linux desktop’s
ability to “automagically” mount the device and then determine the name
after the fact. But what if we are managing a server or some other environ-
ment where this does not occur? How can we figure it out?

First, let’s look at how the system names devices. If we list the contents
of the /dev directory (where all devices live), we can see that there are lots
and lots of devices:

[me@linuxbox ~]$ ls /dev

The contents of this listing reveal some patterns of device naming.
Table 15-2 lists a few.

Table 15-2: Linux Storage Device Names

Pattern Device

/dev/fd* Floppy disk drives

/dev/hd* IDE (PATA) disks on older systems. Typical motherboards
contain two IDE connectors, or channels, each with a cable
with two attachment points for drives. The first drive on
the cable is called the master device and the second is
called the slave device. The device names are ordered
such that /dev/hda refers to the master device on the first
channel, /dev/hdb is the slave device on the first channel;
/dev/hdc, the master device on the second channel, and
so on. A trailing digit indicates the partition number on the
device. For example, /dev/hda1 refers to the first partition
on the first hard drive on the system while /dev/hda refers to
the entire drive.

/dev/lp* Printers

/dev/sd* SCSI disks. On recent Linux systems, the kernel treats all
disk-like devices (including PATA/SATA hard disks, flash
drives, and USB mass storage devices such as portable music
players and digital cameras) as SCSI disks. The rest of the
naming system is similar to the older /dev/hd* naming
scheme described above.

/dev/sr* Optical drives (CD/DVD readers and burners)

In addition, we often see symbolic links such as /dev/cdrom, /dev/dvd, and
/dev/floppy, which point to the actual device files, provided as a convenience.

If you are working on a system that does not automatically mount
removable devices, you can use the following technique to determine how

Storage Media 165

the removable device is named when it is attached. First, start a real-time
view of the /var/log/messages file (you may require superuser privileges
for this):

[me@linuxbox ~]$ sudo tail -f /var/log/messages

The last few lines of the file will be displayed and then pause. Next,
plug in the removable device. In this example, we will use a 16MB flash
drive. Almost immediately, the kernel will notice the device and probe it:

Jul 23 10:07:53 linuxbox kernel: usb 3-2: new full speed USB device using uhci_h
cd and address 2
Jul 23 10:07:53 linuxbox kernel: usb 3-2: configuration #1 chosen from 1 choice
Jul 23 10:07:53 linuxbox kernel: scsi3 : SCSI emulation for USB Mass Storage dev
ices
Jul 23 10:07:58 linuxbox kernel: scsi scan: INQUIRY result too short (5), using
36
Jul 23 10:07:58 linuxbox kernel: scsi 3:0:0:0: Direct-Access Easy Disk 1.00 PQ:
0 ANSI: 2
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte hardware secto
rs (16 MB)
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is off
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive cache: write t
hrough
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte hardware secto
rs (16 MB)
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is off
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive cache: write t
hrough
Jul 23 10:07:59 linuxbox kernel: sdb: sdb1
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI removable disk
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: Attached scsi generic sg3 type 0

After the display pauses again, press CTRL-C to get the prompt back. The
interesting parts of the output are the repeated references to [sdb], which
matches our expectation of a SCSI disk device name. Knowing this, two lines
become particularly illuminating:

Jul 23 10:07:59 linuxbox kernel: sdb: sdb1
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI removable disk

This tells us the device name is /dev/sdb for the entire device and
/dev/sdb1 for the first partition on the device. As we have seen, working
with Linux means lots of interesting detective work!

Note: Using the tail -f /var/log/messages technique is a great way to watch what the sys-
tem is doing in near realtime.

With our device name in hand, we can now mount the flash drive:

[me@linuxbox ~]$ sudo mkdir /mnt/flash
[me@linuxbox ~]$ sudo mount /dev/sdb1 /mnt/flash
[me@linuxbox ~]$ df

166 Chapter 15

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5186944 9775164 35% /
/dev/sda5 59631908 31777376 24776480 57% /home
/dev/sda1 147764 17277 122858 13% /boot
tmpfs 776808 0 776808 0% /dev/shm
/dev/sdb1 15560 0 15560 0% /mnt/flash

The device name will remain the same as long as it remains physically
attached to the computer and the computer is not rebooted.

Creating New Filesystems
Let’s say that we want to reformat the flash drive with a Linux native file-
system, rather than the FAT32 system it has now. This involves two steps:
first, (optionally) creating a new partition layout if the existing one is not
to our liking, and second, creating a new, empty filesystem on the drive.

Warning: In the following exercise, we are going to format a flash drive. Use a drive that con-
tains nothing you care about because it will be erased! Again, make absolutely sure
you are specifying the correct device name for your system, not the one shown in
the text. Failure to heed this warning could result in formatting (i.e., erasing) the
wrong drive!

Manipulating Partitions with fdisk
The fdisk program allows us to interact directly with disk-like devices (such
as hard disk drives and flash drives) at a very low level. With this tool we can
edit, delete, and create partitions on the device. To work with our flash drive,
we must first unmount it (if needed) and then invoke the fdisk program as
follows:

[me@linuxbox ~]$ sudo umount /dev/sdb1
[me@linuxbox ~]$ sudo fdisk /dev/sdb

Notice that we must specify the device in terms of the entire device, not
by partition number. After the program starts up, we will see the following
prompt:

Command (m for help):

Entering an m will display the program menu:

Command action
 a toggle a bootable flag
 b edit bsd disklabel
 c toggle the dos compatibility flag
 d delete a partition
 l list known partition types
 m print this menu
 n add a new partition

Storage Media 167

 o create a new empty DOS partition table
 p print the partition table
 q quit without saving changes
 s create a new empty Sun disklabel
 t change a partition's system id
 u change display/entry units
 v verify the partition table
 w write table to disk and exit
 x extra functionality (experts only)

Command (m for help):

The first thing we want to do is examine the existing partition layout.
We do this by entering p to print the partition table for the device:

Command (m for help): p

Disk /dev/sdb: 16 MB, 16006656 bytes
1 heads, 31 sectors/track, 1008 cylinders
Units = cylinders of 31 * 512 = 15872 bytes

 Device Boot Start End Blocks Id System
/dev/sdb1 2 1008 15608+ b W95 FAT32

In this example, we see a 16MB device with a single partition (1) that
uses 1006 of the available 1008 cylinders on the device. The partition is
identified as a Windows 95 FAT32 partition. Some programs will use this
identifier to limit the kinds of operation that can be done to the disk, but
most of the time changing the identifier is not critical. However, in the
interest of demonstration, we will change it to indicate a Linux partition.
To do this, we must first find out what ID is used to identify a Linux parti-
tion. In the listing above, we see that the ID b is used to specify the existing
partition. To see a list of the available partition types, we refer back to the
program menu. There we can see the following choice:

 l list known partition types

If we enter l at the prompt, a large list of possible types is displayed.
Among them we see b for our existing partition type and 83 for Linux.

Going back to the menu, we see this choice to change a partition ID:

 t change a partition's system id

We enter t at the prompt and enter the new ID:

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 83
Changed system type of partition 1 to 83 (Linux)

168 Chapter 15

This completes all the changes that we need to make. Up to this point,
the device has been untouched (all the changes have been stored in memory,
not on the physical device), so we will write the modified partition table to
the device and exit.

To do this, we enter w at the prompt:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.
[me@linuxbox ~]$

If we had decided to leave the device unaltered, we could have entered
q at the prompt, which would have exited the program without writing the
changes. We can safely ignore the ominous-sounding warning message.

Creating a New Filesystem with mkfs
With our partition editing done (lightweight though it might have been),
it’s time to create a new filesystem on our flash drive. To do this, we will use
mkfs (short for make filesystem), which can create filesystems in a variety of
formats. To create an ext3 filesystem on the device, we use the -t option to
specify the ext3 system type, followed by the name of the device containing
the partition we wish to format:

[me@linuxbox ~]$ sudo mkfs -t ext3 /dev/sdb1
mke2fs 1.40.2 (12-Jul-2012)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
3904 inodes, 15608 blocks
780 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=15990784
2 block groups
8192 blocks per group, 8192 fragments per group
1952 inodes per group
Superblock backups stored on blocks:

8193

Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 34 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[me@linuxbox ~]$

Storage Media 169

The program will display a lot of information when ext3 is the chosen
filesystem type. To reformat the device to its original FAT32 filesystem, spe-
cify vfat as the filesystem type:

[me@linuxbox ~]$ sudo mkfs -t vfat /dev/sdb1

This process of partitioning and formatting can be used anytime addi-
tional storage devices are added to the system. While we worked with a tiny
flash drive, the same process can be applied to internal hard disks and other
removable storage devices like USB hard drives.

Testing and Repairing Filesystems
In our earlier discussion of the /etc/fstab file, we saw some mysterious digits
at the end of each line. Each time the system boots, it routinely checks the
integrity of the filesystems before mounting them. This is done by the fsck
program (short for filesystem check). The last number in each fstab entry spe-
cifies the order in which the devices are to be checked. In our example above,
we see that the root filesystem is checked first, followed by the home and boot
filesystems. Devices with a zero as the last digit are not routinely checked.

In addition to checking the integrity of filesystems, fsck can also repair
corrupt filesystems with varying degrees of success, depending on the amount
of damage. On Unix-like filesystems, recovered portions of files are placed
in the lost+found directory, located in the root of each filesystem.

To check our flash drive (which should be unmounted first), we could
do the following:

[me@linuxbox ~]$ sudo fsck /dev/sdb1
fsck 1.40.8 (13-Mar-2012)
e2fsck 1.40.8 (13-Mar-2012)
/dev/sdb1: clean, 11/3904 files, 1661/15608 blocks

In my experience, filesystem corruption is quite rare unless there is a
hardware problem, such as a failing disk drive. On most systems, filesystem
corruption detected at boot time will cause the system to stop and direct you
to run fsck before continuing.

W H A T T H E F S C K ?

In Unix culture, fsck is often used in place of a popular word with which it
shares three letters. This is especially appropriate, given that you will probably
be uttering the aforementioned word if you find yourself in a situation where
you are forced to run fsck.

170 Chapter 15

Formatting Floppy Disks
For those of us still using computers old enough to be equipped with floppy-
disk drives, we can manage those devices, too. Preparing a blank floppy for
use is a two-step process. First, we perform a low-level format on the disk,
and then we create a filesystem. To accomplish the formatting, we use the
dformat program specifying the name of the floppy device (usually /dev/fd0):

[me@linuxbox ~]$ sudo fdformat /dev/fd0
Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done
Verifying ... done

Next, we apply a FAT filesystem to the disk with mkfs:

[me@linuxbox ~]$ sudo mkfs -t msdos /dev/fd0

Notice that we use the msdos filesystem type to get the older (and
smaller) style file allocation tables. After a disk is prepared, it may be
mounted like other devices.

Moving Data Directly to and from Devices
While we usually think of data on our computers as being organized into
files, it is also possible to think of the data in “raw” form. If we look at a disk
drive, for example, we see that it consists of a large number of “blocks” of
data that the operating system sees as directories and files. If we could treat
a disk drive as simply a large collection of data blocks, we could perform
useful tasks, such as cloning devices.

The dd program performs this task. It copies blocks of data from one
place to another. It uses a unique syntax (for historical reasons) and is usu-
ally used this way:

dd if=input_file of=output_file [bs=block_size [count=blocks]]

Let’s say we had two USB flash drives of the same size and we wanted
to exactly copy the first drive to the second. If we attached both drives to the
computer and they were assigned to devices /dev/sdb and /dev/sdc respect-
ively, we could copy everything on the first drive to the second drive with
the following:

dd if=/dev/sdb of=/dev/sdc

Alternatively, if only the first device were attached to the computer, we
could copy its contents to an ordinary file for later restoration or copying:

dd if=/dev/sdb of=flash_drive.img

Storage Media 171

Warning: The dd command is very powerful. Though its name derives from data definition,
it is sometimes called destroy disk because users often mistype either the if or of
specifications. Always double-check your input and output specifications before
pressing ENTER!

Creating CD-ROM Images
Writing a recordable CD-ROM (either a CD-R or CD-RW) consists of two
steps: first, constructing an ISO image file that is the exact filesystem image of
the CD-ROM, and second, writing the image file onto the CD-ROM medium.

Creating an Image Copy of a CD-ROM
If we want to make an ISO image of an existing CD-ROM, we can use dd to
read all the data blocks off the CD-ROM and copy them to a local file. Say
we had an Ubuntu CD and we wanted to make an ISO file that we could
later use to make more copies. After inserting the CD and determining its
device name (we’ll assume /dev/cdrom), we can make the ISO file like so:

dd if=/dev/cdrom of=ubuntu.iso

This technique works for data DVDs as well, but it will not work for
audio CDs as they do not use a filesystem for storage. For audio CDs, look
at the cdrdao command.

A P R O G R A M B Y A N Y O T H E R N A M E . . .

If you look at online tutorials for creating and burning optical media like CD-
ROMs and DVDs, you will frequently encounter two programs called mkisofs
and cdrecord. These programs were part of a popular package called cdrtools
authored by Jörg Schilling. In the summer of 2006, Mr. Schilling made a
license change to a portion of the cdrtools package that, in the opinion of many
in the Linux community, created a license incompatibility with the GNU GPL.
As a result, a fork of the cdrtools project was started, which now includes replace-
ment programs for cdrecord and mkisofs named wodim and genisoimage, respectively.

Creating an Image from a Collection of Files
To create an ISO image file containing the contents of a directory, we use
the enisoimage program. To do this, we first create a directory containing all
the files we wish to include in the image and then execute the genisoimage
command to create the image file. For example, if we had created a directory
called ~/cd-rom-files and filled it with files for our CD-ROM, we could create
an image file named cd-rom.iso with the following command:

genisoimage -o cd-rom.iso -R -J ~/cd-rom-files

172 Chapter 15

The -R option adds metadata for the Rock Ridge extensions, which allow
the use of long filenames and POSIX-style file permissions. Likewise, the -J
option enables the Joliet extensions, which permit long filenames in Windows.

Writing CD-ROM Images
After we have an image file, we can burn it onto our optical media. Most of
the commands we discuss below can be applied to both recordable CD-ROM
and DVD media.

Mounting an ISO Image Directly
There is a trick that we can use to mount an ISO image while it is still on
our hard disk and treat it as though it were already on optical media. By
adding the -o loop option to mount (along with the required -t iso9660
filesystem type), we can mount the image file as though it were a device and
attach it to the filesystem tree:

mkdir /mnt/iso_image
mount -t iso9660 -o loop image.iso /mnt/iso_image

In the example above, we created a mount point named /mnt/iso_image
and then mounted the image file image.iso at that mount point. After the
image is mounted, it can be treated just as though it were a real CD-ROM
or DVD. Remember to unmount the image when it is no longer needed.

Blanking a Rewritable CD-ROM
Rewritable CD-RW media need to be erased or blanked before being reused.
To do this, we can use wodim, specifying the device name for the CD writer
and the type of blanking to be performed. The wodim program offers several
types. The most minimal (and fastest) is the fast type:

wodim dev=/dev/cdrw blank=fast

Writing an Image
To write an image, we again use wodim, specifying the name of the optical
media writer device and the name of the image file:

wodim dev=/dev/cdrw image.iso

In addition to the device name and image file, wodim supports a very
large set of options. Two common ones are -v for verbose output and -dao,
which writes the disc in disc-at-once mode. This mode should be used if you
are preparing a disc for commercial reproduction. The default mode for
wodim is track-at-once, which is useful for recording music tracks.

Storage Media 173

Extra Credit
It’s often useful to verify the integrity of an ISO image that we have down-
loaded. In most cases, a distributor of an ISO image will also supply a check-
sum file. A checksum is the result of an exotic mathematical calculation
resulting in a number that represents the content of the target file. If the
contents of the file change by even one bit, the resulting checksum will be
much different. The most common method of checksum generation uses
the md5sum program. When you use md5sum, it produces a unique hexadecimal
number:

md5sum image.iso
34e354760f9bb7fbf85c96f6a3f94ece image.iso

After you download an image, you should run md5sum against it and com-
pare the results with the md5sum value supplied by the publisher.

In addition to checking the integrity of a downloaded file, we can use
md5sum to verify newly written optical media. To do this, we first calculate the
checksum of the image file and then calculate a checksum for the medium.
The trick to verifying the medium is to limit the calculation to only the por-
tion of the optical medium that contains the image. We do this by determin-
ing the number of 2048-byte blocks the image contains (optical media is
always written in 2048-byte blocks) and reading that many blocks from the
medium. On some types of media, this is not required. A CD-R written in
disc-at-once mode can be checked this way:

md5sum /dev/cdrom
34e354760f9bb7fbf85c96f6a3f94ece /dev/cdrom

Many types of media, such as DVDs, require a precise calculation of
the number of blocks. In the example below, we check the integrity of the
image file dvd-image.iso and the disc in the DVD reader /dev/dvd. Can you
figure out how this works?

md5sum dvd-image.iso; dd if=/dev/dvd bs=2048 count=$(($(stat -c "%s" dvd-image
.iso) / 2048)) | md5sum

174 Chapter 15

N E T W O R K I N G

When it comes to networking, there is probably noth-
ing that cannot be done with Linux. Linux is used
to build all sorts of networking systems and appli-
ances, including firewalls, routers, name servers, NAS
(network-attached storage) boxes, and on and on.

Just as the subject of networking is vast, so is the number of commands
that can be used to configure and control it. We will focus our attention on
just a few of the most frequently used ones. The commands chosen for exam-
ination include those used to monitor networks and those used to transfer
files. In addition, we are going to explore the ssh program, which is used to
perform remote logins. This chapter will cover the following:

ping—Send an ICMP ECHO_REQUEST to network hosts.

traceroute—Print the route packets trace to a network host.

netstat—Print network connections, routing tables, interface statis-
tics, masquerade connections, and multicast memberships.

ftp—Internet file transfer program.

lftp—An improved Internet file transfer program.

wget—Non-interactive network downloader.

ssh—OpenSSH SSH client (remote login program).

scp—Secure copy (remote file copy program).

sftp—Secure file transfer program.

We’re going to assume a little background in networking. In this, the
Internet age, everyone using a computer needs a basic understanding of
networking concepts. To make full use of this chapter, you should be famil-
iar with the following terms:

IP (Internet protocol) address

Host and domain name

URI (uniform resource identifier)

Note: Some of the commands we will cover may (depending on your distribution) require the
installation of additional packages from your distribution’s repositories, and some
may require superuser privileges to execute.

Examining and Monitoring a Network
Even if you’re not the system administrator, it’s often helpful to examine
the performance and operation of a network.

ping—Send a Special Packet to a Network Host
The most basic network command is ping. The ping command sends a spe-
cial network packet called an IMCP ECHO_REQUEST to a specified host.
Most network devices receiving this packet will reply to it, allowing the net-
work connection to be verified.

Note: It is possible to configure most network devices (including Linux hosts) to ignore these
packets. This is usually done for security reasons, to partially obscure a host from a
potential attacker. It is also common for firewalls to be configured to block IMCP
traffic.

For example, to see if we can reach http://www.linuxcommand.org/ (one
of my favorite sites ;-)), we can use ping like this:

[me@linuxbox ~]$ ping linuxcommand.org

Once started, ping continues to send packets at a specified interval
(default is 1 second) until it is interrupted:

[me@linuxbox ~]$ ping linuxcommand.org
PING linuxcommand.org (66.35.250.210) 56(84) bytes of data.

176 Chapter 16

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=1 ttl=43 time=10
7 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=2 ttl=43 time=10
8 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=3 ttl=43 time=10
6 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=4 ttl=43 time=10
6 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=5 ttl=43 time=10
5 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=6 ttl=43 time=10
7 ms

--- linuxcommand.org ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 6010ms
rtt min/avg/max/mdev = 105.647/107.052/108.118/0.824 ms

After it is interrupted (in this case after the sixth packet) by the pressing
of CTRL-C, ping prints performance statistics. A properly performing network
will exhibit zero percent packet loss. A successful ping will indicate that the
elements of the network (its interface cards, cabling, routing, and gateways)
are in generally good working order.

traceroute—Trace the Path of a Network Packet
The traceroute program (some systems use the similar tracepath program
instead) displays a listing of all the “hops” network traffic takes to get from
the local system to a specified host. For example, to see the route taken to
reach http://www.slashdot.org/, we would do this:

[me@linuxbox ~]$ traceroute slashdot.org

The output looks like this:

traceroute to slashdot.org (216.34.181.45), 30 hops max, 40 byte packets
 1 ipcop.localdomain (192.168.1.1) 1.066 ms 1.366 ms 1.720 ms
 2 * * *
 3 ge-4-13-ur01.rockville.md.bad.comcast.net (68.87.130.9) 14.622 ms 14.885
ms 15.169 ms
 4 po-30-ur02.rockville.md.bad.comcast.net (68.87.129.154) 17.634 ms 17.626
ms 17.899 ms
 5 po-60-ur03.rockville.md.bad.comcast.net (68.87.129.158) 15.992 ms 15.983
ms 16.256 ms
 6 po-30-ar01.howardcounty.md.bad.comcast.net (68.87.136.5) 22.835 ms 14.23
3 ms 14.405 ms
 7 po-10-ar02.whitemarsh.md.bad.comcast.net (68.87.129.34) 16.154 ms 13.600
ms 18.867 ms
 8 te-0-3-0-1-cr01.philadelphia.pa.ibone.comcast.net (68.86.90.77) 21.951 ms
21.073 ms 21.557 ms
 9 pos-0-8-0-0-cr01.newyork.ny.ibone.comcast.net (68.86.85.10) 22.917 ms 21
.884 ms 22.126 ms
10 204.70.144.1 (204.70.144.1) 43.110 ms 21.248 ms 21.264 ms
11 cr1-pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 21.857 ms cr2-pos-0-0-
3-1.newyork.savvis.net (204.70.204.238) 19.556 ms cr1-pos-0-7-3-1.newyork.sav
vis.net (204.70.195.93) 19.634 ms

Networking 177

12 cr2-pos-0-7-3-0.chicago.savvis.net (204.70.192.109) 41.586 ms 42.843 ms
cr2-tengig-0-0-2-0.chicago.savvis.net (204.70.196.242) 43.115 ms
13 hr2-tengigabitethernet-12-1.elkgrovech3.savvis.net (204.70.195.122) 44.21
5 ms 41.833 ms 45.658 ms
14 csr1-ve241.elkgrovech3.savvis.net (216.64.194.42) 46.840 ms 43.372 ms 4
7.041 ms
15 64.27.160.194 (64.27.160.194) 56.137 ms 55.887 ms 52.810 ms
16 slashdot.org (216.34.181.45) 42.727 ms 42.016 ms 41.437 ms

In the output, we can see that connecting from our test system to http://
www.slashdot.org/ requires traversing 16 routers. For routers that provide
identifying information, we see their hostnames, IP addresses, and perform-
ance data, which include three samples of round-trip time from the local
system to the router. For routers that do not provide identifying information
(because of router configuration, network congestion, firewalls, etc.), we see
asterisks as in the line for hop number two.

netstat—Examine Network Settings and Statistics
The netstat program is used to examine various network settings and statis-
tics. Through the use of its many options, we can look at a variety of features
in our network setup. Using the -ie option, we can examine the network
interfaces in our system:

[me@linuxbox ~]$ netstat -ie
eth0 Link encap:Ethernet HWaddr 00:1d:09:9b:99:67
 inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::21d:9ff:fe9b:9967/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:238488 errors:0 dropped:0 overruns:0 frame:0
 TX packets:403217 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:153098921 (146.0 MB) TX bytes:261035246 (248.9 MB)
 Memory:fdfc0000-fdfe0000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:2208 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2208 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:111490 (108.8 KB) TX bytes:111490 (108.8 KB)

In the example above, we see that our test system has two network inter-
faces. The first, called eth0, is the Ethernet interface; the second, called lo, is
the loopback interface, a virtual interface that the system uses to “talk to itself.”

When performing causal network diagnostics, the important things to
look for are the presence of the word UP at the beginning of the fourth line
for each interface, indicating that the network interface is enabled, and the
presence of a valid IP address in the inet addr field on the second line. For
systems using Dynamic Host Configuration Protocol (DHCP), a valid IP
address in this field will verify that the DHCP is working.

178 Chapter 16

Using the -r option will display the kernel’s network routing table.
This shows how the network is configured to send packets from network
to network:

[me@linuxbox ~]$ netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0 default
192.168.1.1 0.0.0.0 UG 0 0 0 eth0

In this simple example, we see a typical routing table for a client machine
on a local area network (LAN) behind a firewall/router. The first line of the
listing shows the destination 192.168.1.0. IP addresses that end in zero refer
to networks rather than individual hosts, so this destination means any host
on the LAN. The next field, Gateway, is the name or IP address of the gateway
(router) used to go from the current host to the destination network. An
asterisk in this field indicates that no gateway is needed.

The last line contains the destination default. This means any traffic
destined for a network that is not otherwise listed in the table. In our example,
we see that the gateway is defined as a router with the address of 192.168.1.1,
which presumably knows what to do with the destination traffic.

The netstat program has many options, and we have looked at only a
couple. Check out the netstat man page for a complete list.

Transporting Files over a Network
What good is a network unless we know how to move files across it? There
are many programs that move data over networks. We will cover two of them
now and several more in later sections.

ftp—Transfer Files with the File Transfer Protocol
One of the true “classic” programs, ftp gets its name from the protocol it
uses, the File Transfer Protocol. FTP is used widely on the Internet for file
downloads. Most, if not all, web browsers support it, and you often see URIs
starting with the protocol ftp://.

Before there were web browsers, there was the ftp program. ftp is used
to communicate with FTP servers, machines that contain files that can be
uploaded and downloaded over a network.

FTP (in its original form) is not secure, because it sends account names
and passwords in cleartext. This means that they are not encrypted and any-
one sniffing the network can see them. Because of this, almost all FTP done
over the Internet is done by anonymous FTP servers. An anonymous server
allows anyone to log in using the login name anonymous and a meaningless
password.

In the following example, we show a typical session with the ftp pro-
gram downloading an Ubuntu ISO image located in the /pub/cd_images/
Ubuntu-8.04 directory of the anonymous FTP server fileserver.

Networking 179

[me@linuxbox ~]$ ftp fileserver
Connected to fileserver.localdomain.
220 (vsFTPd 2.0.1)
Name (fileserver:me): anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd pub/cd_images/Ubuntu-8.04
250 Directory successfully changed.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-rw-r-- 1 500 500 733079552 Apr 25 03:53 ubuntu-8.04-desktop-
i386.iso
226 Directory send OK.
ftp> lcd Desktop
Local directory now /home/me/Desktop
ftp> get ubuntu-8.04-desktop-i386.iso
local: ubuntu-8.04-desktop-i386.iso remote: ubuntu-8.04-desktop-i386.iso
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for ubuntu-8.04-desktop-i386.iso
(733079552 bytes).
226 File send OK.
733079552 bytes received in 68.56 secs (10441.5 kB/s)
ftp> bye

Table 16-1 gives an explanation of the commands entered during this
session.

Table 16-1: Examples of Interactive ftp Commands

Command Meaning
ftp fileserver Invoke the ftp program and have it

connect to the FTP server fileserver.

anonymous Login name. After the login prompt, a
password prompt will appear. Some
servers will accept a blank password.
Others will require a password in the
form of an email address. In that case,
try something like user@example.com.

cd pub/cd_images/Ubuntu-8.04 Change to the directory on the remote
system containing the desired file. Note
that on most anonymous FTP servers, the
files for public downloading are found
somewhere under the pub directory.

ls List the directory on the remote system.

180 Chapter 16

Table 16-1 (continued)

Command Meaning
lcd Desktop Change the directory on the local

system to ~/Desktop. In the example,
the ftp program was invoked when the
working directory was ~. This command
changes the working directory to
~/Desktop.

get ubuntu-8.04-desktop-i386.iso Tell the remote system to transfer the
file ubuntu-8.04-desktop-i386.iso to
the local system. Since the working
directory on the local system was
changed to ~/Desktop, the file will
be downloaded there.

bye Log off the remote server and end the
ftp program session. The commands
quit and exit may also be used.

Typing help at the ftp> prompt will display a list of the supported com-
mands. Using ftp on a server where sufficient permissions have been granted,
it is possible to perform many ordinary file management tasks. It’s clumsy,
but it does work.

lftp—A Better ftp
ftp is not the only command-line FTP client. In fact, there are many. One of
the better (and more popular) ones is lftp by Alexander Lukyanov. It works
much like the traditional ftp program but has many additional convenience
features, including multiple-protocol support (including HTTP), automatic
retry on failed downloads, background processes, tab completion of path-
names, and many more.

wget—Non-interactive Network Downloader
Another popular command-line program for file downloading is wget. It is
useful for downloading content from both web and FTP sites. Single files,
multiple files, and even entire sites can be downloaded. To download the
first page of http://www.linuxcommand.org/, we could do this:

[me@linuxbox ~]$ wget http://linuxcommand.org/index.php
--11:02:51-- http://linuxcommand.org/index.php
 => `index.php'
Resolving linuxcommand.org... 66.35.250.210
Connecting to linuxcommand.org|66.35.250.210|:80... connected.

Networking 181

HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]

 [<=>] 3,120 --.--K/s

11:02:51 (161.75 MB/s) - `index.php' saved [3120]

The program’s many options allow wget to recursively download, down-
load files in the background (allowing you to log off but continue down-
loading), and complete the download of a partially downloaded file. These
features are well documented in its better-than-average man page.

Secure Communication with Remote Hosts
For many years, Unix-like operating systems have had the ability to be
administered remotely via a network. In the early days, before the general
adoption of the Internet, there were a couple of popular programs used to
log in to remote hosts: the rlogin and telnet programs. These programs,
however, suffer from the same fatal flaw that the ftp program does; they
transmit all their communications (including login names and passwords) in
cleartext. This makes them wholly inappropriate for use in the Internet age.

ssh—Securely Log in to Remote Computers
To address this problem, a new protocol called SSH (Secure Shell) was
developed. SSH solves the two basic problems of secure communication
with a remote host. First, it authenticates that the remote host is who it says
it is (thus preventing man-in-the-middle attacks), and second, it encrypts all
of the communications between the local and remote hosts.

SSH consists of two parts. An SSH server runs on the remote host, listen-
ing for incoming connections on port 22, while an SSH client is used on the
local system to communicate with the remote server.

Most Linux distributions ship an implementation of SSH called OpenSSH
from the BSD project. Some distributions include both the client and the
server packages by default (for example, Red Hat), while others (such as
Ubuntu) supply only the client. To enable a system to receive remote con-
nections, it must have the OpenSSH-server package installed, configured, and
running, and (if the system is either running or behind a firewall) it must
allow incoming network connections on TCP port 22.

Note: If you don’t have a remote system to connect to but want to try these examples, make
sure the OpenSSH-server package is installed on your system and use localhost as the
name of the remote host. That way, your machine will create network connections with
itself.

182 Chapter 16

The SSH client program used to connect to remote SSH servers is
called, appropriately enough, ssh. To connect to a remote host named
remote-sys, we would use the ssh client program like so:

[me@linuxbox ~]$ ssh remote-sys
The authenticity of host 'remote-sys (192.168.1.4)' can't be established.
RSA key fingerprint is 41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.
Are you sure you want to continue connecting (yes/no)?

The first time the connection is attempted, a message is displayed indi-
cating that the authenticity of the remote host cannot be established. This
is because the client program has never seen this remote host before. To
accept the credentials of the remote host, enter yes when prompted. Once
the connection is established, the user is prompted for a password:

Warning: Permanently added 'remote-sys,192.168.1.4' (RSA) to the list of known
hosts.
me@remote-sys's password:

After the password is successfully entered, we receive the shell prompt
from the remote system:

Last login: Tue Aug 30 13:00:48 2011
[me@remote-sys ~]$

The remote shell session continues until the user enters the exit com-
mand at the remote shell prompt, thereby closing the remote connection.
At this point, the local shell session resumes, and the local shell prompt
reappears.

It is also possible to connect to remote systems using a different user-
name. For example, if the local user me had an account named bob on a
remote system, user me could log in to the account bob on the remote system
as follows:

[me@linuxbox ~]$ ssh bob@remote-sys
bob@remote-sys's password:
Last login: Tue Aug 30 13:03:21 2011
[bob@remote-sys ~]$

As stated before, ssh verifies the authenticity of the remote host. If
the remote host does not successfully authenticate, the following message
appears:

[me@linuxbox ~]$ ssh remote-sys
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.

Networking 183

The fingerprint for the RSA key sent by the remote host is
41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.
Please contact your system administrator.
Add correct host key in /home/me/.ssh/known_hosts to get rid of this message.
Offending key in /home/me/.ssh/known_hosts:1
RSA host key for remote-sys has changed and you have requested strict
checking.
Host key verification failed.

This message is caused by one of two possible situations. First, an attacker
may be attempting a man-in-the-middle attack. This is rare, because every-
body knows that ssh alerts the user to this. The more likely culprit is that
the remote system has been changed somehow; for example, its operating
system or SSH server has been reinstalled. In the interests of security and
safety, however, the first possibility should not be dismissed out of hand.
Always check with the administrator of the remote system when this message
occurs.

After determining that the message is due to a benign cause, it is safe to
correct the problem on the client side. This is done by using a text editor
(vim perhaps) to remove the obsolete key from the ~/.ssh/known_hosts file.
In the example message above, we see this:

Offending key in /home/me/.ssh/known_hosts:1

This means that line 1 of the known_hosts file contains the offending
key. Delete this line from the file, and the ssh program will be able to accept
new authentication credentials from the remote system.

Besides opening a shell session on a remote system, ssh also allows us to
execute a single command on a remote system. For example, we can execute
the free command on a remote host named remote-sys and have the results
displayed on the local system:

[me@linuxbox ~]$ ssh remote-sys free
me@twin4's password:
 total used free shared buffers cached
Mem: 775536 507184 268352 0 110068 154596
-/+ buffers/cache: 242520 533016
Swap: 1572856 0 1572856
[me@linuxbox ~]$

It’s possible to use this technique in more interesting ways, such as this
example in which we perform an ls on the remote system and redirect the
output to a file on the local system:

[me@linuxbox ~]$ ssh remote-sys 'ls *' > dirlist.txt
me@twin4's password:
[me@linuxbox ~]$

Notice the use of the single quotes. This is done because we do not want
the pathname expansion performed on the local machine; rather, we want it
to be performed on the remote system. Likewise, if we had wanted the output

184 Chapter 16

redirected to a file on the remote machine, we could have placed the redir-
ection operator and the filename within the single quotes:

[me@linuxbox ~]$ ssh remote-sys 'ls * > dirlist.txt'

T U N N E L I N G W I T H S S H

Part of what happens when you establish a connection with a remote host via
SSH is that an encrypted tunnel is created between the local and remote systems.
Normally, this tunnel is used to allow commands typed at the local system to be
transmitted safely to the remote system and the results to be transmitted safely
back. In addition to this basic function, the SSH protocol allows most types of
network traffic to be sent through the encrypted tunnel, creating a sort of VPN
(virtual private network) between the local and remote systems.

Perhaps the most common use of this feature is to allow X Window system
traffic to be transmitted. On a system running an X server (that is, a machine
displaying a GUI), it is possible to launch and run an X client program (a graph-
ical application) on a remote system and have its display appear on the local
system. It’s easy to do—here’s an example. Let’s say we are sitting at a Linux sys-
tem called linuxbox that is running an X server, and we want to run the xload
program on a remote system named remote-sys and see the program’s graphical
output on our local system. We could do this:

[me@linuxbox ~]$ ssh -X remote-sys
me@remote-sys's password:
Last login: Mon Sep 05 13:23:11 2011
[me@remote-sys ~]$ xload

After the xload command is executed on the remote system, its window
appears on the local system. On some systems, you may need to use the -Y
option rather than the -X option to do this.

scp and sftp—Securely Transfer Files
The OpenSSH package also includes two programs that can make use of an SSH-
encrypted tunnel to copy files across the network. The first, scp (secure copy)
is used much like the familiar cp program to copy files. The most notable
difference is that the source or destination pathname may be preceded with
the name of a remote host followed by a colon character. For example, if we
wanted to copy a document named document.txt from our home directory on
the remote system, remote-sys, to the current working directory on our local
system, we could do this:

[me@linuxbox ~]$ scp remote-sys:document.txt .
me@remote-sys's password:
document.txt 100% 5581 5.5KB/s 00:00
[me@linuxbox ~]$

Networking 185

As with ssh, you may apply a username to the beginning of the remote
host’s name if the desired remote host account name does not match that of
the local system:

[me@linuxbox ~]$ scp bob@remote-sys:document.txt .

The second SSH file-copying program is sftp, which, as its name implies,
is a secure replacement for the ftp program. sftp works much like the ori-
ginal ftp program that we used earlier; however, instead of transmitting
everything in cleartext, it uses an SSH-encrypted tunnel. sftp has an impor-
tant advantage over conventional ftp in that it does not require an FTP
server to be running on the remote host. It requires only the SSH server.
This means that any remote machine that can connect with the SSH client
can also be used as a FTP-like server. Here is a sample session:

[me@linuxbox ~]$ sftp remote-sys
Connecting to remote-sys...
me@remote-sys's password:
sftp> ls
ubuntu-8.04-desktop-i386.iso
sftp> lcd Desktop
sftp> get ubuntu-8.04-desktop-i386.iso
Fetching /home/me/ubuntu-8.04-desktop-i386.iso to ubuntu-8.04-desktop-i386.iso

/home/me/ubuntu-8.04-desktop-i386.iso 100% 699MB 7.4MB/s 01:35
sftp> bye

Note: The SFTP protocol is supported by many of the graphical file managers found in
Linux distributions. Using either Nautilus (GNOME) or Konqueror (KDE), we can
enter a URI beginning with sftp:// into the location bar and operate on files stored
on a remote system running an SSH server.

A N S S H C L I E N T F O R W I N D O W S ?

Let’s say you are sitting at a Windows machine but you need to log in to your
Linux server and get some real work done. What do you do? Get an SSH client
program for your Windows box, of course! There are a number of these. The
most popular one is probably PuTTY by Simon Tatham and his team. The PuTTY
program displays a terminal window and allows a Windows user to open an SSH
(or telnet) session on a remote host. The program also provides analogs for the
scp and sftp programs.

PuTTY is available at http://www.chiark.greenend.org.uk/~sgtatham/putty/.

186 Chapter 16

S E A R C H I N G F O R F I L E S

As we have wandered around our Linux system, one
thing has become abundantly clear: A typical Linux
system has a lot of files! This raises the question “How
do we find things?” We already know that the Linux
filesystem is well organized according to conventions that have been passed
down from one generation of Unix-like systems to the next, but the sheer
number of files can present a daunting problem.

In this chapter, we will look at two tools that are used to find files on a
system:

locate—Find files by name.

find—Search for files in a directory hierarchy.

We will also look at a command that is often used with file-search com-
mands to process the resulting list of files:

xargs—Build and execute command lines from standard input.

In addition, we will introduce a couple of commands to assist us in our
explorations:

touch—Change file times.

stat—Display file or filesystem status.

locate—Find Files the Easy Way
The locate program performs a rapid database search of pathnames and
then outputs every name that matches a given substring. Say, for example,
we want to find all the programs with names that begin with zip. Since we
are looking for programs, we can assume that the name of the directory
containing the programs would end with bin/. Therefore, we could try to
use locate this way to find our files:

[me@linuxbox ~]$ locate bin/zip

locate will search its database of pathnames and output any that contain
the string bin/zip:

/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

If the search requirement is not so simple, locate can be combined with
other tools, such as grep, to design more interesting searches:

[me@linuxbox ~]$ locate zip | grep bin
/bin/bunzip2
/bin/bzip2
/bin/bzip2recover
/bin/gunzip
/bin/gzip
/usr/bin/funzip
/usr/bin/gpg-zip
/usr/bin/preunzip
/usr/bin/prezip
/usr/bin/prezip-bin
/usr/bin/unzip
/usr/bin/unzipsfx
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

The locate program has been around for a number of years, and several
different variants are in common use. The two most common ones found in
modern Linux distributions are slocate and mlocate, though they are usually

188 Chapter 17

accessed by a symbolic link named locate. The different versions of locate
have overlapping options sets. Some versions include regular-expression
matching (which we’ll cover in Chapter 19) and wildcard support. Check
the man page for locate to determine which version of locate is installed.

W H E R E D O E S T H E L O C A T E D A T A B A S E C O M E F R O M ?

You may notice that, on some distributions, locate fails to work just after the
system is installed, but if you try again the next day, it works fine. What gives?
The locate database is created by another program named updatedb. Usually, it is
run periodically as a cron job; that is, a task performed at regular intervals by the
cron daemon. Most systems equipped with locate run updatedb once a day. Since
the database is not updated continuously, you will notice that very recent files
do not show up when using locate. To overcome this, it’s possible to run the
updatedb program manually by becoming the superuser and running updatedb
at the prompt.

find—Find Files the Hard Way
While the locate program can find a file based solely on its name, the find
program searches a given directory (and its subdirectories) for files based
on a variety of attributes. We’re going to spend a lot of time with find because
it has a bunch of interesting features that we will see again and again when
we start to cover programming concepts in later chapters.

In its simplest use, find is given one or more names of directories to
search. For example, it can produce a list of our home directory:

[me@linuxbox ~]$ find ~

On most active user accounts, this will produce a large list. Since the
list is sent to standard output, we can pipe the list into other programs. Let’s
use wc to count the number of files:

[me@linuxbox ~]$ find ~ | wc -l
47068

Wow, we’ve been busy! The beauty of find is that it can be used to
identify files that meet specific criteria. It does this through the (slightly
strange) application of tests, actions, and options. We’ll look at the tests first.

Tests
Let’s say that we want a list of directories from our search. To do this, we
could add the following test:

[me@linuxbox ~]$ find ~ -type d | wc -l
1695

Searching for Files 189

Adding the test -type d limited the search to directories. Conversely, we
could have limited the search to regular files with this test:

[me@linuxbox ~]$ find ~ -type f | wc -l
38737

Table 17-1 lists the common file-type tests supported by find.

Table 17-1: find File Types

File Type Description

b Block special device file

c Character special device file

d Directory

f Regular file

l Symbolic link

We can also search by file size and filename by adding some additional
tests. Let’s look for all the regular files that match the wildcard pattern
*.JPG and are larger than 1 megabyte:

[me@linuxbox ~]$ find ~ -type f -name "*.JPG" -size +1M | wc -l
840

In this example, we add the -name test followed by the wildcard pattern.
Notice that we enclose it in quotes to prevent pathname expansion by the
shell. Next, we add the -size test followed by the string +1M. The leading plus
sign indicates that we are looking for files larger than the specified number.
A leading minus sign would change the string to mean “smaller than the
specified number.” Using no sign means “match the value exactly.” The
trailing letter M indicates that the unit of measurement is megabytes. The
characters shown in Table 17-2 may be used to specify units.

Table 17-2: find Size Units

Character Unit

b 512-byte blocks (the default if no unit is specified)

c Bytes

w 2-byte words

k Kilobytes (units of 1024 bytes)

M Megabytes (units of 1,048,576 bytes)

G Gigabytes (units of 1,073,741,824 bytes)

190 Chapter 17

find supports a large number of different tests. Table 17-3 provides a
rundown of the common ones. Note that in cases where a numeric argu-
ment is required, the same + and - notation discussed above can be applied.

Table 17-3: find Tests

Test Description

-cmin n Match files or directories whose content or attributes were
last modified exactly n minutes ago. To specify fewer than
n minutes ago, use -n; to specify more than n minutes ago,
use +n.

-cnewer file Match files or directories whose contents or attributes were
last modified more recently than those of file.

-ctime n Match files or directories whose contents or attributes (i.e.,
permissions) were last modified n*24 hours ago.

-empty Match empty files and directories.

-group name Match file or directories belonging to group name. name
may be expressed as either a group name or as a numeric
group ID.

-iname pattern Like the -name test but case insensitive.

-inum n Match files with inode number n. This is helpful for finding
all the hard links to a particular inode.

-mmin n Match files or directories whose contents were modified n
minutes ago.

-mtime n Match files or directories whose contents only were last
modified n*24 hours ago.

-name pattern Match files and directories with the specified wildcard
pattern.

-newer file Match files and directories whose contents were modified
more recently than the specified file. This is very useful
when writing shell scripts that perform file backups. Each
time you make a backup, update a file (such as a log) and
then use find to determine which files have changed since
the last update.

-nouser Match file and directories that do not belong to a valid
user. This can be used to find files belonging to deleted
accounts or to detect activity by attackers.

-nogroup Match files and directories that do not belong to a valid
group.

Searching for Files 191

(continued)

Table 17-3 (continued)

Test Description

-perm mode Match files or directories that have permissions set to the
specified mode. mode may be expressed by either octal or
symbolic notation.

-samefile name Similar to the -inum test. Matches files that share the same
inode number as file name.

-size n Match files of size n.

-type c Match files of type c.

-user name Match files or directories belonging to name. name may be
expressed by a username or by a numeric user ID.

This is not a complete list. The find man page has all the details.

Operators
Even with all the tests that find provides, we may still need a better way to
describe the logical relationships between the tests. For example, what if we
needed to determine if all the files and subdirectories in a directory had
secure permissions? We would look for all the files with permissions that are
not 0600 and the directories with permissions that are not 0700. Fortunately,
find provides a way to combine tests using logical operators to create more
complex logical relationships. To express the aforementioned test, we
could do this:

[me@linuxbox ~]$ find ~ \(-type f -not -perm 0600 \) -or \(-type d -not -perm
0700 \)

Yikes! That sure looks weird. What is all this stuff? Actually, the opera-
tors are not that complicated once you get to know them (see Table 17-4).

Table 17-4: find Logical Operators

Operator Description

-and Match if the tests on both sides of the operator are true. May be
shortened to -a. Note that when no operator is present, -and is
implied by default.

-or Match if a test on either side of the operator is true. May be
shortened to -o.

-not Match if the test following the operator is false. May be
shortened to -!.

192 Chapter 17

Table 17-4 (continued)

Operator Description

() Groups tests and operators together to form larger expressions.
This is used to control the precedence of the logical evaluations.
By default, find evaluates from left to right. It is often necessary
to override the default evaluation order to obtain the desired
result. Even if not needed, it is helpful sometimes to include the
grouping characters to improve readability of the command.
Note that since the parentheses characters have special meaning
to the shell, they must be quoted when using them on the command
line to allow them to be passed as arguments to find. Usually
the backslash character is used to escape them.

With this list of operators in hand, let’s deconstruct our find command.
When viewed from the uppermost level, we see that our tests are arranged as
two groupings separated by an -or operator:

(expression 1) -or (expression 2)

This makes sense, since we are searching for files with a certain set of
permissions and for directories with a different set. If we are looking for both
files and directories, why do we use -or instead of -and? Because as find scans
through the files and directories, each one is evaluated to see if it matches
the specified tests. We want to know if it is either a file with bad permissions
or a directory with bad permissions. It can’t be both at the same time. So if
we expand the grouped expressions, we can see it this way:

(file with bad perms) -or (directory with bad perms)

Our next challenge is how to test for “bad permissions.” How do we do
that? Actually we don’t. What we will test for is “not good permissions,” since
we know what “good permissions” are. In the case of files, we define good as
0600; for directories, 0700. The expression that will test files for “not good”
permissions is:

-type f -and -not -perms 0600

and the expression for directories is:

-type d -and -not -perms 0700

As noted in Table 17-4, the -and operator can be safely removed, since
it is implied by default. So if we put this all back together, we get our final
command:

find ~ (-type f -not -perms 0600) -or (-type d -not -perms 0700)

However, since the parentheses have special meaning to the shell, we
must escape them to prevent the shell from trying to interpret them. Pre-
ceding each one with a backslash character does the trick.

Searching for Files 193

There is another feature of logical operators that is important to under-
stand. Let’s say that we have two expressions separated by a logical operator:

expr1 -operator expr2

In all cases, expr1 will always be performed; however, the operator will
determine if expr2 is performed. Table 17-5 shows how it works.

Table 17-5: find AND/OR Logic

Results of expr1 Operator expr2 is...

True -and Always performed

False -and Never performed

True -or Never performed

False -or Always performed

Why does this happen? It’s done to improve performance. Take -and,
for example. We know that the expression expr1 -and expr2 cannot be true if
the result of expr1 is false, so there is no point in performing expr2. Likewise,
if we have the expression expr1 -or expr2 and the result of expr1 is true, there
is no point in performing expr2, as we already know that the expression
expr1 -or expr2 is true.

Okay, so this helps things go faster. Why is this important? Because we
can rely on this behavior to control how actions are performed, as we shall
soon see.

Actions
Let’s get some work done! Having a list of results from our find command
is useful, but what we really want to do is act on the items on the list. Fortu-
nately, find allows actions to be performed based on the search results.

Predefined Actions
There are a set of predefined actions and several ways to apply user-defined
actions. First let’s look at a few of the predefined actions in Table 17-6.

Table 17-6: Predefined find Actions

Action Description

-delete Delete the currently matching file.

-ls Perform the equivalent of ls -dils on the matching file.
Output is sent to standard output.

-print Output the full pathname of the matching file to standard
output. This is the default action if no other action is specified.

194 Chapter 17

Table 17-6 (continued)

Action Description

-quit Quit once a match has been made.

As with the tests, there are many more actions. See the find man page
for full details.

In our very first example, we did this:

find ~

This command produced a list of every file and subdirectory contained
within our home directory. It produced a list because the -print action is
implied if no other action is specified. Thus, our command could also be
expressed as

find ~ -print

We can use find to delete files that meet certain criteria. For example, to
delete files that have the file extension .BAK (which is often used to desig-
nate backup files), we could use this command:

find ~ -type f -name '*.BAK' -delete

In this example, every file in the user’s home directory (and its sub-
directories) is searched for filenames ending in .BAK. When they are found,
they are deleted.

Warning: It should go without saying that you should use extreme caution when using
the -delete action. Always test the command first by substituting the -print action
for -delete to confirm the search results.

Before we go on, let’s take another look at how the logical operators
affect actions. Consider the following command:

find ~ -type f -name '*.BAK' -print

As we have seen, this command will look for every regular file (-type f)
whose name ends with .BAK (-name '*.BAK') and will output the relative path-
name of each matching file to standard output (-print). However, the reason
the command performs the way it does is determined by the logical relation-
ships between each of the tests and actions. Remember, there is, by default,
an implied -and relationship between each test and action. We could also
express the command this way to make the logical relationships easier to see:

find ~ -type f -and -name '*.BAK' -and -print

With our command fully expressed, let’s look at Table 17-7 to see how
the logical operators affect its execution.

Searching for Files 195

Table 17-7: Effect of Logical Operators

Test/Action Is performed when...

-print -type f and -name '*.BAK' are true.

-name '*.BAK' -type f is true.

-type f Is always performed, since it is the first test/action in an
-and relationship.

Since the logical relationship between the tests and actions determines
which of them are performed, we can see that the order of the tests and
actions is important. For instance, if we were to reorder the tests and actions
so that the -print action was the first one, the command would behave much
differently:

find ~ -print -and -type f -and -name '*.BAK'

This version of the command will print each file (the -print action
always evaluates to true) and then test for file type and the specified file
extension.

User-Defined Actions
In addition to the predefined actions, we can also invoke arbitrary com-
mands. The traditional way of doing this is with the -exec action, like this:

-exec command {} ;

where command is the name of a command, {} is a symbolic representation
of the current pathname, and the semicolon is a required delimiter indicat-
ing the end of the command. Here’s an example of using -exec to act like
the -delete action discussed earlier:

-exec rm '{}' ';'

Again, since the brace and semicolon characters have special meaning
to the shell, they must be quoted or escaped.

