Professional
Linux :
Programming

Professional
Linux® Programming

Jon Masters
Richard Blum

11807 [
| OWILEY |;
12007

2 >

Wiley Publishing, Inc.

uuuuuuuuuuu

File Attachment
C1.jpg

Professional
Linux® Programming

Professional
Linux® Programming

Jon Masters
Richard Blum

11807 [
| OWILEY |;
12007

2 >

Wiley Publishing, Inc.

uuuuuuuuuuu

Professional Linux” Programming

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data:
Masters, Jon, 1981-
Professional Linux programming / Jon Masters, Richard Blum.
p.cm.
Includes index.
ISBN: 978-0-471-77613-0 (paper/website)
1. Linux. 2. Operating systems (Computers) L. Blum, Richard, 1962- II. Title.
QA76.76.063M37153 2007
005.4'32—dc22
2006102202

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http: //www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTAND-
ING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMA-
TION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within
the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Linux is a registered trademark of Linus Torvalds. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

For Karin, whom I love very much.—Jon Masters

To my wife Barbara.—Richard Blum

About the Authors

Jon Masters is a 25-year-old British-born Linux kernel engineer, embedded systems specialist, and
author who lives and works in the United States for Red Hat. Jon made UK history by becoming one of
the youngest University students the country had ever seen, at the tender age of just 13. Having been
through college twice by the time his peers were completing their first time around, and having been
published over 100 times in a wide range of technical magazines, journals and books, Jon went on to
work for a variety of multinational technology companies. He has worked extensively in the field of
Embedded Systems, Enterprise Linux and Scientific instrumentation and has helped design anything
and everything from Set Top Boxes to future NMR (MRI) imaging platforms.

When not working on Enterprise Linux software for Red Hat, Jon likes to drink tea on Boston Common
and read the collective works of Thomas Paine and other great American Revolutionaries of a bygone
age. He dreams of a time when the world was driven not by electrons, but by wooden sailing ships and
a universal struggle for the birth of modern nations. He plays the violin, and occasionally sings in choral
ensembles, for which he has won several awards. For relaxation, Jon enjoys engaging in a little rock
climbing. He lives in Cambridge, Massachusetts, just across the river Charles from historic Boston, and
enjoys every minute of it.

Jon has extensive experience in speaking about and training people to use a wide variety of Linux
technologies and enjoys actively participating in many Linux User Groups the world over.

Richard Blum has worked for over 18 years for a large U.S. government organization as a network and
systems administrator. During this time he has had plenty of opportunities to work with Microsoft,
Novell, and of course, UNIX and Linux servers. He has written applications and utilities using C, C++,
Java, C#, Visual Basic, and shell script.

Rich has a Bachelors of Science degree in Electrical Engineering, and a Masters of Science degree in
Management, specializing in Management Information Systems, from Purdue University. He is the author
of several books, including “sendmail for Linux” (2000, Sams publishing), “Running gmail” (2000, Sams
publishing), “Postfix” (2001, Sams Publishing), “Open Source E-mail Security” (2001, Sams Publishing),

“C# Network Programming” (2002, Sybex), “Network Performance Open Source Toolkit” (2003, John Wiley &
Sons), and “Professional Assembly Language Programming” (2005, Wrox).

When he is not being a computer nerd, Rich plays electric bass for the church worship and praise band,
and enjoys spending time with his wife Barbara, and daughters Katie Jane and Jessica.

Contributing Writers
Christopher Aillon

Katherine and David Goodwin
Matthew Walton

Acquisitions Editor
Kit Kemper

Development Editor
Howard A. Jones

Production Editor
Eric Charbonneau

Copy Editor
Foxxe Editorial

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Joseph B. Wikert

Credits

Graphics and Production Specialists
Carrie A. Foster

Jennifer Mayberry

Barbara Moore

Alicia B. South

Quality Control Technicians
Cynthia Fields
John Greenough

Project Coordinator
Adrienne Martinez

Proofreading and Indexing
Techbooks

Anniversary Logo Design
Richard Pacifico

Acknowledgments

I sit here writing these acknowledgements on my 25th birthday, having spent many long evenings over
the last year pouring over schedules, planning and even occasionally actually getting some writing
done. When I first undertook to write this book, I could never have fully appreciated the amount of
work it takes to put such a thing together nor the difficulties that would need to be overcome along the
way. I started writing this book living just outside London and finished it less than a year later from my
new home in Cambridge, Massachusetts, having decided to leave the country in the interim. Over the
last year, a lot has changed for me both personally and professionally, but I am supported by a great net-
work of friends and family who have helped make it possible.

First and foremost I would like to thank the team I have worked with at Wiley — Debra, Adaobi, Kit,
Howard and Carol as well as numerous others whose job it is to turn this manuscript into a finished
book. Kit Kemper deserves special thanks for enduring my writing schedule and somehow making that
just about work out in the end, as does Debra Williams-Cauley for believing that this project was a good
idea in the first place. Howard Jones helped to keep me honest by doing an excellent job as my editor.
This book would not exist without the inspiration I received from my good friends (and former bosses)
Malcolm Buckingham and Jamie McKendry at Resonance Instruments (later Oxford Instruments), who
used to moan about the lack of Linux-specific programming books. This book would also not exist with-
out the kind contributions from several good friends of mine —Kat and David Goodwin, Matthew Walton,
and Chris Aillon, thank you. Thanks also to Richard Blum for stepping up and joining the team once it
became apparent to me that I couldn’t hope to finish this in time. You've all done a great job and I really
do thank you very much.

I'have been helped along the way by my fantastic family —my parents Paula and Charles, my sisters
Hannah Wrigley and Holly, my brother-in-law Joe, and occasional inspiration too from my grandmothers.
I'have also benefited from some of the best friends anyone could ask for — there are too many to list every-
one individually, but I would like to specifically mention Hussein Jodiyawalla, Johannes Kling, Ben Swan,
Paul Sladen, Markus Kobler, Tom Hawley, Sidarshan Guru Ratnavellu, Chris and Mad Ball (and Zoe, the
cat), Emma Maule, John and Jan Buckman, Toby Jaffey and Sara, Sven Thorsten-Dietrich, Bill Weinberg,
Daniel James, Joe Casad and Andrew Hutton and Emilie. Special thanks also to all of my friends at Red
Hat, my boss and all the other hard-working people who help to make our company truly the greatest
place to work anywhere in the world. Red Hat really understands what it means to work on Linux, and

I am extremely grateful for having such a cool work environment, which really does encourage involve-
ment in projects such as this one, in the true spirit of the Linux community — thanks, guys, you rock.

Finally, I would like to thank Karin Worley for her friendship, which provided me with ample opportu-
nity for procrastination during the final stages of this project. Karin, I'm not sure I would have completed
it without the new-found sense of happiness that recently entered into my life.

Jon Masters
Cambridge, Massachusetts

Acknowledgments

Many thanks go to the great team of people at Wiley for their outstanding work on this project. Thanks
to Kit Kemper, the Acquisitions Editor, for offering me the opportunity to work on this book. Also
thanks to Howard Jones, the Developmental Editor, for keeping things on track and helping make this
book presentable. I would also like to thank Carole McClendon at Waterside Productions, Inc. for
arranging this opportunity for me, and for helping out in my writing career.

Finally, I would like to thank my parents, Mike and Joyce Blum, for their dedication and support while
raising me, and to my wife Barbara and daughters Katie Jane and Jessica for their love, patience, and

understanding, especially while I'm writing.

Richard Blum

Contents

Acknowledgments ix
Introduction xix
Chapter 1: Working with Linux 1
A Brief History of Linux 2
The GNU Project 2
The Linux Kernel 3
Linux Distributions 4
Free Software vs. Open Source 4
Beginning Development 5
Choosing a Linux Distribution 6
Installing a Linux Distribution 8
Linux Community 15
Linux User Groups 15
Mailing lists 16
IRC 16
Private Communities 16
Key Differences 16
Linux Is Modular 17
Linux Is Portable 17
Linux Is Generic 17
Summary 18
Chapter 2: Toolchains 19
The Linux Development Process 19
Working with Sources 20
Configuring to the Local Environment 21
Building the Sources 22
Components of the GNU Toolchain 23
The GNU Compiler Collection 23
The GNU binutils 34
GNU Make 39
The GNU Debugger 40

Contents

The Linux Kernel and the GNU Toolchain 44
Inline Assembly 44
Attribute Tags 45
Custom Linker Scripts 45

Cross-Compilation 46

Building the GNU Toolchain 47

Summary 48

Chapter 3: Portability 49

The Need for Portability 50

The Portability of Linux 51
Layers of Abstraction 51
Linux Distributions 52
Building Packages 57
Portable Source Code 70
Internationalization 81

Hardware Portability 88
64-Bit Cleanliness 89
Endian Neutrality 89
Summary 92

Chapter 4: Software Configuration Management 93

The Need for SCM 94

Centralized vs. Decentralized Development 95

Centralized Tools 95
The Concurrent Version System 96
Subversion 104

Decentralized tools 108
Bazaar-NG 109
Linux kernel SCM (git) 112

Integrated SCM Tools 115
Eclipse 115

Summary 117

Chapter 5: Network Programming 119

Linux Socket Programming 119
Sockets 120
Network Addresses 122
Using Connection-Oriented Sockets 123
Using Connectionless Sockets 130

Xii

Contents

Moving Data 133
Datagrams vs. Streams 133
Marking Message Boundaries 137

Using Network Programming Libraries 140
The libCurl Library 140
Using the libCurl Library 141

Summary 147

Chapter 6: Databases 149

Persistent Data Storage 149
Using a Standard File 150
Using a Database 150

The Berkeley DB Package 152
Downloading and Installing 153
Building Programs 154
Basic Data Handling 154

The PostgreSQL Database Server 165
Downloading and Installing 165
Building Programs 167
Creating an Application Database 167
Connecting to the Server 169
Executing SQL Commands 173
Using Parameters 181

Summary 184

Chapter 7: Kernel Development 185
Starting Out 185

Kernel Concepts 199
A Word of Warning 200
The Task Abstraction 200
Virtual Memory 205
Don’t Panic! 208

Kernel Hacking 208
Loadable Modules 209

Kernel Development Process 211
Git: the “Stupid Content Tracker” 212
The Linux Kernel Mailing List 213
The “mm” Development Tree 215
The Stable Kernel Team 215
LWN: Linux Weekly News 216

Summary 216

Xiii

Contents

Chapter 8: Kernel Interfaces

217

What Is an Interface?
Undefined Interfaces
External Kernel Interfaces
System Calls
The Device File Abstraction
Kernel Events
Ignoring Kernel Protections
Internal Kernel Interfaces
The Kernel API
The kernel ABI
Summary

Chapter 9: Linux Kernel Modules

217
218
219
219
224
238
239
243
243
244
245

247

How Modules Work
Extending the Kernel Namespace
No Guaranteed Module Compatibility
Finding Good Documentation
Linux Kernel Man Pages
Writing Linux Kernel Modules
Before You Begin
Essential Module Requirements
Logging
Exported Symbols
Allocating Memory
Locking considerations
Deferring work
Further Reading
Distributing Linux Kernel Modules
Going Upstream
Shipping Sources
Shipping Prebuilt Modules
Summary

Chapter 10: Debugging

247
250
251
251
251
252
253
253
256
257
259
267
275
283
284
284
284
284
285

287

Debugging Overview

A Word about Memory Management
Essential Debugging Tools

The GNU Debugger

Valgrind

Xiv

287
288
289
289
298

Contents

Graphical Debugging Tools 299
DDD 299
Eclipse 302

Kernel Debugging 305
Don’t Panic! 306
Making Sense of an oops 307
Using UML for Debugging 309
An Anecdotal Word 312
A Note about In-Kernel Debuggers 313

Summary 313

Chapter 11: The GNOME Developer Platform 315

GNOME Libraries 316
Glib 316
GObject 316
Cairo 316
GDK 317
Pango 317
GTK+ 317
libglade 318
GConf 318
GStreamer 318

Building a Music Player 319
Requirements 319
Getting Started: The Main Window 319
Building the GUI 321
Summary 340

Chapter 12: The FreeDesktop Project 341

D-BUS: The Desktop Bus 341
What Is D-Bus? 342
Under D-Hood of D-Bus 342
D-Bus Methods 346

Hardware Abstraction Layer 350
Making Hardware Just Work 350
Hal Device Objects 353

The Network Manager 358

Other Freedesktop Projects 360

Summary 360

XV

Contents

Chapter 13: Graphics and Audio 361
Linux and Graphics 361
X Windows 362
Open Graphics Library 364
OpenGL Utilities Toolkit 365
Simple Directmedia Layer 365
Writing OpenGL Applications 365
Downloading and Installing 366
Programming Environment 367
Using the GLUT Library 368
Writing SDL Applications 382
Downloading and Installing 382
Programming Environment 383
Using the SDL Library 383
Summary 394
Chapter 14: LAMP 395
What Is LAMP? 395
Apache 396
MySQL 396
PHP 397
The Rebel Platform 397
Evaluating the LAMP Platform 397
Apache 399
Virtual Hosting 400
Installation and Configuration of PHP 5 401
Apache Basic Authentication 402
Apache and SSL 402
Integrating SSL with HTTP Authentication 403
MySQL 404
Installing MySQL 404
Configuring and Starting the Database 404
Changing the Default Password 405
The MySQL Client Interface 405
Relational Databases 405
SQL 406
The Relational Model 409
PHP 411
The PHP Language 411
Error Handling 420
Error-Handling Exceptions 421

Xvi

Contents

Optimization Techniques
Installing Additional PHP Software
Logging
Parameter Handling
Session Handling
Unit Testing
Databases and PHP
PHP Frameworks
The DVD Library
Version 1: The Developer’s Nightmare
Version 2: Basic Application with DB-Specific Data Layer
Version 3: Rewriting the Data Layer, Adding Logging and Exceptions
Version 4: Applying a Templating Framework
Summary

Index
GNU

422
427
427
428
429
430
432
432
433
433
434
437
441
442

443
473

Xvii

Introduction

Linux has come a long way in the last few years. From relatively humble beginnings, Linux now powers
a growing number of Fortune 500 companies. Everything from your cell phone right on up to the largest
supercomputing clusters are now built using the Linux kernel and the software distributions built around
it. But what really is Linux? What makes it different from any other UNIX-like Operating System on the
market today? Most importantly, how can you harness the full power of Linux and the wider Free, Libre,
and Open Source Software (FLOSS) revolution in your own software projects?

This book aims to address these and other questions. The raison d’etre for this book really stems from a
need to impart to you, the reader, those things that make Linux unique, while going beyond the basic
Beginner’s guides that are already available on the market. As a professional Linux programmer, the
author has, over the years, found himself working with highly skilled software engineers who have little
or no Linux experience. Some were searching for a book like this one — only to be later disappointed.
Born out of their frustration, this book should help you to understand the powerful sense of community,
the established software development model and the way things are done in the Linux world.

There are many other books that claim to be dedicated to Linux programming. Many of those books are
truly excellent, but they often concentrate too much on the ways in which Linux simply follows what
came before. You won’t find that in this book; it’s not merely about those things Linux has in common
with the UNIX systems of old. It’s about the modern Linux Operating System. This is not just another
UNIX programming book; it’s an attempt to explain to why Linux has been so successful and to show
you some of those parts of the system that other books on the subject brush over or completely ignore.

In this book, you will learn about what drives the Linux development process. You will discover the wide
variety of tools commonly used by Linux developers — compilers, debuggers, Software Configuration
Management — and how those tools are used to build application software, tools, utilities and even the
Linux kernel itself. You will learn about the unique components of a Linux system that really set it apart
from other UNIX-like systems, and you will delve into the inner workings of the system in order to better
understand your role as one of a budding new generation of Linux developers.

You will learn about novel development methods, including the use of virtualization technology, cross-
compilation as a means to build software for different compatible platforms. You will also learn about
the importance of internationalization to a community that has no borders — Linux is truly international
and so are its users. Finally, you will learn about wider uses of Linux with the modern Internet by writ-
ing software for the oft-touted LAMP (Linux, Apache, MySQL, Perl/Python) stack. Linux is about so
much more than just the Linux kernel itself — and it’s important to realize that as a Linux developer.

Most importantly, this book is about learning. It’s about presenting you, the reader, with informed discus-
sion of the key topics that drive Linux development so that you will be better equipped to discover the
world of Free and Open Source software projects out there. After reading this book, you should better

Introduction

understand what it is that you need to know; you won't get all the answers in this book, but you’'ll be able
to go out and learn for yourself. Whether you're writing Free Software or working on a large commercial
software project using Linux, you will gain from reading this book.

Who This Book Is For

This book is written for two different kinds of reader. First and foremost, this book is targeted at existing
programmers looking to make the switch to Linux. Such readers will already have some familiarity with
the C programming language and understand fundamental concepts — compilers, linkers, debuggers,
and so on. They will have likely read an introductory text on the subject — for example, Wrox’s Beginning
Linux Programming (Wiley 2004), but will have little practical experience.

