

Network Administration with
FreeBSD 7

Building, securing, and maintaining networks with the
FreeBSD operating system

Babak Farrokhi

 BIRMINGHAM - MUMBAI

Network Administration with FreeBSD 7

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2008

Production Reference: 1070408

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-64-6

www.packtpub.com

Cover Image by Nilesh Mohite (nilpreet2000@yahoo.co.in)

Credits

Author

Babak Farrokhi

Reviewer

Roman Bogorodskiy

Acquisition Editor

Rashmi Phadnis

Technical Editor

Della Pradeep

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Abhijeet Deobhakta

Indexer

Hemangini Bari

Proofreader

Nina Hasso

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Babak Farrokhi is an experienced UNIX system administrator and Network
Engineer who worked for 12 years in the IT industry in carrier-level network service
providers. He discovered FreeBSD around 1997 and since then he has been using it
on a daily basis. He is also an experienced Solaris administrator and has extensive
experience in TCP/IP networks.

In his spare time, he contributes to the open source community and develops his
skills to keep himself in the cutting edge.

You may contact Babak at babak@farrokhi.net and his personal website at
http://farrokhi.net/

I would like to thank my wife, Hana, for being the source of
inspiration in my life. Without her support and patience I could not
finish this project.

Next I'd like to thank the Technical Reviewer of the book, Roman
Bogorodskiy (novel@FreeBSD.org) for his thorough review, great
suggestions, and excellent notes that helped me to come up with the
chapters even better.

I also want to thank PACKT and everyone I worked with, Priyanka
Baruah,Abhijeet Deobhakta, Rashmi Phadnis, Patricia Weir, Della
Pradeep and others for their patience and cooperation. Without
their help I could not turn my scattered notes into a professional
looking book.

 About the Reviewer

Roman Bogorodskiy lives in Russia, Saratov. He is a student of the Mechanics
and Mathematics faculty at the Saratov State University. At the time of writing, he
was working on a diploma project. He is working as a Software Engineer in the one
of the biggest ISPs of his hometown. He takes part in various open source projects
and got his FreeBSD commit bit back in 2005.

Table of Contents
Preface	 1
Chapter 1: System Configuration—Disks	 7

Partition Layout and Sizes	 7
Swap	 9

Adding More Swap Space	 10
Swap Encryption	 12

Softupdates	 12
Snapshots	 13
Quotas	 15

Assigning Quotas	 16
File System Backup	 18

Dump and Restore	 18
The tar, cpio, and pax Utilities	 22
Snapshots	 23

RAID-GEOM Framework	 24
RAID0—Striping	 24
RAID1—Mirroring	 26
Disk Concatenation 	 27

Summary	 28
Chapter 2: System Configuration—Keeping it Updated	 29

CVSup—Synchronizing the Source Code	 30
Tracking –STABLE	 31
Tracking –CURRENT	 33

Ports Collection	 34
Tracking Ports	 34
Portsnap	 35

Security Advisories	 36
VuXML—Vulnerability Database	 37

Table of Contents

[ii]

CVS Branch Tag	 37
Customizing and Rebuilding Kernel	 38
Rebuilding World	 40
Binary Update	 42
Recovering from a Dead Kernel	 43
Summary	 45

Chapter 3: System Configuration—Software Package Management	47
Ports and Packages	 48

The Legacy Method	 48
Software Directories	 49
Packages	 49
Ports	 51

Package Management Tools	 55
Portupgrade	 56

portinstall	 56
pkg_deinstall	 57
portversion	 58
pkg_which	 59
portsclean	 59

Portmaster	 60
Summary	 60

Chapter 4: System Configuration—System Management	 63
Process Management and Control	 63

Processes and Daemons	 64
Getting Information about Running Processes—ps, top, and pgrep	 65
Sending Signals to Running Processes—kill, killall, and pkill	 67
Prioritizing Running Processes—nice and renice	 68

Resource Management and Control	 69
System Resource Monitoring Tools—vmstat, iostat, pstat, and systat	 69

Process Accounting	 72
Summary	 73

Chapter 5: System Configuration—Jails	 75
Concept	 75
Introduction	 76
Setting Up a Jail	 77
Configuring the Host System	 78
Starting the Jail	 80
Automatic Startup	 81
Shutting Down Jails	 82
Managing Jails	 82

Table of Contents.

[iii]

Jail Security	 84
Jail Limitations	 85
Summary	 85

Chapter 6: System Configuration—Tuning Performance	 87
Tweaking Kernel Variables using SYSCTL	 88
Kernel	 89

SMP	 91
Disk	 92

File limits	 92
I/O Performance	 92
RAID	 93

Network	 94
TCP Delayed ACK	 94
RFC 1323 Extensions	 95
TCP Listen Queue Size	 95
TCP Buffer Space	 95
Network Interface Polling 	 96

The /etc/make.conf file	 97
CPUTYPE	 97
CFLAGS and COPTFLAGS	 98

The /boot/loader.conf file	 98
Summary	 99

Chapter 7: Network Configuration—Basics	 101
Ifconfig Utility	 101

Configuring IP Address	 106
Configuring Layer2 Address	 107
Configuring IPX	 107
Configuring AppleTalk	 108
Configuring Secondary (alias) IP Addresses	 109
Configuring Media Options	 110
Configuring VLANs	 112
Advanced ifconfig Options	 113

Hardware Offloading	 114
Promiscuous Mode	 115
MTU	 116
ARP	 116
Static ARP	 117
Monitor Mode	 118

Configuring Fast EtherChannel	 118
Default Routing	 119
Name Resolution	 120

Table of Contents

[iv]

Network Testing Tools	 121
Ping	 121
Traceroute	 122
Sockstat	 123
netstat	 124
ARP	 125
Tcpdump	 126

Summary	 131
Chapter 8: Network Configuration—Tunneling	 133

Generic Routing Encapsulation (GRE) protocol	 134
IPSEC	 136

Operating Modes	 137
Tunnel Mode	 138

Summary	 144
Chapter 9: Network Configuration—PPP	 145

Setting up PPP Client	 146
Setting up PPP Server	 149
Setting up PPPoE Client	 152
Setting up PPPoE Server	 153
Summary	 155

Chapter 10: Network Configuration—Routing and Bridging	 157
Basic Routing—IP Forwarding	 158
Static Routing	 160
routed and route6d	 162
Running OSPF—OpenOSPFD	 163
Running BGP—OpenBGPD	 166
Bridging	 169

Filtering Bridges	 171
Proxy ARP	 172
Summary	 173

Chapter 11: Network Configuration—IPv6	 175
IPv6 Facts	 176

Fact One—Addressing	 176
Fact Two—Address Types	 176
Fact Three—ARP	 176
Fact Four—Interface Configuration	 177

Using IPv6	 177
Configuring Interfaces	 177

Routing IPv6	 179
RIP6	 180

Table of Contents.