It’s also possible to execute a user-defined action interactively. By using
the -ok action in place of -exec, the user is prompted before execution of
each specified command:

find ~ -type f -name 'foo*' -ok ls -l '{}' ';'
< ls ... /home/me/bin/foo > ? y
-rwxr-xr-x 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
< ls ... /home/me/foo.txt > ? y
-rw-r--r-- 1 me me 0 2012-09-19 12:53 /home/me/foo.txt

In this example, we search for files with names starting with the string
foo and execute the command ls -l each time one is found. Using the -ok
action prompts the user before the ls command is executed.

196 Chapter 17

Improving Efficiency
When the -exec action is used, it launches a new instance of the specified
command each time a matching file is found. There are times when we might
prefer to combine all of the search results and launch a single instance of
the command. For example, rather than executing the commands like this,

ls -l file1
ls -l file2

we may prefer to execute them this way:

ls -l file1 file2

Here we cause the command to be executed only one time rather than
multiple times. There are two ways we can do this: the traditional way, using
the external command xargs, and the alternative way, using a new feature in
find itself. We’ll talk about the alternative way first.

By changing the trailing semicolon character to a plus sign, we activate
the ability of find to combine the results of the search into an argument
list for a single execution of the desired command. Going back to our
example,

find ~ -type f -name 'foo*' -exec ls -l '{}' ';'
-rwxr-xr-x 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2012-09-19 12:53 /home/me/foo.txt

will execute ls each time a matching file is found. By changing the com-
mand to

find ~ -type f -name 'foo*' -exec ls -l '{}' +
-rwxr-xr-x 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2012-09-19 12:53 /home/me/foo.txt

we get the same results, but the system has to execute the ls command
only once.

We can also use the xargs command to get the same result. xargs accepts
input from standard input and converts it into an argument list for a speci-
fied command. With our example, we would use it like this:

find ~ -type f -name 'foo*' -print | xargs ls -l
-rwxr-xr-x 1 me me 224 2011-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2012-09-19 12:53 /home/me/foo.txt

Here we see the output of the find command piped into xargs, which, in
turn, constructs an argument list for the ls command and then executes it.

Note: While the number of arguments that can be placed into a command line is quite large,
it’s not unlimited. It is possible to create commands that are too long for the shell to
accept. When a command line exceeds the maximum length supported by the system,
xargs executes the specified command with the maximum number of arguments pos-
sible and then repeats this process until standard input is exhausted. To see the max-
imum size of the command line, execute xargs with the --show-limits option.

Searching for Files 197

D E A L I N G W I T H F U N N Y F I L E N A M E S
Unix-like systems allow embedded spaces (and even newlines!) in filenames.
This causes problems for programs like xargs that construct argument lists for
other programs. An embedded space will be treated as a delimiter, and the
resulting command will interpret each space-separated word as a separate
argument. To overcome this, find and xarg allow the optional use of a null char-
acter as argument separator. A null character is defined in ASCII as the charac-
ter represented by the number zero (as opposed to, for example, the space
character, which is defined in ASCII as the character represented by the num-
ber 32). The find command provides the action -print0, which produces null-
separated output, and the xargs command has the --null option, which accepts
null separated input. Here’s an example:

find ~ -iname '*.jpg' -print0 | xargs --null ls -l

Using this technique, we can ensure that all files, even those containing
embedded spaces in their names, are handled correctly.

A Return to the Playground
It’s time to put find to some (almost) practical use. First, let’s create a play-
ground with lots of subdirectories and files:

[me@linuxbox ~]$ mkdir -p playground/dir-{00{1..9},0{10..99},100}
[me@linuxbox ~]$ touch playground/dir-{00{1..9},0{10..99},100}/file-{A..Z}

Marvel in the power of the command line! With these two lines, we cre-
ated a playground directory containing 100 subdirectories, each containing
26 empty files. Try that with the GUI!

The method we employed to accomplish this magic involved a familiar
command (mkdir); an exotic shell expansion (braces); and a new command,
touch. By combining mkdir with the -p option (which causes mkdir to create
the parent directories of the specified paths) with brace expansion, we were
able to create 100 directories.

The touch command is usually used to set or update the modification
times of files. However, if a filename argument is that of a non-existent file,
an empty file is created.

In our playground, we created 100 instances of a file named file-A. Let’s
find them:

[me@linuxbox ~]$ find playground -type f -name 'file-A'

Note that unlike ls, find does not produce results in sorted order. Its
order is determined by the layout of the storage device. We can confirm that
we actually have 100 instances of the file this way:

[me@linuxbox ~]$ find playground -type f -name 'file-A' | wc -l
100

198 Chapter 17

Next, let’s look at finding files based on their modification times. This
will be helpful when creating backups or organizing files in chronological
order. To do this, we will first create a reference file against which we will
compare modification time:

[me@linuxbox ~]$ touch playground/timestamp

This creates an empty file named timestamp and sets its modification
time to the current time. We can verify this by using another handy com-
mand, stat, which is a kind of souped-up version of ls. The stat command
reveals all that the system understands about a file and its attributes:

[me@linuxbox ~]$ stat playground/timestamp
 File: `playground/timestamp'
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2012-10-08 15:15:39.000000000 -0400
Modify: 2012-10-08 15:15:39.000000000 -0400
Change: 2012-10-08 15:15:39.000000000 -0400

If we touch the file again and then examine it with stat, we will see that
the file’s times have been updated:

[me@linuxbox ~]$ touch playground/timestamp
[me@linuxbox ~]$ stat playground/timestamp
 File: `playground/timestamp'
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2012-10-08 15:23:33.000000000 -0400
Modify: 2012-10-08 15:23:33.000000000 -0400
Change: 2012-10-08 15:23:33.000000000 -0400

Next, let’s use find to update some of our playground files:

[me@linuxbox ~]$ find playground -type f -name 'file-B' -exec touch '{}' ';'

This updates all files in the playground that are named file-B. Next we’ll
use find to identify the updated files by comparing all the files to the refer-
ence file timestamp:

[me@linuxbox ~]$ find playground -type f -newer playground/timestamp

The results contain all 100 instances of file-B. Since we performed
a touch on all the files in the playground that are named file-B after we
updated timestamp, they are now “newer” than timestamp and thus can be
identified with the -newer test.

Finally, let’s go back to the bad permissions test we performed earlier
and apply it to playground:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 \) -or \(-type d
-not -perm 0700 \)

Searching for Files 199

This command lists all 100 directories and 2,600 files in playground (as
well as timestamp and playground itself, for a total of 2,702) because none of
them meets our definition of “good permissions.” With our knowledge of
operators and actions, we can add actions to this command to apply new
permissions to the files and directories in our playground:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec chmod 0600
'{}' ';' \) -or \(-type d -not -perm 0700 -exec chmod 0700 '{}' ';' \)

On a day-to-day basis, we might find it easier to issue two commands,
one for the directories and one for the files, rather than this one large
compound command, but it’s nice to know that we can do it this way. The
important point here is to understand how operators and actions can be
used together to perform useful tasks.

Options
Finally, we have the options. The options are used to control the scope of a
find search. They may be included with other tests and actions when con-
structing find expressions. Table 17-8 lists the most commonly used options.

Table 17-8: find Options

Option Description

-depth Direct find to process a directory’s files before the
directory itself. This option is automatically applied
when the -delete action is specified.

-maxdepth levels Set the maximum number of levels that find will descend
into a directory tree when performing tests and actions.

-mindepth levels Set the minimum number of levels that find will descend
into a directory tree before applying tests and actions.

-mount Direct find not to traverse directories that are mounted
on other filesystems.

-noleaf Direct find not to optimize its search based on the
assumption that it is searching a Unix-like filesystem.
This is needed when scanning DOS/Windows file-
systems and CD-ROMs.

200 Chapter 17

A R C H I V I N G A N D B A C K U P

One of the primary tasks of a computer system’s admin-
istrator is to keep the system’s data secure. One way
this is done is by performing timely backups of the sys-
tem’s files. Even if you’re not a system administrator,
it is often useful to make copies of things and to move
large collections of files from place to place and from
device to device.

In this chapter, we will look at several common programs that are used
to manage collections of files. There are the file compression programs:

gzip—Compress or expand files.

bzip2—A block sorting file compressor.

the archiving programs:

tar—Tape-archiving utility.

zip—Package and compress files.

and the file synchronization program:

rsync—Remote file and directory synchronization.

Compressing Files
Throughout the history of computing, there has been a struggle to get the
most data into the smallest available space, whether that space be memory,
storage devices, or network bandwidth. Many of the data services that we
take for granted today, such as portable music players, high-definition tele-
vision, or broadband Internet, owe their existence to effective data compres-
sion techniques.

Data compression is the process of removing redundancy from data.
Let’s consider an imaginary example. Say we had an entirely black picture
file with the dimensions of 100 pixels by 100 pixels. In terms of data storage
(assuming 24 bits, or 3 bytes per pixel), the image will occupy 30,000 bytes
of storage: 100 × 100 × 3 = 30,000.

An image that is all one color contains entirely redundant data. If we
were clever, we could encode the data in such a way as to simply describe
the fact that we have a block of 30,000 black pixels. So, instead of storing a
block of data containing 30,000 zeros (black is usually represented in image
files as zero), we could compress the data into the number 30,000, followed
by a zero to represent our data. Such a data compression scheme, called
run-length encoding, is one of the most rudimentary compression techniques.
Today’s techniques are much more advanced and complex, but the basic
goal remains the same—get rid of redundant data.

Compression algorithms (the mathematical techniques used to carry out
the compression) fall into two general categories, lossless and lossy. Lossless
compression preserves all the data contained in the original. This means
that when a file is restored from a compressed version, the restored file is
exactly the same as the original, uncompressed version. Lossy compression,
on the other hand, removes data as the compression is performed, to allow
more compression to be applied. When a lossy file is restored, it does not
match the original version; rather, it is a close approximation. Examples of
lossy compression are JPEG (for images) and MP3 (for music). In our dis-
cussion, we will look exclusively at lossless compression, since most data on
computers cannot tolerate any data loss.

gzip—Compress or Expand Files
The gzip program is used to compress one or more files. When executed, it
replaces the original file with a compressed version of the original. The cor-
responding gunzip program is used to restore compressed files to their ori-
ginal, uncompressed form. Here is an example:

[me@linuxbox ~]$ ls -l /etc > foo.txt
[me@linuxbox ~]$ ls -l foo.*

202 Chapter 18

-rw-r--r-- 1 me me 15738 2012-10-14 07:15 foo.txt
[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]$ ls -l foo.*
-rw-r--r-- 1 me me 3230 2012-10-14 07:15 foo.txt.gz
[me@linuxbox ~]$ gunzip foo.txt
[me@linuxbox ~]$ ls -l foo.*
-rw-r--r-- 1 me me 15738 2012-10-14 07:15 foo.txt

In this example, we create a text file named foo.txt from a directory listing.
Next, we run gzip, which replaces the original file with a compressed version
named foo.txt.gz. In the directory listing of foo.*, we see that the original file
has been replaced with the compressed version and that the compressed
version is about one-fifth the size of the original. We can also see that the
compressed file has the same permissions and time stamp as the original.

Next, we run the gunzip program to uncompress the file. Afterward, we
can see that the compressed version of the file has been replaced with the
original, again with the permissions and timestamp preserved.

gzip has many options. Table 18-1 lists a few.

Table 18-1: gzip Options

Option Description

-c Write output to standard output and keep original files. May also
be specified with --stdout and --to-stdout.

-d Decompress. This causes gzip to act like gunzip. May also be
specified with --decompress or --uncompress.

-f Force compression even if a compressed version of the original file
already exists. May also be specified with --force.

-h Display usage information. May also be specified with --help.

-l List compression statistics for each file compressed. May also be
specified with --list.

-r If one or more arguments on the command line are directories,
recursively compress files contained within them. May also be
specified with --recursive.

-t Test the integrity of a compressed file. May also be specified with
--test.

-v Display verbose messages while compressing. May also be
specified with --verbose.

-number Set amount of compression. number is an integer in the range of 1
(fastest, least compression) to 9 (slowest, most compression). The
values 1 and 9 may also be expressed as --fast and --best,
respectively. The default value is 6.

Archiving and Backup 203

Let’s look again at our earlier example:

[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]$ gzip -tv foo.txt.gz
foo.txt.gz: OK
[me@linuxbox ~]$ gzip -d foo.txt.gz

Here, we replaced the file foo.txt with a compressed version named
foo.txt.gz. Next, we tested the integrity of the compressed version, using the
-t and -v options. Finally, we decompressed the file back to its original form.

gzip can also be used in interesting ways via standard input and output:

[me@linuxbox ~]$ ls -l /etc | gzip > foo.txt.gz

This command creates a compressed version of a directory listing.
The gunzip program, which uncompresses gzip files, assumes that file-

names end in the extension .gz, so it’s not necessary to specify it, as long as
the specified name is not in conflict with an existing uncompressed file:

[me@linuxbox ~]$ gunzip foo.txt

If our goal were only to view the contents of a compressed text file, we
could do this:

[me@linuxbox ~]$ gunzip -c foo.txt | less

Alternatively, a program supplied with gzip, called zcat, is equivalent
to gunzip with the -c option. It can be used like the cat command on gzip -
compressed files:

[me@linuxbox ~]$ zcat foo.txt.gz | less

Note: There is a zless program, too. It performs the same function as the pipeline above.

bzip2—Higher Compression at the Cost of Speed
The bzip2 program, by Julian Seward, is similar to gzip but uses a different
compression algorithm, which achieves higher levels of compression at the
cost of compression speed. In most regards, it works in the same fashion as
gzip. A file compressed with bzip2 is denoted with the extension .bz2:

[me@linuxbox ~]$ ls -l /etc > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-r--r-- 1 me me 15738 2012-10-17 13:51 foo.txt
[me@linuxbox ~]$ bzip2 foo.txt
[me@linuxbox ~]$ ls -l foo.txt.bz2
-rw-r--r-- 1 me me 2792 2012-10-17 13:51 foo.txt.bz2
[me@linuxbox ~]$ bunzip2 foo.txt.bz2

204 Chapter 18

As we can see, bzip2 can be used the same way as gzip. All the options
(except for -r) that we discussed for gzip are also supported in bzip2. Note,
however, that the compression level option (-number) has a somewhat differ-
ent meaning to bzip2. bzip2 comes with bunzip2 and bzcat for decompressing
files.

bzip2 also comes with the bzip2recover program, which will try to recover
damaged .bz2 files.

D O N ’ T B E C O M P R E S S I V E C O M P U L S I V E

I occasionally see people attempting to compress a file that has already been
compressed with an effective compression algorithm, by doing something
like this:

$ gzip picture.jpg

Don’t do it. You’re probably just wasting time and space! If you apply com-
pression to a file that is already compressed, you will actually end up with a lar-
ger file. This is because all compression techniques involve some overhead that
is added to the file to describe the compression. If you try to compress a file
that already contains no redundant information, the compression will not res-
ult in any savings to offset the additional overhead.

Archiving Files
A common file-management task used in conjunction with compression is
archiving. Archiving is the process of gathering up many files and bundling
them into a single large file. Archiving is often done as a part of system
backups. It is also used when old data is moved from a system to some type
of long-term storage.

tar—Tape Archiving Utility
In the Unix-like world of software, the tar program is the classic tool for
archiving files. Its name, short for tape archive, reveals its roots as a tool for
making backup tapes. While it is still used for that traditional task, it is
equally adept on other storage devices. We often see filenames that end
with the extension .tar or .tgz, which indicate a “plain” tar archive and a
gzipped archive, respectively. A tar archive can consist of a group of separate
files, one or more directory hierarchies, or a mixture of both. The com-
mand syntax works like this:

tar mode[options] pathname...

where mode is one of the operating modes shown in Table 18-2 (only a partial
list is shown here; see the tar man page for a complete list).

Archiving and Backup 205

Table 18-2: tar Modes

Mode Description

c Create an archive from a list of files and/or directories.

x Extract an archive.

r Append specified pathnames to the end of an archive.

t List the contents of an archive.

tar uses a slightly odd way of expressing options, so we’ll need some
examples to show how it works. First, let’s re-create our playground from the
previous chapter:

[me@linuxbox ~]$ mkdir -p playground/dir-{00{1..9},0{10..99},100}
[me@linuxbox ~]$ touch playground/dir-{00{1..9},0{10..99},100}/file-{A..Z}

Next, let’s create a tar archive of the entire playground:

[me@linuxbox ~]$ tar cf playground.tar playground

This command creates a tar archive named playground.tar, which con-
tains the entire playground directory hierarchy. We can see that the mode
and the f option, which is used to specify the name of the tar archive, may
be joined together and do not require a leading dash. Note, however, that
the mode must always be specified first, before any other option.

To list the contents of the archive, we can do this:

[me@linuxbox ~]$ tar tf playground.tar

For a more detailed listing, we can add the v (verbose) option:

[me@linuxbox ~]$ tar tvf playground.tar

Now, let’s extract the playground in a new location. We will do this by
creating a new directory named foo, changing the directory, and extracting
the tar archive:

[me@linuxbox ~]$ mkdir foo
[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground.tar
[me@linuxbox foo]$ ls
playground

If we examine the contents of ~/foo/playground, we see that the archive
was successfully installed, creating a precise reproduction of the original
files. There is one caveat, however: Unless you are operating as the super-
user, files and directories extracted from archives take on the ownership
of the user performing the restoration, rather than the original owner.

206 Chapter 18

Another interesting behavior of tar is the way it handles pathnames in
archives. The default for pathnames is relative, rather than absolute. tar
does this by simply removing any leading slash from the pathname when
creating the archive. To demonstrate, we will re-create our archive, this
time specifying an absolute pathname:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ tar cf playground2.tar ~/playground

Remember, ~/playground will expand into /home/me/playground when we
press the ENTER key, so we will get an absolute pathname for our demonstra-
tion. Next, we will extract the archive as before and watch what happens:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar
[me@linuxbox foo]$ ls
home playground
[me@linuxbox foo]$ ls home
me
[me@linuxbox foo]$ ls home/me
playground

Here we can see that when we extracted our second archive, it re-created
the directory home/me/playground relative to our current working directory,
~/foo, not relative to the root directory, as would have been the case with an
absolute pathname. This may seem like an odd way for it to work, but it’s
actually more useful this way, as it allows us to extract archives to any loca-
tion rather than being forced to extract them to their original locations.
Repeating the exercise with the inclusion of the verbose option (v) will give
a clearer picture of what’s going on.

Let’s consider a hypothetical, yet practical, example of tar in action.
Imagine we want to copy the home directory and its contents from one sys-
tem to another and we have a large USB hard drive that we can use for the
transfer. On our modern Linux system, the drive is “automagically” moun-
ted in the /media directory. Let’s also imagine that the disk has a volume
name of BigDisk when we attach it. To make the tar archive, we can do the
following:

[me@linuxbox ~]$ sudo tar cf /media/BigDisk/home.tar /home

After the tar file is written, we unmount the drive and attach it to the
second computer. Again, it is mounted at /media/BigDisk. To extract the
archive, we do this:

[me@linuxbox2 ~]$ cd /
[me@linuxbox2 /]$ sudo tar xf /media/BigDisk/home.tar

What’s important to see here is that we must first change directory to /
so that the extraction is relative to the root directory, since all pathnames
within the archive are relative.

Archiving and Backup 207

When extracting an archive, it’s possible to limit what is extracted. For
example, if we wanted to extract a single file from an archive, it could be
done like this:

tar xf archive.tar pathname

By adding the trailing pathname to the command, we ensure that tar will
restore only the specified file. Multiple pathnames may be specified. Note
that the pathname must be the full, exact relative pathname as stored in the
archive. When specifying pathnames, wildcards are not normally supported;
however, the GNU version of tar (which is the version most often found in
Linux distributions) supports them with the --wildcards option. Here is an
example using our previous playground.tar file:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar --wildcards 'home/me/playground/
dir-*/file-A'

This command will extract only files matching the specified pathname
including the wildcard dir-*.

tar is often used in conjunction with find to produce archives. In this
example, we will use find to produce a set of files to include in an archive:

[me@linuxbox ~]$ find playground -name 'file-A' -exec tar rf playground.tar '{
}' '+'

Here we use find to match all the files in playground named file-A and
then, using the -exec action, we invoke tar in the append mode (r) to add
the matching files to the archive playground.tar.

Using tar with find is a good way to create incremental backups of a direct-
ory tree or an entire system. By using find to match files newer than a time-
stamp file, we could create an archive that contains only files newer than
the last archive, assuming that the timestamp file is updated right after each
archive is created.

tar can also make use of both standard input and output. Here is a com-
prehensive example:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name 'file-A' | tar cf - --files-from=- | gzip
> playground.tgz

In this example, we used the find program to produce a list of matching
files and piped them into tar. If the filename - is specified, it is taken to mean
standard input or output, as needed. (By the way, this convention of using - to
represent standard input/output is used by a number of other programs,
too.) The --files-from option (which may also be specified as -T) causes tar
to read its list of pathnames from a file rather than the command line. Lastly,
the archive produced by tar is piped into gzip to create the compressed archive
playground.tgz. The .tgz extension is the conventional extension given to gzip-
compressed tar files. The extension .tar.gz is also used sometimes.

208 Chapter 18

While we used the gzip program externally to produce our compressed
archive, modern versions of GNU tar support both gzip and bzip2 compres-
sion directly with the use of the z and j options, respectively. Using our pre-
vious example as a base, we can simplify it this way:

[me@linuxbox ~]$ find playground -name 'file-A' | tar czf playground.tgz -T -

If we had wanted to create a bzip2-compressed archive instead, we could
have done this:

[me@linuxbox ~]$ find playground -name 'file-A' | tar cjf playground.tbz -T -

By simply changing the compression option from z to j (and changing
the output file’s extension to .tbz to indicate a bzip2-compressed file), we
enabled bzip2 compression.

Another interesting use of standard input and output with the tar com-
mand involves transferring files between systems over a network. Imagine
that we had two machines running a Unix-like system equipped with tar and
ssh. In such a scenario, we could transfer a directory from a remote system
(named remote-sys for this example) to our local system:

[me@linuxbox ~]$ mkdir remote-stuff
[me@linuxbox ~]$ cd remote-stuff
[me@linuxbox remote-stuff]$ ssh remote-sys 'tar cf - Documents' | tar xf -
me@remote-sys's password:
[me@linuxbox remote-stuff]$ ls
Documents

Here we were able to copy a directory named Documents from the remote
system remote-sys to a directory within the directory named remote-stuff on the
local system. How did we do this? First, we launched the tar program on the
remote system using ssh. You will recall that ssh allows us to execute a pro-
gram remotely on a networked computer and “see” the results on the local
system—the standard output produced on the remote system is sent to the
local system for viewing. We can take advantage of this by having tar create
an archive (the c mode) and send it to standard output, rather than a file
(the f option with the dash argument), thereby transporting the archive
over the encrypted tunnel provided by ssh to the local system. On the local
system, we execute tar and have it expand an archive (the x mode) supplied
from standard input (again, the f option with the dash argument).

zip—Package and Compress Files
The zip program is both a compression tool and an archiver. The file format
used by the program is familiar to Windows users, as it reads and writes .zip
files. In Linux, however, gzip is the predominant compression program with
bzip2 being a close second. Linux users mainly use zip for exchanging files
with Windows systems, rather than performing compression and archiving.

Archiving and Backup 209

In its most basic usage, zip is invoked like this:

zip options zipfile file...

For example, to make a zip archive of our playground, we would do this:

[me@linuxbox ~]$ zip -r playground.zip playground

Unless we include the -r option for recursion, only the playground
directory (but none of its contents) is stored. Although the addition of the
extension .zip is automatic, we will include the file extension for clarity.

During the creation of the zip archive, zip will normally display a series
of messages like this:

 adding: playground/dir-020/file-Z (stored 0%)
 adding: playground/dir-020/file-Y (stored 0%)
 adding: playground/dir-020/file-X (stored 0%)
 adding: playground/dir-087/ (stored 0%)
 adding: playground/dir-087/file-S (stored 0%)

These messages show the status of each file added to the archive. zip will
add files to the archive using one of two storage methods: Either it will “store”
a file without compression, as shown here, or it will “deflate” the file, which
performs compression. The numeric value displayed after the storage method
indicates the amount of compression achieved. Since our playground con-
tains only empty files, no compression is performed on its contents.

Extracting the contents of a zip file is straightforward when using the
unzip program:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip

One thing to note about zip (as opposed to tar) is that if an existing
archive is specified, it is updated rather than replaced. This means that the
existing archive is preserved, but new files are added and matching files are
replaced.

Files may be listed and extracted selectively from a zip archive by spe-
cifying them to unzip:

[me@linuxbox ~]$ unzip -l playground.zip playground/dir-087/file-Z
Archive: ./playground.zip
 Length Date Time Name
 -------- ---- ---- ----
 0 10-05-12 09:25 playground/dir-087/file-Z
 -------- -------
 0 1 file
[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip playground/dir-087/file-Z
Archive: ../playground.zip
replace playground/dir-087/file-Z? [y]es, [n]o, [A]ll, [N]one, [r]ename: y
 extracting: playground/dir-087/file-Z

210 Chapter 18

Using the -l option causes unzip to merely list the contents of the archive
without extracting the file. If no file(s) are specified, unzip will list all files in
the archive. The -v option can be added to increase the verbosity of the list-
ing. Note that when the archive extraction conflicts with an existing file, the
user is prompted before the file is replaced.

Like tar, zip can make use of standard input and output, though its
implementation is somewhat less useful. It is possible to pipe a list of file-
names to zip via the -@ option:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name "file-A" | zip -@ file-A.zip

Here we use find to generate a list of files matching the test -name "file-A"
and then pipe the list into zip, which creates the archive file-A.zip containing
the selected files.

zip also supports writing its output to standard output, but its use is lim-
ited because very few programs can make use of the output. Unfortunately,
the unzip program does not accept standard input. This prevents zip and
unzip from being used together to perform network file copying like tar.

zip can, however, accept standard input, so it can be used to compress
the output of other programs:

[me@linuxbox ~]$ ls -l /etc/ | zip ls-etc.zip -
 adding: - (deflated 80%)

In this example, we pipe the output of ls into zip. Like tar, zip inter-
prets the trailing dash as “use standard input for the input file.”

The unzip program allows its output to be sent to standard output when
the -p (for pipe) option is specified:

[me@linuxbox ~]$ unzip -p ls-etc.zip | less

We touched on some of the basic things that zip and unzip can do. They
both have a lot of options that add to their flexibility, though some are plat-
form specific to other systems. The man pages for both zip and unzip are pretty
good and contain useful examples.

Synchronizing Files and Directories
A common strategy for maintaining a backup copy of a system involves keep-
ing one or more directories synchronized with another directory (or direct-
ories) located on either the local system (usually a removable storage device
of some kind) or a remote system. We might, for example, have a local
copy of a website under development and synchronize it from time to time
with the “live” copy on a remote web server.

Archiving and Backup 211

rsync—Remote File and Directory Synchronization
In the Unix-like world, the preferred tool for this task is rsync. This program
can synchronize both local and remote directories by using the rsync remote-
update protocol, which allows rsync to quickly detect the differences between
two directories and perform the minimum amount of copying required to
bring them into sync. This makes rsync very fast and economical to use, com-
pared to other kinds of copy programs.

rsync is invoked like this:

rsync options source destination

where source and destination are each one of the following:

A local file or directory

A remote file or directory in the form of [user@]host:path

A remote rsync server specified with a URI of rsync://[user@]host[:port]/path

Note that either the source or the destination must be a local file. Remote-
to-remote copying is not supported.

Let’s try rsync out on some local files. First, let’s clean out our foo directory:

[me@linuxbox ~]$ rm -rf foo/*

Next, we’ll synchronize the playground directory with a corresponding
copy in foo:

[me@linuxbox ~]$ rsync -av playground foo

We’ve included both the -a option (for archiving—causes recursion and
preservation of file attributes) and the -v option (verbose output) to make
a mirror of the playground directory within foo. While the command runs, we
will see a list of the files and directories being copied. At the end, we will see
a summary message like this, indicating the amount of copying performed:

sent 135759 bytes received 57870 bytes 387258.00 bytes/sec
total size is 3230 speedup is 0.02

If we run the command again, we will see a different result:

[me@linuxbox ~]$ rsync -av playgound foo
building file list ... done

 sent 22635 bytes received 20 bytes 45310.00 bytes/sec
total size is 3230 speedup is 0.14

Notice that there was no listing of files. This is because rsync detected that
there were no differences between ~/playground and ~/foo/playground, and
therefore it didn’t need to copy anything. If we modify a file in playground
and run rsync again, we see that rsync detected the change and copied only
the updated file.

212 Chapter 18

[me@linuxbox ~]$ touch playground/dir-099/file-Z
[me@linuxbox ~]$ rsync -av playground foo
building file list ... done
playground/dir-099/file-Z
sent 22685 bytes received 42 bytes 45454.00 bytes/sec
total size is 3230 speedup is 0.14

As a practical example, let’s consider the imaginary external hard drive
that we used earlier with tar. If we attach the drive to our system and, once
again, it is mounted at /media/BigDisk, we can perform a useful system backup
by first creating a directory named /backup on the external drive and then
using rsync to copy the most important stuff from our system to the external
drive:

[me@linuxbox ~]$ mkdir /media/BigDisk/backup
[me@linuxbox ~]$ sudo rsync -av --delete /etc /home /usr/local /media/BigDisk/
backup

In this example, we copied the /etc, /home, and /usr/local directories
from our system to our imaginary storage device. We included the --delete
option to remove files that may have existed on the backup device that no
longer existed on the source device (this is irrelevant the first time we make
a backup but will be useful on subsequent copies). Repeating the procedure
of attaching the external drive and running this rsync command would be a
useful (though not ideal) way of keeping a small system backed up. Of course,
an alias would be helpful here, too. We could create an alias and add it to
our .bashrc file to provide this feature:

alias backup='sudo rsync -av --delete /etc /home /usr/local /media/BigDisk/bac
kup'

Now all we have to do is attach our external drive and run the backup
command to do the job.

Using rsync over a Network
One of the real beauties of rsync is that it can be used to copy files over a
network. After all, the r in rsync stands for remote. Remote copying can be
done in one of two ways.

The first way is with another system that has rsync installed, along with
a remote shell program such as ssh. Let’s say we had another system on our
local network with a lot of available hard drive space and we wanted to per-
form our backup operation using the remote system instead of an external
drive. Assuming that it already had a directory named /backup where we
could deliver our files, we could do this:

[me@linuxbox ~]$ sudo rsync -av --delete --rsh=ssh /etc /home /usr/local remote-
sys:/backup

Archiving and Backup 213

We made two changes to our command to facilitate the network copy.
First, we added the --rsh=ssh option, which instructs rsync to use the ssh pro-
gram as its remote shell. In this way, we were able to use an SSH-encrypted
tunnel to securely transfer the data from the local system to the remote
host. Second, we specified the remote host by prefixing its name (in this
case the remote host is named remote-sys) to the destination pathname.

The second way that rsync can be used to synchronize files over a net-
work is by using an rysnc server. rsync can be configured to run as a daemon
and listen to incoming requests for synchronization. This is often done to
allow mirroring of a remote system. For example, Red Hat Software main-
tains a large repository of software packages under development for its Fedora
distribution. It is useful for software testers to mirror this collection during
the testing phase of the distribution release cycle. Since files in the repository
change frequently (often more than once a day), it is desirable to maintain a
local mirror by periodic synchronization, rather than by bulk copying of the
repository. One of these repositories is kept at Georgia Tech; we could mirror
it using our local copy of rsync and Georgia Tech’s rsync server like this:

[me@linuxbox ~]$ mkdir fedora-devel
[me@linuxbox ~]$ rsync -av -delete rsync://rsync.gtlib.gatech.edu/fedora-
linux-core/development/i386/os fedora-devel

In this example, we use the URI of the remote rsync server, which con-
sists of a protocol (rsync://), followed by the remote hostname (rsync.gtlib
.gatech.edu), followed by the pathname of the repository.

214 Chapter 18

R E G U L A R E X P R E S S I O N S

In the next few chapters, we are going to look at tools
used to manipulate text. As we have seen, text data
plays an important role on all Unix-like systems, such
as Linux. But before we can fully appreciate all of the
features offered by these tools, we have to examine a
technology that is frequently associated with the most
sophisticated uses of these tools—regular expressions.

As we have navigated the many features and facilities offered by the com-
mand line, we have encountered some truly arcane shell features and com-
mands, such as shell expansion and quoting, keyboard shortcuts, and command
history, not to mention the vi editor. Regular expressions continue this “tra-
dition” and may be (arguably) the most arcane feature of them all. This is
not to suggest that the time it takes to learn about them is not worth the
effort. Quite the contrary. A good understanding will enable us to perform
amazing feats, though their full value may not be immediately apparent.

What Are Regular Expressions?
Simply put, regular expressions are symbolic notations used to identify pat-
terns in text. In some ways, they resemble the shell’s wildcard method of
matching file- and pathnames but on a much grander scale. Regular expres-
sions are supported by many command-line tools and by most programming
languages to facilitate the solution of text manipulation problems. However,
to further confuse things, not all regular expressions are the same; they vary
slightly from tool to tool and from programming language to language. For
our discussion, we will limit ourselves to regular expressions as described in
the POSIX standard (which will cover most of the command-line tools), as
opposed to many programming languages (most notably Perl), which use
slightly larger and richer sets of notations.

grep—Search Through Text
The main program we will use to work with regular expressions is our old
pal, grep. The name grep is actually derived from the phrase global regular
expression print, so we can see that grep has something to do with regular
expressions. In essence, grep searches text files for the occurrence of a
specified regular expression and outputs any line containing a match to
standard output.

So far, we have used grep with fixed strings, like so:

[me@linuxbox ~]$ ls /usr/bin | grep zip

This will list all the files in the /usr/bin directory whose names contain
the substring zip.

The grep program accepts options and arguments this way:

grep [options] regex [file...]

where regex is a regular expression.
Table 19-1 lists the commonly used grep options.

Table19-1: grep Options

Option Description

-i Ignore case. Do not distinguish between upper- and lowercase
characters. May also be specified --ignore-case.

-v Invert match. Normally, grep prints lines that contain a match.
This option causes grep to print every line that does not contain
a match. May also be specified --invert-match.

-c Print the number of matches (or non-matches if the -v option is
also specified) instead of the lines themselves. May also be
specified --count.

216 Chapter 19

Table 19-1 (continued)

Option Description

-l Print the name of each file that contains a match instead of the
lines themselves. May also be specified --files-with-matches.

-L Like the -l option, but print only the names of files that do not
contain matches. May also be specified --files-without-match.

-n Prefix each matching line with the number of the line within the
file. May also be specified --line-number.

-h For multifile searches, suppress the output of filenames. May
also be specified --no-filename.

In order to more fully explore grep, let’s create some text files to search:

[me@linuxbox ~]$ ls /bin > dirlist-bin.txt
[me@linuxbox ~]$ ls /usr/bin > dirlist-usr-bin.txt
[me@linuxbox ~]$ ls /sbin > dirlist-sbin.txt
[me@linuxbox ~]$ ls /usr/sbin > dirlist-usr-sbin.txt
[me@linuxbox ~]$ ls dirlist*.txt
dirlist-bin.txt dirlist-sbin.txt dirlist-usr-sbin.txt
dirlist-usr-bin.txt

We can perform a simple search of our list of files like this:

[me@linuxbox ~]$ grep bzip dirlist*.txt
dirlist-bin.txt:bzip2
dirlist-bin.txt:bzip2recover

In this example, grep searches all of the listed files for the string bzip and
finds two matches, both in the file dirlist-bin.txt. If we were interested in only
the files that contained matches rather than the matches themselves, we
could specify the -l option:

[me@linuxbox ~]$ grep -l bzip dirlist*.txt
dirlist-bin.txt

Conversely, if we wanted to see a list of only the files that did not con-
tain a match, we could do this:

[me@linuxbox ~]$ grep -L bzip dirlist*.txt
dirlist-sbin.txt
dirlist-usr-bin.txt
dirlist-usr-sbin.txt

Metacharacters and Literals
While it may not seem apparent, our grep searches have been using regular
expressions all along, albeit very simple ones. The regular expression bzip is

Regular Expressions 217

taken to mean that a match will occur only if the line in the file contains at
least four characters and that somewhere in the line the characters b, z, i,
and p are found in that order, with no other characters in between. The
characters in the string bzip are all literal characters, in that they match them-
selves. In addition to literals, regular expressions may also include metachar-
acters, which are used to specify more complex matches. Regular expression
metacharacters consist of the following:

^ $. [] { } - ? * + () | \

All other characters are considered literals, though the backslash char-
acter is used in a few cases to create metasequences, as well as allowing the
metacharacters to be escaped and treated as literals instead of being inter-
preted as metacharacters.

Note: As we can see, many of the regular-expression metacharacters are also characters that
have meaning to the shell when expansion is performed. When we pass regular expres-
sions containing metacharacters on the command line, it is vital that they be enclosed
in quotes to prevent the shell from attempting to expand them.

The Any Character
The first metacharacter we will look at is the dot or period character, which
is used to match any character. If we include it in a regular expression, it will
match any character in that character position. Here’s an example:

[me@linuxbox ~]$ grep -h '.zip' dirlist*.txt
bunzip2
bzip2
bzip2recover
gunzip
gzip
funzip
gpg-zip
preunzip
prezip
prezip-bin
unzip
unzipsfx

We searched for any line in our files that matches the regular expres-
sion .zip. There are a couple of interesting things to note about the results.
Notice that the zip program was not found. This is because the inclusion of
the dot metacharacter in our regular expression increased the length of the
required match to four characters; because the name zip contains only three,
it does not match. Also, if any files in our lists had contained the file exten-
sion .zip, they would have been matched, because the period character in
the file extension is treated as “any character,” too.

218 Chapter 19

Anchors
The caret (^) and dollar sign ($) characters are treated as anchors in regular
expressions. This means that they cause the match to occur only if the regular
expression is found at the beginning of the line (^) or at the end of the line ($).

[me@linuxbox ~]$ grep -h '^zip' dirlist*.txt
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit
[me@linuxbox ~]$ grep -h 'zip$' dirlist*.txt
gunzip
gzip
funzip
gpg-zip
preunzip
prezip
unzip
zip
[me@linuxbox ~]$ grep -h '^zip$' dirlist*.txt
zip

Here we searched the list of files for the string zip located at the begin-
ning of the line, the end of the line, and on a line where it is at both the
beginning and the end of the line (i.e., by itself on the line.) Note that the
regular expression ^$ (a beginning and an end with nothing in between)
will match blank lines.

A C R O S S W O R D P U Z Z L E H E L P E R

My wife loves crossword puzzles, and she will sometimes ask me for help with
a particular question. Something like, “What’s a five-letter word whose third
letter is j and last letter is r that means . . . ?” This kind of question got me
thinking.

Did you know that your Linux system contains a dictionary? It does. Take
a look in the /usr/share/dict directory and you might find one, or several. The
dictionary files located there are just long lists of words, one per line, arranged
in alphabetical order. On my system, the words file contains just over 98,500
words. To find possible answers to the crossword puzzle question above, we
could do this:

[me@linuxbox ~]$ grep -i '^..j.r$' /usr/share/dict/words
Major
major

Using this regular expression, we can find all the words in our dictionary
file that are five letters long and have a j in the third position and an r in the
last position.

Regular Expressions 219

Bracket Expressions and Character Classes
In addition to matching any character at a given position in our regular
expression, we can also match a single character from a specified set of char-
acters by using bracket expressions. With bracket expressions, we can specify a
set of characters (including characters that would otherwise be interpreted
as metacharacters) to be matched. In this example, using a two-character set,
we match any line that contains the string bzip or gzip:

[me@linuxbox ~]$ grep -h '[bg]zip' dirlist*.txt
bzip2
bzip2recover
gzip

A set may contain any number of characters, and metacharacters lose
their special meaning when placed within brackets. However, there are two
cases in which metacharacters are used within bracket expressions and have
different meanings. The first is the caret (^), which is used to indicate nega-
tion; the second is the dash (-), which is used to indicate a character range.

Negation
If the first character in a bracket expression is a caret (^), the remaining
characters are taken to be a set of characters that must not be present at the
given character position. We do this by modifying our previous example:

[me@linuxbox ~]$ grep -h '[^bg]zip' dirlist*.txt
bunzip2
gunzip
funzip
gpg-zip
preunzip
prezip
prezip-bin
unzip
unzipsfx

With negation activated, we get a list of files that contain the string zip
preceded by any character except b or g. Notice that the file zip was not
found. A negated character set still requires a character at the given posi-
tion, but the character must not be a member of the negated set.

The caret character invokes negation only if it is the first character
within a bracket expression; otherwise, it loses its special meaning and
becomes an ordinary character in the set.

Traditional Character Ranges
If we wanted to construct a regular expression that would find every file in
our lists whose name begins with an uppercase letter, we could do this:

[me@linuxbox ~]$ grep -h '^[ABCDEFGHIJKLMNOPQRSTUVWXZY]' dirlist*.txt

220 Chapter 19

It’s just a matter of putting all 26 uppercase letters in a bracket expression.
But the idea of all that typing is deeply troubling, so there is another way:

[me@linuxbox ~]$ grep -h '^[A-Z]' dirlist*.txt
MAKEDEV
ControlPanel
GET
HEAD
POST
X
X11
Xorg
MAKEFLOPPIES
NetworkManager
NetworkManagerDispatcher

By using a 3-character range, we can abbreviate the 26 letters. Any range
of characters can be expressed this way, including multiple ranges such as this
expression, which matches all filenames starting with letters and numbers:

[me@linuxbox ~]$ grep -h '^[A-Za-z0-9]' dirlist*.txt

In character ranges, we see that the dash character is treated specially,
so how do we actually include a dash character in a bracket expression? By
making it the first character in the expression. Consider

[me@linuxbox ~]$ grep -h '[A-Z]' dirlist*.txt

This will match every filename containing an uppercase letter. This, on
the other hand,

[me@linuxbox ~]$ grep -h '[-AZ]' dirlist*.txt

will match every filename containing a dash, an uppercase A, or an upper-
case Z.

POSIX Character Classes
The traditional character ranges are an easily understood and effective
way to handle the problem of quickly specifying sets of characters. Unfor-
tunately, they don’t always work. While we have not encountered any prob-
lems with our use of grep so far, we might run into problems using other
programs.

Back in Chapter 4, we looked at how wildcards are used to perform
pathname expansion. In that discussion, we said that character ranges could
be used in a manner almost identical to the way they are used in regular
expressions, but here’s the problem:

[me@linuxbox ~]$ ls /usr/sbin/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]*
/usr/sbin/MAKEFLOPPIES
/usr/sbin/NetworkManagerDispatcher
/usr/sbin/NetworkManager

Regular Expressions 221

(Depending on the Linux distribution, we will get a different list of files,
possibly an empty list. This example is from Ubuntu.) This command pro-
duces the expected result—a list of only the files whose names begin with
an uppercase letter. But with this command we get an entirely different res-
ult (only a partial listing of the results is shown):

[me@linuxbox ~]$ ls /usr/sbin/[A-Z]*
/usr/sbin/biosdecode
/usr/sbin/chat
/usr/sbin/chgpasswd
/usr/sbin/chpasswd
/usr/sbin/chroot
/usr/sbin/cleanup-info
/usr/sbin/complain
/usr/sbin/console-kit-daemon

Why is that? It’s a long story, but here’s the short version.
Back when Unix was first developed, it only knew about ASCII char-

acters, and this feature reflects that fact. In ASCII, the first 32 characters
(numbers 0–31) are control codes (things like tabs, backspaces, and car-
riage returns). The next 32 (32–63) contain printable characters, including
most punctuation characters and the numerals zero through nine. The next
32 (numbers 64–95) contain the uppercase letters and a few more punctu-
ation symbols. The final 31 (numbers 96–127) contain the lowercase letters
and yet more punctuation symbols. Based on this arrangement, systems
using ASCII used a collation order that looked like this:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

This differs from proper dictionary order, which is like this:

aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ

As the popularity of Unix spread beyond the United States, there grew
a need to support characters not found in US English. The ASCII table was
expanded to use a full 8 bits, adding character numbers 128–255, which
accommodated many more languages. To support this ability, the POSIX
standards introduced a concept called a locale, which could be adjusted to
select the character set needed for a particular location. We can see the lan-
guage setting of our system using this command:

[me@linuxbox ~]$ echo $LANG
en_US.UTF-8

With this setting, POSIX-compliant applications will use a dictionary
collation order rather than ASCII order. This explains the behavior of the
commands above. A character range of [A-Z], when interpreted in dictionary
order, includes all of the alphabetic characters except the lowercase a—
hence our results.

222 Chapter 19

To partially work around this problem, the POSIX standard includes
a number of character classes, which provide useful ranges of characters.
They are described in Table 19-2.

Table 19-2: POSIX Character Classes

Character Class Description

[:alnum:] The alphanumeric characters; in ASCII, equivalent to
[A-Za-z0-9]

[:word:] The same as [:alnum:], with the addition of the underscore
character (_)

[:alpha:] The alphabetic characters; in ASCII, equivalent to [A-Za-z]

[:blank:] Includes the space and tab characters

[:cntrl:] The ASCII control codes; includes the ASCII characters 0
through 31 and 127

[:digit:] The numerals 0 through 9

[:graph:] The visible characters; in ASCII, includes characters 33
through 126

[:lower:] The lowercase letters

[:punct:] The punctuation characters; in ASCII, equivalent to
[-!"#$%&'()*+,./:;<=>?@[\\\]_`{|}~]

[:print:] The printable characters; all the characters in [:graph:]
plus the space character

[:space:] The whitespace characters including space, tab, carriage
return, newline, vertical tab, and form feed; in ASCII,
equivalent to [\t\r\n\v\f]

[:upper:] The uppercase characters

[:xdigit:] Characters used to express hexadecimal numbers; in ASCII,
equivalent to [0-9A-Fa-f]

Even with the character classes, there is still no convenient way to
express partial ranges, such as [A-M].

Using character classes, we can repeat our directory listing and see an
improved result.

[me@linuxbox ~]$ ls /usr/sbin/[[:upper:]]*
/usr/sbin/MAKEFLOPPIES
/usr/sbin/NetworkManagerDispatcher
/usr/sbin/NetworkManager

Regular Expressions 223

Remember, however, that this is not an example of a regular expres-
sion; rather it is the shell performing pathname expansion. We show it here
because POSIX character classes can be used for both.

R E V E R T I N G T O T R A D I T I O N A L C O L L A T I O N O R D E R

You can opt to have your system use the traditional (ASCII) collation order by
changing the value of the LANG environment variable. As we saw in the previous
section, the LANG variable contains the name of the language and character set
used in your locale. This value was originally determined when you selected an
installation language as your Linux was installed.

To see the locale settings, use the locale command:

[me@linuxbox ~]$ locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=

To change the locale to use the traditional Unix behaviors, set the LANG
variable to POSIX:

[me@linuxbox ~]$ export LANG=POSIX

Note that this change converts the system to use US English (more spe-
cifically, ASCII) for its character set, so be sure this is really what you want.

You can make this change permanent by adding this line to your .bashrc file:

export LANG=POSIX

POSIX Basic vs. Extended Regular Expressions
Just when we thought this couldn’t get any more confusing, we discover that
POSIX also splits regular expression implementations into two kinds: basic
regular expressions (BRE) and extended regular expressions (ERE). The features we
have covered so far are supported by any application that is POSIX compli-
ant and implements BRE. Our grep program is one such program.

What’s the difference between BRE and ERE? It’s a matter of metachar-
acters. With BRE, the following metacharacters are recognized: ^ $. [] *
All other characters are considered literals. With ERE, the following meta-
characters (and their associated functions) are added: () { } ? + |

224 Chapter 19

However (and this is the fun part), the characters () {} are treated as
metacharacters in BRE if they are escaped with a backslash, whereas with
ERE, preceding any metacharacter with a backslash causes it to be treated
as a literal.

Since the features we are going to discuss next are part of ERE, we are
going to need to use a different grep. Traditionally, this has been performed
by the egrep program, but the GNU version of grep also supports extended
regular expressions when the -E option is used.

P O S I X

During the 1980s, Unix became a very popular commercial operating system,
but by 1988, the Unix world was in turmoil. Many computer manufacturers had
licensed the Unix source code from its creators AT&T, and were supplying vari-
ous versions of the operating system with their systems. However, in their efforts
to create product differentiation, each manufacturer added proprietary changes
and extensions. This started to limit the compatibility of the software. As always
with proprietary vendors, each was trying to play a winning game of “lock-in” with
their customers. This dark time in the history of Unix is known today as the
Balkanization.

Enter the IEEE (Institute of Electrical and Electronics Engineers). In the
mid-1980s, the IEEE began developing a set of standards that would define how
Unix (and Unix-like) systems would perform. These standards, formally known
as IEEE 1003, define the application programming interfaces (APIs), the shell and
utilities that are to be found on a standard Unix-like system. The name POSIX,
which stands for Portable Operating System Interface (with the X added to the end
for extra snappiness), was suggested by Richard Stallman (yes, that Richard
Stallman) and was adopted by the IEEE.

Alternation
The first of the extended regular expression features we will discuss is called
alternation, which is the facility that allows a match to occur from among a
set of expressions. Just as a bracket expression allows a single character to
match from a set of specified characters, alternation allows matches from a
set of strings or other regular expressions.

To demonstrate, we’ll use grep in conjunction with echo. First, let’s try a
plain old string match:

[me@linuxbox ~]$ echo "AAA" | grep AAA
AAA
[me@linuxbox ~]$ echo "BBB" | grep AAA
[me@linuxbox ~]$

A pretty straightforward example, in which we pipe the output of echo
into grep and see the results. When a match occurs, we see it printed out;
when no match occurs, we see no results.

Regular Expressions 225

Now we’ll add alternation, signified by the vertical pipe metacharacter:

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB'
AAA
[me@linuxbox ~]$ echo "BBB" | grep -E 'AAA|BBB'
BBB
[me@linuxbox ~]$ echo "CCC" | grep -E 'AAA|BBB'
[me@linuxbox ~]$

Here we see the regular expression 'AAA|BBB', which means “match
either the string AAA or the string BBB.” Notice that since this is an extended
feature, we added the -E option to grep (though we could have used the egrep
program instead), and we enclosed the regular expression in quotes to pre-
vent the shell from interpreting the vertical pipe metacharacter as a pipe
operator. Alternation is not limited to two choices:

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB|CCC'
AAA

To combine alternation with other regular-expression elements, we can
use () to separate the alternation:

[me@linuxbox ~]$ grep -Eh '^(bz|gz|zip)' dirlist*.txt

This expression will match the filenames in our lists that start with
either bz, gz, or zip. If we leave off the parentheses, the meaning of this
regular expression changes to match any filename that begins with bz or
contains gz or contains zip:

[me@linuxbox ~]$ grep -Eh '^bz|gz|zip' dirlist*.txt

Quantifiers
Extended regular expressions support several ways to specify the number of
times an element is matched.

?—Match an Element Zero Times or One Time
This quantifier means, in effect, “Make the preceding element optional.”
Let’s say we wanted to check a phone number for validity and we considered
a phone number to be valid if it matched either of these two forms, (nnn)
nnn-nnnn or nnn nnn-nnnn, where n is a numeral. We could construct a regular
expression like this:

^\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

In this expression, we follow the parentheses characters with question
marks to indicate that they are to be matched zero or one time. Again, since
the parentheses are normally metacharacters (in ERE), we precede them
with backslashes to cause them to be treated as literals instead.

226 Chapter 19

Let’s try it:

[me@linuxbox ~]$ echo "(555) 123-4567" | grep -E '^\(?[0-9][0-9][0-9]\)? [0-9]
[0-9][0-9]$'
(555) 123-4567
[me@linuxbox ~]$ echo "555 123-4567" | grep -E '^\(?[0-9][0-9][0-9]\)? [0-9]
[0-9][0-9]-[0-9][0-9][0-9][0-9]$'
555 123-4567
[me@linuxbox ~]$ echo "AAA 123-4567" | grep -E '^\(?[0-9][0-9][0-9]\)? [0-9]
[0-9][0-9]-[0-9][0-9][0-9][0-9]$'
[me@linuxbox ~]$

Here we see that the expression matches both forms of the phone num-
ber but does not match one containing non-numeric characters.