For those who are new to professionally developing software for Linux, the content of the book is ordered
for your benefit. You should be able to begin reading at the beginning and read right through in the order
presented. Optionally, you might decide to skip over the kernel material (Chapters 7-9) and concentrate
more on the higher level applications and tools used in everyday projects outside of the Linux kernel. You
will find the background on Toolchains, Portability, and SCMs of particular use.

This book also includes material targeted at Linux enthusiasts, managers and other interested parties,
who already use Linux in their day-to-day lives but want to understand the internals of a typical Linux
system to a great extent — without necessarily developing software in the process. How does a moodern
Linux system handle hardware detection? Why does the Linux kernel not provide a Device Driver
Model? How does Linux support internationalization? There are many questions covered herein.

For those who are not new to Linux, you won't need to read all of this book, though you should find some-
thing new and interesting in each chapter nonetheless. Often, footnotes and commentary include examples
and advice that you may not have encountered previously. These include anecdotes and lessons learned
from the experience of others. Nonetheless, you will likely choose to focus more substantively on the latter
chapters in this book — covering the Linux kernel, desktop and LAMP.

The bottom line is that whether you are a Microsoft Windows developer with some basic Linux and
UNIX knowledge who’s looking to broaden your horizons or a die-hard UNIX programmer from the
days of yore who wants to understand what makes Linux tick, you should this book helpful to you.

What This Book Covers

XX

This book covers a wide variety of technologies used both in Linux software development and in that
same software itself. These include a background on the history of modern UNIX, UNIX-like, and Linux
systems, software portability from one platform to another, and the tools that facilitate achieving this on
modern Linux software distributions. You will learn about interacting with Linux systems through net-
work interfaces, graphical user environments, complex modern web-based LAMP stacks, and even
address extending the Linux kernel itself. You will learn about modern Linux development.

This book tracks the state of the art at the time of writing, but versions of software do change over time.
For this reason, most topics don’t require a specific version of a utility, source code or distribution pack-
age. Where a specific release is covered, it will be noted; otherwise, you should assume that examples
will work with any recent Linux distribution that you may have at your disposal.

Introduction

How This Book Is Structured

This book is loosely grouped into four parts. In the first few chapters, you will learn about fundamental
tools and technologies that are designed to make your life as a professional Linux programmer easier.
You will learn about the GNU Toolchain, the importance of software portability, and the need for
Internationalization, as well as many other topics designed to get you up to speed and working on soft-
ware projects of your own. You will want to read this material first and refer to it often.

The second part of this book covers the lower-level parts of a typical Linux system — traditional systems
programming topics — including networking, database concepts, and the Linux kernel. You can use this
material in order to gain a better understanding of those topics that will be of interest to you, but you will
not learn all there is to know in the space of these pages. That’s especially true of the kernel material — this
book isn’t a Linux kernel programming book, but it should whet your appetite.

In the third part of this book, you'll look at higher level concepts, including the GNOME Desktop envi-
ronment and its many software libraries. You will learn about the Free Desktop Project and have an
opportunity to write a simple CD player application by harnessing the power of the Gstreamer library,
as used by modern GNOME Desktop multimedia applications. You will discover how much can be
achieved through software re-use and gain some insight into writing your own GNOME software.

Finally, the last chapter of this book is devoted to LAMP. Based upon a commodity software stack, and
built using Linux, Apache, MySQL, and Perl or Python, LAMP allows you to write very powerful web
applications using only Free and Open Source software. The chapter will introduce you to each of these
components and provide a few examples of their use.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q We highlight new terms and important words when we introduce them.

QO We show keyboard strokes like this: Ctrl+A.

d We show file names, URLSs, and code within the text like so: persistence.properties.
Q

We present code in two different ways:
In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

XXi

Introduction

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http: //www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-471-77613-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http: //www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Gotop2p.wrox.comand click the Register link.

2. Read the terms of use and click Agree.

xXii

Introduction

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

xxiii

Working with Linux

One of the biggest stumbling blocks when writing software for Linux is understanding what
Linux is and is not. Linux means different things to different people. Technically, Linux itself is an
operating system kernel written by the Finnish born Linus Torvalds, though most people today
casually refer to an entire Linux-based system by the same name. In just a few years, Linux has
risen from obscurity and become widely accepted by some of the largest and most powerful com-
puting users on the planet.

Linux is now a big-money, enterprise-quality operating system. It’s used in some of the largest
supercomputers and also many of the smallest gadgets, which you would never expect to have
Linux underneath. Yet for all its prevalence — for such a big name in modern computing — Linux
isn’t owned by any one corporation that pulls the strings. Linux is so successful because of the
many thousands of developers around the world who constantly strive to make it better. They, like
you, are interested in writing high-quality software that draws upon the experience of others
within the Linux community.

Whatever Linux means to you, you're reading this book because you're interested in learning
more about becoming a professional Linux programmer. As you embark on this journey, you will
find it helpful to tool yourself up with an understanding of the different flavors of Linux, how to
get going in developing for them, and how working with Linux differs from working with many
other popular platforms on the market today. If you're already a Linux expert, you need only skim
this chapter. If you're working toward becoming the next expert, this chapter should provide some
useful pointers.

In this chapter, you will learn what Linux is and how the individual components of a Linux distri-
bution fit together, from a professional programmer’s point of view. You will learn about the
development process behind much of the Free, Libre, and Open Source Software (FLOSS) that is
used on Linux systems and discover the wealth of online communities that power the open source
revolution. Finally, you'll also discover a few of the ways in which Linux differs from other operat-
ing systems you’'ve encountered in the past— more on that throughout the rest of the book, too.

Chapter 1: Working with Linux

A Brief History of Linux

Linux has a very diverse and interesting history, which dates back much further than you may at first
think. In fact, Linux has heritage spanning more than 30 years, since the earliest UNIX systems of the
1970s. This fact isn’t just relevant to die-hard enthusiasts. It’s important for you to have at least a general
understanding of the unique history that has lead to the modern Linux systems that you will encounter
today. Doing so will better equip you to understand the little idiosyncrasies that differentiate Linux from
alternatives on the market—and help to make Linux development more interesting, too.

The earliest work on Linux itself began back in the summer of 1991, but long before there was Linux,
there was the GNU project. That project had already spent well over a decade working on producing
much of the necessary Free Software components in order to be able to create a fully Free operating sys-
tem, such as Linux. Without the GNU project, Linux could never have happened —and without Linux,
you might not be reading about the GNU project right now. Both projects have benefited enormously
from one another, as you'll discover in the topics throughout this book.

The GNU Project

Back in 1983, Richard Stallman (aka RMS) was working in the artificial intelligence (AI) lab at MIT. Up
until that time, many software applications had been supplied in source code form, or otherwise had
source code available that users could modify for their own systems, if it was necessary. But at this time,
it was a growing trend for software vendors to ship only binary versions of their software applications.
Software source code had quickly become the “trade secret” of corporations, who would later become
highly protective of their — what open source developers now often term — “secret sauce.”

The initial goal of the GNU project was to produce a Free UNIX-like operating system, complete with all
of the necessary tools and utilities necessary in order to build such a system from source. It took well
over a decade to produce most of the tools and utilities needed, including the GCC compiler, the GNU
emacs text editor, and dozens of other utilities and documentation. Many of these tools have become
renowned for their high quality and rich features — for example, GCC and the GNU debugger.

GNU enjoyed many early successes, but it had one crucial missing component throughout the 1980s. It
had no kernel of its own — the core of the operating system — and instead relied upon users installing
the GNU tools within existing commercial operating systems, such as proprietary UNIX. Though this
didn’t bother many of the people who used the GNU tools and utilities on their proprietary systems, the
project as a whole could never be complete without a kernel of its own. There was intensive debate for
years over alternatives (such as the developmental GNU HURD), before Linux came along.

Linux has never truly formed part of the GNU operating system that Richard Stallman had envisioned.
In fact, for many years the GNU project has continued to advocate the GNU HURD microkernel over the
Linux kernel in its conceptual GNU system, despite the fact that Linux has become the poster child for a
new generation of users and developers and is by far more popular. Nevertheless, you will still occasion-
ally see the term “GNU/Linux” used to refer to a complete Linux system in recognition of the large part
played by the many GNU tools in both building and running any modern Linux system.

Chapter 1: Working with Linux

The Linux Kernel

The Linux kernel came along much later than the GNU project itself, over a decade after Richard
Stallman made his initial announcement. In that time, other alternate systems had been developed.
These included the HURD microkernel (which has since garnered limited general interest outside of the
enthusiastic core developer community), as well as the educational Minix microkernel that had been
written by Andrew Tanenbaum. For various reasons, neither of these alternative systems was widely
considered ready for prime time by general computer users when Linux first hit the scene.

Meanwhile, a young Finnish student, working at the University of Helsinki had become frustrated about
many of the things that he considered broken in the Minix operating system.! Thus, he began work on
his own system, designed specifically for his (at the time cutting-edge) AT-386 microcomputer. That per-
son was Linus Torvalds, and he would go on to lead the project that has created a whole industry of
Linux companies and spurred on a new generation.

Linus sent out the following announcement to the comp.os.minic Usenet newsgroup upon the initial
release of Linux in the summer of 1991:

Date: 25Aug 91 20:57:08 GMT
Organization: University of Helsinki

Hello everybody out three using minix — I'm doing a (free) Operating system (just a hobby, won’t be big
and professional like gnu) for 386(486) AT clones. This has been brewing since April, and is starting to
get ready. I'd like any feedback on Things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons) among other things).

I've currently ported bash (1.08) and gcc(1.40), and things seem to work. This implies that I'll get
something practical within a few months, and I'd like to know what features most people would want.
Any Suggestions are welcome, but I won't promise I'll implement them.

Despite Linus’s initial modesty, interest in the Linux kernel grew quickly around the world. It wasn’t
long before several release cycles had passed and a growing community of users —all of whom were
necessarily developers; simply installing Linux required a great deal of expertise —were working to
solve technical challenges and implement new ideas as they were first conceived. Many of the now infa-
mous Linux developers became involved early on. They enjoyed being able to work on a modern
entirely Free UNIX-like system that didn’t suffer from design complexities of alternative systems.

Linux developers relied upon the many existing GNU tools to build the Linux kernel and to develop
new features for it. Indeed, it wasn’t long before interest grew beyond the early developers, and Minix
users began to work on Linux instead — something that ultimately led to a series of well-known “flame
wars” between the creator of Minix (Andrew Tanenbaum) and Linus Torvalds. Tanenbaum maintains to
this day that the design of Linux is fundamentally inferior to that of Minix. Philosophically, this may be
true, but the same can be said of other modern operating systems.

You can learn more about the historical heritage of Linux and other UNIX-like operating systems in the
book A Quarter Century of UNIX by Peter H. Salus (Addison-Wesley, 1994).

Many of these issues remained for a number of years and would prove the topic of a large amount of
conversation on the early Minix and Linux newsgroups. In latter years, the rivalry has largely sub-
sided as Linux has asserted its dominance in the marketplace and Minix (and its various successors)
has continued to be of academic interest to those contemplating future Operating System design.

Chapter 1: Working with Linux

Linux Distributions

With the growing popularity of the Linux kernel came an interest in making Linux more accessible to
those who didn’t already happen to have advanced knowledge of its internal programming. To create a
usable Linux system, you need more than just the Linux kernel alone. In fact, the average Linux desktop
system available today makes use of many thousands of individual software programs in order to go
from system power on to a feature-rich graphical desktop environment such as GNOME.

When Linux was first released, there wasn’t such a rich multitude of software available. In fact, Linus
started out with just one application —the GNU Borne Again SHell (bash). Those who have ever had to
boot a Linux or UNIX system into a limited “single-user” mode (where only a bash shell is run) will
know what this experience feels like. Linus did much of his early testing of Linux from within a solitary
bash command shell, but even that didn’t just magically run on Linux; it first had to be ported, or
modified to run on a Linux system instead of an existing system, such as Minix.

As more and more people began to use and develop software for Linux, a wide range of software
became available to those with the patience to build and install it. Over time, it became apparent that
building every single Linux system from scratch was an unsupportable, nonupgradeable nightmare that
prevented all but the most enthusiastic from experiencing what Linux had to offer. The solution came in
the form of Linux distributions, or precreated collections of applications and a Linux kernel that could
be supplied on floppy disk (and later on CD) to a wide range of potential users.

Early Linux distributions were simply a convenience for those who wanted to avoid building the entire
system from scratch for themselves, and did little to track what software had been installed or handle
the safe removal and addition of new software. It wasn’t until package managers like Red Hat’s RPM
and Debian’s dpkg had been invented that it was possible for regular users to install a Linux system
from scratch without very detailed expert knowledge. You'll discover more about package management
in later in the book, when you look at building your own prepackaged Linux software for distribution.

Modern Linux distributions come in many shapes and sizes and are targeted at a variety of different mar-
kets. There are those written for regular desktop Linux users; those written for enterprise users with
demands of scalable, robust performance; and even distributions designed for embedded devices such as
PDAs, cellular telephones and set-top boxes. Despite the different packaging, Linux distributions usually
have commonalities that you can exploit. For example, most distributions strive to be compatible on some
level with the Linux Standard Base (LSB) de facto set of standards for compatible Linux environments.

Free Software vs. Open Source

Richard Stallman started the GNU project and founded the Free Software Foundation as a nonprofit orga-
nization to oversee it. He also worked on the first version of the General Public License —the GPL —
under which a large proportion of software written for systems that run Linux is licensed. The GPL is an
interesting document in its own right because its goal is not to restrict your use of GPL licensed software,
but to protect the right of users and developers to have access to the source code.?

2The GPL is currently undergoing its third major rewrite at the time that this book is being written.
The new version is likely to be one of the most controversial Free Software licenses yet. It includes
stipulations about the licensing of patents and other technology, attempts to outlaw Digital Rights
Management (termed “Digital Restrictions Management” by Richard Stallman) and a great deal of
other requirements besides.

Chapter 1: Working with Linux

The GPL allows you to make changes to the Linux kernel and other GPL-licensed Free Software, in
return for you publishing those changes so that other people may use them (or incorporate them back
into the next official release of a given piece of software). For example, the GPL allows you to fix a bug in
a major application such as Open Office, or to add custom audio file support to the totem multimedia
player on a GNOME desktop system. The GPL affords you, as a developer, a great deal of flexibility to
use Linux for whatever purpose you choose, just as long as you make your modifications available for
others to do likewise. That’s the key point— the GPL tries to keep the development process open.

Unfortunately for Richard Stallman, the English language isn’t well equipped with an equivalent of the
French word libre (free as in liberty), so many people confuse the concept of Free Software with software
that is monetarily free. In fact, much Free Software is entirely free of charge, but there are also companies
who make money from selling GPL-licensed software (including its freely redistributable source code).
They are able to make money not through the software itself, but by offering a variety of support options
and additional professional services for when things go wrong.

To reduce the confusion associated with the term “Free Software,” the term “Open Source” was coined
and became popular during the 1990s. Unlike Free Software, open source does not specifically refer to
GPL-licensed software. Instead, it refers to the general desire for software to come with source code
included (so that it can be tuned, debugged, and improved by others), even if that source code is actually
under a more restrictive license than the GPL itself. For this reason, there is a lot more software available
technically meeting the definition of open source, while simultaneously not being Free.

It is very important that you have an understanding of the requirements that the GPL places on the work
that you may do in modifying existing GPL-licensed software. Although you are not required to use the
GPL in your own programs, you must respect the rights of others who have done so. There are numer-
ous examples of potential GPL infringement on the Internet — usually from companies who didn’t know
that they needed to make their modifications to software such as the Linux kernel available for others to
take a look at. You don’t want to become the next example case, so always ensure that both you and
your colleagues are aware of the GPL, and decide early on how you want to work with it.

Beginning Development

The first step you take as a Linux developer is to tool yourself up for the tasks that lie ahead. This means
that you'll need to have a suitable development system available to you on which you can compile and
test your own Linux programs. Almost any reasonable workstation will be sufficient, at least at first—
though if you end up building a lot of software, you might elect for a higher-performance machine to
reduce build times. There’s little else more demotivating than constantly waiting for large software
builds to complete. Still, it’s always good to walk before you try to run.

It should be stressed at this point that the authors of this book are not going to suggest to you that you
install or use a particular Linux distribution. There are plenty of good alternatives out there, and it’s the
job of corporate marketing and community interest to convince you of the merits of working with and
supporting a particular set of Linux distributions over any others. Nonetheless, it does make sense to
look at well-known distributions (at least at first) so that you’ll have better access to a highly active com-
munity of developers who can help you as and when you make your first mistakes.

You can track the current trends in modern Linux distributions through impartial websites, such as
www . distrowatch. com. Distrowatch also provide useful informational resources about each one.

Chapter 1: Working with Linux

Choosing a Linux Distribution

At the time that this book is being written, there are well over 300 Linux distributions in use around the
world, and that number is growing almost daily. Since most (if not all) of the software shipped in the
average Linux distribution is covered by the GNU General Public License (GPL), literally anyone can
take that software and package it for themselves into their own distribution. This encourages initiative
and experimentation, but it would also quickly lead to an unmanageable support nightmare for those
who decided to package software for use by those with the 300 different distributions in use.