[�]

Multicast Routing	 181
Tunneling	 181

GIF Tunneling	 181
Summary	 182

Chapter 12: Network Configuration—Firewalls	 183
Packet Filtering with IPFW	 184

Basic Configuration	 185
Ruleset Templates	 187
Customized Rulesets	 188
Logging	 190
Network Address Translation (NAT) 	 191
Traffic Shaping	 192

Packet Filtering with PF	 193
PF Configuration Syntax	 194
Controlling PF	 197

Network Address Translation using PF and IPFW	 199
Summary	 201

Chapter 13: Network Services—Internet Servers	 203
inetd Daemon	 204

tcpd	 206
SSH	 207

Running a Command Remotely	 208
SSH Keys	 208

SSH Authentication Agent	 210
SSH Tunneling or Port Forwarding	 212

NTP	 213
Syncing 	 213
NTP Server 	 214

DNS 	 215
BIND software	 215
Operating Modes	 215

Forwarding/Caching DNS Server	 216
Authoritative 	 217
Monitoring	 219
Optimizations	 219

FTP	 221
Anonymous FTP Server	 221

Mail 	 223
Sendmail	 224
Postfix	 226

Table of Contents

[vi]

Web 	 227
Apache	 228

Virtual Hosts	 229
Alternative HTTP Servers	 230

Proxy	 230
Summary	 233

Chapter 14: Network Services—Local Network Services	 235
Dynamic Host Configuration Protocol (DHCP)	 236

dhclient	 236
ISC DHCPD	 236

DHCPD Configuration	 237
Trivial File Transfer Protocol (TFTP)	 239
Network File System (NFS)	 240

Server 	 240
Client 	 241
NFS Locking	 243

Server Message Block (SMB) or CIFS	 243
SMB Client	 243
SMB Server	 244

Authentication	 246
Samba Web Administration Tool (SWAT)	 246

Simple Network Management Protocol (SNMP)	 248
bsnmpd 	 248
NET-SNMP	 249

Client Tools	 250
Printing	 251

lpd—Print Spooler Daemon	 252
Common UNIX Printing System (CUPS)	 253

Network Information System (NIS)	 254
NIS Server	 255

Initializing NIS Server	 255
Summary	 258
Index	 259

Preface
This book is supposed to help Network Administrators to understand how FreeBSD
can help them simplify the task of network administration and troubleshooting as
well as running various services on top of FreeBSD 7 Operation System. FreeBSD
is a proven Operating System for networked environments and FreeBSD 7 offers
superior performance to run network services, as well as great flexibility to integrate
into any network running IPv4, IPv6 or any other popular network protocol.

This book is divided into three segments—system configuration, network
configuration, and network services.

The first segment of the book covers system configuration topics and talks about
different aspects of system configuration and management, including disks
management, patching and keeping the system up to date, managing software
packages, system management and monitoring, jails and virtualization, and general
improvements to system performance.

Second segment of the book actually enters the networking world by introducing
basic network configuration in FreeBSD, network interface configuration for different
layer 3 protocols, Tunnelling protocols, PPP over serial and Ethernet and IPv6.
This segment also looks into bridging and routing in FreeBSD using various third
party softwares. At the end, there is an introduction to various firewall packages in
FreeBSD and details on how to configure them.

Third segment of the book deals with different daemons and network services that
can be run on top of FreeBSD, including Local network services such as DHCP,
TFTP, NFS, SMB as well as Internet services such as DNS, Web, Mail, FTP and NTP.

Preface

[�]

What This Book Covers
Chapter 1 looks into FreeBSD file system and disk I/O from a performance point
of view. Several methods to optimize the I/O performance on a FreeBSD host are
discussed in this chapter.

Chapter 2 discusses several methods and tools to keep a FreeBSD system up-to-
date, including CVSUP to update source and ports tree and also customizing and
updating system kernel and rebuilding the whole system from source.

Chapter 3 introduces FreeBSD ports collection, packages, and different methods to
install, remove, or upgrade software packages on FreeBSD.

Chapter 4 covers basic information about daemons, processes, and how to manage
them. You will also get familiar with various system tools to monitor and control
process behavior and manage system resources efficiently.

Chapter 5 discusses virtualization in FreeBSD and introduces Jails from ground up.
This chapter covers creating and maintaining Jails and scenarios in which you can
benefit from these built-in virtualization facilities in FreeBSD.

Chapter 6 discusses performance tuning from different perspectives, including Disk
I/O and Network, and how to get the most out of the modern hardware and
multi-processor systems. It discusses various tweaks that can make your FreeBSD
system perform much faster and more smoothly.

Chapter 7 deals with network configuration in FreeBSD in general, focusing mostly
on network interface configuration for different network protocols such as IPv4,
IPv6, IPX and AppleTalk. It also deals with basic network configuration and
related configuration files and finally introduces some network management and
testing tools.

Chapter 8 discusses tunneling in general and introduces various tunneling protocols,
and mostly concentrates on GRE and IPSec tunneling.

Chapter 9 covers PPP configuration in FreeBSD including PPP over Ethernet protocol
as both client and server.

Chapter 10 has a closer look at routing and bridging in FreeBSD using built-in
bridging features and also different routing protocols including OSPF and BGP using
third-party software.

Chapter 11 concentrates on IPv6 implementation in FreeBSD and gives more detail
on interface configuration, routing IPv6 using RIP6, Multicast routing, and
Tunneling protocols.

Preface

[�]

Chapter 12 introduces IPFW and PF tools for packet filtering and network address
translation as well as traffic management on FreeBSD.

Chapter 13 has a quick look at various important protocols such as SSH, NTP, DNS,
FTP, Mail, Web, and Proxying. It also introduces different pieces of software that you
can use to set up these services on a FreeBSD host.

Chapter 14 looks into some network protocols that are mostly used inside an
autonomous system or inside a datacenter or a local network, such as DHCP, TFTP,
NFS, SMB, SNMP, NIS and Printing and introduces various pieces of software and
setting them up on a FreeBSD host.

What You Need for This Book
Basically you need a host running FreeBSD 7 connected to your network. Your
host can be any hardware platform that FreeBSD supports, including i386, sparc64,
amd64, ia64, powerpc or pc98. You should download relevant FreeBSD installation
CD images from FreeBSD project's FTP server at ftp://ftp.freebsd.org/pub/

There you will find ISO images for various platforms under different subdirectories
(e.g. "ISO-IMAGES-i386" directory contains i386 platform ISO images). For a basic
installation, the ISO image for first CD will suffice.

Once you have installed FreeBSD, you should also configure your network
parameters to get connected to your existing network. This can be done during
installation or later by modifying the /etc/rc.conf configuration file (covered in
chapter 7).

Who is This Book for
For Network Administrators who would like to work with FreeBSD and are looking
for skills beyond Installation and configuration of FreeBSD.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "And
finally, check the system's swap status using the following swapinfo(8) command."

Preface

[�]

A block of code will be set as follows:

flush
add check-state
add allow tcp from me to any setup keep-state
add allow tcp from 192.168.1.0/24 to me keep-state
add allow ip from 10.1.1.0/24 to me
add allow ip from any to any

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

/dev/ad0s1a on / (ufs, local, noatime, soft-updates)
devfs on /dev (devfs, local)
procfs on /proc (procfs, local)
/dev/md1 on /tmp (ufs, local)
/dev/md2 on /mnt (ufs, local, read-only)

Any command-line input and output is written as follows:

dd if=/dev/zero of=/swap0 bs=1024k count=256

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"Note that either the userquota or the groupquota can be specified for each partition
in the Options column.".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

Preface

[�]

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

System Configuration—Disks
Disk I/O is one of the most important bottlenecks in the server's performance.
Default disk configuration in every operating system is optimally designed to fit the
general usage. However, you may need to reconfigure disks for your specific usage,
to get the best performance. This includes choosing multiple disks for different
partitions, choosing the right partition size for specific usage, and fine-tuning the
swap size. This chapter discusses how to use the right partition size and tuning file
system to gain better performance on your FreeBSD servers.