*—Match an Element Zero or More Times
Like the ? metacharacter, the * is used to denote an optional item; however,
unlike the ?, the item may occur any number of times, not just once. Let’s
say we want to see if a string is a sentence; that is, it starts with an uppercase
letter, then contains any number of upper- and lowercase letters and spaces,
and ends with a period. To match this (very crude) definition of a sentence,
we could use a regular expression like this:

[[:upper:]][[:upper:][:lower:]]*\.

The expression consists of three items: a bracket expression contain-
ing the [:upper:] character class, a bracket expression containing both the
[:upper:] and [:lower:] character classes and a space, and a period escaped
with a backslash. The second element is trailed with an * metacharacter
so that after the leading uppercase letter in our sentence, any number of
upper- and lowercase letters and spaces may follow it and still match:

[me@linuxbox ~]$ echo "This works." | grep -E '[[:upper:]][[:upper:][:lower:]
]*\.'
This works.
[me@linuxbox ~]$ echo "This Works." | grep -E '[[:upper:]][[:upper:][:lower:]
]*\.'
This Works.
[me@linuxbox ~]$ echo "this does not" | grep -E '[[:upper:]][[:upper:][:lower:
]]*\.'
[me@linuxbox ~]$

The expression matches the first two tests, but not the third, since it
lacks the required leading uppercase character and trailing period.

+—Match an Element One or More Times
The + metacharacter works much like the *, except it requires at least one
instance of the preceding element to cause a match. Here is a regular
expression that will match only lines consisting of groups of one or more
alphabetic characters separated by single spaces:

^([[:alpha:]]+ ?)+$

Regular Expressions 227

Let’s try it:

[me@linuxbox ~]$ echo "This that" | grep -E '^([[:alpha:]]+ ?)+$'
This that
[me@linuxbox ~]$ echo "a b c" | grep -E '^([[:alpha:]]+ ?)+$'
a b c
[me@linuxbox ~]$ echo "a b 9" | grep -E '^([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$ echo "abc d" | grep -E '^([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$

We see that this expression does not match the line "a b 9", because it
contains a non-alphabetic character; nor does it match "abc d", because
more than one space character separates the characters c and d.

{ }—Match an Element a Specific Number of Times
The { and } metacharacters are used to express minimum and maximum
numbers of required matches. They may be specified in four possible ways,
as shown in Table 19-3.

Table 19-3: Specifying the Number of Matches

Specifier Meaning

{n} Match the preceding element if it occurs exactly n times.

{n,m} Match the preceding element if it occurs at least n times, but no
more than m times.

{n,} Match the preceding element if it occurs n or more times.

{,m} Match the preceding element if it occurs no more than m times.

Going back to our earlier example with the phone numbers, we can use
this method of specifying repetitions to simplify our original regular expres-
sion from

^\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

to

^\(?[0-9]{3}\)? [0-9]{3}-[0-9]{4}$

Let’s try it:

[me@linuxbox ~]$ echo "(555) 123-4567" | grep -E '^\(?[0-9]{3}\)? [0-9]{3}-[0-
9]{4}$'
(555) 123-4567
[me@linuxbox ~]$ echo "555 123-4567" | grep -E '^\(?[0-9]{3}\)? [0-9]{3}-[0-9]
{4}$'
555 123-4567
[me@linuxbox ~]$ echo "5555 123-4567" | grep -E '^\(?[0-9]{3}\)? [0-9]{3}-[0-9
]{4}$'
[me@linuxbox ~]$

228 Chapter 19

As we can see, our revised expression can successfully validate numbers
both with and without the parentheses, while rejecting those numbers that
are not properly formatted.

Putting Regular Expressions to Work
Let’s look at some of the commands we already know and see how they can
be used with regular expressions.

Validating a Phone List with grep
In our earlier example, we looked at single phone numbers and checked
them for proper formatting. A more realistic scenario would be checking a
list of numbers instead, so let’s make a list. We’ll do this by reciting a magical
incantation to the command line. It will be magic because we have not covered
most of the commands involved, but worry not—we will get there in future
chapters. Here is the incantation:

[me@linuxbox ~]$ for i in {1..10}; do echo "(${RANDOM:0:3}) ${RANDOM:0:3}-$
{RANDOM:0:4}" >> phonelist.txt; done

This command will produce a file named phonelist.txt containing 10
phone numbers. Each time the command is repeated, another 10 numbers
are added to the list. We can also change the value 10 near the beginning of
the command to produce more or fewer phone numbers. If we examine the
contents of the file, however, we see we have a problem:

[me@linuxbox ~]$ cat phonelist.txt
(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440

Some of the numbers are malformed, which is perfect for our purposes
because we will use grep to validate them.

One useful method of validation would be to scan the file for invalid
numbers and display the resulting list.

[me@linuxbox ~]$ grep -Ev '^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$' phonelist.txt
(292) 108-518
(129) 44-1379
[me@linuxbox ~]$

Here we use the -v option to produce an inverse match so that we will
output only the lines in the list that do not match the specified expression.

Regular Expressions 229

The expression itself includes the anchor metacharacters at each end to
ensure that the number has no extra characters at either end. This expres-
sion also requires that the parentheses be present in a valid number, unlike
our earlier phone number example.

Finding Ugly Filenames with find
The find command supports a test based on a regular expression. There is
an important consideration to keep in mind when using regular expressions
in find versus grep. Whereas grep will print a line when the line contains a
string that matches an expression, find requires that the pathname exactly
match the regular expression. In the following example, we will use find with
a regular expression to find every pathname that contains any character that
is not a member of the following set:

[-_./0-9a-zA-Z]

Such a scan would reveal pathnames that contain embedded spaces and
other potentially offensive characters:

[me@linuxbox ~]$ find . -regex '.*[^-_./0-9a-zA-Z].*'

Due to the requirement for an exact match of the entire pathname, we
use .* at both ends of the expression to match zero or more instances of any
character. In the middle of the expression, we use a negated bracket expres-
sion containing our set of acceptable pathname characters.

Searching for Files with locate
The locate program supports both basic (the --regexp option) and extended
(the --regex option) regular expressions. With it, we can perform many of
the same operations that we performed earlier with our dirlist files:

[me@linuxbox ~]$ locate --regex 'bin/(bz|gz|zip)'
/bin/bzcat
/bin/bzcmp
/bin/bzdiff
/bin/bzegrep
/bin/bzexe
/bin/bzfgrep
/bin/bzgrep
/bin/bzip2
/bin/bzip2recover
/bin/bzless
/bin/bzmore
/bin/gzexe
/bin/gzip
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

230 Chapter 19

Using alternation, we perform a search for pathnames that contain
either bin/bz, bin/gz, or /bin/zip.

Searching for Text with less and vim
less and vim share the same method of searching for text. Pressing the / key
followed by a regular expression will perform a search. We use less to view
our phonelist.txt file:

[me@linuxbox ~]$ less phonelist.txt

Then we search for our validation expression:

(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440
~
~
~
/^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$

less will highlight the strings that match, leaving the invalid ones easy
to spot:

(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440
~
~
~
(END)

vim, on the other hand, supports basic regular expressions, so our search
expression would look like this:

/([0-9]\{3\}) [0-9]\{3\}-[0-9]\{4\}

We can see that the expression is mostly the same; however, many of the
characters that are considered metacharacters in extended expressions are
considered literals in basic expressions. They are treated as metacharacters

Regular Expressions 231

only when escaped with a backslash. Depending on the particular configur-
ation of vim on our system, the matching will be highlighted. If not, try the
command-mode command :hlsearch to activate search highlighting.

Note: Depending on your distribution, vim may or may not support text-search highlighting.
Ubuntu, in particular, supplies a very stripped-down version of vim by default. On
such systems, you may want to use your package manager to install a more complete
version of vim.

Final Note
In this chapter, we’ve seen a few of the many uses of regular expressions.
We can find even more if we use regular expressions to search for additional
applications that use them. We can do that by searching the man pages:

[me@linuxbox ~]$ cd /usr/share/man/man1
[me@linuxbox man1]$ zgrep -El 'regex|regular expression' *.gz

The zgrep program provides a frontend for grep, allowing it to read com-
pressed files. In our example, we search the compressed Section 1 man page
files in their usual location. The result of this command is a list of files con-
taining the string regex or regular expression. As we can see, regular expres-
sions show up in a lot of programs.

There is one feature found in basic regular expressions that we did not
cover. Called back references, this feature will be discussed in the next chapter.

232 Chapter 19

T E X T P R O C E S S I N G

All Unix-like operating systems rely heavily on text
files for several types of data storage. So it makes sense
that there are many tools for manipulating text. In
this chapter, we will look at programs that are used
to “slice and dice” text. In the next chapter, we will look at more text pro-
cessing, focusing on programs that are used to format text for printing and
other kinds of human consumption.

This chapter will revisit some old friends and introduce us to some
new ones:

cat—Concatenate files and print on the standard output.

sort—Sort lines of text files.

uniq—Report or omit repeated lines.

cut—Remove sections from each line of files.

paste—Merge lines of files.

join—Join lines of two files on a common field.

comm—Compare two sorted files line by line.

diff—Compare files line by line.

patch—Apply a diff file to an original.

tr—Translate or delete characters.

sed—Stream editor for filtering and transforming text.

aspell—Interactive spell checker.

Applications of Text
So far, we have learned about a couple of text editors (nano and vim), looked
at a bunch of configuration files, and witnessed the output of dozens of com-
mands, all in text. But what else is text used for? Many things, it turns out.

Documents
Many people write documents using plaintext formats. While it is easy to see
how a small text file could be useful for keeping simple notes, it is also pos-
sible to write large documents in text format. One popular approach is to write
a large document in a text format and then use a markup language to describe
the formatting of the finished document. Many scientific papers are written
using this method, as Unix-based text-processing systems were among the
first systems that supported the advanced typographical layout needed by
writers in technical disciplines.

Web Pages
The world’s most popular type of electronic document is probably the
web page. Web pages are text documents that use either HTML (Hypertext
Markup Language) or XML (Extensible Markup Language) as a markup lan-
guage to describe the document’s visual format.

Email
Email is an intrinsically text-based medium. Even non-text attachments are
converted into a text representation for transmission. We can see this for
ourselves by downloading an email message and then viewing it in less. We
will see that the message begins with a header that describes the source of the
message and the processing it received during its journey, followed by the
body of the message with its content.

Printer Output
On Unix-like systems, output destined for a printer is sent as plaintext or, if
the page contains graphics, is converted into a text format page-description
language known as PostScript, which is then sent to a program that generates
the graphic dots to be printed.

234 Chapter 20

Program Source Code
Many of the command-line programs found on Unix-like systems were cre-
ated to support system administration and software development, and text-
processing programs are no exception. Many of them are designed to solve
software development problems. The reason text processing is important
to software developers is that all software starts out as text. Source code, the
part of the program the programmer actually writes, is always in text format.

Revisiting Some Old Friends
Back in Chapter 6, we learned about some commands that are able to accept
standard input in addition to command-line arguments. We touched on
them only briefly then, but now we will take a closer look at how they can
be used to perform text processing.

cat—Concatenate Files and Print on Standard Output
The cat program has a number of interesting options. Many of them are used
to better visualize text content. One example is the -A option, which is used to
display non-printing characters in the text. There are times when we want to
know if control characters are embedded in our otherwise visible text. The
most common of these are tab characters (as opposed to spaces) and car-
riage returns, often present as end-of-line characters in MS-DOS-style text
files. Another common situation is a file containing lines of text with trailing
spaces.

Let’s create a test file using cat as a primitive word processor. To do this,
we’ll just enter the command cat (along with specifying a file for redirected
output) and type our text, followed by ENTER to properly end the line, then
CTRL-D to indicate to cat that we have reached end-of-file. In this example,
we enter a leading tab character and follow the line with some trailing spaces:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jumped over the lazy dog.

[me@linuxbox ~]$

Next, we will use cat with the -A option to display the text:

[me@linuxbox ~]$ cat -A foo.txt
^IThe quick brown fox jumped over the lazy dog. $
[me@linuxbox ~]$

As we can see in the results, the tab character in our text is represented
by ^I. This common notation means “CTRL-I,” which, as it turns out, is the
same as a tab character. We also see that a $ appears at the true end of the
line, indicating that our text contains trailing spaces.

Text Processing 235

M S - D O S T E X T V S . U N I X T E X T
One of the reasons you may want to use cat to look for non-printing characters
in text is to spot hidden carriage returns. Where do hidden carriage returns
come from? DOS and Windows! Unix and DOS don’t define the end of a line
the same way in text files. Unix ends a line with a linefeed character (ASCII 10),
while MS-DOS and its derivatives use the sequence carriage return (ASCII 13)
and linefeed to terminate each line of text.

There are a several ways to convert files from DOS to Unix format. On
many Linux systems, programs called dos2unix and unix2dos can convert text files
to and from DOS format. However, if you don’t have dos2unix on your system,
don’t worry. The process of converting text from DOS to Unix format is very
simple; it simply involves the removal of the offending carriage returns. That is
easily accomplished by a couple of the programs discussed later in this chapter.

cat also has options that are used to modify text. The two most promin-
ent are -n, which numbers lines, and -s, which suppresses the output of mul-
tiple blank lines. We can demonstrate thusly:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox

jumped over the lazy dog.
[me@linuxbox ~]$ cat -ns foo.txt
 1 The quick brown fox
 2
 3 jumped over the lazy dog.
[me@linuxbox ~]$

In this example, we create a new version of our foo.txt test file, which
contains two lines of text separated by two blank lines. After processing by
cat with the -ns options, the extra blank line is removed and the remaining
lines are numbered. While this is not much of a process to perform on text,
it is a process.

sort—Sort Lines of Text Files
The sort program sorts the contents of standard input, or one or more files
specified on the command line, and sends the results to standard output.
Using the same technique that we used with cat, we can demonstrate pro-
cessing of standard input directly from the keyboard.

[me@linuxbox ~]$ sort > foo.txt
c
b
a
[me@linuxbox ~]$ cat foo.txt
a
b
c

236 Chapter 20

After entering the command, we type the letters c, b, and a, followed
once again by CTRL-D to indicate end-of-file. We then view the resulting file
and see that the lines now appear in sorted order.

Since sort can accept multiple files on the command line as arguments,
it is possible to merge multiple files into a single sorted whole. For example,
if we had three text files and wanted to combine them into a single sorted
file, we could do something like this:

sort file1.txt file2.txt file3.txt > final_sorted_list.txt

sort has several interesting options. Table 20-1 shows a partial list.

Table 20-1: Common sort Options

Option Long Option Description

-b --ignore-leading-blanks By default, sorting is performed on the
entire line, starting with the first char-
acter in the line. This option causes
sort to ignore leading spaces in lines
and calculates sorting based on the first
non-whitespace character on the line.

-f --ignore-case Makes sorting case insensitive.

-n --numeric-sort Performs sorting based on the numeric
evaluation of a string. Using this
option allows sorting to be performed on
numeric values rather than alphabetic
values.

-r --reverse Sort in reverse order. Results are in
descending rather than ascending
order.

-k --key=field1[,field2] Sort based on a key field located
from field1 to field2 rather than the
entire line.

-m --merge Treat each argument as the name of a
presorted file. Merge multiple files into
a single sorted result without perform-
ing any additional sorting.

-o --output=file Send sorted output to file rather than to
standard output.

-t --field-separator=char Define the field-separator character. By
default, fields are separated by spaces
or tabs.

Text Processing 237

Although most of the options above are pretty self-explanatory, some
are not. First, let’s look at the -n option, used for numeric sorting. With this
option, it is possible to sort values based on numeric values. We can demon-
strate this by sorting the results of the du command to determine the largest
users of disk space. Normally, the du command lists the results of a summary
in pathname order:

[me@linuxbox ~]$ du -s /usr/share/* | head
252 /usr/share/aclocal
96 /usr/share/acpi-support
8 /usr/share/adduser
196 /usr/share/alacarte
344 /usr/share/alsa
8 /usr/share/alsa-base
12488 /usr/share/anthy
8 /usr/share/apmd
21440 /usr/share/app-install
48 /usr/share/application-registry

In this example, we pipe the results into head to limit the results to the
first 10 lines. We can produce a numerically sorted list to show the 10 largest
consumers of space this way:

[me@linuxbox ~]$ du -s /usr/share/* | sort -nr | head
509940 /usr/share/locale-langpack
242660 /usr/share/doc
197560 /usr/share/fonts
179144 /usr/share/gnome
146764 /usr/share/myspell
144304 /usr/share/gimp
135880 /usr/share/dict
76508 /usr/share/icons
68072 /usr/share/apps
62844 /usr/share/foomatic

By using the -nr options, we produce a reverse numerical sort, with
the largest values appearing first in the results. This sort works because the
numerical values occur at the beginning of each line. But what if we want
to sort a list based on some value found within the line? For example, the
result of ls -l looks like this:

[me@linuxbox ~]$ ls -l /usr/bin | head
total 152948
-rwxr-xr-x 1 root root 34824 2012-04-04 02:42 [
-rwxr-xr-x 1 root root 101556 2011-11-27 06:08 a2p
-rwxr-xr-x 1 root root 13036 2012-02-27 08:22 aconnect
-rwxr-xr-x 1 root root 10552 2011-08-15 10:34 acpi
-rwxr-xr-x 1 root root 3800 2012-04-14 03:51 acpi_fakekey
-rwxr-xr-x 1 root root 7536 2012-04-19 00:19 acpi_listen
-rwxr-xr-x 1 root root 3576 2012-04-29 07:57 addpart
-rwxr-xr-x 1 root root 20808 2012-01-03 18:02 addr2line
-rwxr-xr-x 1 root root 489704 2012-10-09 17:02 adept_batch

Ignoring, for the moment, that ls can sort its results by size, we could
use sort to sort this list by file size, as well.

238 Chapter 20

[me@linuxbox ~]$ ls -l /usr/bin | sort -nr -k 5 | head
-rwxr-xr-x 1 root root 8234216 2012-04-07 17:42 inkscape
-rwxr-xr-x 1 root root 8222692 2012-04-07 17:42 inkview
-rwxr-xr-x 1 root root 3746508 2012-03-07 23:45 gimp-2.4
-rwxr-xr-x 1 root root 3654020 2012-08-26 16:16 quanta
-rwxr-xr-x 1 root root 2928760 2012-09-10 14:31 gdbtui
-rwxr-xr-x 1 root root 2928756 2012-09-10 14:31 gdb
-rwxr-xr-x 1 root root 2602236 2012-10-10 12:56 net
-rwxr-xr-x 1 root root 2304684 2012-10-10 12:56 rpcclient
-rwxr-xr-x 1 root root 2241832 2012-04-04 05:56 aptitude
-rwxr-xr-x 1 root root 2202476 2012-10-10 12:56 smbcacls

Many uses of sort involve the processing of tabular data, such as the
results of the ls command above. If we apply database terminology to the
table above, we would say that each row is a record and that each record con-
sists of multiple fields, such as the file attributes, link count, filename, file
size and so on. sort is able to process individual fields. In database terms,
we are able to specify one or more key fields to use as sort keys. In the example
above, we specify the n and r options to perform a reverse numerical sort
and specify -k 5 to make sort use the fifth field as the key for sorting.

The k option is very interesting and has many features, but first we need
to talk about how sort defines fields. Let’s consider a very simple text file
consisting of a single line containing the author’s name:

William Shotts

By default, sort sees this line as having two fields. The first field contains
the characters William and the second field contains the characters Shotts,
meaning that whitespace characters (spaces and tabs) are used as delimiters
between fields and that the delimiters are included in the field when sorting
is performed.

Looking again at a line from our ls output, we can see that a line con-
tains eight fields and that the fifth field is the file size:

-rwxr-xr-x 1 root root 8234216 2012-04-07 17:42 inkscape

For our next series of experiments, let’s consider the following file con-
taining the history of three popular Linux distributions released from 2006
to 2008. Each line in the file has three fields: the distribution name, the ver-
sion number, and the date of release in MM/DD/YYYY format:

SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
SUSE 10.3 10/04/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
SUSE 10.1 05/11/2006
Fedora 6 10/24/2006

Text Processing 239

Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Using a text editor (perhaps vim), we’ll enter this data and name the
resulting file distros.txt.

Next, we’ll try sorting the file and observe the results:

[me@linuxbox ~]$ sort distros.txt
Fedora 10 11/25/2008
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007
Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

Well, it mostly worked. The problem occurs in the sorting of the Fedora
version numbers. Since a 1 comes before a 5 in the character set, version 10
ends up at the top while version 9 falls to the bottom.

To fix this problem, we have to sort on multiple keys. We want to per-
form an alphabetic sort on the first field and then a numeric sort on the
third field. sort allows multiple instances of the -k option so that multiple
sort keys can be specified. In fact, a key may include a range of fields. If
no range is specified (as has been the case with our previous examples),
sort uses a key that begins with the specified field and extends to the end
of the line.

Here is the syntax for our multikey sort:

[me@linuxbox ~]$ sort --key=1,1 --key=2n distros.txt
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
Fedora 10 11/25/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007
Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

240 Chapter 20

Though we used the long form of the option for clarity, -k 1,1 -k 2n
would be exactly equivalent. In the first instance of the key option, we spe-
cified a range of fields to include in the first key. Since we wanted to limit
the sort to just the first field, we specified 1,1, which means “start at field 1
and end at field 1.” In the second instance, we specified 2n, which means
that field 2 is the sort key and that the sort should be numeric. An option
letter may be included at the end of a key specifier to indicate the type of
sort to be performed. These option letters are the same as the global options
for the sort program: b (ignore leading blanks), n (numeric sort), r (reverse
sort), and so on.

The third field in our list contains a date in an inconvenient format for
sorting. On computers, dates are usually formatted in YYYY-MM-DD order
to make chronological sorting easy, but ours are in the American format of
MM/DD/YYYY. How can we sort this list in chronological order?

Fortunately, sort provides a way. The key option allows specification of
offsets within fields, so we can define keys within fields:

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt
Fedora 10 11/25/2008
Ubuntu 8.10 10/30/2008
SUSE 11.0 06/19/2008
Fedora 9 05/13/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 7.10 10/18/2007
SUSE 10.3 10/04/2007
Fedora 7 05/31/2007
Ubuntu 7.04 04/19/2007
SUSE 10.2 12/07/2006
Ubuntu 6.10 10/26/2006
Fedora 6 10/24/2006
Ubuntu 6.06 06/01/2006
SUSE 10.1 05/11/2006
Fedora 5 03/20/2006

By specifying -k 3.7, we instruct sort to use a sort key that begins at the
seventh character within the third field, which corresponds to the start of
the year. Likewise, we specify -k 3.1 and -k 3.4 to isolate the month and day
portions of the date. We also add the n and r options to achieve a reverse
numeric sort. The b option is included to suppress the leading spaces (whose
numbers vary from line to line, thereby affecting the outcome of the sort)
in the date field.

Some files don’t use tabs and spaces as field delimiters; take, for
example, the /etc/passwd file:

[me@linuxbox ~]$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh

Text Processing 241

lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh

The fields in this file are delimited with colons (:), so how would we
sort this file using a key field? sort provides the -t option to define the field
separator character. To sort the passwd file on the seventh field (the account’s
default shell), we could do this:

[me@linuxbox ~]$ sort -t ':' -k 7 /etc/passwd | head
me:x:1001:1001:Myself,,,:/home/me:/bin/bash
root:x:0:0:root:/root:/bin/bash
dhcp:x:101:102::/nonexistent:/bin/false
gdm:x:106:114:Gnome Display Manager:/var/lib/gdm:/bin/false
hplip:x:104:7:HPLIP system user,,,:/var/run/hplip:/bin/false
klog:x:103:104::/home/klog:/bin/false
messagebus:x:108:119::/var/run/dbus:/bin/false
polkituser:x:110:122:PolicyKit,,,:/var/run/PolicyKit:/bin/false
pulse:x:107:116:PulseAudio daemon,,,:/var/run/pulse:/bin/false

By specifying the colon character as the field separator, we can sort on
the seventh field.

uniq—Report or Omit Repeated Lines
Compared to sort, the uniq program is a lightweight. uniq performs a seem-
ingly trivial task. When given a sorted file (including standard input), it
removes any duplicate lines and sends the results to standard output. It is
often used in conjunction with sort to clean the output of duplicates.

Note: While uniq is a traditional Unix tool often used with sort, the GNU version of sort
supports a -u option, which removes duplicates from the sorted output.

Let’s make a text file to try this out:

[me@linuxbox ~]$ cat > foo.txt
a
b
c
a
b
c

Remember to type CTRL-D to terminate standard input. Now, if we run
uniq on our text file, the results are no different from our original file; the
duplicates were not removed:

[me@linuxbox ~]$ uniq foo.txt
a
b
c
a
b
c

242 Chapter 20

For uniq to actually do its job, the input must be sorted first:

[me@linuxbox ~]$ sort foo.txt | uniq
a
b
c

This is because uniq only removes duplicate lines that are adjacent to
each other.

uniq has several options. Table 20-2 lists the common ones.

Table 20-2: Common uniq Options

Option Description

-c Output a list of duplicate lines preceded by the number of times
the line occurs.

-d Output only repeated lines, rather than unique lines.

-f n Ignore n leading fields in each line. Fields are separated by
whitespace as they are in sort; however, unlike sort, uniq has
no option for setting an alternative field separator.

-i Ignore case during the line comparisons.

-s n Skip (ignore) the leading n characters of each line.

-u Output only unique lines. This is the default.

Here we see uniq used to report the number of duplicates found in our
text file, using the -c option:

[me@linuxbox ~]$ sort foo.txt | uniq -c
 2 a
 2 b
 2 c

Slicing and Dicing
The next three programs we will discuss are used to peel columns of text
out of files and recombine them in useful ways.

cut—Remove Sections from Each Line of Files
The cut program is used to extract a section of text from a line and output
the extracted section to standard output. It can accept multiple file argu-
ments or input from standard input.

Specifying the section of the line to be extracted is somewhat awkward
and is specified using the options shown in Table 20-3.

Text Processing 243

Table 20-3: cut Selection Options

Option Description

-c char_list Extract the portion of the line defined by char_list.
The list may consist of one or more comma-separated
numerical ranges.

-f field_list Extract one or more fields from the line as defined by
field_list. The list may contain one or more fields or
field ranges separated by commas.

-d delim_char When -f is specified, use delim_char as the field delimit-
ing character. By default, fields must be separated by a
single tab character.

--complement Extract the entire line of text, except for those portions
specified by -c and/or -f.

As we can see, the way cut extracts text is rather inflexible. cut is best
used to extract text from files that are produced by other programs, rather
than text directly typed by humans. We’ll take a look at our distros.txt file to
see if it is “clean” enough to be a good specimen for our cut examples. If we
use cat with the -A option, we can see if the file meets our requirements of
tab-separated fields.

[me@linuxbox ~]$ cat -A distros.txt
SUSE^I10.2^I12/07/2006$
Fedora^I10^I11/25/2008$
SUSE^I11.0^I06/19/2008$
Ubuntu^I8.04^I04/24/2008$
Fedora^I8^I11/08/2007$
SUSE^I10.3^I10/04/2007$
Ubuntu^I6.10^I10/26/2006$
Fedora^I7^I05/31/2007$
Ubuntu^I7.10^I10/18/2007$
Ubuntu^I7.04^I04/19/2007$
SUSE^I10.1^I05/11/2006$
Fedora^I6^I10/24/2006$
Fedora^I9^I05/13/2008$
Ubuntu^I6.06^I06/01/2006$
Ubuntu^I8.10^I10/30/2008$
Fedora^I5^I03/20/2006$

It looks good—no embedded spaces, just single tab characters between
the fields. Since the file uses tabs rather than spaces, we’ll use the -f option
to extract a field:

[me@linuxbox ~]$ cut -f 3 distros.txt
12/07/2006
11/25/2008
06/19/2008
04/24/2008
11/08/2007

244 Chapter 20

10/04/2007
10/26/2006
05/31/2007
10/18/2007
04/19/2007
05/11/2006
10/24/2006
05/13/2008
06/01/2006
10/30/2008
03/20/2006

Because our distros file is tab delimited, it is best to use cut to extract
fields rather than characters. This is because when a file is tab delimited, it
is unlikely that each line will contain the same number of characters, which
makes calculating character positions within the line difficult or impossible.
In our example above, however, we now have extracted a field that luckily
contains data of identical length, so we can show how character extraction
works by extracting the year from each line:

[me@linuxbox ~]$ cut -f 3 distros.txt | cut -c 7-10
2006
2008
2008
2008
2007
2007
2006
2007
2007
2007
2006
2006
2008
2006
2008
2006

By running cut a second time on our list, we are able to extract charac-
ter positions 7 through 10, which corresponds to the year in our date field.
The 7-10 notation is an example of a range. The cut man page contains a
complete description of how ranges can be specified.

When working with fields, it is possible to specify a different field delim-
iter rather than the tab character. Here we will extract the first field from
the /etc/passwd file:

[me@linuxbox ~]$ cut -d ':' -f 1 /etc/passwd | head
root
daemon
bin
sys
sync
games
man

Text Processing 245

lp
mail
news

Using the -d option, we are able to specify the colon character as the
field delimiter.

E X P A N D I N G T A B S
Our distros.txt file is ideally formatted for extracting fields using cut. But what if
we wanted a file that could be fully manipulated with cut by characters, rather
than fields? This would require us to replace the tab characters within the file
with the corresponding number of spaces. Fortunately, the GNU coreutils pack-
age includes a tool for that. Named expand, this program accepts either one or
more file arguments or standard input, and it outputs the modified text to
standard output.

If we process our distros.txt file with expand, we can use the cut -c to extract
any range of characters from the file. For example, we could use the follow-
ing command to extract the year of release from our list by expanding the file
and using cut to extract every character from the 23rd position to the end of
the line:

[me@linuxbox ~]$ expand distros.txt | cut -c 23-

coreutils also provides the unexpand program to substitute tabs for spaces.

paste—Merge Lines of Files
The paste command does the opposite of cut. Rather than extracting a
column of text from a file, it adds one or more columns of text to a file.
It does this by reading multiple files and combining the fields found in
each file into a single stream of standard output. Like cut, paste accepts
multiple file arguments and/or standard input. To demonstrate how paste
operates, we will perform some surgery on our distros.txt file to produce a
chronological list of releases.

From our earlier work with sort, we will first produce a list of distros
sorted by date and store the result in a file called distros-by-date.txt:

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt > distros-by-
date.txt

Next, we will use cut to extract the first two fields from the file (the dis-
tro name and version) and store that result in a file named distro-versions.txt:

[me@linuxbox ~]$ cut -f 1,2 distros-by-date.txt > distros-versions.txt
[me@linuxbox ~]$ head distros-versions.txt

246 Chapter 20

Fedora 10
Ubuntu 8.10
SUSE 11.0
Fedora 9
Ubuntu 8.04
Fedora 8
Ubuntu 7.10
SUSE 10.3
Fedora 7
Ubuntu 7.04

The final piece of preparation is to extract the release dates and store
them a file named distro-dates.txt:

[me@linuxbox ~]$ cut -f 3 distros-by-date.txt > distros-dates.txt
[me@linuxbox ~]$ head distros-dates.txt
11/25/2008
10/30/2008
06/19/2008
05/13/2008
04/24/2008
11/08/2007
10/18/2007
10/04/2007
05/31/2007
04/19/2007

We now have the parts we need. To complete the process, use paste to
put the column of dates ahead of the distro names and versions, thus creat-
ing a chronological list. This is done simply by using paste and ordering its
arguments in the desired arrangement.

[me@linuxbox ~]$ paste distros-dates.txt distros-versions.txt
11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10
06/19/2008 SUSE 11.0
05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10
10/04/2007 SUSE 10.3
05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04
12/07/2006 SUSE 10.2
10/26/2006 Ubuntu 6.10
10/24/2006 Fedora 6
06/01/2006 Ubuntu 6.06
05/11/2006 SUSE 10.1
03/20/2006 Fedora 5

join—Join Lines of Two Files on a Common Field
In some ways, join is like paste in that it adds columns to a file, but it does so
in a unique way. A join is an operation usually associated with relational data-
bases where data from multiple tables with a shared key field is combined to

Text Processing 247

form a desired result. The join program performs the same operation. It
joins data from multiple files based on a shared key field.

To see how a join operation is used in a relational database, let’s ima-
gine a very small database consisting of two tables, each containing a single
record. The first table, called CUSTOMERS, has three fields: a customer
number (CUSTNUM), the customer’s first name (FNAME), and the cus-
tomer’s last name (LNAME):

CUSTNUM FNAME LNAME
========= ====== ======
4681934 John Smith

The second table is called ORDERS and contains four fields: an order
number (ORDERNUM), the customer number (CUSTNUM), the quantity
(QUAN), and the item ordered (ITEM):

ORDERNUM CUSTNUM QUAN ITEM
========== ========= ===== ====
3014953305 4681934 1 Blue Widget

Note that both tables share the field CUSTNUM. This is important, as it
allows a relationship between the tables.

Performing a join operation would allow us to combine the fields in the
two tables to achieve a useful result, such as preparing an invoice. Using the
matching values in the CUSTNUM fields of both tables, a join operation
could produce the following:

FNAME LNAME QUAN ITEM
====== ====== ===== ====
John Smith 1 Blue Widget

To demonstrate the join program, we’ll need to make a couple of files
with a shared key. To do this, we will use our distros-by-date.txt file. From this
file, we will construct two additional files. One contains the release dates (which
will be our shared key field for this demonstration) and the release names:

[me@linuxbox ~]$ cut -f 1,1 distros-by-date.txt > distros-names.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-names.txt > distros-key-names
.txt
[me@linuxbox ~]$ head distros-key-names.txt
11/25/2008 Fedora
10/30/2008 Ubuntu
06/19/2008 SUSE
05/13/2008 Fedora
04/24/2008 Ubuntu
11/08/2007 Fedora
10/18/2007 Ubuntu
10/04/2007 SUSE
05/31/2007 Fedora
04/19/2007 Ubuntu

248 Chapter 20

The second file contains the release dates and the version numbers:

[me@linuxbox ~]$ cut -f 2,2 distros-by-date.txt > distros-vernums.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-vernums.txt > distros-key-
vernums.txt
[me@linuxbox ~]$ head distros-key-vernums.txt
11/25/2008 10
10/30/2008 8.10
06/19/2008 11.0
05/13/2008 9
04/24/2008 8.04
11/08/2007 8
10/18/2007 7.10
10/04/2007 10.3
05/31/2007 7
04/19/2007 7.04

We now have two files with a shared key (the “release date” field). It is
important to point out that the files must be sorted on the key field for join
to work properly.

[me@linuxbox ~]$ join distros-key-names.txt distros-key-vernums.txt | head
11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10
06/19/2008 SUSE 11.0
05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10
10/04/2007 SUSE 10.3
05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04

Note also that, by default, join uses whitespace as the input field delim-
iter and a single space as the output field delimiter. This behavior can be
modified by specifying options. See the join man page for details.

Comparing Text
It is often useful to compare versions of text files. For system administrators
and software developers, this is particularly important. A system adminis-
trator may, for example, need to compare an existing configuration file to a
previous version to diagnose a system problem. Likewise, a programmer fre-
quently needs to see what changes have been made to programs over time.

comm—Compare Two Sorted Files Line by Line
The comm program compares two text files, displaying the lines that are
unique to each one and the lines they have in common. To demonstrate,
we will create two nearly identical text files using cat:

[me@linuxbox ~]$ cat > file1.txt
a
b

Text Processing 249

c
d
[me@linuxbox ~]$ cat > file2.txt
b
c
d
e

Next, we will compare the two files using comm:

[me@linuxbox ~]$ comm file1.txt file2.txt
a

b
c
d

e

As we can see, comm produces three columns of output. The first column
contains lines unique to the first file argument; the second column, the lines
unique to the second file argument; and the third column, the lines shared
by both files. comm supports options in the form -n where n is either 1, 2, or 3.
When used, these options specify which column(s) to suppress. For example,
if we wanted to output only the lines shared by both files, we would suppress
the output of columns 1 and 2:

[me@linuxbox ~]$ comm -12 file1.txt file2.txt
b
c
d

diff—Compare Files Line by Line
Like the comm program, diff is used to detect the differences between files.
However, diff is a much more complex tool, supporting many output for-
mats and the ability to process large collections of text files at once. diff is
often used by software developers to examine changes between different
versions of program source code because it has the ability to recursively
examine directories of source code, often referred to as source trees. One
common use for diff is the creation of diff files or patches that are used by
programs such as patch (which we’ll discuss shortly) to convert one version
of a file (or files) to another version.

If we use diff to look at our previous example files, we see its default
style of output: a terse description of the differences between the two files.

[me@linuxbox ~]$ diff file1.txt file2.txt
1d0
< a
4a4
> e

250 Chapter 20

In the default format, each group of changes is preceded by a change
command (see Table 20-4) in the form of range operation range to describe
the positions and types of changes required to convert the first file to the
second file.

Table 20-4: diff Change Commands

Change Description

r1ar2 Append the lines at the position r2 in the second file to the
position r1 in the first file.

r1cr2 Change (replace) the lines at position r1 with the lines at the
position r2 in the second file.

r1dr2 Delete the lines in the first file at position r1, which would have
appeared at range r2 in the second file

In this format, a range is a comma-separated list of the starting line and
the ending line. While this format is the default (mostly for POSIX compli-
ance and backward compatibility with traditional Unix versions of diff), it
is not as widely used as other, optional formats. Two of the more popular
formats are the context format and the unified format.

When viewed using the context format (the -c option), the output looks
like this:

[me@linuxbox ~]$ diff -c file1.txt file2.txt
*** file1.txt 2012-12-23 06:40:13.000000000 -0500
--- file2.txt 2012-12-23 06:40:34.000000000 -0500

*** 1,4 ****
- a
 b
 c
 d
--- 1,4 ----
 b

 c
 d
+ e

The output begins with the names of the two files and their timestamps.
The first file is marked with asterisks, and the second file is marked with dashes.
Throughout the remainder of the listing, these markers will signify their
respective files. Next, we see groups of changes, including the default num-
ber of surrounding context lines. In the first group, we see *** 1,4 ****, which
indicates lines 1 through 4 in the first file. Later we see --- 1,4 ----, which indi-
cates lines 1 through 4 in the second file. Within a change group, lines begin
with one of four indicators, as shown in Table 20-5.

Text Processing 251

Table 20-5: diff Context-Format Change Indicators

Indicator Meaning

(none) A line shown for context. It does not indicate a difference
between the two files.

- A line deleted. This line will appear in the first file but not in the
second file.

+ A line added. This line will appear in the second file but not in
the first file.

! A line changed. The two versions of the line will be displayed,
each in its respective section of the change group.

The unified format is similar to the context format but is more concise.
It is specified with the -u option:

[me@linuxbox ~]$ diff -u file1.txt file2.txt
--- file1.txt 2012-12-23 06:40:13.000000000 -0500
+++ file2.txt 2012-12-23 06:40:34.000000000 -0500
@@ -1,4 +1,4 @@
-a
 b
 c
 d
+e

The most notable difference between the context and unified formats
is the elimination of the duplicated lines of context, making the results of
the unified format shorter than those of the context format. In our example
above, we see file timestamps like those of the context format, followed by
the string @@ -1,4 +1,4 @@. This indicates the lines in the first file and the
lines in the second file described in the change group. Following this are
the lines themselves, with the default three lines of context. As shown in
Table 20-6, each line starts with one of three possible characters.

Table 20-6: diff Unified-Format Change Indicators

Character Meaning

(none) This line is shared by both files.

- This line was removed from the first file.

+ This line was added to the first file.

252 Chapter 20

patch—Apply a diff to an Original
The patch program is used to apply changes to text files. It accepts output
from diff and is generally used to convert older version of files into newer
versions. Let’s consider a famous example. The Linux kernel is developed
by a large, loosely organized team of contributors who submit a constant
stream of small changes to the source code. The Linux kernel consists of
several million lines of code, while the changes that are made by one con-
tributor at one time are quite small. It makes no sense for a contributor to
send each developer an entire kernel source tree each time a small change
is made. Instead, a diff file is submitted. The diff file contains the change
from the previous version of the kernel to the new version with the contrib-
utor’s changes. The receiver then uses the patch program to apply the change
to his own source tree. Using diff/patch offers two significant advantages:

The diff file is very small, compared to the full size of the source tree.

The diff file concisely shows the change being made, allowing reviewers
of the patch to quickly evaluate it.

Of course, diff/patch will work on any text file, not just source code. It
would be equally applicable to configuration files or any other text.

To prepare a diff file for use with patch, the GNU documentation sug-
gests using diff as follows:

diff -Naur old_file new_file > diff_file

where old_file and new_file are either single files or directories containing
files. The r option supports recursion of a directory tree.

Once the diff file has been created, we can apply it to patch the old file
into the new file:

patch < diff_file

We’ll demonstrate with our test file:

[me@linuxbox ~]$ diff -Naur file1.txt file2.txt > patchfile.txt
[me@linuxbox ~]$ patch < patchfile.txt
patching file file1.txt
[me@linuxbox ~]$ cat file1.txt
b
c
d
e

In this example, we created a diff file named patchfile.txt and then used
the patch program to apply the patch. Note that we did not have to specify a
target file to patch, as the diff file (in unified format) already contains the
filenames in the header. Once the patch is applied, we can see that file1.txt
now matches file2.txt.

Text Processing 253

patch has a large number of options, and additional utility programs
can be used to analyze and edit patches.

Editing on the Fly
Our experience with text editors has been largely interactive, meaning that
we manually move a cursor around and then type our changes. However,
there are non-interactive ways to edit text as well. It’s possible, for example,
to apply a set of changes to multiple files with a single command.

tr—Transliterate or Delete Characters
The tr program is used to transliterate characters. We can think of this as a
sort of character-based search-and-replace operation. Transliteration is the
process of changing characters from one alphabet to another. For example,
converting characters from lowercase to uppercase is transliteration. We can
perform such a conversion with tr as follows:

[me@linuxbox ~]$ echo "lowercase letters" | tr a-z A-Z
LOWERCASE LETTERS

As we can see, tr operates on standard input and outputs its results on
standard output. tr accepts two arguments: a set of characters to convert
from and a corresponding set of characters to convert to. Character sets may
be expressed in one of three ways:

An enumerated list; for example, ABCDEFGHIJKLMNOPQRSTUVWXYZ.

A character range; for example, A-Z. Note that this method is sometimes
subject to the same issues as other commands (due to the locale colla-
tion order) and thus should be used with caution.

POSIX character classes; for example, [:upper:].

In most cases, the character sets should be of equal length; however, it is
possible for the first set to be larger than the second, particularly if we wish
to convert multiple characters to a single character:

[me@linuxbox ~]$ echo "lowercase letters" | tr [:lower:] A
AAAAAAAAA AAAAAAA

In addition to transliteration, tr allows characters to simply be deleted
from the input stream. Earlier in this chapter, we discussed the problem of
converting MS-DOS text files to Unix-style text. To perform this conversion,
carriage return characters need to be removed from the end of each line.
This can be performed with tr as follows:

tr -d '\r' < dos_file > unix_file

254 Chapter 20

where dos_file is the file to be converted and unix_file is the result. This
form of the command uses the escape sequence \r to represent the carriage
return character. To see a complete list of the sequences and character
classes tr supports, try

[me@linuxbox ~]$ tr –help

R O T 1 3 : T H E N O T - S O - S E C R E T D E C O D E R R I N G

One amusing use of tr is to perform ROT13 encoding of text. ROT13 is a trivial
type of encryption based on a simple substitution cipher. Calling ROT13 encryp-
tion is being generous; text obfuscation is more accurate. It is used sometimes on
text to obscure potentially offensive content. The method simply moves each
character 13 places up the alphabet. Since this is halfway up the possible 26
characters, performing the algorithm a second time on the text restores it to
its original form. To perform this encoding with tr:

echo "secret text" | tr a-zA-Z n-za-mN-ZA-M
frperg grkg

Performing the same procedure a second time results in the translation:

echo "frperg grkg" | tr a-zA-Z n-za-mN-ZA-M
secret text

A number of email programs and Usenet news readers support ROT13
encoding. Wikipedia contains a good article on the subject: http://en.wikipedia
.org/wiki/ROT13.

tr can perform another trick, too. Using the -s option, tr can “squeeze”
(delete) repeated instances of a character:

[me@linuxbox ~]$ echo "aaabbbccc" | tr -s ab
abccc

Here we have a string containing repeated characters. By specifying
the set ab to tr, we eliminate the repeated instances of the letters in the set,
while leaving the character that is missing from the set (c) unchanged. Note
that the repeating characters must be adjoining. If they are not, the squeez-
ing will have no effect:

[me@linuxbox ~]$ echo "abcabcabc" | tr -s ab
abcabcabc

Text Processing 255

sed—Stream Editor for Filtering and Transforming Text
The name sed is short for stream editor. It performs text editing on a stream
of text, either a set of specified files or standard input. sed is a powerful and
somewhat complex program (there are entire books about it), so we will not
cover it completely here.

In general, the way sed works is that it is given either a single editing
command (on the command line) or the name of a script file containing
multiple commands, and it then performs these commands upon each line
in the stream of text. Here is a very simple example of sed in action:

[me@linuxbox ~]$ echo "front" | sed 's/front/back/'
back

In this example, we produce a one-word stream of text using echo and
pipe it into sed. sed, in turn, carries out the instruction s/front/back/ upon
the text in the stream and produces the output back as a result. We can also
recognize this command as resembling the substitution (search and replace)
command in vi.

Commands in sed begin with a single letter. In the example above, the
substitution command is represented by the letter s and is followed by the
search and replace strings, separated by the slash character as a delimiter.
The choice of the delimiter character is arbitrary. By convention, the slash
character is often used, but sed will accept any character that immediately
follows the command as the delimiter. We could perform the same com-
mand this way:

[me@linuxbox ~]$ echo "front" | sed 's_front_back_'
back

When the underscore character is used immediately after the command,
it becomes the delimiter. The ability to set the delimiter can be used to
make commands more readable, as we shall see.

Most commands in sed may be preceded by an address, which specifies
which line(s) of the input stream will be edited. If the address is omitted, then
the editing command is carried out on every line in the input stream. The
simplest form of address is a line number. We can add one to our example:

[me@linuxbox ~]$ echo "front" | sed '1s/front/back/'
back

Adding the address 1 to our command causes our substitution to be
performed on the first line of our one-line input stream. We can specify
another number:

[me@linuxbox ~]$ echo "front" | sed '2s/front/back/'
front

256 Chapter 20

Now we see that the editing is not carried out, because our input stream
does not have a line 2.

Addresses may be expressed in many ways. Table 20-7 lists the most
common ones.

Table 20-7: sed Address Notation

Address Description

n A line number where n is a positive integer

$ The last line

/regexp/ Lines matching a POSIX basic regular expression. Note that the
regular expression is delimited by slash characters. Optionally,
the regular expression may be delimited by an alternate char-
acter, by specifying the expression with \cregexpc, where c is
the alternate character.

addr1,addr2 A range of lines from addr1 to addr2, inclusive. Addresses may
be any of the single address forms above.

first~step Match the line represented by the number first and then each
subsequent line at step intervals. For example, 1~2 refers to
each odd-numbered line, and 5~5 refers to the fifth line and
every fifth line thereafter.

addr1,+n Match addr1 and the following n lines.

addr! Match all lines except addr, which may be any of the forms above.

We’ll demonstrate different kinds of addresses using the distros.txt file
from earlier in this chapter. First, a range of line numbers:

[me@linuxbox ~]$ sed -n '1,5p' distros.txt
SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007

In this example, we print a range of lines, starting with line 1 and con-
tinuing to line 5. To do this, we use the p command, which simply causes
a matched line to be printed. For this to be effective, however, we must
include the option -n (the no autoprint option) to cause sed not to print
every line by default.

Text Processing 257

Next, we’ll try a regular expression:

[me@linuxbox ~]$ sed -n '/SUSE/p' distros.txt
SUSE 10.2 12/07/2006
SUSE 11.0 06/19/2008
SUSE 10.3 10/04/2007
SUSE 10.1 05/11/2006

By including the slash-delimited regular expression /SUSE/, we are able
to isolate the lines containing it in much the same manner as grep.

Finally, we’ll try negation by adding an exclamation point (!) to the
address:

[me@linuxbox ~]$ sed -n '/SUSE/!p' distros.txt
Fedora 10 11/25/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Here we see the expected result: all of the lines in the file except the
ones matched by the regular expression.

So far, we’ve looked at two of the sed editing commands, s and p.
Table 20-8 is a more complete list of the basic editing commands.

Table 20-8: sed Basic Editing Commands

Command Description

= Output current line number.

a Append text after the current line.

d Delete the current line.

i Insert text in front of the current line.

p Print the current line. By default, sed prints every line
and edits only lines that match a specified address
within the file. The default behavior can be over-
ridden by specifying the -n option.

q Exit sed without processing any more lines. If the -n
option is not specified, output the current line.

258 Chapter 20

Table 20-8 (continued)

Command Description

Q Exit sed without processing any more lines.

s/regexp/replacement/ Substitute the contents of replacement wherever
regexp is found. replacement may include the special
character &, which is equivalent to the text matched
by regexp. In addition, replacement may include the
sequences \1 through \9, which are the contents of
the corresponding subexpressions in regexp. For
more about this, see the following discussion on
back references. After the trailing slash following
replacement, an optional flag may be specified to
modify the s command’s behavior.

y/set1/set2 Perform transliteration by converting characters from
set1 to the corresponding characters in set2. Note
that unlike tr, sed requires that both sets be of the
same length.

The s command is by far the most commonly used editing command.
We will demonstrate just some of its power by performing an edit on our
distros.txt file. We discussed before how the date field in distros.txt was not in
a “computer-friendly” format. While the date is formatted MM/DD/YYYY,
it would be better (for ease of sorting) if the format were YYYY-MM-DD. To
perform this change on the file by hand would be both time consuming and
error prone, but with sed, this change can be performed in one step:

[me@linuxbox ~]$ sed 's/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1
-\2/' distros.txt
SUSE 10.2 2006-12-07
Fedora 10 2008-11-25
SUSE 11.0 2008-06-19
Ubuntu 8.04 2008-04-24
Fedora 8 2007-11-08
SUSE 10.3 2007-10-04
Ubuntu 6.10 2006-10-26
Fedora 7 2007-05-31
Ubuntu 7.10 2007-10-18
Ubuntu 7.04 2007-04-19
SUSE 10.1 2006-05-11
Fedora 6 2006-10-24
Fedora 9 2008-05-13
Ubuntu 6.06 2006-06-01
Ubuntu 8.10 2008-10-30
Fedora 5 2006-03-20

Wow! Now that is an ugly-looking command. But it works. In just one
step, we have changed the date format in our file. It is also a perfect example
of why regular expressions are sometimes jokingly referred to as a “write-only”

Text Processing 259

medium. We can write them, but we sometimes cannot read them. Before
we are tempted to run away in terror from this command, let’s look at how
it was constructed. First, we know that the command will have this basic
structure:

sed 's/regexp/replacement/' distros.txt

Our next step is to figure out a regular expression that will isolate the
date. Since it is in MM/DD/YYYY format and appears at the end of the line,
we can use an expression like this:

[0-9]{2}/[0-9]{2}/[0-9]{4}$

which matches two digits, a slash, two digits, a slash, four digits, and the end
of line. So that takes care of regexp, but what about replacement? To handle that,
we must introduce a new regular expression feature that appears in some
applications that use BRE. This feature is called back references and works like
this: If the sequence \n appears in replacement where n is a number from one
to nine, the sequence will refer to the corresponding subexpression in the
preceding regular expression. To create the subexpressions, we simply
enclose them in parentheses like so:

([0-9]{2})/([0-9]{2})/([0-9]{4})$

We now have three subexpressions. The first contains the month, the
second contains the day of the month, and the third contains the year. Now
we can construct replacement as follows:

\3-\1-\2

which gives us the year, a dash, the month, a dash, and the day.
Now, our command looks like this:

sed 's/([0-9]{2})/([0-9]{2})/([0-9]{4})$/\3-\1-\2/' distros.txt

We have two remaining problems. The first is that the extra slashes in
our regular expression will confuse sed when it tries to interpret the s com-
mand. The second is that since sed, by default, accepts only basic regular
expressions, several of the characters in our regular expression will be taken
as literals, rather than as metacharacters. We can solve both these problems
with a liberal application of backslashes to escape the offending characters:

sed 's/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/' dis
tros.txt

And there you have it!
Another feature of the s command is the use of optional flags that may

follow the replacement string. The most important of these is the g flag, which
instructs sed to apply the search and replace globally to a line, not just to the
first instance, which is the default.