Fortunately for you as a software developer, most of the Linux users you will need to support are using
a mere handful of popular Linux distributions. Those who are not apparently using one of these well-
known distributions may well have a distribution that is based upon one. It's very common for newer
distributions to be built upon the niche requirements of a subset of existing users. Obviously, it stands to
reason that the 100 people using a particular specialist Linux distribution may not necessarily receive the
same level of support as the many hundreds of thousands of people who use another.

Here are 10 of the more popular Linux distributions available today:

O

Debian GNU/Linux

Fedora (previously known as Fedora Core)
Gentoo Linux

Mandriva Linux

Red Hat Enterprise Linux (RHEL)
Slackware Linux

OpenSuSE

SuSE Linux Enterprise Server (SLES)

O 00 0Uo0U 00 0d

Ubuntu

Linux Distributions from Red Hat

Red Hat once produced a version of Linux known as Red Hat Linux (RHL). This was available up until
release 9.0, at which point the commercial product became known as Red Hat Enterprise Linux. Around
the same time, the Fedora community Linux distribution became available for those who would prefer
an entirely open source version without commercial support. Fedora is very popular with desktop users
and enthusiasts and is widely used by Free Software developers, as well as commercial vendors —who
will later need to test and certify their software against the Enterprise release as a separate endeavor.

For more information about Red Hat, see www . redhat . com. The Fedora project has a separate website,
www . fedoraproject.org.

Linux Distributions from Novell

Novell bought SuSE in 2004 and gained full control over SuSE Linux. At around the same time, a variety
of marketing and branding decisions affected the future naming of Linux products from Novell. Like
Red Hat, Novell provide a community release of their operating system —known as OpenSUSE. It is
maintained by a growing community of users, who help to cultivate new technologies that may

Chapter 1: Working with Linux

ultimately feed back into the next release of the commercial SuSE Linux Enterprise Server. Red Hat and
Novell are usually considered to be the two big commercial Linux vendors in the marketplace.

For more information about Novell and SuSE, see www .novell.com. The OpenSUSE project has a sepa-
rate website, www . opensuse.org.

Debian and Ubuntu GNU/Linux

Debian has been around for as long as Red Hat and SuSE and has a large group of core supporters. As
an entirely community-maintained distribution, it is not motivated by the goals of any one particular
corporation but strives simply to advance the state of the art. This is a laudable goal indeed, though
Debian has suffered in the past from extremely large development cycles — often many years between
major releases. A variety of “Debian derivatives” have been produced in the past, including Progeny
Linux, which was one of the first attempts at producing a commercial version of Debian.

Mark Shuttleworth, one-time founder of Thwate made a fortune developing a business that had some
reliance on Debian systems. Thus, he was heavily involved in the Debian community, and in 2004
founded the Ubuntu project. Ubuntu is based upon Debian, but it doesn’t aim to replace it. Rather, the
goal of the Ubuntu project is to provide stable release cycles and productize Debian into a distribution
for the masses. Canonical, the company backing Ubuntu development has developed various tools as
part of this process, including the Launchpad and Rosetta tools mentioned later in this book.

For more information about Debian GNU/Linux, see www.debian. org. The Ubuntu project has a sepa-
rate website, www . ubuntulinux.org.

Classes of Linux Distribution

Distributions can be broadly broken down into three different classes, depending upon their goals,
whether they are a derivative of another popular distribution, and whether they are designed for ease of
use or for those with more advanced requirements. For example, the average desktop user is unlikely to
rebuild his or her entire Linux distribution on a whim, whereas some server administrators actively enjoy
the power and flexibility of squeezing every last possible drop of performance out of their machines.

It’s important to remember that Linux delivers great flexibility —if someone can think of a way to use
Linux and create a new distribution, somebody else is probably already working on implementing it.

RPM based Distributions

RPM-based distributions are so called because they use Red Hat’s RPM package management tools in
order to package and distribute the individual components of the distribution. In early fall 1995, RPM
was one of the first package management tools available for Linux. It was quickly adopted by other dis-
tributions, such as SuSE Linux. RPM has since been renamed from Red Hat Package Manager to RPM
Package Manager — reflecting the independent development of the RPM tools happening today —but a
number of distributions using RPM continue to share commonalities with Red Hat distributions.

RPM-based distributions such as Red Hat’s Enterprise Linux (RHEL) and Novell’s SuSE Linux
Enterprise Server (SLES) make up a bulk of commercial Linux offerings used throughout the world
today. If you're writing software for use in the enterprise, you'll want to ensure that you have support
for RPM-based distributions such as these. You needn’t buy a copy of the Enterprise version of these
distributions simply for everyday software development. Instead, you can use one of the community-
maintained releases of the Fedora (Red Hat Linux derived) or OpenSuSE Linux distributions.

Chapter 1: Working with Linux

Debian Derivatives

As you will discover later in this book, Debian-derived distributions are based on the Debian Linux dis-
tribution and package management tools such as apt. Debian’s dpkg package management tool was
written around the same time that the original work was done on RPM, although different design deci-
sions and philosophy have seen the two tools continue along separate paths ever since. Debian has a
reputation for forming the basis of a variety of community and commercial Linux distributions.

Debian is a community-maintained Linux distribution, coordinated by a nonprofit organization known
as Software in the Public Interest (SPI). Since the earliest releases, there has been an interest in customiz-
ing Debian and in distributing variants aimed at addressing a particular need. One of the most high-
profile Debian derivatives is the Ubuntu Linux distribution, which aims to encourage widespread
adoption through regulated release cycles and by steering overall development to meet certain goals.

Source Distributions

Linux distributions don’t need to be based upon one of the common package management systems.
There are many alternatives out there that use little or no package management beyond keeping soft-
ware components in separate file archives. In addition, there are distributions that are actually intended
for you to build when they are installed. This can be the case for any number of practical (or ideological)
reasons but such distributions are usually confined to very niche Linux markets.

Build-from-source distributions such as Gentoo are designed to be easy to use but at the same time
deliver high performance through locally customized software for each installed system. Gentoo uses a
system known as portage to automate the process of downloading and building each individual soft-
ware application whenever you require. Just bear in mind that it can take many hours for Open Office to
build the first time you decide you need to use it and instruct portage to build it up for you.

You won't usually concern yourself with source-based distributions if you're producing an application
for the mass market. Most customers prefer to use popular commercial or community distributions with
standardized packaging processes. It reduces support headaches and often seems to make life easier. If
you're interested in Gentoo Linux, don’t forget to visit the project website at www . gentoo. org.

Roll Your Own

As you’ll discover later in this book, it’s possible to build your own Linux distribution from component
parts. There are any number of reasons that you might want to do this — curiosity, the need for greater
flexibility than is otherwise available, customizability, and so on. The fact is that many of the Embedded
Linux devices on the market today are built entirely from scratch by the vendor producing the device.
Needless to say, we do not encourage you to try building your own Linux distribution before you have
become familiar with the internal packages, software, and utilities required by distributions in general.

The Linux From Scratch project is an example of one self-help guide you can use in building your own
Linux distributions from scratch. Their website is www. 1inuxfromscratch. org. You can also check out
automated distribution build tools such as PTXdist at http://ptxdist.sf.net.

Installing a Linux Distribution

Once you have decided upon which Linux distributions you will be working with, you'll need to set up
at least one development machine. It's important to realize that you won’t need to install every single

Chapter 1: Working with Linux

distribution you might want to later support when you start your development. Instead, choose one that
you feel comfortable spending a lot of time working with as you try to get your software up and run-
ning. Later, you can port your software over to any other distributions that may be required. Don’t for-
get that virtualization products — such as Xen and VMware — can greatly ease testing, as you can install
any modern Linux distribution in its own virtualized sandbox away from your existing setup.

Later in this chapter, you'll find links to online groups and resources where you can discuss your choice
of Linux distribution and ask any questions you may have while getting yourself set up.

Getting Hold of Linux

Most modern Linux distributions are supplied on CD or DVD media or are available to download in
the form of CD or DVD images (ISOs) over the Internet. Distributions generally will use mirror sites to
spread the load of the enormous numbers of people who wish to download CD or DVD images over
their high-speed links. You can do your bit to help them out by always downloading from a mirror site
that is geographically located near you. That way, you won't clog up international links unnecessarily
with your large downloads —remember that Linux is international by its very nature.

Don'’t forget to check out BitTorrent as a means to harness peer-to-peer technology to speed up your
download. Linux distributions covered under the terms of the GPL are freely redistributable, so many
people have set up BitTorrent trackers to allow them to get faster downloads, while actually helping oth-
ers speed up their downloads at the same time — look for explanations from vendor websites.

Be forewarned that downloading a particular distribution can take many hours, even on modern high-
speed Internet connections. If you don’t want to wait so long to download multiple CD or DVD images,
you can often perform an online install instead. This process will take longer, but you will only install
those packages that you select—so the installer won’t need to retrieve as much data overall. To perform
an online install, look for smaller network install CD images on vendor websites. These are often under
100MB in size and will download very quickly, while still allowing you to do a full install.

Of course, you might also elect to buy an off-the-shelf boxed product and save some of the time and has-
sle in downloading and burning media for yourself. If you choose to buy a copy of a commercial Linux
distribution, look for a local Linux supplier that might be able to help you directly. They can come in
handy later when you need to pick up any additional software —so use the opportunity to establish a
relationship if you have the chance. You might also find that your local Linux user group additionally
has a preferential deal with certain Linux vendors and suppliers for products for use by enthusiasts.

Determining Install-Time Package Selection

Installation of most modern Linux distributions is a smooth and painless process requiring that you
answer just a few questions. Tell the installer the name you’d like to give to your Linux machine, what
its network settings will be, and a few other details, and in no time at all, it'll be installing a lot of shiny
software onto your machine. This is the ease with which a regular installation goes these days — cer-
tainly far removed from the days of having to build up the system from scratch yourself.

Most installers won’t automatically include development tools when setting up a regular Linux desktop
or server system. In particular, it is unusual to find the GNU toolchain and related build tools available
out of the box with popular distributions —such as those from Red Hat, SuSE, or Ubuntu. You'll need to
modify the package selection at install time to include what is usually labeled as “development tools” or
similar. To do this, you might need to choose a custom install option, depending upon the specific ver-
sion of the distribution that you are using. Check the documentation for advice.

Chapter 1: Working with Linux

Figure 1-1 shows the development packages being installed on a Fedora Core 5 system.

fedorg(f e =).

O

The default installation of Fedora Core includes a
set of software applicable for general internet
usage. What additional tasks would you like your
system to include support for?

[7] Office and Productivity

Dk'Scftware Development,

[] Web server

Further customization of the software selection
can be completed now or after install via the
software management application.

(@ Customize later () Customize now

ewn] [ow]

Figure 1-1

If you missed the opportunity to add development tools during system installation, you can go back and
add in development tools at a later stage. This is usually best accomplished by using a graphical package
management tool included with you distribution. Graphical package management tools such as yumex
(Fedora), YaST (SuSE) and synaptic (Ubuntu) offer groups of related packages and ease the process of
identifying what components you will need to install. If all else fails, you'll experience some strange
errors when you try out some of the example code from this book —look out for missing tools.

Setting Up Your Development Environment

10

A newly installed Linux system will usually automatically load up a graphical desktop environment.
Most Linux systems available today choose either of the GNOME or KDE graphical desktops (or in some
cases both, allowing you to choose which you would like to use). Although this book attempts to be
unbiased as possible, it is nevertheless not possible to cover all technologies to the same degree within a
single volume. As a result, the authors have chosen to focus upon the GNOME desktop environment
whenever it is necessary to talk specifically about desktop-related issues.

GNOMEE is the default graphical desktop environment used by both the Fedora and Ubuntu projects,
but whatever your personal or organizational preference is, you should find the interfaces appear simi-
lar. You will quickly discover the administration and management tools located in the system menus, as
well as those development tools that have been preinstalled by your distribution. Several distributions
now ship with the Eclipse IDE development environment installed by default—a good place to start if
you're familiar with other graphical development tools such as Microsoft Visual Studio on Windows.

Chapter 1: Working with Linux

Finding a Terminal

Linux systems, like other UNIX systems, are built upon many different tools and utilities that work
together to get the job done. Although graphical desktop environments have become very popular over
the last few years, it’s still commonplace to perform everyday software source file editing and to drive
software build processes entirely from within a system terminal. You can use a graphical development
environment such as Eclipse, but it’s a good idea to know how to work at the command line.

As you work through this book, most of the example code will include simple commands that you can
use at the command line in order to build the software. You will usually find that a terminal is available
to you via the system menus, or in some cases by right-clicking on your desktop and selecting Open
Terminal from the menu. On Fedora systems, you'll need to install an extra system package (use the
Software Updater tool in the System Tools menu, under the Applications menu) to have the terminal
option readily available in your desktop menu—it’s there by default on OpenSUSE and Ubuntu.

Editing Source Files

Throughout this book, you will find example source code that you can try out and modify for your own
purposes. You'll find out more about how to build software on Linux systems in subsequent chapters.
You'll also find many examples that are available from the website accompanying this book, which you
can download in order to avoid typing them in each time. Despite this, you will clearly want to produce
your own programs early on. It is, therefore, recommended that you find a text editor that you feel com-
fortable working with as you develop your Linux software.

Most Linux developers choose to use popular editors such as vim (derived from the ancient UNIX vi
editor) or GNU emacs (Richard Stallman’s original GNU project editor). These work both from the com-
mand line and as graphical applications, depending upon the precise version you have installed. Each
comes with a rich set of features that will enhance your productivity, as well as a set of documentation
and tutorials to help you get up to speed quickly. For those who prefer a graphical editor, the GNOME
and KDE desktops are supplied with several powerful alternatives.

It’s worth noting the tradition of vi and emacs rivalry. Historically, vi and emacs users were mutually
exclusive. Those who use one typically dislike the other with a passion (and other users of the other).
There are few sources of contention more pointless than the editor flame wars started from time to time
by people on mailing lists, but the sheer range of vi vs. emacs T-shirts and other merchandise available
on the Internet should demonstrate the seriousness with which some people take these editor wars. It’s
never a good idea to try to understand precisely why people care so much about this —just live with it.

Whatever text editor you choose, don’t try using a word processor such as Open Office writer or abi-
word to edit program source code. While it is technically possible to do so, these tools usually mangle
source and even when editing text files will attempt to embed various rich text formatting that will con-
fuse the build tools you later use to build the software.

11

Chapter 1: Working with Linux

Figures 1-2 and 1-3 show examples of source files being edited with the vim and emacs text editors.

RN

View Terminal

EIEC

File Edit Tabs Help

t1f onl

These are the const
unting. me not
- 11 bit fraction

because they

are not used |

ant used to fake t

expand to 22 bit

them anyway.

he fixed-point load-average

by the multiplies: this g1

f 10 bits integer + 11 bit

fractional

5 load-average precision
- 1T you want t unt load-average:

precision, or rounding will

the EXP_n ould be 1

11 bit fractions.

alue

avenrun[];

| more
ounting freq
nly

t1ll using

Load averages *

T obit
fixed-
intervals *
lmin

Smin) #

15min) *

f precision *#
int

e as fixed-point

84,1

el

File Edit Options Buffers Tools C Help

C@wx 0@ 5 ¥ UGB ?

% #define CLONE_CHILD_ SETTID 0x01000000 /* set the TID in the child */
$define CLONE_STOPFED 0x02000000 f* Start in stopped state */
",/*

* List of flags we want to share for kernel threads
* if only because they are not used by them anyway.
*
#define CLONE_KERMEL (CLONE_FS | CLONWE_FILES | CLONE_SIGHAND)
j'k
* These are the constant used to fake the fized-point load-average
* counting. Some notes:
* - 11 bit fractions expand to 22 bits by the multiplies: this giwves
* a load-average precision of 10 bits integer + 11 bits fractional
* - if you want to count load-averages more often, you need more
* precision, or rounding will get you. With 2-second counting freq,
* the EXP_n walues would be 1981, 2034 and 2043 1if still using only
* 11 bit fractions.
*/
extern unsigned long awvenrun|]; /* Load averages */
#define FSHIFT 11 /* nr of bits of precision */
$define FIXED_1 (1<<F3HIFT) f* 1.0 as fized-point */
$define LOAD_FREQ (5E*HZ) f/* b sec intervals */
#define EXP_1 384 /* 1fexzpibsec/Imin) as fized-point */
$define EXP_5 2014 /* 1/exp({Ssec/5min)
$define EXP_15 2037 /* 1l/expiSsec/1omin) */
#define CBLC_LOARD{load,exp,n)
load *= exp;
load += n* (FIXED_l-exp);
load »»= FSHIFT;
extern unsigned long total_forks
/ extern int nr_threads;
--:%2% sched.h (C Bbbrev)-—-175-- BB—-———m e o
Figure 1-3

12

Chapter 1: Working with Linux

Using the Root Account

To avoid occasional accidental system damage —the removal of core system files, accidentally wiping
out system utilities with your own, and so on—it’s usual to do your everyday work as a regular user on
your machine. A regular user has full access to his or her home directory (under /home) and can easily
build and test out most regular application software. This is sufficient for most development tasks, but
there are times when you will need to gain access to the administrative (root) account in order to modify
global system settings, install test software, and generally to get the job done.