In this chapter, we will look into the following:

Partition layout and sizes
Swap, softupdates, and snapshots
Quotas
File system back up
RAID-GEOM framework.

Partition Layout and Sizes
When it comes to creating disk layout during installation, most system
administrators choose the default (system recommended) settings, or create a single
root partition that contains file system hierarchy.

However, while the recommended settings work for most simple configurations and
desktop use, it may not fit your special needs. For example, if you are deploying a
mail exchanger or a print server you may need to have a /var partition bigger than
the recommended size.

•

•

•

•

•

System Configuration—Disks

[�]

By default, FreeBSD installer recommends you to create five separate partitions as
shown in the following table:

Partition
Size

Description
Minimum Maximum

Swap RAM size / 8 2 * RAM size

Size of swap partition is recommended to be 2
or 3 times the size of the physical RAM. If you
have multiple disks, you may want to create
swap on a separate disk like other partitions.

/ 256 MB 512 MB
Root file system contains your FreeBSD
installation. All other partitions (except
swap) will be mounted under root partition.

/tmp 128 MB 512 MB

Temporary files will be placed under this
partition. This partition can be made either
on the disk or in the RAM for faster access.
Files under this partition are not guaranteed
to be retained after reboots.

/var 128 MB 1 GB + RAM
size

This partition contains files that are constantly
"varying", including log files and mailboxes.
Print spool files and other administrative files.
Creating this partition on a separate disk is
recommended for busy servers.

/usr 1536 MB Rest of disk
All other files, including home directories
and user installed applications, will be
installed under this partition.

These values could change in further releases. It is recommended that you refer to
the release notes of the version you are using, for more accurate information.

FreeBSD disklabel editor with automatically created partitions is shown in the
following screenshots:

Chapter 1

[�]

Depending on your system I/O load, partitions can be placed on different physical
disks. The benefit of this placement is better I/O performance, especially on /var
and /tmp partitions. You can also create /tmp in your system RAM by tweaking the
tmpmfs variable in /etc/rc.conf file. An example of such a configuration would
look like this:

tmpmfs="YES"
tmpsize="128m"

This will mount a 128 MB partition onto RAM using md(4) driver so that access
to /tmp would be dramatically faster, especially for programs which constantly
read/write temporary data into /tmp directory.

Swap
Swap space is a very important part of the virtual memory system. Despite the
fact that most servers are equipped with enough physical memory, having enough
swap space is still very important for servers with high and unexpected loads. It is
recommended that you distribute swap partitions across multiple physical disks or
create the swap partition on a separate disk, to gain better performance. FreeBSD
automatically uses multiple swap partitions (if available) in a round-robin fashion.

When installing a new FreeBSD system, you can use disklabel editor to create
appropriate swap partitions. Creating a swap partition, which is double the size of
the installed physical memory, is a good rule of thumb.

Using swapinfo(8) and pstat(8) commands, you can review your current swap
configuration and status. The swapinfo(8) command displays the system's current
swap statistics as follows:

swapinfo –h

Device 1K-blocks Used Avail Capacity
/dev/da0s1b 4194304 40K 4.0G 0%

The pstat(8) command has more capabilities as compared with the swapinfo(8)
command and shows the size of different system tables, under different load
conditions. This is shown in the following command line:

pstat –T

176/12328 files
0M/4096M swap space

System Configuration—Disks

[10]

Adding More Swap Space
There are times when your system runs out of swap space, and you need to add
more swap space for the system to run smoothly. You will have three options as
shown in the following list:

Adding a new hard disk.
Creating a swap file on an existing hard disk and partition.
Swapping over network (NFS).

Adding swap on a new physical hard disk will give better I/O performance, but
it requires you to take the server offline for adding new hardware. Once you have
installed a new hard disk, you should launch FreeBSD's disklabel editor and create
appropriate partitions on the newly installed hard disk.

To invoke the sysinstall's disklabel editor from the command line use
sysinstall diskLabelEditor command.

If, for any reason, you cannot add new hardware to your server, you can still use
the existing file system to create a swap file with the desired size and add it as swap
space. First of all, you should check to see where you have enough space to create the
swap file as shown as follows:

df –h

Filesystem Size Used Avail Capacity Mounted on
/dev/ad0s1a 27G 9.0G 16G 37% /
devfs 1.0K 1.0K 0B 100% /dev
procfs 4.0K 4.0K 0B 100% /proc
/dev/md0 496M 1.6M 454M 0% /tmp

Then create a swap file where you have enough space using the following
command line:

dd if=/dev/zero of=/swap0 bs=1024k count=256

256+0 records in
256+0 records out
268435456 bytes transferred in 8.192257 secs (32766972 bytes/sec)

•

•

•

Chapter 1

[11]

In the above example, I created a 256MB empty file (256 * 1024k blocks) named swap0
in the file system's root directory. Also remember to set the correct permission on the
file. Only the root user should have read/write permission on file. This is done using
the following command lines:

chown root:wheel /swap0

chmod 0600 /swap0

ls -l /swap0

-rw------- 1 root wheel 268435456 Apr 6 03:15 /swap0

Then add the following swapfile variable in the /etc/rc.conf file to enable swap
file on boot time:

swapfile="/swap0"

To make the new swap file active immediately, you should manually configure
md(4) device. First of all, let's see if there is any md(4) device configured, using
mdconfig(8) command as shown as follows:

mdconfig –l

md0

Then configure md(4) device as shown here:

mdconfig -a -t vnode -f /swap0

md1

You can also verify the new md(4) node as follows:

mdconfig -l -u 1

md1 vnode 256M /swap0

Please note that -u flag in the mdconfig(8) command takes the number of md
node (in this case, 1). In order to enable the swap file, you should use swapon(8)
command and specify the appropriate md(4) device as shown here:

swapon /dev/md1

And finally, check the system's swap status using the following swapinfo(8)
command:

swapinfo –h

Device 1K-blocks Used Avail Capacity
/dev/ad0s1b 1048576 0B 1.0G 0%
/dev/md1 262144 0B 256M 0%
Total 1310720 0B 1.3G 0%

System Configuration—Disks

[12]

Swap Encryption
Since swap space contains the contents of the memory, it would have sensitive
information like cleartext passwords. In order to prevent an intruder from extracting
such information from swap space, you can encrypt your swap space.