260 Chapter 20

Here is an example:

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/'
aaaBbbccc

We see that the replacement was performed but only to the first instance
of the letter b, while the remaining instances were left unchanged. By adding
the g flag, we are able to change all the instances:

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/g'
aaaBBBccc

So far, we have given sed single commands only via the command line.
It is also possible to construct more complex commands in a script file using
the -f option. To demonstrate, we will use sed with our distros.txt file to build
a report. Our report will feature a title at the top, our modified dates, and
all the distribution names converted to uppercase. To do this, we will need
to write a script, so we’ll fire up our text editor and enter the following:

sed script to produce Linux distributions report

1 i\
\
Linux Distributions Report\

s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

We will save our sed script as distros.sed and run it like this:

[me@linuxbox ~]$ sed -f distros.sed distros.txt

Linux Distributions Report

SUSE 10.2 2006-12-07
FEDORA 10 2008-11-25
SUSE 11.0 2008-06-19
UBUNTU 8.04 2008-04-24
FEDORA 8 2007-11-08
SUSE 10.3 2007-10-04
UBUNTU 6.10 2006-10-26
FEDORA 7 2007-05-31
UBUNTU 7.10 2007-10-18
UBUNTU 7.04 2007-04-19
SUSE 10.1 2006-05-11
FEDORA 6 2006-10-24
FEDORA 9 2008-05-13
UBUNTU 6.06 2006-06-01
UBUNTU 8.10 2008-10-30
FEDORA 5 2006-03-20

Text Processing 261

As we can see, our script produces the desired results, but how does it do
it? Let’s take another look at our script. We’ll use cat to number the lines.

[me@linuxbox ~]$ cat -n distros.sed
 1 # sed script to produce Linux distributions report
 2
 3 1 i\
 4 \
 5 Linux Distributions Report\
 6
 7 s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
 8 y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

Line 1 of our script is a comment. As in many configuration files and
programming languages on Linux systems, comments begin with the # char-
acter and are followed by human-readable text. Comments can be placed
anywhere in the script (though not within commands themselves) and are
helpful to any humans who might need to identify and/or maintain the
script.

Line 2 is a blank line. Like comments, blank lines may be added to
improve readability.

Many sed commands support line addresses. These are used to specify
which lines of the input are to be acted upon. Line addresses may be expressed
as single line numbers, line-number ranges, and the special line number $,
which indicates the last line of input.

Lines 3 through 6 contain text to be inserted at the address 1, the first
line of the input. The i command is followed by the sequence backslash–
carriage return to produce an escaped carriage return, or what is called a
line-continuation character. This sequence, which can be used in many circum-
stances including shell scripts, allows a carriage return to be embedded in
a stream of text without signaling the interpreter (in this case sed) that the
end of the line has been reached. The i command and the commands a
(which appends text) and c (which replaces text) allow multiple lines of
text, providing that each line, except the last, ends with a line-continuation
character. The sixth line of our script is actually the end of our inserted text
and ends with a plain carriage return rather than a line-continuation char-
acter, signaling the end of the i command.

Note: A line-continuation character is formed by a backslash followed immediately by a car-
riage return. No intermediary spaces are permitted.

Line 7 is our search-and-replace command. Since it is not preceded by
an address, each line in the input stream is subject to its action.

Line 8 performs transliteration of the lowercase letters into uppercase
letters. Note that unlike tr, the y command in sed does not support charac-
ter ranges (for example, [a-z]), nor does it support POSIX character classes.
Again, since the y command is not preceded by an address, it applies to
every line in the input stream.

262 Chapter 20

P E O P L E W H O L I K E S E D A L S O L I K E . . .

sed is a very capable program, able to perform fairly complex editing tasks to
streams of text. It is most often used for simple, one-line tasks rather than long
scripts. Many users prefer other tools for larger tasks. The most popular of
these are awk and perl. These go beyond mere tools like the programs covered
here and extend into the realm of complete programming languages. perl, in
particular, is often used in place of shell scripts for many system-management
and administration tasks, as well as being a very popular medium for web devel-
opment. awk is a little more specialized. Its specific strength is its ability to manipu-
late tabular data. It resembles sed in that awk programs normally process text
files line by line, using a scheme similar to the sed concept of an address fol-
lowed by an action. While both awk and perl are outside the scope of this book,
they are very good tools for the Linux command line user.

aspell—Interactive Spell Checker
The last tool we will look at is aspell, an interactive spellchecker. The aspell
program is the successor to an earlier program named ispell, and it can be
used, for the most part, as a drop-in replacement. While the aspell program
is mostly used by other programs that require spellchecking capability, it can
also be used very effectively as a stand-alone tool from the command line. It
has the ability to intelligently check various type of text files, including HTML
documents, C/C++ programs, email messages, and other kinds of special-
ized texts.

To spellcheck a text file containing simple prose, aspell could be used
like this:

aspell check textfile

where textfile is the name of the file to check. As a practical example, let’s
create a simple text file named foo.txt containing some deliberate spelling
errors:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jimped over the laxy dog.

Next we’ll check the file using aspell:

[me@linuxbox ~]$ aspell check foo.txt

As aspell is interactive in the check mode, we will see a screen like this:

The quick brown fox jimped over the laxy dog.

1) jumped 6) wimped
2) gimped 7) camped

Text Processing 263

3) comped 8) humped
4) limped 9) impede
5) pimped 0) umped
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

At the top of the display, we see our text with a suspiciously spelled
word highlighted. In the middle, we see 10 spelling suggestions numbered
0 through 9, followed by a list of other possible actions. Finally, at the very
bottom, we see a prompt ready to accept our choice.

If we enter 1, aspell replaces the offending word with the word jumped
and moves on to the next misspelled word, which is laxy. If we select the
replacement lazy, aspell replaces it and terminates. Once aspell has
finished, we can examine our file and see that the misspellings have been
corrected:

[me@linuxbox ~]$ cat foo.txt
The quick brown fox jumped over the lazy dog.

Unless told otherwise via the command-line option --dont-backup, aspell
creates a backup file containing the original text by appending the exten-
sion .bak to the filename.

Showing off our sed editing prowess, we’ll put our spelling mistakes back
in so we can reuse our file:

[me@linuxbox ~]$ sed -i 's/lazy/laxy/; s/jumped/jimped/' foo.txt

The sed option -i tells sed to edit the file “in place,” meaning that rather
than sending the edited output to standard output, it will rewrite the file
with the changes applied. We also see the ability to place more than one
editing command on the line by separating them with a semicolon.

Next, we’ll look at how aspell can handle different kinds of text files.
Using a text editor such as vim (the adventurous may want to try sed), we will
add some HTML markup to our file:

<html>
<head>

<title>Mispelled HTML file</title>
</head>
<body>

<p>The quick brown fox jimped over the laxy dog.</p>
</body>

</html>

Now, if we try to spellcheck our modified file, we run into a problem. If
we do it this way:

[me@linuxbox ~]$ aspell check foo.txt

264 Chapter 20

we’ll get this:

<html>
 <head>
 <title>Mispelled HTML file</title>
 </head>
 <body>
 <p>The quick brown fox jimped over the laxy dog.</p>
 </body>
</html>

1) HTML 4) Hamel
2) ht ml 5) Hamil
3) ht-ml 6) hotel
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

aspell will see the contents of the HTML tags as misspelled. This prob-
lem can be overcome by including the -H (HTML) checking-mode option,
like this:

[me@linuxbox ~]$ aspell -H check foo.txt

Our result is this:

<html>
 <head>
 <title>Mispelled HTML file</title>
 </head>
 <body>
 <p>The quick brown fox jimped over the laxy dog.</p>
 </body>
</html>

1) Mi spelled 6) Misapplied
2) Mi-spelled 7) Miscalled
3) Misspelled 8) Respelled
4) Dispelled 9) Misspell
5) Spelled 0) Misled
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

The HTML is ignored, and only the non-markup portions of the file
are checked. In this mode, the contents of HTML tags are ignored and not
checked for spelling. However, the contents of ALT tags, which benefit from
checking, are checked in this mode.

Text Processing 265

Note: By default, aspell will ignore URLs and email addresses in text. This behavior can be
overridden with command-line options. It is also possible to specify which markup tags
are checked and skipped. See the aspell man page for details.

Final Note
In this chapter, we have looked at a few of the many command-line tools that
operate on text. In the next chapter, we will look at several more. Admit-
tedly, it may not seem immediately obvious how or why you might use some
of these tools on a day-to-day basis, though we have tried to show some semi-
practical examples of their use. We will find in later chapters that these tools
form the basis of a tool set that is used to solve a host of practical problems.
This will be particularly true when we get into shell scripting, where these
tools will really show their worth.

Extra Credit
There are a few more interesting text-manipulation commands worth invest-
igating. Among these are split (split files into pieces), csplit (split files into
pieces based on context), and sdiff (side-by-side merge of file differences).

266 Chapter 20

F O R M A T T I N G O U T P U T

In this chapter, we continue our look at text-related
tools, focusing on programs that are used to format
text output rather than change the text itself. These
tools are often used to prepare text for printing, a
subject that we will cover in the next chapter. The
programs that we will cover in this chapter include
the following:

nl—Number lines.

fold—Wrap each line to a specified length.

fmt—A simple text formatter.

pr—Format text for printing.

printf—Format and print data.

groff—A document formatting system.

Simple Formatting Tools
We’ll look at some of the simple formatting tools first. These are mostly
single-purpose programs, and a bit unsophisticated in what they do, but
they can be used for small tasks and as parts of pipelines and scripts.

nl—Number Lines
The nl program is a rather arcane tool used to perform a simple task: It
numbers lines. In its simplest use, it resembles cat -n:

[me@linuxbox ~]$ nl distros.txt | head
 1 SUSE 10.2 12/07/2006
 2 Fedora 10 11/25/2008
 3 SUSE 11.0 06/19/2008
 4 Ubuntu 8.04 04/24/2008
 5 Fedora 8 11/08/2007
 6 SUSE 10.3 10/04/2007
 7 Ubuntu 6.10 10/26/2006
 8 Fedora 7 05/31/2007
 9 Ubuntu 7.10 10/18/2007
 10 Ubuntu 7.04 04/19/2007

Like cat, nl can accept either multiple filenames as command-line argu-
ments or standard input. However, nl has a number of options and supports
a primitive form of markup to allow more complex kinds of numbering.

nl supports a concept called logical pages when numbering. This allows
nl to reset (start over) the numerical sequence when numbering. Using
options, it is possible to set the starting number to a specific value and, to a
limited extent, set its format. A logical page is further broken down into a
header, body, and footer. Within each of these sections, line numbering may
be reset and/or be assigned a different style. If nl is given multiple files, it
treats them as a single stream of text. Sections in the text stream are indi-
cated by the presence of some rather odd-looking markup added to the
text, as shown in Table 21-1.

Table 21-1: nl Markup

Markup Meaning

\:\:\: Start of logical-page header

\:\: Start of logical-page body

\: Start of logical-page footer

Each of the markup elements in Table 21-1 must appear alone on its
own line. After processing a markup element, nl deletes it from the text
stream.

268 Chapter 21

Table 21-2 lists the common options for nl.

Table 21-2: Common nl Options

Option Meaning

-b style Set body numbering to style, where style is one of the following:
a Number all lines.
t Number only non-blank lines. This is the default.
n None.
pregexp Number only lines matching basic regular expression
regexp.

-f style Set footer numbering to style. Default is n (none).

-h style Set header numbering to style. Default is n (none).

-i number Set page numbering increment to number. Default is 1.

-n format Set numbering format to format, where format is one of the
following:

ln Left justified, without leading zeros.
rn Right justified, without leading zeros. This is the default.
rz Right justified, with leading zeros.

-p Do not reset page numbering at the beginning of each logical page.

-s string Add string to the end of each line number to create a separator.
Default is a single tab character.

-v number Set first line number of each logical page to number. Default is 1.

-w width Set width of the line number field to width. Default is 6.

Admittedly, we probably won’t be numbering lines that often, but we
can use nl to look at how we can combine multiple tools to perform more
complex tasks. We will build on our work in the previous chapter to pro-
duce a Linux distributions report. Since we will be using nl, it will be useful
to include its header/body/footer markup. To do this, we will add it to the
sed script from the last chapter. Using our text editor, we will change the
script as follows and save it as distros-nl.sed:

sed script to produce Linux distributions report

1 i\
\\:\\:\\:\
\
Linux Distributions Report\
\
Name Ver. Released\
---- ---- --------\
\\:\\:
s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/

Formatting Output 269

$ a\
\\:\
\
End Of Report

The script now inserts the nl logical-page markup and adds a footer at
the end of the report. Note that we had to double up the backslashes in our
markup, because sed normally interprets them as escape characters.

Next, we’ll produce our enhanced report by combining sort, sed, and nl:

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-nl.sed | nl

 Linux Distributions Report

 Name Ver. Released
 ---- ---- --------

 1 Fedora 5 2006-03-20
 2 Fedora 6 2006-10-24
 3 Fedora 7 2007-05-31
 4 Fedora 8 2007-11-08
 5 Fedora 9 2008-05-13
 6 Fedora 10 2008-11-25
 7 SUSE 10.1 2006-05-11
 8 SUSE 10.2 2006-12-07
 9 SUSE 10.3 2007-10-04
 10 SUSE 11.0 2008-06-19
 11 Ubuntu 6.06 2006-06-01
 12 Ubuntu 6.10 2006-10-26
 13 Ubuntu 7.04 2007-04-19
 14 Ubuntu 7.10 2007-10-18
 15 Ubuntu 8.04 2008-04-24
 16 Ubuntu 8.10 2008-10-30

 End Of Report

Our report is the result of our pipeline of commands. First, we sort the
list by distribution name and version (fields 1 and 2), and then we process
the results with sed, adding the report header (including the logical page
markup for nl) and footer. Finally, we process the result with nl, which, by
default, numbers only the lines of the text stream that belong to the body
section of the logical page.

We can repeat the command and experiment with different options for
nl. Some interesting ones are

nl -n rz

and

nl -w 3 -s ' '

270 Chapter 21

fold—Wrap Each Line to a Specified Length
Folding is the process of breaking lines of text at a specified width. Like our
other commands, fold accepts either one or more text files or standard input.
If we send fold a simple stream of text, we can see how it works:

[me@linuxbox ~]$ echo "The quick brown fox jumped over the lazy dog." | fold
-w 12
The quick br
own fox jump
ed over the
lazy dog.

Here we see fold in action. The text sent by the echo command is broken
into segments specified by the -w option. In this example, we specify a line
width of 12 characters. If no width is specified, the default is 80 characters.
Notice that the lines are broken regardless of word boundaries. The addi-
tion of the -s option will cause fold to break the line at the last available
space before the line width is reached:

[me@linuxbox ~]$ echo "The quick brown fox jumped over the lazy dog." | fold
-w 12 -s
The quick
brown fox
jumped over
the lazy
dog.

fmt—A Simple Text Formatter
The fmt program also folds text, plus a lot more. It accepts either files or
standard input and performs paragraph formatting on the text stream.
Basically, it fills and joins lines in text while preserving blank lines and
indentation.

To demonstrate, we’ll need some text. Let’s lift some from the fmt
info page:

 `fmt' reads from the specified FILE arguments (or standard input if none
are given), and writes to standard output.

 By default, blank lines, spaces between words, and indentation are
preserved in the output; successive input lines with different
indentation are not joined; tabs are expanded on input and introduced on
output.

 `fmt' prefers breaking lines at the end of a sentence, and tries to avoid
line breaks after the first word of a sentence or before the last word of a
sentence. A "sentence break" is defined as either the end of a paragraph or a
word ending in any of `.?!', followed by two spaces or end of line, ignoring
any intervening parentheses or quotes. Like TeX, `fmt' reads entire
"paragraphs" before choosing line breaks; the algorithm is a variant of that
given by Donald E. Knuth and Michael F. Plass in "Breaking Paragraphs Into
Lines", `Software--Practice & Experience' 11, 11 (November 1981), 1119-1184.

Formatting Output 271

We’ll copy this text into our text editor and save the file as fmt-info.txt.
Now, let’s say we wanted to reformat this text to fit a 50-character-wide col-
umn. We could do this by processing the file with fmt and the -w option:

[me@linuxbox ~]$ fmt -w 50 fmt-info.txt | head
 `fmt' reads from the specified FILE arguments
 (or standard input if
none are given), and writes to standard output.

 By default, blank lines, spaces between words,
 and indentation are
preserved in the output; successive input lines
with different indentation are not joined; tabs
are expanded on input and introduced on output.

Well, that’s an awkward result. Perhaps we should actually read this text,
since it explains what’s going on:

By default, blank lines, spaces between words, and indentation are
preserved in the output; successive input lines with different indent-
ation are not joined; tabs are expanded on input and introduced
on output.

So, fmt is preserving the indentation of the first line. Fortunately, fmt
provides an option to correct this:

[me@linuxbox ~]$ fmt -cw 50 fmt-info.txt
 `fmt' reads from the specified FILE arguments
(or standard input if none are given), and writes
to standard output.

 By default, blank lines, spaces between words,
and indentation are preserved in the output;
successive input lines with different indentation
are not joined; tabs are expanded on input and
introduced on output.

 `fmt' prefers breaking lines at the end of a
sentence, and tries to avoid line breaks after
the first word of a sentence or before the
last word of a sentence. A "sentence break"
is defined as either the end of a paragraph
or a word ending in any of `.?!', followed

by two spaces or end of line, ignoring any
intervening parentheses or quotes. Like TeX,
`fmt' reads entire "paragraphs" before choosing
line breaks; the algorithm is a variant of
that given by Donald E. Knuth and Michael F.
Plass in "Breaking Paragraphs Into Lines",
`Software--Practice & Experience' 11, 11
(November 1981), 1119-1184.

Much better. By adding the -c option, we now have the desired result.

272 Chapter 21

fmt has some interesting options, as shown in Table 21-3.

Table 21-3: fmt Options

Option Description

-c Operate in crown margin mode. This preserves the indentation
of the first two lines of a paragraph. Subsequent lines are aligned
with the indentation of the second line.

-p string Format only those lines beginning with the prefix string. After
formatting, the contents of string are prefixed to each reformat-
ted line. This option can be used to format text in source code
comments. For example, any programming language or config-
uration file that uses a # character to delineate a comment could
be formatted by specifying -p '# ' so that only the comments
will be formatted. See the example below.

-s Split-only mode. In this mode, lines will be split only to fit the
specified column width. Short lines will not be joined to fill
lines. This mode is useful when formatting text, such as code,
where joining is not desired.

-u Perform uniform spacing. This will apply traditional “typewriter-
style” formatting to the text. This means a single space between
words and two spaces between sentences. This mode is useful
for removing justification, that is, forced alignment to both the
left and right margins.

-w width Format text to fit within a column width characters wide. The
default is 75 characters. Note: fmt actually formats lines slightly
shorter than the specified width to allow for line balancing.

The -p option is particularly interesting. With it, we can format selected
portions of a file, provided that the lines to be formatted all begin with the
same sequence of characters. Many programming languages use the hash
mark (#) to indicate the beginning of a comment and thus can be format-
ted using this option. Let’s create a file that simulates a program that uses
comments:

[me@linuxbox ~]$ cat > fmt-code.txt
This file contains code with comments.

This line is a comment.
Followed by another comment line.
And another.

This, on the other hand, is a line of code.
And another line of code.
And another.

Formatting Output 273

Our sample file contains comments, which begin with the string # (a #
followed by a space), and lines of “code,” which do not. Now, using fmt, we
can format the comments and leave the code untouched:

[me@linuxbox ~]$ fmt -w 50 -p '# ' fmt-code.txt
This file contains code with comments.

This line is a comment. Followed by another
comment line. And another.

This, on the other hand, is a line of code.
And another line of code.
And another.

Notice that the adjoining comment lines are joined, while the blank
lines and the lines that do not begin with the specified prefix are preserved.

pr—Format Text for Printing
The pr program is used to paginate text. When printing text, it is often desir-
able to separate the pages of output with several lines of whitespace to pro-
vide a top and bottom margin for each page. Further, this whitespace can be
used to insert a header and footer on each page.

We’ll demonstrate pr by formatting our distros.txt file into a series of very
short pages (only the first two pages are shown):

[me@linuxbox ~]$ pr -l 15 -w 65 distros.txt

2012-12-11 18:27 distros.txt Page 1

SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007

2012-12-11 18:27 distros.txt Page 2

SUSE 10.3 10/04/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007

274 Chapter 21

In this example, we employ the -l option (for page length) and the -w
option (page width) to define a “page” that is 65 characters wide and 15 lines
long. pr paginates the contents of the distros.txt file, separates each page with
several lines of whitespace, and creates a default header containing the file
modification time, filename, and page number. The pr program provides
many options to control page layout. We’ll take a look at more of them in
Chapter 22.

printf—Format and Print Data
Unlike the other commands in this chapter, the printf command is not used
for pipelines (it does not accept standard input), nor does it find frequent
application directly on the command line (it’s used mostly in scripts). So
why is it important? Because it is so widely used.

printf (from the phrase print formatted) was originally developed for the
C programming language and has been implemented in many program-
ming languages, including the shell. In fact, in bash, printf is a built-in.

printf works like this:

printf "format" arguments

The command is given a string containing a format description, which
is then applied to a list of arguments. The formatted result is sent to stan-
dard output. Here is a trivial example:

[me@linuxbox ~]$ printf "I formatted the string: %s\n" foo
I formatted the string: foo

The format string may contain literal text (like I formatted the string:);
escape sequences (such as \n, a newline character); and sequences begin-
ning with the % character, which are called conversion specifications. In the
example above, the conversion specification %s is used to format the string
foo and place it in the command’s output. Here it is again:

[me@linuxbox ~]$ printf "I formatted '%s' as a string.\n" foo
I formatted 'foo' as a string.

As we can see, the %s conversion specification is replaced by the string
foo in the command’s output. The s conversion is used to format string data.
There are other specifiers for other kinds of data. Table 21-4 lists the com-
monly used data types.

Table 21-4: Common printf Data-Type Specifiers

Specifier Description

d Format a number as a signed decimal integer.

f Format and output a floating point number.

Formatting Output 275

(continued)

Table 21-4 (continued)

Specifier Description

o Format an integer as an octal number.

s Format a string.

x Format an integer as a hexadecimal number using lowercase a–f
where needed.

X Same as x, but use uppercase letters.

% Print a literal % symbol (i.e., specify “%%”).

We’ll demonstrate the effect each of the conversion specifiers on the
string 380 :

[me@linuxbox ~]$ printf "%d, %f, %o, %s, %x, %X\n" 380 380 380 380 380 380
380, 380.000000, 574, 380, 17c, 17C

Since we specified six conversion specifiers, we must also supply six
arguments for printf to process. The six results show the effect of each
specifier.

Several optional components may be added to the conversion specifier
to adjust its output. A complete conversion specification may consist of the
following:

%[flags][width][.precision]conversion_specification

Multiple optional components, when used, must appear in the order spe-
cified above to be properly interpreted. Table 21-5 describes each component.

Table 21-5: printf Conversion-Specification Components

Component Description

flags There are five different flags:

Use the alternate format for output. This varies by data
type. For o (octal number) conversion, the output is prefixed
with 0 (zero). For x and X (hexadecimal number) conversions,
the output is prefixed with 0x or 0X respectively.
0 (zero) Pad the output with zeros. This means that the field
will be filled with leading zeros, as in 000380.
- (dash) Left-align the output. By default, printf right-aligns
output.
 (space) Produce a leading space for positive numbers.
+ (plus sign) Sign positive numbers. By default, printf signs
only negative numbers.

276 Chapter 21

Table 21-5 (continued)

Component Description

width A number specifying the minimum field width

.precision For floating-point numbers, specify the number of digits of
precision to be output after the decimal point. For string
conversion, precision specifies the number of characters to
output.

Table 21-6 lists some examples of different formats in action.

Table 21-6: print Conversion Specification Examples

Argument Format Result Notes

380 "%d" 380 Simple formatting of an integer

380 "%#x" 0x17c Integer formatted as a hexa-
decimal number using the
alternate format flag

380 "%05d" 00380 Integer formatted with leading
zeros (padding) and a minimum
field width of five characters

380 "%05.5f" 380.00000 Number formatted as a floating-
point number with padding and
5 decimal places of precision.
Since the specified minimum
field width (5) is less than the
actual width of the formatted
number, the padding has no
effect.

380 "%010.5f" 0380.00000 Increasing the minimum field
width to 10 makes the padding
visible.

380 "%+d" +380 The + flag signs a positive
number.

380 "%-d" 380 The - flag left-aligns the
formatting.

abcdefghijk "%5s" abcedfghijk A string is formatted with a
minimum field width.

abcdefghijk "%.5s" abcde By applying precision to a
string, it is truncated.

Formatting Output 277

Again, printf is used mostly in scripts, where it is employed to format
tabular data, rather than on the command line directly. But we can still
show how it can be used to solve various formatting problems. First, let’s
output some fields separated by tab characters:

[me@linuxbox ~]$ printf "%s\t%s\t%s\n" str1 str2 str3
str1 str2 str3

By inserting \t (the escape sequence for a tab), we achieve the desired
effect. Next, some numbers with neat formatting:

[me@linuxbox ~]$ printf "Line: %05d %15.3f Result: %+15d\n" 1071 3.14156295
32589
Line: 01071 3.142 Result: +32589

This shows the effect of minimum field width on the spacing of the
fields. Or how about formatting a tiny web page?

[me@linuxbox ~]$ printf "<html>\n\t<head>\n\t\t<title>%s</title>\n\t</head>
\n\t<body>\n\t\t<p>%s</p>\n\t</body>\n</html>\n" "Page Title" "Page Content"
<html>

<head>
<title>Page Title</title>

</head>
<body>

<p>Page Content</p>
</body>

</html>

Document Formatting Systems
So far, we have examined the simple text-formatting tools. These are good
for small, simple tasks, but what about larger jobs? One of the reasons that
Unix became a popular operating system among technical and scientific
users (aside from providing a powerful multitasking, multiuser environment
for all kinds of software development) is that it offered tools that could be
used to produce many types of documents, particularly scientific and aca-
demic publications. In fact, as the GNU documentation describes, docu-
ment preparation was instrumental to the development of Unix:

The first version of UNIX was developed on a PDP-7 which was
sitting around Bell Labs. In 1971 the developers wanted to get a
PDP-11 for further work on the operating system. In order to justify
the cost for this system, they proposed that they would implement
a document formatting system for the AT&T patents division. This
first formatting program was a reimplementation of McIllroy’s roff,
written by J.F. Ossanna.

278 Chapter 21

The roff Family and TEX

Two main families of document formatters dominate the field: those descended
from the original roff program, including nroff and troff, and those based
on Donald Knuth’s TEX (pronounced “tek”) typesetting system. And yes,
the dropped “E” in the middle is part of its name.

The name roff is derived from the term run off as in, “I’ll run off a
copy for you.” The nroff program is used to format documents for output
to devices that use monospaced fonts, such as character terminals and
typewriter-style printers. At the time of its introduction, this included nearly
all printing devices attached to computers. The later troff program formats
documents for output on typesetters, devices used to produce “camera-ready”
type for commercial printing. Most computer printers today are able to sim-
ulate the output of typesetters. The roff family also includes some other pro-
grams that are used to prepare portions of documents. These include eqn
(for mathematical equations) and tbl (for tables).

The TEX system (in stable form) first appeared in 1989 and has, to
some degree, displaced troff as the tool of choice for typesetter output. We
won’t be covering TEX here, due both to its complexity (there are entire
books about it) and to the fact that it is not installed by default on most
modern Linux systems.

Note: For those interested in installing TEX, check out the texlive package, which can be
found in most distribution repositories, and the LyX graphical content editor.

groff—A Document Formatting System
groff is a suite of programs containing the GNU implementation of troff.
It also includes a script that is used to emulate nroff and the rest of the roff
family as well.

While roff and its descendants are used to make formatted documents,
they do it in a way that is rather foreign to modern users. Most documents
today are produced using word processors that are able to perform both the
composition and layout of a document in a single step. Prior to the advent
of the graphical word processor, documents were often produced in a two-
step process involving the use of a text editor to perform composition and a
processor, such as troff, to apply the formatting. Instructions for the format-
ting program were embedded in the composed text through the use of a
markup language. The modern analog for such a process is the web page,
which is composed using a text editor of some kind and then rendered by
a web browser using HTML as the markup language to describe the final
page layout.

We’re not going to cover groff in its entirety, as many elements of its
markup language deal with rather arcane details of typography. Instead we
will concentrate on one of its macro packages that remains in wide use. These
macro packages condense many of its low-level commands into a smaller set
of high-level commands that make using groff much easier.

Formatting Output 279

For a moment, let’s consider the humble man page. It lives in the
/usr/share/man directory as a gzip-compressed text file. If we were to exam-
ine its uncompressed contents, we would see the following (the man page
for ls in section 1 is shown):

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | head
.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.35.
.TH LS "1" "April 2008" "GNU coreutils 6.10" "User Commands"
.SH NAME
ls \- list directory contents
.SH SYNOPSIS
.B ls
[\fIOPTION\fR]... [\fIFILE\fR]...
.SH DESCRIPTION
.\" Add any additional description here
.PP

Compared to the man page in its normal presentation, we can begin to
see a correlation between the markup language and its results:

[me@linuxbox ~]$ man ls | head
LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

This is of interest because man pages are rendered by groff, using the
mandoc macro package. In fact, we can simulate the man command with this
pipeline.

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc -T ascii |
head
LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

Here we use the groff program with the options set to specify the mandoc
macro package and the output driver for ASCII. groff can produce output
in several formats. If no format is specified, PostScript is output by default:

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc | head
%!PS-Adobe-3.0
%%Creator: groff version 1.18.1
%%CreationDate: Thu Feb 2 13:44:37 2012
%%DocumentNeededResources: font Times-Roman

280 Chapter 21

%%+ font Times-Bold
%%+ font Times-Italic
%%DocumentSuppliedResources: procset grops 1.18 1
%%Pages: 4
%%PageOrder: Ascend
%%Orientation: Portrait

PostScript is a page-description language that is used to describe the
contents of a printed page to a typesetter-like device. We can take the out-
put of our command and store it to a file (assuming that we are using a
graphical desktop with a Desktop directory):

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc > ~/Desktop
/foo.ps

An icon for the output file should appear on the desktop. By double-
clicking the icon, a page viewer should start up and reveal the file in its
rendered form (Figure 21-1).

Figure 21-1: Viewing PostScript output with a page viewer in GNOME

What we see is a nicely typeset man page for ls! In fact, it’s possible to
convert the PostScript file into a PDF (Portable Document Format) file with this
command:

[me@linuxbox ~]$ ps2pdf ~/Desktop/foo.ps ~/Desktop/ls.pdf

The ps2pdf program is part of the ghostscript package, which is installed
on most Linux systems that support printing.

Formatting Output 281

Note: Linux systems often include many command line-programs for file-format conversion.
They are often named using the convention format2format. Try using the command
ls /usr/bin/*[[:alpha:]]2[[:alpha:]]* to identify them. Also try searching for pro-
grams named formattoformat.

For our last exercise with groff, we will revisit our old friend distros.txt.
This time, we will use the tbl program, which is used to format tables, to
typeset our list of Linux distributions. To do this, we are going to use our
earlier sed script to add markup to a text stream that we will feed to groff.

First, we need to modify our sed script to add the necessary requests that
tbl requires. Using a text editor, we will change distros.sed to the following:

sed script to produce Linux distributions report

1 i\
.TS\
center box;\
cb s s\
cb cb cb\
l n c.\
Linux Distributions Report\
=\
Name Version Released\
_
s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
$ a\
.TE

Note that for the script to work properly, care must been taken to see
that the words Name Version Released are separated by tabs, not spaces. We’ll
save the resulting file as distros-tbl.sed. tbl uses the .TS and .TE requests to
start and end the table. The rows following the .TS request define global
properties of the table, which, for our example, are centered horizontally
on the page and surrounded by a box. The remaining lines of the definition
describe the layout of each table row. Now, if we run our report-generating
pipeline again with the new sed script, we’ll get the following :

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl.sed | groff
-t -T ascii 2>/dev/null
 +------------------------------+
 | Linux Distributions Report |
 +------------------------------+
 | Name Version Released |
 +------------------------------+
 |Fedora 5 2006-03-20 |
 |Fedora 6 2006-10-24 |
 |Fedora 7 2007-05-31 |
 |Fedora 8 2007-11-08 |
 |Fedora 9 2008-05-13 |
 |Fedora 10 2008-11-25 |
 |SUSE 10.1 2006-05-11 |
 |SUSE 10.2 2006-12-07 |
 |SUSE 10.3 2007-10-04 |
 |SUSE 11.0 2008-06-19 |
 |Ubuntu 6.06 2006-06-01 |

282 Chapter 21

 |Ubuntu 6.10 2006-10-26 |
 |Ubuntu 7.04 2007-04-19 |
 |Ubuntu 7.10 2007-10-18 |
 |Ubuntu 8.04 2008-04-24 |
 |Ubuntu 8.10 2008-10-30 |
 +------------------------------+

Adding the -t option to groff instructs it to preprocess the text stream
with tbl. Likewise, the -T option is used to output to ASCII rather than to
the default output medium, PostScript.

The format of the output is the best we can expect if we are limited to
the capabilities of a terminal screen or typewriter-style printer. If we specify
PostScript output and graphically view the resulting output, we get a much
more satisfying result (see Figure 21-2).

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl.sed | groff
-t > ~/Desktop/foo.ps

Figure 21-2: Viewing the finished table

Final Note
Given that text is so central to the character of Unix-like operating systems,
it makes sense that there would be many tools that are used to manipulate
and format text. As we have seen, there are! The simple formatting tools like
fmt and pr will find many uses in scripts that produce short documents, while
groff (and friends) can be used to write books. We may never write a tech-
nical paper using command-line tools (though many people do!), but it’s
good to know that we could.

Formatting Output 283

P R I N T I N G

After spending the last couple of chapters manipulat-
ing text, it’s time to put that text on paper. In this chap-
ter, we’ll look at the command-line tools that are used
to print files and control printer operation. We won’t be
looking at how to configure printing, as that varies from distribution to distri-
bution and is usually set up automatically during installation. Note that we will
need a working printer configuration to perform the exercises in this chapter.

We will discuss the following commands:

pr—Convert text files for printing.

lpr—Print files.

lp—Print files (System V).

a2ps—Format files for printing on a PostScript printer.

lpstat—Show printer status information.

lpq—Show printer queue status.

lprm—Cancel print jobs.

cancel—Cancel print jobs (System V).

A Brief History of Printing
To fully understand the printing features found in Unix-like operating sys-
tems, we must first learn some history. Printing on Unix-like systems goes way
back to the beginning of the operating system itself. In those days, printers
and how they were used were much different from how they are today.

Printing in the Dim Times
Like the computers themselves, printers in the pre-PC era tended to be large,
expensive, and centralized. The typical computer user of 1980 worked at
a terminal connected to a computer some distance away. The printer was
located near the computer and was under the watchful eyes of the com-
puter’s operators.

When printers were expensive and centralized, as they often were in the
early days of Unix, it was common practice for many users to share a printer.
To identify print jobs belonging to a particular user, a banner page displaying
the name of the user was often printed at the beginning of each print job.
The computer support staff would then load up a cart containing the day’s
print jobs and deliver them to the individual users.

Character-Based Printers
The printer technology of the ’80s was very different in two respects. First,
printers of that period were almost always impact printers. Impact printers use
a mechanical mechanism that strikes a ribbon against the paper to form
character impressions on the page. Two of the popular technologies of that
time were daisy-wheel printing and dot-matrix printing.

The second, and more important, characteristic of early printers was
that they used a fixed set of characters that were intrinsic to the device itself.
For example, a daisy-wheel printer could print only the characters actually
molded into the petals of the daisy wheel. This made the printers much like
high-speed typewriters. As with most typewriters, they printed using mono-
spaced (fixed-width) fonts. This means that each character has the same
width. Printing was done at fixed positions on the page, and the printable
area of a page contained a fixed number of characters. Most printers prin-
ted 10 characters per inch (CPI) horizontally and 6 lines per inch (LPI) ver-
tically. Using this scheme, a US-letter sheet of paper is 85 characters wide
and 66 lines high. Taking into account a small margin on each side, 80 char-
acters was considered the maximum width of a print line. This explains why
terminal displays (and our terminal emulators) are normally 80 characters
wide. It provides a WYSIWYG (What You See Is What You Get) view of printed
output, using a monospaced font.

Data is sent to a typewriter-like printer in a simple stream of bytes con-
taining the characters to be printed. For example, to print an a, the ASCII
character code 97 is sent. In addition, the low-numbered ASCII control codes
provided a means of moving the printer’s carriage and paper, using codes

286 Chapter 22

for carriage return, line feed, form feed, and so on. Using the control codes,
it’s possible to achieve some limited font effects, such as boldface, by having
the printer print a character, backspace, and print the character again to get
a darker print impression on the page. We can actually witness this if we use
nroff to render a man page and examine the output using cat -A:

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | nroff -man | cat -A | head
LS(1) User Commands LS(1)
$
$
$
N^HNA^HAM^HME^HE$
 ls - list directory contents$
$
S^HSY^HYN^HNO^HOP^HPS^HSI^HIS^HS$
 l^Hls^Hs [_^HO_^HP_^HT_^HI_^HO_^HN]... [_^HF_^HI_^HL_^HE]...$

The ^H (CTRL-H) characters are the backspaces used to create the bold-
face effect. Likewise, we can also see a backspace/underscore sequence used
to produce underlining.

Graphical Printers
The development of GUIs led to major changes in printer technology.
As computers moved to more picture-based displays, printing moved from
character-based to graphical techniques. This was facilitated by the advent
of the low-cost laser printer, which, instead of printing fixed characters, could
print tiny dots anywhere in the printable area of the page. This made print-
ing proportional fonts (like those used by typesetters), and even photo-
graphs and high-quality diagrams, possible.

However, moving from a character-based scheme to a graphical scheme
presented a formidable technical challenge. Here’s why: The number of
bytes needed to fill a page using a character-based printer can be calculated
this way (assuming 60 lines per page, each containing 80 characters): 60 × 80
= 4,800 bytes.

In comparison, a 300-dot-per-inch (DPI) laser printer (assuming an
8-by-10-inch print area per page) requires (8 × 300) × (10 × 300) ÷ 8 =
900,000 bytes.

Many of the slow PC networks simply could not handle the nearly
1 megabyte of data required to print a full page on a laser printer, so it
was clear that a clever invention was needed.

That invention turned out to be the page-description language. A page-
description language (PDL) is a programming language that describes the con-
tents of a page. Basically it says, “Go to this position, draw the character a in
10-point Helvetica, go to this position. . . .” until everything on the page is
described. The first major PDL was PostScript from Adobe Systems, which is
still in wide use today. The PostScript language is a complete programming
language tailored for typography and other kinds of graphics and imaging.
It includes built-in support for 35 standard, high-quality fonts, plus the ability

Printing 287

to accept additional font definitions at runtime. At first, support for Post-
Script was built into the printers themselves. This solved the data transmission
problem. While the typical PostScript program was verbose in comparison
to the simple byte stream of character-based printers, it was much smaller
than the number of bytes required to represent the entire printed page.

A PostScript printer accepted a PostScript program as input. The printer
contained its own processor and memory (oftentimes making the printer a
more powerful computer than the computer to which it was attached) and
executed a special program called a PostScript interpreter, which read the incom-
ing PostScript program and rendered the results into the printer’s internal
memory, thus forming the pattern of bits (dots) that would be transferred
to the paper. The generic name for this process of rendering something
into a large bit pattern (called a bitmap) is raster image processor, or RIP.

As the years went by, both computers and networks became much
faster. This allowed the RIP to move from the printer to the host computer,
which, in turn, permitted high-quality printers to be much less expensive.

Many printers today still accept character-based streams, but many
low-cost printers do not. They rely on the host computer’s RIP to provide a
stream of bits to print as dots. There are still some PostScript printers, too.

Printing with Linux
Modern Linux systems employ two software suites to perform and manage
printing. The first, CUPS (Common Unix Printing System), provides print
drivers and print-job management; the second, Ghostscript, a PostScript
interpreter, acts as a RIP.

CUPS manages printers by creating and maintaining print queues.
As we discussed in our brief history lesson, Unix printing was originally
designed to manage a centralized printer shared by multiple users. Since
printers are slow by nature, compared to the computers that are feeding
them, printing systems need a way to schedule multiple print jobs and keep
things organized. CUPS also has the ability to recognize different types of
data (within reason) and can convert files to a printable form.

Preparing Files for Printing
As command line users, we are mostly interested in printing text, though it
is certainly possible to print other data formats as well.

pr—Convert Text Files for Printing
We looked at pr a little in the previous chapter. Now we will examine some of
its many options used in conjunction with printing. In our history of printing,
we saw that character-based printers use monospaced fonts, resulting in

288 Chapter 22

fixed numbers of characters per line and lines per page. pr is used to adjust
text to fit on a specific page size, with optional page headers and margins.
Table 22-1 summarizes the most commonly used options.

Table 22-1: Common pr Options

Option Description

+first[:last] Output a range of pages starting with first and, optionally,
ending with last.

-columns Organize the content of the page into the number of columns
specified by columns.

-a By default, multicolumn output is listed vertically. By adding
the -a (across) option, content is listed horizontally.

-d Double-space output.

-D format Format the date displayed in page headers using format. See
the man page for the date command for a description of the
format string.

-f Use form feeds rather than carriage returns to separate pages.

-h header In the center portion of the page header, use header rather the
name of the file being processed.

-l length Set page length to length. Default is 66 lines (US letter at
6 lines per inch).

-n Number lines.

-o offset Create a left margin offset characters wide.

-w width Set page width to width. Default is 72 characters.

pr is often used in pipelines as a filter. In this example, we will produce
a directory listing of /usr/bin and format it into paginated, three-column
output using pr:

[me@linuxbox ~]$ ls /usr/bin | pr -3 -w 65 | head

2012-02-18 14:00 Page 1
[apturl bsd-write
411toppm ar bsh
a2p arecord btcflash
a2ps arecordmidi bug-buddy
a2ps-lpr-wrapper ark buildhash

Printing 289

Sending a Print Job to a Printer
The CUPS printing suite supports two methods of printing historically used
on Unix-like systems. One method, called Berkeley or LPD (used in the
Berkeley Software Distribution version of Unix), uses the lpr program; the
other method, called SysV (from the System V version of Unix), uses the lp
program. Both programs do roughly the same thing. Choosing one over the
other is a matter of personal taste.

lpr—Print Files (Berkeley Style)
The lpr program can be used to send files to the printer. It may also be used
in pipelines, as it accepts standard input. For example, to print the results of
our multicolumn directory listing above, we could do this:

[me@linuxbox ~]$ ls /usr/bin | pr -3 | lpr

The report would be sent to the system’s default printer. To send the
file to a different printer, the -P option can used like this:

lpr -P printer_name

where printer_name is the name of the desired printer. To see a list of print-
ers known to the system:

[me@linuxbox ~]$ lpstat -a

Note: Many Linux distributions allow you to define a “printer” that outputs files in PDF,
rather than printing on the physical printer. This is very handy for experimenting
with printing commands. Check your printer configuration program to see if it sup-
ports this configuration. On some distributions, you may need to install additional
packages (such as cups-pdf) to enable this capability.

Table 22-2 shows some of the common options for lpr.

Table 22-2: Common lpr Options

Option Description

-# number Set number of copies to number.

-p Print each page with a shaded header with the date, time, job
name, and page number. This so-called “pretty print” option
can be used when printing text files.

-P printer Specify the name of the printer used for output. If no printer is
specified, the system’s default printer is used.

-r Delete files after printing. This would be useful for programs
that produce temporary printer-output files.

290 Chapter 22

lp—Print Files (System V Style)
Like lpr, lp accepts either files or standard input for printing. It differs from
lpr in that it supports a different (and slightly more sophisticated) option
set. Table 22-3 lists the common options.

Table 22-3: Common lp Options

Option Description

-d printer Set the destination (printer) to printer. If no d option
is specified, the system default printer is used.

-n number Set the number of copies to number.

-o landscape Set output to landscape orientation.

-o fitplot Scale the file to fit the page. This is useful when
printing images, such as JPEG files.

-o scaling=number Scale file to number. The value of 100 fills the page.
Values less than 100 are reduced, while values
greater than 100 cause the file to be printed across
multiple pages.

-o cpi=number Set the output characters per inch to number. Default
is 10.

-o lpi=number Set the output lines per inch to number. Default is 6.

-o page-bottom=points
-o page-left=points
-o page-right=points
-o page-top=points

Set the page margins. Values are expressed in
points, a unit of typographic measurement. There
are 72 points to an inch.

-P pages Specify the list of pages. pages may be expressed
as a comma-separated list and/or a range—for
example 1,3,5,7-10.

We’ll produce our directory listing again, this time printing 12 CPI and
8 LPI with a left margin of one-half inch. Note that we have to adjust the pr
options to account for the new page size:

[me@linuxbox ~]$ ls /usr/bin | pr -4 -w 90 -l 88 | lp -o page-left=36 -o cpi=
12 -o lpi=8

This pipeline produces a four-column listing using smaller type than the
default. The increased number of characters per inch allows us to fit more
columns on the page.

Printing 291

Another Option: a2ps
The a2ps program is interesting. As we can surmise from its name, it’s a
format conversion program, but it’s also much more. Its name originally
meant ASCII to PostScript, and it was used to prepare text files for printing
on PostScript printers. Over the years, however, the capabilities of the pro-
gram have grown, and now its name means Anything to PostScript. While its
name suggests a format-conversion program, it is actually a printing pro-
gram. It sends its default output, rather than standard output, to the sys-
tem’s default printer. The program’s default behavior is that of a “pretty
printer,” meaning that it improves the appearance of output. We can use
the program to create a PostScript file on our desktop:

[me@linuxbox ~]$ ls /usr/bin | pr -3 -t | a2ps -o ~/Desktop/ls.ps -L 66
[stdin (plain): 11 pages on 6 sheets]
[Total: 11 pages on 6 sheets] saved into the file `/home/me/Desktop/ls.ps'

Here we filter the stream with pr, using the -t option (omit headers and
footers) and then, with a2ps, specifying an output file (-o option) and 66 lines
per page (-L option) to match the output pagination of pr. If we view the
resulting file with a suitable file viewer, we will see the output shown in
Figure 22-1.

Figure 22-1: Viewing a2ps output

292 Chapter 22

As we can see, the default output layout is “two up” format. This causes
the contents of two pages to be printed on each sheet of paper. a2ps applies
nice page headers and footers, too.

a2ps has a lot of options. Table 22-4 summarizes them.

Table 22-4: a2ps Options

Option Description

--center-title text Set center page title to text.

--columns number Arrange pages into number columns. Default is 2.

--footer text Set page footer to text.

--guess Report the types of files given as arguments. Since
a2ps tries to convert and format all types of data,
this option can be useful for predicting what a2ps
will do when given a particular file.

--left-footer text Set left-page footer to text.

--left-title text Set left-page title to text.

--line-numbers=interval Number lines of output every interval lines.

--list=defaults Display default settings.

--list=topic Display settings for topic, where topic is one of
the following: delegations (external programs that
will be used to convert data), encodings, features,
variables, media (paper sizes and the like), ppd
(PostScript printer descriptions), printers, prologues
(portions of code that are prefixed to normal
output), stylesheets, or user options.

--pages range Print pages in range.

--right-footer text Set right-page footer to text.

--right-title text Set right-page title to text.

--rows number Arrange pages into number rows. Default is 1.

-B No page headers.

-b text Set page header to text.

-f size Use size point font.

-l number Set characters per line to number. This and the -L
option (below) can be used to make files pagi-
nated with other programs, such as pr, fit correctly
on the page.

Printing 293

(continued)

Table 22-4 (continued)

Option Description

-L number Set lines per page to number.

-M name Use media name—for example, A4.

-n number Output number copies of each page.

-o file Send output to file. If file is specified as -, use
standard output.

-P printer Use printer. If a printer is not specified, the system
default printer is used.

-R Portrait orientation

-r Landscape orientation

-T number Set tab stops to every number characters.

-u text Underlay (watermark) pages with text.

This is just a summary. a2ps has several more options.

Note: a2ps is still in active development. During my testing, I noticed different behavior on
various distributions. On CentOS 4, output always went to standard output by default.
On CentOS 4 and Fedora 10, output defaulted to A4 media, despite the program being
configured to use letter-size media by default. I could overcome these issues by explicitly
specifying the desired option. On Ubuntu 8.04, a2ps performed as documented.

Also note that there is another output formatter that is useful for converting text
into PostScript. Called enscript, it can perform many of the same kinds of formatting
and printing tricks, but unlike a2ps, it accepts only text input.

Monitoring and Controlling Print Jobs
As Unix printing systems are designed to handle multiple print jobs from
multiple users, CUPS is designed to do the same. Each printer is given a
print queue, where jobs are parked until they can be spooled to the printer.
CUPS supplies several command-line programs that are used to manage
printer status and print queues. Like the lpr and lp programs, these man-
agement programs are modeled after the corresponding programs from
the Berkeley and System V printing systems.

lpstat—Display Print System Status
The lpstat program is useful for determining the names and availability of
printers on the system. For example, if we had a system with both a physical

294 Chapter 22

printer (named printer) and a PDF virtual printer (named PDF), we could
check their status like this:

[me@linuxbox ~]$ lpstat -a
PDF accepting requests since Mon 05 Dec 2011 03:05:59 PM EST
printer accepting requests since Tue 21 Feb 2012 08:43:22 AM EST

Further, we could determine a more detailed description of the print
system configuration this way:

[me@linuxbox ~]$ lpstat -s
system default destination: printer
device for PDF: cups-pdf:/
device for printer: ipp://print-server:631/printers/printer

In this example, we see that printer is the system’s default printer and
that it is a network printer using Internet Printing Protocol (ipp://)
attached to a system named print-server.

The commonly used options are described in Table 22-5.

Table 22-5: Common lpstat Options

Option Description

-a [printer...] Display the state of the printer queue for printer. Note
that this is the status of the printer queue’s ability to
accept jobs, not the status of the physical printers. If no
printers are specified, all print queues are shown.

-d Display the name of the system’s default printer.

-p [printer...] Display the status of the specified printer. If no
printers are specified, all printers are shown.

-r Display the status of the print server.

-s Display a status summary.

-t Display a complete status report.

lpq—Display Printer Queue Status
To see the status of a printer queue, the lpq program is used. This allows
us to view the status of the queue and the print jobs it contains. Here is an
example of an empty queue for a system default printer named printer :

[me@linuxbox ~]$ lpq
printer is ready
no entries

Printing 295

If we do not specify a printer (using the -P option), the system’s default
printer is shown. If we send a job to the printer and then look at the queue,
we will see it listed:

[me@linuxbox ~]$ ls *.txt | pr -3 | lp
request id is printer-603 (1 file(s))
[me@linuxbox ~]$ lpq
printer is ready and printing
Rank Owner Job File(s) Total Size
active me 603 (stdin) 1024 bytes

lprm and cancel—Cancel Print Jobs
CUPS supplies two programs used to terminate print jobs and remove them
from the print queue. One is Berkeley style (lprm), and the other is System V
(cancel). They differ slightly in the options they support but do basically the
same thing. Using our print job above as an example, we could stop the job
and remove it this way:

[me@linuxbox ~]$ cancel 603
[me@linuxbox ~]$ lpq
printer is ready
no entries

Each command has options for removing all the jobs belonging to a
particular user, particular printer, and multiple job numbers. Their respec-
tive man pages have all the details.

