

SQL for MySQL
Developers

This page intentionally left blank This page intentionally left blank

SQL for MySQL
Developers
A Comprehensive Tutorial
and Reference

Rick F. van der Lans
Translated by Diane Cools

Upper Saddle River, NJ ■ Boston ■ Indianapolis ■ San Francisco

New York ■ Toronto ■ Montreal ■ London ■ Munich ■ Paris ■ Madrid

Cape Town ■ Sydney ■ Tokyo ■ Singapore ■ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Library of Congress Cataloging-in-Publication Data

Lans, Rick F. van der.
SQL for MySQL developers : a comprehensive tutorial and reference / Rick F. van der Lans.

p. cm.
ISBN 978-0-13-149735-1 (pbk. : alk. paper) 1. SQL (Computer program language) 2. MySQL
(Electronic resource) I. Title.
QA76.73.S67L345 2007
005.13’3—dc22

2007000578

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0131497359
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, April 2007

www.awprofessional.com
http://www.awprofessional.com/safarienabled

Dedicated to Alyssa.

This page intentionally left blank This page intentionally left blank

vii

Contents

PART I Introduction. 1

CHAPTER 1 Introduction to MySQL . 3
1.1 Introduction . 3

1.2 Database, Database Server, and Database Language. 4

1.3 The Relational Model . 6

1.4 What Is SQL? . 11

1.5 The History of SQL . 16

1.6 From Monolithic via Client/Server to the Internet 18

1.7 Standardization of SQL . 21

1.8 What Is Open Source Software? . 25

1.9 The History of MySQL . 26

1.10 The Structure of This Book . 27

CHAPTER 2 The Tennis Club Sample Database 29
2.1 Introduction . 29

2.2 Description of the Tennis Club . 29

2.3 The Contents of the Tables. 33

2.4 Integrity Constraints. 35

CHAPTER 3 Installing the Software . 37
3.1 Introduction . 37

3.2 Downloading MySQL . 37

3.3 Installation of MySQL. 38

3.4 Installing a Query Tool . 38

3.5 Downloading SQL Statements from the Web Site 38

3.6 Ready? . 39

CHAPTER 4 SQL in a Nutshell . 41
4.1 Introduction . 41

4.2 Logging On to the MySQL Database Server 41

4.3 Creating New SQL Users . 43

4.4 Creating Databases . 45

4.5 Selecting the Current Database . 45

4.6 Creating Tables. 46

4.7 Populating Tables with Data . 48

4.8 Querying Tables . 49

4.9 Updating and Deleting Rows . 52

4.10 Optimizing Query Processing with Indexes. 54

4.11 Views. 55

4.12 Users and Data Security . 57

4.13 Deleting Database Objects . 57

4.14 System Variables . 58

4.15 Grouping of SQL Statements . 59

4.16 The Catalog Tables . 60

4.17 Retrieving Errors and Warnings . 68

4.18 Definitions of SQL Statements . 69

PART II Querying and Updating Data 71

CHAPTER 5 SELECT Statement: Common Elements 73
5.1 Introduction . 73

5.2 Literals and Their Data Types . 74

5.3 Expressions. 88

5.4 Assigning Names to Result Columns . 92

5.5 The Column Specification. 94

5.6 The User Variable and the SET Statement 95

5.7 The System Variable . 97

5.8 The Case Expression . 101

5.9 The Scalar Expression Between Brackets 106

vii i Contents

5.10 The Scalar Function . 107

5.11 Casting of Expressions . 111

5.12 The Null Value as an Expression . 114

5.13 The Compound Scalar Expression . 115

5.14 The Aggregation Function and the Scalar Subquery 136

5.15 The Row Expression . 137

5.16 The Table Expression . 139

5.17 Answers . 140

CHAPTER 6 SELECT Statements, Table Expressions,
and Subqueries . 145
6.1 Introduction . 145

6.2 The Definition of the SELECT Statement 145

6.3 Processing the Clauses in a Select Block. 150

6.4 Possible Forms of a Table Expression 156

6.5 What Is a SELECT Statement? . 159

6.6 What Is a Subquery?. 160

6.7 Answers . 166

CHAPTER 7 SELECT Statement:The FROM Clause. 171
7.1 Introduction . 171

7.2 Table Specifications in the FROM Clause 171

7.3 Again, the Column Specification. 173

7.4 Multiple Table Specifications in the FROM Clause 174

7.5 Pseudonyms for Table Names. 178

7.6 Various Examples of Joins . 179

7.7 Mandatory Use of Pseudonyms . 183

7.8 Tables of Different Databases . 185

7.9 Explicit Joins in the FROM Clause. 185

7.10 Outer Joins . 189

7.11 The Natural Join . 195

7.12 Additional Conditions in the Join Condition. 196

7.13 The Cross Join. 199

7.14 Replacing Join Conditions with USING. 199

7.15 The FROM Clause with Table Expressions 200

7.16 Answers . 208

ixContents

CHAPTER 8 SELECT Statement: The WHERE Clause 213
8.1 Introduction . 213

8.2 Conditions Using Comparison Operators 215

8.3 Comparison Operators with Subqueries 222

8.4 Comparison Operators with Correlated Subqueries. 227

8.5 Conditions Without a Comparison Operator. 229

8.6 Conditions Coupled with AND, OR, XOR, and NOT 231

8.7 The IN Operator with Expression List. 235

8.8 The IN Operator with Subquery . 241

8.9 The BETWEEN Operator . 250

8.10 The LIKE Operator . 252

8.11 The REGEXP Operator . 255

8.12 The MATCH Operator . 264

8.13 The IS NULL Operator . 276

8.14 The EXISTS Operator . 278

8.15 The ALL and ANY Operators . 281

8.16 Scope of Columns in Subqueries . 289

8.17 More Examples with Correlated Subqueries 294

8.18 Conditions with Negation. 299

8.19 Answers . 302

CHAPTER 9 SELECT Statement: SELECT Clause and
Aggregation Functions . 315
9.1 Introduction . 315

9.2 Selecting All Columns (*) . 316

9.3 Expressions in the SELECT Clause . 317

9.4 Removing Duplicate Rows with DISTINCT. 318

9.5 When Are Two Rows Equal?. 321

9.6 More Select Options. 323

9.7 An Introduction to Aggregation Functions. 324

9.8 COUNT Function . 327

9.9 MAX and MIN Functions . 331

9.10 The SUM and AVG Function. 336

9.11 The VARIANCE and STDDEV Functions. 341

9.12 The VAR_SAMP and STDDEV_SAMP Functions 343

9.13 The BIT_AND, BIT_OR, and BIT_XOR Functions 343

9.14 Answers . 345

x Contents

CHAPTER 10 SELECT Statement: The GROUP BY Clause 349
10.1 Introduction . 349

10.2 Grouping on One Column . 350

10.3 Grouping on Two or More Columns 353

10.4 Grouping on Expressions . 356

10.5 Grouping of Null Values . 357

10.6 Grouping with Sorting . 358

10.7 General Rules for the GROUP BY Clause 359

10.8 The GROUP_CONCAT Function . 362

10.9 Complex Examples with GROUP BY. 363

10.10 Grouping with WITH ROLLUP . 369

10.11 Answers . 372

CHAPTER 11 SELECT Statement: The HAVING Clause 375
11.1 Introduction . 375

11.2 Examples of the HAVING Clause . 376

11.3 A HAVING Clause but not a GROUP BY Clause 378

11.4 General Rule for the HAVING Clause 379

11.5 Answers . 381

CHAPTER 12 SELECT Statement: The ORDER BY Clause 383
12.1 Introduction . 383

12.2 Sorting on Column Names . 383

12.3 Sorting on Expressions . 385

12.4 Sorting with Sequence Numbers . 387

12.5 Sorting in Ascending and Descending Order 389

12.6 Sorting Null Values . 392

12.7 Answers . 393

CHAPTER 13 SELECT Statement: The LIMIT Clause. 395
13.1 Introduction . 395

13.2 Get the Top… . 398

13.3 Subqueries with a LIMIT Clause . 402

13.4 Limit with an Offset . 404

13.5 The Select Option SQL_CALC_FOUND_ROWS 405

13.6 Answers . 406

xiContents

CHAPTER 14 Combining Table Expressions 409
14.1 Introduction . 409

14.2 Combining with UNION. 410

14.3 Rules for Using UNION . 413

14.4 Keeping Duplicate Rows. 416

14.5 Set Operators and the Null Value. 417

14.6 Answers . 418

CHAPTER 15 The User Variable and the SET Statement 421
15.1 Introduction . 421

15.2 Defining Variables with the SET Statement 421

15.3 Defining Variables with the SELECT Statement 423

15.4 Application Areas for User Variables 425

15.5 Life Span of User Variables . 426

15.6 The DO Statement . 428

15.7 Answers . 428

CHAPTER 16 The HANDLER Statement. 429
16.1 Introduction . 429

16.2 A Simple Example of the HANDLER Statement 429

16.3 Opening a Handler . 430

16.4 Browsing the Rows of a Handler . 431

16.5 Closing a Handler . 435

16.6 Answers . 435

CHAPTER 17 Updating Tables . 437
17.1 Introduction . 437

17.2 Inserting New Rows . 437

17.3 Populating a Table with Rows from Another Table 442

17.4 Updating Values in Rows . 444

17.5 Updating Values in Multiple Tables 450

17.6 Substituting Existing Rows . 452

17.7 Deleting Rows from a Table . 454

17.8 Deleting Rows from Multiple Tables. 456

17.9 The TRUNCATE Statement . 458

17.10 Answers . 458

xii Contents

CHAPTER 18 Loading and Unloading Data 461
18.1 Introduction . 461

18.2 Unloading Data . 461

18.3 Loading Data . 465

CHAPTER 19 Working with XML Documents 471
19.1 XML in a Nutshell . 471

19.2 Storing XML Documents . 473

19.3 Querying XML Documents . 476

19.4 Querying Using Positions . 484

19.5 The Extended Notation of XPath . 486

19.6 XPath Expressions with Conditions 488

19.7 Changing XML Documents. 489

PART III Creating Database Objects. 491

CHAPTER 20 Creating Tables . 493
20.1 Introduction . 493

20.2 Creating New Tables. 493

20.3 Data Types of Columns . 496

20.4 Adding Data Type Options. 508

20.5 Creating Temporary Tables . 514

20.6 What If the Table Already Exists? . 515

20.7 Copying Tables . 516

20.8 Naming Tables and Columns . 521

20.9 Column Options: Default and Comment 522

20.10 Table Options. 524

20.11 The CSV Storage Engine . 532

20.12 Tables and the Catalog. 534

20.13 Answers . 537

CHAPTER 21 Specifying Integrity Constraints. 539
21.1 Introduction . 539

21.2 Primary Keys. 541

21.3 Alternate Keys. 544

21.4 Foreign Keys . 546

21.5 The Referencing Action. 550

21.6 Check Integrity Constraints . 553

xii iContents

21.7 Naming Integrity Constraints . 556

21.8 Deleting Integrity Constraints. 557

21.9 Integrity Constraints and the Catalog 557

21.10 Answers . 558

CHAPTER 22 Character Sets and Collations 561
22.1 Introduction . 561

22.2 Available Character Sets and Collations 563

22.3 Assigning Character Sets to Columns. 564

22.4 Assigning Collations to Columns . 566

22.5 Expressions with Character Sets and Collations 568

22.6 Sorting and Grouping with Collations 571

22.7 The Coercibility of Expressions. 573

22.8 Related System Variables . 574

22.9 Character Sets and the Catalog . 576

22.10 Answers . 576

CHAPTER 23 The ENUM and SET Types . 577
23.1 Introduction . 577

23.2 The ENUM Data Type . 578

23.3 The SET Data Type . 582

23.4 Answers . 589

CHAPTER 24 Changing and Dropping Tables 591
24.1 Introduction . 591

24.2 Deleting Entire Tables. 591

24.3 Renaming Tables . 593

24.4 Changing the Table Structure . 593

24.5 Changing Columns . 595

24.6 Changing Integrity Constraints. 599

24.7 Answers . 602

CHAPTER 25 Using Indexes . 603
25.1 Introduction . 603

25.2 Rows, Tables, and Files. 604

25.3 How Does an Index Work?. 605

25.4 Processing a SELECT Statement: The Steps 610

25.5 Creating Indexes . 614

xiv Contents

25.6 Defining Indexes Together with the Tables 617

25.7 Dropping Indexes . 618

25.8 Indexes and Primary Keys . 619

25.9 The Big PLAYERS_XXL Table . 620

25.10 Choosing Columns for Indexes . 622

25.11 Indexes and the Catalog . 627

25.12 Answers . 630

CHAPTER 26 Views . 631
26.1 Introduction . 631

26.2 Creating Views . 631

26.3 The Column Names of Views . 635

26.4 Updating Views: WITH CHECK OPTION. 636

26.5 Options of Views . 638

26.6 Deleting Views . 639

26.7 Views and the Catalog . 640

26.8 Restrictions on Updating Views . 641

26.9 Processing View Statements . 642

26.10 Application Areas for Views . 645

26.11 Answers . 650

CHAPTER 27 Creating Databases. 653
27.1 Introduction . 653

27.2 Databases and the Catalog. 653

27.3 Creating Databases . 654

27.4 Changing Databases. 655

27.5 Dropping Databases. 656

CHAPTER 28 Users and Data Security . 659
28.1 Introduction . 659

28.2 Adding and Removing Users . 660

28.3 Changing the Names of Users . 662

28.4 Changing Passwords . 663

28.5 Granting Table and Column Privileges 664

28.6 Granting Database Privileges . 667

28.7 Granting User Privileges . 670

28.8 Passing on Privileges: WITH GRANT OPTION 673

28.9 Restricting Privileges. 674

xvContents

28.10 Recording Privileges in the Catalog 675

28.11 Revoking Privileges . 677

28.12 Security of and Through Views . 680

28.13 Answers . 682

CHAPTER 29 Statements for Table Maintenance 683
29.1 Introduction . 683

29.2 The ANALYZE TABLE Statement . 684

29.3 The CHECKSUM TABLE Statement 685

29.4 The OPTIMIZE TABLE Statement. 686

29.5 The CHECK TABLE Statement . 687

29.6 The REPAIR TABLE Statement . 689

29.7 The BACKUP TABLE Statement . 690

29.8 The RESTORE TABLE Statement . 691

CHAPTER 30 The SHOW, DESCRIBE, and HELP Statements 693
30.1 Introduction . 693

30.2 Overview of SHOW Statements . 693

30.3 Additional SHOW Statements . 698

30.4 The DESCRIBE Statement . 699

30.5 The HELP Statement . 699

PART IV Procedural Database Objects. 701

CHAPTER 31 Stored Procedures. 703
31.1 Introduction . 703

31.2 An Example of a Stored Procedure . 704

31.3 The Parameters of a Stored Procedure 706

31.4 The Body of a Stored Procedure. 707

31.5 Local Variables . 709

31.6 The SET Statement . 712

31.7 Flow-Control Statements . 712

31.8 Calling Stored Procedures . 719

31.9 Querying Data with SELECT INTO. 722

31.10 Error Messages, Handlers, and Conditions 726

31.11 Retrieving Data with a Cursor. 731

31.12 Including SELECT Statements Without Cursors 736

31.13 Stored Procedures and User Variables 737

31.14 Characteristics of Stored Procedures 737

xvi Contents

31.15 Stored Procedures and the Catalog 740

31.16 Removing Stored Procedures . 741

31.17 Security with Stored Procedures . 742

31.18 Advantages of Stored Procedures . 743

CHAPTER 32 Stored Functions . 745
32.1 Introduction . 745

32.2 Examples of Stored Functions . 746

32.3 More on Stored Functions . 752

32.4 Removing Stored Functions . 753

CHAPTER 33 Triggers. 755
33.1 Introduction . 755

33.2 An Example of a Trigger . 756

33.3 More Complex Examples . 759

33.4 Triggers as Integrity Constraints. 763

33.5 Removing Triggers . 765

33.6 Triggers and the Catalog . 765

33.7 Answers . 765

CHAPTER 34 Events . 767
34.1 What Is an Event? . 767

34.2 Creating Events. 768

34.3 Properties of Events . 777

34.4 Changing Events . 778

34.5 Removing Events . 779

34.6 Events and Privileges . 779

34.7 Events and the Catalog. 780

PART V Programming with SQL 783

CHAPTER 35 MySQL and PHP. 785
35.1 Introduction . 785

35.2 Logging On to MySQL . 786

35.3 Selecting a Database . 787

35.4 Creating an Index . 788

35.5 Retrieving Error Messages . 790

35.6 Multiple Connections Within One Session 791

35.7 SQL Statements with Parameters . 793

35.8 SELECT Statement with One Row . 794

xviiContents

35.9 SELECT Statement with Multiple Rows 796
35.10 SELECT Statement with Null Values 800
35.11 Querying Data About Expressions 801
35.12 Querying the Catalog . 803
35.13 Remaining MYSQL Functions . 805

CHAPTER 36 Dynamic SQL with Prepared Statement. 807
36.1 Introduction . 807
36.2 Working with Prepared SQL Statements 807
36.3 Prepared Statements with User Variables. 810
36.4 Prepared Statements with Parameters 810
36.5 Prepared Statements in Stored Procedures 811

CHAPTER 37 Transactions and Multiuser Usage. 815
37.1 Introduction . 815
37.2 What Is a Transaction? . 815
37.3 Starting Transactions . 821
37.4 Savepoints . 822
37.5 Stored Procedures and Transactions 824
37.6 Problems with Multiuser Usage . 825
37.7 Locking . 829
37.8 Deadlocks . 830
37.9 The LOCK TABLE and UNLOCK TABLE Statements 830
37.10 The Isolation Level . 832
37.11 Waiting for a Lock . 834
37.12 Moment of Processing Statements 834
37.13 Working with Application Locks . 835
37.14 Answers . 837

APPENDIX A Syntax of SQL . 839
A.1 Introduction . 839
A.2 The BNF Notation . 839
A.3 Reserved Words in SQL . 843
A.4 Syntax Definitions of SQL Statements 845

APPENDIX B Scalar Functions . 903

APPENDIX C System Variables . 953

APPENDIX D Bibliography . 963

Index . 967

xvii i Contents

xix

About the Author

Rick F. van der Lans is author of the classic Introduction to SQL, the definitive
SQL guide that database developers have relied on for more than 20 years. This
book has been translated into various languages and has sold more than 100,000
copies.

He is an independent consultant, author, and lecturer specializing in database
technology, development tools, data warehousing, and XML. As managing director
of the Netherlands-based R20/Consultancy, he has advised many large companies
on defining their IT architectures.

Rick is an internationally acclaimed lecturer. Throughout his career, he has
lectured in many European countries, South America, USA, and Australia. He
chairs the European Meta Data Conference and DB2 Symposium, and writes
columns for several magazines. He was a member of the Dutch ISO committee
responsible for the ISO SQL Standard for seven years.

You can contact Rick via email at sql@r20.nl.

xx

Preface

INTRODUCTION

Many books have been written about MySQL, the best-known open source database
server. Then why another book? Most books about MySQL discuss a wide variety of
topics, such as the installation of MySQL, using MySQL from PHP, and security. As
a result, each topic cannot be explained in detail, and many questions of readers
cannot be answered. This book focuses on one aspect of MySQL: the language that
drives MySQL, which is SQL (Structured Query Language). Every developer work-
ing with MySQL should master this language thoroughly.

Especially in the more recent versions, SQL has been extended considerably.
Unfortunately, many developers still limit themselves to those features that were
available in the first versions. Not all the features of MySQL are fully used, which
means that the product is not employed in the best way possible. The result is that
complex statements and programs must be built needlessly. When you buy a house,
you also do not restrict yourself to 20 percent of the rooms, do you? That is why this
book contains a complete and detailed description of the SQL dialect as imple-
mented in MySQL version 5.0.18. It should be seen primarily as a textbook rather
than as a reference book; it will teach you the language, and you can complete the
exercises to test your knowledge. After reading this book, you should be familiar
with all the statements and features and some idiosyncrasies of MySQL’s SQL, and
you should be able to use it efficiently and effectively.

TOPICS

This book is completely devoted to the SQL dialect as implemented in MySQL. It
discusses every aspect of the language thoroughly and critically. These aspects of
SQL among others, are covered:

■ Querying data (joins, functions, and subqueries)

■ Updating data

■ Creating tables and views

■ Specifying primary and foreign keys and other integrity constraints

■ Using indexes

■ Considering data security

■ Developing stored procedures and triggers

■ Developing programs with PHP

■ Working with transactions

■ Using the catalog

FOR WHOM IS THIS BOOK INTENDED?
We recommend this book on MySQL’s SQL dialect to those who want to use the full
power of MySQL effectively and efficiently in practice. This book is therefore suit-
able for the following groups of people:

■ Developers who develop applications with the help of MySQL

■ Database managers who have to know the possibilities and impossibilities
of SQL

■ Students in higher education, including those in technical colleges, poly-
technics, universities, and sixth-form colleges

■ Designers, analysts, and consultants who have to deal, directly or indi-
rectly, with MySQL and/or SQL and want to know about its possibilities and
impossibilities

■ Home students who are interested in MySQL and/or SQL

■ Users who have the authority to use SQL to query the MySQL database of
the company or institute for which they are working

xxiPreface

■ Web site developers who are creating web sites with the help of MySQL
and languages such as PHP and Python

■ IT hobbyists who are interested in MySQL and want to develop an SQL
application using MySQL themselves

A PRACTICAL BOOK

This book should be seen primarily as a textbook and less as a reference work. To
this end, it contains many examples and exercises (with answers). Do not ignore the
exercises. Experience shows that you will learn the language more thoroughly and
more quickly by practicing often and doing many exercises.

THE BOOK’S WEB SITE

When you leaf through the book, you will come across numerous SQL statements.
Sometimes these are examples, and sometimes they are answers to questions. After
you have installed MySQL, you can run through these statements to see whether
they work and see their effects. You could type in all the statements again like a real
Spartan, but you can also make life easy for yourself by downloading all the state-
ments from the Internet. A special web site for this book, www.r20.nl, includes all
the SQL statements.

We also have used the web site for these purposes:

■ The web site includes an installation process and instructions for MySQL.
You will find useful tips for installing MySQL under Windows. The site also
explains the installation process of the example database.