Rather than using your system entirely as the root user, or logging out and logging in as root whenever
you need access to the root account, it’s recommended that you use the sudo utility. Sudo enables you to
run a single command as the root user, without running the risk of having to be logged in with such
powers all of the time. It’s amazing how easily you can accidentally trash a system with a single mis-
taken command as the root user. Hence, most developers generally use their own accounts.

To use sudo, you'll need to ensure that your regular user account is listed in /etc/sudoers. For exam-
ple, the user account “jem” can be granted sudo permission with the following entry:

jcm ALL=(ALL) ALL

This grants jem permission to run any command as the root user (on any machine — there’s only the local
machine to worry about in most cases, but if you're on a network, check with your IS/IT folks). To actu-
ally run a command with root permissions, you can use the sudo command:

$ sudo whoami
root

You will be asked for a password, if you have not entered one recently.

The first time you use it, sudo warns you about the dangerous things you can do as a root user and then
asks for a password, which may not be the same as your login password. On some distributions, sudo is
configured to ask for the root account password by default, others will use your own login password in
order to gain access to the sudo tool. You'll want to check your distribution’s documentation or use the
UNIX man command to find out more information about the local installation.

If you're working within a corporate environment, don’t forget to notify your IT or IS department that
you will require administrative access to your development machine. It'll save a lot of hassle later on,
unless they specifically want to support you every time you need to use the root account.

Development Releases

Linux distributions usually have a development version that closely tracks ongoing development of the
distribution itself. Such versions are updated far more often that their stable release counterparts. Stable
distribution releases usually vary between 6 months and 18 months apart, while a development version
might change on even a daily basis. The big three distributions — those from Red Hat, SuSE, and
Ubuntu — all have unstable development releases available on a daily basis. You won’t normally need to
look at these, but it helps to know they’re out there, so here’s a quick overview of the alternatives.

Development releases of modern distributions are explained here for your interest and education. They
may aid in some of your development decisions, but you should not directly build or develop production
software on them. Changes occur frequently, making it extremely difficult to achieve reproducible
results. Complete system breakage is also not that uncommon.

13

Chapter 1: Working with Linux

Sc

Red Hat calls their unstable Fedora release rawhide. It’s available via the Fedora website, but you'll usu-
ally perform a “yum update” (after uncommenting the development YUM repository entries in
/etc/yum. repos.d) from the most recent stable release in order to switch over, rather than trying to
perform an install of rawhide directly. Rawhide is a hive of activity from which you can often garner
some insight into what might make it into the next Fedora release — ultimately, that may even affect
what goes into the Red Hat Enterprise product at some point in the future.

Novell calls its unstable OpenSuSE release Factory. It’s available from the OpenSuSE website and can be
installed using network bootable images that are available for download. You will need to follow the
installation instructions carefully if you perform a network install as to do so necessitates changing vari-
ous options early on in the boot process —before the YaST installer has even started. You can also
upgrade using YUM (documented online), but that process is much newer as of this writing. Factory is
updated on a semi-regular basis, ultimately feeding technology into SuSE Linux Enterprise Server.

Ubuntu, like Debian, is available in an unstable release. This release is updated frequently, whenever the
packages within it are modified. Thus, it’s sometimes the case that a given system is unable to perform
an update to the latest unstable release at a particular moment in time. Unlike the other distributions
mentioned here, Ubuntu and Debian provide an interim testing version of their distribution, which
always contains packages that have been known to be usable after being released into unstable release
of the distribution. You will usually “apt-get upgrade” your system to unstable after modifying
/etc/apt/sources.list).

ratch Boxes and Virtualization Technologies

As you become happier with Linux development and become more adventurous, you'll want to have a
scratch box that you can just test out ideas on (or completely trash) without risking breaking anything it
had installed. This is especially true if you later decide to write your own Linux kernel device drivers or
otherwise modify critical system components —you don’t want to be doing that on a machine you need
to remain stable during that process. Many hackers resort to using old PCs for this purpose.

Virtualization technologies, such as VWware, gemu and Xen, can be useful ways to gain access to a large
number of test virtual machines that you can happily trash all day long, all without actually having to
buy any additional hardware. Not only is virtualization is good cost-saving idea, but it’s also very prac-
tical when it comes to setting up standard test environments and sharing ideas with your colleagues.
Most virtualization technologies will allow you to set up snapshots of systems configured in a particular
way that you can then store or send to your coworkers via a network storage area of some kind.

VWware

14

VWware allows you to manage large collections of virtual machines using their proprietary graphical
software. It’s trivial to configure a new virtual machine and to then install a Linux distribution within it.
Using VWware, you can easily install a range of different PC-based Linux distributions, all without actu-
ally changing the software on your machine. Great when you want to store preconfigured test machines
or try out some experimental features that don’t rely on having some specific custom hardware device,
not so great for testing out your custom Linux kernel device drivers!

You can find out more information about VWware at www . vimware . com.

Chapter 1: Working with Linux

Qemu

Qemu is an open source virtualization technology that can be used to run Linux. It’s entirely free, but
somewhat more limited than proprietary offerings like VWware. Using the gemu command line utilities,
you can create a virtual machine environment and then install a Linux distribution within it. Since gemu
is covered by the GNU General Public License, it’s possible to modify the software itself and add in
interesting new capabilities. As you'll discover later in the book, possible modifications include custom
virtualized hardware devices for which you can write your own device drivers —all without having to
risk the stability of your regular development environment.

For more information about gemu, see the project website at www.gemu. org.

Xen

Over the past few years, there has been a growing interest in a virtualization technology known as Xen.
At the time that this book is being written, Xen is making headlines most every other week. Like
VWware, Xen is capable of running any operating system within a virtualized environment. Unlike
VWware, Xen is also Free Software, and there are a variety of graphical configuration tools available for
those who want to use them. Most recent Linux distributions include some level of specific support for
building and configuring Xen virtualized environments that you can use to test out your software.

For more information about Xen, see the project website at www.c1.cam.ac.uk/Research/SRG/
netos/xen.

Linux Community

One of the most important things to realize when developing software for Linux is that you are very
much not alone. A large community of fellow developers exists all over the world. Many of these people
are interested in trading stories or helping you out when you get yourself into a jam. There are numer-
ous different ways in which you can contact fellow Linux users and developers —and you’ll want to
look into joining the wider community well before you run up against your first roadblock.

In addition to getting involved with the wider Linux community, you'll probably want to start reading
one of the regular magazines. The oldest of these is the Linux Journal (www.1linuxjournal.com), but at
the time this book is being written, there are literally dozens of magazines from around the world.

Linux User Groups

Wherever you are in the world, you're probably located nearer to other Linux users than you may think.
Most major towns or cities have their own Linux user group (LUG) that is made up of local Linux enthu-
siasts working in a wide range of different areas. Some members, like you, may be less familiar with
Linux and be seeking advice from those who have been involved in the community for perhaps a decade
or longer. In fact, some LUGs are well over 10 years old by this point.

You can find out more information about your local Linux user group via the Internet. Just type your
local town or city name into Google’s special Linux search engine at www.google.com/linux.

15

Chapter 1: Working with Linux

Mailing lists

Most of the Linux developers around the world today communicate new ideas, exchange software
patches, and participate in general discussion via electronic mailing lists. There are so many different
mailing lists on so many different topics that it would be impossible to cover them all in this book.
Everything from the smallest subsystem of the Linux kernel to entire Linux distributions and even the
most remote regions of the planet will have a mailing list of some kind. You are encouraged to join the
mailing list from your local Linux user group and user lists provided by your distribution vendor as a
starting point.

Throughout this book, you will find references to mailing lists and other similar resources that might
help you to get more involved or better understand a particular topic.

IRC

Developers frequently wish to participate in more interactive discussion than a mailing list is designed
to allow. IRC (Internet Relay Chat) facilitates the process of joining various channels on IRC networks
around the world, and many groups that have a mailing list will also have an IRC channel of some kind
to complement mailing list discussion. You can discover a wealth of online resources within IRC net-
works such as Freenode, OFTC, and others. Each of these is preconfigured into graphical IRC clients
such as the xchat client that comes with most modern Linux distributions.

Private Communities

The Linux developer community isn’t always quite as open as you may think it is. A number of closed
groups do exist around the world in the name of facilitating discussion between bona fide core develop-
ers of a particular technology. These groups occasionally hold special events, but more often than not
will simply communicate using nonpublic mailing lists and IRC networks. It's important to realize that
Linux does have an open development process, despite the occasional private club.

An example of a private group is the many security groups around the world that look to quickly fix
problems that are discovered in Linux software. They necessarily do not publish the precise details of
what they’re working on until they have found the security bug and made a coordinated release with
any vendors and other third parties involved. This helps to reduce the number of security incidents. If
you ever discover a security bug in Linux software, always use the appropriate channels to report it.

There is no Linux Cabal.

Key Differences

16

Linux isn’t like other operating systems you may have encountered in the past. Most operating systems
have been designed over a period of many years by a small team of highly skilled people. Those designers
then handed over a specification document to software engineers for them to implement the design. Linux
isn’t about closed teams of any kind. Sure, there are many vendors working on Linux technology behind
semi-closed doors, but the core of the development process happens out in the open for all to see—warts
and all.

Chapter 1: Working with Linux

Having an open development process means that the whole world gets to dissect the implementation of
various features within the Linux distributions and propose their own changes. Thus, Linux benefits
from the “many eyeballs” scalability of allowing anyone to make a contribution — greatly exceeding the
resources of even the largest proprietary software companies. Having an open development process
means that it’s very hard to have bad ideas accepted into the core of your Linux system. Everyone makes
mistakes, but the Linux community is usually very picky about what changes it will accept.

Linux Is Modular

A typical Linux system is built from many smaller components that work together to form the larger
whole. Unlike Microsoft Windows, Linux explicitly breaks out even the smallest functionality into a sep-
arate dedicated utility. There are several different utilities designed solely to set the system clock, others
to control the sound volume mixers on your sound card, still other dedicated tools for individual net-
working operations, and so on. Take a look in the standard /bin and /usr/bin directories on any Linux
system, and you'll see a few of these individual utilities for yourself.

Like many older UNIX systems, Linux is built upon a principal of KISS (“keep it simple, stupid”). This
follows the principal that it’s better to do one thing and do it well, than try to overload functionality into
giant monolithic programs. Unlike Microsoft Windows, Linux systems have been designed so that they
are easily user modifiable. You are encouraged to customize your system in whatever manner you
choose; such is the point of Free and Open Source software.

Throughout this book, you'll see references to many tools that you may not have encountered previ-
ously. Don’t panic. As you'll quickly discover, knowing the right people to turn to — the right resources
and community groups —and using the documentation that is provided with every Linux system is
often enough to get you out of a jam. Many so-called experts are in fact highly skilled Googlers who
know how to get at the information that will help them to do whatever they need to.

Linux Is Portable

As you'll discover in Chapter 3, Linux itself is one of the most portable operating systems available
today. Linux distributions have been released for the smallest embedded devices like your cell phone,
PDA, and digital video recorder (DVR) set-top box, while at the same time others support mainframe
systems or supercomputers being used to process the human genome. Software written for Linux is
often designed with portability in mind, and since it may automatically be built for a range of different
target systems as part of being in a Linux distribution, it’s common to find portability issues early on.

When you write software for Linux, always consider whether your decisions will affect how portable
your software will be in the future. Will you ever need to run it on 64-bit systems? Will you always have
a full-featured graphical desktop environment based on GNOME, or might someone want to use your
software on a resource-constrained embedded device? These are questions you should keep in mind so
that you won’t have unnecessary surprises later on.

Linux Is Generic

The Linux kernel itself strives to be as generic as possible. That means that the same source code can be
built to run on the smallest gadget or the largest mainframe with scalability built right in. There should
not be any need to make fundamental adjustments in order to support this wide range of target systems,

17

Chapter 1: Working with Linux

because the software was built with this kind of flexibility in mind. Of course, certain features can and
will be tuned for specific systems, but the core algorithms will remain the same. The same should be true
of the majority of software released within modern Linux distributions.

Keeping things as generic as possible and allowing the users to decide how they will use a Linux system
is one of the reasons that Linux has been so successful. You should always try to think about the ways
that people might want to use your software and avoid incorporating unnecessary design constraints.
You don’t have to support people who want to use your software in nonrecommended ways, but don't
artificially impose limits unless it’s absolutely necessary.

Summary

18

In this chapter, you learned about working with Linux. You learned that the term Linux has different
meanings in different contexts. Technically, Linux refers to the core operating system kernel written by
Linus Torvalds and maintained by many thousands of skilled developers around the world. But Linux
can also be used to refer to distributions of software that are built on top of Linus’s original kernel. This
software includes many thousands of tools and utilities, modern graphical desktop environments, and
many other components that users expect to find in a complete modern OS.

The success of Linux over the past decade has a lot to do with the communities, which have helped to
make it so popular as an alternative to big proprietary UNIX and other operating systems on the market
today. You now know how to get involved in your local Linux User Group and how to make contact with
a larger world of Linux developers, who are keen to help you on your way to becoming an expert. You
also have gained an understanding of the many differences between Linux and other operating systems.

|

Toolchains

Toolchains are the silent workhorses behind every major Open Source engineering project, includ-
ing the Linux kernel itself. They are a collection of the necessary tools and utilities to build and
debug anything from the simplest utility to the most complex Linux kernel feature imaginable. If
you’ve done any Linux programming at all, then you have likely already encountered the GNU
Compiler Collection (GCC), but there’s a lot more to producing a finished application than simply
compiling source code. To produce a finished application, you need the aid of a complete set of
tools, commonly referred to as a toolchain.

A toolchain includes a compiler, a linker, and assembler as well as a debugger to aid in tracking
down the inevitable bugs present in all but the most trivial of programs. In addition, a variety of
miscellaneous utilities allow for manipulation of the resulting application binaries as may be nec-
essary — for example, the processing of Linux kernel binaries into machine bootable images. The
overwhelming majority of Linux applications are built using the GNU Toolchain, formed from
tools released by the GNU project.

This chapter introduces you to the myriad tools that make up the GNU Toolchain, as well as a few
other related tools that are also used by Linux developers to build and debug applications. These
tools include many nonstandard features that are commonly used by Linux applications as well as
the kernel. You will learn how to use the GNU Toolchain and become familiar with some of its
more advanced features. After reading this chapter, you will be able to build and debug applica-
tions, and you will begin to feel comfortable with concepts such as inline assembly and the power-
ful capabilities of the GNU binutils.

The Linux Development Process

To understand the individual tools used to build software on Linux, you must first have a high-level
understanding of the overall software development process and just what the individual tools within
a toolchain are designed to achieve. You will then find it much easier to apply these concepts to more
advanced uses for individual tools as you come to experiment with them later in the chapter.

Chapter 2: Toolchains

Modern Linux software is formed from a relatively large number of individual components that are
combined at build time into a small number of executable and nonexecutable files. These include the
application binaries themselves, as well as many supporting resources, documentation, and extraneous
data used in source code management (SCM) and revision control. Together, these individual parts may
be packaged into a single distribution-specific installable software package, shipped to users.

Of course, certain applications may also not be designed to be end-user installable. This is often the case
with embedded devices or other OEM solutions where a full system running Linux is supplied as part
of a larger product. In these cases, you will write and build the software in the standard fashion, but
replace the packaging steps with an automated process for installing the software onto a target.

In this section, you will learn how to work with source code, how to obtain it, and how to configure a set
of program sources into a working development tree. You will also begin to examine the common build
processes that are shared among most of the applications on your Linux system and with which you will
need to be familiar as you come to write your own applications.

Working with Sources

20

Developers rarely work directly with the end- user-installable software packages. Instead, they work
with a source package or archive that contains an application’s sources as well as any additional scripts
and configuration data that are necessary in order to rebuild the application from source. These external
supporting scripts and configuration data are used to automatically determine software prerequisites as
well as those features that will be necessary to use the software in a given Linux target environment.

Linux software is usually distributed to developers in one of two forms. The first and most basic is a
source archive, commonly referred to as a tarball (because the standard compressed archive file has a
.tar.gz ora .tar.bz2 extension). This source archive must first be unpacked using an appropriate
tool, such as the command line tar command or a graphical archive management tool (supplied by
your graphical desktop environment) before it can be built using a standard procedure.

The second way to distribute source to developers is via an SCM tool. These tools automate the process
of obtaining source code, tracking local changes, and submitting patches or modified versions of the
source upstream to the central repository or higher-level developers. A selection of these tools will be
examined later in the book. If you do use an SCM, then it is important to follow the procedures and
practices agreed on between the individual members of the development team.

You will find that the example code for most of this book is stored within a regular Linux tar archive,
although you may find it easier to import examples into your own SCM and keep track of the changes
that you make as you work with the code (see Chapter 4, “Software Configuration Management). To
unpack the archive containing the example code used in this chapter, you can use the following Linux
tar command:

tar xvfj toolchains.tar.bz2

The xv£j option flags instruct the standard tar command that it is to extract and verify the filename
given, which is stored in a bzip2-compressed tar archive. If it were stored in the older and still widely
used gzip-compressed tar archive format (usually using the . tar. gz filename extension), then you
would have instructed tar to uncompress a gzip tarball with the xv£fz option flags instead.