296 Chapter 22

C O M P I L I N G P R O G R A M S

In this chapter, we will look at how to build programs
by compiling source code. The availability of source
code is the essential freedom that makes Linux possible.
The entire ecosystem of Linux development relies on
free exchange between developers. For many desktop
users, compiling is a lost art. It used to be quite common, but today, distri-
bution providers maintain huge repositories of precompiled binaries, ready
to download and use. At the time of this writing, the Debian repository (one
of the largest of any of the distributions) contains almost 23,000 packages.

So why compile software? There are two reasons:

Availability. Despite the number of precompiled programs in distribu-
tion repositories, some distributions may not include all the desired
applications. In this case, the only way to get the desired program is
to compile it from source.

Timeliness. While some distributions specialize in cutting-edge ver-
sions of programs, many do not. This means that in order to have the
very latest version of a program, compiling is necessary.

Compiling software from source code can become very complex and
technical, well beyond the reach of many users. However, many compiling
tasks are quite easy and involve only a few steps. It all depends on the pack-
age. We will look at a very simple case in order to provide an overview of
the process and as a starting point for those who wish to undertake further
study.

We will introduce one new command:

make—Utility to maintain programs.

What Is Compiling?
Simply put, compiling is the process of translating source code (the human-
readable description of a program written by a programmer) into the native
language of the computer’s processor.

The computer’s processor (or CPU) works at a very elemental level,
executing programs in what is called machine language. This is a numeric
code that describes very small operations, such as “add this byte,” “point to
this location in memory,” or “copy this byte.” Each of these instructions is
expressed in binary (ones and zeros). The earliest computer programs were
written using this numeric code, which may explain why programmers who
wrote it were said to smoke a lot, drink gallons of coffee, and wear thick
glasses.

This problem was overcome by the advent of assembly language, which
replaced the numeric codes with (slightly) easier to use character mnemonics
such as CPY (for copy) and MOV (for move). Programs written in assembly
language are processed into machine language by a program called an
assembler. Assembly language is still used today for certain specialized pro-
gramming tasks, such as device drivers and embedded systems.

We next come to what are called high-level programming languages. They
are called this because they allow the programmer to be less concerned
with the details of what the processor is doing and more with solving the
problem at hand. The early ones (developed during the 1950s) included
FORTRAN (designed for scientific and technical tasks) and COBOL (designed
for business applications). Both are still in limited use today.

While there are many popular programming languages, two predomi-
nate. Most programs written for modern systems are written in either C or
C++. In the examples to follow, we will be compiling a C program.

Programs written in high-level programming languages are converted
into machine language by processing them with another program, called a
compiler. Some compilers translate high-level instructions into assembly lan-
guage and then use an assembler to perform the final stage of translation
into machine language.

A process often used in conjunction with compiling is called linking.
Programs perform many common tasks. Take, for instance, opening a file.

298 Chapter 23

Many programs perform this task, but it would be wasteful to have each pro-
gram implement its own routine to open files. It makes more sense to have
a single piece of programming that knows how to open files and to allow all
programs that need it to share it. Providing support for common tasks is
accomplished by what are called libraries. They contain multiple routines,
each performing some common task that multiple programs can share. If we
look in the /lib and /usr/lib directories, we can see where many of them live.
A program called a linker is used to form the connections between the out-
put of the compiler and the libraries that the compiled program requires.
The final result of this process is the executable program file, ready for use.

Are All Programs Compiled?
No. As we have seen, some programs, such as shell scripts, do not require
compiling but are executed directly. These are written in what are known as
scripting or interpreted languages. These languages, which have grown in pop-
ularity in recent years, include Perl, Python, PHP, Ruby, and many others.

Scripted languages are executed by a special program called an inter-
preter. An interpreter inputs the program file and reads and executes each
instruction contained within it. In general, interpreted programs execute
much more slowly than compiled programs. This is because each source
code instruction in an interpreted program is translated every time it is car-
ried out, whereas with a compiled program, a source code instruction is
translated only once, and this translation is permanently recorded in the
final executable file.

So why are interpreted languages so popular? For many programming
chores, the results are “fast enough,” but the real advantage is that it is gen-
erally faster and easier to develop interpreted programs than compiled pro-
grams. Programs are usually developed in a repeating cycle of code, compile,
test. As a program grows in size, the compilation phase of the cycle can
become quite long. Interpreted languages remove the compilation step
and thus speed up program development.

Compiling a C Program
Let’s compile something. Before we do that, however, we’re going to need
some tools like the compiler, the linker, and make. The C compiler used almost
universally in the Linux environment is called gcc (GNU C Compiler), ori-
ginally written by Richard Stallman. Most distributions do not install gcc by
default. We can check to see if the compiler is present like this:

[me@linuxbox ~]$ which gcc
/usr/bin/gcc

The results in this example indicate that the compiler is installed.

Compiling Programs 299

Note: Your distribution may have a metapackage (a collection of packages) for software
development. If so, consider installing it if you intend to compile programs on your
system. If your system does not provide a metapackage, try installing the gcc and make
packages. On many distributions, they are sufficient to carry out the exercise below.

Obtaining the Source Code
For our compiling exercise, we are going to compile a program from the
GNU Project called diction. This handy little program checks text files for
writing quality and style. As programs go, it is fairly small and easy to build.

Following convention, we’re first going to create a directory for our
source code named src and then download the source code into it using ftp:

[me@linuxbox ~]$ mkdir src
[me@linuxbox ~]$ cd src
[me@linuxbox src]$ ftp ftp.gnu.org
Connected to ftp.gnu.org.
220 GNU FTP server ready.
Name (ftp.gnu.org:me): anonymous
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd gnu/diction
250 Directory successfully changed.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-r--r-- 1 1003 65534 68940 Aug 28 1998 diction-0.7.tar.gz
-rw-r--r-- 1 1003 65534 90957 Mar 04 2002 diction-1.02.tar.gz
-rw-r--r-- 1 1003 65534 141062 Sep 17 2007 diction-1.11.tar.gz
226 Directory send OK.
ftp> get diction-1.11.tar.gz
local: diction-1.11.tar.gz remote: diction-1.11.tar.gz
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for diction-1.11.tar.gz (141062
bytes).
226 File send OK.
141062 bytes received in 0.16 secs (847.4 kB/s)
ftp> bye
221 Goodbye.
[me@linuxbox src]$ ls
diction-1.11.tar.gz

Note: Since we are the maintainer of this source code while we compile it, we will keep it in
~/src. Source code installed by your distribution will be installed in /usr/src, while
source code intended for use by multiple users is usually installed in /usr/local/src.

As we can see, source code is usually supplied in the form of a com-
pressed tar file. Sometimes called a tarball, this file contains the source tree,
or hierarchy of directories and files that compose the source code. After
arriving at the FTP site, we examine the list of tar files available and select
the newest version for download. Using the get command within ftp, we
copy the file from the FTP server to the local machine.

300 Chapter 23

ftp://ftp.gnu.org/
ftp://ftp.gnu.org/

Once the tar file is downloaded, it must be unpacked. This is done with
the tar program:

[me@linuxbox src]$ tar xzf diction-1.11.tar.gz
[me@linuxbox src]$ ls
diction-1.11 diction-1.11.tar.gz

Note: The diction program, like all GNU Project software, follows certain standards for
source code packaging. Most other source code available in the Linux ecosystem also
follows this standard. One element of the standard is that when the source code tar
file is unpacked, a directory will be created that contains the source tree and that this
directory will be named project-x.xx, thus containing both the project’s name and its
version number. This scheme allows easy installation of multiple versions of the same
program. However, it is often a good idea to examine the layout of the tree before unpack-
ing it. Some projects will not create the directory but instead will deliver the files directly
into the current directory. This will make a mess in your otherwise well-organized src
directory. To avoid this, use the following command to examine the contents of the
tar file:

tar tzvf tarfile | head

Examining the Source Tree
Unpacking the tar file results in the creation of a new directory, named
diction-1.11. This directory contains the source tree. Let’s look inside:

[me@linuxbox src]$ cd diction-1.11
[me@linuxbox diction-1.11]$ ls
config.guess diction.c getopt.c nl
config.h.in diction.pot getopt.h nl.po
config.sub diction.spec getopt_int.h README
configure diction.spec.in INSTALL sentence.c
configure.in diction.texi.in install-sh sentence.h
COPYING en Makefile.in style.1.in
de en_GB misc.c style.c
de.po en_GB.po misc.h test
diction.1.in getopt1.c NEWS

In it, we see a number of files. Programs belonging to the GNU Project,
as well as many others, will supply the documentation files README, INSTALL,
NEWS, and COPYING. These files contain the description of the program,
information on how to build and install it, and its licensing terms. It is always
a good idea to carefully read the README and INSTALL files before attempt-
ing to build the program.

The other interesting files in this directory are the ones ending with .c
and .h:

[me@linuxbox diction-1.11]$ ls *.c
diction.c getopt1.c getopt.c misc.c sentence.c style.c
[me@linuxbox diction-1.11]$ ls *.h
getopt.h getopt_int.h misc.h sentence.h

Compiling Programs 301

The .c files contain the two C programs supplied by the package (style
and diction), divided into modules. It is common practice for large programs
to be broken into smaller, easier-to-manage pieces. The source code files are
ordinary text and can be examined with less:

[me@linuxbox diction-1.11]$ less diction.c

The .h files are known as header files. These, too, are ordinary text. Header
files contain descriptions of the routines included in a source code file or
library. In order for the compiler to connect the modules, it must receive a
description of all the modules needed to complete the entire program.
Near the beginning of the diction.c file, we see this line:

#include "getopt.h"

This instructs the compiler to read the file getopt.h as it reads the source
code in diction.c in order to “know” what’s in getopt.c. The getopt.c file sup-
plies routines that are shared by both the style and diction programs.

Above the include statement for getopt.h, we see some other include state-
ments such as these:

#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

These also refer to header files, but they refer to header files that live
outside the current source tree. They are supplied by the system to support
the compilation of every program. If we look in /usr/include, we can see them:

[me@linuxbox diction-1.11]$ ls /usr/include

The header files in this directory were installed when we installed the
compiler.

Building the Program
Most programs build with a simple, two-command sequence:

./configure
make

The configure program is a shell script that is supplied with the source
tree. Its job is to analyze the build environment. Most source code is designed
to be portable. That is, it is designed to build on more than one kind of Unix-
like system. But in order to do that, the source code may need to undergo
slight adjustments during the build to accommodate differences between
systems. configure also checks to see that necessary external tools and com-
ponents are installed.

302 Chapter 23

Let’s run configure. Since configure is not located where the shell nor-
mally expects programs to be located, we must explicitly tell the shell its loc-
ation by prefixing the command with ./. This indicates that the program is
located in the current working directory:

[me@linuxbox diction-1.11]$./configure

configure will output a lot of messages as it tests and configures the
build. When it finishes, the output will look something like this:

checking libintl.h presence... yes
checking for libintl.h... yes
checking for library containing gettext... none required
configure: creating ./config.status
config.status: creating Makefile
config.status: creating diction.1
config.status: creating diction.texi
config.status: creating diction.spec
config.status: creating style.1
config.status: creating test/rundiction
config.status: creating config.h
[me@linuxbox diction-1.11]$

What’s important here is that there are no error messages. If there
were, the configuration would have failed, and the program would not
build until the errors are corrected.

We see configure created several new files in our source directory. The
most important one is Makefile. Makefile is a configuration file that instructs
the make program exactly how to build the program. Without it, make will
refuse to run. Makefile is an ordinary text file, so we can view it:

[me@linuxbox diction-1.11]$ less Makefile

The make program takes as input a makefile (which is normally named
Makefile), which describes the relationships and dependencies among the
components that compose the finished program.

The first part of the makefile defines variables that are substituted in
later sections of the makefile. For example, we see the line

CC= gcc

which defines the C compiler to be gcc. Later in the makefile, we see one
instance where it gets used:

diction: diction.o sentence.o misc.o getopt.o getopt1.o
 $(CC) -o $@ $(LDFLAGS) diction.o sentence.o misc.o \
 getopt.o getopt1.o $(LIBS)

A substitution is performed here, and the value $(CC) is replaced by gcc
at runtime.

Most of the makefile consists of lines, which define a target—in this
case the executable file diction—and the files on which it is dependent. The

Compiling Programs 303

remaining lines describe the command(s) needed to create the target from
its components. We see in this example that the executable file diction (one
of the final end products) depends on the existence of diction.o, sentence.o,
misc.o, getopt.o, and getopt1.o. Later on, in the makefile, we see definitions of
each of these as targets.

diction.o: diction.c config.h getopt.h misc.h sentence.h
getopt.o: getopt.c getopt.h getopt_int.h
getopt1.o: getopt1.c getopt.h getopt_int.h
misc.o: misc.c config.h misc.h
sentence.o: sentence.c config.h misc.h sentence.h
style.o: style.c config.h getopt.h misc.h sentence.h

However, we don’t see any command specified for them. This is handled
by a general target, earlier in the file, that describes the command used to
compile any .c file into a .o file:

.c.o:
 $(CC) -c $(CPPFLAGS) $(CFLAGS) $<

This all seems very complicated. Why not simply list all the steps to
compile the parts and be done with it? The answer will become clear in a
moment. In the meantime, let’s run make and build our programs:

[me@linuxbox diction-1.11]$ make

The make program will run, using the contents of Makefile to guide its
actions. It will produce a lot of messages.

When it finishes, we will see that all the targets are now present in our
directory:

[me@linuxbox diction-1.11]$ ls
config.guess de.po en install-sh sentence.c
config.h diction en_GB Makefile sentence.h
config.h.in diction.1 en_GB.mo Makefile.in sentence.o
config.log diction.1.in en_GB.po misc.c style
config.status diction.c getopt1.c misc.h style.1
config.sub diction.o getopt1.o misc.o style.1.in
configure diction.pot getopt.c NEWS style.c
configure.in diction.spec getopt.h nl style.o
COPYING diction.spec.in getopt_int.h nl.mo test
de diction.texi getopt.o nl.po
de.mo diction.texi.in INSTALL README

Among the files, we see diction and style, the programs that we set out
to build. Congratulations are in order! We just compiled our first programs
from source code!

But just out of curiosity, let’s run make again:

[me@linuxbox diction-1.11]$ make
make: Nothing to be done for `all'.

304 Chapter 23

It produces only this strange message. What’s going on? Why didn’t
it build the program again? Ah, this is the magic of make. Rather than simply
build everything again, make builds only what needs building. With all of
the targets present, make determined that there was nothing to do. We can
demonstrate this by deleting one of the targets and running make again to
see what it does.

[me@linuxbox diction-1.11]$ rm getopt.o
[me@linuxbox diction-1.11]$ make

We see that make rebuilds getopt.o and relinks the diction and style
programs, since they depend on the missing module. This behavior also
points out another important feature of make: It keeps targets up-to-date.
make insists that targets be newer than their dependencies. This makes per-
fect sense, as a programmer will often update a bit of source code and then
use make to build a new version of the finished product. make ensures that
everything that needs building based on the updated code is built. If we use
the touch program to “update” one of the source code files, we can see this
happen:

[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:14 diction
-rw-r--r-- 1 me me 33125 2007-03-30 17:45 getopt.c
[me@linuxbox diction-1.11]$ touch getopt.c
[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:14 diction
-rw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c
[me@linuxbox diction-1.11]$ make

After make runs, we see that it has restored the target to being newer
than the dependency:

[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:24 diction
-rw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c

The ability of make to intelligently build only what needs building is a
great benefit to programmers. While the time savings may not be apparent
with our small project, it is significant with larger projects. Remember, the
Linux kernel (a program that undergoes continuous modification and
improvement) contains several million lines of code.

Installing the Program
Well-packaged source code often includes a special make target called install.
This target will install the final product in a system directory for use. Usu-
ally, this directory is /usr/local/bin, the traditional location for locally built
software. However, this directory is not normally writable by ordinary users,
so we must become the superuser to perform the installation:

[me@linuxbox diction-1.11]$ sudo make install

Compiling Programs 305

After we perform the installation, we can check that the program is
ready to go:

[me@linuxbox diction-1.11]$ which diction
/usr/local/bin/diction
[me@linuxbox diction-1.11]$ man diction

And there we have it!

Final Note
In this chapter, we have seen how three simple commands—./configure,
make, make install—can be used to build many source code packages. We
have also seen the important role that make plays in the maintenance of pro-
grams. The make program can be used for any task that needs to maintain a
target/dependency relationship, not just for compiling source code.

306 Chapter 23

PART 4
W R I T I N G S H E L L S C R I P T S

W R I T I N G Y O U R F I R S T S C R I P T

In the preceding chapters, we have assembled an
arsenal of command-line tools. While these tools can
solve many kinds of computing problems, we are still
limited to manually using them one by one on the
command line. Wouldn’t it be great if we could get the shell to do more of
the work? We can. By joining our tools together into programs of our own
design, the shell can carry out complex sequences of tasks all by itself. We
enable it to do this by writing shell scripts.

What Are Shell Scripts?
In the simplest terms, a shell script is a file containing a series of commands.
The shell reads this file and carries out the commands as though they have
been entered directly on the command line.

The shell is distinctive, in that it is both a powerful command-line inter-
face to the system and a scripting language interpreter. As we will see, most
of the things that can be done on the command line can be done in scripts,
and most of the things that can be done in scripts can be done on the com-
mand line.

We have covered many shell features, but we have focused on those fea-
tures most often used directly on the command line. The shell also provides
a set of features usually (but not always) used when writing programs.

How to Write a Shell Script
To successfully create and run a shell script, we need to do three things:

1. Write a script. Shell scripts are ordinary text files. So we need a text
editor to write them. The best text editors will provide syntax highlight-
ing, allowing us to see a color-coded view of the elements of the script.
Syntax highlighting will help us spot certain kinds of common errors.
vim, gedit, kate, and many other editors are good candidates for writing
scripts.

2. Make the script executable. The system is fussy about not letting any old
text file be treated as a program, and for good reason! We need to set
the script file’s permissions to allow execution.

3. Put the script somewhere the shell can find it. The shell automatically
searches certain directories for executable files when no explicit path-
name is specified. For maximum convenience, we will place our scripts
in these directories.

Script File Format
In keeping with programming tradition, we’ll create a “hello world” pro-
gram to demonstrate an extremely simple script. So let’s fire up our text
editors and enter the following script:

#!/bin/bash

This is our first script.

echo 'Hello World!'

The last line of our script is pretty familiar, just an echo command with
a string argument. The second line is also familiar. It looks like a comment
that we have seen in many of the configuration files we have examined and
edited. One thing about comments in shell scripts is that they may also
appear at the ends of lines, like so:

echo 'Hello World!' # This is a comment too

Everything from the # symbol onward on the line is ignored.
Like many things, this works on the command line, too:

[me@linuxbox ~]$ echo 'Hello World!' # This is a comment too
Hello World!

Though comments are of little use on the command line, they will work.

310 Chapter 24

The first line of our script is a little mysterious. It looks as if it should be
a comment, since it starts with #, but it looks too purposeful to be just that.
The #! character sequence is, in fact, a special construct called a shebang. The
shebang is used to tell the system the name of the interpreter that should be
used to execute the script that follows. Every shell script should include this
as its first line.

Let’s save our script file as hello_world.

Executable Permissions
The next thing we have to do is make our script executable. This is easily
done using chmod:

[me@linuxbox ~]$ ls -l hello_world
-rw-r--r-- 1 me me 63 2012-03-07 10:10 hello_world
[me@linuxbox ~]$ chmod 755 hello_world
[me@linuxbox ~]$ ls -l hello_world
-rwxr-xr-x 1 me me 63 2012-03-07 10:10 hello_world

There are two common permission settings for scripts: 755 for scripts
that everyone can execute and 700 for scripts that only the owner can
execute. Note that scripts must be readable in order to be executed.

Script File Location
With the permissions set, we can now execute our script:

[me@linuxbox ~]$./hello_world
Hello World!

In order for the script to run, we must precede the script name with an
explicit path. If we don’t, we get this:

[me@linuxbox ~]$ hello_world
bash: hello_world: command not found

Why is this? What makes our script different from other programs? As
it turns out, nothing. Our script is fine. Its location is the problem. Back in
Chapter 11, we discussed the PATH environment variable and its effect on how
the system searches for executable programs. To recap, the system searches
a list of directories each time it needs to find an executable program, if no
explicit path is specified. This is how the system knows to execute /bin/ls when
we type ls at the command line. The /bin directory is one of the directories
that the system automatically searches. The list of directories is held within
an environment variable named PATH. The PATH variable contains a colon-
separated list of directories to be searched. We can view the contents of PATH:

[me@linuxbox ~]$ echo $PATH
/home/me/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr
/games

Writing Your First Script 311

Here we see our list of directories. If our script were located in any of
the directories in the list, our problem would be solved. Notice the first
directory in the list, /home/me/bin. Most Linux distributions configure the
PATH variable to contain a bin directory in the user’s home directory to allow
users to execute their own programs. So if we create the bin directory and
place our script within it, it should start to work like other programs:

[me@linuxbox ~]$ mkdir bin
[me@linuxbox ~]$ mv hello_world bin
[me@linuxbox ~]$ hello_world
Hello World!

If the PATH variable does not contain the directory, we can easily add it by
including this line in our .bashrc file:

export PATH=~/bin:"$PATH"

After this change is made, it will take effect in each new terminal ses-
sion. To apply the change to the current terminal session, we must have the
shell reread the .bashrc file. This can be done by “sourcing” it:

[me@linuxbox ~]$. .bashrc

The dot (.) command is a synonym for the source command, a shell
builtin that reads a specified file of shell commands and treats it like input
from the keyboard.

Note: Ubuntu automatically adds the ~/bin directory to the PATH variable if the ~/bin
directory exists when the user’s .bashrc file is executed. So, on Ubuntu systems, if we
create the ~/bin directory and then log out and log in again, everything works.

Good Locations for Scripts
The ~/bin directory is a good place to put scripts intended for personal use.
If we write a script that everyone on a system is allowed to use, the traditional
location is /usr/local/bin. Scripts intended for use by the system administrator
are often located in /usr/local/sbin. In most cases, locally supplied software,
whether scripts or compiled programs, should be placed in the /usr/local
hierarchy and not in /bin or /usr/bin. These directories are specified by the
Linux Filesystem Hierarchy Standard to contain only files supplied and
maintained by the Linux distributor.

More Formatting Tricks
One of the key goals of serious script writing is ease of maintenance ; that is,
the ease with which a script may be modified by its author or others to be
adapted to changing needs. Making a script easy to read and understand is
one way to facilitate easy maintenance.

312 Chapter 24

Long Option Names
Many of the commands we have studied feature both short and long option
names. For instance, the ls command has many options that can be expressed
in either short or long form. For example:

[me@linuxbox ~]$ ls -ad

and

[me@linuxbox ~]$ ls --all --directory

are equivalent commands. In the interests of reduced typing, short options are
preferred when entering options on the command line, but when writing
scripts, long options can improve readability.

Indentation and Line Continuation
When employing long commands, readability can be enhanced by spread-
ing the command over several lines. In Chapter 17, we looked at a particu-
larly long example of the find command:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec chmod 0600
'{}' ';' \) -or \(-type d -not -perm 0700 -exec chmod 0700 '{}' ';' \)

This command is a little hard to figure out at first glance. In a script,
this command might be easier to understand if written this way:

find playground \
\(\

-type f \
-not -perm 0600 \
-exec chmod 0600 '{}' ';' \

\) \
-or \
\(\

-type d \
-not -perm 0700 \

-exec chmod 0700 '{}' ';' \
\)

Through the use of line continuations (backslash-linefeed sequences)
and indentation, the logic of this complex command is more clearly described
to the reader. This technique works on the command line, too, though it is
seldom used as it is very awkward to type and edit. One difference between
a script and the command line is that a script may employ tab characters to
achieve indentation, whereas the command line cannot because tabs are
used to activate completion.

Writing Your First Script 313

C O N F I G U R I N G V I M F O R S C R I P T W R I T I N G

The vim text editor has many, many configuration settings. Several common
options can facilitate script writing.

:syntax on turns on syntax highlighting. With this setting, different elements
of shell syntax will be displayed in different colors when viewing a script. This
is helpful for identifying certain kinds of programming errors. It looks cool,
too. Note that for this feature to work, you must have a complete version of vim
installed, and the file you are editing must have a shebang indicating the file is
a shell script. If you have difficulty with :syntax on, try :set syntax=sh instead.

:set hlsearch turns on the option to highlight search results. Say we search
for the word echo. With this option on, each instance of the word will be high-
lighted.

:set tabstop=4 sets the number of columns occupied by a tab character.
The default is eight columns. Setting the value to 4 (which is a common prac-
tice) allows long lines to fit more easily on the screen.

:set autoindent turns on the auto indent feature. This causes vim to indent a
new line the same amount as the line just typed. This speeds up typing on many
kinds of programming constructs. To stop indentation, type CTRL-D.

These changes can be made permanent by adding these commands (with-
out the leading colon characters) to your ~/.vimrc file.

Final Note
In this first chapter about scripting, we have looked at how scripts are writ-
ten and made to easily execute on our system. We also saw how we can use
various formatting techniques to improve the readability (and thus, the
maintainability) of our scripts. In future chapters, ease of maintenance will
come up again and again as a central principle in good script writing.

314 Chapter 24

S T A R T I N G A P R O J E C T

Starting with this chapter, we will begin to build a pro-
gram. The purpose of this project is to see how various
shell features are used to create programs and, more
importantly, create good programs.

The program we will write is a report generator. It will present various statis-
tics about our system and its status, and it will produce this report in HTML
format so we can view it with a web browser.

Programs are usually built up in a series of stages, with each stage adding
features and capabilities. The first stage of our program will produce a very
minimal HTML page that contains no system information. That will come later.

First Stage: Minimal Document
The first thing we need to know is the format of a well-formed HTML docu-
ment. It looks like this:

<HTML>
<HEAD>

<TITLE>Page Title</TITLE>

</HEAD>
<BODY>

Page body.
</BODY>

</HTML>

If we enter this into our text editor and save the file as foo.html, we can
use the following URL in Firefox to view the file: file:///home/username/
foo.html.

The first stage of our program will be able to output this HTML file to
standard output. We can write a program to do this pretty easily. Let’s start
our text editor and create a new file named ~/bin/sys_info_page:

[me@linuxbox ~]$ vim ~/bin/sys_info_page

And we’ll enter the following program:

#!/bin/bash

Program to output a system information page

echo "<HTML>"
echo " <HEAD>"
echo " <TITLE>Page Title</TITLE>"
echo " </HEAD>"
echo " <BODY>"
echo " Page body."
echo " </BODY>"
echo "</HTML>"

Our first attempt at this problem contains a shebang; a comment (always
a good idea); and a sequence of echo commands, one for each line of out-
put. After saving the file, we’ll make it executable and attempt to run it:

[me@linuxbox ~]$ chmod 755 ~/bin/sys_info_page
[me@linuxbox ~]$ sys_info_page

When the program runs, we should see the text of the HTML document
displayed on the screen, because the echo commands in the script send their
output to standard output. We’ll run the program again and redirect the out-
put of the program to the file sys_info_page.html, so that we can view the result
with a web browser:

[me@linuxbox ~]$ sys_info_page > sys_info_page.html
[me@linuxbox ~]$ firefox sys_info_page.html

So far, so good.
When writing programs, it’s always a good idea to strive for simplicity

and clarity. Maintenance is easier when a program is easy to read and under-
stand, not to mention that the program is easier to write when we reduce
the amount of typing. Our current version of the program works fine, but it
could be simpler. We could combine all the echo commands into one, which

316 Chapter 25

would certainly make it easier to add more lines to the program’s output.
So, let’s change our program to this:

#!/bin/bash

Program to output a system information page

echo "<HTML>
<HEAD>

<TITLE>Page Title</TITLE>
</HEAD>
<BODY>

Page body.
</BODY>

</HTML>"

A quoted string may include newlines and, therefore, contain multiple
lines of text. The shell will keep reading the text until it encounters the clos-
ing quotation mark. It works this way on the command line, too:

[me@linuxbox ~]$ echo "<HTML>
> <HEAD>
> <TITLE>Page Title</TITLE>
> </HEAD>
> <BODY>
> Page body.
> </BODY>
> </HTML>"

The leading > character is the shell prompt contained in the PS2 shell
variable. It appears whenever we type a multiline statement into the shell.
This feature is a little obscure right now, but later, when we cover multiline
programming statements, it will turn out to be quite handy.

Second Stage: Adding a Little Data
Now that our program can generate a minimal document, let’s put some
data in the report. To do this, we will make the following changes:

#!/bin/bash

Program to output a system information page

echo "<HTML>
 <HEAD>
 <TITLE>System Information Report</TITLE>
 </HEAD>

 <BODY>
 <H1>System Information Report</H1>
 </BODY>
</HTML>"

We added a page title and a heading to the body of the report.

Starting a Project 317

Variables and Constants
There is an issue with our script, however. Notice how the string System
Information Report is repeated? With our tiny script it’s not a problem, but
let’s imagine that our script was really long and we had multiple instances
of this string. If we wanted to change the title to something else, we would
have to change it in multiple places, which could be a lot of work. What if we
could arrange the script so that the string appeared only once and not mul-
tiple times? That would make future maintenance of the script much easier.
Here’s how we could do that:

#!/bin/bash

Program to output a system information page

title="System Information Report"

echo "<HTML>
 <HEAD>
 <TITLE>$title</TITLE>
 </HEAD>
 <BODY>
 <H1>$title</H1>
 </BODY>
</HTML>"

By creating a variable named title and assigning it the value System
Information Report, we can take advantage of parameter expansion and
place the string in multiple locations.

Creating Variables and Constants
So, how do we create a variable? Simple, we just use it. When the shell
encounters a variable, it automatically creates it. This differs from many pro-
gramming languages in which variables must be explicitly declared or defined
before use. The shell is very lax about this, which can lead to some problems.
For example, consider this scenario played out on the command line:

[me@linuxbox ~]$ foo="yes"
[me@linuxbox ~]$ echo $foo
yes
[me@linuxbox ~]$ echo $fool

[me@linuxbox ~]$

We first assign the value yes to the variable foo and then display its value
with echo. Next we display the value of the variable name misspelled as fool
and get a blank result. This is because the shell happily created the variable
fool when it encountered it and then gave it the default value of nothing,

318 Chapter 25

or empty. From this, we learn that we must pay close attention to our spell-
ing! It’s also important to understand what really happened in this example.
From our previous look at how the shell performs expansions, we know
that the command

[me@linuxbox ~]$ echo $foo

undergoes parameter expansion and results in

[me@linuxbox ~]$ echo yes

On the other hand, the command

[me@linuxbox ~]$ echo $fool

expands into

[me@linuxbox ~]$ echo

The empty variable expands into nothing! This can play havoc with
commands that require arguments. Here’s an example:

[me@linuxbox ~]$ foo=foo.txt
[me@linuxbox ~]$ foo1=foo1.txt
[me@linuxbox ~]$ cp $foo $fool
cp: missing destination file operand after `foo.txt'
Try `cp --help' for more information.

We assign values to two variables, foo and foo1. We then perform a cp
but misspell the name of the second argument. After expansion, the cp
command is sent only one argument, though it requires two.

There are some rules about variable names:

Variable names may consist of alphanumeric characters (letters and
numbers) and underscore characters.

The first character of a variable name must be either a letter or an
underscore.

Spaces and punctuation symbols are not allowed.

The word variable implies a value that changes, and in many applica-
tions, variables are used this way. However, the variable in our application,
title, is used as a constant. A constant is just like a variable in that it has a
name and contains a value. The difference is that the value of a constant
does not change. In an application that performs geometric calculations,
we might define PI as a constant and assign it the value of 3.1415, instead
of using the number literally throughout our program. The shell makes no
distinction between variables and constants; these terms are mostly for the

Starting a Project 319

programmer’s convenience. A common convention is to use uppercase let-
ters to designate constants and lowercase letters for true variables. We will
modify our script to comply with this convention:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"

echo "<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 </BODY>
</HTML>"

We also took the opportunity to jazz up our title by adding the value of
the shell variable HOSTNAME. This is the network name of the machine.

Note: The shell actually does provide a way to enforce the immutability of constants, through
the use of the declare built-in command with the -r (read-only) option. Had we
assigned TITLE this way:

declare -r TITLE="Page Title"

the shell would prevent any subsequent assignment to TITLE. This feature is rarely
used, but it exists for very formal scripts.

Assigning Values to Variables and Constants
Here is where our knowledge of expansion really starts to pay off. As we
have seen, variables are assigned values this way:

variable=value

where variable is the name of the variable and value is a string. Unlike some
other programming languages, the shell does not care about the type of
data assigned to a variable; it treats them all as strings. You can force the
shell to restrict the assignment to integers by using the declare command
with the -i option, but, like setting variables as read-only, this is rarely done.

Note that in an assignment, there must be no spaces between the vari-
able name, the equal sign, and the value. So what can the value consist of?
Anything that we can expand into a string.

a=z # Assign the string "z" to variable a.
b="a string" # Embedded spaces must be within quotes.
c="a string and $b" # Other expansions such as variables can be

expanded into the assignment.
d=$(ls -l foo.txt) # Results of a command.

320 Chapter 25

e=$((5 * 7)) # Arithmetic expansion.
f="\t\ta string\n" # Escape sequences such as tabs and newlines.

Multiple variable assignments may be done on a single line:

a=5 b="a string"

During expansion, variable names may be surrounded by optional curly
braces {}. This is useful in cases where a variable name becomes ambiguous
due to its surrounding context. Here, we try to change the name of a file
from myfile to myfile1, using a variable:

[me@linuxbox ~]$ filename="myfile"
[me@linuxbox ~]$ touch $filename
[me@linuxbox ~]$ mv $filename $filename1
mv: missing destination file operand after `myfile'
Try `mv --help' for more information.

This attempt fails because the shell interprets the second argument of
the mv command as a new (and empty) variable. The problem can be over-
come this way:

[me@linuxbox ~]$ mv $filename ${filename}1

By adding the surrounding braces, we ensure that the shell no longer
interprets the trailing 1 as part of the variable name.

We’ll take this opportunity to add some data to our report, namely the
date and time the report was created and the username of the creator:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

echo "<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 <P>$TIME_STAMP</P>
 </BODY>
</HTML>"

Here Documents
We’ve looked at two different methods of outputting our text, both using
the echo command. There is a third way called a here document or here script. A
here document is an additional form of I/O redirection in which we embed

Starting a Project 321

a body of text into our script and feed it into the standard input of a com-
mand. It works like this:

command << token
text
token

where command is the name of a command that accepts standard input and
token is a string used to indicate the end of the embedded text. We’ll
modify our script to use a here document:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_
<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 <P>$TIME_STAMP</P>
 </BODY>
</HTML>
EOF

Instead of using echo, our script now uses cat and a here document. The
string _EOF_ (meaning end-of-file, a common convention) was selected as the
token and marks the end of the embedded text. Note that the token must
appear alone and that there must not be trailing spaces on the line.

So what’s the advantage of using a here document? It’s mostly the same as
echo, except that, by default, single and double quotes within here documents
lose their special meaning to the shell. Here is a command-line example:

[me@linuxbox ~]$ foo="some text"
[me@linuxbox ~]$ cat << _EOF_
> $foo
> "$foo"
> '$foo'
> \$foo
> _EOF_
some text
"some text"
'some text'
$foo

As we can see, the shell pays no attention to the quotation marks. It treats
them as ordinary characters. This allows us to embed quotes freely within a
here document. This could turn out to be handy for our report program.

322 Chapter 25

Here documents can be used with any command that accepts standard
input. In this example, we use a here document to pass a series of commands
to the ftp program in order to retrieve a file from a remote FTP server:

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl.debian.org
FTP_PATH=/debian/dists/lenny/main/installer-i386/current/images/cdrom
REMOTE_FILE=debian-cd_info.tar.gz

ftp -n << _EOF_
open $FTP_SERVER
user anonymous me@linuxbox
cd $FTP_PATH
hash
get $REMOTE_FILE
bye
EOF
ls -l $REMOTE_FILE

If we change the redirection operator from << to <<-, the shell will
ignore leading tab characters in the here document. This allows a here
document to be indented, which can improve readability:

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl.debian.org
FTP_PATH=/debian/dists/lenny/main/installer-i386/current/images/cdrom
REMOTE_FILE=debian-cd_info.tar.gz

ftp -n <<- _EOF_
open $FTP_SERVER
user anonymous me@linuxbox
cd $FTP_PATH
hash
get $REMOTE_FILE
bye
EOF

ls -l $REMOTE_FILE

Final Note
In this chapter, we started a project that will carry us through the process of
building a successful script. We introduced the concept of variables and con-
stants and how they can be employed. They are the first of many applications
we will find for parameter expansion. We also looked at how to produce out-
put from our script and various methods for embedding blocks of text.

Starting a Project 323

T O P - D O W N D E S I G N

As programs get larger and more complex, they
become more difficult to design, code, and maintain.
As with any large project, it is often a good idea to break
large, complex tasks into a series of small, simple tasks.

Let’s imagine that we are trying to describe a common, everyday task
going to the market to buy food to a person from Mars. We might describe
the overall process as the following series of steps:

1. Get in car.

2. Drive to market.

3. Park car.

4. Enter market.

5. Purchase food.

6. Return to car.

7. Drive home.

8. Park car.

9. Enter house.

However, a person from Mars is likely to need more detail. We could
further break down the subtask “Park car” into another series of steps.

1. Find parking space.

2. Drive car into space.

3. Turn off motor.

4. Set parking brake.

5. Exit car.

6. Lock car.

The “Turn off motor” subtask could further be broken down into steps
including “Turn off ignition,” “Remove ignition key,” and so on, until every
step of the entire process of going to the market has been fully defined.

This process of identifying the top-level steps and developing increas-
ingly detailed views of those steps is called top-down design. This technique
allows us to break large, complex tasks into many small, simple tasks. Top-
down design is a common method of designing programs and one that is
well suited to shell programming in particular.

In this chapter, we will use top-down design to further develop our
report-generator script.

Shell Functions
Our script currently performs the following steps to generate the HTML
document:

1. Open page.

2. Open page header.

3. Set page title.

4. Close page header.

5. Open page body.

6. Output page heading.

7. Output timestamp.

8. Close page body.

9. Close page.

For our next stage of development, we will add some tasks between
steps 7 and 8. These will include:

System uptime and load. This is the amount of time since the last shut-
down or reboot and the average number of tasks currently running on
the processor over several time intervals.

Disk space. The overall use of space on the system’s storage devices.

Home space. The amount of storage space being used by each user.

If we had a command for each of these tasks, we could add them to our
script simply through command substitution:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"

326 Chapter 26

CURRENT_TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_
<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 <P>$TIME_STAMP</P>
 $(report_uptime)
 $(report_disk_space)
 $(report_home_space)
 </BODY>
</HTML>
EOF

We could create these additional commands two ways. We could write
three separate scripts and place them in a directory listed in our PATH, or we
could embed the scripts within our program as shell functions. As we have
mentioned before, shell functions are “miniscripts” that are located inside
other scripts and can act as autonomous programs. Shell functions have two
syntactic forms. The first looks like this:

function name {
commands
return

}

where name is the name of the function and commands is a series of commands
contained within the function. The second looks like this:

name () {
commands
return

}

Both forms are equivalent and may be used interchangeably. Below we
see a script that demonstrates the use of a shell function:

 1 #!/bin/bash
 2
 3 # Shell function demo
 4
 5 function funct {
 6 echo "Step 2"
 7 return
 8 }
 9
10 # Main program starts here
11
12 echo "Step 1"
13 funct
14 echo "Step 3"

As the shell reads the script, it passes over lines 1 through 11, as those
lines consist of comments and the function definition. Execution begins at

Top-Down Design 327

line 12, with an echo command. Line 13 calls the shell function funct, and the
shell executes the function just as it would any other command. Program con-
trol then moves to line 6, and the second echo command is executed. Line 7
is executed next. Its return command terminates the function and returns
control to the program at the line following the function call (line 14), and
the final echo command is executed. Note that in order for function calls to
be recognized as shell functions and not interpreted as the names of external
programs, shell function definitions must appear in the script before they
are called.

We’ll add minimal shell function definitions to our script:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

report_uptime () {
return

}

report_disk_space () {

return
}

report_home_space () {
return

}

cat << _EOF_
<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIME_STAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
EOF

Shell-function names follow the same rules as variables. A function must
contain at least one command. The return command (which is optional) sat-
isfies the requirement.

Local Variables
In the scripts we have written so far, all the variables (including constants) have
been global variables. Global variables maintain their existence throughout
the program. This is fine for many things, but it can sometimes complicate

328 Chapter 26

the use of shell functions. Inside shell functions, it is often desirable to have
local variables. Local variables are accessible only within the shell function
in which they are defined, and they cease to exist once the shell function
terminates.

Having local variables allows the programmer to use variables with
names that may already exist, either in the script globally or in other shell
functions, without having to worry about potential name conflicts.

Here is an example script that demonstrates how local variables are
defined and used:

#!/bin/bash

local-vars: script to demonstrate local variables

foo=0 # global variable foo

funct_1 () {

local foo # variable foo local to funct_1

foo=1
echo "funct_1: foo = $foo"

}

funct_2 () {

local foo # variable foo local to funct_2

foo=2
echo "funct_2: foo = $foo"

}

echo "global: foo = $foo"
funct_1
echo "global: foo = $foo"
funct_2
echo "global: foo = $foo"

As we can see, local variables are defined by preceding the variable
name with the word local. This creates a variable that is local to the shell
function in which it is defined. Once the script is outside the shell function,
the variable no longer exists. When we run this script, we see the results:

[me@linuxbox ~]$ local-vars
global: foo = 0
funct_1: foo = 1
global: foo = 0
funct_2: foo = 2
global: foo = 0

We see that the assignment of values to the local variable foo within
both shell functions has no effect on the value of foo defined outside the
functions.

This feature allows shell functions to be written so that they remain
independent of each other and of the script in which they appear. This is

Top-Down Design 329

very valuable, as it helps prevent one part of a program from interfering
with another. It also allows shell functions to be written so that they can
be portable. That is, they may be cut and pasted from script to script, as
needed.

Keep Scripts Running
While developing our program, it is useful to keep the program in a run-
nable state. By doing this, and testing frequently, we can detect errors early
in the development process. This will make debugging problems much easier.
For example, if we run the program, make a small change, run the program
again, and find a problem, it’s very likely that the most recent change is the
source of the problem. By adding empty functions, called stubs in program-
mer-speak, we can verify the logical flow of our program at an early stage.
When constructing a stub, it’s a good idea to include something that provides
feedback to the programmer that shows the logical flow is being carried out.
If we look at the output of our script now, we see that there are some blank
lines in our output after the timestamp, but we can’t be sure of the cause.

[me@linuxbox ~]$ sys_info_page
<HTML>

<HEAD>
<TITLE>System Information Report For twin2</TITLE>

</HEAD>
<BODY>

<H1>System Information Report For linuxbox</H1>
<P>Generated 03/19/2012 04:02:10 PM EDT, by me</P>

</BODY>
</HTML>

We can change the functions to include some feedback:

report_uptime () {
 echo "Function report_uptime executed."
 return
}

report_disk_space () {
 echo "Function report_disk_space executed."
 return
}

report_home_space () {
 echo "Function report_home_space executed."
 return
}

330 Chapter 26

And then we run the script again:

[me@linuxbox ~]$ sys_info_page
<HTML>

<HEAD>
<TITLE>System Information Report For linuxbox</TITLE>

</HEAD>
<BODY>

<H1>System Information Report For linuxbox</H1>
<P>Generated 03/20/2012 05:17:26 AM EDT, by me</P>
Function report_uptime executed.
Function report_disk_space executed.
Function report_home_space executed.

</BODY>
</HTML>

We now see that, in fact, our three functions are being executed.
With our function framework in place and working, it’s time to flesh out

some of the function code. First, the report_uptime function:

report_uptime () {
cat <<- _EOF_

 <H2>System Uptime</H2>
 <PRE>$(uptime)</PRE>
 EOF_

return
}

It’s pretty straightforward. We use a here document to output a section
header and the output of the uptime command, surrounded by <PRE> tags to
preserve the formatting of the command. The report_disk_space function is
similar:

report_disk_space () {
cat <<- _EOF_

<H2>Disk Space Utilization</H2>
<PRE>$(df -h)</PRE>
EOF

return
}

This function uses the df -h command to determine the amount of disk
space. Lastly, we’ll build the report_home_space function:

report_home_space () {
cat <<- _EOF_

<H2>Home Space Utilization</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

return
}

Top-Down Design 331

We use the du command with the -sh options to perform this task. This,
however, is not a complete solution to the problem. While it will work on
some systems (Ubuntu, for example), it will not work on others. The reason
is that many systems set the permissions of home directories to prevent them
from being world readable, which is a reasonable security measure. On these
systems, the report_home_space function, as written, will work only if our script
is run with superuser privileges. A better solution would be to have the script
adjust its behavior according to the privileges of the user. We will take this
up in Chapter 27.

S H E L L F U N C T I O N S I N Y O U R . B A S H R C F I L E

Shell functions make excellent replacements for aliases, and they are actually
the preferred method of creating small commands for personal use. Aliases are
very limited in the kind of commands and shell features they support, whereas
shell functions allow anything that can be scripted. For example, if we liked the
report_disk_space shell function that we developed for our script, we could cre-
ate a similar function named ds for our .bashrc file:

ds () {
echo “Disk Space Utilization For $HOSTNAME”
df -h

}

Final Note
In this chapter, we have introduced a common method of program design
called top-down design, and we have seen how shell functions are used to
build the stepwise refinement that it requires. We have also seen how local
variables can be used to make shell functions independent from one another
and from the program in which they are placed. This makes it possible for
shell functions to be written in a portable manner and to be reusable by
allowing them to be placed in multiple programs—a great time saver.

332 Chapter 26

F L O W C O N T R O L :
B R A N C H I N G W I T H I F

In the last chapter, we were presented with a problem.
How can we make our report-generator script adapt to
the privileges of the user running the script? The solu-
tion to this problem will require us to find a way to
“change directions” within our script, based on the
results of a test. In programming terms, we need the
program to branch.

Let’s consider a simple example of logic expressed in pseudocode, a simu-
lation of a computer language intended for human consumption:

X = 5
If X = 5, then:

Say “X equals 5.”
Otherwise:

Say “X is not equal to 5.”

This is an example of a branch. Based on the condition “Does X = 5?”
do one thing: “Say ‘X equals 5.’” Otherwise do another thing: “Say ‘X is not
equal to 5.’”

Using if
Using the shell, we can code the logic above as follows:

x=5

if [$x = 5]; then
echo "x equals 5."

else
echo "x does not equal 5."

fi

Or we can enter it directly at the command line (slightly shortened):

[me@linuxbox ~]$ x=5
[me@linuxbox ~]$ if [$x = 5]; then echo "equals 5"; else echo "does not equal
5"; fi
equals 5
[me@linuxbox ~]$ x=0
[me@linuxbox ~]$ if [$x = 5]; then echo "equals 5"; else echo "does not equal
5"; fi
does not equal 5

In this example, we execute the command twice. Once, with the value
of x set to 5, which results in the string equals 5 being output, and the
second time with the value of x set to 0, which results in the string does
not equal 5 being output.

The if statement has the following syntax:

if commands; then
commands

[elif commands; then
commands...]

[else
commands]

fi

where commands is a list of commands. This is a little confusing at first glance.
But before we can clear this up, we have to look at how the shell evaluates
the success or failure of a command.

Exit Status
Commands (including the scripts and shell functions we write) issue a value
to the system when they terminate, called an exit status. This value, which is
an integer in the range of 0 to 255, indicates the success or failure of the
command’s execution. By convention, a value of 0 indicates success, and

334 Chapter 27

any other value indicates failure. The shell provides a parameter that we can
use to examine the exit status. Here we see it in action:

[me@linuxbox ~]$ ls -d /usr/bin
/usr/bin
[me@linuxbox ~]$ echo $?
0
[me@linuxbox ~]$ ls -d /bin/usr
ls: cannot access /bin/usr: No such file or directory
[me@linuxbox ~]$ echo $?
2

In this example, we execute the ls command twice. The first time, the
command executes successfully. If we display the value of the parameter $?,
we see that it is 0. We execute the ls command a second time, producing an
error, and examine the parameter $? again. This time it contains a 2, indi-
cating that the command encountered an error. Some commands use differ-
ent exit-status values to provide diagnostics for errors, while many commands
simply exit with a value of 1 when they fail. Man pages often include a sec-
tion entitled “Exit Status,” which describes what codes are used. However, a
0 always indicates success.

The shell provides two extremely simple built-in commands that do
nothing except terminate with either a 0 or 1 exit status. The true com-
mand always executes successfully, and the false command always executes
unsuccessfully:

[me@linuxbox ~]$ true
[me@linuxbox ~]$ echo $?
0
[me@linuxbox ~]$ false
[me@linuxbox ~]$ echo $?
1

We can use these commands to see how the if statement works. What
the if statement really does is evaluate the success or failure of commands:

[me@linuxbox ~]$ if true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if false; then echo "It's true."; fi
[me@linuxbox ~]$

The command echo "It's true." is executed when the command follow-
ing if executes successfully, and it is not executed when the command fol-
lowing if does not execute successfully. If a list of commands follows if, the
last command in the list is evaluated:

[me@linuxbox ~]$ if false; true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if true; false; then echo "It's true."; fi
[me@linuxbox ~]$

Flow Control: Branching with if 335

Using test
By far, the command used most frequently with if is test. The test com-
mand performs a variety of checks and comparisons. It has two equivalent
forms:

test expression

and the more popular

[expression]

where expression is an expression that is evaluated as either true or false.
The test command returns an exit status of 0 when the expression is true
and a status of 1 when the expression is false.

File Expressions
The expressions in Table 27-1 are used to evaluate the status of files.

Table 27-1: test File Expressions

Expression Is true if . . .

file1 -ef file2 file1 and file2 have the same inode numbers (the two
filenames refer to the same file by hard linking).

file1 -nt file2 file1 is newer than file2.

file1 -ot file2 file1 is older than file2.

-b file file exists and is a block-special (device) file.

-c file file exists and is a character-special (device) file.

-d file file exists and is a directory.

-e file file exists.

-f file file exists and is a regular file.

-g file file exists and is set-group-ID.

-G file file exists and is owned by the effective group ID.

-k file file exists and has its “sticky bit” set.

-L file file exists and is a symbolic link.

-O file file exists and is owned by the effective user ID.

-p file file exists and is a named pipe.

-r file file exists and is readable (has readable permission for
the effective user).

-s file file exists and has a length greater than zero.

336 Chapter 27

Table 27-1 (continued)

Expression Is true if . . .

-S file file exists and is a network socket.

-t fd fd is a file descriptor directed to/from the terminal. This
can be used to determine whether standard input/output/
error is being redirected.

-u file file exists and is setuid.

-w file file exists and is writable (has write permission for the
effective user).

-x file file exists and is executable (has execute/search per-
mission for the effective user).