■ If an error is found in the book, the web site will rectify the mistake.

■ Reader comments that could be of interest to others will be added periodi-
cally to site.

■ We even will consider making additional chapters available on the web site
in the future.

Therefore, keep an eye on this web site.

xxii Preface

www.r20.nl

PREREQUISITE KNOWLEDGE

Some general knowledge of programming languages and database servers is
required.

THE HISTORY OF THIS BOOK

It was 1984, and the database world was under the spell of a revolution. SQL had
started its triumphal procession. Vendors such as IBM and Oracle had introduced
the commercial versions of their SQL database servers, and the marketing machine
went at full speed. The market reacted positively to this rise of first-generation SQL
database servers. Many organizations decided to buy such a database server and
gradually phase out their existing products.

My employer at that time had decided to get involved in this tumult as well. The
company also wanted to make money with this new database language, and the plan
was to start organizing SQL courses. Because of my background knowledge, I was
charged with this task. That SQL would become such a success and that my agree-
ment to present the courses would have far- reaching consequences (personally as
well as professionally) never entered my mind.

After studying SQL closely, I started to develop the material for the course.
After teaching SQL for two years with great pleasure, I got an idea to write a book
about SQL. It would have to be a book completely dedicated to this language, with
its many possibilities and idiosyncrasies.

After producing gallons of blood, sweat, and tears, I completed the first Dutch
edition in 1986, entitled Het SQL Leerboek. The book did not focus on a specific
SQL database server, but on the SQL standard. Barely before the book was pub-
lished, I was asked to write an English version. That book, Introduction to SQL, was
published in 1987 as the first English book completely devoted to SQL. After that,
I wrote versions in German and Italian. Obviously, a need existed for information
about SQL. Everyone wanted to learn about SQL, but not much information was
available.

Because SQL was still young, development went fast. Statements were added,
extended, and improved. New implementations became available, new application
areas were discovered, and new versions of the SQL standard appeared. Soon a new
edition of the book had to be written. And more was to come. And this will not be
the last because SQL has gloriously won the revolution in the database world, and
no competition is in sight on the horizon.

xxii iPreface

Through the years, many vendors have implemented SQL. At first, all these
products had much in common, but slowly the number of differences increased. For
that reason, I decided in 2003 to write a book specifically dedicated to the SQL
dialect of MySQL. I thought it would be a piece of cake. I would use Introduction to
SQL as an example, add some details of MySQL, and remove a few general aspects.
How long could that take? Two weeks of hard work and some speed typing, and I’d
have the book ready. However, that appeared to be a serious underestimation. To
give a complete view of all the features, I had to dive deeply into the SQL dialect of
MySQL. This book, which definitely took more than two weeks of writing, is the
result of that time-consuming effort. Obviously, it is related to the book from which
it is derived; however, it contains many MySQL-related details not included in
Introduction to SQL.

AND FINALLY…
Writing this book was not a solo project. Many people have contributed to this book
or previous editions. I would like to use this preface to thank them for their help,
contributions, ideas, comments, mental support, and patience.

It does not matter how many times a writer reads his own work; editors remain
indispensable. A writer reads not what he has written, but what he thinks he has
written. In this respect, writing is like programming. That is why I owe a great deal
to the following persons for making critical comments and giving very helpful
advice: Klaas Brant, Marc van Cappellen, Ian Cargill, Corine Cools, Richard van
Dijk, Rose Endres, Wim Frederiks, Andrea Gray, Ed Jedeloo, Josien van der Laan,
Oda van der Lans, Deborah Leendertse, Arjen Lentz, Onno de Maar, Andrea Mau-
rino, Sandor Nieuwenhuijs, Henk Schreij, Dave Slayton, Aad Speksnijder, Nok van
Veen, John Vicherek, and David van der Waaij. They all have read this manuscript
(or parts of it) or the manuscript of a previous edition, a translation of it, or an
adjusted version.

I would like to thank Wim Frederiks and Roland Bouman separately for all the
hours they spent editing this book. Both patiently studied each page and pointed
out the errors and inconsistencies. I am very grateful to them for all the work they
put into this project.

I would also like to thank the thousands of students across the world whom I
have taught SQL over the past years. Their comments and recommendations have
been invaluable in revising this book. In addition, a large number of readers of the
previous edition responded to my request to send comments and suggestions. I want
to thank them for the trouble they took to put these in writing.

xxiv Preface

From the first day I started working on the project, I had the support of the
MySQL organization. They helped me by making the required software available. I
want to thank this group very much for the support and help.

Again, I owe Diane Cools many thanks. As an editor, she made this book read-
able to others. For a writer, it is also reassuring to find someone who, especially in
difficult times, keeps stimulating and motivating you. Thanks, Diane!

Finally, again I would like to ask readers to send comments, opinions, ideas,
and suggestions concerning the contents of the book to sql@r20.nl, referencing SQL
for MySQL Developers. Many thanks, in anticipation of your cooperation.

Rick F. van der Lans
Den Haag, The Netherlands, March 2007

xxvPreface

This page intentionally left blank This page intentionally left blank

Part I
Introduction

SQL is a compact and powerful language for working with databases.
Despite this compactness, it cannot be described simply in a few chap-
ters. We would do the language no justice then. And that certainly applies
to MySQL’s SQL dialect, which has many, many possibilities. For this rea-
son, we start this book with a number of introductory chapters that form
the first part.

In Chapter 1, “Introduction to MySQL,” we provide an overall
description of SQL, including its background and history, and the history
of MySQL. MySQL is open source software; in Section 1.8, we explain
what that really means. We also describe a number of concepts in the
relational model (the theory behind SQL).

This book contains many examples and exercises. So that you do not
have to learn a new database for each example, we use the same database
for most of these examples and exercises. This database forms the basis
for the administration of an international tennis league. Chapter 2, “The
Tennis Club Sample Database,” describes the structure of this database.
Look closely at this before you begin the exercises.

S Q L F O R M Y S Q L D E V E L O P E R S

1

We strongly recommend that you use MySQL when doing the exercises and get
some hands-on experience. For this, you have to download and install the software,
and create the example database. Chapter 3, “Installing the Software,” describes
how to do that. Note that for several aspects, we refer to the web site of the book.

This part closes with Chapter 4, “SQL in a Nutshell,” which reviews all the
important SQL statements. After reading this part, you should have both a general
idea of what SQL offers as a language and an overall impression of what this book
discusses.

2 SQL For My SQL Developers

3

Introduction to MySQL
C H A P T E R 1

1.1 INTRODUCTION

MySQL is a relational database server that supports the well-known SQL (Struc-
tured Query Language) database language. Therefore, MySQL is named after the
language that developers use to store, query, and later update data in a MySQL
database. In short, SQL is the native language of MySQL.

This chapter discusses the following topics. None of these topics is really
important for studying MySQL’s SQL. When you are familiar with these background
topics, you can jump to the next chapter.

■ The chapter starts with an explanation of basic subjects, such as the data-
base, database server, and database language.

■ SQL is based on theories of the relational model. To use SQL, some knowl-
edge of this model is invaluable. Therefore, Section 1.3 describes the rela-
tional model.

■ Section 1.4 briefly describes what SQL is, what can be done with the lan-
guage, and how it differs from other languages (such as Java, Visual Basic,
or PHP).

■ Section 1.5 covers the history of SQL.

■ Section 1.7 presents the most important current standards for SQL.

■ MySQL is open source software. Section 1.8 explains what that really means.

■ Section 1.9 discusses the history of MySQL and its vendors.

■ The chapter closes with a description of the structure of the book. The book
consists of several parts, with each part summarized in a few sentences.

1.2 DATABASE, DATABASE SERVER, AND DATABASE
LANGUAGE

SQL (Structured Query Language) is a database language used for formulating
statements processed by a database server. In this case, the database server is
MySQL. The first sentence of this paragraph contains three important concepts:
database, database server, and database language. We begin with an explanation of
each of these terms.

What is a database? This book uses a definition derived from Chris J. Date’s
definition (see [DATE95]):

A database consists of some collection of persistent data that is used by
the application systems of some given enterprise and managed by a data-
base-management system.

Therefore, card index files do not constitute a database. On the other hand, the
large files of banks, insurance companies, telephone companies, and the state
transport department can be considered databases. These databases contain data
about addresses, account balances, car registration plates, weights of vehicles, and
so on. For example, the company you work for probably has its own computers,
which are used to store salary-related data.

Data in a database becomes useful only if something is done with it. According
to the definition, data in the database is managed by a separate programming sys-
tem. This system is called a database server or database management system
(DBMS). MySQL is such a database server. A database server enables users to
process data stored in a database. Without a database server, it is impossible to look
at data in the database or to update or delete obsolete data. The database server
alone knows where and how data is stored. A definition of a database server appears
in [ELMA06], by R. Elmasri:

A database server is a collection of programs that enables users to create
and maintain a database.

A database server never changes or deletes the data in a database by itself;
someone or something has to give the command for this to happen. Examples of
commands that a user could give to the database server are ‘delete all data about
the vehicle with the registration plate number DR-12-DP’ or ‘give the names of all
the companies that haven’t paid the invoices of last March.’ However, users cannot
communicate with the database server directly; an application must present the

4 SQL for MySQL Developers

commands to a database server. An application always exists between the user and
the database server. Section 1.4 discusses this in more detail.

The definition of the term database also contains the word persistent. This
means that data in a database remains there permanently until it is changed or
deleted explicitly. If you store new data in a database and the database server sends
back the message that the storage operation was successful, you can be sure that
the data will still be there tomorrow (even if you switch off your computer). This is
unlike the data stored in the internal memory of a computer. If the computer is
switched off, that data is lost forever; it is not persistent.

Commands are relayed to a database server with the help of special languages,
called database languages. Users enter commands, also known as statements, that
are formulated according to the rules of the database language, using special soft-
ware; the database server then processes these commands. Every database server,
regardless of manufacturer, possesses a database language. Some systems support
more than one. All these languages are different, which makes it possible to divide
them into groups. The relational database languages form one of these groups. An
example of such a language is SQL.

How does a database server store data in a database? A database server uses
neither a chest of drawers nor a filing cabinet to hold information; instead, comput-
ers work with storage media such as tapes, floppy disks, and magnetic and optical
disks. The manner in which a database server stores information on these media is
very complex and technical, and this book does not explain the details. In fact, you
do not need this technical knowledge because one of the most important tasks of a
database server is to offer data independence. This means that users do not need to
know how or where data is stored. To users, a database is simply a large reservoir of
information. Storage methods are also completely independent of the database lan-
guage being used. In a way, this resembles the process of checking in luggage at an
airport. Travelers do not care where and how the airline stores their luggage; they
are interested only in whether the luggage arrives at their destinations.

Another important task of a database server is to maintain the integrity of the
data stored in a database. This means, first, that the database server has to make
sure that database data always satisfies the rules that apply in the real world. Take,
for example, the case of an employee who is allowed to work for one department
only. In a database managed by a database server, the database should not permit
any employee to be registered as working for two or more departments. Second,
integrity means that two different pieces of database data do not contradict one
another. This is also known as data consistency. (As an example, in one place in a
database, Mr. Johnson might be recorded as being born on August 4, 1964, and in
another place he might have a birth date of December 14, 1946. These two pieces

5CHAPTER 1 Introduction to MySQL

of data are obviously inconsistent.) Each database server is designed to recognize
statements that can be used to specify constraints. After these rules are entered, the
database server takes care of their implementation.

1.3 THE RELATIONAL MODEL

SQL is based on a formal and mathematical theory. This theory, which consists of a
set of concepts and definitions, is called the relational model. E. F. Codd defined
the relational model in 1970 while at IBM. He introduced the relational model in
the almost legendary article entitled “A Relational Model of Data for Large Shared
Data Banks” (see [CODD70]). This relational model provides a theoretical basis for
database languages. It consists of a small number of simple concepts for recording
data in a database, together with a number of operators to manipulate the data.
These concepts and operators are principally borrowed from set theory and predi-
cate logic. Later, in 1979, Codd presented his ideas for an improved version of the
model; see [CODD79] and [CODD90].

The relational model has served as an example for the development of various
database languages, including QUEL (see [STON86]), SQUARE (see [BOYC73a]),
and, of course, SQL. These database languages are based on the concepts and ideas
of that relational model and, therefore, are called relational database languages;
SQL is an example. The rest of this part concentrates on the following terms used in
the relational model, which appear extensively in this book:

■ Table

■ Column

■ Row

■ Null value

■ Constraint or integrity constraint

■ Primary key

■ Candidate key

■ Alternate key

■ Foreign key or referential key

Note that this is not a complete list of all the terms the relational model uses.
Part III, “Creating Database Objects,” discusses most of these terms. For more
extensive descriptions, see [CODD90] and [DATE95].

6 SQL for MySQL Developers

1.3.1 Table, Column, and Row
Data can be stored in a relational database in only one format: in tables. The official
name for a table is actually relation, and the term relational model stems from this
name. We have chosen to use the term table because SQL uses that word.

Informally, a table is a set of rows, with each row consisting of a set of values.
All the rows in a certain table have the same number of values. Figure 1.1 shows an
example of a table called the PLAYERS table. This table contains data about five
players who are members of a tennis club.

7CHAPTER 1 Introduction to MySQL

row PLAYERS tablecolumn value

PLAYERNO NAME INITIALS TOWN

Parmenter

Baker

Hope

Parmenter

Collins

Stratford

Stratford

Stratford

Inglewood

Eltham

R

E

PK

P

DD

6

44

83

100

27

FIGURE 1.1 The concepts value, row, column, and table

This PLAYERS table has five rows, one for each player. A row with values can
be considered a set of data elements that belong together. For example, in this
table, the first row consists of the values 6, Parmenter, R, and Stratford. This infor-
mation tells us that there is a player with number 6, that his last name is Parmenter
and his initial is R, and that he lives in the town Stratford.

PLAYERNO, NAME, INITIALS, and TOWN are the names of the columns in
the table. The PLAYERNO column contains the values 6, 44, 83, 100, and 27. This
set of values is also known as the population of the PLAYERNO column. Each
row has a value for each column. Therefore, the first row contains a value for the
PLAYERNO column and a value for the NAME column, and so on.

A table has two special properties:

■ The intersection of a row and a column can consist of only one value, an
atomic value. An atomic value is an indivisible unit. The database server can
deal with such a value only in its entirety.

■ The rows in a table have no specific order; you should not think in terms of
the first row, the last three rows, or the next row. Instead, consider the con-
tents of a table to be a set of rows in the true sense of the word.

1.3.2 Null Value
Columns are filled with atomic values. For example, such a value can be a number,
a word, or a date. A special value is the null value. The null value is comparable to
“value unknown” or “value not present.” Consider Figure 1.1 as an example again.
If we do not know the town of player 27, we could store the null value in the TOWN
column for the row belonging to player 27.

A null value must not be confused with the number zero or spaces. It should be
seen as a missing value. A null value is never equal to another null value, so two
null values are not equal to each other, but they are also not unequal. If we knew
whether two null values were equal or unequal, we would know something about
those null values. Then we could not say that the two values were (completely)
unknown. We discuss this later in more detail.

The term null value is, in fact, not entirely correct; we should be using the term
null instead. The reason is that it is not a value, but rather a gap in a table or a sig-
nal indicating that the value is missing. However, this book uses that term to stay in
line with various standards and products.

1.3.3 Constraints
The first section of this chapter described the integrity of the data stored in tables,
the database data. The contents of a table must satisfy certain rules, the so-called
integrity constraints (integrity rules). Two examples of integrity constraints are that
the player number of a player may not be negative, and two different players may
not have the same player number. Integrity constraints can be compared to road
signs. They also indicate what is allowed and what is not allowed.

A relational database server should enforce integrity constraints. Each time a
table is updated, the database server has to check whether the new data satisfies
the relevant integrity constraints. This is a task of the database server. The integrity
constraints must be specified first so that the database server knows what they are.

Integrity constraints can have several forms. Because some are used so fre-
quently, they have special names, such as primary key, candidate key, alternate
key, and foreign key. The analogy with the road signs applies here as well. Special
symbols have been invented for frequently used road signs, and these also have
been given names, such as a right-of-way sign or a stop sign. We explain those
named integrity constraints in the following sections.

8 SQL for MySQL Developers

FIGURE 1.2 Integrity constraints are the road signs of a database

1.3.4 Primary Key
The primary key of a table is a column (or a combination of columns) used as a
unique identification of rows in that table. In other words, two different rows in a
table may never have the same value in their primary key, and for every row in the
table, the primary key must always have one value. The PLAYERNO column in the
PLAYERS table is the primary key for this table. Therefore, two players may never
have the same number, and a player may never lack a number. The latter means
that null values are not allowed in a primary key.

We come across primary keys everywhere. For example, the table in which a
bank stores data about bank accounts has the column bank account number as pri-
mary key. Similarly, a table in which different cars are registered uses the license
plate as primary key (see Figure 1.3).

9CHAPTER 1 Introduction to MySQL

FIGURE 1.3 License plate as possible primary key

1.3.5 Candidate Key
Some tables contain more than one column (or combination of columns) that can act
as a primary key. These columns all possess the uniqueness property of a primary
key. Here, also, null values are not allowed. These columns are called candidate
keys. However, only one is designated as the primary key. Therefore, a table always
has at least one candidate key.

If we assume that passport numbers are also included in the PLAYERS table,
that column will be used as the candidate key because passport numbers are
unique. Two players can never have the same passport number. This column could
also be designated as the primary key.

1.3.6 Alternate Key
A candidate key that is not the primary key of a table is called an alternate key. Zero
or more alternate keys can be defined for a specific table. The term candidate key is
a general term for all primary and alternate keys. If every player is required to have
a passport, and if we would store that passport number in the PLAYERS table,
PASSPORTNO would be an alternate key.

1.3.7 Foreign Key
A foreign key is a column (or combination of columns) in a table in which the popu-
lation is a subset of the population of the primary key of a table (this does not have
to be another table). Foreign keys are sometimes called referential keys.

Imagine that, in addition to the PLAYERS table, a TEAMS table exists; see Fig-
ure 1.4. The TEAMNO column is the primary key of this table. The PLAYERNO
column in this table represents the captain of each particular team. This has to be
an existing player number, occurring in the PLAYERS table. The population of this
column represents a subset of the population of the PLAYERNO column in the
PLAYERS table. PLAYERNO in the TEAMS table is called a foreign key.

Now you can see that we can combine two tables. We do this by including
the PLAYERNO column in the TEAMS table, thus establishing a link with the
PLAYERNO column of the PLAYERS table.

10 SQL for MySQL Developers

FIGURE 1.4 The foreign key

1.4 WHAT IS SQL?
As already stated, SQL (Structured Query Language) is a relational database lan-
guage. Among other things, the language consists of statements to insert, update,
delete, query, and protect data. The following statements can be formulated
with SQL:

■ Insert the address of a new employee.

■ Delete all the stock data for product ABC.

■ Show the address of employee Johnson.

■ Show the sales figures of shoes for every region and for every month.

■ Show how many products have been sold in London the last three months.

■ Make sure that Mr. Johnson cannot see the salary data any longer.

11CHAPTER 1 Introduction to MySQL

NAME INITIALS TOWN

Parmenter

Baker

Hope

Parmenter

Col l ins

Strat ford

Strat ford

Strat ford

Ing lewood

Eltham

R

E

PK

P

DD

PLAYERNO

6

44
83

100

27

PLAYERS table

foreign key

TEAMS table

DIVISION

first

second

PLAYERNO

6

27

TEAMNO

1

2

Many vendors already have implemented SQL as the database language for
their database server. MySQL is not the only available database server in which
SQL has been implemented as database language. IBM, Microsoft, Oracle, and
Sybase have manufactured SQL products as well. Thus, SQL is not the name of a
certain product that has been brought to market only by MySQL.

We call SQL a relational database language because it is associated with data
that has been defined according to the rules of the relational model. (However, we
must note that, on particular points, the theory and SQL differ; see [CODD90].)
Because SQL is a relational database language, for a long time it has been grouped
with the declarative or nonprocedural database languages. By declarative and non-
procedural, we mean that users (with the help of statements) have to specify only
which data elements they want, not how they must be accessed one by one. Well-
known languages such as C, C++, Java, PHP, Pascal, and Visual Basic are exam-
ples of procedural languages.

Nowadays, however, SQL can no longer be called a pure declarative language.
Since the early 1990s, many vendors have added procedural extensions to SQL.
These make it possible to create procedural database objects such as triggers and
stored procedures; see Part IV, “Procedural Database Objects.” Traditional state-
ments such as IF-THEN-ELSE and WHILE-DO have also been added. Although most of
the well-known SQL statements are still not procedural by nature, SQL has changed
into a hybrid language consisting of procedural and nonprocedural statements.
Recently, MySQL has also been extended with these procedural database objects.

SQL can be used in two ways. First, SQL can be used interactively. For exam-
ple, a user enters an SQL statement on the spot, and the database server processes
it immediately. The result is also immediately visible. Interactive SQL is intended
for application developers and for end users who want to create reports themselves.

The products that support interactive SQL can be split in two groups: the some-
what old-fashioned products with a terminal-like interface and those with a modern
graphical interface. MySQL includes a product with a terminal-like interface that
bears the same name as the database server: mysql. Figure 1.5 shows this program.
First, an SQL statement is entered (SELECT * FROM PLAYERS); the result is shown
underneath as a table.

12 SQL for MySQL Developers

FIGURE 1.5 An example of the query program called mysql that can be used to
specify the SQL statements interactively

13CHAPTER 1 Introduction to MySQL

However, some products have a more graphical interface available for interac-
tive use, such as MySQL Query Browser from MySQL, SQLyog from Webyog, php-
MyAdmin, Navicat from PremiumSoft (see Figure 1.6), and WinSQL from
Synametrics (see Figure 1.7).

FIGURE 1.6 An example of the query program Navicat

FIGURE 1.7 An example of the query program WinSQL

The second way in which SQL can be used is called preprogrammed SQL. Here,
the SQL statements are embedded in an application that is written in another pro-
gramming language. Results from these statements are not immediately visible to
the user but are processed by the enveloping application. Preprogrammed SQL
appears mainly in applications developed for end users. These end users do not
need to learn SQL to access the data, but they work from simple screens and menus
designed for their applications. Examples are applications to record customer infor-
mation and applications to handle stock management. Figure 1.8 shows an example
of a screen with fields in which the user can enter the address without any know-
ledge of SQL. The application behind this screen has been programmed to pass cer-
tain SQL statements to the database server. The application therefore uses SQL
statements to transfer the information that has been entered into the database.