There are already two file system encryption methods that are implemented in
FreeBSD 7—gbde(8) and geli(8) commands. To enable encryption on the swap
partition, you need to add .eli or .bde to the device name in the /etc/fstab file
to enable the geli(8) command and the gbde(8) command, respectively. In the
following example, the /etc/fstab file shows a swap partition encrypted using
geli(8) command:

cat /etc/fstab

Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b.eli none swap sw 0 0
/dev/ad0s1a / ufs rw,noatime 1 1
/dev/acd0 /cdrom cd9660 ro,noauto 0 0

Then you have to reboot the system for the changes to take effect. You can verify the
proper operation using the following swapinfo(8) command:

swapinfo –h

Device 1K-blocks Used Avail Capacity
/dev/ad0s1b.eli 1048576 0B 1.0G 0%
/dev/md0 262144 0B 256M 0%
Total 1310720 0B 1.3G 0%

Softupdates
Softupdates is a feature to increase disk access speed and decrease I/O by caching
file system metadata updates into the memory. The softupdates feature decreases
disk I/O from 40% to 70% in the file-intensive environments like email servers.
While softupdates guarantees disk consistency, it is not recommended to enable it on
root partition.

The softupdates feature can be enabled during file system creation (using sysinstall's
disklabel editor) or using tunefs(8) command on an already created file system.

The best time to enable softupdates is before mounting partitions (that is in the
super-user mode).

Chapter 1

[13]

The following example shows softupdates enabled partitions:

mount

/dev/ad0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/ad0s1e on /tmp (ufs, local, soft-updates)
/dev/ad0s1f on /usr (ufs, local, soft-updates)
/dev/ad0s1d on /var (ufs, local, soft-updates)

In the above example, softupdates is enabled on /tmp, /usr, and /var partitions, but
not on the root partition. If you want to enable softupdates on the root partition, you
may use the tunefs(8) command as shown in the following example:

tunefs –n enable /

Please note that you cannot enable or disable softupdates on an active partition (that
is currently mounted partition). To do so, you should first unmount the partition
or change it to read-only mode. In case you want to enable softupdates on root
partition, it is recommended that you boot your system into single-user mode (in
which your root partition is mounted as read-only) and then enable softupdates
using the method mentioned in the above example.

Snapshots
A file system snapshot is a frozen image of a live file system. Snapshots are very
useful when backing up volatile data such as mail storage on a busy mail server.

Snapshots are created under the file system that you are making snapshots from. Up
to twenty snapshots can be created per file system.

The mksnap_ffs(8) command is used to create a snapshot from FFS partitions:

mksnap_ffs /var /var/snap1

Alternatively, you can use the mount(8) command to do the same:

mount –u –o snapshot /var/snap1 /var

Now that you have created the snapshot, you can:

take a backup of your snapshot by burning it on a CD/DVD, or transfer it to
another server using ftp(1) or sftp(1).
Use dump(8) utility to create a file system dump from your snapshot.

•

•

System Configuration—Disks

[14]

The fsck(8) command is used on a snapshot file to ensure the integrity of the
snapshot before taking backups:

fsck_ffs /var/snap1

** /var/snap1 (NO WRITE)
** Last Mounted on /var
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Path names
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
464483 files, 5274310 used, 8753112 free (245920 frags, 1063399
blocks, 1.8% fragmentation)

Remember the following, when working with snapshots:

Snapshots will degrade the system's performance at the time of its creation
and removal, but not necessarily while running.
Remove snapshots as soon as you finish your work.
Snapshots can be removed in any order, irrespective of the order in which
they were created.

You can also mount a snapshot as a read-only partition to view or extract its
contents, using the mount(8) command. To mount a snapshot, you should first
create a md(4) node as follows:

mdconfig -a -t vnode -f /var/snap1

WARNING: opening backing store: /var/snap1 readonly
md2

In the above case, mdconfig(8) command has attached /var/snap1 to the first
available md(8) node and returned the name of the created node. Now you can
mount the md(8) node as a read-only file system:

mount -r /dev/md2 /mnt

And verify the operation using the mount(8) command:

mount

/dev/ad0s1a on / (ufs, local, noatime, soft-updates)
devfs on /dev (devfs, local)
procfs on /proc (procfs, local)
/dev/md1 on /tmp (ufs, local)

/dev/md2 on /mnt (ufs, local, read-only)

•

•

•

Chapter 1

[15]

To unmount the mounted snapshot, you should first use the umount(8) command,
and then remove md(4) node using mdconfig(8)as shown here:

umount /mnt

mdconfig -d -u 2

Note that mdconfig(8) takes the number of md(4) node (in this case, md2)
using -u parameter.

Finally, to remove a snapshot file, use rm(1) command. It may take a few seconds.

rm –f /var/snap1

Quotas
Quotas enable you to limit the number of files or disk space for each user or group of
users. This would be very useful on multiuser systems (like virtual web hosts, shell
access servers) on which the system administrator should limit disk space usage, on
a per-user basis.

Quota is available as an optional feature and is not enabled, by default, in
FreeBSD's GENERIC kernel. In order to enable quotas in FreeBSD, you should
reconfigure the kernel (explained in Chapter 2) and add the following line to the
kernel configuration file:

options QUOTA

You should also enable quotas in the /etc/rc.conf file by adding the following line:

enable_quotas="YES"

Quotas can be enabled, either for a user or a group of users, according to the file
system. To enable quotas on each partition, you should add the appropriate line in
the /etc/fstab file. Each partition may have its specific quota configuration. The
following example shows different quota settings in the /etc/fstab file:

cat /etc/fstab

Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b none swap sw 0 0
/dev/ad0s1a / ufs rw 1 1
/dev/ad0s1e /tmp ufs rw 2 2
/dev/ad0s1f /usr ufs rw, userquota 2 2
/dev/ad0s1d /var ufs rw, groupquota 2 2
/dev/acd0 /cdrom cd9660 ro,noauto 0 0

System Configuration—Disks

[16]

Note that either the userquota or the groupquota can be specified for each partition
in the Options column. You can also combine both userquota and groupquota on
one partition simultaneoulsy:

/dev/ad0s1f /usr ufs rw,userquota,groupquota 2 2

Partition quota information is kept in the quota.user and quota.group files, in the
root directories of their respective partitions.

Once you have performed the above steps, you need to reboot your system to load
new kernel, and initialize the quota for appropriate partitions. Make sure check_
quotas variable in the /etc/rc.conf file is not set to NO. Otherwise system will
not create the initial quota.user and quota.group files. This can also be done by
running the quotacheck(8) command, manually as follows:

quotacheck –a

quotacheck: creating quota file //quota.user

After rebooting, you can verify the quota activation by using the mount(8) command
or use quota(1) utility to see the current quota statistics for each mount point:

quota –v

Disk quotas for user root (uid 0):
Filesystem usage quota limit grace files quota limit grace
 / 5785696 0 0 464037 0 0

Now that you have enabled quotas on your partitions, you are ready to set quota
limits for each user or group.

Assigning Quotas
The edquota(8) utility is the quota editor. You can limit the disk space (block quota)
and the number of files (inode quota) using this utility, on quota enabled partitions.
Two types of quota limits can be set for both inode quota and block quota:

Hard limit is the implicit limit that cannot be exceeded. For example, if a user has a
quota limit of 200 files on a partition, an attempt to create even one additional file,
will fail.

Chapter 1

[17]

Soft limit is the conditional limit that may be exceeded for a limited period of time,
called grace period. If a user stays over the soft limit for more than the grace period
(which is one week by default), the soft limit will turn into hard limit and the user
will be unable to make any more allocations. However, if the user frees the disk
space down to a soft quota limit, the grace period will be reset.