Chapter 2: Toolchains

Configuring to the Local Environment

The example project archive contains a single top-level directory and several other subdirectories. At the
top level are the README and INSTALL files that describe the standard process used to (re)build the soft-
ware. This process involves first configuring the local build environment before actually running the
additional commands that will build an executable application.

Configuring the local build environment is a necessary step in developing software on Linux because of
the wide variety of different target platforms on which Linux is available. Each different hardware envi-
ronment may have specific limitations — for example, ordering its memory as big or little endian or hav-
ing specific requirements of executables that are compiled to run on a given target processor —and each
different Linux distribution will come with a variety of possible software environments — different ver-

sions of utilities and system libraries — which will vary from one release to the next.

Since very few Linux (or indeed other UNIX) environments are identical, it is necessary to introduce a
range of tools that can handle these differences in a portable and abstract way. Thus, the first tool of
interest is GNU Autoconf, and its presence is characterized by the existence of a configure script.
When executed, the configure script will automatically determine whether the necessary build tools
are installed on your system and which versions are available, in case there are any specific requirements.

Try asking the example configure script for some usage instructions:

S ./configure --help
“configure' configures hello_world 1.0 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...
The output has been abridged for brevity.

The output from the configure program lists a variety of possible options and values according to how it
has itself been configured. Most of these options are not necessary in this case, since the configure
script in the example has been instructed only to determine whether you have the necessary GNU
Toolchain components installed correctly for use with the code from this chapter. Later examples, such
as those in the next chapter, will exploit more powerful functionality of Autoconf and discuss its inter-
nals in detail.

Configure the example code by running the included configure script:

./configure

checking for gcc... gcc

checking for C compiler default output file name... a.out
checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for suffix of executables...

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes

checking for gcc option to accept ANSI C... none needed
checking how to run the C preprocessor... gcc -E

21

Chapter 2: Toolchains

checking for egrep... grep -E
checking for ANSI C header files... yes
configure: creating ./config.status

The configure script will automatically determine whether the necessary GNU tools are installed and
verify that they work by actually attempting to compile an extremely simple test program. You will learn
more about writing configure scripts of your own later in the book.

Your output may vary according to the specific environment on your workstation. If there are any errors
at this stage, there’s a good chance that you don’t have the appropriate tools installed on your system.
Many Linux distributions no longer install the full GNU Toolchain as part of their installation process, so
it will be necessary for you to install whatever development tools are missing. Usually, a vendor pro-
vides a “Development” option during installation, which results in the correct tools being installed (but
see the Introduction for more details on getting an appropriately configured base Linux system).

Building the Sources

22

The README file supplied with the example source code gives you an overview of the purpose of the
example code. It then refers to the more detailed INSTALL file, which describes how to actually build
and install the example sources on your workstation. As with all Linux software, the documentation
also explains how to remove the software, should it not be required any longer.

You can build and test the example code using the following commands:

$ cd src

S make

$./hello
Hello, World!

As with most UNIX-like systems, the majority of software on Linux is built under the control of GNU
make. This handy utility reads in a Makefile and uses it to determine which sequence of commands
must be called and in what order to produce a working program from the given source code (stored
within the src subdirectory of the example sources). GNU make understands how to build the majority
of simple executables with very few specific instructions, although it is not infallible.

The exact sequence of commands to be called by make is determined by dependency information, which
is specified in the Makefile. In the example, a single source file named hello.c is automatically com-
piled into a single executable called hello, which you can then execute. Make allows various make tar-
gets to be specified, depending upon the desired action. For example, you can use the command make
clean or make distclean to clean up the source code that is ready for distribution to developers.

The example Makefile contains dependency rules such as these:
all: hello

hello: hello.c

Chapter 2: Toolchains

There is no need to tell GNU make how to compile the hello.c source into an executable because it
already understands that a C source file dependency indicates a requirement that the appropriate invo-
cation of the GNU C compiler and other tools are necessary. In fact, GNU make supports a variety of
default file extensions, which it uses to determine default rules for various types of source code.

Makefiles may, in some cases, have been generated by another automated tool. This is often done as part
of the process used to generate configure scripts, in order to produce software that is widely portable
to a variety of different types of target Linux machines. The Makefile will then automatically use the spe-
cific GNU tools detected by the configure script and behave according to any additional options given
during the configuration process, for example using a specific cross-compiler to build software for a tar-
get running on a different processor architecture than that of your workstation.

The Free Software Foundation recommends that you always use such automatic configuration tools,
because they abstract away the complexities of building everyday Linux software applications. As a
result, you don’t need to know anything about the sources to build and use many Linux applications.
More important, the same should be true of those who want to build your application from source.

Components of the GNU Toolchain

The previous section introduced the almost universal “configure, make” sequence for building most
Linux software. As you can see, by using GNU Autoconf and GNU make in the appropriate combination
it is possible to build an application from source by using just a couple of commands. You will discover
later in the chapter how you can streamline the entire process by using a graphical development envi-
ronment such as Eclipse to reduce the entire build cycle to a single button click.

Automation is an important part of software development because it both streamlines repetitive build
cycles and improves reproducibility by removing potential to make mistakes. Many developers (the
authors included) have learned the hard way how important it is to always make building Linux soft-
ware as simple as possible, after wasting whole days debugging nonexistent “bugs,” which turned out
actually to be side effects from having too complex a build process to contend with.

While you should always endeavor to use the automation tools at hand, it is not good programming
practice to rely solely on them. It is important to have at least an overview of the individual parts of the
GNU Toolchain so that you can correctly handle situations in which the tools are unable to help you.
Therefore, the remainder of this chapter will focus on the individual tools behind the build process, tak-
ing you through what each tool does and how it fits into the overall GNU Toolchain.

The GNU Compiler Collection

The GNU Compiler Collection (formerly the GNU C Compiler) began life back in 1987. Richard
Stallman, the founder of the GNU Project, wanted to create a compiler that satisfied his recently defined
notion of Free Software and could be used to build other software released the GNU project. The GNU C
compiler quickly became popular among the free software community and has become famous over the
years for its robustness and portability. It serves as the basis of a number of integrated development
tools that have been released by vendors around the world for both Linux and other operating systems.

23

Chapter 2: Toolchains

GCC is no longer a small C compiler used primarily by the GNU project for its own software. Today;, it
includes support for many different languages —including C and C++ but also Ada, Fortran, Objective
C, and even Java. Indeed, modern Linux systems can proudly boast support for a multitude of lan-
guages other than those supported directly by the GNU tools. The growing popularity of Perl, Python,
and Ruby as scripting languages, as well as the ongoing development of the mono portable C# imple-
mentation, has really served to dilute what it can mean to “program” for Linux, but that’s another issue
entirely.

This chapter concentrates on the uses of GCC as a C compiler. The Linux kernel and many other Free
Software and Open Source applications are written in C and compiled using GCC. Therefore, it is essen-
tial to have a level of understanding of the concepts covered by this chapter, even if you do not intend to
use GCC directly in your projects or if you are using GCC for a purpose other than compiling C source.
You should be able to take the general concepts covered in this chapter and apply them to other similar
language tools with a little help from their own documentation and third-party online resources.

In addition to its wide range of language support, GCC is a favorite for many developers because it has
been ported to such a wide range of available hardware targets (machines based upon differing proces-
sor architectures). The standard GCC release includes support for over 20 families of microprocessor,
including the Intel IA32 (“x86”) and AMD®64 processors used in many workstations and servers. GCC
also supports high-end SPARC and POWER /PowerPC processors, as well as an increasingly large num-
ber of specialized embedded microprocessors, used in Linux-enabled gadgets and other devices. If it’s
commercially available, GCC can probably compile code for it.

Compiling a Single Source File

24

As you have already discovered, the process of building software on Linux involves many different tools
that work together. GCC is a very flexible and powerful modern C compiler, but it is, at the end of the
day, just a C compiler. It is very good at parsing C source and churning out assembly language code for
a given processor family, but it is unable to actually produce working executable programs on its own
due to its lack of a built-in assembler or linker capable of targeting a given machine.

This design is quite intentional. Following the UNIX philosophy, GCC does one thing and does it well.
GCC supports a wide variety of different target processors, but it relies upon external tools to perform
the assembly and linking stages, which will result in compiled source code first being turned into object
code by an assembler and then being linked by a linker into a suitable container file that can actually be
loaded and executed by a particular family of Linux target machines.

GCC may not be able to produce a working executable program on its own, but it does understand
which additional GNU tools are usually necessary in order to actually achieve that. The gcc driver pro-
gram, which forms the front end to GCC, understands that a C source file must be assembled and linked
by the GNU assembler and linker tools and will by default perform these additional steps when you
give it a C source file to compile.

To test this out, you can create the infamous “Hello World” example:
/ *
* Professional Linux Programming - Hello World

*/

#include <stdio.h>

Chapter 2: Toolchains

#include <stdlib.h>

int main(int argc, char **argv)
{

printf ("Hello, World!\n");

exit (0);

}

You can compile and test this code, using the following commands:

S gcc -o hello hello.c
S ./hello
Hello, World!

By default, the gcc driver performs all of the steps necessary in order to compile the hello.c source
code into an executable program binary. This includes calling the actual C compiler (cc1), which forms
an internal part of GCC, as well as the external GNU assembler and linker tools that will actually pro-
duce executable code from the output of the GNU C compiler. For historical reasons, resulting executa-
bles are called a . out by default, but you will usually specify your own with the -o option to gcc, as
shown in the preceding code.

Compiling Multiple Source Files

Most applications are based upon many individual files of source code that are individually compiled
and then linked together to form the final executable program. This both simplifies development and
allows different teams to work on different parts of a project, while encouraging suitable code reuse.
Later in this book you will learn how the Linux kernel is formed from many hundreds of individual
source files and also how graphical GNOME desktop applications are built from many separate compo-
nents, but for the moment, begin by compiling two source files into a single program.

The gcc driver application not only understands how to compile individual source files into an exe-
cutable program but also can link together several different object files by appropriately invoking the
GNU linker on its behalf. GCC will do this automatically when given several object (. o) files as its input
arguments, resulting in a single executable output file. To test this, you can create a program formed
from two separate source files, which will be linked together into a single executable.

Start with a single file that contains a simple message-printing function, message. c:
#include <stdio.h>

void goodbye_world(void)
{

printf ("Goodbye, World!\n");
}

The goodbye_world function in this example forms a simple software library that can be used by other
source code. The function relies upon the standard print £ C library routine to actually perform the
necessary low-level IO to print a message onto a terminal. The C library will later be made available at
linking time. Since this code does not form a complete program (there is no main function), GCC will
complain if you attempt to compile and link it as you did in the previous example:

25

Chapter 2: Toolchains

26

$ gcc -o goodbye message.c
/usr/lib/gcc/i486-1inux-gnu/4.0.3/../../../../1ib/crtl.o: In function
‘_start':../sysdeps/i386/elf/start.S:115: undefined reference to ‘main'
collect2: 1d returned 1 exit status

It is, instead, necessary to instruct GCC not to perform any additional linking stages and to finish after it
has assembled the source file into object code with the aid of the GNU assembler. Since the linker is not
being executed in this case, the output object file will not contain the necessary information for a Linux
machine to load and execute this code as a program, but it will, instead, be linked into a program later on.

Compile the supporting library code using the -c flag to gcc:
gcc -c message.c

This will instruct the gcc driver program to call its internal C compiler and pass the output on to the
external GNU assembler. The resulting output from this process is a file named message. o that contains
compiled object code suitable for linking into a larger program.

To use the messaging function goodbye_wor1ld in a larger program, you can create a simple example
wrapper program, which contains a main function that calls goodbye_world:

#include <stdlib.h>
void goodbye_world(void) ;

int main(int argc, char **argv)
{

goodbye_world() ;

exit (0);

This file includes a declaration of the external message-printing function as a void function that takes no
parameters. As you know, such a declaration is necessary, since GCC would otherwise assume that any
undeclared external functions were of integer type and implicitly declare them as such. This might result
in unnecessary warnings during compilation. You will generally follow best practices and place these
definitions into your own header file, as you have likely have done previously.

You can compile this wrapper program using GCC:

gcc -c main.c
Now you have two object files, named message .o and main. o that contain object code capable of being
executed by your Linux workstation. To create a Linux executable program from this object code, you

will need to invoke GCC one more time to perform the linking stages for you:

gcc -o goodbye message.o main.o

Chapter 2: Toolchains

GCC recognizes the . o extension on object code and understands how to call the external GNU linker on
your behalf. Remember that GCC will name all executables a . out by default, so it is necessary to spec-
ify the desired name of the executable on the command line. Having successfully compiled and linked
multiple source files into a single executable, you can execute the program in the normal way:

. /goodbye
Goodbye, World!

The previous individual steps can also be reduced into a single command, since GCC has built-in knowl-
edge for compiling multiple source files into a single executable:

gcc -o goodbye message.c main.c
. /goodbye
Goodbye, World!

Using External Libraries

GCC is frequently used with external software libraries containing standard routines, which provide
much needed functionality for C programs running on Linux. This is a side effect of the design of the C
programming language as a feature-light language that relies on certain standardized external library
routines to perform even basic activities, such as I/O to and from a file or a terminal display window.

Almost every single Linux application relies on routines provided by the GNU C library, GLIBC. This is

the library that supplies basic I/O routines such as printf as well as the exit function used in the pre-

vious example, which is used to request that the Linux kernel terminate the program under normal con-
ditions (in fact, functions like exit will be called whether you explicitly request them to be run or not—
but there is more on that later in the book when looking at the Linux kernel).

As you will learn in later chapters, the GNU C library forms a thin layer on top of the Linux kernel and
provides many useful routines, which would be more expensive (in terms of code efficiency and added
complexity) if they were provided by the Linux kernel itself. In fact, GCC will assume that GLIBC is to
be included in your programs by default in any compilation you ask it to perform. This inclusion hap-
pens at the linking stage, so it is still necessary for you to add any library header files to your application
sources that may provide prototype definitions for library functions themselves.

The special treatment given to the GNU C library comes as a result of its almost universal usefulness
and the fact that few applications would function without it. Although it is unusual to compile source
code without GLIBC, it is indeed possible to do so. In fact, the Linux kernel doesn’t use GLIBC at all,
since GLIBC relies on the Linux kernel to perform various services on its behalf! The kernel instead con-
tains its own simplified implementations of many standard C library functions.

You can create your own software libraries for use with Linux applications by following some simple
guidelines, which are explained here. Begin by creating a simple program, trig.c, which will compute
various trigonometric values from an angle specified in radians:

/*
* Professional Linux Programming - Trig Functions

*/

#include <stdio.h>
#include <stdlib.h>

27

Chapter 2: Toolchains

#include <math.h>
#define MAX_ INPUT 25

int main(int argc, char **argv)
{
char input[MAX_INPUT];
double angle;

printf ("Give me an angle (in radians) ==> ");

if (!fgets(input, MAX_INPUT, stdin)) {
perror ("an error occurred.\n");

}

angle = strtod(input, NULL);

printf("sin(%e) = %e\n", angle, sin(angle));
printf ("cos(%e) = %e\n", angle, cos(angle));
printf("tan(%e) = %e\n", angle, tan(angle));
return 0;

This program relies upon external math functions provided by the system math library (which is
shipped as part of the GLIBC package on Linux systems —but that’s incidental to the point that it isn’t
included automatically in every regular application you compile using GCC). Thus, it is necessary to
instruct GCC to include the external library in its search for library functions at link time:

gcc -o trig -lm trig.c

Note the -1m option given to GCC, which tells it to look in the system-supplied math library (libm).
System libraries on Linux and UNIX systems usually begin with the “lib” prefix, so its presence is
assumed. The actual library location will vary from system to system, but it typically lives in /1ib or
/usr/1lib, along with many hundreds of other necessary system libraries you may use later.

Shared vs. Static

28

Libraries on Linux systems come in two different varieties, shared and static. The latter are a holdover
from the olden days of UNIX, when all software libraries were statically linked against code that used
routines from those libraries. Every time an application is compiled against a statically linked library, the
code for any referenced library routine is included directly in the resulting program binary. This results
in very large application executables because each one contains a duplicate of standard routines.

Modern Linux (and UNIX) systems use a shared library approach in most cases. Shared libraries contain
the same routines as their static counterparts, but those routines are not directly inserted into every pro-
gram that is linked against them. Instead, shared libraries contain a single, global version of each library
routine, which is shared between all applications. The mechanics behind the process are quite complex
but rely upon the virtual memory capabilities of modern computers, allowing physical memory contain-
ing library routines to be shared safely between multiple independent user programs.

Chapter 2: Toolchains

Shared libraries not only reduce the file size and in-memory footprint of Linux applications, but they
also actually increase system security. In today’s world, new security vulnerabilities in software are dis-
covered daily and fixes come out just as quickly. When security problems exist in system libraries, large
numbers of applications can suddenly become a security nightmare. By using shared library resources as
much as possible, you can help to ensure that your software is up to date by removing the need for your
application to be rebuilt—a global library update automatically corrects your application, too.

As a further benefit of using shared libraries, a single shared library being used by many different pro-
grams simultaneously is more likely to remain loaded in memory and available immediately when it is
needed rather than sitting in a swap partition on a disk. This can help to further reduce the load time for
some of the larger Linux applications available today.