In the early stages of the development of SQL, only one method existed for pre-
programmed SQL, called embedded SQL. In the 1980s, other methods appeared.
The most important is called call level interface SQL (CLI SQL). Many variations of
CLI SQL exist, such as ODBC (Open Database Connectivity) and JDBC (Java Data-
base Connectivity). The most important ones are described in this book. The differ-
ent methods of preprogrammed SQL are also called the binding styles.

14 SQL for MySQL Developers

FIGURE 1.8 SQL is shielded in many applications; users can see only the input
fields.

The statements and features of interactive and preprogrammed SQL are virtu-
ally the same. By this, we mean that most statements that can be entered and
processed interactively can also be included (embedded) in an SQL application.
Preprogrammed SQL has been extended with a number of statements that were
added only to make it possible to merge the SQL statements with the non-SQL
statements. This book is primarily focused on interactive SQL. Preprogrammed
SQL is dealt with later in the book.

Three important components are involved in the interactive and prepro-
grammed processing of SQL statements: the user, the application, and the database
server (see Figure 1.9). The database server is responsible for storing and accessing
data on disk; the application and the user have nothing to do with this. The data-
base server processes the SQL statements that the application delivers. In a defined
way, the application and the database server can send SQL statements between
them. The result of an SQL statement is then returned to the user.

MySQL does not support embedded SQL. A CLI must be used to be capable of
working with preprogrammed SQL. MySQL has a CLI for all modern programming
languages, such as Java, PHP, Python, Perl, Ruby, and Visual Basic. Therefore, the
lack of embedded SQL is not a real problem.

15CHAPTER 1 Introduction to MySQL

FIGURE 1.9 The user, the application, and the database server are pivotal for the
processing of SQL.

1.5 THE HISTORY OF SQL
The history of SQL is closely tied to the history of an IBM project called System R.
The purpose of this project was to develop an experimental relational database
server that bore the same name as the project: System R. This system was built in
the IBM research laboratory in San Jose, California. The project was intended to
demonstrate that the positive usability features of the relational model could be
implemented in a system that satisfied the demands of a modern database server.

The System R project had to solve the problem that no relational database lan-
guages existed. A language called Sequel was developed as the database language
for System R. Designers R. F. Boyce and D. D. Chamberlin wrote the first articles
about this language; see [BOYC73a] and [CHAM76]. During the project, the lan-
guage was renamed SQL because the name Sequel conflicted with an existing trade-
mark. (However, the language is still often pronounced as ‘sequel’).

16 SQL for MySQL Developers

programprogramprogram

SQLSQLSQL

database server

The System R project was carried out in three phases. In the first phase, phase
zero (from 1974 to 1975), only a part of SQL was implemented. For example, the
join (for linking data from various tables) was not implemented yet, and only a sin-
gle-user version of the system was built. The purpose of this phase was to see
whether implementation of such a system was possible. This phase ended success-
fully; see [ASTR80].

Phase 1 started in 1976. All the program code written for Phase 0 was put aside
for a fresh start. Phase 1 comprised the total system. This meant, among other
things, incorporating the multiuser capability and the join. Development of Phase 1
took place between 1976 and 1977.

The final phase evaluated System R. The system was installed at various places
within IBM and with a large number of major IBM clients. The evaluation took
place in 1978 and 1979. The results of this evaluation are described in [CHAM80],
as well as in other publications. The System R project was finished in 1979.

Developers used the knowledge acquired and the technology developed in
these three phases to build SQL/DS. SQL/DS was the first commercially available
IBM relational database server. In 1981, SQL/DS came onto the market for the
operating system DOS/VSE, and the VM/CMS version arrived in 1983. In that same
year, DB2 was announced. Currently, DB2 is available for many operating systems.

IBM has published a great deal about the development of System R, which hap-
pened at a time when conferences and seminars focused greatly on relational data-
base servers. Therefore, it is not surprising that other companies began to build

17CHAPTER 1 Introduction to MySQL

FIGURE 1.10
Don Chamberlin, one
of the designers of SQL

relational systems as well. Some of them, such as Oracle, implemented SQL as the
database language. In the last few years, many SQL products have appeared. As a
result, SQL is now available for every possible system, large or small. Existing data-
base servers have also been extended to include SQL support.

1.6 FROM MONOLITHIC VIA CLIENT/SERVER
TO THE INTERNET

Section 1.4 describes the relationship between the database server MySQL and the
calling application. Applications send SQL statements to MySQL to have them
processed. The latter processes the statements and returns the results to the appli-
cation. Finally, the results are presented to the users. It is not necessary for MySQL
and the applications to run on the same machine for them to communicate with
each other. Roughly, three solutions or architectures are available; among them are
the client/server and Internet architectures.

The most simple architecture is the monolithic architecture (see Figure 1.11). In
a monolithic architecture, everything runs on the same machine. This machine can
be a large mainframe, a small PC, or a midrange computer with an operating system
such as UNIX or Windows. Because both the application and MySQL run on the
same computer, communication is possible through very fast internal communica-
tion lines. In fact, this involves two processes that communicate internally.

18 SQL for MySQL Developers

appl icat ion

SQL resul t

machine 1

MySQL

FIGURE 1.11
The monolithic
architecture

The second architecture is the client/server architecture. Several subforms of
this architecture exists, but we will not discuss them all here. It is important to real-
ize that in a client/server architecture, the application runs on a different machine
than MySQL (see Figure 1.12). This is called working with a remote database server.
Internal communication usually takes place through a local area network (LAN)
and occasionally through a wide area network (WAN). A user could start an appli-
cation on a PC in Paris and retrieve data from a database located in Sydney. Com-
munication would then probably take place through a satellite link.

19CHAPTER 1 Introduction to MySQL

cl ient machine

appl icat ion

SQL

MySQL

resul t

server
machine

FIGURE 1.12
The client/server
architecture

The third architecture is the Internet architecture. In this architecture, the
application running in a client/server architecture on the client machine is divided
into two parts (see the left part of Figure 1.13). The part that deals with the user, or
the user interface, runs on the client machine. The part that communicates with the
database server, also called the application logic, runs on the server machine. In this
book, these two parts are called, respectively, the client and the server application.

Probably no SQL statements exist in the client application, but there are state-
ments that call the server application. Languages such as HTML, JavaScript, and
VBScript are often used for the client application. The call goes via the Internet or
an intranet to the second machine; the well-known HyperText Transport Protocol

(HTTP) is mostly used for this. The call comes in at a web server. The web server
acts as a kind of switchboard operator and knows which call has been sent to which
server application.

Next, the call arrives at the server application. The server application sends the
needed SQL statements to MySQL. Many server applications run under the super-
vision of Java application servers, such as WebLogic from Bea Systems and Web-
Sphere from IBM.

MySQL returns the results of the SQL statements. In some way, the server
application translates this SQL result to an HTML page and returns the page to the
web server. As the switchboard operator, the web server knows the client applica-
tion to which the HTML answer must be returned.

The right part of Figure 1.13 shows a variant of the Internet architecture in which
the server application and MySQL have also been placed on different machines.

20 SQL for MySQL Developers

cl ient machine

cl ient
appl icat ion

HTTP HTML

web server

cal l HTML

server
appl icat ion

SQL resul t

MySQL

server
machine

cl ient machine

cl ient
appl icat ion

HTTP HTML

web server

cal l HTML

server
appl icat ion

SQL resul t

MySQL

server
machine

server
machine

FIGURE 1.13 The Internet architecture

The fact that MySQL and the database are remote is completely transparent to
the programmer who is responsible for writing the application and the SQL state-
ments. However, it is not irrelevant. Regarding the language and efficiency aspects
of SQL, it is important to know which architecture is used: monolithic, client/server,
or Internet. In this book, we will use the first one, but where relevant, we discuss
the effect of client/server or Internet architectures.

1.7 STANDARDIZATION OF SQL
As mentioned before, each SQL database server has its own dialect. All these
dialects resemble each other, but they are not completely identical. They differ in
the statements they support, or some products contain more SQL statements than
others; the possibilities of statements can vary as well. Sometimes two products sup-
port the same statement, but the result of that statement might vary among products.

To avoid differences among the many database servers from several vendors, it
was decided early to define a standard for SQL. The idea was that when the data-
base servers grew too much apart, acceptance by the SQL market would diminish.
A standard would ensure that an application with SQL statements would be easier
to transfer from one database server to another.

In about 1983, the International Standardization Organization (ISO) and the
American National Standards Institute (ANSI) started work on the development of
an SQL standard. The ISO is the leading internationally oriented normalization and
standardization organization; its objectives include the promotion of international,
regional, and national normalization. Many countries have local representatives of
the ISO. ANSI is the American branch of the ISO.

After many meetings and several false starts, the first ANSI edition of the SQL
standard appeared in 1986. This is described in the document ANSI X3.135-1986,
“Database Language SQL.” This SQL-86 standard is unofficially called SQL1. One
year later, the ISO edition, called ISO 9075-1987, “Database Language SQL,” was
completed; see [ISO87]. This report was developed under the auspices of Technical
Committee TC97. The area of activity of TC97 is described as Computing and Infor-
mation Processing. Its Subcommittee SC21 caused the standard to be developed.
This means that the standards of ISO and ANSI for SQL1 or SQL-86 are identical.

SQL1 consists of two levels. Level 2 comprises the complete document, and
Level 1 is a subset of Level 2. This implies that not all specifications of SQL1
belong to Level 1. If a vendor claims that its database server complies with the stan-
dard, the supporting level must be stated as well. This is done to improve the sup-
port and adoption of SQL1. It means that vendors can support the standard in two
phases, first Level 1 and then Level 2.

21CHAPTER 1 Introduction to MySQL

The SQL1 standard is very moderate with respect to integrity. For this reason, it
was extended in 1989 by including, among other things, the concepts of primary and
foreign keys. This version of the SQL standard is called SQL89. The companion ISO
document is called, appropriately, ISO 9075:1989, “Database Language SQL with
Integrity Enhancements.” The ANSI version was completed simultaneously.

Immediately after the completion of SQL1 in 1987, the development of a new
SQL standard began; see [ISO92]. This planned successor to SQL89 was called
SQL2 because the date of publication was not known at the start. In fact, SQL89
and SQL2 were developed simultaneously. Finally, SQL2 was published in 1992
and replaced SQL89, the current standard at that time. The new SQL92 standard is
an expansion of the SQL1 standard. Many new statements and extensions to exist-
ing statements have been added. For a complete description of SQL92, see
[DATE97].

Just like SQL1, SQL92 has levels. The levels have names instead of numbers:
entry, intermediate, and full. Full SQL is the complete standard. In terms of func-
tionality, intermediate SQL is a subset of full SQL, and entry SQL is a subset of
intermediate SQL. Entry SQL can roughly be compared to SQL1 Level 2, although
with some specifications extended. All the levels together can be seen as the rings
of an onion; see Figure 1.14. A ring represents a certain amount of functionality.
The bigger the ring, the more functionality is defined within that level. When a ring
falls within the other ring, it defines a subset of functionality.

22 SQL for MySQL Developers

SQL-92 ful l

SQL-92 intermediate

SQL-92 entry

SQL1 level 2

SQL1 level 1

FIGURE 1.14 The various levels of SQL1 and SQL92 represented as rings

At the time of this writing, many available products support entry SQL92. Some
even claim to support intermediate SQL92, but not one product supports full
SQL92. Hopefully, the support of the SQL92 levels will improve in the coming
years.

Since the publication of SQL92, several additional documents have been added
that extend the capabilities of the language. In 1995, SQL/CLI (Call Level Inter-
face) was published. Later the name was changed to CLI95; the end of this section
includes more about CLI95. The following year, SQL/PSM (Persistent Stored Mod-
ules), or PSM-96, appeared. The most recent addition, PSM96, describes function-
ality for creating so-called stored procedures. Chapter 31, “Stored Procedures,”
deals with this concept extensively. Two years after PSM96, SQL/OLB (Object Lan-
guage Bindings), or OLB-98, was published. This document describes how SQL
statements had to be included within the programming language Java.

Even before the completion of SQL92, the development of its successor began:
SQL3. In 1999, the standard was published and bore the name SQL:1999. To be
more in line with the names of other ISO standards, the hyphen that was used in the
names of the previous editions was replaced by a colon. And because of the prob-
lems around the year 2000, it was decided that 1999 would not be shortened to 99.
See [GULU99], [MELT01], and [MELT03] for more detailed descriptions of this
standard.

When SQL:1999 was completed, it consisted of five parts: SQL/Framework,
SQL/Foundation, SQL/CLI, SQL/PSM, and SQL/Bindings. SQL/OLAP, SQL/MED
(Management of External Data), SQL/OLB, SQL/Schemata and SQL/JRT (Routines
and Types using the Java Programming Language), and SQL/XML(XML-Related
Specifications) were added later, among other things. Thus, the current SQL stan-
dard of ISO consists of a series of documents. They all begin with the ISO code
9075. For example, the complete designation of the SQL/Framework is ISO/IEC
9075-1:2003.

Besides the 9075 documents, another group of documents focuses on SQL. The
term used for this group is usually SQL/MM, short for SQL Multimedia and Appli-
cation Packages. All these documents bear the ISO code 13249. SQL/MM consists
of five parts. SQL/MM Part 1 is the SQL/MM Framework, Part 2 focuses on text
retrieval (working with text), Part 3 is dedicated to spatial applications, Part 4
involves still images (such as photos), and Part 5 deals with data mining (looking for
trends and patterns in data).

In 2003, a new edition of SQL/Foundation appeared, along with new editions of
some other documents, such as SQL/JRT and SQL/Schemata. At this moment, this
group of documents can be seen as the most recent version of the international SQL
standard. We refer to it by the abbreviation SQL:2003.

23CHAPTER 1 Introduction to MySQL

Other organizations previously worked on the standardization of SQL, including
The Open Group (then called the X/Open Group) and the SQL Access Group. The
first does not get much attention any longer, so this book does not discuss it.

In July 1989, a number of mainly American vendors of SQL database servers
(among them Informix, Ingres, and Oracle) set up a committee called the SQL
Access Group. The objective of the SQL Access Group is to define standards for the
interoperability of SQL applications. This means that SQL applications developed
using those specifications are portable between the database servers of the associ-
ated vendors and that these applications can simultaneously access a number of
different database servers. At the end of 1990, the first report of the SQL Access
Group was published and defined the syntax of a so-called SQL application inter-
face. The first demonstrations in this field emerged in 1991. Eventually, the ISO
adopted the resulting document, and it was published under the name SQL/CLI.
This document was mentioned earlier.

The most important technology that is derived from the work of the Open SQL
Access Group—and, therefore from SQL/CLI—is Open Database Connectivity
(ODBC), from Microsoft.

Finally, an organization called the Object Database Management Group
(ODMG) is aimed at the creation of standards for object-oriented databases; see
[CATT97]. Part of these standards is a declarative language to query and update
databases, called Object Query Language (OQL). It is claimed that SQL has served
as a foundation for OQL and, although the languages are not the same, they have a
lot in common.

It is correct to say that a lot of time and money has been invested in the stan-
dardization of SQL. But is a standard that important? The following practical
advantages would accrue if all database servers supported exactly the same stan-
dardized database language.

■ Increased portability—An application could be developed for one data-
base server and could run at another without many changes.

■ Improved interchangeability—Because database servers speak the same
language, they could communicate internally with each other. Applications
also could access different databases more simply.

■ Reduced training costs—Programmers could switch faster from one data-
base server to another because the language would remain the same; they
would not have to learn a new database language.

■ Extended life span—Standardized languages tend to survive longer, and
this also applies to the applications written in such languages. COBOL is a
good example of this.

24 SQL for MySQL Developers

MySQL supports a considerable part of the SQL92 standard. Especially since
Version 4, MySQL has been extended considerably in this field. Currently, the
objective seems to be to develop MySQL more according to the standard. In other
words, when the MySQL organization wants to add something new to MySQL and
something is written about it in the standard, the group keeps to that standard.

1.8 WHAT IS OPEN SOURCE SOFTWARE?
MySQL is open source software. But what is open source software? Most software
products that we buy and use could be called closed source software. The source
code of this software cannot be adjusted. We do not have access to the source code;
what we buy is compiled code. For example, we cannot modify the hyphenation
algorithm of Microsoft Word. This code was written by a Microsoft programmer
somewhere in Seattle and cannot be changed; it is blocked for everyone. When you
want to change something, you have to pass on your demands to Microsoft.

The opposite applies to the source code of open source software. Open source
code can actually be modified because the vendor includes the source code. This
also applies to the source code of MySQL. When you think that you can improve
MySQL or extend its functionality, you go ahead and try. You try to find the part in
the source code that you want to improve and apply the desired changes. Next you
compile and link the existing code to the code that you just wrote, and you have cre-
ated an improved version. In short, the source code is open and accessible to you.

You can even go further. When you think your improved code is really good and
useful, you can send it to the vendor of the open source software product. The
developers then decide whether they want to add your code to the standard code. If
they do, others can enjoy your work in the future. If they don’t, you can become
such a vendor yourself, as long as you provide your new source code publicly. So
either way, an open source license ensures that open source software is improved
and is spread into the world.

In short, open source software—therefore, also MySQL—is changeable. That is
easy to understand. Most open source software is also free to use. However, when
we talk about selling software that includes open source software, it becomes a dif-
ferent story. MySQL is supplied according to the use and payment rules recorded in
the GNU General Public License (GPL). For details, refer to the documentation of
MySQL; we recommend that you study this carefully.

25CHAPTER 1 Introduction to MySQL

1.9 THE HISTORY OF MYSQL
At first, MySQL was not intended to be a commercial product. A new application
had to be written that would access index sequential files. Normally, a programmer
has to use a very simplistic interface to manipulate the data in such files. Much
code has to be written, and that surely does not help the productivity of the pro-
grammers. The developers of this application wanted to use an SQL interface as
interface to these files.

This need faced the final founders of MySQL: David Axmark, Allan Larsson,
and Michael “Monty” Widenius. They decided to search the market for a product
that already offered that SQL interface. They found a product called Mini SQL,
often shortened to mSQL. This product still is supplied by the Australian Hughes
Technologies.

After trying out this product, the developers felt that Mini SQL was not power-
ful enough for their application. They decided to develop a product comparable to
Mini SQL themselves. With that, MySQL was born. However, they liked the inter-
face of Mini SQL, which is why the interfaces of MySQL and Mini SQL still resem-
ble each other.

Initially, the company MySQL AB was founded in Sweden, and the initial
development was done there as well. Nowadays, the developers can be found all
over the world, from the United States to Russia. This is an example of a modern
company that relies heavily on technologies such as the Internet and e-mail and on
the advantages of open source software to develop its database server.

Version 3.11.0, the first version shown to the outside world, was launched in
1996. Before that, only the developers themselves used MySQL. From the begin-
ning, it was an open source product. Since 2000, the product has been released
according to the rules specified in the GPL.

Only three years after the introduction, in 1999, the company MySQL AB was
founded. Before that, a somewhat informally operating group of developers man-
aged the software.

This book describes Version 5.0.18 of MySQL, which was released in the sum-
mer of 2006. Much has changed since that first commercial version—in particular,
the SQL dialect has been extended considerably. For years, much has been done to
bring MySQL more in line with the SQL92 standard. That also has increased the
portability between MySQL on one hand and other SQL database servers, such as
DB2 from IBM, SQL Server from Microsoft, and Oracle10g from Oracle, on the
other hand.

26 SQL for MySQL Developers

Despite the extensions, many customers still use the SQL dialect of Version 3,
even when they run Versions 4 or 5. The consequence of this restriction is that they
do not use the full power of MySQL. Restricting yourself with respect to SQL leads
to unnecessarily complex applications. Many lines of code can be reduced to one
simple SQL statement.

Finally, how MySQL got its name has remained a mystery for a long time. How-
ever, Monty, one of the founders, has admitted that his eldest daughter is called My.

1.10 THE STRUCTURE OF THIS BOOK

This chapter concludes by describing the structure of this book. Because of the
many chapters in the book, we divided it into sections.

Part I, “Introduction,” consists of several introductory topics and includes this
chapter. Chapter 2, “The Tennis Club Sample Database,” contains a detailed
description of the database used in most of the examples and exercises. This data-
base is modeled on the administration of a tennis club’s competitions. Chapter 4,
“SQL in a Nutshell,” gives a general overview of SQL. After reading this chapter,
you should have a general overview of the capabilities of SQL and a good idea of
what awaits you in the rest of this book

Part II, “Querying and Updating Data,” focuses completely on querying and
updating tables. It is largely devoted to the SELECT statement. Many examples illus-
trate all its features. We devote a great deal of space to this SELECT statement
because this is the statement most often used and because many other statements
are based on it. Chapter 19, “Working with XML Documents,” describes how exist-
ing database data can be updated and deleted, and how new rows can be added to
tables.

Part III, “Creating Database Objects,” describes the creation of database
objects. The term database object is the generic name for all objects from which a
database is built. For instance, this chapter discusses tables; primary, alternate,
and foreign keys; indexes; and views. This part also describes data security.

Part IV, “Procedural Database Objects,” describes stored procedures, stored
functions, triggers, and events. Stored procedures and stored functions are pieces of
code stored in the database that can be called from applications. Triggers are pieces
of code as well, but they are invoked by MySQL itself, for example, to perform
checks or to update data automatically. Informally, events are triggers that are auto-
matically started on a certain time of the day.

27CHAPTER 1 Introduction to MySQL

Part V, “Programming with SQL,” deals with programming in SQL. MySQL can
be called from many programming languages; those used most are PHP, Python,
and Perl. This part uses PHP to illustrate how SQL statements are embedded inside
a programming language. The following concepts are explained in this part: trans-
action, savepoint, rollback of transactions, isolation level, and repeatable read.