Running the edquota(8) command invokes your default text editor (taken from
EDITOR environment variable), and loads current quota assignment status for the
specified user:

edquota jdoe

Quotas for user jdoe:
/: kbytes in use: 626, limits (soft = 0, hard = 0)
 inodes in use: 47, limits (soft = 0, hard = 0)

In the above case, user jdoe currently has forty seven files which use 626 kilobytes on
the disk. You can modify the soft and hard values for either the block (first line) or
the inode (second line). Once you finish setting quota limits, save and exit from your
editor, and the edquota(8) utility will take care of applying new quota limits to the
file system.

You can also change the default grace period using the edquota(8) utility. As in
the previous example, edquota(8) invokes the default text editor to edit the current
setting for the grace period:

edquota -t0

Time units may be: days, hours, minutes, or seconds
Grace period before enforcing soft limits for users:
/: block grace period: 0 days, file grace period: 0 days

The example, above, displays the current status of the grace period on a per-partition
basis. You can edit the value of the grace period, save it, and exit from the editor to
apply new grace period settings. For your new grace period settings to take effect,
you should also turn quota off, for the relevant file system, and then turn it back on.
This can be done using the quotaon(8) and quotaoff(8) commands.

And finally, repquota(8) is used to display the summary of quotas for a specified
file system. The repquota(8) command can be used to have an overview of the
current inode and block usage, as well as quota limits on a per-user or per-group
basis (if -g flag on command line is specified).

System Configuration—Disks

[18]

When using quotas, always remember the following important notes:

Setting a quota to zero means no quota limit to be enforced; this is the default
setting for all users.
Setting hard limit to one indicates that no more allocations should be allowed
to be made.
Setting hard limit to zero and soft limit to one indicates that all allocations
should be permitted only for a limited time (grace period).
Setting grace period to zero indicates that the default grace period (one week)
should be used.
Setting grace period to one second means that no grace period should
be allowed.
In order to use the edquota(8) utility to edit group quota setting, -g flag
is specified.

File System Backup
There are different utilities in the FreeBSD base system to help system's
administrators to take backups from their systems. But before starting to take
backups, you should define your backup strategy.

Backups can be taken at the file-system-level, from the whole partition or physical
disk, or on a higher-level. This enables you to select relevant files and directories t
o be archived and moved to a tape device or a remote server. In this chapter, we will
discuss different utilities and how to use them to create usable backups for
your needs.

Dump and Restore
The dump(8) utility is the most reliable and portable backup solution to take backups
on UNIX systems. The dump utility, in conjunction with restore(8), creates your
basic backup toolbox in FreeBSD. The dump command is able to create full and
incremental backups from the whole disk or any partition of your choice. Even if
your file system that you want to take backups from, is live (which in most cases is),
the dump utility creates a snapshot of your file system before the back up, to ensure
that your file system does not change during the process.

By default, dump creates backups on a tape drive unless you specify another file or a
special device.

•

•

•

•

•

•

Chapter 1

[19]

A typical full backup using dump may look like the following example:

dump -0auL -f /usr/dump1 /dev/ad0s1a

 DUMP: Date of this level 0 dump: Sat Apr 14 16:40:03 2007
 DUMP: Date of last level 0 dump: the epoch
 DUMP: Dumping snapshot of /dev/ad0s1a (/) to /usr/dump1
 DUMP: mapping (Pass I) [regular files]
 DUMP: mapping (Pass II) [directories]
 DUMP: estimated 66071 tape blocks.
 DUMP: dumping (Pass III) [directories]
 DUMP: dumping (Pass IV) [regular files]
 DUMP: DUMP: 66931 tape blocks on 1 volume
 DUMP: finished in 15 seconds, throughput 4462 KBytes/sec
 DUMP: level 0 dump on Sat Apr 14 16:40:03 2007
 DUMP: Closing /usr/dump1
 DUMP: DUMP IS DONE

In the above example, dump is used to take a full backup (note the -0 flag) of the
/dev/ad0s1a file, which is mounted onto the / mount point to a regular /usr/dump1
file. The -L flag indicates that the partition is a live file system; so dump will create a
consistent snapshot from the partition, before performing the backup operation.

In case -L flag is specified, dump creates a snapshot in .snap directory
in the root partition of the file system. The snapshot will be removed as
soon as the dump process is complete. Always remember to use -L on
your live file systems. This flag will be ignored in read-only and
unmounted partitions.

And finally -u flag tells dump to record dump information in the /etc/dumpdates
file. This information is used by dump for future backups.

The dump command can also create incremental backups using information recorded
in the /etc/dumpdates file. In order to create an incremental backup, you should
specify a higher backup-level from -1 to -9 in the command line. If backup-level is
not specified, dump will assume a full backup (that is -0) should be taken.

dump -1auL -f /usr/dump2 /dev/ad0s1a

 DUMP: Date of this level 1 dump: Sat Apr 14 15:00:36 2007
 DUMP: Date of last level 0 dump: Sat Apr 14 14:35:34 2007
 DUMP: Dumping snapshot of /dev/ad0s1a (/) to /usr/dump2
 DUMP: mapping (Pass I) [regular files]
 DUMP: mapping (Pass II) [directories]
 DUMP: estimated 53 tape blocks on 0.00 tape(s).
 DUMP: dumping (Pass III) [directories]

System Configuration—Disks

[20]

 DUMP: dumping (Pass IV) [regular files]
 DUMP: DUMP: 50 tape blocks on 1 volume
 DUMP: finished in less than a second
 DUMP: level 1 dump on Sat Apr 14 15:00:36 2007
 DUMP: Closing /usr/dump2
 DUMP: DUMP IS DONE

It also updates /etc/dumpdates with new backup dates:

cat /etc/dumpdates

/dev/ad0s1a 0 Sat Apr 14 14:35:34 2007
/dev/ad0s1a 1 Sat Apr 14 15:00:36 2007

Once you have created dumps from your file system as regular files, you may want
to move the dump file to another safe location (like a backup server), to protect
your backups in case of a hardware failure. You can also create dumps directly on a
remote server over SSH. This can be done by giving the following command:

dump -0auL -f - /dev/ad0s1a | bzip2 | ssh admin@bkserver dd of=/usr/
backup/server1.dump

This will create a level 0 (or full) backup from the /dev/ad0s1a device over network
using ssh(1) facility to host bkserver with username admin and uses dd(1) to
create a file using input stream. And as we create a full backup, which may be a huge
file, bzip2(1) is used to compress data stream to reduce the network load.

You can use your favourite compression program (for example, gzip(1),
compress(1)) with appropriate parameters, instead of bzip2.

Using a compression program will reduce the network load at the cost of
CPU usage during dump routine.

Now that you made your backup on a tape or a remote device, you may also have to
verify or restore your backup in future.

The restore(8) utility performs the inverse function of what dump does. Using
restore, you can simply restore a backup taken using the dump utility, or extract your
files, deleted accidentally. It can also be used to restore backups over the network.

A simple scenario for using restore is restoring a full backup. It is recommended
that you restore your backup to an empty partition. You have to format the
destination partition, using newfs(8), before restoring your backup. After you
restore the full backup, you can proceed to restore the incremental backups, in the
order in which they were created.