Here we have a script that demonstrates some of the file expressions:

#!/bin/bash

test-file: Evaluate the status of a file

FILE=~/.bashrc

if [-e "$FILE"]; then
if [-f "$FILE"]; then

echo "$FILE is a regular file."
fi
if [-d "$FILE"]; then

echo "$FILE is a directory."
fi
if [-r "$FILE"]; then

echo "$FILE is readable."
fi
if [-w "$FILE"]; then

echo "$FILE is writable."
fi
if [-x "$FILE"]; then

echo "$FILE is executable/searchable."
fi

else
echo "$FILE does not exist"
exit 1

fi

exit

The script evaluates the file assigned to the constant FILE and displays its
results as the evaluation is performed. There are two interesting things to
note about this script. First, notice how the parameter $FILE is quoted within
the expressions. This is not required, but it is a defense against the parameter
being empty. If the parameter expansion of $FILE were to result in an empty
value, it would cause an error (the operators would be interpreted as non-
null strings rather than operators). Using the quotes around the parameter

Flow Control: Branching with if 337

ensures that the operator is always followed by a string, even if the string is
empty. Second, notice the presence of the exit commands near the end of
the script. The exit command accepts a single, optional argument, which
becomes the script’s exit status. When no argument is passed, the exit status
defaults to 0. Using exit in this way allows the script to indicate failure if $FILE
expands to the name of a nonexistent file. The exit command appearing on
the last line of the script is there as a formality. When a script runs off the end
(reaches end-of-file), it terminates with an exit status of 0 by default, anyway.

Similarly, shell functions can return an exit status by including an
integer argument to the return command. If we were to convert the script
above to a shell function to include it in a larger program, we could replace
the exit commands with return statements and get the desired behavior:

test_file () {

test-file: Evaluate the status of a file

FILE=~/.bashrc

if [-e "$FILE"]; then
if [-f "$FILE"]; then

echo "$FILE is a regular file."
fi
if [-d "$FILE"]; then

echo "$FILE is a directory."
fi
if [-r "$FILE"]; then

echo "$FILE is readable."
fi
if [-w "$FILE"]; then

echo "$FILE is writable."
fi
if [-x "$FILE"]; then

echo "$FILE is executable/searchable."
fi

else
echo "$FILE does not exist"
return 1

fi

}

String Expressions
The expressions in Table 27-2 are used to evaluate strings.

Table 27-2: test String Expressions

Expression Is true if . . .

string string is not null.

-n string The length of string is greater than zero.

338 Chapter 27

Table 27-2 (continued)

Expression Is true if . . .

-z string The length of string is zero.

string1 = string2
string1 == string2

string1 and string2 are equal. Single or double
equal signs may be used, but the use of double equal
signs is greatly preferred.

string1 != string2 string1 and string2 are not equal.

string1 > string2 string1 sorts after string2.

string1 < string2 string1 sorts before string2.

Warning: The > and < expression operators must be quoted (or escaped with a backslash) when
used with test. If they are not, they will be interpreted by the shell as redirection oper-
ators, with potentially destructive results. Also note that while the bash documentation
states that the sorting order conforms to the collation order of the current locale, it does
not. ASCII (POSIX) order is used in versions of bash up to and including 4.0.

Here is a script that incorporates string expressions:

#!/bin/bash

test-string: evaluate the value of a string

ANSWER=maybe

if [-z "$ANSWER"]; then
echo "There is no answer." >&2
exit 1

fi

if ["$ANSWER" = "yes"]; then
echo "The answer is YES."

elif ["$ANSWER" = "no"]; then
echo "The answer is NO."

elif ["$ANSWER" = "maybe"]; then
echo "The answer is MAYBE."

else
echo "The answer is UNKNOWN."

fi

In this script, we evaluate the constant ANSWER. We first determine if the
string is empty. If it is, we terminate the script and set the exit status to 1.
Notice the redirection that is applied to the echo command. This redirects
the error message “There is no answer.” to standard error, which is the
“proper” thing to do with error messages. If the string is not empty, we
evaluate the value of the string to see if it is equal to either “yes,” “no,” or
“maybe.” We do this by using elif, which is short for else if. By using elif, we
are able to construct a more complex logical test.

Flow Control: Branching with if 339

Integer Expressions
The expressions in Table 27-3 are used with integers.

Table 27-3: test Integer Expressions

Expression Is true if . . .

integer1 -eq integer2 integer1 is equal to integer2.

integer1 -ne integer2 integer1 is not equal to integer2.

integer1 -le integer2 integer1 is less than or equal to integer2.

integer1 -lt integer2 integer1 is less than integer2.

integer1 -ge integer2 integer1 is greater than or equal to integer2.

integer1 -gt integer2 integer1 is greater than integer2.

Here is a script that demonstrates them:

#!/bin/bash

test-integer: evaluate the value of an integer.

INT=-5

if [-z "$INT"]; then
echo "INT is empty." >&2
exit 1

fi

if [$INT -eq 0]; then
echo "INT is zero."

else
if [$INT -lt 0]; then

echo "INT is negative."
else

echo "INT is positive."
fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi

The interesting part of the script is how it determines whether an integer
is even or odd. By performing a modulo 2 operation on the number, which
divides the number by 2 and returns the remainder, it can tell if the number
is odd or even.

340 Chapter 27

A More Modern Version of test
Recent versions of bash include a compound command that acts as an
enhanced replacement for test. It uses the following syntax:

[[expression]]

where expression is an expression that evaluates to either a true or false result.
The [[]] command is very similar to test (it supports all of its expressions)
but adds an important new string expression:

string1 =~ regex

which returns true if string1 is matched by the extended regular expression
regex. This opens up a lot of possibilities for performing such tasks as data
validation. In our earlier example of the integer expressions, the script would
fail if the constant INT contained anything except an integer. The script needs
a way to verify that the constant contains an integer. Using [[]] with the =~
string expression operator, we could improve the script this way:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if [$INT -eq 0]; then

echo "INT is zero."
else

if [$INT -lt 0]; then
echo "INT is negative."

else
echo "INT is positive."

fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

By applying the regular expression, we are able to limit the value of INT to
only strings that begin with an optional minus sign, followed by one or more
numerals. This expression also eliminates the possibility of empty values.

Flow Control: Branching with if 341

Another added feature of [[]] is that the == operator supports pattern
matching the same way pathname expansion does. For example:

[me@linuxbox ~]$ FILE=foo.bar
[me@linuxbox ~]$ if [[$FILE == foo.*]]; then
> echo "$FILE matches pattern 'foo.*'"
> fi
foo.bar matches pattern 'foo.*'

This makes [[]] useful for evaluating file- and pathnames.

(())—Designed for Integers
In addition to the [[]] compound command, bash also provides the (())
compound command, which is useful for operating on integers. It supports
a full set of arithmetic evaluations, a subject we will cover fully in Chapter 34.

(()) is used to perform arithmetic truth tests. An arithmetic truth test
results in true if the result of the arithmetic evaluation is non-zero.

[me@linuxbox ~]$ if ((1)); then echo "It is true."; fi
It is true.
[me@linuxbox ~]$ if ((0)); then echo "It is true."; fi
[me@linuxbox ~]$

Using (()), we can slightly simplify the test-integer2 script like this:

#!/bin/bash

test-integer2a: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if ((INT == 0)); then

echo "INT is zero."
else

if ((INT < 0)); then
echo "INT is negative."

else
echo "INT is positive."

fi
if ((((INT % 2)) == 0)); then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

342 Chapter 27

Notice that we use less-than and greater-than signs and that == is used to
test for equivalence. This is a more natural-looking syntax for working with
integers. Notice too, that because the compound command (()) is part of
the shell syntax rather than an ordinary command, and it deals only with inte-
gers, it is able to recognize variables by name and does not require expansion
to be performed.

Combining Expressions
It’s also possible to combine expressions to create more complex evalu-
ations. Expressions are combined by using logical operators. We saw these
in Chapter 17, when we learned about the find command. There are three
logical operations for test and [[]]. They are AND, OR, and NOT. test
and [[]] use different operators to represent these operations, as shown
in Table 27-4.

Table 27-4: Logical Operators

Operation test [[]] and (())

AND -a &&

OR -o ||

NOT ! !

Here’s an example of an AND operation. The following script deter-
mines if an integer is within a range of values:

#!/bin/bash

test-integer3: determine if an integer is within a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["$INT" =~ ^-?[0-9]+$]]; then
if [[INT -ge MIN_VAL && INT -le MAX_VAL]]; then

echo "$INT is within $MIN_VAL to $MAX_VAL."
else

echo "$INT is out of range."
fi

else
 echo "INT is not an integer." >&2
 exit 1
fi

Flow Control: Branching with if 343

In this script, we determine if the value of integer INT lies between
the values of MIN_VAL and MAX_VAL. This is performed by a single use of [[]],
which includes two expressions separated by the && operator. We could have
also coded this using test:

if [$INT -ge $MIN_VAL -a $INT -le $MAX_VAL]; then
echo "$INT is within $MIN_VAL to $MAX_VAL."

else
echo "$INT is out of range."

fi

The ! negation operator reverses the outcome of an expression. It
returns true if an expression is false, and it returns false if an expression is
true. In the following script, we modify the logic of our evaluation to find
values of INT that are outside the specified range:

#!/bin/bash

test-integer4: determine if an integer is outside a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["$INT" =~ ^-?[0-9]+$]]; then
if [[! (INT -ge MIN_VAL && INT -le MAX_VAL)]]; then

echo "$INT is outside $MIN_VAL to $MAX_VAL."
else

echo "$INT is in range."
fi

else
 echo "INT is not an integer." >&2
 exit 1
fi

We also include parentheses around the expression for grouping. If
these were not included, the negation would apply to only the first expres-
sion and not the combination of the two. Coding this with test would be
done this way:

if [! \($INT -ge $MIN_VAL -a $INT -le $MAX_VAL \)]; then
echo "$INT is outside $MIN_VAL to $MAX_VAL."

else
echo "$INT is in range."

fi

Since all expressions and operators used by test are treated as com-
mand arguments by the shell (unlike [[]] and (())), characters that have
special meaning to bash, such as <, >, (, and), must be quoted or escaped.

344 Chapter 27

Seeing that test and [[]] do roughly the same thing, which is prefer-
able? test is traditional (and part of POSIX), whereas [[]] is specific to
bash. It’s important to know how to use test, since it is very widely used, but
[[]] is clearly more useful and is easier to code.

P O R T A B I L I T Y I S T H E H O B G O B L I N O F L I T T L E M I N D S

If you talk to “real” Unix people, you quickly discover that many of them don’t
like Linux very much. They regard it as impure and unclean. One tenet of
Unix followers is that everything should be portable. This means that any script
you write should be able to run, unchanged, on any Unix-like system.

Unix people have good reason to believe this. Having seen what proprie-
tary extensions to commands and shells did to the Unix world before POSIX,
they are naturally wary of the effect of Linux on their beloved OS.

But portability has a serious downside. It prevents progress. It requires that
things are always done using “lowest common denominator” techniques. In the
case of shell programming, it means making everything compatible with sh, the
original Bourne shell.

This downside is the excuse that proprietary vendors use to justify their
proprietary extensions, only they call them “innovations.” But they are really
just lock-in devices for their customers.

The GNU tools, such as bash, have no such restrictions. They encourage
portability by supporting standards and by being universally available. You can
install bash and the other GNU tools on almost any kind of system, even Win-
dows, without cost. So feel free to use all the features of bash. It’s really portable.

Control Operators: Another Way to Branch
bash provides two control operators that can perform branching. The &&
(AND) and || (OR) operators work like the logical operators in the [[]]
compound command. This is the syntax:

command1 && command2

and

command1 || command2

It is important to understand the behavior of these. With the && oper-
ator, command1 is executed and command2 is executed if, and only if, command1 is
successful. With the || operator, command1 is executed and command2 is exe-
cuted if, and only if, command1 is unsuccessful.

Flow Control: Branching with if 345

In practical terms, it means that we can do something like this:

[me@linuxbox ~]$ mkdir temp && cd temp

This will create a directory named temp, and if it succeeds, the current
working directory will be changed to temp. The second command is attempted
only if the mkdir command is successful. Likewise, a command like

[me@linuxbox ~]$ [-d temp] || mkdir temp

will test for the existence of the directory temp, and only if the test fails will
the directory be created. This type of construct is very handy for handling
errors in scripts, a subject we will discuss more in later chapters. For
example, we could do this in a script:

[-d temp] || exit 1

If the script requires the directory temp, and it does not exist, then the
script will terminate with an exit status of 1.

Final Note
We started this chapter with a question. How could we make our sys_info_page
script detect whether or not the user had permission to read all the home
directories? With our knowledge of if, we can solve the problem by adding
this code to the report_home_space function:

report_home_space () {
if [[$(id -u) -eq 0]]; then

cat <<- _EOF_
<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

else
cat <<- _EOF_

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
EOF

fi
return

}

We evaluate the output of the id command. With the -u option, id out-
puts the numeric user ID number of the effective user. The superuser is
always zero, and every other user is a number greater than zero. Knowing
this, we can construct two different here documents, one taking advantage
of superuser privileges and the other restricted to the user’s own home
directory.

We are going to take a break from the sys_info_page program, but don’t
worry. It will be back. In the meantime, we’ll cover some topics that we’ll
need when we resume our work.

346 Chapter 27

R E A D I N G K E Y B O A R D I N P U T

The scripts we have written so far lack a feature com-
mon to most computer programs—interactivity, the
ability of the program to interact with the user. While
many programs don’t need to be interactive, some pro-
grams benefit from being able to accept input directly
from the user. Take, for example, this script from the
previous chapter:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if [$INT -eq 0]; then

echo "INT is zero."
else

if [$INT -lt 0]; then
echo "INT is negative."

else
echo "INT is positive."

fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

Each time we want to change the value of INT, we have to edit the script.
The script would be much more useful if it could ask the user for a value.
In this chapter, we will begin to look at how we can add interactivity to our
programs.

read—Read Values from Standard Input
The read built-in command is used to read a single line of standard input.
This command can be used to read keyboard input or, when redirection is
employed, a line of data from a file. The command has the following syntax:

read [-options] [variable...]

where options is one or more of the available options listed in Table 28-1 and
variable is the name of one or more variables used to hold the input value.
If no variable name is supplied, the shell variable REPLY contains the line
of data.

Table 28-1: read Options

Option Description

-a array Assign the input to array, starting with index zero. We will
cover arrays in Chapter 35.

-d delimiter The first character in the string delimiter is used to indicate
end of input, rather than a newline character.

-e Use Readline to handle input. This permits input editing in
the same manner as the command line.

-n num Read num characters of input, rather than an entire line.

-p prompt Display a prompt for input using the string prompt.

-r Raw mode. Do not interpret backslash characters as escapes.

348 Chapter 28

Table 28-1 (continued)

Option Description

-s Silent mode. Do not echo characters to the display as they
are typed. This is useful when inputting passwords and
other confidential information.

-t seconds Timeout. Terminate input after seconds. read returns a non-
zero exit status if an input times out.

-u fd Use input from file descriptor fd, rather than standard input.

Basically, read assigns fields from standard input to the specified vari-
ables. If we modify our integer evaluation script to use read, it might look
like this:

#!/bin/bash

read-integer: evaluate the value of an integer.

echo -n "Please enter an integer -> "
read int

if [["$int" =~ ^-?[0-9]+$]]; then
if [$int -eq 0]; then

echo "$int is zero."
else

if [$int -lt 0]; then
echo "$int is negative."

else
echo "$int is positive."

fi
if [$((int % 2)) -eq 0]; then

echo "$int is even."
else

echo "$int is odd."
fi

fi
else

echo "Input value is not an integer." >&2
exit 1

fi

We use echo with the -n option (which suppresses the trailing newline on
output) to display a prompt and then use read to input a value for the vari-
able int. Running this script results in this:

[me@linuxbox ~]$ read-integer
Please enter an integer -> 5
5 is positive.
5 is odd.

Reading Keyboard Input 349

read can assign input to multiple variables, as shown in this script:

#!/bin/bash

read-multiple: read multiple values from keyboard

echo -n "Enter one or more values > "
read var1 var2 var3 var4 var5

echo "var1 = '$var1'"
echo "var2 = '$var2'"
echo "var3 = '$var3'"
echo "var4 = '$var4'"
echo "var5 = '$var5'"

In this script, we assign and display up to five values. Notice how read
behaves when given different numbers of values:

[me@linuxbox ~]$ read-multiple
Enter one or more values > a b c d e
var1 = 'a'
var2 = 'b'
var3 = 'c'
var4 = 'd'
var5 = 'e'
[me@linuxbox ~]$ read-multiple
Enter one or more values > a
var1 = 'a'
var2 = ''
var3 = ''
var4 = ''
var5 = ''
[me@linuxbox ~]$ read-multiple
Enter one or more values > a b c d e f g
var1 = 'a'
var2 = 'b'
var3 = 'c'
var4 = 'd'
var5 = 'e f g'

If read receives fewer than the expected number, the extra variables are
empty, while an excessive amount of input results in the final variable con-
taining all of the extra input.

If no variables are listed after the read command, a shell variable, REPLY,
will be assigned all the input:

#!/bin/bash

read-single: read multiple values into default variable

echo -n "Enter one or more values > "
read

echo "REPLY = '$REPLY'"

350 Chapter 28

Running this script results in this:

[me@linuxbox ~]$ read-single
Enter one or more values > a b c d
REPLY = 'a b c d'

Options
read supports the options shown previously in Table 28-1.

Using the various options, we can do interesting things with read. For
example, with the -p option, we can provide a prompt string:

#!/bin/bash

read-single: read multiple values into default variable

read -p "Enter one or more values > "

echo "REPLY = '$REPLY'"

With the -t and -s options we can write a script that reads “secret” input
and times out if the input is not completed in a specified time:

#!/bin/bash

read-secret: input a secret passphrase

if read -t 10 -sp "Enter secret passphrase > " secret_pass; then
echo -e "\nSecret passphrase = '$secret_pass'"

else
echo -e "\nInput timed out" >&2
exit 1

fi

The script prompts the user for a secret passphrase and waits 10 seconds
for input. If the entry is not completed within the specified time, the script
exits with an error. Since the -s option is included, the characters of the
passphrase are not echoed to the display as they are typed.

Separating Input Fields with IFS
Normally, the shell performs word splitting on the input provided to read.
As we have seen, this means that multiple words separated by one or more
spaces become separate items on the input line and are assigned to separate
variables by read. This behavior is configured by a shell variable named IFS
(for Internal Field Separator). The default value of IFS contains a space, a
tab, and a newline character, each of which will separate items from one
another.

We can adjust the value of IFS to control the separation of fields input to
read. For example, the /etc/passwd file contains lines of data that use the colon
character as a field separator. By changing the value of IFS to a single colon,

Reading Keyboard Input 351

we can use read to input the contents of /etc/passwd and successfully separate
fields into different variables. Here we have a script that does just that:

#!/bin/bash

read-ifs: read fields from a file

FILE=/etc/passwd

read -p "Enter a username > " user_name

file_info=$(grep "^$user_name:" $FILE)

if [-n "$file_info"]; then
IFS=":" read user pw uid gid name home shell <<< "$file_info"
echo "User = '$user'"
echo "UID = '$uid'"
echo "GID = '$gid'"
echo "Full Name = '$name'"
echo "Home Dir. = '$home'"
echo "Shell = '$shell'"

else
echo "No such user '$user_name'" >&2
exit 1

fi

This script prompts the user to enter the username of an account on
the system and then displays the different fields found in the user’s record
in the /etc/passwd file. The script contains two interesting lines. The first,
at , assigns the results of a grep command to the variable file_info. The
regular expression used by grep ensures that the username will match only
a single line in the /etc/passwd file.

The second interesting line, at , consists of three parts: a variable
assignment, a read command with a list of variable names as arguments, and
a strange new redirection operator. We’ll look at the variable assignment
first.

The shell allows one or more variable assignments to take place imme-
diately before a command. These assignments alter the environment for
the command that follows. The effect of the assignment is temporary, only
changing the environment for the duration of the command. In our case,
the value of IFS is changed to a colon character. Alternatively, we could have
coded it this way:

OLD_IFS="$IFS"
IFS=":"
read user pw uid gid name home shell <<< "$file_info"
IFS="$OLD_IFS"

where we store the value of IFS, assign a new value, perform the read com-
mand, and then restore IFS to its original value. Clearly, placing the variable
assignment in front of the command is a more concise way of doing the
same thing.

352 Chapter 28

The <<< operator indicates a here string. A here string is like a here doc-
ument, only shorter, consisting of a single string. In our example, the line
of data from the /etc/passwd file is fed to the standard input of the read
command. We might wonder why this rather oblique method was chosen
rather than

echo "$file_info" | IFS=":" read user pw uid gid name home shell

Well, there’s a reason . . .

Y O U C A N ’ T P I P E R E A D

While the read command normally takes input from standard input, you cannot
do this:

echo "foo" | read

We would expect this to work, but it does not. The command will appear
to succeed, but the REPLY variable will always be empty. Why is this?

The explanation has to do with the way the shell handles pipelines. In bash
(and other shells such as sh), pipelines create subshells. These are copies of the
shell and its environment that are used to execute the command in the pipe-
line. In our previous example, read is executed in a subshell.

Subshells in Unix-like systems create copies of the environment for the
processes to use while they execute. When the processes finish, the copy of the
environment is destroyed. This means that a subshell can never alter the environ-
ment of its parent process. read assigns variables, which then become part of the
environment. In the example above, read assigns the value foo to the variable
REPLY in its subshell’s environment, but when the command exits, the subshell
and its environment are destroyed, and the effect of the assignment is lost.

Using here strings is one way to work around this behavior. Another
method is discussed in Chapter 36.

Validating Input
With our new ability to have keyboard input comes an additional program-
ming challenge: validating input. Very often the difference between a well-
written program and a poorly written one lies in the program’s ability to
deal with the unexpected. Frequently, the unexpected appears in the form
of bad input. We did a little of this with our evaluation programs in the pre-
vious chapter, where we checked the values of integers and screened out
empty values and non-numeric characters. It is important to perform these
kinds of programming checks every time a program receives input to guard
against invalid data. This is especially important for programs that are shared
by multiple users. Omitting these safeguards in the interests of economy
might be excused if a program is to be used once and only by the author to

Reading Keyboard Input 353

perform some special task. Even then, if the program performs dangerous
tasks such as deleting files, it would be wise to include data validation, just
in case.

Here we have an example program that validates various kinds of input:

#!/bin/bash

read-validate: validate input

invalid_input () {
echo "Invalid input '$REPLY'" >&2
exit 1

}

read -p "Enter a single item > "

input is empty (invalid)
[[-z $REPLY]] && invalid_input

input is multiple items (invalid)
(($(echo $REPLY | wc -w) > 1)) && invalid_input

is input a valid filename?
if [[$REPLY =~ ^[-[:alnum:]\._]+$]]; then

echo "'$REPLY' is a valid filename."
if [[-e $REPLY]]; then

echo "And file '$REPLY' exists."
else

echo "However, file '$REPLY' does not exist."
fi

is input a floating point number?
if [[$REPLY =~ ^-?[[:digit:]]*\.[[:digit:]]+$]]; then

echo "'$REPLY' is a floating point number."
else

echo "'$REPLY' is not a floating point number."
fi

is input an integer?
if [[$REPLY =~ ^-?[[:digit:]]+$]]; then

echo "'$REPLY' is an integer."
else

echo "'$REPLY' is not an integer."
fi

else
echo "The string '$REPLY' is not a valid filename."

fi

This script prompts the user to enter an item. The item is subsequently
analyzed to determine its contents. As we can see, the script makes use of
many of the concepts that we have covered thus far, including shell func-
tions, [[]], (()), the control operator &&, and if, as well as a healthy dose
of regular expressions.

354 Chapter 28

Menus
A common type of interactivity is called menu driven. In menu-driven pro-
grams, the user is presented with a list of choices and is asked to choose one.
For example, we could imagine a program that presented the following:

Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

Enter selection [0-3] >

Using what we learned from writing our sys_info_page program, we can
construct a menu-driven program to perform the tasks on the above menu:

#!/bin/bash

read-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 0]]; then

echo "Program terminated."
exit

fi
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
exit

fi
if [[$REPLY == 2]]; then

df -h
exit

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
exit

fi

Reading Keyboard Input 355

else
echo "Invalid entry." >&2
exit 1

fi

This script is logically divided into two parts. The first part displays the
menu and inputs the response from the user. The second part identifies
the response and carries out the selected action. Notice the use of the exit
command in this script. It is used here to prevent the script from executing
unnecessary code after an action has been carried out. The presence of mul-
tiple exit points in a program is generally a bad idea (it makes program
logic harder to understand), but it works in this script.

Final Note
In this chapter, we took our first steps toward interactivity, allowing users to
input data into our programs via the keyboard. Using the techniques pre-
sented thus far, it is possible to write many useful programs, such as special-
ized calculation programs and easy-to-use frontends for arcane command-
line tools. In the next chapter, we will build on the menu-driven program
concept to make it even better.

Extra Credit
It is important to study the programs in this chapter carefully and have a com-
plete understanding of the way they are logically structured, as the programs
to come will be increasingly complex. As an exercise, rewrite the programs
in this chapter using the test command rather than the [[]] compound com-
mand. Hint: Use grep to evaluate the regular expressions, and then evaluate
its exit status. This will be good practice.

356 Chapter 28

F L O W C O N T R O L : L O O P I N G
W I T H W H I L E A N D U N T I L

In the previous chapter, we developed a menu-driven
program to produce various kinds of system informa-
tion. The program works, but it still has a significant
usability problem. It executes only a single choice
and then terminates. Even worse, if an invalid selection is made, the pro-
gram terminates with an error, without giving the user an opportunity to try
again. It would be better if we could somehow construct the program so that
it could repeat the menu display and selection over and over, until the user
chooses to exit the program.

In this chapter, we will look at a programming concept called looping,
which can be used to make portions of programs repeat. The shell provides
three compound commands for looping. We will look at two of them in this
chapter and the third in Chapter 33.

Looping
Daily life is full of repeated activities. Going to work each day, walking the
dog, and slicing a carrot are all tasks that involve repeating a series of steps.
Let’s consider slicing a carrot. If we express this activity in pseudocode, it
might look something like this:

1. Get cutting board.

2. Get knife.

3. Place carrot on cutting board.

4. Lift knife.

5. Advance carrot.

6. Slice carrot.

7. If entire carrot sliced, then quit, else go to step 4.

Steps 4 through 7 form a loop. The actions within the loop are repeated
until the condition, “entire carrot sliced,” is reached.

while
bash can express a similar idea. Let’s say we wanted to display five numbers
in sequential order from 1 to 5. A bash script could be constructed as follows:

#!/bin/bash

while-count: display a series of numbers

count=1

while [$count -le 5]; do
echo $count
count=$((count + 1))

done
echo "Finished."

When executed, this script displays the following:

[me@linuxbox ~]$ while-count
1
2
3
4
5
Finished.

The syntax of the while command is:

while commands; do commands; done

358 Chapter 29

Like if, while evaluates the exit status of a list of commands. As long as
the exit status is 0, it performs the commands inside the loop. In the script
above, the variable count is created and assigned an initial value of 1. The
while command evaluates the exit status of the test command. As long as the
test command returns an exit status of 0, the commands within the loop are
executed. At the end of each cycle, the test command is repeated. After six
iterations of the loop, the value of count has increased to 6, the test com-
mand no longer returns an exit status of 0, and the loop terminates. The
program continues with the next statement following the loop.

We can use a while loop to improve the read-menu program from
Chapter 28:

#!/bin/bash

while-menu: a menu driven system information program

DELAY=3 # Number of seconds to display results

while [[$REPLY != 0]]; do
clear
cat <<- _EOF_

Please Select:

 1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

EOF
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
sleep $DELAY

fi
if [[$REPLY == 2]]; then

df -h
sleep $DELAY

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
sleep $DELAY

fi
else

echo "Invalid entry."
sleep $DELAY

fi
done
echo "Program terminated."

Flow Control: Looping with while and until 359

By enclosing the menu in a while loop, we are able to have the program
repeat the menu display after each selection. The loop continues as long as
REPLY is not equal to 0 and the menu is displayed again, giving the user the
opportunity to make another selection. At the end of each action, a sleep
command is executed so the program will pause for a few seconds to allow
the results of the selection to be seen before the screen is cleared and the
menu is redisplayed. Once REPLY is equal to 0, indicating the “quit” selection,
the loop terminates and execution continues with the line following done.

Breaking out of a Loop
bash provides two built-in commands that can be used to control program
flow inside loops. The break command immediately terminates a loop, and
program control resumes with the next statement following the loop. The
continue command causes the remainder of the loop to be skipped, and pro-
gram control resumes with the next iteration of the loop. Here we see a ver-
sion of the while-menu program incorporating both break and continue:

#!/bin/bash

while-menu2: a menu driven system information program

DELAY=3 # Number of seconds to display results

while true; do
clear
cat <<- _EOF_

Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

EOF
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
sleep $DELAY
continue

fi
if [[$REPLY == 2]]; then

df -h
sleep $DELAY
continue

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

360 Chapter 29

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
sleep $DELAY
continue

fi
if [[$REPLY == 0]]; then

break
fi

else
echo "Invalid entry."
sleep $DELAY

fi
done
echo "Program terminated."

In this version of the script, we set up an endless loop (one that never ter-
minates on its own) by using the true command to supply an exit status to
while. Since true will always exit with a exit status of 0, the loop will never end.
This is a surprisingly common scripting technique. Since the loop will never
end on its own, it’s up to the programmer to provide some way to break out
of the loop when the time is right. In this script, the break command is used
to exit the loop when the 0 selection is chosen. The continue command has
been included at the end of the other script choices to allow for more effi-
cient execution. By using continue, the script will skip over code that is not
needed when a selection is identified. For example, if the 1 selection is
chosen and identified, there is no reason to test for the other selections.

until
The until command is much like while, except instead of exiting a loop
when a non-zero exit status is encountered, it does the opposite. An until
loop continues until it receives a 0 exit status. In our while-count script, we
continued the loop as long as the value of the count variable was less than or
equal to 5. We could get the same result by coding the script with until:

#!/bin/bash

until-count: display a series of numbers

count=1

until [$count -gt 5]; do
echo $count
count=$((count + 1))

done
echo "Finished."

By changing the test expression to $count -gt 5, until will terminate
the loop at the correct time. Deciding whether to use the while or until
loop is usually a matter of choosing the one that allows the clearest test
to be written.

Flow Control: Looping with while and until 361

Reading Files with Loops
while and until can process standard input. This allows files to be processed
with while and until loops. In the following example, we will display the con-
tents of the distros.txt file used in earlier chapters:

#!/bin/bash

while-read: read lines from a file

while read distro version release; do
printf "Distro: %s\tVersion: %s\tReleased: %s\n" \

$distro \
$version \
$release

done < distros.txt

To redirect a file to the loop, we place the redirection operator after the
done statement. The loop will use read to input the fields from the redirected
file. The read command will exit after each line is read, with a 0 exit status
until the end-of-file is reached. At that point, it will exit with a non-zero
exit status, thereby terminating the loop. It is also possible to pipe standard
input into a loop:

#!/bin/bash

while-read2: read lines from a file

sort -k 1,1 -k 2n distros.txt | while read distro version release; do
printf "Distro: %s\tVersion: %s\tReleased: %s\n" \

$distro \
$version \
$release

done

Here we take the output of the sort command and display the stream of
text. However, it is important to remember that since a pipe will execute the
loop in a subshell, any variables created or assigned within the loop will be
lost when the loop terminates.

Final Note
With the introduction of loops and our previous encounters with branching,
subroutines, and sequences, we have covered the major types of flow control
used in programs. bash has some more tricks up its sleeve, but they are refine-
ments on these basic concepts.

362 Chapter 29

T R O U B L E S H O O T I N G

As our scripts become more complex, it’s time to take
a look at what happens when things go wrong and they
don’t do what we want. In this chapter, we’ll look at
some of the common kinds of errors that occur in
scripts and describe a few techniques that can be used
to track down and eradicate problems.

Syntactic Errors
One general class of errors is syntactic. Syntactic errors involve mistyping
some element of shell syntax. In most cases, these kinds of errors will lead
to the shell refusing to execute the script.

In the following discussions, we will use this script to demonstrate com-
mon types of errors:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

As written, this script runs successfully:

[me@linuxbox ~]$ trouble
Number is equal to 1.

Missing Quotes
Let’s edit our script and remove the trailing quote from the argument fol-
lowing the first echo command:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [$number = 1]; then
echo "Number is equal to 1.

else
echo "Number is not equal to 1."

fi

Watch what happens:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 10: unexpected EOF while looking for matching `"'
/home/me/bin/trouble: line 13: syntax error: unexpected end of file

It generates two errors. Interestingly, the line numbers reported are
not where the missing quote was removed but rather much later in the pro-
gram. We can see why if we follow the program after the missing quote. bash
will continue looking for the closing quote until it finds one, which it does
immediately after the second echo command. bash becomes very confused
after that, and the syntax of the if command is broken because the fi state-
ment is now inside a quoted (but open) string.

In long scripts, this kind of error can be quite hard to find. Using an
editor with syntax highlighting will help. If a complete version of vim is
installed, syntax highlighting can be enabled by entering the command:

:syntax on

364 Chapter 30

Missing or Unexpected Tokens
Another common mistake is forgetting to complete a compound command,
such as if or while. Let’s look at what happens if we remove the semicolon
after the test in the if command.

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [$number = 1] then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

The result is this:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 9: syntax error near unexpected token `else'
/home/me/bin/trouble: line 9: `else'

Again, the error message points to a error that occurs later than the
actual problem. What happens is really pretty interesting. As we recall, if
accepts a list of commands and evaluates the exit code of the last command
in the list. In our program, we intend this list to consist of a single command,
[, a synonym for test. The [command takes what follows it as a list of argu-
ments—in our case, four arguments: $number, =, 1, and]. With the semicolon
removed, the word then is added to the list of arguments, which is syntac-
tically legal. The following echo command is legal, too. It’s interpreted as
another command in the list of commands that if will evaluate for an exit
code. The else is encountered next, but it’s out of place, since the shell
recognizes it as a reserved word (a word that has special meaning to the shell)
and not the name of a command. Hence the error message.

Unanticipated Expansions
It’s possible to have errors that occur only intermittently in a script. Some-
times the script will run fine, and other times it will fail because of the results
of an expansion. If we return our missing semicolon and change the value of
number to an empty variable, we can demonstrate:

#!/bin/bash

trouble: script to demonstrate common errors

number=

Troubleshooting 365

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

Running the script with this change results in the output:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 7: [: =: unary operator expected
 Number is not equal to 1.

We get this rather cryptic error message, followed by the output of the
second echo command. The problem is the expansion of the number variable
within the test command. When the command

[$number = 1]

undergoes expansion with number being empty, the result is this:

[= 1]

which is invalid, and the error is generated. The = operator is a binary oper-
ator (it requires a value on each side), but the first value is missing, so the
test command expects a unary operator (such as -z) instead. Further, since
the test failed (because of the error), the if command receives a non-zero
exit code and acts accordingly, and the second echo command is executed.

This problem can be corrected by adding quotes around the first argu-
ment in the test command:

["$number" = 1]

Then when expansion occurs, the result will be this:

["" = 1]

which yields the correct number of arguments. In addition to being used
with empty strings, quotes should be used in cases where a value could
expand into multiword strings, as with filenames containing embedded
spaces.

Logical Errors
Unlike syntactic errors, logical errors do not prevent a script from running.
The script will run, but it will not produce the desired result due to a prob-
lem with its logic. There are countless numbers of possible logical errors,
but here are a few of the most common kinds found in scripts:

Incorrect conditional expressions. It’s easy to incorrectly code an
if/then/else statement and have the wrong logic carried out. Some-
times the logic will be reversed, or it will be incomplete.

366 Chapter 30

“Off by one” errors. When coding loops that employ counters, it is pos-
sible to overlook that the loop may require that the counting start with
0, rather than 1, for the count to conclude at the correct point. These
kinds of errors result in either a loop “going off the end” by counting
too far, or else missing the last iteration of the loop by terminating one
iteration too soon.

Unanticipated situations. Most logical errors result from a program
encountering data or situations that were unforeseen by the program-
mer. These can also include unanticipated expansions, such as a filename
that contains embedded spaces that expands into multiple command
arguments rather than a single filename.

Defensive Programming
It is important to verify assumptions when programming. This means a care-
ful evaluation of the exit status of programs and commands that are used by
a script. Here is an example, based on a true story. An unfortunate system
administrator wrote a script to perform a maintenance task on an important
server. The script contained the following two lines of code:

cd $dir_name
rm *

There is nothing intrinsically wrong with these two lines, as long as the
directory named in the variable, dir_name, exists. But what happens if it does
not? In that case, the cd command fails, and the script continues to the next
line and deletes the files in the current working directory. Not the desired
outcome at all! The hapless administrator destroyed an important part of
the server because of this design decision.

Let’s look at some ways this design could be improved. First, it might be
wise to make the execution of rm contingent on the success of cd:

cd $dir_name && rm *

This way, if the cd command fails, the rm command is not carried out.
This is better, but it still leaves open the possibility that the variable, dir_name,
is unset or empty, which would result in the files in the user’s home direc-
tory being deleted. This could also be avoided by checking to see that dir_name
actually contains the name of an existing directory:

[[-d $dir_name]] && cd $dir_name && rm *

Often, it is best to terminate the script with an error when an situation
such as the one above occurs:

if [[-d $dir_name]]; then
if cd $dir_name; then

rm *

Troubleshooting 367

else
echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else

echo "no such directory: '$dir_name'" >&2
exit 1

fi

Here, we check both the name, to see that it is that of an existing direc-
tory, and the success of the cd command. If either fails, a descriptive error
message is sent to standard error, and the script terminates with an exit
status of 1 to indicate a failure.

Verifying Input
A general rule of good programming is that if a program accepts input,
it must be able to deal with anything it receives. This usually means that
input must be carefully screened to ensure that only valid input is accepted
for further processing. We saw an example of this in the previous chapter
when we studied the read command. One script contained the following
test to verify a menu selection:

[[$REPLY =~ ^[0-3]$]]

This test is very specific. It will return a 0 exit status only if the string
returned by the user is a numeral in the range of 0 to 3. Nothing else will
be accepted. Sometimes these sorts of tests can be very challenging to write,
but the effort is necessary to produce a high-quality script.

D E S I G N I S A F U N C T I O N O F T I M E

When I was a college student studying industrial design, a wise professor stated
that the degree of design on a project was determined by the amount of time
given to the designer. If you were given 5 minutes to design a device that kills
flies, you designed a flyswatter. If you were given 5 months, you might come up
with a laser-guided “anti-fly system” instead.

The same principle applies to programming. Sometimes a “quick-and-
dirty” script will do if it’s going to be used only once and only by the program-
mer. That kind of script is common and should be developed quickly to make
the effort economical. Such scripts don’t need a lot of comments and defensive
checks. On the other hand, if a script is intended for production use, that is, a
script that will be used over and over for an important task or by multiple users,
it needs much more careful development.

368 Chapter 30

Testing
Testing is an important step in every kind of software development, includ-
ing scripts. There is a saying in the open source world, “release early, release
often,” that reflects this fact. By releasing early and often, software gets more
exposure to use and testing. Experience has shown that bugs are much easier
to find, and much less expensive to fix, if they are found early in the devel-
opment cycle.

Stubs
In a previous discussion, we saw how stubs can be used to verify program
flow. From the earliest stages of script development, they are a valuable
technique to check the progress of our work.

Let’s look at the previous file-deletion problem and see how this could
be coded for easy testing. Testing the original fragment of code would be
dangerous, since its purpose is to delete files, but we could modify the code
to make the test safe:

if [[-d $dir_name]]; then
if cd $dir_name; then

echo rm * # TESTING
else

echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else

echo "no such directory: '$dir_name'" >&2
exit 1

fi
exit # TESTING

Since the error conditions already output useful messages, we don’t
have to add any. The most important change is placing an echo command
just before the rm command to allow the command and its expanded argu-
ment list to be displayed, rather than executed. This change allows safe exe-
cution of the code. At the end of the code fragment, we place an exit com-
mand to conclude the test and prevent any other part of the script from
being carried out. The need for this will vary according to the design of
the script.

We also include some comments that act as “markers” for our test-
related changes. These can be used to help find and remove the changes
when testing is complete.

Test Cases
To perform useful testing, it’s important to develop and apply good test cases.
This is done by carefully choosing input data or operating conditions that

Troubleshooting 369

reflect edge and corner cases. In our code fragment (which is very simple), we
want to know how the code performs under three specific conditions:

dir_name contains the name of an existing directory.

dir_name contains the name of a nonexistent directory.

dir_name is empty.

By performing the test with each of these conditions, good test coverage is
achieved.

Just as with design, testing is a function of time, as well. Not every script
feature needs to be extensively tested. It’s really a matter of determining
what is most important. Since it could be very destructive if it malfunctioned,
our code fragment deserves careful consideration during both its design
and its testing.

Debugging
If testing reveals a problem with a script, the next step is debugging. “A
problem” usually means that the script is, in some way, not performing to
the programmer’s expectations. If this is the case, we need to carefully
determine exactly what the script is actually doing and why. Finding bugs
can sometimes involve a lot of detective work.

A well-designed script will try to help. It should be programmed defen-
sively to detect abnormal conditions and provide useful feedback to the user.
Sometimes, however, problems are strange and unexpected, and more
involved techniques are required.

Finding the Problem Area
In some scripts, particularly long ones, it is sometimes useful to isolate the
area of the script that is related to the problem. This won’t always be the
actual error, but isolation will often provide insights into the actual cause.
One technique that can be used to isolate code is “commenting out” sec-
tions of a script. For example, our file-deletion fragment could be modified
to determine if the removed section was related to an error:

if [[-d $dir_name]]; then
if cd $dir_name; then

rm *
else

echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else
echo "no such directory: '$dir_name'" >&2
exit 1
fi

370 Chapter 30

By placing comment symbols at the beginning of each line in a logical
section of a script, we prevent that section from being executed. Testing can
then be performed again to see if the removal of the code has any impact
on the behavior of the bug.

Tracing
Bugs are often cases of unexpected logical flow within a script. That is, por-
tions of the script are either never executed or are executed in the wrong
order or at the wrong time. To view the actual flow of the program, we use a
technique called tracing.

One tracing method involves placing informative messages in a script
that display the location of execution. We can add messages to our code
fragment:

echo "preparing to delete files" >&2
if [[-d $dir_name]]; then

if cd $dir_name; then
echo "deleting files" >&2

rm *
else

echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else

echo "no such directory: '$dir_name'" >&2
exit 1

fi
echo "file deletion complete" >&2

We send the messages to standard error to separate them from normal
output. We also do not indent the lines containing the messages, so it is
easier to find when it’s time to remove them.

Now when the script is executed, it’s possible to see that the file dele-
tion has been performed:

[me@linuxbox ~]$ deletion-script
preparing to delete files
deleting files
file deletion complete
[me@linuxbox ~]$

bash also provides a method of tracing, implemented by the -x option
and the set command with the -x option. Using our earlier trouble script,
we can activate tracing for the entire script by adding the -x option to the
first line:

#!/bin/bash -x

trouble: script to demonstrate common errors

number=1

Troubleshooting 371

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

When executed, the results look like this:

[me@linuxbox ~]$ trouble
+ number=1
+ '[' 1 = 1 ']'
+ echo 'Number is equal to 1.'
Number is equal to 1.

With tracing enabled, we see the commands performed with expansions
applied. The leading plus signs indicate the display of the trace to distinguish
them from lines of regular output. The plus sign is the default character for
trace output. It is contained in the PS4 (prompt string 4) shell variable. The
contents of this variable can be adjusted to make the prompt more useful.
Here, we modify it to include the current line number in the script where the
trace is performed. Note that single quotes are required to prevent expan-
sion until the prompt is actually used:

[me@linuxbox ~]$ export PS4='$LINENO + '
[me@linuxbox ~]$ trouble
5 + number=1
7 + '[' 1 = 1 ']'
8 + echo 'Number is equal to 1.'
Number is equal to 1.

To perform a trace on a selected portion of a script, rather than the
entire script, we can use the set command with the -x option:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

We use the set command with the -x option to activate tracing and the
+x option to deactivate tracing. This technique can be used to examine mul-
tiple portions of a troublesome script.

372 Chapter 30

Examining Values During Execution
It is often useful, along with tracing, to display the content of variables to
see the internal workings of a script while it is being executed. Applying
additional echo statements will usually do the trick:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

echo "number=$number" # DEBUG
set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

In this trivial example, we simply display the value of the variable num-
ber and mark the added line with a comment to facilitate its later identifica-
tion and removal. This technique is particularly useful when watching the
behavior of loops and arithmetic within scripts.

Final Note
In this chapter, we looked at just a few of the problems that can crop up
during script development. Of course, there are many more. The tech-
niques described here will enable finding most common bugs. Debugging
is an art that can be developed through experience, both in avoiding bugs
(testing constantly throughout development) and in finding bugs (effective
use of tracing).

Troubleshooting 373

F L O W C O N T R O L :
B R A N C H I N G W I T H C A S E

In this chapter, we will continue to look at flow con-
trol. In Chapter 28, we constructed some simple menus
and built the logic used to act on a user’s selection. To
do this, we used a series of if commands to identify
which of the possible choices had been selected. This
type of construct appears frequently in programs, so
much so that many programming languages (includ-
ing the shell) provide a flow-control mechanism for
multiple-choice decisions.

case
The bash multiple-choice compound command is called case. It has the fol-
lowing syntax:

case word in
[pattern [| pattern]...) commands ;;]...

esac

If we look at the read-menu program from Chapter 28, we see the logic
used to act on a user’s selection:

#!/bin/bash

read-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 0]]; then

echo "Program terminated."
exit

fi
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
exit

fi
if [[$REPLY == 2]]; then

df -h
exit

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
exit

fi
else

echo "Invalid entry." >&2
exit 1

fi

376 Chapter 31

Using case, we can replace this logic with something simpler:

#!/bin/bash

case-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

case $REPLY in
0) echo "Program terminated."

exit
;;

1) echo "Hostname: $HOSTNAME"
uptime
;;

2) df -h
;;

3) if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
;;

*) echo "Invalid entry" >&2
exit 1
;;

esac

The case command looks at the value of word—in our example, the value
of the REPLY variable—and then attempts to match it against one of the speci-
fied patterns. When a match is found, the commands associated with the spe-
cified pattern are executed. After a match is found, no further matches are
attempted.

Patterns
The patterns used by case are the same as those used by pathname expan-
sion. Patterns are terminated with a) character. Table 31-1 shows some valid
patterns.

Flow Control: Branching with case 377

Table31-1: case Pattern Examples

Pattern Description

a) Matches if word equals a.

[[:alpha:]]) Matches if word is a single alphabetic character.

???) Matches if word is exactly three characters long.

*.txt) Matches if word ends with the characters .txt.

*) Matches any value of word. It is good practice to include
this as the last pattern in a case command to catch any
values of word that did not match a previous pattern; that
is, to catch any possible invalid values.

Here is an example of patterns at work:

#!/bin/bash

read -p "enter word > "

case $REPLY in
[[:alpha:]]) echo "is a single alphabetic character." ;;
[ABC][0-9]) echo "is A, B, or C followed by a digit." ;;
???) echo "is three characters long." ;;
*.txt) echo "is a word ending in '.txt'" ;;
*) echo "is something else." ;;

esac

Combining Multiple Patterns
It is also possible to combine multiple patterns using the vertical pipe charac-
ter as a separator. This creates an “or” conditional pattern. This is useful for
such things as handling both upper- and lowercase characters. For example:

#!/bin/bash

case-menu: a menu driven system information program

clear
echo "
Please Select:

A. Display System Information
B. Display Disk Space
C. Display Home Space Utilization
Q. Quit
"
read -p "Enter selection [A, B, C or Q] > "

case $REPLY in
q|Q) echo "Program terminated."

exit
;;

378 Chapter 31

a|A) echo "Hostname: $HOSTNAME"
uptime
;;

b|B) df -h
;;

c|C) if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
;;

*) echo "Invalid entry" >&2
exit 1
;;

esac

Here, we modify the case-menu program to use letters instead of digits for
menu selection. Notice that the new patterns allow for entry of both upper-
and lowercase letters.

Final Note
The case command is a handy addition to our bag of programming tricks.
As we will see in the next chapter, it’s the perfect tool for handling certain
types of problems.

Flow Control: Branching with case 379

P O S I T I O N A L P A R A M E T E R S

One feature that has been missing from our pro-
grams is the ability to accept and process command-
line options and arguments. In this chapter, we will
examine the shell features that allow our programs
to get access to the contents of the command line.

Accessing the Command Line
The shell provides a set of variables called positional parameters that contain
the individual words on the command line. The variables are named 0
through 9. They can be demonstrated this way:

#!/bin/bash

posit-param: script to view command line parameters

echo "
\$0 = $0
\$1 = $1
\$2 = $2

\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9
"

This very simple script displays the values of the variables $0 through $9.
When executed with no command-line arguments:

[me@linuxbox ~]$ posit-param

$0 = /home/me/bin/posit-param
$1 =
$2 =
$3 =
$4 =
$5 =
$6 =
$7 =
$8 =
$9 =

Even when no arguments are provided, $0 will always contain the first
item appearing on the command line, which is the pathname of the pro-
gram being executed. When arguments are provided, we see the results:

[me@linuxbox ~]$ posit-param a b c d

$0 = /home/me/bin/posit-param
$1 = a
$2 = b
$3 = c
$4 = d
$5 =
$6 =
$7 =
$8 =
$9 =

Note: You can actually access more than nine parameters using parameter expansion. To
specify a number greater than nine, surround the number in braces; for example,
${10}, ${55}, ${211}, and so on.

Determining the Number of Arguments
The shell also provides a variable, $#, that yields the number of arguments
on the command line:

#!/bin/bash

posit-param: script to view command line parameters

382 Chapter 32

echo "
Number of arguments: $#
\$0 = $0
\$1 = $1
\$2 = $2
\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9
"

The result:

[me@linuxbox ~]$ posit-param a b c d

Number of arguments: 4
$0 = /home/me/bin/posit-param
$1 = a
$2 = b
$3 = c
$4 = d
$5 =
$6 =
$7 =
$8 =
$9 =

shift—Getting Access to Many Arguments
But what happens when we give the program a large number of arguments
such as this:

[me@linuxbox ~]$ posit-param *

Number of arguments: 82
$0 = /home/me/bin/posit-param
$1 = addresses.ldif
$2 = bin
$3 = bookmarks.html
$4 = debian-500-i386-netinst.iso
$5 = debian-500-i386-netinst.jigdo
$6 = debian-500-i386-netinst.template
$7 = debian-cd_info.tar.gz
$8 = Desktop
$9 = dirlist-bin.txt

On this example system, the wildcard * expands into 82 arguments.
How can we process that many? The shell provides a method, albeit a
clumsy one, to do this. The shift command causes each parameter to
“move down one” each time it is executed. In fact, by using shift, it is pos-
sible to get by with only one parameter (in addition to $0, which never
changes).

Positional Parameters 383

#!/bin/bash

posit-param2: script to display all arguments

count=1

while [[$# -gt 0]]; do
echo "Argument $count = $1"
count=$((count + 1))
shift

done

Each time shift is executed, the value of $2 is moved to $1, the value of
$3 is moved to $2, and so on. The value of $# is also reduced by 1.

In the posit-param2 program, we create a loop that evaluates the number
of arguments remaining and continues as long as there is at least one. We
display the current argument, increment the variable count with each itera-
tion of the loop to provide a running count of the number of arguments
processed, and, finally, execute a shift to load $1 with the next argument.
Here is the program at work:

[me@linuxbox ~]$ posit-param2 a b c d
Argument 1 = a
Argument 2 = b
Argument 3 = c
Argument 4 = d

Simple Applications
Even without shift, it’s possible to write useful applications using positional
parameters. By way of example, here is a simple file-information program:

#!/bin/bash

file_info: simple file information program

PROGNAME=$(basename $0)

if [[-e $1]]; then
echo -e "\nFile Type:"
file $1
echo -e "\nFile Status:"
stat $1

else
echo "$PROGNAME: usage: $PROGNAME file" >&2
exit 1

fi

This program displays the file type (determined by the file command)
and the file status (from the stat command) of a specified file. One interest-
ing feature of this program is the PROGNAME variable. It is given the value that
results from the basename $0 command. The basename command removes the

384 Chapter 32

leading portion of a pathname, leaving only the base name of a file. In our
example, basename removes the leading portion of the pathname contained
in the $0 parameter, the full pathname of our example program. This value
is useful when constructing messages such as the usage message at the end
of the program. When it’s coded this way, the script can be renamed, and
the message automatically adjusts to contain the name of the program.