The book ends with a number of appendices and an index. Appendix A, “Syn-
tax of SQL,” contains the definitions of all the SQL statements discussed in the
book. Appendix B, “Scalar Functions,” describes all the functions that SQL sup-
ports. Appendix C, “System Variables,” lists all the system variables, and Appen-
dix D, “Bibliography,” contains a list of references.

28 SQL for MySQL Developers

29

The Tennis Club Sample
Database

C H A P T E R 2

2.1 INTRODUCTION

This chapter describes a database that a tennis club could use to record its players’
progress in a competition. Most of the examples and exercises in this book are
based on this database, so you should study it carefully.

2.2 DESCRIPTION OF THE TENNIS CLUB

The tennis club was founded in 1970. From the beginning, some administrative
data was stored in a database. This database consists of the following tables:

■ PLAYERS

■ TEAMS

■ MATCHES

■ PENALTIES

■ COMMITTEE_MEMBERS

The PLAYERS table contains data about players who are members of the club,
such as names, addresses, and dates of birth. Players can join the club only at the
first of January of a year. Players cannot join the club in the middle of the year.

The PLAYERS table contains no historical data. Any player who gives up mem-
bership disappears from the table. If a player moves, the new address overwrites the
old address. In other words, the old address is not retained anywhere.

The tennis club has two types of members: recreational players and competition
players. The first group plays matches only among themselves (that is, no matches

against players from other clubs). The results of these friendly matches are not
recorded. Competition players play in teams against other clubs, and the results of
these matches are recorded. Regardless of whether he or she plays competitively,
each player has a unique number assigned by the club. Each competition player
must also be registered with the tennis league, and this national organization gives
each player a unique league number. This league number usually contains digits,
but it can also consist of letters. If a competition player stops playing in the compe-
tition and becomes a recreational player, his or her league number correspondingly
disappears. Therefore, recreational players have no league number, but they do
have a player number.

The club has a number of teams taking part in competitions. The captain of
each team and the division in which it is currently competing are recorded. It is not
necessary for the captain to have played a match for the team. It is possible for a
certain player to be a captain of two or more teams at a certain time. Again, this
table records no historical data. If a team is promoted or relegated to another divi-
sion, the new information simply overwrites the record. The same goes for the cap-
tain of the team; when a new captain is appointed, the number of the former captain
is overwritten.

A team consists of a number of players. When a team plays against a team from
another tennis club, each player of that team plays against a player of the opposing
team (for the sake of simplicity, assume that matches in which couples play against
each other, the so-called doubles and mixes, do not occur). The team for which the
most players win their matches is the winner.

A team does not always consist of the same people, and reserves are sometimes
needed when the regular players are sick or on vacation. A player can play matches
for several teams. So when we say “the players of a team,” we mean the players who
have played at least one match in that team. Again, only players with league num-
bers are allowed to play official matches.

Each match consists of a number of sets. The player who wins the most sets is
the winner. Before the match begins, it is agreed how many sets must be won to win
the match. Generally, the match stops after one of the two players has won two or
three sets. Possible end results of a tennis match are 2–1 or 2–0 if play continues
until one player wins two sets (best of three), or 3–2, 3–1, or 3–0 if three sets need
to be won (best of five). A player either wins or loses a match; a draw is not possi-
ble. The MATCHES table records for each match separately which player was in
the match and for which team he played. In addition, it records how many sets the
player won and lost. From this, we can conclude whether the player won the match.

If a player behaves badly (arrives late, behaves aggressively, or does not show
up) the league imposes a penalty in the form of a fine. The club pays these fines and

30 SQL for MySQL Developers

records them in a PENALTIES table. As long as the player continues to play com-
petitively, the record of all his or her penalties remains in this table.

If a player leaves the club, all his or her data in the five tables is destroyed. If
the club withdraws a team, all data for that team is removed from the TEAMS and
MATCHES tables. If a competition player stops playing matches and becomes a
recreational player again, all matches and penalty data is deleted from the relevant
tables.

Since January 1, 1990, a COMMITTEE_MEMBERS table has kept information
about who is on the committee. Four positions exist: chairman, treasurer, secretary,
and general member. On January 1 of each year, a new committee is elected. If a
player is on the committee, the beginning and ending dates of his or her committee
are recorded. If someone is still active, the end date remains open. Figure 2.1 shows
which player was on the committee in which period.

31CHAPTER 2 The Tennis Club Sample Database

P
L

A
Y

E
R

secretary

secretary

secretary

secretary

chairman

chairmanmember

member

member

member

member

membertreasurer

treasurer

treasurer

treasurer

treasurer

1
-1

-1
9

9
1

1
-1

-1
9

9
2

1
-1

-1
9

9
3

1
-1

-1
9

9
4

1
-1

-1
9

9
0

n
o

w

2

6

8

27

57

95

112

FIGURE 2.1 Which player occupied which position on the committee in which
period?

Following is a description of the columns in each of the tables.

PLAYERS

PLAYERNO Unique player number assigned by the club.
NAME Surname of the player, without initials.
INITIALS Initials of the player. (No full stops or spaces are used.)
BIRTH_DATE Date on which the player was born.
SEX Sex of the player: M(ale) or F(emale).

continues

32 SQL for MySQL Developers

JOINED Year in which the player joined the club. (This value cannot be
smaller than 1970, the year in which the club was founded.)

STREET Name of the street on which the player lives.
HOUSENO Number of the house.
POSTCODE Postcode.
TOWN Town or city in which the player lives. Assume in this example that

place-names are unique for town or cities; in other words, there can
never be two towns with the same name.

PHONENO Area code followed by a hyphen and then the subscriber’s number.
LEAGUENO League number assigned by the league; a league number is unique.

TEAMS

TEAMNO Unique team number assigned by the club.
PLAYERNO Player number of the player who captains the team. In principle a

player may captain several teams.
DIVISION Division in which the league has placed the team.

MATCHES

MATCHNO Unique match number assigned by the club.
TEAMNO Number of the team.
PLAYERNO Number of the player.
WON Number of sets that the player won in the match.
LOST Number of sets that the player lost in the match.

PENALTIES

PAYMENTNO Unique number for each penalty the club has paid. The club
assigns this number.

PLAYERNO Number of the player who has incurred the penalty.
PAYMENT_DATE Date on which the penalty was paid. The year of this date should

not be earlier than 1970, the year in which the club was founded.
AMOUNT Amount in dollars incurred for the penalty.

COMMITTEE_MEMBERS

PLAYERNO Number of the player.
BEGIN_DATE Date on which the player became an active member of the commit-

tee. This date should not be earlier than January 1, 1990, because
this is the date on which the club started to record this data.

END_DATE Date on which the player resigned his position in the committee.
This date should not be earlier than the BEGIN_DATE but can be
absent.

POSITION Name of the position.

2.3 THE CONTENTS OF THE TABLES

The contents of the tables are shown here. These rows of data form the basis of most
of the examples and exercises. Some of the column names in the PLAYERS table
have been shortened because of space constraints.

The PLAYERS table:

PLAYERNO NAME INIT BIRTH_DATE SEX JOINED STREET ...
-------- --------- ---- ---------- --- ------ -------------- ---

2 Everett R 1948-09-01 M 1975 Stoney Road ...
6 Parmenter R 1964-06-25 M 1977 Haseltine Lane ...
7 Wise GWS 1963-05-11 M 1981 Edgecombe Way ...
8 Newcastle B 1962-07-08 F 1980 Station Road ...
27 Collins DD 1964-12-28 F 1983 Long Drive ...
28 Collins C 1963-06-22 F 1983 Old Main Road ...
39 Bishop D 1956-10-29 M 1980 Eaton Square ...
44 Baker E 1963-01-09 M 1980 Lewis Street ...
57 Brown M 1971-08-17 M 1985 Edgecombe Way ...
83 Hope PK 1956-11-11 M 1982 Magdalene Road ...
95 Miller P 1963-05-14 M 1972 High Street ...
100 Parmenter P 1963-02-28 M 1979 Haseltine Lane ...
104 Moorman D 1970-05-10 F 1984 Stout Street ...
112 Bailey IP 1963-10-01 F 1984 Vixen Road ...

The PLAYERS table (continued):

PLAYERNO ... HOUSENO POSTCODE TOWN PHONENO LEAGUENO
-------- --- ------- -------- --------- ---------- --------

2 ... 43 3575NH Stratford 070-237893 2411
6 ... 80 1234KK Stratford 070-476537 8467
7 ... 39 9758VB Stratford 070-347689 ?
8 ... 4 6584RO Inglewood 070-458458 2983
27 ... 804 8457DK Eltham 079-234857 2513
28 ... 10 1294QK Midhurst 071-659599 ?
39 ... 78 9629CD Stratford 070-393435 ?
44 ... 23 4444LJ Inglewood 070-368753 1124
57 ... 16 4377CB Stratford 070-473458 6409
83 ... 16A 1812UP Stratford 070-353548 1608
95 ... 33A 5746OP Douglas 070-867564 ?
100 ... 80 1234KK Stratford 070-494593 6524
104 ... 65 9437AO Eltham 079-987571 7060
112 ... 8 6392LK Plymouth 010-548745 1319

The TEAMS table:

TEAMNO PLAYERNO DIVISION
------ -------- --------

1 6 first
2 27 second

33CHAPTER 2 The Tennis Club Sample Database

The MATCHES table:

MATCHNO TEAMNO PLAYERNO WON LOST
------- ------ -------- --- ----

1 1 6 3 1
2 1 6 2 3
3 1 6 3 0
4 1 44 3 2
5 1 83 0 3
6 1 2 1 3
7 1 57 3 0
8 1 8 0 3
9 2 27 3 2
10 2 104 3 2
11 2 112 2 3
12 2 112 1 3
13 2 8 0 3

The PENALTIES table:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
2 44 1981-05-05 75.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
5 44 1980-12-08 25.00
6 8 1980-12-08 25.00
7 44 1982-12-30 30.00
8 27 1984-11-12 75.00

The COMMITTEE_MEMBERS table:

PLAYERNO BEGIN_DATE END_DATE POSITION
-------- ---------- ---------- ---------

2 1990-01-01 1992-12-31 Chairman
2 1994-01-01 ? Member
6 1990-01-01 1990-12-31 Secretary
6 1991-01-01 1992-12-31 Member
6 1992-01-01 1993-12-31 Treasurer
6 1993-01-01 ? Chairman
8 1990-01-01 1990-12-31 Treasurer
8 1991-01-01 1991-12-31 Secretary
8 1993-01-01 1993-12-31 Member
8 1994-01-01 ? Member
27 1990-01-01 1990-12-31 Member
27 1991-01-01 1991-12-31 Treasurer
27 1993-01-01 1993-12-31 Treasurer
57 1992-01-01 1992-12-31 Secretary
95 1994-01-01 ? Treasurer
112 1992-01-01 1992-12-31 Member
112 1994-01-01 ? Secretary

34 SQL for MySQL Developers

2.4 INTEGRITY CONSTRAINTS

Of course, the contents of the tables must satisfy a number of integrity constraints.
For example, two players may not have the same player number, and every player
number in the PENALTIES table must also appear in the MATCHES table. This
section lists all the applicable integrity constraints.

35CHAPTER 2 The Tennis Club Sample Database

PENALTIES table

PAYMENTNO

PLAYERNO

PAYMENT_DATE

AMOUNT

COMMITTEE_MEMBER table

PLAYERNO

BEGIN_DATE

END_DATE (NULL)

POSITION (NULL)

PLAYERS table

PLAYERNO

NAME

INITIALS

BIRTH_DATE (NULL)

SEX

JOINED

STREET

HOUSENO (NULL)

TOWN

PHONENO (NULL)

LEAGUENO (NULL)

TEAMS table

TEAMNO

PLAYERNO

DIVISION

MATCHES table

MATCHNO

TEAMNO

PLAYERNO

WON

LOST

POSTCODE (NULL)

FIGURE 2.2 Diagram of the relationships between the tennis club database tables

A primary key has been defined for each table. The following columns are the
primary keys for their respective tables. Figure 2.2 contains a diagram of the data-
base. A double-headed arrow at the side of a column (or combination of columns)
indicates the primary key of a table:

■ PLAYERNO of PLAYERS

■ TEAMNO of TEAMS

■ MATCHNO of MATCHES

■ PAYMENTNO of PENALTIES

■ PLAYERNO plus BEGIN_DATE of COMMITTEE_MEMBERS

The example database has no alternate keys. The LEAGUENO column in the
PLAYERS table looks like one but isn’t. All the values are unique, but the column
also allows null values and, therefore, can be no alternate key.

The database supports five foreign keys. In Figure 2.2, single-headed arrows
show the foreign keys; these run from one table to another (this notation, in which
the arrows point to the primary key, is used in [DATE95] and elsewhere). The for-
eign keys are as follows:

■ From TEAMS to PLAYERS—Each captain of a team is also a player. The
set of player numbers from the TEAMS table is a subset of the set of player
numbers from the PLAYERS table.

■ From MATCHES to PLAYERS—Each player who competes for a particu-
lar team must appear in the PLAYERS table. The set of player numbers from
the MATCHES table is a subset of the set of player numbers from the
PLAYERS table.

■ From MATCHES to TEAMS—Each team that appears in the MATCHES
table must also be present in the TEAMS table because a player can compete
for only a registered team. The set of team numbers from the MATCHES
table is a subset of the set of team numbers from the TEAMS table.

■ From PENALTIES to PLAYERS—A penalty can be imposed on only
players appearing in the PLAYERS table. The set of player numbers from
the PENALTIES table is a subset of the set of player numbers from the
PLAYERS table.

■ From COMMITTEE_MEMBERS to PLAYERS—Each player who is or
was a member of the committee must also be present in the PLAYERS table.
The set of player numbers from the COMMITTEE_MEMBERS table is a sub-
set of the set of player numbers from the PLAYERS table.

The following integrity constraints also hold:

■ Two players cannot have identical league numbers.

■ The year of birth of a player must be earlier than the year in which he or she
joined the club.

■ The sex of a player should always be M or F.

■ The year in which the player joined the club should be greater than 1969
because the tennis club was founded in 1970.

■ The postcode must always be a code of six characters.

■ The division of a team can be nothing but first or second.

■ Both the columns WON and LOST must have a value between 0 and 3.

■ The payment date should be January 1, 1970, or later.

■ Each penalty amount must always be greater than zero.

■ The begin date in the COMMITTEE_MEMBERS table should always be
later than or equal to January 1, 1990, because recording of this data was
started on that day.

■ The end date on which the player ended service as a committee member
must always be later than the begin date.

36 SQL for MySQL Developers

37

Installing the Software
C H A P T E R 3

3.1 INTRODUCTION

As already mentioned in the preface, we advise that you replay the examples in this
book and do the exercises. This will definitely improve your knowledge of MySQL
and pleasure in reading this book.

This chapter describes where to find the required software and the information
needed to install all the software necessary. It also indicates how to download the
code for the many examples. For practical reasons, we refer frequently to the book’s
web site. Here you will find useful information.

3.2 DOWNLOADING MYSQL
You can download MySQL free from the web site of the vendor, www.mysql.com,
where you will find the software for many different operating systems. Choose the
version that suits you best. This book assumes that you will be using Version 5.0 or
higher. Of course, you can also process the SQL statements in this book with newer
versions of MySQL.

This book deliberately does not indicate where on the web site you can find the
software and the documentation. The structure of this web site changes rather fre-
quently, so this book would contain out-of-date descriptions too quickly.

www.mysql.com

3.3 INSTALLATION OF MYSQL
On the vendor’s web site, you will find documentation describing how to install
MySQL. You can use this documentation or visit the book’s web site: www.r20.nl.
Here you will find a detailed plan that describes the installation step by step,
including many screen shots. This plan might be easier to understand than the ven-
dor’s documentation.

If you have comments on the installation description, please let me know so we
can improve the web site if necessary.

38 SQL for MySQL Developers

N O T E
We have deliberately chosen not to include the installation process in this
book because it differs for each operating system and can change with
every new version of MySQL.

3.4 INSTALLING A QUERY TOOL

This book assumes that you will use a query tool such as MySQL Query Browser,
SQLyog, or WinSQL to process your SQL statements. However, these are not data-
base servers, but programs that enable you to simply enter SQL statements interac-
tively under Windows or Linux. They work together with MySQL and most other
database servers. You also can download most of these query tools for free from the
vendor’s web site. Again, as with MySQL, we strongly recommend that you install
one of those query tools.

3.5 DOWNLOADING SQL STATEMENTS FROM THE

WEB SITE

As mentioned in the preface, the accompanying web site contains all the SQL state-
ments used in this book. This section briefly describes how you can download them.
This is a good time to do so because you’ll need these statements to create the sam-
ple database.

The URL of the book’s web site is www.r20.nl. The statements are stored in sim-
ple text files; by cutting and pasting, you can easily copy them to any product. You
can open them with any text editor.

www.r20.nl
www.r20.nl

A separate file exists for each chapter, as clearly indicated on the web site. In
the file, you will find in front of each SQL statement an identification to help you
search for them. For example, Example 7.1 (the first example in Chapter 7,
“SELECT Statement: The FROM Clause,”) has this as its identification:

Example 7.1:

Likewise, the following text is included to find Answer 12.6:

Answer 12.6:

3.6 READY?
If all went well, you have now installed MySQL and a query tool. If you want, you
can start to play with SQL. However, the sample database is missing. The next
chapter describes how to create that database.

39CHAPTER 3 Installing the Software

This page intentionally left blank This page intentionally left blank

41

SQL in a Nutshell
C H A P T E R 4

4.1 INTRODUCTION

This chapter uses examples to illustrate the capabilities of the database language
SQL. We discuss most SQL statements briefly; other chapters describe the details
and all the features. The purpose of this chapter is to give you a feeling of what SQL
looks like and what this book covers.

The first sections also explain how to create the sample database. Be sure to
execute the statements from these sections because almost all the examples and
exercises in the rest of this book are based upon this database.

4.2 LOGGING ON TO THE MYSQL DATABASE SERVER

To do anything with SQL (this applies to creating the sample database as well), you
must log on to the MySQL database server. MySQL requires that applications iden-
tify themselves before manipulating the data in the database. In other words, the
user needs to log on by using an application. Identification is done with the help of
a user name and a password. Therefore, this chapter begins by describing how to log
on to MySQL.

First, you need a user name. However, to create a user (with a name and pass-
word), you must log on first—a classic example of a chicken-and-egg problem. To
end this deadlock, most database servers create several users during the installa-
tion procedure. Otherwise, it would be impossible to log on after the installation.
One of these users is called root and has an identical password (if you have followed
the installation procedure described in the previous chapter).

How logging on really takes place depends on the application that is used. For
example, with the query tool WinSQL, the logon screen looks similar to Figure 4.1.

42 SQL for MySQL Developers

FIGURE 4.1 The logon screen of WinSQL

The user name is entered in the User ID text box, and the password in the Pass-
word text box. In both cases, you type root. For security reasons, the password char-
acters appear as asterisks. User names and passwords are case sensitive, so be sure
you type them correctly—not with capitals. After you enter the name and password,
you can log on and start entering SQL statements.

When you use the client application called mysql that is included with MySQL,
the process of logging on looks different but is still comparable (see Figure 4.2).
The code –u stands for user, behind which the user name (root) is specified, followed
by the code -p. Next the application wants to know the password. Later sections
explain this in more detail.

The web site of this book contains detailed information about how to log on with
different programs.

After you have logged on successfully with the users that are created during the
installation procedure, you can introduce new users and create new tables.

43CHAPTER 4 SQL in a Nutshell

FIGURE 4.2 Logging on with mysql

4.3 CREATING NEW SQL USERS

Section 1.4 described the concept of a user and also mentioned briefly the respec-
tive roles of users and applications. A user starts up an application. This applica-
tion passes SQL statements to MySQL that processes them. A user can enter these
SQL statements “live” (interactive SQL), or they can be included in the application
code (preprogrammed SQL).

A clear distinction should be made between the real, human user and the user
name used to log on. To avoid confusion, we call the latter the SQL user. SQL users
can be granted privileges. A privilege is a specification indicating what a certain
SQL user can do. For example, one user might be allowed to create new tables,
another might be authorized to update existing tables, and a third might be able to
only query tables.The relationship between human users and SQL users can be
one-to-one, but that is not required. A human user is allowed to log on under differ-
ent SQL user names with different privileges. Additionally, an entire group of
human users is allowed to use the same SQL user name with the same privileges.
Therefore, the relationship between users and SQL users is a many-to-many rela-
tionship. You need to define these relationships.

So to be able to log on, you need to have an SQL user. Several SQL users have
already been created during the installation procedure, to prevent the chicken-and-
egg problem. Therefore, you do not need to create one. However, if you want to cre-
ate your own SQL users, you can do that with a special SQL statement.

Imagine that we log on with the SQL user called root. Next, we can use the
CREATE USER statement to create our own new SQL users. We give a new SQL user a
name and also a password.

Example 4.1: Introduce a new user called BOOKSQL with the password
BOOKSQLPW.

CREATE USER 'BOOKSQL'@'localhost' IDENTIFIED BY 'BOOKSQLPW'

Explanation: The name of the new SQL user is created with the specification
'BOOKSQL'@'localhost'. Another chapter explains the meaning of localhost. The
statement ends with the password, which, in this case, is BOOKSQLPW. Make sure
that quotation marks surround the user name, the term localhost, and the password.

When an application logs on to MySQL with an SQL user name, a so-called connec-
tion is started. A connection is a unique link between the application and the
MySQL database server for the specific SQL user. It is like a telephone cable
between that application and MySQL. The privileges of the SQL user determine
what the user is allowed to send over the cable. Through the connection, the user
has access to all the databases that the database server manages. A new SQL user
is allowed to log on, but this user does not have any other privileges yet. We need to
grant those privileges to BOOKSQL first with the GRANT statement.

The GRANT statement has extensive features. Chapter 28, “Users and Data Secu-
rity,” discusses this statement and related topics.” However, to get you started,
the next example contains the statement that grants the new SQL user called
BOOKSQL enough privileges to create tables and manipulate them afterward.

Example 4.2: Give the SQL user BOOKSQL the privileges to create and manipu-
late tables.

GRANT ALL PRIVILEGES
ON *.*
TO 'BOOKSQL'@'localhost'
WITH GRANT OPTION

BOOKSQL now can log on and execute all the statements in the following
chapters.