Chapter 1

[21]

A typical restore procedure would look like the following command lines:

newfs /dev/da0s1a

mount /dev/da0s1a /mnt

cd /mnt

restore -r -f /usr/dump1

The restore command fully extracts the dump file to your current directory. So you
have to change your current directory to wherever you want to restore the backup
using the cd command.

Another interesting feature of the restore utility is the interactive mode. In this
mode, you can browse through files and directories inside the dump file, and also
mark the files and directories that should be restored. This feature is very useful in
restoring the files and directories, deleted accidentally.

There are a number of useful commands in the interactive restore shell to help users
choose what they want to extract. The ls, cd, and pwd commands are similar to their
equivalents, and are used to navigate through the dump file. Using add and delete
commands, you can mark and unmark files and directories that you want to extract.
Once you finish selecting the files, you can use the extract command to extract the
selected files.

restore -i -f /usr/dump1

restore > ls
.:
.cshrc bin/ dev/ home@ mnt/ sbin/ var/
.profile boot/ dist/ lib/ proc/ sys@
.snap/ cdrom/ entropy libexec/ rescue/ tmp/
COPYRIGHT compat@ etc/ media/ root/ usr/

restore > add sbin
restore > add rescue
restore > extract
restore > quit

The restore command is also used to extract dump information from the dump file
using the what command in the interactive mode:

restore > what
Dump date: Sat Apr 14 16:40:03 2007
Dumped from: the epoch
Level 0 dump of / on server.example.com:/dev/ad0s1a
Label: none

System Configuration—Disks

[22]

The tar, cpio, and pax Utilities
There may be scenarios when you may not have to take a full dump of your hard
disk or partition. Instead, you may want to archive a series of files and directories
to your backup tapes or regular files. This is where tar(1), cpio(1L), and pax(1)
utilities come into play.

The tar command is UNIX's original tape manipulation tool. It was created to
manipulate streaming archive files for backup tapes. It is not a compression utility
and is used in conjunction with an external compression utility such as gzip and
bzip2, and compressd, in case compression is required.

Besides tape drives, you can use tar to create regular archive files. The tar archive
files are called tarball.

Keep in mind that FreeBSD's tar utility, a.k.a bsdtar(1), is slightly
different from the GNU's tar. GNU tar or gtar is available in ports
collection. Only BSD tar is covered in this chapter.

A tarball can be created, updated, verified, and extracted using the tar(1) utility.

tar cvf backup.tar backup/

a backup
a backup/HOME.diff
a backup/make.conf
a backup/rc.conf

In the above example, tar is used to create a tarball called backup.tar from the
backup directory. The c flag indicates tar should create a tar ball, v flag tells tar to
be verbose and show a list of files on which the operation is being performed and f
flag indicates the name of the output tarball (backup.tar) in the command.

To update a tarball, u flag is used:

tar uvf backup.tar backup/

a backup
a backup/make.conf
a backup/sysctl.conf

And x flag to extract the files from a tarball:

tar xvf backup.tar

x backup
x backup/HOME.diff
x backup/make.conf
x backup/rc.conf

Chapter 1

[23]

In all the above examples, the tarball archive was created as a regular file indicated
by f flag. While omitting this flag, tar will use the default tape device on the
/dev/sa0 file. Other useful tar flags include z for gzip compression and j for
bzip2 compression.

You can create tarballs over network with SSH using piping technique
discussed in Dump and Restore section.

The cpio utility is another important archiving utility in the FreeBSD's base system.
It is similar to the tar utility in many ways. It was also a POSIX standard until
POSIX.1-2001 and was dropped due to the 8GB file size limitation.

The pax utility was created by IEEE STD 1003.2 (POSIX.2) to sort out
incompatibilities between tar and cpio. Pax does not depend on any specific file
format and supports a handful of different archive formats including tar, cpio,
and ustar (POSIX.2 standard). Despite being a POSIX standard that is widely
implemented, it is still not as popular as a tar utility.

The -w flag is used to create archive:

pax -w -f backup.pax backup/

And -r to extract (or read) the archive to current directory:

pax -r -f backup.pax

The pax utility is also able to read/write different archive types that can be specified
by -x flag. The supported parameters of pax are shown in the following list:

cpio: New POSIX.2 cpio format
bcpio: Old binary cpio format
sv4cpio: System V release 4 cpio format
sv4crc: System V release 4 cpio format with CRC checksums
tar: BSD tar format
ustar: New POSIX.2 tar format

Snapshots
Actually, taking snapshots from a file system isn't a backup method, but is very
helpful in restoring accidentally removed files. Snapshots can be mounted as regular
file systems (even over network) and the system administrator can use regular system
commands to browse the mounted file system and restore selected files and directories.

•

•

•

•

•

•

System Configuration—Disks

[24]

RAID-GEOM Framework
GEOM is an abstraction framework in FreeBSD that provides the infrastructure
required to perform transformation on disk I/O operations. Major RAID control
utilities in FreeBSD use this framework for configuration.

This section does not provide in-depth information about RAID and GEOM, but only
discusses RAID configuration and manipulation using GEOM.

Currently GEOM supports RAID0 (Striped Set without parity) and RAID1 (Mirrored
Set without parity) through geom(8) facility.

RAID0—Striping
Striping disks is a method to combine multiple physical hard disks into one big
logical volume. This is done mostly using relevant hardware RAID controllers, while
GEOM provides software support for RAID0 stripe sets.

RAID0 offers improved disk I/O performance, by splitting data into multiple blocks
and performing simultaneous disk writes on multiple physical disks, but offers no
fault tolerance for hard disk errors. Any disk failure could destroy the array, which is
more likely to happen when you have many disks in your set.

Appropriate kernel module should be loaded before creating a RAID0 volume using
the following command:

kldload geom_stripe

This can also be done through the /boot/loader.conf file, to automatically load the
module during system boot up, by adding this line:

geom_stripe_load="YES"

Normally, you will not need to load any GEOM module manually. GEOM related utilities
automatically detect all modules that are required to be loaded, and will load it manually.

The gstripe(8) utility has everything you need to control your RAID0 volume.
Using this utility you can create, remove, and query the status of your RAID0 volume.

There are two different methods to create a RAID0 volume using gstripe—manual
and automatic. In the manual method, the create parameter is used, and volumes
created using this method do not persist during reboots. The volumes should be
created at boot time, if persistence is required:

gstripe create stripe1 /dev/da1 /dev/da2

newfs /dev/stripe/stripe1

Chapter 1

[25]

The newly created and formatted device can now be mounted and used as
shown here:

mount /dev/stripe/stripe1 /mnt

In the automatic method, the metadata is stored on the last sector of every device, so
that they can be detected and automatically configured during boot time. In order to
create automatic RAID0 volume, you should use label parameter:

gstripe label stripe1 /dev/da1 /dev/da2

Just like manual volumes, you can now format /dev/stripe/stripe1 using newfs
and mount it.