Using Positional Parameters with Shell Functions
Just as positional parameters are used to pass arguments to shell scripts, they
can also be used to pass arguments to shell functions. To demonstrate, we
will convert the file_info script into a shell function:

file_info () {

file_info: function to display file information

if [[-e $1]]; then
echo -e "\nFile Type:"
file $1
echo -e "\nFile Status:"
stat $1

else
echo "$FUNCNAME: usage: $FUNCNAME file" >&2
return 1

fi
}

Now, if a script that incorporates the file_info shell function calls the
function with a filename argument, the argument will be passed to the
function.

With this capability, we can write many useful shell functions that can
be used not only in scripts but also within the .bashrc file.

Notice that the PROGNAME variable was changed to the shell variable
FUNCNAME. The shell automatically updates this variable to keep track of the
currently executed shell function. Note that $0 always contains the full path-
name of the first item on the command line (i.e., the name of the program)
and does not contain the name of the shell function as we might expect.

Handling Positional Parameters En Masse
It is sometimes useful to manage all the positional parameters as a group. For
example, we might want to write a wrapper around another program. This
means that we create a script or shell function that simplifies the execution
of another program. The wrapper supplies a list of arcane command-line
options and then passes a list of arguments to the lower-level program.

The shell provides two special parameters for this purpose. They both
expand into the complete list of positional parameters but differ in rather
subtle ways. Table 32-1 describes these parameters.

Positional Parameters 385

Table 32-1: The * and @ Special Parameters

Parameter Description

$* Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands into a double-
quoted string containing all the positional parameters, each
separated by the first character of the IFS shell variable (by
default a space character).

$@ Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands each posi-
tional parameter into a separate word surrounded by double
quotes.

Here is a script that shows these special parameters in action:

#!/bin/bash

posit-params3 : script to demonstrate $* and $@

print_params () {
echo "\$1 = $1"
echo "\$2 = $2"
echo "\$3 = $3"
echo "\$4 = $4"

}

pass_params () {
echo -e "\n" '$* :'; print_params $*
echo -e "\n" '"$*" :'; print_params "$*"
echo -e "\n" '$@ :'; print_params $@
echo -e "\n" '"$@" :'; print_params "$@"

}

pass_params "word" "words with spaces"

In this rather convoluted program, we create two arguments, word and
words with spaces, and pass them to the pass_params function. That function,
in turn, passes them on to the print_params function, using each of the four
methods available with the special parameters $* and $@. When executed,
the script reveals the differences:

[me@linuxbox ~]$ posit-param3

 $* :
$1 = word
$2 = words
$3 = with
$4 = spaces

 "$*" :
$1 = word words with spaces
$2 =

386 Chapter 32

$3 =
$4 =

 $@ :
$1 = word
$2 = words
$3 = with
$4 = spaces

 "$@" :
$1 = word
$2 = words with spaces
$3 =
$4 =

With our arguments, both $* and $@ produce a four-word result: word,
words, with, and spaces. "$*" produces a one-word result: word words with
spaces. "$@" produces a two-word result: word and words with spaces.

This matches our actual intent. The lesson to take from this is that even
though the shell provides four different ways of getting the list of positional
parameters, "$@" is by far the most useful for most situations, because it pre-
serves the integrity of each positional parameter.

A More Complete Application
After a long hiatus, we are going to resume work on our sys_info_page pro-
gram. Our next addition will add several command-line options to the pro-
gram as follows:

Output file. We will add an option to specify a name for a file to contain
the program’s output. It will be specified as either -f file or --file file.

Interactive mode. This option will prompt the user for an output file-
name and will determine if the specified file already exists. If it does,
the user will be prompted before the existing file is overwritten. This
option will be specified by either -i or --interactive.

Help. Either -h or --help may be specified to cause the program to out-
put an informative usage message.

Here is the code needed to implement the command-line processing:

usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"
return

}

process command line options

interactive=
filename=

while [[-n $1]]; do
case $1 in

Positional Parameters 387

-f | --file) shift
filename=$1
;;

-i | --interactive) interactive=1
;;

-h | --help) usage
exit
;;

*) usage >&2
exit 1
;;

esac
shift

done

First, we add a shell function called usage to display a message when the
help option is invoked or an unknown option is attempted.

Next, we begin the processing loop. This loop continues while the posi-
tional parameter $1 is not empty. At the bottom of the loop, we have a shift
command to advance the positional parameters to ensure that the loop will
eventually terminate.

Within the loop, we have a case statement that examines the current
positional parameter to see if it matches any of the supported choices. If a
supported parameter is found, it is acted upon. If not, the usage message
is displayed, and the script terminates with an error.

The -f parameter is handled in an interesting way. When detected, it
causes an additional shift to occur, which advances the positional param-
eter $1 to the filename argument supplied to the -f option.

We next add the code to implement the interactive mode:

interactive mode

if [[-n $interactive]]; then
while true; do

read -p "Enter name of output file: " filename
if [[-e $filename]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] > "
case $REPLY in

Y|y) break
;;

Q|q) echo "Program terminated."
exit
;;

*) continue
;;

esac
elif [[-z $filename]]; then

continue
else

break
fi

done
fi

388 Chapter 32

If the interactive variable is not empty, an endless loop is started, which
contains the filename prompt and subsequent existing file-handling code.
If the desired output file already exists, the user is prompted to overwrite,
choose another filename, or quit the program. If the user chooses to over-
write an existing file, a break is executed to terminate the loop. Notice that
the case statement detects only if the user chooses to overwrite or quit. Any
other choice causes the loop to continue and prompts the user again.

In order to implement the output filename feature, we must first con-
vert the existing page-writing code into a shell function, for reasons that will
become clear in a moment:

write_html_page () {
cat <<- _EOF_
<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIME_STAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
EOF
return

}

output html page

if [[-n $filename]]; then
if touch $filename && [[-f $filename]]; then

write_html_page > $filename
else

echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

fi
else

write_html_page
fi

The code that handles the logic of the -f option appears at the end of
the listing shown above. In it, we test for the existence of a filename, and, if
one is found, a test is performed to see if the file is indeed writable. To do
this, a touch is performed, followed by a test to determine if the resulting file
is a regular file. These two tests take care of situations where an invalid path-
name is input (touch will fail), and, if the file already exists, that it’s a regu-
lar file.

As we can see, the write_html_page function is called to perform the
actual generation of the page. Its output is either directed to standard out-
put (if the variable filename is empty) or redirected to the specified file.

Positional Parameters 389

Final Note
With the addition of positional parameters, we can now write fairly functional
scripts. For simple, repetitive tasks, positional parameters make it possible to
write very useful shell functions that can be placed in a user’s .bashrc file.

Our sys_info_page program has grown in complexity and sophistication.
Here is a complete listing, with the most recent changes highlighted:

#!/bin/bash

sys_info_page: program to output a system information page

PROGNAME=$(basename $0)
TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIME_STAMP="Generated $CURRENT_TIME, by $USER"

report_uptime () {
cat <<- _EOF_

<H2>System Uptime</H2>
<PRE>$(uptime)</PRE>
EOF

return
}

report_disk_space () {
cat <<- _EOF_

<H2>Disk Space Utilization</H2>
<PRE>$(df -h)</PRE>
EOF

return
}

report_home_space () {
if [[$(id -u) -eq 0]]; then

cat <<- _EOF_
<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

else
cat <<- _EOF_

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
EOF

fi
return

}

usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"
return

}

write_html_page () {
cat <<- _EOF_
<HTML>

<HEAD>

390 Chapter 32

<TITLE>$TITLE</TITLE>
</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIME_STAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
EOF
return

}

process command line options

interactive=
filename=

while [[-n $1]]; do
case $1 in

-f | --file) shift
filename=$1
;;

-i | --interactive) interactive=1
;;

-h | --help) usage
exit
;;

*) usage >&2
exit 1
;;

esac
shift

done

interactive mode

if [[-n $interactive]]; then
while true; do

read -p "Enter name of output file: " filename
if [[-e $filename]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] > "
case $REPLY in

Y|y) break
;;

Q|q) echo "Program terminated."
exit
;;

*) continue
;;

esac
fi

done
fi

output html page

Positional Parameters 391

if [[-n $filename]]; then
if touch $filename && [[-f $filename]]; then

write_html_page > $filename
else

echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

fi
else

write_html_page
fi

Our script is pretty good now, but we’re not quite done. In the next
chapter, we will add one last improvement to our script.

392 Chapter 32

FLOW CONTROL:
LOOPING WITH FOR

In this final chapter on flow control, we will look at
another of the shell’s looping constructs. The for loop
differs from the while and until loops in that it provides
a means of processing sequences during a loop. This
turns out to be very useful when programming. Accord-
ingly, the for loop is a very popular construct in bash
scripting.

A for loop is implemented, naturally enough, with the for command. In
modern versions of bash, for is available in two forms.

for: Traditional Shell Form
The original for command’s syntax is as follows:

for variable [in words]; do
commands

done

where variable is the name of a variable that will increment during the exe-
cution of the loop, words is an optional list of items that will be sequentially
assigned to variable, and commands are the commands that are to be executed
on each iteration of the loop.

The for command is useful on the command line. We can easily demon-
strate how it works:

[me@linuxbox ~]$ for i in A B C D; do echo $i; done
A
B
C
D

In this example, for is given a list of four words: A, B, C, and D. With a
list of four words, the loop is executed four times. Each time the loop is
executed, a word is assigned to the variable i. Inside the loop, we have an
echo command that displays the value of i to show the assignment. As with
the while and until loops, the done keyword closes the loop.

The really powerful feature of for is the number of interesting ways we
can create the list of words. For example, we can use brace expansion:

[me@linuxbox ~]$ for i in {A..D}; do echo $i; done
A
B
C
D

or pathname expansion:

[me@linuxbox ~]$ for i in distros*.txt; do echo $i; done
distros-by-date.txt
distros-dates.txt
distros-key-names.txt
distros-key-vernums.txt
distros-names.txt
distros.txt
distros-vernums.txt
distros-versions.txt

or command substitution:

#!/bin/bash

longest-word : find longest string in a file

while [[-n $1]]; do
if [[-r $1]]; then

max_word=
max_len=0
for i in $(strings $1); do

len=$(echo $i | wc -c)
if ((len > max_len)); then

max_len=$len
max_word=$i

fi

394 Chapter 33

done
echo "$1: '$max_word' ($max_len characters)"

fi
shift

done

In this example, we look for the longest string found within a file. When
given one or more filenames on the command line, this program uses the
strings program (which is included in the GNU binutils package) to gener-
ate a list of readable text “words” in each file. The for loop processes each
word in turn and determines if the current word is the longest found so far.
When the loop concludes, the longest word is displayed.

If the optional in words portion of the for command is omitted, for
defaults to processing the positional parameters. We will modify our
longest-word script to use this method:

#!/bin/bash

longest-word2 : find longest string in a file

for i; do
if [[-r $i]]; then

max_word=
max_len=0
for j in $(strings $i); do

len=$(echo $j | wc -c)
if ((len > max_len)); then

max_len=$len
max_word=$j

fi
done
echo "$i: '$max_word' ($max_len characters)"

fi
done

As we can see, we have changed the outermost loop to use for in place
of while. Because we omitted the list of words in the for command, the posi-
tional parameters are used instead. Inside the loop, previous instances of
the variable i have been changed to the variable j. The use of shift has also
been eliminated.

W H Y I ?

You may have noticed that the variable i was chosen for each of the for loop
examples above. Why? No specific reason actually, besides tradition. The vari-
able used with for can be any valid variable, but i is the most common, followed
by j and k.

The basis of this tradition comes from the Fortran programming language.
In Fortran, undeclared variables starting with the letters I, J, K, L, and M are auto-
matically typed as integers, while variables beginning with any other letter are
typed as real (numbers with decimal fractions). This behavior led programmers

Flow Control: Looping with for 395

to use the variables I, J, and K for loop variables, since it was less work to use
them when a temporary variable (as a loop variable often was) was needed.

It also led to the following Fortran-based witticism: “GOD is real, unless
declared integer.”

for: C Language Form
Recent versions of bash have added a second form of for-command syntax,
one that resembles the form found in the C programming language. Many
other languages support this form, as well.

for ((expression1; expression2; expression3)); do
commands

done

where expression1, expression2, and expression3 are arithmetic expressions
and commands are the commands to be performed during each iteration of
the loop.

In terms of behavior, this form is equivalent to the following construct:

((expression1))
while ((expression2)); do

commands
((expression3))

done

expression1 is used to initialize conditions for the loop, expression2 is used
to determine when the loop is finished, and expression3 is carried out at the
end of each iteration of the loop.

Here is a typical application:

#!/bin/bash

simple_counter : demo of C style for command

for ((i=0; i<5; i=i+1)); do
echo $i

done

When executed, it produces the following output:

[me@linuxbox ~]$ simple_counter
0
1
2
3
4

In this example, expression1 initializes the variable i with the value of 0,
expression2 allows the loop to continue as long as the value of i remains less
than 5, and expression3 increments the value of i by 1 each time the loop
repeats.

396 Chapter 33

The C-language form of for is useful anytime a numeric sequence is
needed. We will see several applications of this in the next two chapters.

Final Note
With our knowledge of the for command, we will now apply the final
improvements to our sys_info_page script. Currently, the report_home_space
function looks like this:

report_home_space () {
if [[$(id -u) -eq 0]]; then

cat <<- _EOF_
<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

else
cat <<- _EOF_

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
EOF

fi
return

}

Next, we will rewrite it to provide more detail for each user’s home
directory and include the total number of files and subdirectories in each:

report_home_space () {

local format="%8s%10s%10s\n"
local i dir_list total_files total_dirs total_size user_name

if [[$(id -u) -eq 0]]; then
dir_list=/home/*
user_name="All Users"

else
dir_list=$HOME
user_name=$USER

fi

echo "<H2>Home Space Utilization ($user_name)</H2>"

for i in $dir_list; do

total_files=$(find $i -type f | wc -l)
total_dirs=$(find $i -type d | wc -l)
total_size=$(du -sh $i | cut -f 1)
echo "<H3>$i</H3>"
echo "<PRE>"
printf "$format" "Dirs" "Files" "Size"
printf "$format" "----" "-----" "----"
printf "$format" $total_dirs $total_files $total_size
echo "</PRE>"

done
return

}

Flow Control: Looping with for 397

This rewrite applies much of what we have learned so far. We still test
for the superuser, but instead of performing the complete set of actions as
part of the if, we set some variables used later in a for loop. We have added
several local variables to the function and made use of printf to format some
of the output.

398 Chapter 33

S T R I N G S A ND N U M B E R S

Computer programs are all about working with data.
In past chapters, we have focused on processing data
at the file level. However, many programming prob-
lems need to be solved using smaller units of data
such as strings and numbers.

In this chapter, we will look at several shell features that are used to
manipulate strings and numbers. The shell provides a variety of parameter
expansions that perform string operations. In addition to arithmetic expan-
sion (which we touched upon in Chapter 7), there is a common command-
line program called bc, which performs higher-level math.

Parameter Expansion
Though parameter expansion came up in Chapter 7, we did not cover it in
detail because most parameter expansions are used in scripts rather than on
the command line. We have already worked with some forms of parameter
expansion; for example, shell variables. The shell provides many more.

Basic Parameters
The simplest form of parameter expansion is reflected in the ordinary use
of variables. For example, $a, when expanded, becomes whatever the vari-
able a contains. Simple parameters may also be surrounded by braces, such
as ${a}. This has no effect on the expansion, but it is required if the variable
is adjacent to other text, which may confuse the shell. In this example, we
attempt to create a filename by appending the string _file to the contents
of the variable a.

[me@linuxbox ~]$ a="foo"
[me@linuxbox ~]$ echo "$a_file"

If we perform this sequence, the result will be nothing, because the
shell will try to expand a variable named a_file rather than a. This problem
can be solved by adding braces:

[me@linuxbox ~]$ echo "${a}_file"
foo_file

We have also seen that positional parameters greater than 9 can be
accessed by surrounding the number in braces. For example, to access the
11th positional parameter, we can do this: ${11}.

Expansions to Manage Empty Variables
Several parameter expansions deal with nonexistent and empty variables.
These expansions are handy for handling missing positional parameters
and assigning default values to parameters. Here is one such expansion:

${parameter:-word}

If parameter is unset (i.e., does not exist) or is empty, this expansion
results in the value of word. If parameter is not empty, the expansion results
in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
substitute value if unset
[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
bar
[me@linuxbox ~]$ echo $foo
bar

Here is another expansion, in which we use the equal sign instead of
a dash:

${parameter:=word}

400 Chapter 34

If parameter is unset or empty, this expansion results in the value of word.
In addition, the value of word is assigned to parameter. If parameter is not empty,
the expansion results in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:="default value if unset"}
default value if unset
[me@linuxbox ~]$ echo $foo
default value if unset
[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:="default value if unset"}
bar
[me@linuxbox ~]$ echo $foo
bar

Note: Positional and other special parameters cannot be assigned this way.

Here we use a question mark:

${parameter:?word}

If parameter is unset or empty, this expansion causes the script to exit
with an error, and the contents of word are sent to standard error. If parameter
is not empty, the expansion results in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bash: foo: parameter is empty
[me@linuxbox ~]$ echo $?
1
[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bar
[me@linuxbox ~]$ echo $?
0

Here we use a plus sign:

${parameter:+word}

If parameter is unset or empty, the expansion results in nothing. If
parameter is not empty, the value of word is substituted for parameter; however,
the value of parameter is not changed.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}

[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}
substitute value if set

Expansions That Return Variable Names
The shell has the ability to return the names of variables. This feature is
used in some rather exotic situations.

Strings and Numbers 401

${!prefix*}
${!prefix@}

This expansion returns the names of existing variables with names
beginning with prefix. According to the bash documentation, both forms
of the expansion perform identically. Here, we list all the variables in the
environment with names that begin with BASH:

[me@linuxbox ~]$ echo ${!BASH*}
BASH BASH_ARGC BASH_ARGV BASH_COMMAND BASH_COMPLETION BASH_COMPLETION_DIR
BASH_LINENO BASH_SOURCE BASH_SUBSHELL BASH_VERSINFO BASH_VERSION

String Operations
There is a large set of expansions that can be used to operate on strings. Many
of these expansions are particularly well suited for operations on pathnames.
The expansion

${#parameter}

expands into the length of the string contained by parameter. Normally,
parameter is a string; however, if parameter is either @ or *, then the expansion
results in the number of positional parameters.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo "'$foo' is ${#foo} characters long."
'This string is long.' is 20 characters long.

${parameter:offset}
${parameter:offset:length}

This expansion is used to extract a portion of the string contained in
parameter. The extraction begins at offset characters from the beginning of the
string and continues until the end of the string, unless the length is specified.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo:5}
string is long.
[me@linuxbox ~]$ echo ${foo:5:6}
string

If the value of offset is negative, it is taken to mean it starts from the
end of the string rather than the beginning. Note that negative values must
be preceded by a space to prevent confusion with the ${parameter:-word}
expansion. length, if present, must not be less than 0.

If parameter is @, the result of the expansion is length positional paramet-
ers, starting at offset.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo: -5}
long.
[me@linuxbox ~]$ echo ${foo: -5:2}
lo

402 Chapter 34

${parameter#pattern}
${parameter##pattern}

These expansions remove a leading portion of the string contained in
parameter defined by pattern. pattern is a wildcard pattern like those used in
pathname expansion. The difference in the two forms is that the # form
removes the shortest match, while the ## form removes the longest match.

[me@linuxbox ~]$ foo=file.txt.zip
[me@linuxbox ~]$ echo ${foo#*.}
txt.zip
[me@linuxbox ~]$ echo ${foo##*.}
zip

${parameter%pattern}
${parameter%%pattern}

These expansions are the same as the # and ## expansions above, except
they remove text from the end of the string contained in parameter rather
than from the beginning.

[me@linuxbox ~]$ foo=file.txt.zip
[me@linuxbox ~]$ echo ${foo%.*}
file.txt
[me@linuxbox ~]$ echo ${foo%%.*}
file

${parameter/pattern/string}
${parameter//pattern/string}
${parameter/#pattern/string}
${parameter/%pattern/string}

This expansion performs a search and replace upon the contents of
parameter. If text is found matching wildcard pattern, it is replaced with the
contents of string. In the normal form, only the first occurrence of pattern is
replaced. In the // form, all occurrences are replaced. The /# form requires
that the match occur at the beginning of the string, and the /% form requires
the match to occur at the end of the string. /string may be omitted, which
causes the text matched by pattern to be deleted.

[me@linuxbox ~]$ foo=JPG.JPG
[me@linuxbox ~]$ echo ${foo/JPG/jpg}
jpg.JPG
[me@linuxbox ~]$ echo ${foo//JPG/jpg}
jpg.jpg
[me@linuxbox ~]$ echo ${foo/#JPG/jpg}
jpg.JPG
[me@linuxbox ~]$ echo ${foo/%JPG/jpg}
JPG.jpg

Parameter expansion is a good thing to know. The string-manipulation
expansions can be used as substitutes for other common commands such as
sed and cut. Expansions improve the efficiency of scripts by eliminating the
use of external programs. As an example, we will modify the longest-word
program discussed in the previous chapter to use the parameter expansion

Strings and Numbers 403

${#j} in place of the command substitution $(echo $j | wc -c) and its result-
ing subshell, like so:

#!/bin/bash

longest-word3 : find longest string in a file

for i; do
if [[-r $i]]; then

max_word=
max_len=
for j in $(strings $i); do

len=${#j}
if ((len > max_len)); then

max_len=$len
max_word=$j

fi
done
echo "$i: '$max_word' ($max_len characters)"

fi
shift

done

Next, we will compare the efficiency of the two versions by using the
time command:

[me@linuxbox ~]$ time longest-word2 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38 characters)

real 0m3.618s
user 0m1.544s
sys 0m1.768s
[me@linuxbox ~]$ time longest-word3 dirlist-usr-bin.txt
dirlist-usr-bin.txt: 'scrollkeeper-get-extended-content-list' (38 characters)

real 0m0.060s
user 0m0.056s
sys 0m0.008s

The original version of the script takes 3.618 seconds to scan the
text file, while the new version, using parameter expansion, takes only
0.06 seconds—a very significant improvement.

Arithmetic Evaluation and Expansion
We looked at arithmetic expansion in Chapter 7. It is used to perform vari-
ous arithmetic operations on integers. Its basic form is

$((expression))

where expression is a valid arithmetic expression.
This is related to the compound command (()) used for arithmetic

evaluation (truth tests) we encountered in Chapter 27.
In previous chapters, we saw some of the common types of expressions

and operators. Here, we will look at a more complete list.

404 Chapter 34

Number Bases
Back in Chapter 9, we got a look at octal (base 8) and hexadecimal (base 16)
numbers. In arithmetic expressions, the shell supports integer constants in
any base. Table 34-1 shows the notations used to specify the bases.

Table 34-1: Specifying Different Number Bases

Notation Description

Number By default, numbers without any notation are treated as
decimal (base 10) integers.

0number In arithmetic expressions, numbers with a leading zero are
considered octal.

0xnumber Hexadecimal notation

base#number number is in base.

Some examples:

[me@linuxbox ~]$ echo $((0xff))
255
[me@linuxbox ~]$ echo $((2#11111111))
255

In these examples, we print the value of the hexadecimal number ff
(the largest two-digit number) and the largest eight-digit binary (base 2)
number.

Unary Operators
There are two unary operators, the + and the -, which are used to indicate if
a number is positive or negative, respectively.

Simple Arithmetic
The ordinary arithmetic operators are listed in Table 34-2.

Table 34-2: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Integer division

** Exponentiation

% Modulo (remainder)

Strings and Numbers 405

Most of these are self-explanatory, but integer division and modulo
require further discussion.

Since the shell’s arithmetic operates on only integers, the results of divi-
sion are always whole numbers:

[me@linuxbox ~]$ echo $((5 / 2))
2

This makes the determination of a remainder in a division operation
more important:

[me@linuxbox ~]$ echo $((5 % 2))
1

By using the division and modulo operators, we can determine that 5
divided by 2 results in 2, with a remainder of 1.

Calculating the remainder is useful in loops. It allows an operation to be
performed at specified intervals during the loop’s execution. In the example
below, we display a line of numbers, highlighting each multiple of 5:

#!/bin/bash

modulo : demonstrate the modulo operator

for ((i = 0; i <= 20; i = i + 1)); do
remainder=$((i % 5))
if ((remainder == 0)); then

printf "<%d> " $i
else

printf "%d " $i
fi

done
printf "\n"

When executed, the results look like this:

[me@linuxbox ~]$ modulo
<0> 1 2 3 4 <5> 6 7 8 9 <10> 11 12 13 14 <15> 16 17 18 19 <20>

Assignment
Although its uses may not be immediately apparent, arithmetic expressions
may perform assignment. We have performed assignment many times,
though in a different context. Each time we give a variable a value, we are
performing assignment. We can also do it within arithmetic expressions:

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$ if ((foo = 5));then echo "It is true."; fi
It is true.
[me@linuxbox ~]$ echo $foo
5

406 Chapter 34

In the example above, we first assign an empty value to the variable foo
and verify that it is indeed empty. Next, we perform an if with the com-
pound command ((foo = 5)). This process does two interesting things:
(1) it assigns the value of 5 to the variable foo, and (2) it evaluates to true
because the assignment was successful.

Note: It is important to remember the exact meaning of the = in the expression above. A single
= performs assignment: foo = 5 says, “Make foo equal to 5.” A double == evaluates
equivalence: foo == 5 says, “Does foo equal 5?” This can be very confusing because
the test command accepts a single = for string equivalence. This is yet another reason
to use the more modern [[]] and (()) compound commands in place of test.

In addition to =, the shell provides notations that perform some very
useful assignments, as shown in Table 34-3.

Table 34-3: Assignment Operators

Notation Description

parameter = value Simple assignment. Assigns value to parameter.

parameter += value Addition. Equivalent to parameter = parameter +
value.

parameter -= value Subtraction. Equivalent to parameter = parameter –
value.

parameter *= value Multiplication. Equivalent to parameter = parameter ×
value.

parameter /= value Integer division. Equivalent to parameter = parameter ÷
value.

parameter %= value Modulo. Equivalent to parameter = parameter % value.

parameter++ Variable post-increment. Equivalent to parameter =
parameter + 1. (However, see the following
discussion.)

parameter-- Variable post-decrement. Equivalent to parameter =
parameter - 1.

++parameter Variable pre-increment. Equivalent to parameter =
parameter + 1.

--parameter Variable pre-decrement. Equivalent to parameter =
parameter - 1.

These assignment operators provide a convenient shorthand for many
common arithmetic tasks. Of special interest are the increment (++) and
decrement (--) operators, which increase or decrease the value of their
parameters by 1. This style of notation is taken from the C programming

Strings and Numbers 407

language and has been incorporated by several other programming lan-
guages, including bash.

The operators may appear either at the front of a parameter or at the
end. While they both either increment or decrement the parameter by 1, the
two placements have a subtle difference. If placed at the front of the param-
eter, the parameter is incremented (or decremented) before the parameter
is returned. If placed after, the operation is performed after the parameter is
returned. This is rather strange, but it is the intended behavior. Here is a
demonstration:

[me@linuxbox ~]$ foo=1
[me@linuxbox ~]$ echo $((foo++))
1
[me@linuxbox ~]$ echo $foo
2

If we assign the value of 1 to the variable foo and then increment it with
the ++ operator placed after the parameter name, foo is returned with the
value of 1. However, if we look at the value of the variable a second time, we
see the incremented value. If we place the ++ operator in front of the param-
eter, we get this more expected behavior:

[me@linuxbox ~]$ foo=1
[me@linuxbox ~]$ echo $((++foo))
2
[me@linuxbox ~]$ echo $foo
2

For most shell applications, prefixing the operator will be the most
useful.

The ++ and -- operators are often used in conjunction with loops. We
will make some improvements to our modulo script to tighten it up a bit:

#!/bin/bash

modulo2 : demonstrate the modulo operator

for ((i = 0; i <= 20; ++i)); do
if (((i % 5) == 0)); then

printf "<%d> " $i
else

printf "%d " $i
fi

done
printf "\n"

Bit Operations
One class of operators manipulates numbers in an unusual way. These oper-
ators work at the bit level. They are used for certain kinds of low-level tasks,
often involving setting or reading bit flags. Table 34-4 lists the bit operators.

408 Chapter 34

Table 34-4: Bit Operators

Operator Description

~ Bitwise negation. Negate all the bits in a number.

<< Left bitwise shift. Shift all the bits in a number to the left.

>> Right bitwise shift. Shift all the bits in a number to the right.

& Bitwise AND. Perform an AND operation on all the bits in two
numbers.

| Bitwise OR. Perform an OR operation on all the bits in two numbers.

^ Bitwise XOR. Perform an exclusive OR operation on all the bits in
two numbers.

Note that there are also corresponding assignment operators (for
example, <<=) for all but bitwise negation.

Here we will demonstrate producing a list of powers of 2, using the left
bitwise shift operator:

[me@linuxbox ~]$ for ((i=0;i<8;++i)); do echo $((1<<i)); done
1
2
4
8
16
32
64
128

Logic
As we discovered in Chapter 27, the (()) compound command supports a
variety of comparison operators. There are a few more that can be used to
evaluate logic. Table 34-5 shows the complete list.

Table 34-5: Comparison Operators

Operator Description

<= Less than or equal to

>= Greater than or equal to

< Less than

> Greater than

== Equal to

Strings and Numbers 409

(continued)

Table 34-5 (continued)

Operator Description

!= Not equal to

&& Logical AND

|| Logical OR

expr1?expr2:expr3 Comparison (ternary) operator. If expression expr1
evaluates to be non-zero (arithmetic true) then expr2,
else expr3.

When used for logical operations, expressions follow the rules of arith-
metic logic; that is, expressions that evaluate as 0 are considered false, while
non-zero expressions are considered true. The (()) compound command
maps the results into the shell’s normal exit codes:

[me@linuxbox ~]$ if ((1)); then echo "true"; else echo "false"; fi
true
[me@linuxbox ~]$ if ((0)); then echo "true"; else echo "false"; fi
false

The strangest of the logical operators is the ternary operator. This oper-
ator (which is modeled after the one in the C programming language)
performs a standalone logical test. It can be used as a kind of if/then/else
statement. It acts on three arithmetic expressions (strings won’t work), and
if the first expression is true (or non-zero), the second expression is per-
formed. Otherwise, the third expression is performed. We can try this on
the command line.

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a
1
[me@linuxbox ~]$ ((a<1?++a:--a))

[me@linuxbox ~]$ echo $a
0

Here we see a ternary operator in action. This example implements a
toggle. Each time the operator is performed, the value of the variable a
switches from 0 to 1 or vice versa.

Please note that performing assignment within the expressions is not
straightforward. When this is attempted, bash will declare an error:

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?a+=1:a-=1))
bash: ((: a<1?a+=1:a-=1: attempted assignment to non-variable (error token is
"-=1")

410 Chapter 34

This problem can be mitigated by surrounding the assignment expres-
sion with parentheses:

[me@linuxbox ~]$ ((a<1?(a+=1):(a-=1)))

Next, we see a more comprehensive example of using arithmetic opera-
tors in a script that produces a simple table of numbers:

#!/bin/bash

arith-loop: script to demonstrate arithmetic operators

finished=0
a=0
printf "a\ta**2\ta**3\n"
printf "=\t====\t====\n"

until ((finished)); do
b=$((a**2))
c=$((a**3))
printf "%d\t%d\t%d\n" $a $b $c
((a<10?++a:(finished=1)))

done

In this script, we implement an until loop based on the value of the
finished variable. Initially, the variable is set to 0 (arithmetic false), and we
continue the loop until it becomes non-zero. Within the loop, we calculate
the square and cube of the counter variable a. At the end of the loop, the
value of the counter variable is evaluated. If it is less than 10 (the maximum
number of iterations), it is incremented by 1, else the variable finished is
given the value of 1, making finished arithmetically true and thereby ter-
minating the loop. Running the script gives this result:

[me@linuxbox ~]$ arith-loop
a a**2 a**3
= ==== ====
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

bc—An Arbitrary-Precision Calculator Language
We have seen that the shell can handle all types of integer arithmetic, but
what if we need to perform higher math or even just use floating-point num-
bers? The answer is, we can’t. At least not directly with the shell. To do this,

Strings and Numbers 411

we need to use an external program. There are several approaches we can
take. Embedding Perl or AWK programs is one possible solution but, unfor-
tunately, outside the scope of this book.

Another approach is to use a specialized calculator program. One such
program found on most Linux systems is called bc.

The bc program reads a file written in its own C-like language and exe-
cutes it. A bc script may be a separate file, or it may be read from standard
input. The bc language supports quite a few features, including variables,
loops, and programmer-defined functions. We won’t cover bc entirely here,
just enough to get a taste. bc is well documented by its man page.

Let’s start with a simple example. We’ll write a bc script to add 2 plus 2:

/* A very simple bc script */

2 + 2

The first line of the script is a comment. bc uses the same syntax for
comments as the C programming language. Comments, which may span
multiple lines, begin with /* and end with */.

Using bc
If we save the bc script above as foo.bc, we can run it this way:

[me@linuxbox ~]$ bc foo.bc
bc 1.06.94

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation,
Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
4

If we look carefully, we can see the result at the very bottom, after the
copyright message. This message can be suppressed with the -q (quiet)
option.

bc can also be used interactively:

[me@linuxbox ~]$ bc -q
2 + 2
4
quit

When using bc interactively, we simply type the calculations we wish to
perform, and the results are immediately displayed. The bc command quit
ends the interactive session.

It is also possible to pass a script to bc via standard input:

[me@linuxbox ~]$ bc < foo.bc
4

412 Chapter 34

The ability to take standard input means that we can use here docu-
ments, here strings, and pipes to pass scripts. This is a here string example:

[me@linuxbox ~]$ bc <<< "2+2"
4

An Example Script
As a real-world example, we will construct a script that performs a common
calculation, monthly loan payments. In the script below, we use a here docu-
ment to pass a script to bc:

#!/bin/bash

loan-calc : script to calculate monthly loan payments

PROGNAME=$(basename $0)

usage () {
cat <<- EOF
Usage: $PROGNAME PRINCIPAL INTEREST MONTHS

Where:

PRINCIPAL is the amount of the loan.
INTEREST is the APR as a number (7% = 0.07).
MONTHS is the length of the loan's term.

EOF
}

if (($# != 3)); then
usage
exit 1

fi

principal=$1
interest=$2
months=$3

bc <<- EOF
scale = 10
i = $interest / 12
p = $principal
n = $months
a = p * ((i * ((1 + i) ^ n)) / (((1 + i) ^ n) - 1))
print a, "\n"

EOF

When executed, the results look like this:

[me@linuxbox ~]$ loan-calc 135000 0.0775 180
1270.7222490000

This example calculates the monthly payment for a $135,000 loan at
7.75% APR for 180 months (15 years). Notice the precision of the answer.
This is determined by the value given to the special scale variable in the bc

Strings and Numbers 413

script. A full description of the bc scripting language is provided by the bc
man page. While its mathematical notation is slightly different from that
of the shell (bc more closely resembles C), most of it will be quite familiar,
based on what we have learned so far.

Final Note
In this chapter, we have learned about many of the little things that can be
used to get the “real work” done in scripts. As our experience with scripting
grows, the ability to effectively manipulate strings and numbers will prove
extremely valuable. Our loan-calc script demonstrates that even simple
scripts can do some really useful things.

Extra Credit
While the basic functionality of the loan-calc script is in place, the script is
far from complete. For extra credit, try improving the loan-calc script with
the following features:

Full verification of the command-line arguments

A command-line option to implement an “interactive” mode that
will prompt the user to input the principal, interest rate, and term
of the loan

A better format for the output

414 Chapter 34

A R R A Y S

In the last chapter, we looked at how the shell can
manipulate strings and numbers. The data types we
have looked at so far are known in computer science
circles as scalar variables, that is, variables that contain
a single value.

In this chapter, we will look at another kind of data structure called an
array, which holds multiple values. Arrays are a feature of virtually every pro-
gramming language. The shell supports them, too, though in a rather lim-
ited fashion. Even so, they can be very useful for solving programming
problems.

What Are Arrays?
Arrays are variables that hold more than one value at a time. Arrays are
organized like a table. Let’s consider a spreadsheet as an example. A spread-
sheet acts like a two-dimensional array. It has both rows and columns, and an
individual cell in the spreadsheet can be located according to its row and
column address. An array behaves the same way. An array has cells, which

are called elements, and each element contains data. An individual array ele-
ment is accessed using an address called an index or subscript.

Most programming languages support multidimensional arrays. A spread-
sheet is an example of a multidimensional array with two dimensions, width
and height. Many languages support arrays with an arbitrary number of
dimensions, though two- and three-dimensional arrays are probably the
most commonly used.

Arrays in bash are limited to a single dimension. We can think of them
as a spreadsheet with a single column. Even with this limitation, there are
many applications for them. Array support first appeared in bash version 2.
The original Unix shell program, sh, did not support arrays at all.

Creating an Array
Array variables are named just like other bash variables and are created auto-
matically when they are accessed. Here is an example:

[me@linuxbox ~]$ a[1]=foo
[me@linuxbox ~]$ echo ${a[1]}
foo

Here we see an example of both the assignment and access of an array
element. With the first command, element 1 of array a is assigned the value
foo. The second command displays the stored value of element 1. The use of
braces in the second command is required to prevent the shell from
attempting pathname expansion on the name of the array element.

An array can also be created with the declare command:

[me@linuxbox ~]$ declare -a a

Using the -a option, this example of declare creates the array a.

Assigning Values to an Array
Values may be assigned in one of two ways. Single values may be assigned
using the following syntax:

name[subscript]=value

where name is the name of the array and subscript is an integer (or arith-
metic expression) greater than or equal to 0. Note that the first element of
an array is subscript 0, not 1. value is a string or integer assigned to the array
element.

Multiple values may be assigned using the following syntax:

name=(value1 value2 ...)

where name is the name of the array and value1 value2 ... are values assigned
sequentially to elements of the array, starting with element 0. For example,

416 Chapter 35

if we wanted to assign abbreviated days of the week to the array days, we
could do this:

[me@linuxbox ~]$ days=(Sun Mon Tue Wed Thu Fri Sat)

It is also possible to assign values to a specific element by specifying a
subscript for each value:

[me@linuxbox ~]$ days=([0]=Sun [1]=Mon [2]=Tue [3]=Wed [4]=Thu [5]=Fri [6]=Sat)

Accessing Array Elements
So what are arrays good for? Just as many data-management tasks can be
performed with a spreadsheet program, many programming tasks can
be performed with arrays.

Let’s consider a simple data-gathering and presentation example. We
will construct a script that examines the modification times of the files in a
specified directory. From this data, our script will output a table showing at
what hour of the day the files were last modified. Such a script could be used
to determine when a system is most active. This script, called hours, produces
this result:

[me@linuxbox ~]$ hours .
Hour Files Hour Files
---- ----- ---- -----
00 0 12 11
01 1 13 7
02 0 14 1
03 0 15 7
04 1 16 6
05 1 17 5
06 6 18 4
07 3 19 4
08 1 20 1
09 14 21 0
10 2 22 0
11 5 23 0

Total files = 80

We execute the hours program, specifying the current directory as the
target. It produces a table showing, for each hour of the day (0–23), how
many files were last modified. The code to produce this is as follows:

#!/bin/bash

hours : script to count files by modification time

usage () {
echo "usage: $(basename $0) directory" >&2

}

Arrays 417

Check that argument is a directory
if [[! -d $1]]; then

usage
exit 1

fi

Initialize array
for i in {0..23}; do hours[i]=0; done

Collect data
for i in $(stat -c %y "$1"/* | cut -c 12-13); do

j=${i/#0}
((++hours[j]))
((++count))

done

Display data
echo -e "Hour\tFiles\tHour\tFiles"
echo -e "----\t-----\t----\t-----"
for i in {0..11}; do

j=$((i + 12))
printf "%02d\t%d\t%02d\t%d\n" $i ${hours[i]} $j ${hours[j]}

done
printf "\nTotal files = %d\n" $count

The script consists of one function (usage) and a main body with four
sections. In the first section, we check that there is a command-line argu-
ment and that it is a directory. If it is not, we display the usage message
and exit.

The second section initializes the array hours. It does this by assigning
each element a value of 0. There is no special requirement to prepare arrays
prior to use, but our script needs to ensure that no element is empty. Note
the interesting way the loop is constructed. By employing brace expansion
({0..23}), we are able to easily generate a sequence of words for the for
command.

The next section gathers the data by running the stat program on each
file in the directory. We use cut to extract the two-digit hour from the result.
Inside the loop, we need to remove leading zeros from the hour field, since
the shell will try (and ultimately fail) to interpret values 00 through 09 as
octal numbers (see Table 34-1). Next, we increment the value of the array
element corresponding with the hour of the day. Finally, we increment a
counter (count) to track the total number of files in the directory.

The last section of the script displays the contents of the array. We first
output a couple of header lines and then enter a loop that produces two
columns of output. Lastly, we output the final tally of files.

Array Operations
There are many common array operations. Such things as deleting arrays,
determining their size, sorting, and so on have many applications in scripting.

418 Chapter 35

Outputting the Entire Contents of an Array
The subscripts * and @ can be used to access every element in an array. As
with positional parameters, the @ notation is the more useful of the two.
Here is a demonstration:

[me@linuxbox ~]$ animals=("a dog" "a cat" "a fish")
[me@linuxbox ~]$ for i in ${animals[*]}; do echo $i; done
a
dog
a
cat
a
fish
[me@linuxbox ~]$ for i in ${animals[@]}; do echo $i; done
a
dog
a
cat
a
fish
[me@linuxbox ~]$ for i in "${animals[*]}"; do echo $i; done
a dog a cat a fish
[me@linuxbox ~]$ for i in "${animals[@]}"; do echo $i; done
a dog
a cat
a fish

We create the array animals and assign it three two-word strings. We then
execute four loops to see the effect of word-splitting on the array contents.
The behavior of notations ${animals[*]} and ${animals[@]} is identical until
they are quoted. The * notation results in a single word containing the array’s
contents, while the @ notation results in three words, which matches the
array’s “real” contents.

Determining the Number of Array Elements
Using parameter expansion, we can determine the number of elements in
an array in much the same way as finding the length of a string. Here is an
example:

[me@linuxbox ~]$ a[100]=foo
[me@linuxbox ~]$ echo ${#a[@]} # number of array elements
1
[me@linuxbox ~]$ echo ${#a[100]} # length of element 100
3

We create array a and assign the string foo to element 100. Next, we use
parameter expansion to examine the length of the array, using the @ nota-
tion. Finally, we look at the length of element 100, which contains the string
foo. It is interesting to note that while we assigned our string to element 100,
bash reports only one element in the array. This differs from the behavior of
some other languages, in which the unused elements of the array (elements
0–99) would be initialized with empty values and counted.

Arrays 419

Finding the Subscripts Used by an Array
As bash allows arrays to contain “gaps” in the assignment of subscripts, it is
sometimes useful to determine which elements actually exist. This can be
done with a parameter expansion using the following forms:

${!array[*]}
${!array[@]}

where array is the name of an array variable. Like the other expansions that
use * and @, the @ form enclosed in quotes is the most useful, as it expands
into separate words:

[me@linuxbox ~]$ foo=([2]=a [4]=b [6]=c)
[me@linuxbox ~]$ for i in "${foo[@]}"; do echo $i; done
a
b
c
[me@linuxbox ~]$ for i in "${!foo[@]}"; do echo $i; done
2
4
6

Adding Elements to the End of an Array
Knowing the number of elements in an array is no help if we need to append
values to the end of an array, since the values returned by the * and @ nota-
tions do not tell us the maximum array index in use. Fortunately, the shell
provides us with a solution. By using the += assignment operator, we can
automatically append values to the end of an array. Here, we assign three
values to the array foo, and then append three more.

[me@linuxbox ~]$ foo=(a b c)
[me@linuxbox ~]$ echo ${foo[@]}
a b c
[me@linuxbox ~]$ foo+=(d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f

Sorting an Array
Just as with spreadsheets, it is often necessary to sort the values in a column
of data. The shell has no direct way of doing this, but it’s not hard to do with
a little coding:

#!/bin/bash

array-sort : Sort an array

a=(f e d c b a)
echo "Original array: ${a[@]}"
a_sorted=($(for i in "${a[@]}"; do echo $i; done | sort))
echo "Sorted array: ${a_sorted[@]}"

420 Chapter 35

When executed, the script produces this:

[me@linuxbox ~]$ array-sort
Original array: f e d c b a
Sorted array: a b c d e f

The script operates by copying the contents of the original array (a)
into a second array (a_sorted) with a tricky piece of command substitution.
This basic technique can be used to perform many kinds of operations on
the array by changing the design of the pipeline.

Deleting an Array
To delete an array, use the unset command:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f
[me@linuxbox ~]$ unset foo
[me@linuxbox ~]$ echo ${foo[@]}

[me@linuxbox ~]$

unset may also be used to delete single array elements:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f
[me@linuxbox ~]$ unset 'foo[2]'
[me@linuxbox ~]$ echo ${foo[@]}
a b d e f

In this example, we delete the third element of the array, subscript 2.
Remember, arrays start with subscript 0, not 1! Notice also that the array
element must be quoted to prevent the shell from performing pathname
expansion.

Interestingly, the assignment of an empty value to an array does not
empty its contents:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo[@]}
b c d e f

Any reference to an array variable without a subscript refers to element 0
of the array:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f
[me@linuxbox ~]$ foo=A
[me@linuxbox ~]$ echo ${foo[@]}
A b c d e f

Arrays 421

Final Note
If we search the bash man page for the word array, we find many instances
in which bash makes use of array variables. Most of these are rather obscure,
but they may provide occasional utility in some special circumstances. In
fact, the entire topic of arrays is rather underutilized in shell programming,
largely because the traditional Unix shell programs (such as sh) lacked any
support for arrays. This lack of popularity is unfortunate, because arrays are
widely used in other programming languages and provide a powerful tool
for solving many kinds of programming problems.

Arrays and loops have a natural affinity and are often used together.
The following form of loop is particularly well suited to calculating array
subscripts:

for ((expr1; expr2; expr3))

422 Chapter 35

E X O T I C A

In this, the final chapter of our journey, we will look at
some odds and ends. While we have certainly covered
a lot of ground in the previous chapters, there are many
bash features that we have not covered. Most are fairly
obscure and useful mainly to those integrating bash into a Linux distribu-
tion. However, there are a few that, while not in common use, are helpful
for certain programming problems. We will cover them here.

Group Commands and Subshells
bash allows commands to be grouped together. This can be done in one of
two ways: either with a group command or with a subshell. Here are examples
of the syntax of each.

Group command:

{ command1; command2; [command3; ...] }

Subshell:

(command1; command2; [command3;...])

The two forms differ in that a group command surrounds its commands
with braces and a subshell uses parentheses. It is important to note that, due
to the way bash implements group commands, the braces must be separated
from the commands by a space and the last command must be terminated
with either a semicolon or a newline prior to the closing brace.

Performing Redirections
So what are group commands and subshells good for? While they have an
important difference (which we will get to in a moment), they are both used
to manage redirection. Let’s consider a script segment that performs redir-
ections on multiple commands:

ls -l > output.txt
echo "Listing of foo.txt" >> output.txt
cat foo.txt >> output.txt

This is pretty straightforward: three commands with their output
redirected to a file named output.txt. Using a group command, we could
code this as follows:

{ ls -l; echo "Listing of foo.txt"; cat foo.txt; } > output.txt

Using a subshell is similar:

(ls -l; echo "Listing of foo.txt"; cat foo.txt) > output.txt

Using this technique, we have saved ourselves some typing, but where a
group command or subshell really shines is with pipelines. When construct-
ing a pipeline of commands, it is often useful to combine the results of sev-
eral commands into a single stream. Group commands and subshells make
this easy:

{ ls -l; echo "Listing of foo.txt"; cat foo.txt; } | lpr

Here we have combined the output of our three commands and piped
them into the input of lpr to produce a printed report.

Process Substitution
While they look similar and can both be used to combine streams for
redirection, there is an important difference between group commands
and subshells. Whereas a group command executes all of its commands
in the current shell, a subshell (as the name suggests) executes its com-
mands in a child copy of the current shell. This means that the environ-
ment is copied and given to a new instance of the shell. When the subshell
exits, the copy of the environment is lost, so any changes made to the
subshell’s environment (including variable assignment) are lost as well.

424 Chapter 36

Therefore, in most cases, unless a script requires a subshell, group com-
mands are preferable to subshells. Group commands are both faster and
require less memory.

We saw an example of the subshell environment problem in Chapter 28,
when we discovered that a read command in a pipeline does not work as we
might intuitively expect. To recap, when we construct a pipeline like this:

echo "foo" | read
echo $REPLY

the content of the REPLY variable is always empty, because the read command
is executed in a subshell and its copy of REPLY is destroyed when the subshell
terminates.

Because commands in pipelines are always executed in subshells, any
command that assigns variables will encounter this issue. Fortunately, the
shell provides an exotic form of expansion called process substitution that can
be used to work around this problem.

Process substitution is expressed in two ways: for processes that produce
standard output:

<(list)

or for processes that intake standard input:

>(list)

where list is a list of commands.
To solve our problem with read, we can employ process substitution

like this:

read < <(echo "foo")
echo $REPLY

Process substitution allows us to treat the output of a subshell as an
ordinary file for purposes of redirection. In fact, since it is a form of expan-
sion, we can examine its real value:

[me@linuxbox ~]$ echo <(echo "foo")
/dev/fd/63

By using echo to view the result of the expansion, we see that the output
of the subshell is being provided by a file named /dev/fd/63.

Process substitution is often used with loops containing read. Here is an
example of a read loop that processes the contents of a directory listing cre-
ated by a subshell:

#!/bin/bash

pro-sub : demo of process substitution

while read attr links owner group size date time filename; do

Exotica 425

 cat <<- EOF
 Filename: $filename
 Size: $size
 Owner: $owner
 Group: $group
 Modified: $date $time
 Links: $links
 Attributes: $attr

 EOF
done < <(ls -l | tail -n +2)

The loop executes read for each line of a directory listing. The listing
itself is produced on the final line of the script. This line redirects the out-
put of the process substitution into the standard input of the loop. The tail
command is included in the process substitution pipeline to eliminate the
first line of the listing, which is not needed.

When executed, the script produces output like this:

[me@linuxbox ~]$ pro_sub | head -n 20
Filename: addresses.ldif
Size: 14540
Owner: me
Group: me
Modified: 2012-04-02 11:12
Links: 1
Attributes: -rw-r--r--

Filename: bin
Size: 4096
Owner: me
Group: me
Modified: 2012-07-10 07:31
Links: 2
Attributes: drwxr-xr-x

Filename: bookmarks.html
Size: 394213
Owner: me
Group: me

Traps
In Chapter 10, we saw how programs can respond to signals. We can add
this capability to our scripts, too. While the scripts we have written so far
have not needed this capability (because they have very short execution
times and do not create temporary files), larger and more complicated
scripts may benefit from having a signal-handling routine.

When we design a large, complicated script, it is important to consider
what happens if the user logs off or shuts down the computer while the
script is running. When such an event occurs, a signal will be sent to all
affected processes. In turn, the programs representing those processes can
perform actions to ensure a proper and orderly termination of the program.
Let’s say, for example, that we wrote a script that created a temporary file

426 Chapter 36

during its execution. In the course of good design, we would have the script
delete the file when the script finishes its work. It would also be smart to
have the script delete the file if a signal is received indicating that the pro-
gram was going to be terminated prematurely.

bash provides a mechanism for this purpose known as a trap. Traps are
implemented with the appropriately named built-in command trap. trap
uses the following syntax:

trap argument signal [signal...]

where argument is a string that will be read and treated as a command, and
signal is the specification of a signal that will trigger the execution of the
interpreted command.