Note: The rest of the book assumes that you log on as user BOOKSQL with the
password BOOKSQLPW and that you have sufficient privileges.

44 SQL for MySQL Developers

4.4 CREATING DATABASES

Section 1.2 defined the concept of a database. Using this definition, a database acts
as a container for a set of tables. For MySQL, each table must also be created within
an existing database. Therefore, when you want to build a table, you first need to
create a database.

Example 4.3: Create a database with the name TENNIS for the tables of the ten-
nis club.

CREATE DATABASE TENNIS

Explanation: After this CREATE DATABASE statement is processed, the database
exists but is still empty. This book assumes that you have logged on as BOOKSQL
before you enter this statement.

4.5 SELECTING THE CURRENT DATABASE

A MySQL database server can offer access to more than one database. When a user
has opened a connection with MySQL and wants, for example, to create new tables
or query existing tables, the user must specify the database he wants to work with.
This is called the current database. Only one current database can exist, and

If no current database has been specified, you still can manipulate tables. In
addition, you can access tables from a database other than the current database.
For both situations, you must explicitly specify the database in which those tables
reside.

To make a specific database current, MySQL supports the USE statement.

Example 4.4: Make TENNIS the current database.

USE TENNIS

Explanation: This statement can also be used to “jump” from one database to
another.

After processing a CREATE DATABASE statement (see the earlier section), the created
database does not automatically become the current database—an extra USE state-
ment is needed for that.

45CHAPTER 4 SQL in a Nutshell

No database is current when you log on using the technique described earlier.
As an alternative to the USE statement, you can make a database current by specify-
ing it when you log on.

mysql –u BOOKSQL –p TENNIS

The rest of the book assumes that you log on as user BOOKSQL with the pass-
word BOOKSQLPW, that you have sufficient privileges, and that the TENNIS data-
base is the current database.

4.6 CREATING TABLES

Databases in MySQL are made up of database objects. The best-known and most
important database object is probably the table. The CREATE TABLE statement is
used to develop new tables. The next example contains the CREATE TABLE state-
ments that are needed to create the tables from the sample database.

Example 4.5: Create the five tables that form the sample database.

CREATE TABLE PLAYERS
(PLAYERNO INTEGER NOT NULL,
NAME CHAR(15) NOT NULL,
INITIALS CHAR(3) NOT NULL,
BIRTH_DATE DATE ,
SEX CHAR(1) NOT NULL,
JOINED SMALLINT NOT NULL,
STREET VARCHAR(30) NOT NULL,
HOUSENO CHAR(4) ,
POSTCODE CHAR(6) ,
TOWN VARCHAR(30) NOT NULL,
PHONENO CHAR(13) ,
LEAGUENO CHAR(4) ,
PRIMARY KEY (PLAYERNO))

CREATE TABLE TEAMS
(TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
DIVISION CHAR(6) NOT NULL,
PRIMARY KEY (TEAMNO))

CREATE TABLE MATCHES
(MATCHNO INTEGER NOT NULL,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON SMALLINT NOT NULL,
LOST SMALLINT NOT NULL,
PRIMARY KEY (MATCHNO))

46 SQL for MySQL Developers

CREATE TABLE PENALTIES
(PAYMENTNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
PAYMENT_DATE DATE NOT NULL,
AMOUNT DECIMAL(7,2) NOT NULL,
PRIMARY KEY (PAYMENTNO))

CREATE TABLE COMMITTEE_MEMBERS
(PLAYERNO INTEGER NOT NULL,
BEGIN_DATE DATE NOT NULL,
END_DATE DATE ,
POSITION CHAR(20) ,
PRIMARY KEY (PLAYERNO, BEGIN_DATE))

Explanation: MySQL does not require the statements to be entered in this exact
way. This book uses a certain layout style for all SQL statements, to make them eas-
ier to read. However, MySQL does not care whether everything is written neatly in
a row (still separated by spaces or commas, of course) or nicely below each other.

As indicated in Chapter 2, “The Tennis Club Sample Database,” several integrity
constraints apply for these tables. We excluded most of them here because we do
not need them in the first two parts of this book. Chapter 21, “Specifying Integrity
Constraints,” explains all the integrity rules in SQL.

With a CREATE TABLE statement, several properties are defined, including the
name of the table, the columns of the table, and the primary key. The name of the
table is specified first: CREATE TABLE PLAYERS. The columns of a table are listed
between brackets. For each column name, a data type is specified, as in CHAR,
SMALLINT, INTEGER, DECIMAL, or DATE. The data type defines the type of value that
may be entered into the specific column. The next section explains the specifica-
tion NOT NULL.

Figure 2.2 shows the primary key of the tables, among other things. A primary
key of a table is a column (or combination of columns) in which every value can
appear only once. By defining the primary key in the PLAYERS table, we indicate
that each player number can appear only once in the PLAYERNO column. A pri-
mary key is a certain type of integrity constraint. In SQL, primary keys are specified
within the CREATE TABLE statement with the words PRIMARY KEY. This is one of two
ways to specify a primary key. After listing all the columns, PRIMARY KEY is speci-
fied followed by the column or columns belonging to that primary key. Chapter 21
discusses the other way to specify a primary key.

It is not always necessary to specify primary keys for a table, but it is important.
Chapter 21 explains why. For now, we advise you to define a primary key for each
table you create.

47CHAPTER 4 SQL in a Nutshell

In the definition of a column, you are allowed to specify NOT NULL. This means
that every row of the column must be filled. In other words, null values are not
allowed in a NOT NULL column. For example, each player must have a NAME, but a
LEAGUENO is not required.

4.7 POPULATING TABLES WITH DATA

The tables have been created and can now be filled with data. For this, we use
INSERT statements.

Example 4.6: Fill all tables from the sample database with data. See Section 2.3
for a listing of all data.

For the sake of convenience, only two examples of INSERT statements are given
for each table. At the web site of the book, you will find all the INSERT statements.

INSERT INTO PLAYERS VALUES
(6, 'Parmenter', 'R', '1964-06-25', 'M', 1977,
'Haseltine Lane', '80', '1234KK', 'Stratford',
'070-476537', '8467')

INSERT INTO PLAYERS VALUES
(7, 'Wise', 'GWS', '1963-05-11', 'M', 1981,
'Edgecombe Way', '39', '9758VB', 'Stratford',
'070-347689', NULL)

INSERT INTO TEAMS VALUES (1, 6, 'first')

INSERT INTO TEAMS VALUES (2, 27, 'second')

INSERT INTO MATCHES VALUES (1, 1, 6, 3, 1)

INSERT INTO MATCHES VALUES (4, 1, 44, 3, 2)

INSERT INTO PENALTIES VALUES (1, 6, '1980-12-08', 100)

INSERT INTO PENALTIES VALUES (2, 44, '1981-05-05', 75)

INSERT INTO COMMITTEE_MEMBERS VALUES
(6, '1990-01-01', '1990-12-31', 'Secretary')

INSERT INTO COMMITTEE_MEMBERS VALUES
(6, '1991-01-01', '1992-12-31', 'Member')

48 SQL for MySQL Developers

Explanation: Each statement corresponds to one (new) row in a table. After the
term INSERT INTO, the table name is specified, and the values for the new row come
after VALUES. Each row consists of one or more values. Different kinds of values may
be used. For example, numeric and alphanumeric values, dates, and times exist.

Each alphanumeric value, such as Parmenter and Stratford (see the first INSERT
statement), must be enclosed in single quotation marks. The (column) values are
separated by commas. Because MySQL remembers the sequence in which the
columns were specified in the CREATE TABLE statement, the system also knows the
column to which every value corresponds. For the PLAYERS table, therefore, the
first value is PLAYERNO, the second value is NAME, and the last value is
LEAGUENO.

Specifying dates and times is more difficult than specifying numeric and
alphanumeric values because they have to adhere to certain rules. A date such as
December 8, 1980, must be specified as '1980-12-08'. This form of expression,
described in detail in Section 5.2.5, turns an alphanumeric value into a correct
date. However, the alphanumeric value must be written correctly. A date consists of
three components: year, month, and day. Hyphens separate the components.

In the second INSERT statement, the word NULL is specified as the twelfth value.
This enables us to enter a null value explicitly. In this case, it means that the league
number of player number 7 is unknown.

4.8 QUERYING TABLES

SELECT statements are used to retrieve data from tables. A number of examples
illustrate the diverse features of this statement.

Example 4.7: Get the number, name, and date of birth of each player resident in
Stratford; sort the result in alphabetical order of name (note that Stratford starts
with a capital letter).

SELECT PLAYERNO, NAME, BIRTH_DATE
FROM PLAYERS
WHERE TOWN = 'Stratford'
ORDER BY NAME

49CHAPTER 4 SQL in a Nutshell

The result is:

PLAYERNO NAME BIRTH_DATE
-------- --------------- ----------

39 Bishop 1956-10-29
57 Brown 1971-08-17
2 Everett 1948-09-01
83 Hope 1956-11-11
6 Parmenter 1964-06-25

100 Parmenter 1963-02-28
7 Wise 1963-05-11

Explanation: This SELECT statement should be read as follows: Get the number,
name, and date of birth (SELECT PLAYERNO, NAME, BIRTH_DATE) of each player (FROM
PLAYERS) resident in Stratford (WHERE TOWN = 'Stratford'); sort the result in alpha-
betical order of name (ORDER BY NAME). After FROM, we specify which table we want
to query. The condition that the requested data must satisfy comes after WHERE.
SELECT enables us to choose which columns we want to see. Figure 4.3 illustrates
this in a graphical way. And after ORDER BY, we specify the column names on which
the final result should be sorted.

50 SQL for MySQL Developers

PLAYERNO NAME INIT BIRTH_DATE STREET TOWN

 2 Everett R 1948-09-01 Stoney Road Stratford
 6 Permenter R 1964-06-25 Haseltine Lane Stratford
 7 Wise GWS 1963-05-11 Edgecombe Way Stratford
 8 Newcastle B 1962-07-08 Station Road Inglewood
 27 Collins DD 1964-12-28 Long Drive Eltham
 28 Collins C 1963-06-22 Old Main Road Midhurst
 39 Bishop D 1956-10-29 Eaton Square Stratford
 44 Baker E 1963-01-09 Lewis Street Inglewood
 57 Brown M 1971-08-17 Edgecombe Way Stratford
 83 Hope PK 1956-11-11 Magdalene Road Stratford
 95 Miller P 1963-05-14 High Street Douglas
 100 Permenter P 1963-02-28 Haseltine Lane Stratford
 104 Moorman D 1970-05-10 Stout Street Eltham
 112 Bailey IP 1963-10-01 Vixen Road Plymouth

SELECT PLAYERNO, NAME, BIRTH_DATE WHERE TOWN = 'Stratford'

FIGURE 4.3 An illustration of a SELECT statement

This book presents the result of a SELECT statement somewhat differently from
the way MySQL does. The “default” layout used throughout this book is as follows.

First, the width of a column is determined by the width of the data type of the col-
umn. Second, the name of a column heading is equal to the name of the column in
the SELECT statement. Third, the values in columns with an alphanumeric data type
are left-justified and those in numeric columns are right-justified. Fourth, two
spaces separate two columns. Fifth, a null value is displayed as a question mark.
Finally, if a result is very long, some rows are left out and colons are presented.

Example 4.8: Get the number of each player who joined the club after 1980 and
is resident in Stratford; order the result by player number.

SELECT PLAYERNO
FROM PLAYERS
WHERE JOINED > 1980
AND TOWN = 'Stratford'
ORDER BY PLAYERNO

The result is:

PLAYERNO

7
57
83

Explanation: Get the number (SELECT PLAYERNO) of each player (FROM PLAYERS)
who joined the club after 1980 (WHERE JOINED > 1980) and is resident in Stratford
(AND TOWN = 'Stratford'); sort the result by player number (ORDER BY PLAYERNO).

Example 4.9: Get all the information about each penalty.

SELECT *
FROM PENALTIES

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
2 44 1981-05-05 75.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
5 44 1980-12-08 25.00
6 8 1980-12-08 25.00
7 44 1982-12-30 30.00
8 27 1984-11-12 75.00

51CHAPTER 4 SQL in a Nutshell

Explanation: Get all column values (SELECT *) for each penalty (FROM PENALTIES).
This statement returns the whole PENALTIES table. The * character is a shorthand
notation for “all columns.” In this result, you can also see how dates are presented
in this book.

Example 4.10: How much is 33 times 121?

SELECT 33 * 121

The result is:

33 * 121

3993

Explanation: This example shows that a SELECT statement does not always have
to retrieve data from tables; it can also be used to perform straightforward calcula-
tions. If no tables are specified, the statement returns one row as result. This row
contains the answers to the calculations.

4.9 UPDATING AND DELETING ROWS

Section 4.7 described how to add new rows to a table. This section covers updating
and deleting existing rows.

A warning in advance: If you execute the statements described in this section,
you will change the contents of the database. The subsequent sections assume that
the original contents of the database are intact. You can restore the values by rerun-
ning statements found at www.r20.nl.

The UPDATE statement is used to change values in rows, and the DELETE state-
ment is used to remove complete rows from a table. Let us look at examples of both
statements.

Example 4.11: Change the amount of each penalty incurred by player 44 to $200.

UPDATE PENALTIES
SET AMOUNT = 200
WHERE PLAYERNO = 44

52 SQL for MySQL Developers

www.r20.nl

Explanation: For each penalty (UPDATE PENALTIES) incurred by player 44 (WHERE
PLAYERNO = 44), change the amount to $200 (SET AMOUNT = 200). So the use of the
WHERE clause in the UPDATE statement is equivalent to that of the SELECT state-
ment—it indicates which rows must be changed. After the word SET, the columns
that will have a new value are specified. The change is executed regardless of the
existing value.

Issuing a SELECT statement can show the effect of the change. Before the update, the
next SELECT statement

SELECT PLAYERNO, AMOUNT
FROM PENALTIES
WHERE PLAYERNO = 44

gave the following result:

PLAYERNO AMOUNT
-------- ------

44 75.00
44 25.00
44 30.00

After the change with the UPDATE statement, the result of the previous SELECT
statement is different:

PLAYERNO AMOUNT
-------- ------

44 200.00
44 200.00
44 200.00

Example 4.12: Remove each penalty with an amount greater than $100 (we
assume the changed contents of the PENALTIES table).

DELETE
FROM PENALTIES
WHERE AMOUNT > 100

Explanation: Remove the penalties (DELETE FROM PENALTIES) with an amount
greater than $100 (WHERE AMOUNT > 100). Again, the use of the WHERE clause is
equivalent to that in the SELECT and UPDATE statements.

53CHAPTER 4 SQL in a Nutshell

After this statement, the PENALTIES table looks as follows (shown by issuing a
SELECT statement):

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
6 8 1980-12-08 25.00
8 27 1984-11-12 75.00

4.10 OPTIMIZING QUERY PROCESSING WITH INDEXES

We now look at how SELECT statements are processed—how MySQL arrives at the
correct answer. The following SELECT statement illustrates this (assume the original
contents of the PENALTIES table).

SELECT *
FROM PENALTIES
WHERE AMOUNT = 25

To process this statement, MySQL scans the entire PENALTIES table row by
row. If the value of AMOUNT equals 25, that row is included in the result. As in this
example, if the table contains only a few rows, MySQL can work quickly. However,
if a table has thousands of rows and each must be checked, this could take a great
deal of time. In such a case, defining an index can speed up the processing. For
now, think of an index created with MySQL as similar to the index of a book. Chap-
ter 25, “Using Indexes,” discusses this topic in more detail.

An index is defined on a column or combination of columns. See the following
example.

Example 4.13: Create an index on the AMOUNT column of the PENALTIES
table.

CREATE INDEX PENALTIES_AMOUNT ON
PENALTIES (AMOUNT)

Explanation: This statement defines an index called PENALTIES_AMOUNT for
the AMOUNT column in the PENALTIES table.

This index ensures that in the earlier example, MySQL needs to look at only rows in
the database that satisfy the WHERE condition. Therefore, it is quicker to produce an

54 SQL for MySQL Developers

answer. The index PENALTIES_AMOUNT provides direct access to these rows.
Keep in mind the following points:

■ Indexes are defined to optimize the processing of SELECT statements.

■ An index is never explicitly referenced in a SELECT statement; the syntax of
SQL does not allow this.

■ During the processing of a statement, the database server itself determines
whether an existing index will be used.

■ An index may be created or deleted at any time.

■ When updating, inserting, or deleting rows, MySQL also maintains the
indexes on the impacted tables. This means that, on one hand, the processing
time for SELECT statements is reduced; on the other hand, the processing
time for update statements (such as INSERT, UPDATE, and DELETE) can
increase.

■ An index is also a database object.

A special type of index is the unique index. SQL also uses unique indexes to
optimize the processing of statements. Unique indexes have another function as
well: They guarantee that a particular column or combination of columns contains
no duplicate values. A unique index is created by placing the word UNIQUE between
the words CREATE and INDEX.

4.11 VIEWS

In a table, rows with data are actually stored. This means that a table occupies a
particular amount of storage space—the more rows, the more storage space is
required. Views are tables visible to users, but they do not occupy any storage
space. A view, therefore, can also be referred to as a virtual or derived table. A view
behaves as though it contains actual rows of data, but it contains none.

Example 4.14: Create a view in which the difference between the number of sets
won and the number of sets lost are recorded for each match.

CREATE VIEW NUMBER_SETS (MATCHNO, DIFFERENCE) AS
SELECT MATCHNO, ABS(WON - LOST)
FROM MATCHES

55CHAPTER 4 SQL in a Nutshell

Explanation: The previous statement defines a view with the name NUMBER_
SETS. A SELECT statement is used to define the contents of the view. This view has
only two columns: MATCHNO and DIFFERENCE. The value of the second column
is determined by subtracting the number of sets lost from the number of sets won.
The ABS function makes the value positive (Appendix B, “Scalar Functions,” dis-
cusses the precise meaning of ABS).

By using the SELECT statement shown here, you can see the (virtual) contents of
the view:

SELECT *
FROM NUMBER_SETS

The result is:

MATCHNO DIFFERENCE
------- ----------

1 2
2 1
3 3
4 1
5 3
6 2
7 3
8 3
9 1
10 1
11 1
12 2
13 3

The contents of the NUMBER_SETS view are not stored in the database but are
derived at the moment a SELECT statement (or another statement) is executed. The
use of views, therefore, costs nothing extra in storage space because the contents of
a view can include only data that is already stored in other tables. Among other
things, views can be used to do the following:

■ Simplify the use of routine or repetitive statements

■ Restructure the way in which tables are seen

■ Develop SELECT statements in several steps

■ Improve the security of data

Chapter 26, “Views,” looks at views more closely.

56 SQL for MySQL Developers

4.12 USERS AND DATA SECURITY

Data in a database should be protected against incorrect use and misuse. In other
words, not everyone should have access to all the data in the database. As already
shown in the beginning of this chapter, MySQL recognizes the concept of SQL user
and privilege. Users need to make themselves known by logging on.

That same section showed an example of granting privileges to users. Here you
will find more examples of the GRANT statement; assume that all the SQL users men-
tioned exist.

Example 4.15: Imagine that two SQL users, DIANE and PAUL, have been cre-
ated. MySQL will reject most of their SQL statements as long as they have not been
granted privileges. The following three statements give them the required privi-
leges. Assume that a third SQL user, such as BOOKSQL, grants these privileges.

GRANT SELECT
ON PLAYERS
TO DIANE

GRANT SELECT, UPDATE
ON PLAYERS
TO PAUL

GRANT SELECT, UPDATE
ON TEAMS
TO PAUL

When PAUL has logged on, he can query the TEAMS table, for example:

SELECT *
FROM TEAMS

4.13 DELETING DATABASE OBJECTS

For each type of database object for which a CREATE statement exists, a correspon-
ding DROP statement with which the object can be deleted also exists. Consider a
few examples.

Example 4.16: Delete the MATCHES table.

DROP TABLE MATCHES

57CHAPTER 4 SQL in a Nutshell

Example 4.17: Delete the view NUMBER_SETS.

DROP VIEW NUMBER_SETS

Example 4.18: Delete the PENALTIES_AMOUNT index.

DROP INDEX PENALTIES_AMOUNT

Example 4.19: Delete the TENNIS database.

DROP DATABASE TENNIS

All dependent objects are also removed. For example, if the PLAYERS table is
deleted, all indexes (which are defined on that table) and all privileges (which are
dependent on that table) are automatically removed.

4.14 SYSTEM VARIABLES

MySQL has certain settings. When the MySQL database server is started, these set-
tings are read to determine the next steps. For example, some settings define how
data must be stored, others affect the processing speed, and still others relate to the
system time and date. These settings are called system variables. Examples of sys-
tem variables are DATADIR (the directory in which MySQL creates the databases),
LOG_WARNINGS, MAX_USER_CONNECTIONS, and TIME_ZONE.

Sometimes it is important to know the value of a certain system variable. With a
simple SELECT statement, you can retrieve its value.

Example 4.20: What is the most recent version of the MySQL database server
that we use now?

SELECT @@VERSION

The result is:

@@VERSION

5.0.7-beta-nt

Explanation: In MySQL, the value of the system variable VERSION is set to the
version number. Specifying two @ symbols before the name of the system variable
returns its value.

58 SQL for MySQL Developers

Many system variables, such as VERSION and the system date, cannot be changed.
However, some, including SQL_MODE, can be. To change system variables, use the
SET statement.

Example 4.21: Change the value of the SQL_MODE parameter to PIPES_AS_CONCAT.

SET @@SQL_MODE = 'PIPES_AS_CONCAT'

Explanation: This change applies only to the current SQL user. In other words,
different users can see different values for certain system variables.

Section 5.7 discusses system variables in detail. Some system variables are also
described together with the SQL statement or clause that they have a relationship
with.

Because the value of the SQL_MODE system variable affects the way of processing
and the features of several SQL statements, we will discuss it in more detail. The
value of SQL_MODE consists of a set of zero, one, or more settings that are separated
by commas. For example, a possible value of SQL_MODE with four settings is shown
here:

REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE

With a normal SET statement, we overwrite all the settings at once. If we want to
add a setting, we can use the following statement.

Example 4.22: Add the setting NO_ZERO_IN_DATE to the SQL_MODE system
variable.