An Example Shared Library

Creating a shared library is a relatively straightforward process. In fact, you can recompile the previous
multiple source file example to use a shared library instead of statically linking the different source files
into a single executable. Since shared libraries are used by many different applications at the same time,
it is necessary to build shared library code in such a way that it can be used in a “position-independent”
way (that is, it can be loaded at any memory location and it will still execute).

Recompile the message. c source using the -£PIC option to GCC:
gcc -fPIC -c message.c

The p1C command line flag tells GCC to produce code that does not contain references to specific mem-
ory locations for functions and variables, since it is not yet possible to know where the message code
will be linked into the memory address space of any application that uses it. The message . o output file
is thus capable of being used in a shared library, which GCC is able to create by specifying the conve-
nient -shared flag to the gcc driver command:

gcc -shared -o libmessage.so message.o

You can use the shared library with the wrapper main. ¢ program from the previous message example.
Rather than linking the message-printing routine into the resulting goodbye executable, you can instruct
the GCC to inform the linker that it is to use the 1ibmessage. so shared library resource instead:

gcc -o goodbye -lmessage -L. main.o

Notice the -1message flag is used to inform the GCC driver program that a shared library called
libmessage. so is to be referenced during linking. The -L. flag informs GCC that libraries may be
located within the current directory (the directory containing the program sources), as the GNU linker
will otherwise look in the standard system library directories and (in this case) find no usable library.

Any shared library you build could be used just like any other library installed on your Linux system,
although it must be installed in the correct place to make any such use fully automatic. The runtime
dynamic linker/loader provided on modern Linux systems - 1d-1inux—which is automatically
invoked whenever an application using shared libraries is loaded — expects to find libraries in the stan-
dard system locations under /1ib and /usr/1ib (although this could also be overridden using the

29

Chapter 2: Toolchains

/etc/1d.so. conf configuration file on many systems). When you ship your application, you will
install any necessary libraries within a location automatically searched by the runtime as part of soft-
ware installation. Depending upon the system, it may be necessary to then re-run 1dconfig.

To discover which libraries are required by a particular application, you can use the 1dd command. 1dd
searches the standard system library paths and shows which library versions would be used by a particu-
lar program. Trying this with the above example yields:

S 1dd goodbye
linux-gate.so.l => (0xffffe000)
libmessage.so => not found
libc.so.6 => /lib/tls/libc.so.6 (0xb7e03000)
/1lib/1d-1linux.so0.2 (0xb7£59000)

The 1ibmessage. so library file cannot be found in any of the standard search locations and the system
provided configuration file /etc/1d. so. conf does not contain an additional override entry for the
directory containing the 1ibmessage. so library. Therefore, running the program will yield the follow-
ing output:

$./goodbye_shared
./goodbye_shared: error while loading shared libraries: libmessage.so: cannot open
shared object file: No such file or directory

Rather than modify your standard Linux system settings or install the 1ibmessage. so library into one
of the system library directories just for testing an example, it is possible to instead set an environment
variable, LD_LIBRARY_PATH, which will contain additional library search locations. The runtime linker
will then search the additional path for libraries that are not in the standard location.

You can run the example code by first setting a suitable LD_LIBRARY_PATH:

$ export LD_LIBRARY PATH=pwd’
$ 1dd goodbye_shared
linux-gate.so.l => (0xffffe000)
libmessage.so => /home/jcm/PLP/src/toolchains/libmessage.so (0xb7£5b000)
libc.so.6 => /lib/tls/libc.so.6 (0xb7e06000)
/1lib/1d-1linux.so0.2 (0xb7£5e000)
$./goodbye
Goodbye, World!

GCC options

30

GCC has a myriad of command line option flags that can be used to control almost every aspect of the
compilation process, as well as the operation of any external tools that may be relied upon. You won’t
normally specify more than a handful of these options when compiling your applications. You will,
however, quickly become accustomed to the various debugging and warning options GCC makes avail-
able to you as you use it in your own projects.

Chapter 2: Toolchains

GCC options are grouped into various categories:

0 General options
Language options
Warning levels
Debugging

Optimization

U 00 oo

Hardware options

General Options

General options include the output name of any executable file produced by GCC as well as whether
GCC will complete the build process or terminate after it has performed the basic compilation. You have
already seen how you can instruct GCC to perform only compilation and assembly (without linking) by
specifying the -c flag on the command line. It is also possible to specify an -s flag, which will cause
GCC to stop after the compilation proper and emit assembly language code as output.

Language Options

Language-specific options allow you to control GCC’s interpretation of the relevant language standards
for the current source language in use. In the case of C, GCC by default uses its own variant of ANSI C
(GNUB89 or GNU99), which supports some relaxed conventions that are popular among programmers
but which may not strictly conform to the official C89 or C99 language specifications. You can override
the language behavior through these language-specific options. Several of the more common options
are:

-ansi This disables certain GCC features that are incompatible with the C90
specification, such as the asm and typeof keywords (more about those
later in the chapter).

-std Specifying -std=c89 will instruct GCC to work to the C89 ANSI C speci-
fication. The default of gnu89 includes various GNU extensions to the C89
standard. More recent releases of GCC support c99 and gnu99 as language
variants here.

-fno-builtin GCC by default includes built-in versions of common functions like mem-
cpy and even print£, which are more efficient than those present in
external libraries. You can disable these built-in versions from being used
by specifying this option.

You will usually not need to alter language options except in extreme cases (for example, if you are writ-
ing your own C library) or where you are running language verification testing of your own.

31

Chapter 2: Toolchains

Warning Levels

GCC provides a variety of warning levels that can help to track down certain types of bad programming
practices or help warn you if you are potentially misusing language features that you instructed GCC
not to make available to your program. Several of the more common warning options are:

-pedantic This instructs GCC to strictly interpret the relevant C standards and provide a
warning about programs that do not conform to the standard in use. A related
option, --pedantic-errors will force these warnings to result in an error dur-
ing compilation.

-Wformat This is one of many related options that will instruct GCC to look at individual
function calls to determine whether they are likely to result in runtime prob-
lems. -wWformat will look for incorrect uses of the print £ family of functions,
while -Wformat-security will issue a warning about some potential security
vulnerabilities.

-Wall This enables a wide variety of warning options and can result in verbose output.

You will generally benefit from getting into a habit of using the -wall option when compiling your own
programs. Additionally, the authors recommend that you also consider using -pedantic-errors wher-
ever possible, as this will help to isolate many common problems before they occur, while at the same
time helping to ensure that your code is as close to standard compliant as possible.

An example compilation, with extra options is:

gcc -o hello -Wall -pedantic-errors hello.c

Debugging

GCC provides a variety of options that are necessary to facilitate the debugging of your application, as
you will discover later in the chapter. Chief among these is the -g option, which will include debugging
information within a suitable debugging data section of the application executable. This information can
be used by GDB in order to perform source-level debugging and to facilitate other more advanced forms
of debugging mentioned later in the book.

To build the previous application with useful debugging information as well as suitable warnings
enabled during the compilation, you can use the following command:

gcc -g -o hello -Wall -pedantic-errors hello.c

Optimization

32

GCC is capable of performing various optimizations on the code that it compiles. The options available
include numeric optimization levels -O0 through -O3, which vary from no optimization through to
instructing GCC to perform the most aggressive optimizations possible. Each of these numeric levels
results in a variety of additional options being enabled or disabled, depending upon the level specified.

Chapter 2: Toolchains

Optimization doesn’t come at zero cost. It often greatly increases compilation time and the memory
resources required by the compiler during the compilation process. It also doesn’t guarantee not to actu-
ally increase the size of the resulting executable, since often unrolling loops and functions so that they
are repeated inline, rather than making function calls, results in a significant performance gain. Should
you wish to do so, size optimization can be requested by using the additional -0s option flag.

Note that some optimization can be necessary. GCC will not by default inline functions! (more on this
later in the chapter) unless it is called with an appropriate set of optimization flags. This can cause prob-
lems when building Linux kernels if you choose to reduce the optimization level in use. One reason to
actually reduce the optimization level is to avoid having GCC reorder instructions for more efficient exe-
cution on modern processors. While, otherwise beneficial, instruction reordering can make some debug-
ging much harder, especially with very large and complex programs like the Linux kernel.

Hardware Options

GCC is an extremely portable C compiler, which supports a wide variety of different hardware targets. A
hardware target is a type of machine and is characterized by the particular family of microprocessor
installed within it. Your workstation may well be based upon an Intel-compatible processor, which
comes in a variety of different models, each with different capabilities. When you compile code, your
version of GCC will, by default, target the processor model that was configured by your distribution
vendor.

In the case that you are compiling code solely for use on your own computer (or machines which are of a
similar persuasion), there is no need to override any hardware options in order to build code that will
execute quite successfully. The situation changes when you use cross-compilers or otherwise wish to
build code that will execute on a machine that substantially differs from your own.

Depending upon the hardware in use, some or all of the following options may be available:

-march Instructs GCC to target a specific model of CPU and emit generated
code, which includes instructions specific to that model.

-msoft-float Instructs GCC not to use hardware floating point instructions and
instead to rely upon library calls for floating point arithmetic. This is
most commonly used when building software for embedded devices
without hardware floating point support.

-mbig-endian Specify whether the hardware target operates in big or little endian

-mlittle-endian mode. This only applies to specific types of target processor (such as the
PowerPC), which can either function in or is available in both configura-
tions. Most Intel CPUs are little endian.

-mabi Some processors can support a variety of different Application Binary
Interfaces (ABIs), which may require you to specify a nondefault ABI
version. A similar situation arises (with differing options) when a pro-
cessor family supports both 32- and 64-bit variants and there is a need to
specify this at build time.

Inlining a function means to literally insert the executable code of a called function inline in place of
a function call. Since a function call is not made, there is no need to undergo the overhead of making
a function call, especially when calling very small functions.”

33

Chapter 2: Toolchains

As a side note, some developers (and a growing number of enthusiasts with aspirations to squeeze every
last bit of performance out of their machines) will use GCC hardware option flags to override the default
processor target or set other options specific to their local CPU model. In such cases, they are seeking to
get maximum performance from their locally compiled applications, but portability to other machines

is reduced. This is not a problem if you never intend to distribute your application or if you are an
Embedded Linux developer who is seeking to take advantage of every last possible hardware perfor-
mance optimization.

Further Documentation

Full documentation covering the range of available GCC options can be found in the online help in your
local GCC installation. To view the GCC documentation, you can use the Linux man command or the
GNU info utilities from within any terminal window. The older-style man pages contain an overview of
possible command options, which you can view by typing:

man gcc

The Free Software Foundation generally discourages all new use of man pages in its own projects and
instead recommends the GNU info system, which it considers to be more flexible. You can view the
extended documentation available via GNU info by using the following command:

info gcc

The GNU binutils

The GNU GCC is a visible and fairly obvious part of any Linux development environment, but it is
heavily reliant on a number of external tools to actually carry out any useful work on the behalf of a
Linux developer. Many of those external tools are provided by the GNU binutils, a collection of utilities
for producing and manipulating binary application code in Linux.

Each of the binutils has a specific purpose and performs one task very well, following the standard
UNIX philosophy. Some have more obvious uses than others, but each is necessary in order to build
large and complex software projects such as the Linux kernel, and all are relied upon every day by thou-
sands of developers, many of whom may not even realize it. Even if you won't actually use these tools
directly, it is important that you are aware of them and their general function.

The GNU Assembler

The GNU assembler —as —is perhaps the most natural counterpart to the GNU Compiler Collection. It
is responsible for turning compiled C code (which is expressed in assembly language form) into object
code that is capable of execution on a specific target processor. GNU as supports many different families
of microprocessors, including the Intel IA32 (most people refer to this as “x86”) family commonly used
on Linux workstations.

The version of GNU as installed on your workstation by your Linux vendor will come preconfigured to
target the specific family of processor on which your system is based, although it is also possible to have
other configurations installed (see the later section on cross-compilation for more information).
Whatever the configuration of the installed assembler, it should behave similarly on all platforms.

34

Chapter 2: Toolchains

You can experiment with the assembler by instructing GCC to emit assembly code for the previous Hello
World example and then assembling that into executable object code. To produce some example assem-
bly code, specify the -s option flag when compiling the hello.c source:

gcc -S hello.c

GCC will emit an assembly language version of your program in the hello. s file. Here is the output
generated by GCC 4.0 running on an Intel workstation:

.file "hello.c"

.section .rodata
.LCO:

.string "Hello, World!"

.text
.globl main

.type main, @function
main:

pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

movl $0, %eax

addl $15, %eax
addl $15, %eax

shrl $4, %eax

sall $4, %eax

subl %eax, %esp

movl $.LCO, (%esp)

call puts

mov1l $0, %eax

leave

ret

.size main, .-main

.ident "GCC: (GNU) 4.0.3 20060115 (prerelease) (Debian 4.0.2-7)"
.section .note.GNU-stack, "", @progbits

You don’t need to understand every line of this assembly language listing in order to learn a few inter-
esting things about using GNU as on Linux. There are plenty of good references for Intel assembly lan-
guage programming on Linux, including Professional Assembly Language (also Wrox), as well as the
many other architectures for which one can write assembly language code using Linux.

In the assembly listing, notice how the source is divided into multiple sections using the.section com-
mand. Each of these sections will later form a separate part of the executable code used by the program,
determined by the GNU linker and its associated linker script. Global symbols are marked in the assem-

bly language, and it includes calls to external library functions, such as puts:

call puts

35

Chapter 2: Toolchains

The puts function is provided by the GNU C library. This function is not a part of the program, but it
will be made available to the program if it is later linked against the standard system libraries, for exam-
ple when the GNU linker is called in order to produce a runnable executable program file.

You can compile the hello. s source code using the GNU assembler as follows:
as -o hello.o hello.s

This produces a file, hello. o, which contains executable object code for the assembly source file speci-
fied. Note that you cannot actually run this file on your own Linux workstation because it has not been
processed by the GNU linker and so does not contain additional information that is required by any
Linux system when it attempts to load and begin executing your application on your behalf.

The GNU Linker

Linking is an important stage in the production of working executable programs on Linux. To build an
executable, source code must first be compiled, assembled, and then linked into a standard container
format that is understood by the target Linux system. On Linux and modern UNIX/UNIX-like systems,
this container format is the ELF or Executable and Linking Format, and it is the file format of choice for
both compiled object code and applications. It is also the format of choice for GNU Id.

Linux applications are stored in ELF files composed of many sections. These include code and data sec-
tions for the program itself and also various metadata concerning the application itself. Without the
appropriate linking stages, an executable does not contain sufficient additional data needed by the Linux
runtime loader to successfully load and begin execution. Although the program code may physically be
present within a particular file of object code, this is not sufficient for it to be in any way useful.

In addition to churning out executable programs that can be run on Linux systems, the linker is also
responsible for ensuring that any necessary environmental setup code is located at the correct location
within every executable that must be loaded and run on a Linux target machine. In the case of code com-
piled with GNU C, this startup code is contained within a file known as crtbegin. o (contained within
your installation of GCC) that is automatically linked into an application when it is built. A similar file,
crtend. o, provides code that handles a clean exit when your application terminates.

Operation of the Linker

The GNU Linker follows a series of prewritten commands known as a linker script as it processes vari-
ous files of object code and produces whatever output has been requested of it. Your workstation already
has several of these installed in a directory such as /usr/1ib/1ldscripts, each of which is used by 1a
when it needs to create a particular type of Linux executable file. Take a look at the scripts installed on
your own system for an example of the hidden complexity behind every Linux program.

You will not normally need to invoke the GNU linker — 1d— directly when producing regular applica-
tions with GCC. Its operation is complex and ultimately determined by the specific version of GCC
installed as well as the location and version of various external software libraries. You will need to
understand how the linker uses linker scripts if you wish to modify the in-memory layout of a Linux
kernel, which you might do if you were creating your own version of Linux for your own hardware.

You will learn more about the uses of the linker by the Linux kernel later in this book.

36

Chapter 2: Toolchains

GNU objcopy and objdump

GNU binutils includes several tools that are specifically designed to manipulate and transform binary
object code from one format into another. These tools are known as objcopy and objdump and are heav-
ily relied upon during the build phases of much of the low-level software used on your Linux machine
and even during some regular application debugging.

The objcopy tool can be used to copy object code from one file into another, performing a variety of
transformations in the process. Using objcopy, it is possible to automatically convert between different
object code formats as well as to manipulate the contents in the process. objdump and ob3jcopy are both
built on the extraordinary flexible bfd binary manipulation library. This library is used by a whole host
of handy utilities designed to manipulate binary object files in any which way imaginable.

The objdump tool is designed to make it easy to visualize the contents of an executable and perform a
variety of tasks to make that visualization process easier. Using objdump, you can examine the contents
of the Hello World example code used earlier in this chapter:

S objdump -x -d -S hello

The accompanying command switches instruct objdump to display all headers within the hello binary,
to attempt to disassemble the contents of any executable sections, and to intermix the program’s source
code with its disassembly. The last option will only yield readable output under certain circumstances. It
is generally necessary to have built the source with full debugging information (using the -g GCC com-
mand switch) and without any GCC instruction scheduling optimizations (for added readability).