Here is a simple example:

#!/bin/bash

trap-demo : simple signal handling demo

trap "echo 'I am ignoring you.'" SIGINT SIGTERM

for i in {1..5}; do
echo "Iteration $i of 5"
sleep 5

done

This script defines a trap that will execute an echo command each time
either the SIGINT or SIGTERM signal is received while the script is running.
Execution of the program looks like this when the user attempts to stop the
script by pressing CTRL-C:

[me@linuxbox ~]$ trap-demo
Iteration 1 of 5
Iteration 2 of 5
I am ignoring you.
Iteration 3 of 5
I am ignoring you.
Iteration 4 of 5
Iteration 5 of 5

As we can see, each time the user attempts to interrupt the program,
the message is printed instead.

Constructing a string to form a useful sequence of commands can be
awkward, so it is common practice to specify a shell function as the com-
mand. In this example, a separate shell function is specified for each signal
to be handled:

#!/bin/bash

trap-demo2 : simple signal handling demo

exit_on_signal_SIGINT () {
echo "Script interrupted." 2>&1
exit 0

}

Exotica 427

exit_on_signal_SIGTERM () {
echo "Script terminated." 2>&1
exit 0

}

trap exit_on_signal_SIGINT SIGINT
trap exit_on_signal_SIGTERM SIGTERM

for i in {1..5}; do
echo "Iteration $i of 5"
sleep 5

done

This script features two trap commands, one for each signal. Each trap,
in turn, specifies a shell function to be executed when the particular signal
is received. Note the inclusion of an exit command in each of the signal-
handling functions. Without an exit, the script would continue after com-
pleting the function.

When the user presses CTRL-C during the execution of this script, the
results look like this:

[me@linuxbox ~]$ trap-demo2
Iteration 1 of 5
Iteration 2 of 5
Script interrupted.

T E M P O R A R Y F I L E S
One reason signal handlers are included in scripts is to remove temporary files
that the script may create to hold intermediate results during execution. There
is something of an art to naming temporary files. Traditionally, programs on
Unix-like systems create their temporary files in the /tmp directory, a shared
directory intended for such files. However, since the directory is shared, this
poses certain security concerns, particularly for programs running with super-
user privileges. Aside from the obvious step of setting proper permissions for
files exposed to all users of the system, it is important to give temporary files
non-predictable filenames. This avoids an exploit known as a temp race attack.
One way to create a non-predictable (but still descriptive) name is to do some-
thing like this:

tempfile=/tmp/$(basename $0).$$.$RANDOM

This will create a filename consisting of the program’s name, followed by
its process ID (PID), followed by a random integer. Note, however, that the
$RANDOM shell variable returns a value only in the range of 1 to 32767, which is
not a very large range in computer terms, so a single instance of the variable
is not sufficient to overcome a determined attacker.

A better way is to use the mktemp program (not to be confused with the
mktemp standard library function) to both name and create the temporary file.

428 Chapter 36

The mktemp program accepts a template as an argument that is used to build
the filename. The template should include a series of X characters, which are
replaced by a corresponding number of random letters and numbers. The
longer the series of X characters, the longer the series of random characters.
Here is an example:

tempfile=$(mktemp /tmp/foobar.$$.XXXXXXXXXX)

This creates a temporary file and assigns its name to the variable tempfile.
The X characters in the template are replaced with random letters and numbers
so that the final filename (which, in this example, also includes the expanded value
of the special parameter $$ to obtain the PID) might be something like

/tmp/foobar.6593.UOZuvM6654

While the mktemp man page states that mktemp makes a temporary filename,
mktemp also creates the file as well.

For scripts that are executed by regular users, it may be wise to avoid the
use of the /tmp directory and create a directory for temporary files within the
user’s home directory, with a line of code such as this:

[[-d $HOME/tmp]] || mkdir $HOME/tmp

Asynchronous Execution
It is sometimes desirable to perform more than one task at the same time.
We have seen that all modern operating systems are at least multitasking if
not multiuser as well. Scripts can be constructed to behave in a multitasking
fashion.

Usually this involves launching a script that, in turn, launches one or
more child scripts that perform an additional task while the parent script
continues to run. However, when a series of scripts runs this way, there can
be problems keeping the parent and child coordinated. That is, what if the
parent or child is dependent on the other, and one script must wait for the
other to finish its task before finishing its own?

bash has a built-in command to help manage asynchronous execution such
as this. The wait command causes a parent script to pause until a specified
process (i.e., the child script) finishes.

wait
We will demonstrate the wait command first. To do this, we will need two
scripts. Here is the parent script:

#!/bin/bash

async-parent : Asynchronous execution demo (parent)

echo "Parent: starting..."

Exotica 429

echo "Parent: launching child script..."
async-child &
pid=$!
echo "Parent: child (PID= $pid) launched."

echo "Parent: continuing..."
sleep 2

echo "Parent: pausing to wait for child to finish..."
wait $pid

echo "Parent: child is finished. Continuing..."
echo "Parent: parent is done. Exiting."

And here is the child script:

#!/bin/bash

async-child : Asynchronous execution demo (child)

echo "Child: child is running..."
sleep 5
echo "Child: child is done. Exiting."

In this example, we see that the child script is very simple. The real
action is being performed by the parent. In the parent script, the child script
is launched and put into the background. The process ID of the child script is
recorded by assigning the pid variable with the value of the $! shell param-
eter, which will always contain the process ID of the last job put into the
background.

The parent script continues and then executes a wait command with
the PID of the child process. This causes the parent script to pause until the
child script exits, at which point the parent script concludes.

When executed, the parent and child scripts produce the following
output:

[me@linuxbox ~]$ async-parent
Parent: starting...
Parent: launching child script...
Parent: child (PID= 6741) launched.
Parent: continuing...
Child: child is running...
Parent: pausing to wait for child to finish...
Child: child is done. Exiting.
Parent: child is finished. Continuing...
Parent: parent is done. Exiting.

Named Pipes
In most Unix-like systems, it is possible to create a special type of file called
a named pipe. Named pipes are used to create a connection between two pro-
cesses and can be used just like other types of files. They are not that popu-
lar, but they’re good to know about.

430 Chapter 36

There is a common programming architecture called client/server, which
can make use of a communication method such as named pipes, as well as
other kinds of interprocess communication such as network connections.

The most widely used type of client/server system is, of course, a web
browser communicating with a web server. The web browser acts as the cli-
ent, making requests to the server, and the server responds to the browser
with web pages.

Named pipes behave like files but actually form first-in, first-out (FIFO)
buffers. As with ordinary (unnamed) pipes, data goes in one end and emerges
out the other. With named pipes, it is possible to set up something like this:

process1 > named_pipe

and

process2 < named_pipe

and it will behave as if

process1 | process2

Setting Up a Named Pipe
First, we must create a named pipe. This is done using the mkfifo command:

[me@linuxbox ~]$ mkfifo pipe1
[me@linuxbox ~]$ ls -l pipe1
prw-r--r-- 1 me me 0 2012-07-17 06:41 pipe1

Here we use mkfifo to create a named pipe called pipe1. Using ls, we
examine the file and see that the first letter in the attributes field is p, indi-
cating that it is a named pipe.

Using Named Pipes
To demonstrate how the named pipe works, we will need two terminal win-
dows (or, alternatively, two virtual consoles). In the first terminal, we enter a
simple command and redirect its output to the named pipe:

[me@linuxbox ~]$ ls -l > pipe1

After we press ENTER, the command will appear to hang. This is because
there is nothing receiving data from the other end of the pipe yet. When
this occurs, it is said that the pipe is blocked. This condition will clear once we
attach a process to the other end and it begins to read input from the pipe.
Using the second terminal window, we enter this command:

[me@linuxbox ~]$ cat < pipe1

The directory listing produced from the first terminal window appears
in the second terminal as the output from the cat command. The ls com-
mand in the first terminal successfully completes once it is no longer
blocked.

Exotica 431

Final Note
Well, we have completed our journey. The only thing left to do now is prac-
tice, practice, practice. Even though we covered a lot of ground in our trek,
we barely scratched the surface as far as the command line goes. There are
still thousands of command-line programs left to be discovered and enjoyed.
Start digging around in /usr/bin and you’ll see!

432 Chapter 36

I N D E X

Symbols
--help option, 42
$*, 386
$@, 386
${!array[*]}, 420
${!array[@]}, 420
${!prefix*}, 402
${!prefix@}, 402
${#parameter}, 402
${parameter:=word}, 400
${parameter:-word}, 400
${parameter:+word}, 401
${parameter:?word}, 401
${parameter//pattern/string}, 403
${parameter/#pattern/string}, 403
${parameter/%pattern/string}, 403
${parameter/pattern/string}, 403
${parameter##pattern}, 403
${parameter#pattern}, 403
${parameter%%pattern}, 403
${parameter%pattern}, 403
$!, 430
$#, 382
$((expression)), 404
$0, 385
./configure, 302
.bash_history, 73
.bash_login, 113
.bash_profile, 112
.bashrc, 113, 115, 312, 332, 385
.profile, 113
.ssh/known_hosts, 184
/, 19

/bin, 19
/boot, 19
/boot/grub/grub.conf, 19
/boot/vmlinuz, 19
/dev, 20
/dev/cdrom, 165
/dev/dvd, 165
/dev/floppy, 165
/dev/null, 52
/etc, 20
/etc/bash.bashrc, 113
/etc/crontab, 20
/etc/fstab, 20, 160, 170
/etc/group, 79
/etc/passwd, 20, 79, 241, 245, 352
/etc/profile, 112, 114
/etc/shadow, 79
/etc/sudoers, 87
/lib, 20
/lost+found, 20
/media, 20
/mnt, 20
/opt, 20
/proc, 21
/root, 21, 88
/sbin, 21
/tmp, 21, 429
/usr, 21
/usr/bin, 21
/usr/lib, 21
/usr/local, 21
/usr/local/bin, 21, 307, 312
/usr/local/sbin, 312
/usr/sbin, 21

/usr/share, 21
/usr/share/dict, 219
/usr/share/doc, 21, 45
/var, 22
/var/log, 22
/var/log/messages, 22, 57, 166
(()) compound command, 404, 409
[command, 365

A
a2ps command, 292
absolute pathnames, 9
alias command, 46, 111
aliases, 40, 46, 110
American National Standards

Institute (ANSI), 142
American Standard Code for

Information Interchange.
See ASCII

anchors, 219
anonymous FTP servers, 179
ANSI (American National Standards

Institute), 142
ANSI escape codes, 143
ANSI.SYS, 142
Apache web server, 104
apropos command, 43
apt-cache command, 152
apt-get command, 152
aptitude command, 152
archiving, 205
arithmetic expansion, 62, 65–66, 321,

399, 404
arithmetic expressions, 62, 396, 404,

406, 416
arithmetic operators, 62, 405
arithmetic truth tests, 342, 404
arrays

appending values to the end, 420
assigning values, 416
creating, 416
deleting, 421
determining number of

elements, 419
finding used subscripts, 420
index, 416

multidimensional, 416
reading variables into, 348
sorting, 420
subscript, 416
two-dimensional, 415

ASCII (American Standard Code for
Information Exchange),17,
68, 71, 198, 222, 292

bell character, 140
carriage return, 236
collation order, 222, 224, 339
control codes, 68, 222, 286
groff output driver, 280
linefeed character, 236
null character, 198
printable characters, 222
text, 17

aspell command, 263
assembler, 298
assembly language, 298
assignment operators, 407
asynchronous execution, 429
audio CDs, 163, 172
AWK programming language,

263, 412

B
back references, 232, 260
backslash escape sequences, 68
backslash-escaped special

characters, 140
backups, incremental, 208
basename command, 385
bash (shell) 3, 110

man page, 44
basic regular expressions, 224, 231,

257, 260, 269
bc command, 412
Berkeley Software Distribution

(BSD), 290
bg command, 102
binary, 81–82, 85, 298, 405
bit mask, 84
bit operators, 409
Bourne, Steve, 3
brace expansion, 63, 65, 394

434 Index

branching, 333
break command, 360, 389
broken links, 37
BSD (Berkeley Software

Distribution), 290
BSD-style behavior, 98
buffering, 164
bugs, 369–373
build environment, 302
bzip2 command, 204

C
C programming language, 298,

396, 407, 410
C++ programming language, 298
cal command, 5
cancel command, 296
carriage return, 17, 68, 140,

222–223, 235, 262, 289
case compound command, 376
cat command, 53, 235
cd command, 9–10
cdrecord command, 172
CD-ROMs, 162–163, 172
cdrtools package, 172
character classes, 26–27, 220-224,

227, 255, 262
character ranges, 27, 220–221, 262
chgrp command, 91
child process, 96
chmod command, 81, 92, 311
chown command, 90, 92
chronological sorting, 241
cleartext, 179, 182
client-server architecture, 431
COBOL programming language, 298
collation order, 111, 222, 224,

254, 339
ASCII, 224, 339
dictionary, 222
traditional, 224

comm command, 249
command history, 4, 73
command line

arguments, 382
editing, 4, 70

expansion, 59
history, 4, 74
interfaces, 26, 28

command options, 14
command substitution, 64–65, 394
commands

arguments, 14, 382
determining type, 40
documentation, 41
executable program files, 40, 299
executing as another user, 87
long options, 14
options, 14

comments, 114, 118, 262, 310, 371
Common Unix Printing System

(CUPS), 288
comparison operators, 409
compiling, 298
completions, 72
compound commands

(()), 342, 354, 404
[[]], 341, 354
case, 376
for, 393
if, 334
until, 361
while, 358

compression algorithms, 202
conditional expressions, 366
configuration files, 17, 20, 109
configure command, 302
constants, 319
continue command, 360
control characters, 141, 235
control codes, 68, 222
control operators

&&, 345, 354
||, 345

controlling terminal, 96
COPYING (documentation file), 301
copying and pasting

on the command line, 70
in vim, 129
with X Window System, 5

coreutils package, 42, 44–45, 246
counting words in a file, 55

Index 435

cp command, 28, 33, 116, 185
CPU, 95, 298
cron job, 189
crossword puzzles, 219
csplit command, 266
CUPS (Common Unix Printing

System), 288
current working directory, 8
cursor movement, 70
cut command, 243, 403

D
daemon programs, 96, 104
data compression, 202
data redundancy, 202
data validation, 341
date command, 5
date formats, 241
dd command, 171
Debian, 150
debugging, 330, 370
defensive programming, 367, 370
delimiters, 66, 239, 241
dependencies, 151, 305
design, 368, 370
device drivers, 156, 298
device names, 164
device nodes, 20
df command, 6, 331
DHCP (Dynamic Host Configuration

Protocol), 178
diction program, 300
dictionary collation order, 222
diff command, 250
Digital Rights Management

(DRM), 151
directories

archiving, 205
changing, 9
copying, 28
creating, 28, 33
current working, 8
deleting, 31, 37
hierarchical, 7
home, 20, 79, 332
listing, 13

moving, 30, 35
navigating, 7
OLD_PWD variable, 111
parent, 8
PATH variable, 111
PWD variable, 112
removing, 31, 37
renaming, 30, 35
root, 7
shared, 91
sticky bit, 86
synchronizing, 211
transferring over a network, 211
viewing contents, 8

disk partitions, 161
DISPLAY variable, 111
Dolphin, 28
dos2unix command, 236
double quotes, 65
dpkg command, 152
DRM (Digital Rights

Management), 151
du command, 238, 332
Dynamic Host Configuration

Protocol (DHCP), 178

E
echo command, 60, 111, 316

-e option, 68
-n option, 349

edge and corner cases, 370
EDITOR variable, 111
effective group ID, 86
effective user ID, 86, 96
elif statement, 339
email, 234
embedded systems, 298
empty variables, 400
encrypted tunnels, 185
encryption, 255
endless loop, 361
end-of-file, 54, 322
enscript command, 294
environment, 88, 109, 353

aliases, 110
establishing, 112

436 Index

examining, 110
login shell, 112
shell functions, 110
shell variables, 110
startup files, 112
subshells, 424
variables, 110

eqn command, 279
executable programs, 40, 299, 303

determining location, 41
PATH variable, 111

exit command, 6, 338, 356
exit status, 334, 338
expand command, 246
expansions, 59

arithmetic, 62, 65–66, 321,
399, 404

brace, 63, 65, 394
command substitution,

64–65, 394
delimiters, 66
errors resulting from, 365
history, 74–76
parameter, 64, 65–66, 319,

323, 399
pathname, 60, 65, 394
tilde, 61, 65
word splitting, 65

expressions
arithmetic, 62, 396, 404, 406, 416
conditional, 366

ext3 filesystem, 169
extended regular expressions, 224
Extensible Markup Language

(XML), 234

F
false command, 335
fdformat command, 171
fdisk command, 167
fg command, 102
FIFO (first-in, first-out), 431
file command, 16
file descriptor, 51
File Transfer Protocol (FTP), 179

filenames, 198
case sensitive, 11
embedded spaces in, 11, 232
extensions, 11
hidden, 11

files
access, 78
archiving, 205, 209
attributes, 79
block special, 80
block special device, 190
changing file mode, 81
changing owner and group

owner, 90
character special, 80
character special device, 190
compression, 202
configuration, 17, 109, 234
copying, 28, 33
copying over a network, 179
creating empty, 51
.deb, 150
deleting, 31, 37, 195
determining contents, 16
device nodes, 20
execution access, 79
expressions, 336, 338, 340
finding, 187
hidden, 11
ISO image, 172–173
listing, 8, 13
mode, 79
moving, 30, 34
owner, 81
permissions, 78
read access, 79
regular, 190
removing, 31, 37
renaming, 30, 34–35
.rpm, 150
shared library, 20
startup, 112
sticky bit, 86
symbolic links, 190
synchronizing, 211
temporary, 428

Index 437

files (continued)
text, 17
transferring over a network, 179,

209, 211
truncating, 51
type, 79
viewing contents, 17
write access, 79

filesystem corruption, 164
filters, 55
find command, 189, 208
firewalls, 176
first-in, first-out (FIFO), 431
floppy disks, 159, 165, 171
flow control

branching, 333
case compound command, 376
elif statement, 339
endless loop, 361
for compound command, 393
for loop, 393
function statement, 327
if compound command, 334
looping, 357
menu-driven, 355
multiple-choice decisions, 375
reading files with while and until

loops, 362
terminating a loop, 360
traps, 427
until loop, 361
while loop, 359

fmt command, 271
focus policy, 5
fold command, 271
for compound command, 393
for loop, 393
Foresight, 150
Fortran programming language,

298, 395
free command, 6, 164
Free Software Foundation, xxix
fsck command, 170
FTP (File Transfer Protocol), 179
ftp command, 179, 186, 300, 323
FTP servers, 179, 323

FUNCNAME variable, 385
function statement, 327

G
gcc (compiler), 299
gedit command, 101, 115
genisoimage command, 172
Gentoo, 150
Ghostscript, 288
gid (primary group ID), 78
global variables, 328
globbing, 26
GNOME, 3, 28, 38, 84, 115, 186
gnome-terminal, 3
GNU binutils package, 395
GNU C Compiler, 299
GNU coreutils package, 42,

44–45, 246
GNU Project, 14, 29, 300–301

info command, 44–45
GNU/Linux, 29
graphical user interface (GUI), xxvi,

5, 28, 38, 70, 84, 112
grep command, 56, 216, 352
groff command, 279
group commands, 423
groups, 78

effective group ID, 86
primary group ID, 78

GUI (graphical user interface), xxvi,
5, 28, 38, 70, 84, 112

gunzip command, 202
gzip command, 45, 202

H
hard disks, 159
hard links, 23, 32, 35

creating, 35
listing, 36

head command, 56
header files, 302
“hello world” program, 310
help command, 41
here documents, 321

438 Index

here strings, 353
hexadecimal, 82, 405
hidden files, 11, 61
hierarchical directory structure, 7
high-level programming

languages, 298
history

expansion, 74–76
searching, 74

history command, 74
home directories, 8, 10, 20, 61,

88, 111
/etc/passwd, 79
root account, 21

HOME variable, 111
hostname, 140
HTML (Hypertext Markup

Language), 234, 263, 279,
315, 326

I
id command, 78
IDE, 165
if compound command, 114,

365, 375
IFS (Internal Field Separator)

variable, 351
IMCP ECHO_REQUEST, 176
incremental backups, 208
info files, 45
init program, 96
init scripts, 96
inodes, 36
INSTALL (documentation file), 301
installation wizard, 150
integers

arithmetic, 62, 411
division, 62, 405

interactivity, 347
Internal Field Separator (IFS)

variable, 351
interpreted languages, 299
interpreted programs, 299
interpreter, 299

I/O redirection, 49. See also
redirection

ISO images, 172–173
iso9660 (device type), 162, 173

J
job control, 101
job numbers, 101
jobspec, 102
join command, 247
Joliet extensions, 173
Joy, Bill, 122

K
kate command, 115
KDE, 3, 28, 38, 84, 115, 186
kedit command, 115
kernel, xxv, xxix, 19, 43, 95, 104, 157,

165, 253, 305
device drivers, 156

key fields, 239
kill command, 103
killall command, 106
killing text, 70
Knuth, Donald, 279
Konqueror, 28, 84, 186
konsole (terminal emulator), 3
kwrite command, 101, 115

L
LANG variable, 111, 222, 224
less command, 17, 55, 211, 231
lftp command, 181
libraries, 299
line editors, 122
line-continuation character, 262, 313
linker (program), 299
linking (process), 298
links

broken, 37
creating, 32
hard, 23, 32
symbolic, 22, 33

Index 439

Linux community, 149
Linux distributions, 149

CentOS, 150, 294
Debian, 150, 297
Fedora, xxviii, 79, 150, 294
Foresight, 150
Gentoo, 150
Linspire, 150
Mandriva, 150
OpenSUSE, xxviii, 150
packaging systems, 149
PCLinuxOS, 150
Red Hat Enterprise Linux, 150
Slackware, 150
Ubuntu, xxviii, 149–150, 294
Xandros, 150

Linux Filesystem Hierarchy Standard,
19, 312

Linux kernel, xxv, xxix, 19, 43, 95,
104, 157, 165, 253, 305

device drivers, 156
literal characters, 218
ln command, 32, 35
local variables, 329
locale, 222, 224, 254, 339
locale command, 224
localhost, 182
locate command, 188, 230
logical errors, 366
logical operators, 192–193, 343
logical relationships, 192, 195
logical volume manager (LVM),

159, 162
login prompt, 6, 180
login shell, 79, 88, 112
long options, 14
loopback interface, 178
looping, 357
loops, 367, 406, 408, 422, 425
lossless compression, 202
lossy compression, 202
lp command, 291
lpq command, 295
lpr command, 290
lprm command, 296
lpstat command, 294

ls command, 8, 13
long format, 15
viewing file attributes, 79

Lukyanov, Alexander, 181
LVM (logical volume manager),

159, 162

M
machine language, 298
maintenance, 312, 316, 318, 325
make command, 303
Makefile, 303
man command, 42
man pages, 42, 280
markup languages, 234, 279
memory

assigned to each process, 96
displaying free, 6
RSS (Resident Set Size), 98
segmentation violation, 105
usage, 98, 106
virtual, 98

menu-driven programs, 355
meta key, 72
metacharacters, 218
metadata, 150, 152
metasequences, 218
mkdir command, 28, 33
mkfifo command, 431
mkfs command, 169, 171
mkisofs command, 172
mktemp command, 428
mnemonics, 298
modal editor, 124
monospaced fonts, 288
Moolenaar, Bram, 122
mount command, 161, 173
mount points, 20, 161, 163
mounting, 160
MP3 files, 91
multiple-choice decisions, 375
multitasking, 77, 95, 429
multiuser systems, 77
mv command, 30, 34

440 Index

N
named pipes, 430
nano command, 122
Nautilus, 28, 84, 186
netstat command, 178
networking, 175

anonymous FTP servers, 179
default route, 179
Dynamic Host Configuration

Protocol (DHCP), 178
encrypted tunnels, 185
examining network settings and

statistics, 178
File Transfer Protocol (FTP), 179
firewalls, 176
local area network (LAN), 179
loopback interface, 178
man-in-the-middle attacks, 182
routers, 178
secure communication with

remote hosts, 182
testing whether a host is alive, 176
tracing the route to a host, 177
transferring files, 211
transporting files, 179
virtual private network, 185

newline characters, 66, 140
NEWS (documentation file), 301
nl command, 268
nroff command, 279
null character, 198
number bases, 405

O
octal, 82, 405, 418
Ogg Vorbis files, 91
OLD_PWD variable, 111
OpenOffice.org Writer, 17
OpenSSH, 182
operators

arithmetic, 62, 405
assignment, 407
binary, 366
comparison, 409
ternary, 410

owning files, 78

P
package files, 150
package maintainers, 151
package management, 149

Debian style (.deb), 150
finding packages, 152
high-level tools, 152
installing packages, 153
low-level tools, 152
package repositories, 151
Red Hat style (.rpm), 150
removing packages, 154
updating packages, 154

packaging systems, 149
page-description language, 234,

281, 287
PAGER variable, 111
pagers, 18
parameter expansion, 64, 65–66,

319, 323, 399
parent process, 96
passwd command, 93
passwords, 93
paste command, 246
PATA hard drives, 165
patch command, 253
patches, 250
PATH variable, 111, 114, 311, 327
pathname expansion, 60, 65, 394
pathnames, 230

absolute, 9
completion, 72
relative, 9

PDF (Portable Document Format),
281, 290

Perl programming language, 40, 216,
263, 299, 412

permissions, 310
PHP programming language, 299
ping command, 176
pipelines, 54, 353, 425

in command substitution, 64
portability, 304, 332, 345
Portable Document Format (PDF),

281, 292

Index 441

Portable Operating System Inter-
face (POSIX). See POSIX
(Portable Operation System
Interface)

positional parameters, 381, 400–402
POSIX (Portable Operating Sys-

tem Interface), 222,
224–225, 345

character classes, 26, 221,
223–224, 227, 255, 262

PostScript, 234, 280, 287, 292
pr command, 274, 288
primary group ID (gid), 78
printable characters, 222
printenv command, 64, 110
printers, 164

buffering output, 164
control codes, 286
daisy-wheel, 286
device names, 165
drivers, 288
graphical, 287
impact, 286
laser, 287

printf command, 275, 398
printing

determining system status, 294
history of, 286
Internet Printing Protocol, 295
monospaced fonts, 286
preparing text, 288
pretty, 292
proportional fonts, 287
queues, 294, 295–296
spooling, 294
terminating print jobs, 296
viewing jobs, 295

process ID, 96
process substitution, 425
processes, 95

background, 101
child, 96
controlling, 100
foreground, 101
interrupting, 101
job control, 101
killing, 103

nice, 97
parent, 96
process ID, 96
SIGINT, 427
signals, 103
SIGTERM, 427
sleeping, 97
state, 97
stopping, 102
viewing, 96, 98
zombie, 97

production use, 368
programmable completion, 73
ps command, 96
PS1 variable, 112, 140
PS2 variable, 317
ps2pdf command, 281
PS4 variable, 372
pseudocode, 333, 358
pstree command, 106
PuTTY, 186
pwd command, 8
PWD variable, 112
Python programming language, 299

Q
quoting, 65

double quotes, 65
escape character, 67
missing quote, 364
single quotes, 67

R
RAID (redundant array of

independent disks), 159
raster image processor (RIP), 288
read command, 348–351, 362,

368, 425
Readline, 70
README (documentation file),

45, 301
redirection

blocked pipe, 431
group commands and

subshells, 424

442 Index

here documents, 321
here strings, 353
standard error, 51
standard input, 53, 323
standard output, 50

redirection operators
&>, 52
>, 50
>>, 51
>(list), 425
<, 54
<<, 322–323
<<-, 323
<<<, 353
<(list), 425
|, 54

redundant array of independent disks
(RAID), 159

regular expressions, 56, 215, 259,
341, 352

anchors, 219
back references, 232, 259–260
basic, 224, 231–232, 257, 260, 269
extended, 224

relational databases, 247
relative pathnames, 9
“release early, release often,” 369
removing duplicate lines in a file, 55
REPLY variable, 348, 425
report generator, 315
repositories, 151
return command, 328, 338
RIP (raster image processor), 288
rlogin command, 182
rm command, 31
Rock Ridge extensions, 173
roff command, 279
ROT13 encoding, 255
rpm command, 152
rsync command, 212
rsync remote-update protocol, 212
Ruby programming language, 299

S
scalar variables, 415
Schilling, Jörg, 172

scp command, 185
script command, 76
scripting languages, 40, 299
sdiff command, 266
searching a file for patterns, 56
searching history, 74
Secure Shell (SSH), 182
sed command, 256, 282, 403
set command, 110, 371
setuid, 86, 337
Seward, Julian, 204
sftp command, 186
shared libraries, 20, 151
shebang, 311
shell builtins, 40
shell functions, 40, 110, 327, 385
shell prompts, 4, 9, 75, 88, 101, 112,

139, 183, 317
shell scripts, 309
SHELL variable, 111
shell variables, 110
shift command, 383, 388
SIGINT signal, 427
signals, 426
single quotes, 67
Slackware, 150
sleep command, 360
soft link, 22
sort command, 55, 236
sort keys, 239
source code, 150, 156, 235, 297
source command, 118, 312
source tree, 300
special parameters, 385, 401
split command, 266
SSH (Secure Shell), 182
ssh program, 77, 183, 209
Stallman, Richard, xxv, xxix, 116,

225, 299
standard error, 50

disposing of, 52
redirecting to a file, 51

standard input, 50, 323, 348
redirecting, 53

standard output, 50
appending to a file, 51
disposing of, 52

Index 443

standard output (continued)
redirecting standard error to, 52
redirecting to a file, 50

startup files, 112
stat command, 199
sticky bit, 86
storage devices, 159

audio CDs, 163, 172
CD-ROMs, 162–163, 172
creating filesystems, 167
device names, 164
disk partitions, 161
FAT32, 167
floppy disks, 165, 171
formatting, 167
LVM, 162
mount points, 161, 163
partitions, 167
reading and writing directly, 171
repairing filesystems, 170
unmounting, 163
USB flash drives, 171

stream editor, 256, 282, 403
strings

${parameter:offset}, 402
${parameter:offset:length}, 402
extract a portion of, 402
length of, 402
perform search and replace

upon, 403
remove leading portion of, 403
remove trailing portion of, 403

strings command, 395
stubs, 330, 369
style (program file), 302
su command, 87
subshells, 353, 423
sudo command, 87–89
Sun Microsystems, 122
superuser, 4, 79, 88, 106
symbolic links, 22, 33, 36

creating, 36, 38
listing, 36

syntax errors, 363
syntax highlighting, 310, 314

T
tables, 247
tabular data, 239, 278
tail command, 56
tape archive, 205
tar command, 205
tarballs, 300
targets, 303
Task Manager, 100
Tatham, Simon, 186
tbl command, 279, 282
tee command, 57
teletype, 96
telnet command, 182
TERM variable, 112
terminal emulators, 3
terminal sessions

controlling the terminal, 96
effect of .bashrc, 312
environment, 88
exiting, 6
login shell, 88, 112
with remote systems, 77
TERM variable, 112
using named pipes, 431
virtual, 6

terminals, 71, 77, 142, 279
ternary operator, 410
test cases, 369
test command, 336, 341, 359, 366
test coverage, 370
testing, 369–370
TEX, 279
text, 17

adjusting line length, 271
ASCII, 17
carriage return, 236
comparing, 249
converting MS-DOS to Unix, 254
counting words, 55
cutting, 243
deleting duplicate lines, 242
deleting multiple blank lines, 236
detecting differences, 250
displaying common lines, 249

444 Index

displaying control characters, 235
DOS format, 236
EDITOR variable, 111
expanding tabs, 246
files, 17
filtering, 55
folding, 271
formatting, 268
formatting for typesetters, 279
formatting tables, 282
joining, 247
linefeed character, 236
lowercase to uppercase

conversion, 254
numbering lines, 236, 268
paginating, 274
pasting, 246
preparing for printing, 288
removing duplicate lines, 55
rendering in PostScript, 280
ROT13 encoded, 255
searching for patterns, 56
sorting, 55, 236
spell checking, 263
substituting, 259
substituting tabs for spaces, 246
tab delimited, 245
transliterating characters, 254
Unix format, 236
viewing with less, 17, 55

text editors, 115, 234, 254
emacs, 116
gedit, 115, 310
interactive, 254
kate, 115, 310
kedit, 115
kwrite, 115
line, 122
nano, 115, 122
pico, 115
stream, 256
syntax highlighting, 310, 314
vi, 115
vim, 115, 310, 314
visual, 122
for writing shell scripts, 310

tilde expansion, 61, 65
tload command, 106
top command, 98
top-down design, 326
Torvalds, Linus, xxv
touch command, 198–199, 213,

305, 389
tr command, 254
traceroute command, 177
tracing, 371
transliterating characters, 254
traps, 427
troff command, 279
true command, 335
TTY (field), 96
type command, 40
typesetters, 279, 287
TZ variable, 112

U
Ubuntu, 79, 89, 149, 222, 312
umask command, 84, 92
umount command, 163
unalias command, 47
unary operator expected (error

message), 366
unary operators, 405
unexpand command, 246
unexpected tokens, 365
uniq command, 55, 242
Unix, xxvi
Unix System V, 290
unix2dos command, 236
unset command, 421
until compound command, 361
until loop, 361
unzip command, 210
updatedb command, 189
upstream providers, 151
uptime, 326
uptime command, 331
USB flash drives, 159, 171
Usenet, 255
USER variable, 110, 112

Index 445

users
/etc/passwd, 79
/etc/shadow, 79
accounts, 78
changing identity, 87
changing passwords, 93
effective user ID, 86, 96
home directory, 79
identity, 78
password, 79
setuid, 86
superuser, 79, 81, 86–87, 93

V
validating input, 353
variables, 64, 318, 400

assigning values, 320, 406
constants, 319
declaring, 318, 320
environment, 110
global, 328
local, 329
names, 319, 401
scalar, 415
shell, 110

vfat filesystem, 170
vi command, 121
vim command, 232, 314
virtual consoles, 6
virtual private network (VPN), 185
virtual terminals, 6
visual editors, 122
vmstat command, 106
VPN (virtual private network), 185

W
wait command, 429
wc command, 55
web pages, 234
wget command, 181
What You See Is What You Get

(WYSIWYG), 286
whatis command, 44
which command, 41
while compound command, 358
wildcards, 26, 53, 60, 216, 221
wodim command, 173
word splitting, 65–67
world, 78
WYSIWYG (What You See Is What

You Get), 286

X
X Window System, 5, 77, 185
xargs command, 197
xload command, 106
xlogo command, 100
XML (Extensible Markup

Language), 234

Y
yanking text, 70
yum command, 152

Z
zgrep command, 232
zip command, 209
zless command, 45

446 Index

The Electronic Frontier Foundation (EFF) is the leading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to
ensure that the rights and freedoms we enjoy are enhanced —
rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security
researchers to publish their findings without fear of legal challenges.
eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten
technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and
use over-the-air television broadcasts any way you choose. eff.org/IP/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools
to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech,
privacy or digital consumer rights. eff.org/global

PRIVACY

FREE SPEECH

INNOVATION

FAIR USE

TRANSPARENCY

INTERNATIONAL

EFF is a member-supported organization. Join Now! www.eff.org/support

The Linux Command Line was written using OpenOffice.org Writer on a Dell
Inspiron 530N, factory configured with Ubuntu 8.04. The fonts used in this
book are New Baskerville, Futura, TheSansMono Condensed, and Dogma.
The book was typeset in LibreOffice Writer.

This book was printed and bound at Malloy Incorporated in Ann Arbor,
Michigan. The paper is Glatfelter Spring Forge 60# Smooth, which is certi-
fied by the Sustainable Forestry Initiative (SFI). The book uses a RepKover
binding, which allows it to lie flat when open.

More no-nonsense books from NO STARCH PRESS

THE LINUX PROGRAMMING
INTERFACE
A Linux and UNIX® System
Programming Handbook
by MICHAEL KERRISK
OCTOBER 2010, 1552 PP., $99.95, hardcover
ISBN 978-1-59327-220-3

THE TCP/IP GUIDE
A Comprehensive, Illustrated Internet
Protocols Reference
by CHARLES M. KOZIEROK
OCTOBER 2005, 1616 PP., $99.95, hardcover
ISBN 978-1-59327-047-6

THE TANGLED WEB
A Guide to Securing Modern
Web Applications
by MICHAL ZALEWSKI
NOVEMBER 2011, 320 PP., $49.95
ISBN 978-1-59327-388-0

THE ART OF R PROGRAMMING
A Tour of Statistical Software Design
by NORMAN MATLOFF
OCTOBER 2011, 400 PP., $39.95
ISBN 978-1-59327-384-2

ELOQUENT JAVASCRIPT
A Modern Introduction to
Programming
by MARIJN HAVERBEKE
JANUARY 2011, 224 PP., $29.95
ISBN 978-1-59327-282-1

THE BOOK OF CSS3
A Developer’s Guide to the
Future of Web Design
by PETER GASSTON
MAY 2011, 304 PP., $34.95
ISBN 978-1-59327-286-9

UPDATES
Visit http://nostarch.com/tlcl.htm for updates, errata, and other information.

PHONE:
800.420.7240 OR

415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

You’ve experienced the shiny, point-and-click surface
of your Linux computer—now dive below and explore
its depths with the power of the command line.

The Linux Command Line takes you from your very first
terminal keystrokes to writing full programs in Bash, the
most popular Linux shell. Along the way you’ll learn
the timeless skills handed down by generations of
gray-bearded, mouse-shunning gurus: file navigation,
environment configuration, command chaining, pattern
matching with regular expressions, and more.

In addition to that practical knowledge, author William
Shotts reveals the philosophy behind these tools and
the rich heritage that your desktop Linux machine has
inherited from Unix supercomputers of yore.

As you make your way through the book’s short, easily
digestible chapters, you’ll learn how to:

• Create and delete files, directories, and symlinks

• Administer your system, including networking,
package installation, and process management

B A N I S H Y O U R
M O U S E

B A N I S H Y O U R
M O U S E

• Use standard input and output, redirection, and
pipelines

• Edit files with Vi, the world’s most popular text editor

• Write shell scripts to automate common or boring tasks

• Slice and dice text files with cut, paste, grep, patch,
and sed

Once you overcome your initial “shell shock,” you’ll
find that the command line is a natural and expressive
way to communicate with your computer. Just don’t be
surprised if your mouse starts to gather dust.

A B O U T T H E A U T H O R

William E. Shotts, Jr., has been a software professional
and avid Linux user for more than 15 years. He has an
extensive background in software development, including
technical support, quality assurance, and documentation.
He is also the creator of LinuxCommand.org, a Linux
education and advocacy site featuring news, reviews,
and extensive support for using the Linux command line.

SHELVE IN
:

COM
PUTERS/LINUX

$49.95 ($52.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

A C O M P L E T E I N T R O D U C T I O N

T H E L I N U X
CO M M A N D L I N E

T H E L I N U X
CO M M A N D L I N E

W I L L I A M E . S H O T T S , J R .

T
H

E
 L

IN
U

X
 C

O
M

M
A

N
D

 L
IN

E
T

H
E

 L
IN

U
X

 C
O

M
M

A
N

D
 L

IN
E

S
H

O
T

T
S

	Acknowledgments
	Introduction
	Why Use the Command Line?
	What This Book Is About
	Who Should Read This Book
	What’s in This Book
	How to Read This Book
	Prerequisites

	Part 1: Learning the Shell
	1: What Is the Shell?
	Terminal Emulators
	Your First Keystrokes
	Command History
	Cursor Movement

	Try Some Simple Commands
	Ending a Terminal Session

	2: Navigation
	Understanding the Filesystem Tree
	The Current Working Directory
	Listing the Contents of a Directory
	Changing the Current Working Directory
	Absolute Pathnames
	Relative Pathnames
	Some Helpful Shortcuts

	3: Exploring the System
	More Fun with ls
	Options and Arguments
	A Longer Look at Long Format

	Determining a File’s Type with file
	Viewing File Contents with less
	A Guided Tour
	Symbolic Links

	4: Manipulating Files and Directories
	Wildcards
	mkdir—Create Directories
	cp—Copy Files and Directories
	mv—Move and Rename Files
	rm—Remove Files and Directories
	ln—Create Links
	Hard Links
	Symbolic Links

	Let’s Build a Playground
	Creating Directories
	Copying Files
	Moving and Renaming Files
	Creating Hard Links
	Creating Symbolic Links
	Removing Files and Directories

	Final Note

	5: Working with Commands
	What Exactly Are Commands?
	Identifying Commands
	type—Display a Command’s Type
	which—Display an Executable’s Location

	Getting a Command’s Documentation
	help—Get Help for Shell Builtins
	--help—Display Usage Information
	man—Display a Program’s Manual Page
	apropos—Display Appropriate Commands
	whatis—Display a Very Brief Description of a Command
	info—Display a Program’s Info Entry
	README and Other Program Documentation Files

	Creating Your Own Commands with alias
	Revisiting Old Friends

	6: Redirection
	Standard Input, Output, and Error
	Redirecting Standard Output
	Redirecting Standard Error
	Redirecting Standard Output and Standard Error to One File
	Disposing of Unwanted Output
	Redirecting Standard Input

	Pipelines
	Filters
	uniq—Report or Omit Repeated Lines
	wc—Print Line, Word, and Byte Counts
	grep—Print Lines Matching a Pattern
	head/tail—Print First/Last Part of Files
	tee—Read from Stdin and Output to Stdout and Files

	Final Note

	7: Seeing the World as the Shell Sees It
	Expansion
	Pathname Expansion
	Tilde Expansion
	Arithmetic Expansion
	Brace Expansion
	Parameter Expansion
	Command Substitution

	Quoting
	Double Quotes
	Single Quotes
	Escaping Characters

	Final Note

	8: Advanced Keyboard Tricks
	Command Line Editing
	Cursor Movement
	Modifying Text
	Cutting and Pasting (Killing and Yanking) Text

	Completion
	Using History
	Searching History
	History Expansion

	Final Note

	9: Permissions
	Owners, Group Members, and Everybody Else
	Reading, Writing, and Executing
	chmod—Change File Mode
	Octal Representation
	Symbolic Representation
	Setting File Mode with the GUI
	umask—Set Default Permissions

	Changing Identities
	su—Run a Shell with Substitute User and Group IDs
	sudo—Execute a Command as Another User
	chown—Change File Owner and Group
	chgrp—Change Group Ownership

	Exercising Your Privileges
	Changing Your Password

	10: Processes
	How a Process Works
	Viewing Processes with ps
	Viewing Processes Dynamically with top

	Controlling Processes
	Interrupting a Process
	Putting a Process in the Background
	Returning a Process to the Foreground
	Stopping (Pausing) a Process

	Signals
	Sending Signals to Processes with kill
	Sending Signals to Multiple Processes with killall

	More Process-Related Commands

	Part 2: Configuration and the Environment
	11: The Environment
	What Is Stored in the Environment?
	Examining the Environment
	Some Interesting Variables

	How Is the Environment Established?
	Login and Non-login Shells
	What’s in a Startup File?

	Modifying the Environment
	Which Files Should We Modify?
	Text Editors
	Using a Text Editor
	Activating Our Changes

	Final Note

	12: A Gentle Introduction to vi
	Why We Should Learn vi
	A Little Background
	Starting and Stopping vi
	Editing Modes
	Entering Insert Mode
	Saving Our Work

	Moving the Cursor Around
	Basic Editing
	Appending Text
	Opening a Line
	Deleting Text
	Cutting, Copying, and Pasting Text
	Joining Lines

	Search and Replace
	Searching Within a Line
	Searching the Entire File
	Global Search and Replace

	Editing Multiple Files
	Switching Between Files
	Opening Additional Files for Editing
	Copying Content from One File into Another
	Inserting an Entire File into Another

	Saving Our Work

	13: Customizing the Prompt
	Anatomy of a Prompt
	Trying Some Alternative Prompt Designs
	Adding Color
	Moving the Cursor
	Saving the Prompt
	Final Note

	Part 3: Common Tasks and Essential Tools
	14: Package Management
	Packaging Systems
	How a Package System Works
	Package Files
	Repositories
	Dependencies
	High- and Low-Level Package Tools

	Common Package Management Tasks
	Finding a Package in a Repository
	Installing a Package from a Repository
	Installing a Package from a Package File
	Removing a Package
	Updating Packages from a Repository
	Upgrading a Package from a Package File
	Listing Installed Packages
	Determining Whether a Package Is Installed
	Displaying Information About an Installed Package
	Finding Which Package Installed a File

	Final Note

	15: Storage Media
	Mounting and Unmounting Storage Devices
	Viewing a List of Mounted Filesystems
	Determining Device Names

	Creating New Filesystems
	Manipulating Partitions with fdisk
	Creating a New Filesystem with mkfs

	Testing and Repairing Filesystems
	Formatting Floppy Disks
	Moving Data Directly to and from Devices
	Creating CD-ROM Images
	Creating an Image Copy of a CD-ROM
	Creating an Image from a Collection of Files

	Writing CD-ROM Images
	Mounting an ISO Image Directly
	Blanking a Rewritable CD-ROM
	Writing an Image

	Extra Credit

	16: Networking
	Examining and Monitoring a Network
	ping—Send a Special Packet to a Network Host
	traceroute—Trace the Path of a Network Packet
	netstat—Examine Network Settings and Statistics

	Transporting Files over a Network
	ftp—Transfer Files with the File Transfer Protocol
	lftp—A Better ftp
	wget—Non-interactive Network Downloader

	Secure Communication with Remote Hosts
	ssh—Securely Log in to Remote Computers
	scp and sftp—Securely Transfer Files

	17: Searching for Files
	locate—Find Files the Easy Way
	find—Find Files the Hard Way
	Tests
	Actions
	A Return to the Playground
	Options

	18: Archiving and Backup
	Compressing Files
	gzip—Compress or Expand Files
	bzip2—Higher Compression at the Cost of Speed

	Archiving Files
	tar—Tape Archiving Utility
	zip—Package and Compress Files

	Synchronizing Files and Directories
	rsync—Remote File and Directory Synchronization
	Using rsync over a Network

	19: Regular Expressions
	What Are Regular Expressions?
	grep—Search Through Text
	Metacharacters and Literals
	The Any Character
	Anchors
	Bracket Expressions and Character Classes
	Negation
	Traditional Character Ranges
	POSIX Character Classes

	POSIX Basic vs. Extended Regular Expressions
	Alternation
	Quantifiers
	?—Match an Element Zero Times or One Time
	*—Match an Element Zero or More Times
	+—Match an Element One or More Times
	{ }—Match an Element a Specific Number of Times

	Putting Regular Expressions to Work
	Validating a Phone List with grep
	Finding Ugly Filenames with find
	Searching for Files with locate
	Searching for Text with less and vim

	Final Note

	20: Text Processing
	Applications of Text
	Documents
	Web Pages
	Email
	Printer Output
	Program Source Code

	Revisiting Some Old Friends
	cat—Concatenate Files and Print on Standard Output
	sort—Sort Lines of Text Files
	uniq—Report or Omit Repeated Lines

	Slicing and Dicing
	cut—Remove Sections from Each Line of Files
	paste—Merge Lines of Files
	join—Join Lines of Two Files on a Common Field

	Comparing Text
	comm—Compare Two Sorted Files Line by Line
	diff—Compare Files Line by Line
	patch—Apply a diff to an Original

	Editing on the Fly
	tr—Transliterate or Delete Characters
	sed—Stream Editor for Filtering and Transforming Text
	aspell—Interactive Spell Checker

	Final Note
	Extra Credit

	21: Formatting Output
	Simple Formatting Tools
	nl—Number Lines
	fold—Wrap Each Line to a Specified Length
	fmt—A Simple Text Formatter
	pr—Format Text for Printing
	printf—Format and Print Data

	Document Formatting Systems
	The roff Family and TEX
	groff—A Document Formatting System

	Final Note

	22: Printing
	A Brief History of Printing
	Printing in the Dim Times
	Character-Based Printers
	Graphical Printers

	Printing with Linux
	Preparing Files for Printing
	pr—Convert Text Files for Printing

	Sending a Print Job to a Printer
	lpr—Print Files (Berkeley Style)
	lp—Print Files (System V Style)
	Another Option: a2ps

	Monitoring and Controlling Print Jobs
	lpstat—Display Print System Status
	lpq—Display Printer Queue Status
	lprm and cancel—Cancel Print Jobs

	23: Compiling Programs
	What Is Compiling?
	Are All Programs Compiled?

	Compiling a C Program
	Obtaining the Source Code
	Examining the Source Tree
	Building the Program
	Installing the Program

	Final Note

	Part 4: Writing Shell Scripts
	24: Writing Your First Script
	What Are Shell Scripts?
	How to Write a Shell Script
	Script File Format
	Executable Permissions
	Script File Location
	Good Locations for Scripts

	More Formatting Tricks
	Long Option Names
	Indentation and Line Continuation

	Final Note

	25: Starting a Project
	First Stage: Minimal Document
	Second Stage: Adding a Little Data
	Variables and Constants
	Creating Variables and Constants
	Assigning Values to Variables and Constants

	Here Documents
	Final Note

	26: Top-Down Design
	Shell Functions
	Local Variables
	Keep Scripts Running
	Final Note

	27: Flow Control: Branching with if
	Using if
	Exit Status
	Using test
	File Expressions
	String Expressions
	Integer Expressions

	A More Modern Version of test
	(())—Designed for Integers
	Combining Expressions
	Control Operators: Another Way to Branch
	Final Note

	28: Reading Keyboard Input
	read—Read Values from Standard Input
	Options
	Separating Input Fields with IFS

	Validating Input
	Menus
	Final Note
	Extra Credit

	29: Flow Control: Looping with while and until
	Looping
	while
	Breaking out of a Loop
	until
	Reading Files with Loops
	Final Note

	30: Troubleshooting
	Syntactic Errors
	Missing Quotes
	Missing or Unexpected Tokens
	Unanticipated Expansions

	Logical Errors
	Defensive Programming
	Verifying Input

	Testing
	Stubs
	Test Cases

	Debugging
	Finding the Problem Area
	Tracing
	Examining Values During Execution

	Final Note

	31: Flow Control: Branching with case
	case
	Patterns
	Combining Multiple Patterns

	Final Note

	32: Positional Parameters
	Accessing the Command Line
	Determining the Number of Arguments
	shift—Getting Access to Many Arguments
	Simple Applications
	Using Positional Parameters with Shell Functions

	Handling Positional Parameters En Masse
	A More Complete Application
	Final Note

	33: Flow Control: Looping with for
	for: Traditional Shell Form
	for: C Language Form
	Final Note

	34: Strings and Numbers
	Parameter Expansion
	Basic Parameters
	Expansions to Manage Empty Variables
	Expansions That Return Variable Names
	String Operations

	Arithmetic Evaluation and Expansion
	Number Bases
	Unary Operators
	Simple Arithmetic
	Assignment
	Bit Operations
	Logic

	bc—An Arbitrary-Precision Calculator Language
	Using bc
	An Example Script

	Final Note
	Extra Credit

	35: Arrays
	What Are Arrays?
	Creating an Array
	Assigning Values to an Array
	Accessing Array Elements
	Array Operations
	Outputting the Entire Contents of an Array
	Determining the Number of Array Elements
	Finding the Subscripts Used by an Array
	Adding Elements to the End of an Array
	Sorting an Array
	Deleting an Array

	Final Note

	36: Exotica
	Group Commands and Subshells
	Performing Redirections
	Process Substitution

	Traps
	Asynchronous Execution
	wait

	Named Pipes
	Setting Up a Named Pipe
	Using Named Pipes

	Final Note

	Index