To see a list of current GEOM stripe sets, gstripe has the list argument. Using this
command, you can see a detailed list of devices that form the stripe set, as well as the
current status of those devices :

gstripe list

Geom name: stripe1
State: UP
Status: Total=2, Online=2
Type: AUTOMATIC
Stripesize: 131072
ID: 1477809630
Providers:
1. Name: stripe/stripe1
 Mediasize: 17160732672 (16G)
 Sectorsize: 512
 Mode: r1w1e0
Consumers:
1. Name: da1s1d
 Mediasize: 8580481024 (8.0G)
 Sectorsize: 512
 Mode: r1w1e1
 Number: 1
2. Name: da0s1d
 Mediasize: 8580481024 (8.0G)
 Sectorsize: 512
 Mode: r1w1e1
 Number: 0

To stop a RAID0 volume, you should use the stop argument in the gstripe utility.
The stop argument will stop an existing striped set ,but does not remove the metadata
from the device, so that it can be detected and reconfigured after system reboots.

gstripe stop stripe1

System Configuration—Disks

[26]

To remove metadata from the device and permanently remove a stripe set, the clear
argument should be used;
gstripe clear stripe1

RAID1—Mirroring
This level of RAID provides fault tolerance from disk errors and increased READ
performance on multithreaded applications. But write performance is slightly lower
in this method. In fact, RAID1 is a live backup of your physical disk. Disks used in
this method should be of equal size.

The gmirror(8) facility is the control utility of RAID1 mirror sets. Unlike RAID0,
all RAID1 volumes are automatic and all components are detected and configured
automatically at boot time. The gmirror utility uses the last sector on each device to
store metadata needed for automatic reconfiguration. This utility also makes it easy
to place a root partition on a mirrored set.

It offers various commands to control mirror sets. Initializing a mirror is done using
the label argument as shown here:

gmirror label –b round-robin mirror1 da0 da1

In the above example, we created a mirror set named mirror1 and attached the /
dev/da0 and /dev/da1 disks to the mirror set.

The -b flag specifies the "balance algorithm" to be used in the mirror set. There are
four different methods used as balance algorithms, which are listed as follows:

load: Read from the device with the lowest load.
prefer: Read from the device with the highest priority.
round-robin: Use round-robin algorithm between devices.
split: Split read requests that are bigger than or equal to slice size, on all
active devices.

You may choose an appropriate algorithm depending on your hardware
configuration. For example, if one of your hard disks is slower than the others , you
can set higher priority on the fastest hard disk using gmirror's insert argument
and use the prefer method as the balance algorithm.

Once you finish initializing your mirror set, you should format the newly created
device using newfs command and mount it to relevant mount point:

newfs /dev/mirror/mirror1

mount /dev/mirror/mirror1 /mnt

The stop argument stops a given mirror.

•
•
•
•

Chapter 1

[27]

Using the activate and deactivate arguments you can active and deactivate a
device that is attached to a mirror, which would be useful in removing or replacing
a hot-swappable hard disk. When a device is deactivated inside a mirror set, it
will not attach itself to the mirror automatically, even after a reboot, unless you re-
activate the device using the activate argument.

To add a new device to the mirror set, or to remove a device permanently, the insert
and remove arguments can be used, respectively. The remove argument also clears
metadata from the given device. This is shown in the following command lines:

gmirror insert mirror1 da2

gmirror remove mirror1 da1

If you want to change the configuration of a mirrored volume (for example, changing
balance algorithm on the fly), the configure argument can be used:

gmirror configure –b load mirror1

In case of disk failure, when a device is faulty and cannot be reconnected to the
mirror, the forget argument will tell gmirror to remove all faulty components.
Once you replace the faulty disk with a brand new one, you can use the insert
argument to attach a new disk to the array, and start synchronizing data.

Disk Concatenation
This method is used to concatenate multiple physical hard disks to create bigger
volumes, beyond the capacity of one hard disk. The difference between this method
and RAID0 's is that, in this method, data is written to the disk sequentially. This
means that the system will fill the first device first, and the second device will be
used only when there is no space left on the first device. This method does not offer
any performance improvements or redundancy.

To create a concatenated volume, the gconcat(8) facility is available. As in RAID0,
there are two methods to create a concatenated volume—manual and automatic.

Using the create parameter, you can create a manual concatenated volume and
attach the desired physical disks. In this method, as no metadata will be written
on the disk, the system will not be able to detect and reconfigure the volume after
system reboots.

In order to create an automatic concatenated volume, the label parameter should
be used:# gconcat label concat1 da0 da1 da2

System Configuration—Disks

[28]

Once a volume is created using either the manual or the automatic method, it should
be formatted using newfs as shown as follows:

newfs /dev/concat/concat1

mount /dev/concat/concat1 /mnt

There is no way to remove a device from a concatenated volume. However, you
can add new disks to an existing volume, and grow the size of the file system on
the volume:

gconcat label concat1 da3 da4

growfs /dev/concat/concat1

To stop a concatenated volume, the stop argument is used. However this will not
remove the volume permanently. The clear argument will remove the concatenated
volume permanently, and also remove the GEOM metadata from the last sector of
the attached devices.

Summary
The impact of disk I/O should not be overlooked when performance is a concern. A
well configured storage will dramatically improve the system's overall performance.
This chapter introduces the necessary tips and information a system administrator
needs, to tweak the storage setup on a FreeBSD server. We have also seen how to
take backups, weed out system redundancy and improve performance using
RAID arrays, and ways and means of creating and managing virtual memory
partitions, effectively.

System Configuration—
Keeping it Updated

As a system administrator, you would definitely know the importance of keeping the
system up-to-date to work around the security holes and bug fixes while keeping the
highest service availability. Moreover, as FreeBSD gets upgraded round the clock, it
is very important to know the right time and the need for an update.

Upgrading a system requires updating the local source tree from a server and
compiling specific parts of a system such as a library, the FreeBSD kernel, or in some
cases, the whole operating system. For those who are not interested in dealing with
the source code and recompiling, there are other ways to perform the binary updates.
The professionals can customize the binary updates generated for their systems by
changing the source code and recompiling, to gain better performance.

For the developers and end users the source code is available on the project's CVS
servers. Hence, the FreeBSD system administrator must have a basic knowledge of
CVS. Developers use CVS to record the updates to the source tree and the end users
check out the latest changes to their system, to update it as required. This chapter
discusses different ways of tracking the security-related updates. Further, it discusses
rebuilding the kernel, and the world (except the kernel), for those who prefer to
create their customized and optimized systems from scratch.

In this chapter we will look into the following:

CVSup as the synchronizing source— tracking –STABLE and –CURRENT
Ports collection
Security advisories
Customizing and rebuilding kernel
Rebuilding world
Binary update
Recovering from a dead kernel

•
•
•
•
•
•
•

System Configuration—Keeping it Updated

[30]

CVSup—Synchronizing the Source Code
The FreeBSD project makes a heavy use of CVS to make the source tree available for
different releases of the operating system on the development servers. The FreeBSD
project also uses the Perforce version control system for various other (mostly
experimental) projects. However, as a system administrator, there is no need to deal
with the Perforce system. It is highly recommended that you keep track of the latest
changes by subscribing to the appropriate mailing lists and checking the CVS tree. A
list of FreeBSD project's mailing list is available at http://lists.freebsd.org/.