The output produced by objdump may be similar to the following. Here, you can see an objdump of the
headers of the Hello World example on a PowerPC platform running Linux:

hello: file format elf32-powerpc

hello

architecture: powerpc:common, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED

start address 0x100002a0

Program Header:
PHDR off 0x00000034 vaddr 0x10000034 paddr 0x10000034 align 2**2
filesz 0x00000100 memsz 0x00000100 flags r-x
INTERP off 0x00000134 vaddr 0x10000134 paddr 0x10000134 align 2**0
STACK off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**2
filesz 0x00000000 memsz 0x00000000 flags rwx

Dynamic Section:

NEEDED libc.so.6

INIT 0x10000278
FINI 0x100007ac
HASH 0x10000164
PLTGOT 0x100108fc

Version References:

37

Chapter 2: Toolchains

required from libc.so.6:
0x0d4696910 0x00 02 GLIBC_2.0

Sections:
Idx Name Size VMA LMA File off Algn
0 .interp 00000004 10000134 10000134 00000134 2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA
5 .gnu.version 0000000a 10000228 10000228 00000228 2**1
CONTENTS, ALLOC, LOAD, READONLY, DATA

9 .init 00000028 10000278 10000278 00000278 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

10 .text 0000050c 10000220 100002a0 000002a0 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

11 .fini 00000020 100007ac 100007ac 000007ac 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

The ELF header indicates that this is a 32-bit PowerPC object file. Since Linux is a portable operating
system, examples in this book are written and tested on various different Linux platforms, such as
PowerPC. ELF too is a cross-platform binary standard, so there’s no mention of Linux in the objdump
output. In theory, you could attempt to run this code on any PowerPC operating system conforming to
the same ABI and capable of loading an ELF file and its libraries.

Output from objdump can also include a full disassembly of the application source code, if the code was
compiled using the -g debugging flag on the gcc command line. Here’s part of the objdump output
from an IA32 (x86) Linux workstation, showing the disassembly and source code for the main function:

int main(int argc, char **argv)

{

8048384: 55 push %ebp

8048385: 89 eb mov %esp, sebp
8048387: 83 ec 08 sub $0x8, $esp
804838a: 83 ed f0 and SOxfEfff£f£f0, $esp
804838d: b8 00 00 00 00 mov $0x0, $eax
8048392: 83 c0 Of add S$0xf, $eax
8048395: 83 c0 Of add $0xf, $eax
8048398: cl e8 04 shr $0x4, $eax
804839b: cl e0 04 shl $0x4, $eax
804839%e: 29 c4 sub %eax, sesp

printf ("Hello, World!\n");

80483a0: c7 04 24 e8 84 04 08 movl $0x80484e8, (%esp)

80483a7: e8 fc fe ff ff call 80482a8 <puts@plt>
return 0;

80483ac: b8 00 00 00 00 mov $0x0, $eax

}

80483bl: c9 leave

80483b2: c3 ret

38

Chapter 2: Toolchains

The mechanics of ELF files are beyond the scope of this book, but you should at least be familiar with
the objdump tool if you really want to understand the layout of a Linux application binary. There are
many more usage examples in the objdump documentation as well as online. The output from objdump
can be used to aid in certain debugging processes or viewed out of curiosity. You will learn later that
GDB can provide similar information, but sometimes (albeit rarely) GDB isn’t there to save the day.

GNU Make

As has been previously noted, the majority of software that is built on Linux machines is built using the
GNU Make software. GNU Make is essentially a simple dependency tracker tool, which is able to follow
a series of rules that determine the individual actions that must be performed on individual source files
within a larger project. You saw a couple of simple Makefile rules earlier in this chapter when you
learned about the various other build tools that make up the GNU Toolchain.

Here is a more complex Makefile, which can be used to build the examples given so far:
Makefile to build Toolchains examples
CFLAGS := -Wall -pedantic-errors
all: hello goodbye trig

clean:
-rm -rf *.o0 *.so hello goodbye trig

hello:
goodbye: main.o message.o

trig:
$(CC) S$(CFLAGS) -1lm -o trig trig.c

The Makefile defines a series of rules for possible targets. These include rules for actually building the
three individual examples (Hello, Goodbye and Trig), as well as a rule that defines how the sources can
be cleaned prior to their distribution to other developers. A rule is defined using a named tag followed
by a colon and then a separated list of dependencies, which must first be satisfied in order to consider
the result a success. A rule may be followed by detailed commands in the case that make can’t automati-
cally determine how to do what is being asked of it through the rule alone.

GNU Make rules vary from trivial source file dependencies to complex hierarchies of other dependen-
cies, but they can always be broken down into simple sequences of commands. In addition to individual
rules, make supports defined variables, conditionals, and many other features one might expect from a
regular programming language. GNU Make also understands many standard variables, such as
$CFLAGS, the flags that will be passed to the C compiler, $CC (set to gcc by default).

Within the example Makefile, the default action (all) is to attempt to build each of the three examples —

Hello, Goodbye, and Trig —by using the specific rules given for each one. In the case of hello, there are
no dependencies given, so make will automatically assume that it has to compile the hello.c source

39

Chapter 2: Toolchains

into an executable of the name hello. In the case of goodbye, make will automatically compile the two
dependencies before linking them together into a single resultant executable program.

The build process for the Trig example is a little different. In this case, no dependencies are specified fol-
lowing the trig rule, but a compiler command is given on the line following the empty rule. GNU Make
will instead execute this as a shell command, substituting the variable expansions given in brackets.
Thus $ (cC) becomes gcc, and $ (CFLAGS) is expanded into the flags specified at the start of the
Makefile. Note that it is necessary to include both CFLAGS and cC when such an explicit command is
given.

You can find more information about Make rules and how to use GNU Make by reading the online doc-
umentation installed on your local workstation or on the Free Software Foundation website. Better yet,
download a large Free Software project and take a look at the Makefiles it uses —you’ll quickly come to
understand the complex rulesets that can be built using GNU make.

You can find out more about the design and implementation of the ELF file format and the operation of
standard tools, such as the GNU linker in the humor-packed book Linkers and Loaders by John R. Levine
(Morgan Kaufman, 2000).

The GNU Debugger

The GNU debugger (GDB) is one of the most powerful tools in a Linux developer’s toolbox. Not only is
GDB a flexible tool used by thousands of people every day, but it is also one of the most ubiquitous
debuggers around. This is, in part, due to the number of vendors who choose to reuse GDB in their
products rather than reinvent its capabilities from scratch. No matter where you buy your tools from, it’s
very likely there’s some form of GDB inside.

GDB comes as a standalone software package and is usually installed as part of any development tools
included in modern Linux distributions. Starting out with GDB is pretty simple — take the trigonometry
program as a simple example. You can debug the application by running it under gdb, using the follow-
ing command (be sure the program was built using the -g debugging symbol’s gcc flag):

S gdb trig

GNU gdb 6.3

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-linux"...Using host libthread_db library
"/lib/tls/libthread_db.so.1".

(gdb)

GDB presents its default prompt and waits for your commands. Begin by using the 1ist command to
view some source code context for this debugging session:

40

Chapter 2: Toolchains

(gdb) list

8 #include <math.h>

9

10 #define MAX_INPUT 25

11

12 int main(int argc, char **argv)
13 {

14 char input[MAX_INPUT];
glley

16

17 printf ("Give me an angle (in radians) ==> ");

The program is not running at this point, but you can change that by using the run command. Before
running a program under gdb, however, it is a good idea to insert at least one breakpoint into the code.
This way, GDB will stop the program when it reaches a particular line in the source and allow you to
perform any interrogation that may be necessary to aid your debugging. It is customary to insert the first
program breakpoint at entry to the main function and then at other points of interest in the program.

Insert a breakpoint into the example code and run it as follows:

(gdb) break main

Breakpoint 1 at 0x8048520: file trig.c, line 17.

(gdb) run

Starting program: /home/jcm/PLP/src/toolchains/src/trig

Breakpoint 1, main (argc=1, argv=0xbfd87184) at trig.c:17
printf ("Give me an angle (in radians) ==> ");

GDB will breakpoint on the first instruction of the main function within the trig program, in this case
located on line 17 of the source file trig.c. At this point, the 1ist command can be used to show the
surrounding lines within the main function, in addition to the single call to printf already automati-
cally displayed by GDB when the breakpoint is hit. Each line of code may be executed in single steps by
using the step and next commands — the former stopping after each machine instruction; the latter
performing similarly, but skipping over calls to external subroutines.

Test this by skipping over the calls to printf and stopping after the user has entered an angle on the
command line:

(gdb) next

18 if (!fgets(input, MAX_INPUT, stdin)) {
(gdb)

Give me an angle (in radians) ==> 3.14

angle = strtod(input, NULL) ;
GDB stops the program before it can call the library function strtod () to convert a string into a double

floating point number. You can visualize the value of the angle variable both before and after this func-
tion is called by using the GDB print command:

41

Chapter 2: Toolchains

(gdb) print angle

$1 = -4.8190317876499021e-39

(gdb) next

23 printf("sin(%e) = %e\n", angle, sin(angle));
(gdb) print angle

$2 = 3.1400000000000001

By default, program input and output is performed to the same terminal through which you enter com-
mands to GDB. You can change this by using the tty command within GDB to redirect 1O to a specific
Linux terminal. For example, within a graphical desktop environment, you may debug an application in
one X terminal window and have its input and output passed to another. Find the terminal number of
an appropriate X terminal by using the identically named tty command.

Finally, you can allow the program to continue until it terminates (or hits another breakpoint) by using
the continue command, also shortened to just c:

(gdb) c
Continuing.
sin(3.140000e+00)
cos (3.140000e+00)
tan(3.140000e+00)

1.592653e-03
-9.999987e-01
-1.592655e-03

Program exited normally.

If at any time while you're using GDB need some help, just type “help” and you'll be presented with a
choice of help, split into various sections, depending upon the class of command:

42

(gdb) help
List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points
data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of commands in that class.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.

Chapter 2: Toolchains

Another frequent use of GDB is in debugging program core dumps — crash files containing the state of
an application when it crashed, which can be used to ascertain the circumstances of the crash —in much
the same way that airplane black box recorders are used following an incident. These core files are auto-
matically generated by Linux whenever an application does something untoward that forces Linux to
cause the program to terminate — typically, in the case of an illegal access to memory or in a deference of
a null pointer somewhere within the program.

Your chosen Linux distribution may not create core (crash dump) files by default. In this case, it may be
necessary to instruct your system to do so — consult your vendor’s documentation for details.

The Linux kernel itself presents a constantly updated view of its internal state via a read-only file in
/proc known as /proc/kcore. It is possible to use gdb with this fake core dump in order to obtain
some limited information about the current state of your Linux workstation. For example, you can view
the current time as seen by the Linux kernel, in terms of system timer ticks, since the system booted, as
follows:

sudo gdb /lib/modules/ uname -r /build/vmlinux /proc/kcore

GNU gdb 6.3-debian

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-linux"...Using host libthread_db library
"/1lib/tls/libthread_db.so.1".

Core was generated by “BOOT_IMAGE=linux ro root=303'.
#0 0x00000000 in 2?2 ()

(gdb) print jiffies

$1 = 72266006

Since the value of jiffies is cached at the time you invoke GDB, attempting to redisplay the value will
yield the same result — try restarting GDB again in order to verify that the value has changed.

This GDB hack relies on a symbolic link within /1ib/modules from the current kernel version to the
directory that was used to build it, and instructs GDB to use the fake core file image exported through
/proc/kecore. If you didn’t build the kernel running on your workstation, you won'’t be able to run
this command because you will have no vmlinux £ile at hand. There is more on building and debug-
ging the Linux kernel later in this book.

GDB is capable of many more commands than have been briefly introduced in this chapter. Indeed, to
fully cover the functionality contained within GDB would require a great deal more space than is avail-
able in a book such as this. You are encouraged to experiment with GDB yourself, though it will be used
throughout the rest of this book whenever the need arises.

43

Chapter 2: Toolchains

The Linux Kernel and the GNU Toolchain

The GNU Toolchain is used by countless software projects around the world, but few of these singularly
exercise as much functionality within the tools as does the Linux kernel. As you will discover later in the
book, the Linux kernel heavily relies upon many language extensions present in GCC as well as GNU
extensions available within numerous other common system tools. It is theoretically possible to build the
Linux kernel without relying upon the GNU Toolchain, but this is seldom done in practice.

Inline Assembly

44

Low-level Linux kernel code makes frequent use of an extension present in the GNU C compiler to sup-
port inline assembly code. Literally, this is assembly language code, which is inserted inline within the
regular C functions that make up the bulk of the kernel. Although the kernel aims to be as portable as is
possible —and thus is written mostly in platform-independent C code —some operations can only be
performed using machine-specific instructions. Inline assembly helps to make this a clean process.

Here is a simple example C function, which contains some inline assembly language code:

void write_reg32 (unsigned long address, unsigned long data) {

__asm__ _ volatile ("stw %0,0(%1); eieio"
: // no output registers here
"r" (data), "r" (address));

}

This function takes two parameters —an address and some data. The PowerPC assembly language fol-
lowing the __asm__ attribute tag stores the data passed to the function at the address in memory that has
been specified and finishes up with a special machine-specific instruction (eieio) that forces the hard-
ware to commit whatever value has been written out to some hardware device. The __volatile _tag
tells GCC not to attempt to optimize the example code because it must execute exactly as it is written.

The example code requires a few machine-specific processor registers to contain the data and address
variables before the assembly language code can be executed. Note how the r flag indicates in the exam-
ple that the data and address variables will only be read and not updated by the inline assembly lan-
guage code fragment. In the case that the inline assembly language command were to changes its input
registers, these could be marked with a w so GCC knows those registers will be clobbered.

You don’t need to worry about the specifics of the assembly language in this example, but be aware of
the format used for inline assembly in general:

__asm__ (Machine specific assembly instructions
: Machine specific registers affected by the instruction

: Machine specific registers required as inputs

You will find more examples of inline assembly in use within the sources of the Linux kernel.

Chapter 2: Toolchains

Attribute Tags

The Linux kernel heavily relies upon GCC attributes. These are special tags used within the source to
supply additional in-band information to the GNU C compiler about the way in which it must specially
process the kernel sources. Attributes include nonnull and noreturn, which inform the compiler that a
function may not take NULL parameters or that it is specifically okay for a function not to return.

Here is an example attribute definition used by the Linux kernel:

#define module_init (initfn) \
static inline initcall_t _ inittest(void) \
{ return initfn; } \
int init_module(void) __attribute_ ((alias(#initfn)));

This defines the module_init function, used by every Linux kernel module (LKM) to declare the func-
tion that will run when a module is first loaded. In the example, among many other things, the alias
attribute is used to set up an alias, #init£n, for the module initialization function. Whenever a header
file later needs to refer to the function, it can use the #initfn macro in place of the full function name.

Linux kernel functions frequently make use of the section attribute, used to specify that certain func-
tions must be placed within a specific section of the Linux kernel binary. The kernel also uses align-
ment, which forces a particular in-memory alignment on variable declarations. Due to the necessity for
high performance, memory alignment of variables within the Linux kernel is often very strict indeed.
This helps to ensure efficient transfer of certain data to and from main memory.

Attributes can help various code analysis tools —such as Linus Torvalds’ sparse source code checker —
to infer additional information about specific functions and variables used within the Linux kernel. For
example, function parameters marked with the nonnull attribute tag might be checked to see whether
they could ever be passed NULL values.

Custom Linker Scripts

The Linux kernel and other low-level software rely heavily upon linker scripts in order to create executa-
bles with a specific binary image layout. This is important for a number of reasons, including a desire to
group certain related kernel features into logical sections within the kernel binary image. For example,
certain functions within the Linux kernel are marked with the tags __init__ or__initdata__. These
are defined as GCC attributes that cause such functions to be grouped into a special section within the
kernel.

Once a Linux kernel has successfully booted, it no longer requires code and data marked with such init
tags and so the memory that was used to store them should be freed. This is achievable because such
code and data are stored within a special section of the kernel that can be released as one large chunk of
reclaimable memory. The physical position of these special sections within the final kernel binary image
is determined by a special kernel linker script, which includes such considerations.

Sometimes, precise binary image layout is mandated by the hardware of the target machine upon which

the kernel will run. Many modern microprocessors expect to find certain low-level operating system
functions at precise offsets within the kernel image. This includes hardware exception handlers —code

45

Chapter 2: Toolchains

C

46

that will run in response to certain synchronous or asynchronous processor events, as well as a multi-
tude of other uses. Since the Linux kernel image is loaded at a precise offset within the physical memory
of the machine, this physical requirement can be satisfied with the aid of a little linker magic.

The Linux kernel uses a specific set of linker scripts for each of the architectures on which it runs. Check
out the contents of the arch/i386/kernel/vmlinux. 1ds linker script within your local Linux kernel
sources. You'll see entries like the following fragment:

.text : AT(ADDR(.text) - (0xC0000000)) {
*(.text)
= ALIGN(8); _ sched_text_start = .; *(.sched.text) _ sched text_end = .;
= ALIGN(8); _ lock_text_start = .; *(.spinlock.text) _ lock text_end = .;
= ALIGN(8) ; kprobes_text_start = .; *(.kprobes.text) _ kprobes_text_end = .