SET @@SQL_MODE = CONCAT(@@SQL_MODE,
CASE @@SQL_MODE WHEN '' THEN '' ELSE ',' END,
'NO_ZERO_IN_DATE')

The meaning of these settings is explained later in this book.

4.15 GROUPING OF SQL STATEMENTS

SQL has many statements, but this chapter briefly describes only a few. In litera-
ture, it is customary to divide that large set of SQL statements into the following
groups: Data Definition Language (DDL), Data Manipulation Language (DML),
Data Control Language (DCL), and procedural statements.

59CHAPTER 4 SQL in a Nutshell

The Data Definition Language (DDL) consists of all the SQL statements that
affect the structure of database objects, such as tables, indexes, and views. The
CREATE TABLE statement is a clear example of a DDL statement, but so are CREATE
INDEX and DROP TABLE.

SQL statements used to query and change the contents of tables belong to the
Data Manipulation Language (DML) group. Examples of DML statements are
SELECT, UPDATE, DELETE, and INSERT.

Data Control Language (DCL) statements relate to the security of data and the
revoking of privileges. This chapter has discussed the GRANT statement; the REVOKE
statement is also a DCL statement.

Examples of procedural statements are IF-THEN-ELSE and WHILE-DO. These clas-
sical statements have been added to SQL to create relatively new database objects,
such as triggers and stored procedures.

The names of these groups sometimes assume that SQL consists of several indi-
vidual languages, but this is incorrect. All SQL statements are part of one language
and are grouped for the sake of clarity.

Appendix A, “Syntax of SQL,” which defines all SQL statements, indicates the
group to which an SQL statement belongs.

4.16 THE CATALOG TABLES

MySQL maintains lists of user names and passwords and the sequence in which
columns in the CREATE TABLE statements have been created (see Section 4.6). How-
ever, where is all this data stored? Where does SQL keep track of all these names,
passwords, tables, columns, sequence numbers, and so on? MySQL has a number of
tables for its own use in which this data is stored. These tables are called catalog
tables or system tables; together they form the catalog.

Each catalog table is an “ordinary” table that can be queried using SELECT
statements. Querying the catalog tables can have many uses, including these:

■ As a help function for new users to determine which tables in the database
are available and which columns the tables contain

■ As a control function so that users can see, for example, which indexes,
views, and privileges would be deleted if a particular table was dropped

■ As a processing function for MySQL itself when it executes statements (as a
help function for MySQL)

Catalog tables cannot be accessed using statements such as UPDATE and
DELETE—the SQL database server maintains these tables itself.

60 SQL for MySQL Developers

MySQL has two databases in which catalog tables are included. The database
called MYSQL contains data on privileges, users, and tables. The structure of these
tables is somewhat cryptic and is unique for MySQL. In addition, the database
called INFORMATION_SCHEMA contains catalog data that partly overlaps the
data in the MYSQL database. The structure of INFORMATION_SCHEMA con-
forms to the SQL standard and looks similar to the structure of other SQL products.

The structure of the catalog tables is not simple. We have defined several sim-
ple views on the catalog tables of MySQL. These views are partly defined on the
tables of the MYSQL database and partly on those of the INFORMATION_
SCHEMA database. So actually, they are not catalog tables, but catalog views. In a
simple and transparent way, they give access to the actual, underlying catalog
tables.

Part III, “Creating Database Objects,” which discusses different database
objects, such as tables and views, describes the different catalog tables that belong
to the INFORMATION_SCHEMA database. In the first two parts of this book, the
catalog views suffice.

If you are familiar with MySQL and have worked your way through most chap-
ters in this book, we recommend that you look at the structure of the actual catalog
tables. They are, after all, just tables that you can access with SELECT statements.
Understanding the catalog will definitely increase your knowledge of MySQL.

In the rest of this book, we use these simple catalog views, so we recommend
that you create these views. You can reference the web site of this book for assis-
tance. You can adjust these catalog views later—you can add new columns and new
catalog views. By studying how these views have been built makes it easier to
understand the real catalog tables later.

Example 4.23: Create the following catalog views. These views must be created
in the sequence specified because of interdependences.

CREATE OR REPLACE VIEW USERS
(USER_NAME) AS

SELECT DISTINCT UPPER(CONCAT('''',USER,'''@''',HOST,''''))
FROM MYSQL.USER

CREATE OR REPLACE VIEW TABLES
(TABLE_CREATOR, TABLE_NAME,
CREATE_TIMESTAMP, COMMENT) AS

SELECT UPPER(TABLE_SCHEMA), UPPER(TABLE_NAME),
CREATE_TIME, TABLE_COMMENT

FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_TYPE IN ('BASE TABLE','TEMPORARY')

61CHAPTER 4 SQL in a Nutshell

CREATE OR REPLACE VIEW COLUMNS
(TABLE_CREATOR, TABLE_NAME, COLUMN_NAME,
COLUMN_NO, DATA_TYPE, CHAR_LENGTH,
'PRECISION', SCALE, NULLABLE, COMMENT) AS

SELECT UPPER(TABLE_SCHEMA), UPPER(TABLE_NAME),
UPPER(COLUMN_NAME), ORDINAL_POSITION,
UPPER(DATA_TYPE), CHARACTER_MAXIMUM_LENGTH,
NUMERIC_PRECISION, NUMERIC_SCALE, IS_NULLABLE,
COLUMN_COMMENT

FROM INFORMATION_SCHEMA.COLUMNS

CREATE OR REPLACE VIEW VIEWS
(VIEW_CREATOR, VIEW_NAME, CREATE_TIMESTAMP,
WITHCHECKOPT, IS_UPDATABLE, VIEWFORMULA, COMMENT) AS

SELECT UPPER(V.TABLE_SCHEMA), UPPER(V.TABLE_NAME),
T.CREATE_TIME,
CASE

WHEN V.CHECK_OPTION = 'None' THEN 'NO'
WHEN V.CHECK_OPTION = 'Cascaded' THEN 'CASCADED'
WHEN V.CHECK_OPTION = 'Local' THEN 'LOCAL'
ELSE 'Yes'

END, V.IS_UPDATABLE, V.VIEW_DEFINITION, T.TABLE_COMMENT
FROM INFORMATION_SCHEMA.VIEWS AS V,

INFORMATION_SCHEMA.TABLES AS T
WHERE V.TABLE_NAME = T.TABLE_NAME
AND V.TABLE_SCHEMA = T.TABLE_SCHEMA

CREATE OR REPLACE VIEW INDEXES
(INDEX_CREATOR, INDEX_NAME, CREATE_TIMESTAMP,
TABLE_CREATOR, TABLE_NAME, UNIQUE_ID, INDEX_TYPE) AS

SELECT DISTINCT UPPER(I.INDEX_SCHEMA), UPPER(I.INDEX_NAME),
T.CREATE_TIME, UPPER(I.TABLE_SCHEMA),
UPPER(I.TABLE_NAME),
CASE

WHEN I.NON_UNIQUE = 0 THEN 'YES'
ELSE 'NO'

END,
I.INDEX_TYPE

FROM INFORMATION_SCHEMA.STATISTICS AS I,
INFORMATION_SCHEMA.TABLES AS T

WHERE I.TABLE_NAME = T.TABLE_NAME
AND I.TABLE_SCHEMA = T.TABLE_SCHEMA

62 SQL for MySQL Developers

CREATE OR REPLACE VIEW COLUMNS_IN_INDEX
(INDEX_CREATOR, INDEX_NAME,
TABLE_CREATOR, TABLE_NAME, COLUMN_NAME,
COLUMN_SEQ, ORDERING) AS

SELECT UPPER(INDEX_SCHEMA), UPPER(INDEX_NAME),
UPPER(TABLE_SCHEMA), UPPER(TABLE_NAME),
UPPER(COLUMN_NAME), SEQ_IN_INDEX,
CASE

WHEN COLLATION = 'A' THEN 'ASCENDING'
WHEN COLLATION = 'D' THEN 'DESCENDING'
ELSE 'OTHER'

END
FROM INFORMATION_SCHEMA.STATISTICS

CREATE OR REPLACE VIEW USER_AUTHS
(GRANTOR, GRANTEE, PRIVILEGE, WITHGRANTOPT) AS

SELECT 'UNKNOWN', UPPER(GRANTEE), PRIVILEGE_TYPE, IS_GRANTABLE
FROM INFORMATION_SCHEMA.USER_PRIVILEGES

CREATE OR REPLACE VIEW DATABASE_AUTHS
(GRANTOR, GRANTEE, DATABASE_NAME, PRIVILEGE,
WITHGRANTOPT) AS

SELECT 'UNKNOWN', UPPER(GRANTEE), UPPER(TABLE_SCHEMA),
PRIVILEGE_TYPE, IS_GRANTABLE

FROM INFORMATION_SCHEMA.SCHEMA_PRIVILEGES

CREATE OR REPLACE VIEW TABLE_AUTHS
(GRANTOR, GRANTEE, TABLE_CREATOR, TABLE_NAME,
PRIVILEGE, WITHGRANTOPT) AS

SELECT 'UNKNOWN', UPPER(GRANTEE), UPPER(TABLE_SCHEMA),
UPPER(TABLE_NAME), PRIVILEGE_TYPE, IS_GRANTABLE

FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

CREATE OR REPLACE VIEW COLUMN_AUTHS
(GRANTOR, GRANTEE, TABLE_CREATOR, TABLE_NAME,
COLUMN_NAME, PRIVILEGE, WITHGRANTOPT) AS

SELECT 'UNKNOWN', UPPER(GRANTEE), UPPER(TABLE_SCHEMA),
UPPER(TABLE_NAME), UPPER(COLUMN_NAME),
PRIVILEGE_TYPE, IS_GRANTABLE

FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

63CHAPTER 4 SQL in a Nutshell

Table 4.1 lists the catalog tables (catalog views) that are created.

TABLE 4.1 Examples of Catalog Views

64 SQL for MySQL Developers

TABLE NAME EXPLANATION

USERS Contains for each SQL user the names of the users who
were not created during the installation procedure

TABLES Contains for each table information such as the date and
time the table was created

COLUMNS Contains for each column (belonging to a table or view)
information such as the data type, the table to which the
column belongs, whether the null value is allowed, and the
sequence number of the column in the table

VIEWS Contains for each view information such as the view defi-
nition (the SELECT statement)

INDEXES Contains for each index information such as the table and
the columns on which the index is defined, and the
manner in which the index is ordered

COLUMNS_IN_INDEX Contains for each index the columns on which the index
is defined

DATABASE_AUTHS Contains the database privileges that are granted to users

TABLE_AUTHS Contains the table privileges that are granted to users

COLUMN_AUTHS Contains the column privileges that are granted to users

Consider the following examples of queries on the catalog table.

Example 4.24: Get the name, data type, and sequence number of each column
in the PLAYERS table (which was created in the TENNIS database); order the
result by sequence number.

SELECT COLUMN_NAME, DATA_TYPE, COLUMN_NO
FROM COLUMNS
WHERE TABLE_NAME = 'PLAYERS'
AND TABLE_CREATOR = 'TENNIS'
ORDER BY COLUMN_NO

The result is:

COLUMN_NAME DATA_TYPE COLUMN_NO
----------- --------- ---------
PLAYERNO INT 1
NAME CHAR 2
INITIALS CHAR 3
BIRTH_DATE DATE 4
SEX CHAR 5
JOINED SMALLINT 6
STREET VARCHAR 7
HOUSENO CHAR 8
POSTCODE CHAR 9
TOWN VARCHAR 10
PHONONO CHAR 11
LEAGUENO CHAR 12

Explanation: Get the name, data type, and sequence number (SELECT

COLUMN_NAME, DATA_TYPE, COLUMN_NO) of each column (FROM COLUMNS) in the
PLAYERS table (WHERE TABLE_NAME = 'PLAYERS') that is created in the TENNIS
database (AND TABLE_CREATOR = 'TENNIS'); order the result by sequence number
(ORDER BY COLUMN_NO).

Example 4.25: Get the names of the indexes defined on the PENALTIES table.

SELECT INDEX_NAME
FROM INDEXES
WHERE TABLE_NAME = 'PENALTIES'
AND TABLE_CREATOR = 'TENNIS'

Result (for example):

INDEX_NAME

PRIMARY
PENALTIES_AMOUNT

Explanation: MySQL created the index that is mentioned first, with the name
PRIMARY, because a primary key was specified on the PLAYERS table. Chapter
25 returns to this topic. The second index was created in Example 4.13.

65CHAPTER 4 SQL in a Nutshell

Other chapters describe the effect that processing particular statements can have
on the contents of the catalog tables. The catalog tables are an integral part of SQL.

You can find the original catalog tables that MySQL created in two different
databases, called MYSQL and INFORMATION_SCHEMA. Both were created dur-
ing MySQL installation. You can access the tables of the databases directly, without
the intervention of the catalog views (see the following example).

Example 4.26: Get the names of the indexes that have been defined on the
PENALTIES table.

USE INFORMATION_SCHEMA

SELECT DISTINCT INDEX_NAME
FROM STATISTICS
WHERE TABLE_NAME = 'PENALTIES'

The result is:

INDEX_NAME

PRIMARY
PENALTIES_AMOUNT

Explanation: With the USE statement, we make INFORMATION_SCHEMA the
current database. Then all the tables of the catalog can be accessed.

Example 4.27: Show the names of the tables that are stored in the INFORMA-
TION_SCHEMA database.

SELECT TABLE_NAME
FROM TABLES
WHERE TABLE_SCHEMA = 'INFORMATION_SCHEMA'
ORDER BY TABLE_NAME

The result is:

TABLE_NAME

CHARACTER_SETS
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
COLUMN_PRIVILEGES
ENGINES
EVENTS
FILES

66 SQL for MySQL Developers

KEY_COLUMN_USAGE
PARTITIONS
PLUGINS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
ROUTINES
SCHEMATA
SCHEMA_PRIVILEGES
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_PRIVILEGES
TRIGGERS
USER_PRIVILEGES
VIEWS

The special SQL statement called SHOW is another way to get access to all this
descriptive catalog data. See the next two examples.

Example 4.28: Get the descriptive data of the columns belonging to the PLAY-
ERS table.

SHOW COLUMNS FROM PLAYERS

And the result is:

Field Type Null Key Default Extra
------------ ------------ ---- --- ------- -----
PLAYERNO int(11) PRI 0
NAME varchar(15)
INITIALS char(3)
BIRTH_DATE date YES
SEX char(1)
JOINED smallint(6) 0
STREET varchar(30)
HOUSENO varchar(4) YES
POSTCODE varchar(6) YES
TOWN varchar(30)
PHONENO varchar(13) YES
LEAGUENO varchar(4) YES

Example 4.29: Get the descriptive data of the indexes defined on the PENAL-
TIES table.

SHOW INDEX FROM PENALTIES

67CHAPTER 4 SQL in a Nutshell

An example result is:

Table Non-unique Key_name Column_name Collation
--------- ---------- ---------------- ----------- ---------
PENALTIES 0 PRIMARY PAYMENTNO A
PENALTIES 1 PENALTIES_AMOUNT AMOUNT A

Explanation: MySQL created the first index itself because we defined a primary
key on the PENALTIES table. Chapter 25 returns to this. The second index was
created in Example 4.13. This SHOW statement returns more than these columns, but
we omitted them for the sake of convenience.

Try the next statement yourself and look at the result:

SHOW DATABASES
SHOW TABLES
SHOW CREATE TABLE PLAYERS
SHOW INDEX FROM PLAYERS
SHOW GRANTS FOR BOOKSQL@localhost
SHOW PRIVILEGES

4.17 RETRIEVING ERRORS AND WARNINGS

Sometimes things go wrong. If we do something wrong, MySQL presents one or
more error messages. For example, if we make a typo in an SQL statement, we get
an error message. MySQL won’t even try to process the statement. Perhaps a state-
ment is syntactically correct, but we are trying to do something that is impossible,
such as create a table with a name that already exists. In this situation, MySQL also
returns an error message. However, not all the error messages are presented—it
depends on the seriousness of the error message. After an SQL statement has been
processed, we can request all the error messages with the SHOW WARNINGS statement.

Example 4.30: What is the result of the calculation 10 divided by 0?

SELECT 10 / 0

The result of this statement is empty because we cannot divide by zero. But no
error message is given. We can ask for them as follows:

SHOW WARNINGS

68 SQL for MySQL Developers

The result is:

Level Code Message
----- ---- ----------------------------------
Error 1305 FUNCTION tennis.chr does not exist
Error 1105 Unknown error

Before processing the next SQL statement, all these messages are deleted, and
a new list is created.

With the statement SHOW COUNT(*) WARNINGS, we can ask for the number of
error messages. We get the same result if we ask for the value of the system variable
called WARNING_COUNT.

The statement SHOW ERRORS resembles SHOW WARNINGS. The former returns all
the errors, warnings, and notes; the latter returns the errors only. And, of course, a
system COLUMN_AUTHS variable called ERROR_COUNT exists.

4.18 DEFINITIONS OF SQL STATEMENTS

This book uses a particular formal notation to indicate the syntax of certain SQL
statements. In other words, by using this notation, we give a definition of an SQL
statement. These definitions are clearly indicated by enclosing the text in boxes.
For example, the following is part of the definition of the CREATE INDEX statement:

69CHAPTER 4 SQL in a Nutshell

D E F I N I T I O N
<create index statement> ::=

CREATE [UNIQUE] INDEX <index name>
ON <table name> <column list>

<column list> ::=
(<column name> [, <column name>]...)

If you are not familiar with this notation, we advise that you study it before you
continue with the next chapters (see Appendix A).

Because the functionality of certain SQL statements is very extensive, we do
not always show the complete definition in one place, but instead extend it step by
step. We omit the definitions of the syntactically simple statements. Appendix A
includes the complete definitions of all SQL statements.

This page intentionally left blank This page intentionally left blank

Part II
Querying and Updating
Data

One statement in particular forms the core of SQL and clearly represents
the nonprocedural nature of SQL: the SELECT statement. It is the show-
piece of SQL and, consequently, MySQL. This statement is used to query
data in the tables; the result is always a table. Such a result table can be
used as the basis of a report, for example.

This book deals with the SELECT statement in Chapters 5–15. Each
chapter is devoted to one or two clauses of this statement. Several chap-
ters have been added to explain certain concepts in more detail.

Chapter 16, “The HANDLER Statement,” is devoted to the HANDLER
statement, which offers an alternative method to query data. In a more
simple way, rows can be retrieved individually. The features of this state-
ment are much more limited than those of the SELECT statement. However,
for certain applications, HANDLER can be more suitable than SELECT.

Chapter 17 describes how to insert, update, and delete data. The fea-
tures of these statements are strongly based upon those of the SELECT
statement, which makes the latter so important to master.

S Q L F O R M Y S Q L D E V E L O P E R S

71

With MySQL, data can be loaded from files into the database vice versa: Data
can be unloaded to external files. Chapter 18, “Loading and Unloading Data,”
describes the statements and features to do so.

The use of XML documents has become increasingly popular. Because of this,
the need to store these special documents in tables has increased. Chapter 19,
“Working with XML Documents,” describes the functions with which XML docu-
ments can be queried and updated.

72 SQL for MySQL Developers

73

SELECT Statement:
Common Elements

C H A P T E R 5

5.1 INTRODUCTION

This first chapter dealing with the SELECT statement describes a number of common
elements that are important to many SQL statements and certainly crucial to the
SELECT statement. Those who are familiar with programming languages and other
database languages will find most of these concepts familiar.

Among others, this chapter covers the following common elements:

■ Literal

■ Expression

■ Column specification

■ User variable

■ System variable

■ Case expression

■ Scalar function

■ Null value

■ Cast expression

■ Compound expression

■ Row expression

■ Table expression

■ Aggregation function

5.2 LITERALS AND THEIR DATA TYPES

The previous chapter used literals in many examples of SQL statements. A literal is
a fixed or unchanging value. Literals are used, for example, in conditions for select-
ing rows in SELECT statements and for specifying the values for a new row in INSERT
statements; see Figure 5.1.

74 SQL for MySQL Developers

SELECT PLAYERNO

PLAYERNO

FROM PLAYERS

VALUES

WHERE

INSERT INTO TEAMS

1 6

8 literal>

((, , 'first'

FIGURE 5.1 Literals in SQL statements

Each literal has a particular data type, just like a column in a table. The names
of the different types of literals are derived from the names of their respective data
types as we use them in the CREATE TABLE statement.

The literals are divided into several main groups: the numeric, the alphanu-
meric, the temporal, the Boolean, and the hexadecimal literals. They all have their
own properties, idiosyncrasies, and limitations. Here you will find the definitions of
all literals followed by the descriptions.

Each literal always has a data type; however, no literal exists for each data type.
Chapter 20, “Creating Tables, discusses all data types (including the one for which
no literal exists). That chapter also describes the CREATE TABLE statement in detail.

D E F I N I T I O N
<literal> ::=

<numeric literal> |
<alphanumeric literal> |
<temporal literal> |
<boolean literal> |
<hexadecimal literal>

<numeric literal> ::=
<integer literal> |
<decimal literal> |
<float literal> |
<bit literal>

continues

75CHAPTER 5 SELECT Statement: Common Elements

<integer literal> ::= [+ | -] <whole number>

<decimal literal> ::=
[+ | -] <whole number> [.<whole number>] |
[+ | -] <whole number>. |
[+ | -] .<whole number>

<float literal> ::=
<mantissa> { E | e } <exponent>

<bit literal > ::=
{ b | B } ' { 0 | 1 }... '

<alphanumeric literal> ::= <character list>

<temporal literal> ::=
<date literal> |
<time literal> |
<datetime literal> |
<timestamp literal> |
<year literal>

<date literal> ::=
{ ' <years> - <months> - <days> ' } |
{ <years> <months> <days> }

<time literal> ::=
{ ' <hours> : <minutes> [: <seconds>

[. <microseconds>]] ' } |
{ ' [<hours> : <minutes> :] <seconds> ' } |
{ <hours> <minutes> <seconds> } |
{ [[<hours>] <minutes>] <seconds> }

<datetime literal> ;
<timestamp literal> ::=

{ ' <years> - <months> - <days> <space>
[<hours> [: <minutes> [: <seconds>

[. <micro seconds>]]]] ' } |
{ <years> <months> <days> <hours> <minutes> <seconds> }

<year literal> ::= <year>

<hexadecimal literal> ::=
{ X | x } <hexadecimal character>... |
0x <hexadecimal character>...