There are various tags available for different releases of FreeBSD, on the CVS
server. Depending on the revision tag that you are tracking, you may see different
volumes of traffic on the CVS server. There are two types of tags—the branch and
release tags.

The branch tags refer to a particular line of development, while the release tags
refer to the FreeBSD release in a specified time.

For example, the RELENG_7 tag indicates the line of development for FreeBSD - 7.x
(also known as FreeBSD 7-STABLE or –STABLE for short). Alternatively, RELENG_
7_1 is a release branch for FreeBSD-7.1, which will only be updated for the security
advisories and other critical updates.

An example of release tags is RELENG_7_0_0_RELEASE, which is the release point of
FreeBSD 7.0-RELEASE.

The HEAD tag is the main line of development and all new features are imported
to this tree. This tree contains the codes that are necessary for the test reasons and
may break your running system down, due to the library updates or changes in the
memory structure.

It is not advisable to track –CURRENT tree on a production server as
some of the new updates may render your system unstable.

It is important to choose the revision tag, which you want to track, to keep your
servers up-to-date and stable. It is also recommended to keep track of the release
tag of your currently installed FreeBSD version. For example, if your server is
running FreeBSD 7.0 (which was installed from 7.0-RELEASE CD-ROM), it is
advisable to keep it synchronized with RELENG_7_0 tag, which contains only the
critical updates. By tracking the –STABLE branch (in this case RELENG_7), you will
have all the features and updates made to your FreeBSD release development line
(FreeBSD 7.x in this case). This means that once the 7.1-RELEASE is released, you can
check it out on the RELENG_7 branch and update your system.

	Cover
	Table of Contents
	Preface
	Chapter 1: System Configuration—Disks
	Partition Layout and Sizes
	Swap
	Adding More Swap Space
	Swap Encryption

	Softupdates
	Snapshots
	Quotas
	Assigning Quotas

	File System Backup
	Dump and Restore
	The tar, cpio, and pax Utilities
	Snapshots

	RAID-GEOM Framework
	RAID0—Striping
	RAID1—Mirroring
	Disk Concatenation

	Summary

	Chapter 2: System Configuration—Keeping it Updated
	CVSup—Synchronizing the Source Code
	Tracking –STABLE
	Tracking –CURRENT

	Ports Collection
	Tracking Ports
	Portsnap

	Security Advisories
	VuXML—Vulnerability Database
	CVS Branch Tag

	Customizing and Rebuilding Kernel
	Rebuilding World
	Binary Update
	Recovering from a Dead Kernel
	Summary

	Chapter 3: System Configuration—Software Package Management
	Ports and Packages
	The Legacy Method
	Software Directories
	Packages
	Ports

	Package Management Tools
	Portupgrade
	portinstall
	pkg_deinstall
	portversion
	pkg_which
	portsclean

	Portmaster

	Summary

	Chapter 4: System Configuration—System Management
	Process Management and Control
	Processes and Daemons
	Getting Information about Running Processes—ps, top, and pgrep
	Sending Signals to Running Processes—kill, killall, and pkill
	Prioritizing Running Processes—nice and renice

	Resource Management and Control
	System Resource Monitoring Tools—vmstat, iostat, pstat, and systat

	Process Accounting

	Summary

	Chapter 5: System Configuration—Jails
	Concept
	Introduction
	Setting Up a Jail
	Configuring the Host System
	Starting the Jail
	Automatic Startup
	Shutting Down Jails
	Managing Jails
	Jail Security
	Jail Limitations
	Summary

	Chapter 6: System Configuration—Tuning Performance
	Tweaking Kernel Variables using SYSCTL
	Kernel
	SMP

	Disk
	File limits
	I/O Performance
	RAID

	Network
	TCP Delayed ACK
	RFC 1323 Extensions
	TCP Listen Queue Size
	TCP Buffer Space
	Network Interface Polling

	The /etc/make.conf file
	CPUTYPE
	CFLAGS and COPTFLAGS

	The /boot/loader.conf file
	Summary

	Chapter 7: Network Configuration—Basics
	Ifconfig Utility
	Configuring IP Address
	Configuring Layer2 Address
	Configuring IPX
	Configuring AppleTalk
	Configuring Secondary (alias) IP Addresses
	Configuring Media Options
	Configuring VLANs
	Advanced ifconfig Options
	Hardware Offloading
	Promiscuous Mode
	MTU
	ARP
	Static ARP
	Monitor Mode

	Configuring Fast EtherChannel

	Default Routing
	Name Resolution
	Network Testing Tools
	Ping
	Traceroute
	Sockstat
	netstat
	ARP
	Tcpdump

	Summary

	Chapter 8: Network Configuration—Tunneling
	Generic Routing Encapsulation (GRE) protocol
	IPSEC
	Operating Modes
	Tunnel Mode

	Summary

	Chapter 9: Network Configuration—PPP
	Setting up PPP Client
	Setting up PPP Server
	Setting up PPPoE Client
	Setting up PPPoE Server
	Summary

	Chapter 10: Network Configuration—Routing and Bridging
	Basic Routing—IP Forwarding
	Static Routing
	routed and route6d
	Running OSPF—OpenOSPFD
	Running BGP—OpenBGPD
	Bridging
	Filtering Bridges

	Proxy ARP
	Summary

	Chapter 11: Network Configuration—IPv6
	IPv6 Facts
	Fact One—Addressing
	Fact Two—Address Types
	Fact Three—ARP
	Fact Four—Interface Configuration

	Using IPv6
	Configuring Interfaces

	Routing IPv6
	RIP6
	Multicast Routing
	Tunneling
	GIF Tunneling

	Summary

	Chapter 12: Network Configuration—Firewalls
	Packet Filtering with IPFW
	Basic Configuration
	Ruleset Templates
	Customized Rulesets
	Logging
	Network Address Translation (NAT)
	Traffic Shaping

	Packet Filtering with PF
	PF Configuration Syntax
	Controlling PF

	Network Address Translation using PF and IPFW
	Summary

	Chapter 13: Network Services—Internet Servers
	inetd Daemon
	tcpd

	SSH
	Running a Command Remotely
	SSH Keys
	SSH Authentication Agent
	SSH Tunneling or Port Forwarding

	NTP
	Syncing
	NTP Server

	DNS
	BIND software
	Operating Modes
	Forwarding/Caching DNS Server
	Authoritative
	Monitoring
	Optimizations

	FTP
	Anonymous FTP Server

	Mail
	Sendmail
	Postfix

	Web
	Apache
	Virtual Hosts

	Alternative HTTP Servers

	Proxy
	Summary

	Chapter 14: Network Services—Local Network Services
	Dynamic Host Configuration Protocol (DHCP)
	dhclient
	ISC DHCPD
	DHCPD Configuration

	Trivial File Transfer Protocol (TFTP)
	Network File System (NFS)
	Server
	Client
	NFS Locking

	Server Message Block (SMB) or CIFS
	SMB Client
	SMB Server
	Authentication
	Samba Web Administration Tool (SWAT)

	Simple Network Management Protocol (SNMP)
	bsnmpd
	NET-SNMP
	Client Tools

	Printing
	lpd—Print Spooler Daemon
	Common UNIX Printing System (CUPS)

	Network Information System (NIS)
	NIS Server
	Initializing NIS Server

	Summary

	Index