These entries perform a variety of different tasks, as detailed in the GNU linker documentation. In this
case, specifying that all kernel code begins at the virtual address 0xC000_0000 within memory and that
several specific symbols must be aligned on 8-byte boundaries. The full linker script is extremely com-
plicated, since the requirements of the Linux kernel are extremely complex on many platforms.

ross-Compilation

Most software development that happens on Linux takes place on the same type of machine as that
which will eventually run the finished application. A developer working on an Intel IA32 (x86) worksta-
tion will write applications that are shipped and run by customers (or Free Software users) who also
own Intel-based workstations of a similar class.

Things aren’t always as easy for Embedded Linux developers. They must work with a variety of differ-
ent machines, each of which may be running Linux on a completely different processor architecture.
Often, individual target devices —such as PDAs and cell phones —do not have nearly enough process-
ing power or storage space available to make it feasible to do software development directly on the tar-
get. Instead, cross-compilation is used from more powerful Linux host.

Cross-compilation (or cross-building) is the process of building software on one machine architecture
that will execute on another completely different architecture. A common example would be building
applications on an Intel-based workstation, which must execute on an ARM-, PowerPC-, or MIPS-based
target device. Fortunately, the GNU tools make this process much less painful than it sounds.

Regular tools within the GNU Toolchain are usually executed by invoking a command name such as gcc
from the command line. In the case of cross-compilation, these tools are named according to the target
for which they have been built. For example, to compile a simple Hello World program using a cross
toolchain targeted at a PowerPC, you might run a command such as the following:

$ powerpc-eabi-gcc -o hello hello.c

Notice how the cross target, powerpc-eabi, is prefixed to the name of the particular tool. A similar
naming convention applies to the remainder of the tools within a cross toolchain, although the precise

Chapter 2: Toolchains

name very much depends upon the specific target device for which the tools have been built. Many
Embedded Linux vendors sell a variety of device-specific toolchains that you can use, but you can also
build your own by following the examples given in the next section.

In addition to using cross toolchains directly, you may frequently find yourself needing to build large
existing projects which are based upon automated build tools, such as GNU Autoconf. In the case that
you need to educate an existing configure script about your desire to cross-compile some software for
an specific target, you may find the following option flags come in handy:

--build Configure to build on the given build host type.

--host Cross-compile programs to run on the given host type.

Building the GNU Toolchain

As you have no doubt already realized, the GNU Toolchain is formed from many individual compo-
nents, which are independently developed but which must work together to achieve particular goals. At
some point, these individual GNU tools must themselves be built from the sources available on the
Internet. This is a very time-consuming process, which your Linux vendor has already addressed for
your local Linux workstation. They have spent many hours figuring this out so that you don’t have to.

There are, however, times when available tools are not up to the task at hand. This can happen for a
number of different reasons, including:

Q Needing a more recent version than is available from your vendor

Q Cross-compiling applications for a specific or unusual target

O Modifying specific build-time options for individual tools
In such cases, it will be necessary for you to obtain and build the GNU Toolchain from scratch for your-
self or to pay for one to be made available for you. Building a toolchain from scratch is an extremely dif-
ficult and time-consuming process because of the number of patches that need to be applied for different

target processors, as well as the sheer interdependencies between the tools themselves. In order to build
a toolchain, you'll need to piece together at the following individual components:

a GCC

Q Dbinutils
Q GLIBC
a GDB

It gets worse. In order to build a GCC capable of compiling regular user programs, you'll need a prebuilt
GNU C library, but in order to get a working GNU C library, you first need a compiler. For this reason,
the build process is actually divided into multiple phases, with a minimal GCC being built in order to
first compile GLIBC (which itself requires a copy of the Linux kernel headers) and then a later rebuild
for a full toolchain able to build useful programs.

47

Chapter 2: Toolchains

Incidentally, building a toolchain that will only be used to compile Linux kernels or other low-level
embedded applications doesn’t require GLIBC, so the build process could be simplified somewhat at the
cost of a toolchain that’s only good for compiling custom kernels or writing some specific low-level
firmware for a specific embedded board. If that’s what you need, life is a little easier for you.

Fortunately, the toolchain build process has gotten a lot easier in recent years, thanks to a number of
automated scripts, which are designed to help you to automate the building of a custom toolchain for
your specific application. By far the most popular of these scripts is Dan Kegel’s crosstool. It has been
used by many enthusiasts and vendors alike as the basis for building their custom toolchains and is
freely available online. You'll save yourself many headaches if you use it, too.

You can obtain crosstool from Kegel’s website at http: //kegel.com/crosstool. It comes in the form
of a tarball, which must first be unpacked, and a bunch of demo scripts written for each CPU type sup-
ported by the GNU Toolchain. You can modify the demo scripts to create a suitable configuration for
the toolchain that you require. For example, you might create a cross toolchain for your Intel IA32 (x86)
based workstation that is able to build applications for a PowerPC target. Or you might also use
crosstool to build a regular toolchain for the same architecture as the host Linux workstation.

crosstool automates the process of downloading individual toolchain sources from their respective pro-
ject websites and will apply whatever patches are known to be necessary for the desired target combina-
tion. crosstool will then build the individual parts of the toolchain in the correct sequence. It'll finish by
optionally running standard regression tests, which ship as part of the GNU Toolchain sources.

Summary

48

The individual tools within the GNU Toolchain are heavily relied upon by thousands of users, developers,
and vendors worldwide. They use the GNU tools every day to build many different types of application
for many different operating systems. On Linux, GCC and related tools are used to build everything from
the Linux kernel itself right up to the most elaborate graphical desktop environments.

In this chapter, you were introduced to the individual elements of the GNU Toolchain — GCC, binutils,
gdb, and so on. You also discovered some of the more advanced capabilities of these tools as well as
their practical uses in larger Linux software development projects. A special focus was placed upon the
requirements of more unusual projects, such as the Linux kernel, which relies upon unique features spe-
cific to the GNU Toolchain.

Flexibility is a key part of the job performed using the GNU tools, but all too often their function remains
a mystery to all but the most advanced developers. While it is possible to rely upon graphical develop-
ment tools that perform many of the operations covered in this chapter on your behalf, it is nonetheless
essential to retain an overall understanding for those times when the graphical tools let you down or
otherwise are unable to live up to the task at hand.

ﬂ

Portability

Software and hardware portability is of key importance when working with modern Linux sys-
tems. But what exactly does portability mean? How can you achieve the desired flexibility from
your application so that users with a wide range of target hardware and software platforms can
use your software with little or no source modification? These are questions that often plague
developers. This chapter aims to address the variety of hardware and software portability issues
commonly faced when using Linux.

The chapter is loosely divided into two parts. The first covers pure software portability. It this case,
software portability refers to a need for software to run on a wide range of Linux distributions
from different vendors or even different releases from the same vendor). Ideally, all software
should build automatically, with as little human interaction as possible, especially if it is to be
included in a larger project or become part of a Linux distribution. Using the tools and techniques
introduced, you will be able to write software that is more portable to the wide array of Linux
distributions around today.

The latter part of this chapter focuses on writing software for differing hardware platforms.
Modern hardware is complex and machine architectures are quite daunting. Although this chapter
won’t endeavor to explain how modern computers are constructed, it will attempt to address sev-
eral fundamental issues that will affect you if you intend to write software for differing hardware
platforms running Linux. You'll learn about big and little endian computers, writing code that is
32/64-bit clean and briefly touch upon the need for the Linux kernel as a form of portable hard-
ware abstraction layer in Linux systems.

After reading this chapter, you will feel more confident in writing software for end users.
Although you won't learn all you need to know in the space of these pages, you'll be well
equipped to consider and learn about many other practical portability issues that you may face in
the field as you develop your own software. Remember one golden rule: there are few hard limits
when working with software, but you should always remember to consider how your decisions
affect application portability later on.

Chapter 3: Portability

The Need for Portability

50

Portability is not a new concept. Since the very first computers, there has been a desire to write software
that can be used as widely as possible, across a broad range of different machines, with little or no modi-
fication being required in the process. To define what is meant by portability, consider the average
amount of time spent in developing a complex piece of modern software. If that software is originally
written in one particular software or hardware environment, then it may be desirable to be able to port
that software to other similar environments without incurring a massive redevelopment.

More formally, software is said to be portable if the effort required to transport and adapt it to a new
environment is less than the effort of redeveloping that same software from scratch.

Portable software dates back almost as far as digital computers themselves. In the early days, computers
were built from plug boards and switches that were literally programmed by hand. A “program” con-
sisted of a particular configuration of wires that had been crafted to a specific machine. In those days —
before even the first assembly language programs — there were no model numbers, families of related
microprocessors, or many of the other concepts with which we are so familiar today.

As time moved on, hardware became more complex but users wanted flexibility to buy machines for
which existing software was available. So, in 1964, IBM released the System/360. This was the first series
of compatible computers. These mainframe machines could execute the same code and run the same pro-
grams as one another, but otherwise they varied in their construction. This was the first time that soft-
ware from one machine could be used on another from the same family without modification.

With computers becoming more powerful and complex, programming software for them became more
abstract in nature. Programs that had once been written in assembly language (or handcrafted machine
code) would instead be written using higher-level languages, such as C, Pascal, or FORTRAN. While
these languages were arguably easier for developers to learn and use, they also allowed developers to
write code that was portable from one machine to another. Porting an application between machines
required only that it be recompiled and that modifications be made to handle differences between hard-
ware available in differing machines. This was time-consuming but a step in the right direction.

The growth in high-level programming languages allowed for complex operating systems such as UNIX
to be developed. UNIX was later considered to be a portable operating system because it had been
rewritten in the C programming language (which its authors had also invented). Since a C compiler
could be written for many different computers, it was possible to port the UNIX operating system from
one machine to another. The process was cumbersome and complex, but it was far easier than rewriting
the entire system from scratch and shielded individual applications from changes to their environment
to a greater extent than had ever been possible previously.

UNIX was a powerful operating system that provided a solid software platform for complex user appli-
cations. It introduced a number of fundamental concepts and abstractions that are heavily relied upon to
this day and greatly improved the process of writing portable user application software. By abstracting
the physical hardware within a machine, a programmer could write code targeted at UNIX rather than
at a specific machine from a specific manufacturer. Of course, the result was that different manufacturers
attempted to outdo one another in their UNIX offering —leading to the “UNIX Wars.”

During the later 1980s and the 1990s, the UNIX marketplace gradually (and at times, somewhat more
turbulently) settled down and different manufacturers, faced with growing competition from non-UNIX

Chapter 3: Portability

vendors, began to work together to provide a common UNIX standard. By standardizing what it meant
to be UNIX, application developers could more easily write portable software and make that software
available to many different UNIX systems. The standardization effort directly resulted in the Portable
Operating System Interface (POSIX) standard. POSIX was later complemented by the (freely available)
Single UNIX Specification (SUS).

Software portability has taken another leap over the past decade. In the 1990s, Sun’s Green project (later
leading to Java) sought the creation of an entire virtual machine as an aid to address the wide range of
different embedded software platforms available at the time. With a Java Virtual Machine, software
would only have to be compiled once and would then run on any platform to which it was possible to
port the virtual machine. The Java Virtual Machine (JVM) and the Java programming language have
since become well known to a new generation of programmers.

As time has moved on, the concept of portability has changed. While software may once have been
portable if it could be used on a variety of machines from the same manufacturer, modern Linux (and
UNIX) software is expected to be portable across a wide range of different machines, distributions, con-
figurations, and the like. Today;, it is almost taken for granted that software written on a basic 32-bit
Intel-based computer can be rebuilt for an Itanium, PowerPC, or SPARC machine without modification.
The remainder of this chapter will introduce you to concepts that help make this a reality on Linux.

The Portability of Linux

Portability means different things to different users and developers of Linux software. Some people are
more concerned with platform portability between Linux and other UNIX and UNIX-like systems such
as Sun Solaris or Apple Mac OS X. Other people care more about distribution portability —having a
Linux application that will run on the multitude of Linux distributions available. Then there are those
who want both of these things and also want the freedom to have their software used on 32- and 64-bit
systems from a multitude of vendors shipping a wide variety of different types of hardware platform.

Well-designed Linux software, that relies upon portable libraries and that is written to take full advan-
tage of the variety of automated configuration tools available will stand up to each of these require-
ments. Even if it is not your initial goal to make your software widely available beyond a specific
distribution on a specific hardware platform, it is always a good idea to think ahead. One inevitable
truth of software is that it will sometimes outlive its original purpose or lifespan. You probably want to
make life a little easier for those who need to maintain it into the future.

Layers of Abstraction

The core of any Linux system is the Linux kernel. It supports more than 24 different architectures of
hardware platform in the standard “stock” release alone. When you think that a regular PC workstation
is just one variant of the i386 architecture, you start to see the scale involved. In addition to amazing lev-
els of hardware portability, Linux also provides numerous device drivers that allow a wide range of
peripheral devices to be attached to a system running Linux. In a way, the Linux kernel’s main purpose
is to provide a portable software abstraction above the raw hardware of these different machines.

When you write software for Linux, you will use standardized system libraries that rely upon specific
features of the Linux kernel. The libraries will take care of providing commonly used software routines,

51

Chapter 3: Portability

while the kernel handles the pesky hardware details. In this way, you don’t need to concern yourself
with the underlying hardware of the machine for many regular applications. Of course, if you are build-
ing customized devices or need to get every ounce of performance out of the machine, then you might
choose to voluntarily break this abstraction in your application, to further some greater goal. Take a look
at Figure 3-1 to see how an application fits into a typical system running Linux.

System

Regular Applications Tools /

TN
. Direct kernal
| GNU C Library | Interfaces

NV

Linux kernel

Figure 3-1

Life is a series of trade-offs, and so it is with Linux development. Greater levels of abstraction can lead to
lower performance compared with assuming a particular hardware and software environment.
However, modern computers are cheap and the average user has a desktop well beyond their minimal
requirements. If you work with more resource-constrained systems, then you may need to bend these
rules a little. For example, on an embedded device that you have created, you may (obviously) assume a
particular hardware platform and use whatever cunning hacks are necessary to create a finished product
within the bounds of maintaining a level of design flexibility.!

You may not need to worry about the hardware within a machine, but you do need to concern yourself
with the software environment provided for you on top of the Linux kernel. This is where distributions —
perhaps even different releases of the same distribution —as well as the versions of individual system soft-
ware and libraries can become a major headache. This second point is important—library versions can
pose problems that will be discussed later in the chapter when you learn more about the GNU Autotools.

Linux Distributions

52

While Linux may be highly portable in and of itself, most users and developers are far more concerned
about distribution portability than they are about which hardware platforms the software will run on.
They are, after all, more than likely to be using a regular Linux PC workstation than a dedicated cluster
(and if they are, you’d probably be targeting that cluster as a specific platform requirement and may not
be so concerned about distribution portability in general —yes, even in today’s world). There are many
distributions in use today, each with its own unique nuances that differentiate it from the rest.

You learned about Linux distributions back in Chapter 1. You learned that there are a wide variety of dif-
ferent distributions or flavors of Linux on the market. These are both commercial (for example, Red Hat
and SuSE) and non-commercial (for example Gentoo and Debian derivatives such as Ubuntu and
Knoppix) and are in use by users all over the world. Despite their many differences, distributions are,
fundamentally, merely collections of vendor supplied (and possibly supported) prepackaged software.

10One common hack used on embedded devices known to be based on standard flat 32-bit memory
maps (where hardware is just another address in memory) is to mmap () peripheral memory from
userspace via the /dev/mem device. Regular application code (albeit with root privileges) can then
talk to hardware without a kernel driver. It’s ugly, but efficient, and thus widely employed.

Chapter 3: Portability

Packages

A package represents the fundamental unit of atomicity as far as most distributions are concerned. This
is usually a single software application or a group of a (small number of) related utilities that are usually
supplied together. Packages are usually based upon an “upstream” Linux community project and share
a similar name. For example, most modern Linux distributions provide a package named “module-
init-tools” (replacing the older “modutils” package) that contains a collection of utilities supplied in the
upstream Linux kernel project of the same name.

Each different application and utility (or a simple collection of obviously related utilities) that will be
made available to the user is likely to be supplied in its own package, complete with descriptive meta-
data that includes documentation and —most important — dependency information. Dependency infor-
mation allows the Linux distribution’s package manager to automatically resolve package dependencies
against a vendor-supplied database summarizing the state of known packages.

Dependency resolution means having the distribution’s package manager (a system-supplied utility for
the purpose of installing, removing, and managing packages) determine which other packages must first
be installed prior to installation of a particular package. Often, complex hierarchies of dependent pack-
ages are built up into a logical tree so that installing one package may require 10 or more others to be
installed —especially on a newly installed system that has been built with a minimal configuration.

Look at the dependency tree in Figure 3-2.

’ N s N ’ ~
I libc I' I libm I' I libX11 I'
\ \ \

- —p— — —_ —y— — - — =

7 N

VP2
I ORBIt2 ! I gtk2 ! I dbus ! I gnome-media !
\ / \ / \ / \ J

- I -