<hexadecimal character> ::=
<digit> | A | B | C | D | E | F | a | b | c | d | e | f

continues

76 SQL for MySQL Developers

<years> ;
<micro seconds> ;
<year> ::= <whole number>

<months> ;
<days> ;
<hours> ;
<minutes> ;
<seconds> ::= <digit> [<digit>]

<whole number> ::= <digit>...

<boolean literal> ::= TRUE | true | FALSE | false

<mantissa> ::= <decimal literal>

<exponent> ::= <integer literal>

<character list> ::= ' [<character>...] '

<character> ::= <digit> | <letter> | <special character> | ''

<special character> ::=
{ \ { 0 | ' | " | b | n | r | t | z | \ | % } } |
<any other character>

<whole number> ::= <digit>...

5.2.1 The Integer Literal
MySQL has several types of numeric literals. The integer literal is used frequently.
This is a whole number or integer without a decimal point, possibly preceded by a
plus or minus sign. Examples are shown here:

38
+12

-3404
016

The following examples are not correct integer literals:

342.16
-14E5
jan

5.2.2 The Decimal Literal
The second numeric literal is the decimal literal. This is a number with or without a
decimal point, possibly preceded by a plus or minus sign. Each integer literal is, by
definition, a decimal literal. Examples follow:

49
18.47
-3400
17.

0.83459
-.47

The total number of digits is called the precision, and the number of digits after
the decimal point is the scale. The decimal literal 123.45 has a precision of 5 and a
scale of 2. The scale of an integer literal is always 0. The maximum range of a dec-
imal literal is measured by the scale and the precision. The precision must be
greater than 0, and the scale must be between 0 and the precision. For example, a
decimal with a precision of 8 and a scale of 2 is allowed, but not with a precision of
6 and a scale of 8.

In the sample database of the tennis club, only one column has been defined
with this data type, and that is AMOUNT in the PENALTIES table.

5.2.3 Float, Real, and Double Literals
A float literal is a decimal literal followed by an exponent. Float is short for single
precision floating point. These are examples of float literals:

Float literal Value
------------- -----

-34E2 -3400
0.16E4 1600
4E-3 0.004
4e-3 0.004

5.2.4 The Alphanumeric Literal
An alphanumeric literal is a string of zero or more alphanumeric characters
enclosed in quotation marks. This could be double (“) or single (‘) quotation marks.
The quotation marks are not considered to be part of the literal; they define the
beginning and end of the string. The following characters are permitted in an
alphanumeric literal:

77CHAPTER 5 SELECT Statement: Common Elements

all lowercase letters (a to z)
all uppercase (A to Z)
all digits (0 to 9)
all remaining characters (such as: ', +, -, ?, =, and _)

Note that an alphanumeric literal may contain quotation marks. To indicate a
single quotation mark within an alphanumeric literal, two quotation marks are
required. These are some examples of correct alphanumeric literals:

Alphanumeric literal Value
-------------------- -------
'Collins' Collins
"Collins" Collins
'don''t' don't
'!?-@' !?-@
''
'''' '
'""' ""
'1234' 1234

These are some examples of incorrect alphanumeric literals:

'Collins
''tis
'''

An alphanumeric literal may also contain special characters, such as a carriage
return. For these special characters, rules have been laid down. They all begin with
a slash followed by a character. Table 5.1 contains the explanations of all the spe-
cial characters.

TABLE 5.1 Explanation of the Special Characters

78 SQL for MySQL Developers

SPECIAL CHARACTER PRODUCES

\0 The ASCII 0 (zero) character
\’ The single quotation mark
\” The double quotation mark
\b A backspace
\n A new line (new line)
\r A carriage return
\t A tab character
\z The ASCII 26 character, or Ctrl+Z
\\ A slash

The effect of these special characters is not always visible. For example, Win-
SQL does not jump to the beginning of the line when an \r is used. However, an
effect sometimes is apparent when using the client program mysql. In Figure 5.2,
you can clearly see how a tab character is printed between the last name and the
initials.

79CHAPTER 5 SELECT Statement: Common Elements

FIGURE 5.2 The use of special characters

Some applications require the use of special symbols within alphanumeric lit-
erals. Therefore, MySQL supports character sets. Chapter 22, “Character Sets and
Collations,” extensively deals with character sets and the corresponding topic of
collations. Collations have to do with the order of characters; for example, should
the character æ be placed in front of or after the letter a? And is that the case in all
languages?

5.2.5 The Date Literal
For working with values related to date and time, MySQL supports the temporal
literals. Here a distinction is made among date, time, datetime, timestamp, and year
literals. These temporal literals are explained in this section and the following
sections.

A date literal, which consists of a year, a month, and a day, represents a certain
date on the Gregorian calendar. MySQL allows this literal to be written as an
alphanumeric or integer literal. When an alphanumeric literal is used, the entire
value must be enclosed in quotation marks, and the three components must be sep-
arated by special characters. Usually, the hyphen is used as a character, but other

characters, such as /, @, and %, are allowed as well. Irrelevant zeroes can be omitted
in the last two components. Examples are shown here:

Date literal Value
------------ ----------------
'1980-12-08' December 8, 1980
'1991-6-19' June 19, 1991
'1991@6@19' June 19, 1991

When an integer literal is used to represent a date, the three components are
written after each other, thus without hyphens. MySQL interprets the last two digits
as the days component, the two digits in front of it as the months component, and
everything in front of that as the year component. So be careful with omitting the
zeroes. Consider these examples:

Date literal Value
------------ -----------------
19801208 December 8, 1980
19910619 June 19, 1991
991111 November 11, 1999

In most cases, the years component is specified as a four-digit number. When
diverging from this, MySQL uses several rules to determine what exactly is meant.
First, when three digits are specified, a zero is placed in front of it. Second, when
the year is specified as a two-digit number, it means that when that number is
between 00 and 69, the value 2,000 is added, and if not 1,900 is added. Third,
when the year consists of only one digit, three zeroes are placed in front of it. Sev-
eral examples help illustrate these rules:

Date literal Value
------------ ----------------
'999-10-11' October 11, 0999
551011 October 11, 2055
'99-10-11' October 11, 1999
'9-10-11' October 11, 0009

So MySQL offers many features to specify a date literal. However, we recom-
mend largely using the alphanumeric form in which the hyphen is used as the
dividing character. This form is easier to read and more explicit, other SQL data-
base servers support it, and it seldom gives unexpected results. We also advise
always specifying the years component as a four-digit number and relying as little
as possible on the rules of MySQL.

Date literals range from 1 January 1000 to 31 December 9999 and should also
represent a date that exists in reality. Only then can MySQL guarantee that all cal-
culations with dates are performed correctly. Calculations with dates that are not

80 SQL for MySQL Developers

within that range could also be performed correctly, but no guarantee is given. Yet
two exceptions exist. First, the date '0000-00-00' is allowed. We call this a zero-
date. This literal is considered to be a legal date literal and can be used, for exam-
ple, to indicate that a certain data is not known yet. Second, each date literal with a
legal year component and with a month and/or day component equal to zero is
allowed as well. For example, the literals '2006-00-00' and '2006-11-00' are both
correct. Both are also called zero-dates. To summarize, the set of correct dates con-
sists of all existing dates between 1 January 1000 and 31 December 9999, including
all the zero-dates.

If an incorrect date literal is specified, it is converted into the null value during
processing. The INSERT statement forms an exception to this rule. When an incor-
rect date is specified, it is converted to the zero-date 0000-00-00.

Example 5.1: Add an incorrect date to a special table and show the result.

CREATE TABLE INCORRECT_DATES (COLUMN1 DATE)

INSERT INTO INCORRECT_DATES VALUES ('2004-13-12')

SELECT COLUMN1
FROM INCORRECT_DATES

The result is:

COLUMN1

0000-00-00

So the only dates allowed are those that also occur in reality, the so-called exist-
ing dates plus those zero-dates. We can deviate from this by turning certain settings
on or off.

If we do not want MySQL to accept the zero-date '0000-00-00', we can specify
that with a setting of the system variable SQL_MODE; see also Section 4.14. If
SQL_MODE has NO_ZERO_DATE as the setting, '0000-00-00' cannot be used. The
expression DATE('0000-00-00') would result in a null value. In this example, noth-
ing would change. Even with NO_ZERO_DATE, a null value is stored in the K column.
So with this setting, the set of correct dates becomes smaller.

Another setting is NO_ZERO_IN_DATE. If this setting is used, no zero-dates are
accepted for which the month and/or day component is equal to zero. Therefore, the
date literal '2006-12-00' is no longer allowed. If both the settings NO_ZERO_DATE
and NO_ZERO_IN_DATE are turned on, the set of correct dates is limited to those dates
that fall between 1 January 1000 and 31 December 9999.

81CHAPTER 5 SELECT Statement: Common Elements

A third important setting is ALLOW_INVALID_DATES. If we give SQL_MODE this set-
ting, nonexisting dates can be used. For example, the date literal '2004-2-31' will
be accepted even though it does not exist in reality. The only thing that MySQL
checks is whether the months component is between 1 and 12 and the days compo-
nent is between 1 and 31. The date literal '2006-14-14' would still not be accepted.
This implies that with this setting, the set of correct dates becomes larger.

5.2.6 The Time Literal
The second temporal literal is the time literal, indicating a certain moment of the
day. Time literals consist of four components: number of hours, number of minutes,
number of seconds, and number of microseconds. An alphanumeric and an integer
variant exist for this literal as well. With the alphanumeric variant, the entire value
must be enclosed in quotation marks, and the first three components must be sepa-
rated by special characters. Usually, the colon is used as character, but other char-
acters, such as -, /, @, and % are allowed as well. In front of the microseconds
component, we normally specify a point.

Irrelevant zeroes may be omitted for the first three components. When only two
components are specified, MySQL regards them as the hours and the minutes com-
ponents. When only one component is specified, it is regarded as the seconds com-
ponent. Examples follow:

Time literal Value
----------------- ---------------------------------------
'23:59:59' 1 second before midnight
'12:10:00' 10 minutes past 12 in the afternoon
'14:00' 2 o'clock in the afternoon, or 14:00:00
'14' 14 seconds after midnight, or 00:00:14
'00:00:00.000013' 13 microseconds after midnight

When an integer is used to indicate a time literal, the first three components are
written after each other without separating characters. MySQL regards the last two
digits as the seconds component, the two digits in front of it as the minutes compo-
nent, and everything in front of that as the hours component. So be careful with
omitting the zeroes. Examples follow:

Time literal Value
------------- --------------------------------------
235959 1 second before midnight
121000 10 minutes past 12 in the afternoon
1400 14 minutes after midnight, or 00:14:00
14 14 seconds after midnight, or 00:00:14
000000.000013 13 microseconds after midnight

82 SQL for MySQL Developers

For the same reason as for the date literal, we recommend mainly using the
alphanumeric form in which the colon is used as the separating character.

When using an INSERT statement to store a time literal with a microseconds
component in a table, make sure that the microseconds component is removed. For
example, these statements

CREATE TABLE TIME_TABLE (COLUMN1 TIME)

INSERT INTO TIME_TABLE VALUES ('23:59:59.5912')

SELECT COLUMN1 FROM TIME_TABLE

return the following result in which the microsecond component is missing:

COLUMN1

23:59:59

So far, we have assumed that a time literal represents a certain moment in time.
However, a time literal can also be used to indicate a time interval: a limited num-
ber of hours, minutes, and seconds. That is why the range of a time literal is not lim-
ited from 00:00:00 to 23:59:59, but from -838:59:59 to 838:59:59. To make it
easier to specify time literals with a large number of hours, you may specify a num-
ber of days before the hours. Note that this is possible only with the alphanumeric
variant of the time literal. Examples follow:

Time literal Value
------------- -------------------------------------
'10 10:00:00' ten days plus ten hours, or 250 hours
'10 10' ten days plus ten hours, or 250 hours

Because the range is so wide, it is possible to store incorrect times in the data-
base. The only check that MySQL performs is to see whether the minutes and the
seconds components are between 0 and 59, and whether the hours component is
between -838 and +838. This is a huge difference between MySQL and other SQL
products.

For example, when an INSERT statement is used to enter a time in which the
minutes component consists of the value 80, the value '00:00:00' is stored. So the
INSERT statement is not rejected. Therefore, MySQL makes a distinction between
correct times, incorrect times that can be stored, and incorrect times that cannot be
stored.

83CHAPTER 5 SELECT Statement: Common Elements

5.2.7 The Datetime and Timestamp Literal
The value of a datetime, and timestamp literal is a combination of a date literal, a
time literal, and an additional component for the microseconds.

Each datetime and timestamp literal consists of seven components: years,
months, days, hours, minutes, seconds, and microseconds. Both have an alphanu-
meric and an integer variant. With the alphanumeric variant, hyphens separate the
first three components (which indicate a date), and colons separate the next three
(which indicate a time); a space comes between the date and the time, and a deci-
mal point is placed in front of the microseconds. The microseconds component can
be represented as a number consisting of six digits.

Timestamp literal Value
---------------------------- -----------------------------
'1980-12-08 23:59:59.999999' 1 microsecond before midnight

on December 8, 1980
'1991-6-19 12:5:00' 5 minutes past 12 in the

afternoon of June 19, 1991

Most rules that apply to date and time literals also apply here.

As with time literals, when an INSERT statement is used to store a datetime or
timestamp literal with a microseconds component, that microseconds component is
removed. For example, these statements

CREATE TABLE TIMESTAMP_TABLE (COLUMN1 TIMESTAMP)

INSERT INTO TIMESTAMP_TABLE VALUES ('1980-12-08 23:59:59.59')

SELECT COLUMN1 FROM TIMESTAMP_TABLE

return the following result in which the microseconds are clearly missing:

COLUMN1

1980-12-08 23:59:59

These two literals have much in common, but differences do exist. An impor-
tant difference between a datetime and a timestamp literal is the range of the years
component. For the timestamp literal, the year should be between 1970 and 2037;
for a datetime, the year should be between 1000 and 9999.

Another difference between datetime and timestamp literals is that the latter
also supports time zones. When MySQL starts, it looks at the time zone of the oper-
ating system. The value of the time zone is related to Universal Coordinated Time
(UTC). Amsterdam is one hour ahead of the UTC, Mexico City is six hours behind,

84 SQL for MySQL Developers

and Adelaide in Australia is 9.5 hours ahead. When a timestamp value is stored, it
is first converted into the corresponding UTC time, and that result is stored in the
table. Therefore, if the previous statement had been executed in Amsterdam, the
value '1980-12-08 22:59:59.59' would have been stored. If the stored timestamp
value is queried with, for example, a SELECT statement, it is translated to the time
zone of the application. This also means that when a user who is in an entirely dif-
ferent time zone retrieves that same timestamp value, he sees something completely
different. The timestamp then is converted into his time zone.

The system variable TIME_ZONE indicates the actual time zone. In most cases,
the value of this variable is SYSTEM. This means that the time zone of the operating
system is adopted. Under Windows, it is easy to retrieve the actual time zone; see
Figure 5.3. This figure clearly shows that this system is one hour ahead of UTC.

85CHAPTER 5 SELECT Statement: Common Elements

FIGURE 5.3 The actual time zone for Windows

You can adjust the time zone of the application with a SET statement. The fol-
lowing example shows the effect of this.

Example 5.2: Create a table to store timestamps, enter a timestamp, and show
the contents of the table. Assume that MySQL has been started in the time zone
UTC plus one hour.

CREATE TABLE TZ (COL1 TIMESTAMP)

INSERT INTO TZ VALUES ('2005-01-01 12:00:00')

SELECT * FROM TZ

The result is:

COL1

2005-01-01 12:00:00

Note that 2005-01-01 11:00:00 has been stored in the table, not the value
2005-01-01 12:00:00. Next, convert the time zone to that of Sydney in Australia
and then show the contents of the table again:

SET @@TIME_ZONE = '+10:00'

SELECT * FROM TZ

The result is:

COL1

2005-01-01 21:00:00

You can use the SELECT statement to retrieve the value of the TIME_ZONE system
variable.

Example 5.3: Get the value of the TIME_ZONE system variable.

SELECT @@TIME_ZONE

The result is:

@@TIME_ZONE

+10:00

5.2.8 The Year Literal
The year literal is the most simple temporal literal. This digit must be between 1901
and 2155. We can represent year literals as an alphanumeric literal consisting of
four digits or as an integer literal consisting of four digits.

The benefit of having a literal with the data type YEAR is minimal. This data type
becomes useful only when it is used for defining columns in CREATE TABLE state-
ments. Chapter 20 returns to this data type and the corresponding literal.

86 SQL for MySQL Developers

5.2.9 The Boolean Literal
The simplest literal is the Boolean literal because it can consist of only two possible
values: TRUE or FALSE. The numeric value of FALSE is 0 and that of TRUE is 1.

Example 5.4: Get the values of the literals TRUE and FALSE.

SELECT TRUE, FALSE

Result:

TRUE FALSE
---- -----

1 0

Explanation: The values TRUE and FALSE can be written in any combination of
case. In fact, you can even mix upper- and lowercase letters. Therefore, TrUe is
allowed, too.

5.2.10 The Hexadecimal Literal
To specify values in a hexadecimal format, MySQL has the hexadecimal literal.
This literal is specified as an alphanumeric literal in front of which the letter X or x
is placed. Inside the quotation marks, only the ten digits and the letters A to F can
be used. The number of characters must be an even number.

This book does not pay much attention to this data type and this literal; hexa-
decimal format is mainly used to store special values in the database, such as fig-
ures (in JPG or BMP formats) and movies (in AVI or MPG formats). A few examples
follow:

Hexadecimal literal Value
------------------- --------
X'41' A
X'6461746162617365' database
X'3B' ;

Specially for ODBC, MySQL also supports an alternative notation in which the
X is replaced by 0x and no quotation marks are used. The literal X'41' is therefore
equal to 0x41. Note that a lowercase letter x must be used.

5.2.11 The Bit Literal
A bit literal is a numeric literal that is specified as an alphanumeric literal with the
small b or a capital B in front. Inside the quotation marks, only ones and zeroes are

87CHAPTER 5 SELECT Statement: Common Elements

allowed. At most 64 digits may be specified. These are some examples of bit
literals:

Bit literal Value
----------- -----
b'1001' 9
b'1111111' 127
b'0001' 1

Exercise 5.1: Specify which of the following literals are correct and which are
incorrect; also give the data type of the literal.

1. 41.58E-8

2. JIM

3. 'jim'

4. 'A'14

5. '!?'

6. 45

7. '14E6'

8. ''''''

9. '1940-01-19'

10. '1992-31-12'

11. '1992-1-1'

12. '3:3:3'

13. '24:00:01'

14. '1997-31-12 12:0:0'

15. X'AA1'

16. TRUE

5.3 EXPRESSIONS

An expression is a combination of literals, column names, complex calculations,
operators, and functions that is executed according to certain rules and that leads to
one value. An expression generally evaluates to a value. Expressions are used, for
example, in the SELECT and WHERE clauses of a SELECT statement.

88 SQL for MySQL Developers

Example 5.5: Get the match number and the difference between sets won and
sets lost for each match of which the number of sets won equals the number of sets
lost plus 2.

SELECT MATCHNO, WON - LOST
FROM MATCHES
WHERE WON = LOST + 2

Result:

MATCHNO WON - LOST
------ -----------

1 2

Explanation: This SELECT statement consists of several expressions. Four expres-
sions come after the word SELECT: the columns MATCHNO, WON, and LOST, and the cal-
culation WON - LOST. Four expressions also come after the word WHERE: WON, LOST, 2,
and LOST + 2.

An expression can be classified in three ways: by data type, by complexity of the
value, and by form.

As with literals, the value of an expression always has a certain data type. Pos-
sible data types are the same as for literals—among other things, alphanumeric,
numeric, date, time, or timestamp. That is why we can call them, for example, inte-
ger, alphanumeric, or date expressions. The following sections describe the various
types of expressions individually.

Expressions can also be classified by the complexity of their value. So far, we
have discussed only expressions that have one value as result—for example, a
number, a word, or a date. These kinds of values are called scalar values. That’s why
all the previous expressions are called scalar expressions.

Besides the scalar expressions, MySQL supports row expressions and table
expressions. The result of a row expression is a row consisting of a set of scalar val-
ues. This result has a row value. Each row expression consists of one or more scalar
expressions. If PLAYERNO, 'John', and 10000 are examples of scalar expressions,
this is an example of a row expression:

(PLAYERNO, 'John', 100 * 50)

Imagine that the value of the PLAYERNO column is equal to 1; then the row
value of this row expression is (1, 'John', 5000).

89CHAPTER 5 SELECT Statement: Common Elements

The result of a table expression is a set of zero, one, or more row expressions.
This result is called a table value. If (PLAYERNO, 'John', 100 * 50), (PLAYERNO,
'Alex', 5000), and (PLAYERNO, 'Arnold', 1000 / 20) are examples of row expres-
sions, then this is an example of a table expression:

((PLAYERNO, 'John', 100 * 50),
(PLAYERNO, 'Alex', 5000),
(PLAYERNO, 'Arnold', 1000 / 20))

Imagine that the values of the three PLAYERNO columns are, respectively, 1, 2,
and 3; the table value of this table expression, then, is equal to ((1, 'John', 5000),
(2, 'Alex', 5000), (3, 'Arnold', 50)). Note that these examples of row and table
expressions are not correct SQL statements. The way we specify these expressions
depends on the SQL statements in which they are used. The most popular form of a
table expression is the SELECT statement. Each SELECT statement is also a table
expression because the result or the value of a SELECT statement is always a table
and, therefore, a set of row values.

Sections 5.15 and 5.16 discuss row and table expressions, respectively, in more
detail.

The third way to classify expressions is on the basis of form. We distinguish
between singular and compound expressions. A singular expression consists of only
one component. In the upcoming definition of expression, several possible forms of
singular expressions are specified. You have already seen a few examples of it, such
as a literal or the name of a column.

When an expression consists of operations and, thus, contains multiple singu-
lar expressions, it is called a compound expression. Therefore, the expressions 20 *
100 and '2002-12-12' + INTERVAL 2 MONTH are compound.

Table expressions can be compound as well. We can combine the result of two
or more table expressions, which leads to one table value. Chapter 6, “SELECT
Statements, Table Expressions, and Subqueries,” returns to this.

An example of a compound row expression is (1, 2, 3) + (4, 5, 6). This
expression would have the following row value: (5, 7, 9). A new row value is put
together from multiple row expressions. MySQL does not (yet) support compound
row expressions, so this book does not cover them.

90 SQL for MySQL Developers

91CHAPTER 5 SELECT Statement: Common Elements

D E F I N I T I O N
<expression> ::=

<scalar expression> |
<row expression> |
<table expression>

<scalar expression> ::=
<singular scalar expression> |
<compound scalar expression>

<singular scalar expression> ::=
<literal> |
<column specification> |
<user variable> |
<system variable> |
<cast expression> |
<case expression> |
NULL |
(<scalar expression>) |
<scalar function> |
<aggregation function> |
<scalar subquery>

<row expression> ::=
<singular row expression>

<singular row expression> ::=
(<scalar expression> [, <scalar expression>]...) |
<row subquery>

<table expression> ::=
<singular table expression> |
<compound table expression>

Before we discuss expressions and all their different forms, we explain the
assignment of names to expressions, followed by the concepts from which scalar
expressions are built. We have already described literals, but we still need to discus
column specifications, system variables, case expressions, and functions.

Exercise 5.2: What is the difference between a literal and an expression?

Exercise 5.3: In which three ways can expressions be classified?

5.4 ASSIGNING NAMES TO RESULT COLUMNS

When the result of a SELECT statement is determined, MySQL must assign a name to
each column of the result. If the expression in the SELECT clause consists of only a
column name, the column in the result gets that name. Consider the next example.

Example 5.6: For each team, get the number and the division.

SELECT TEAMNO, DIVISION
FROM TEAMS

Result:

TEAMNO DIVISION
------ --------

1 first
2 second

It’s obvious how MySQL came up with the names of the result columns in this
example. But what is the name when something else is specified instead of a simple
column name, such as a literal, or a complex expression? In that case, the name is
equal to the entire expression. For example, if the expression WON * LOST is used,
the name of the result column is equal to WON * LOST.

Specifying an alternative name after an expression in a SELECT clause assigns a
name to the matching result column. This is sometimes called a column heading or
a pseudonym. This column name is placed in the heading of the result. We recom-
mend specifying a column name when an expression in a SELECT clause is not a
simple column name.

Example 5.7: For each team, get the number and the division, and use the full
names.

SELECT TEAMNO AS TEAM_NUMBER, DIVISION AS DIVISION_OF_TEAM
FROM TEAMS

The result is:

TEAM_NUMBER DIVISION_OF_TEAM
----------- ----------------

1 first
2 second

Explanation: After the column name, we specify the word AS followed by the
name of the result column. The word AS can be omitted.

92 SQL for MySQL Developers

Example 5.8: For each penalty, get the payment number and the penalty amount
in cents.

SELECT PAYMENTNO, AMOUNT * 100 AS CENTS
FROM PENALTIES

The result is:

PAYMENTNO CENTS
--------- -----

1 10000
2 7500
3 10000
4 5000
: :

Explanation: When you look at the result, it is clear that the word CENTS has been
placed above the second column. If we had not specified a column name in this
example, MySQL would have come up with a name itself.

By way of illustration, this next example has somewhat more complex expressions
and assigned column names.

Example 5.9: Get some data from the MATCHES table.

SELECT MATCHNO AS PRIMKEY,
80 AS EIGHTY,
WON - LOST AS DIFFERENCE,
TIME('23:59:59') AS ALMOST_MIDNIGHT,
'TEXT' AS TEXT

FROM MATCHES
WHERE MATCHNO <= 4

The result is:

PRIMKEY EIGHTY DIFFERENCE ALMOST_MIDNIGHT TEXT
------- ------ ---------- --------------- ----

1 80 2 23:59:59 TEXT
2 80 -1 23:59:59 TEXT
3 80 3 23:59:59 TEXT
4 80 1 23:59:59 TEXT

The examples specify only column names to make the result easier to read. The
names are not mandatory in these examples. Later examples require column names;
you will see that the column names can be used in other parts of the statement.

93CHAPTER 5 SELECT Statement: Common Elements

So names for columns in a result are defined in the SELECT clause. These col-
umn names can be used in most of the other clauses that are part of a select block,
except for the FROM and WHERE clauses.

Example 5.10: Group all the penalties on penalty amount in cents, and order the
result on that number of cents.

SELECT AMOUNT * 100 AS CENTS
FROM PENALTIES
GROUP BY CENTS
ORDER BY CENTS

The result is:

CENTS

2500
3000
5000
7500
10000

New column names cannot be used in the same SELECT clause. Therefore, the
clause SELECT WON AS W, W * 2 is not allowed.

Exercise 5.4: For each match, get the match number and the difference between
the number of sets won and the number of sets lost, and name this column DIFFER-
ENCE.

Exercise 5.5: Is the following SELECT statement correct?

SELECT PLAYERNO AS X
FROM PLAYERS
ORDER BY X

5.5 THE COLUMN SPECIFICATION

A frequently occurring form of the scalar expression is the column specification,
which identifies a specific column. A column specification consists of only the
name of a column or the name of a column preceded by the name of the table to
which the column belongs. Using the table name might be necessary to prevent
misunderstandings when statements become more complex. Section 7.3 returns to
this subject.

94 SQL for MySQL Developers

95CHAPTER 5 SELECT Statement: Common Elements

D E F I N I T I O N
<column specification> ::=

[<table specification> .] <column name>

The next two scalar expressions, consisting of column specifications, are both
correct: PLAYERNO and PLAYERS.PLAYERNO. When they really refer to the same col-
umn, they always have the same value. Placing the table name in front of the
column name is called qualification.

But what is the value of a column specification? The value of a literal is easy to
determine. A literal has no secrets. The value of the literal 381 is 381. However, the
value of a column specification cannot be determined just like that. As it happens,
the value is fetched from the database when the expression is processed.

In the SELECT statement of Example 5.6, for each team, the values of the column
specifications TEAMNO and DIVISION are calculated. Those can be different for
each row.

Note that the names introduced in a SELECT clause to name the columns in a
result cannot be qualified. The reason is that these column names belong not to a
table, but to the result of the select block.

Exercise 5.6: Rewrite the following SELECT statement in such a way that all col-
umn names are represented with their complete column specifications.

SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO > 6
ORDER BY NAME

Exercise 5.7: What is wrong in the following SELECT statement?

SELECT PLAYERNO.PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE PLAYERS.PLAYERNO = TEAMS.PLAYERNO

5.6 THE USER VARIABLE AND THE SET STATEMENT

In MySQL, we can use user-defined variables within expressions. These variables
can be used anywhere scalar expressions are allowed. User-defined variables are
also called user variables.

96 SQL for MySQL Developers

D E F I N I T I O N
<user variable> ::= @ <variable name>

It is better to define and initialize a variable before using it. Defining means
that the user variable is made known to MySQL; initializing means that the variable
is assigned a value. A variable that has been defined but not initialized has the null
value.

The special SET statement can be used to define and initialize a variable.

Example 5.11: Create the user variable PLAYERNO and initialize it with the value 7.

SET @PLAYERNO = 7

Explanation: The @ symbol must always be placed in front of a user variable to
distinguish it from a column name. The new value is specified after the assignment
operator. This can be any scalar expression, as long as no column specifications
occur in it.

The data type of the user variable is derived from the value of the scalar expression.
So in the previous example, that is an integer. The data type of the variable can
change later when a new value with another data type is assigned.

A defined user variable, such as PLAYERNO, can be used as a special form of an
expression after it has been created in other SQL statements.

Example 5.12: Get the last name, the town, and the postcode of all players with a
number less than the value of the PLAYERNO user variable that has just been created.

SELECT NAME, TOWN, POSTCODE
FROM PLAYERS
WHERE PLAYERNO < @PLAYERNO

The result is:

NAME TOWN POSTCODE
--------- --------- --------
Everett Stratford 3575NH
Parmenter Stratford 1234KK

You can retrieve the value of a user variable by using a simple SELECT
statement.

Example 5.13: Find the value of PLAYERNO variable.

SELECT @PLAYERNO

The result is:

@PLAYERNO

7

Chapter 15, “The User Variable and the SET Statement,” returns to the SET
statement and the possibilities of the user variables.

Exercise 5.8: Can the result of a SELECT statement be assigned to a user variable,
as in this statement?

SET @NAME = (SELECT NAME
FROM PLAYERS
WHERE PLAYERNO=2)

Exercise 5.9: What is the shortest statement to show the value of a user variable?

Exercise 5.10: What is the value of a user variable when it has not been initial-
ized yet?

5.7 THE SYSTEM VARIABLE

A simple form of an expression is the system variable. Section 4.14 introduced the
system variable. Just as with user variables, system variables have a value and a
data type. The differences with user variables is that MySQL introduces and initial-
izes system variables.

D E F I N I T I O N
<system variable> ::=

@@ [<variable type> .] <variable name>

<variable type> ::=
SESSION | GLOBAL | LOCAL

97CHAPTER 5 SELECT Statement: Common Elements

System variables are divided into two groups: global system variables and ses-
sion system variables. Global system variables are initialized when MySQL is
started and apply to each session started. Some, but not all, can be changed with a
SET statement. For example, the VERSION global system variable cannot be changed,
whereas SQL_WARNINGS can. This system variable indicates whether MySQL should
return a warning if incorrect data is added to a table with an INSERT statement. By
default, this variable is off, but you can change that.

Example 5.14: Switch the SQL_WARNINGS on.

SET @@GLOBAL.SQL_WARNINGS = TRUE

Explanation: Two @ symbols and the word GLOBAL come before the system
variable.

Session system variables apply only to the current session. The names of most ses-
sion system variables are equal to those of the global system variables. When start-
ing a session, each session variable receives the value of the global system variable
with the same name. The value of a session system variable can be changed, but
this new value applies only to the running session, not to all the other sessions. That
explains the name session system variable.

Example 5.15: For the current session, set the value of the system variable SQL_
SELECT_LIMIT to 10. This variable determines the maximum number of rows in the
result of a SELECT statement.

SET @@SESSION.SQL_SELECT_LIMIT=10

SELECT @@SESSION.SQL_SELECT_LIMIT

The result is:

@@SESSION.SQL_SELECT_LIMIT

10

Explanation: Note that, in this example, the word SESSION is specified in front of
the name of the system variable. This clearly shows that the value of the session
system variable SQL_SELECT_LIMIT is in line with what the SET statement specifies.
But the value of the global system variable called SQL_SELECT_LIMIT is still
unchanged:

SELECT @@GLOBAL.SQL_SELECT_LIMIT

98 SQL for MySQL Developers

The result is:

@@GLOBAL.SQL_SELECT_LIMIT

4294967295

If the terms GLOBAL and SESSION are not specified, MySQL assumes that
SESSION is intended. Instead of the term SESSION, we can also use LOCAL. All three
terms may be written in uppercase or lowercase letters.

MySQL has a default value for most system variables. These values are used
when the database server starts. However, in the MY.INI option file, you can specify
another value. This file is automatically read when the database server starts. A
piece of this file might look like this:

[mysqld]
SQL_SELECT_MODE=10

However, a system variable can also be set with the command that starts the
MySQL database server:

mysqld --SQL_SELECT_MODE=10

With a SET statement, a system variable can be returned to the default value.

Example 5.16: Set the value of SQL_SELECT_LIMIT back to the default value.

SET @@SESSION.SQL_SELECT_MODE = DEFAULT

In the SET statement, you can use an alternate formulation for system variables
that omits the double @ symbols and the dot. However, we recommend using the
first formulation because it can be used in every SQL statement.

D E F I N I T I O N
<system variable> ::=

[<variable type>] <variable name>

<variable type> ::=
SESSION | GLOBAL | LOCAL

The SHOW VARIABLES statement retrieves the complete list of system variables
with their respective values. SHOW GLOBAL VARIABLES returns all global system vari-
ables, and SHOW SESSION VARIABLES all session versions.

99CHAPTER 5 SELECT Statement: Common Elements

Appendix C, “System Variables,” describes system variables that affect the
processing of SQL statements. Refer to the MySQL manuals for descriptions of all
the system variables.

As already indicated, in front of each system variable, two @ symbols must be
specified. However, to stay in line with several other SQL products, for some of
MySQL’s system variables, such as CURRENT_USER and CURRENT_DATE, those symbols
can be omitted. Table 5.2 lists some of these specific system variables and gives the
data type and a brief explanation.

TABLE 5.2 Examples of System Variables

100 SQL for MySQL Developers

At a particular moment in time, the system variables might have the following
values:

System variable Value
--------------- ----------
CURRENT_USER BOOKSQL
CURRENT_DATE 2003-12-08
CURRENT_TIME 17:01:23

Example 5.17: Get the privileges from the USER_AUTHS catalog table that have
been granted to the current user.

SELECT *
FROM USER_AUTHS
WHERE GRANTEE = CURRENT_USER

Example 5.18: Find the name of the current SQL user.

SELECT CURRENT_USER

SYSTEM VARIABLE DATA TYPE EXPLANATION

CURRENT_DATE DATE The actual system date

CURRENT_TIME TIME The actual system time

CURRENT_TIMESTAMP TIMESTAMP The actual system date and
system time

CURRENT_USER CHAR The name of the SQL user

The result is:

CURRENT_USER

BOOKSQL@localhost

Example 5.19: Show the penalties that were paid today.

SELECT *
FROM PENALTIES
WHERE PAYMENT_DATE = CURRENT_DATE

Obviously, this statement has an empty result because your computer clock will
undoubtedly show the present date and time, whereas most penalties were incurred
before the year 2000.

Exercise 5.11: What are the differences between user and system variables?

Exercise 5.12: Find the numbers of the players who became committee members
today.

5.8 THE CASE EXPRESSION

A special scalar expression is the case expression. This expression serves as a kind
of IF-THEN-ELSE statement. It can be compared with the SWITCH statement in Java
and the CASE statement in Pascal.

D E F I N I T I O N
<case expression> ::=

CASE <when definition> [ELSE <scalar expression>] END

<when definition> ::= <when definition-1> | <when definition-2>

<when definition-1> ::=
<scalar expression>
WHEN <scalar expression> THEN <scalar expression>
[WHEN <scalar expression> THEN <scalar expression>]...

<when definition-2> ::=
WHEN <condition> THEN <scalar expression>
[WHEN <condition> THEN <scalar expression>]...

101CHAPTER 5 SELECT Statement: Common Elements

Each case expression starts with a when definition. Two forms of when defini-
tions exist. The easiest way to explain the possibilities of the first is through a few
examples.

Example 5.20: Get the player number, the sex, and the name of each player who
joined the club after 1980. The sex must be printed as 'Female' or 'Male'.

SELECT PLAYERNO,
CASE SEX

WHEN 'F' THEN 'Female'
ELSE 'Male' END AS SEX,

NAME
FROM PLAYERS
WHERE JOINED > 1980

The result is:

PLAYERNO SEX NAME
-------- ------ -------

7 Male Wise
27 Female Collins
28 Female Collins
57 Male Brown
83 Male Hope
104 Female Moorman
112 Female Bailey

Explanation: This construct is equal to the following IF-THEN-ELSE construct:

IF SEX = 'F' THEN
RETURN 'Female'

ELSE
RETURN 'Male'

ENDIF

The data type of the case expression depends on the data types of the expres-
sions that follow the words THEN and ELSE. The data types of these expressions must
all be the same, or an implicit cast is performed (see Section 5.11 for an explanation
of casting). An error message is returned if the data types of the values do not
match.

As the definition shows, ELSE is not required. The previous case expression
could also have been formulated as follows:

CASE SEX
WHEN 'F' THEN 'Female'
WHEN 'M' THEN 'Male'

END

102 SQL for MySQL Developers

In this case, if ELSE is omitted and the value of the SEX column is not equal to
one of the scalar expressions in a when definition (which is not possible), the null
value is returned.

SELECT PLAYERNO,
CASE SEX

WHEN 'F' THEN 'Female' END AS FEMALES,
NAME

FROM PLAYERS
WHERE JOINED > 1980

The result is:

PLAYERNO FEMALES NAME
-------- ------- -------

7 ? Wise
27 Female Collins
28 Female Collins
57 ? Brown
83 ? Hope
104 Female Moorman
112 Female Bailey

Explanation: A column name is specified to give the second result column a
meaningful name.

Many when conditions can be included in a case expression.

CASE TOWN
WHEN 'Stratford' THEN 0
WHEN 'Plymouth' THEN 1
WHEN 'Inglewood' THEN 2
ELSE 3

END

With the case expression, we can create very powerful SELECT clauses, espe-
cially, if we start to nest case expressions:

CASE TOWN
WHEN 'Stratford' THEN

CASE BIRTH_DATE
WHEN '1948-09-01' THEN 'Old Stratforder'
ELSE 'Young Stratforder' END

WHEN 'Inglewood' THEN
CASE BIRTH_DATE

WHEN '1962-07-08' THEN 'Old Inglewooder'
ELSE 'Young Inglewooder' END

ELSE 'Rest' END

103CHAPTER 5 SELECT Statement: Common Elements

Example 5.21: Use both case expressions shown previously in a SELECT
statement.

SELECT PLAYERNO, TOWN, BIRTH_DATE,
CASE TOWN

WHEN 'Stratford' THEN 0
WHEN 'Plymouth' THEN 1
WHEN 'Inglewood' THEN 2
ELSE 3

END AS P,
CASE TOWN

WHEN 'Stratford' THEN
CASE BIRTH_DATE

WHEN '1948-09-01' THEN 'Old Stratforder'
ELSE 'Young Stratforder' END

WHEN 'Inglewood' THEN
CASE BIRTH_DATE

WHEN '1962-07-08' THEN 'Old Inglewooder'
ELSE 'Young Inglewooder' END

ELSE 'Rest'
END AS TYPE

FROM PLAYERS

The result is:

PLAYERNO TOWN BIRTH_DATE P TYPE
-------- --------- ---------- - -----------------

2 Stratford 1948-09-01 0 Old Stratforder
6 Stratford 1964-06-25 0 Young Stratforder
7 Stratford 1963-05-11 0 Young Stratforder
8 Inglewood 1962-07-08 2 Old Inglewooder
27 Eltham 1964-12-28 3 Rest
28 Midhurst 1963-06-22 3 Rest
39 Stratford 1956-10-29 0 Young Stratforder
44 Inglewood 1963-01-09 2 Young Inglewooder
57 Stratford 1971-08-17 0 Young Stratforder
83 Stratford 1956-11-11 0 Young Stratforder
95 Douglas 1963-05-14 3 Rest
100 Stratford 1963-02-28 0 Young Stratforder
104 Eltham 1970-05-10 3 Rest
112 Plymouth 1963-10-01 1 Rest

So far, you have seen examples of case expressions in which just one condition
within the case expression may occur. Consider some examples that show the other
form.

Example 5.22: For each player, find the player number, the year in which he or
she joined the club, and the player’s age group.

104 SQL for MySQL Developers

SELECT PLAYERNO, JOINED,
CASE

WHEN JOINED < 1980 THEN 'Seniors'
WHEN JOINED < 1983 THEN 'Juniors'
ELSE 'Children' END AS AGE_GROUP

FROM PLAYERS
ORDER BY JOINED

The result is:

PLAYERNO JOINED AGE_GROUP
-------- ------ ---------

95 1972 Seniors
2 1975 Seniors
6 1977 Seniors

100 1979 Juniors
8 1980 Juniors
39 1980 Juniors
44 1980 Juniors
7 1981 Juniors
83 1982 Juniors
27 1983 Children
28 1983 Children
104 1984 Children
112 1984 Children
57 1985 Children

Explanation: If the first expression is not true, the next expression is evaluated,
then the next, and so on. If none of them is true, the else definition applies.

The advantage of this form of the case expression is that all kinds of conditions can
be mixed.

Example 5.23: For each player, find the player number, the year in which he or
she joined the club, the town where he or she lives, and a classification.

SELECT PLAYERNO, JOINED, TOWN,
CASE

WHEN JOINED >= 1980 AND JOINED <= 1982
THEN 'Seniors'

WHEN TOWN = 'Eltham'
THEN 'Elthammers'

WHEN PLAYERNO < 10
THEN 'First members'

ELSE 'Rest' END
FROM PLAYERS

105CHAPTER 5 SELECT Statement: Common Elements

The result is:

PLAYERNO JOINED TOWN CASE WHEN ...
-------- ------ --------- -------------

2 1975 Stratford First members
6 1977 Stratford First members
7 1981 Stratford Seniors
8 1980 Inglewood Seniors
27 1983 Eltham Elthammers
28 1983 Midhurst Rest
39 1980 Stratford Seniors
44 1980 Inglewood Seniors
57 1985 Stratford Rest
83 1982 Stratford Seniors
95 1972 Douglas Rest
100 1979 Stratford Rest
104 1984 Eltham Elthammers
112 1984 Plymouth Rest

Case expressions can be used everywhere scalar expressions are allowed,
including in the WHERE and HAVING clauses of the SELECT statement.

Exercise 5.13: Get the number and the division of each team in which the value
first is written in full as the first division and the value second is written in full as
the second division. If the value of the division is not first or second, display the
value unknown.

Exercise 5.14: Imagine that the tennis club has classified all the penalties in
three categories. The category low contains all the penalties from 0 up and to 40, the
category moderate contains those from 41 to 80, and the category high contains all
the penalties higher than 80. Next, find for each penalty the payment number, the
amount, and the matching category.

Exercise 5.15: Find the numbers of the penalties belonging to the category low
(see the previous exercise).

5.9 THE SCALAR EXPRESSION BETWEEN BRACKETS

Each scalar expression can be placed between brackets. This does not change any-
thing about the value of the scalar expression. Therefore, the expressions 35 and
'John' are equal to, respectively, (35) and ('John'), but also to ((35)) and
(('John')).

106 SQL for MySQL Developers

Example 5.24: For each player, find the number and name.

SELECT (PLAYERNO), (((NAME)))
FROM PLAYERS

It is obvious that the number of opening brackets must be equal to the number
of closing brackets.

The use of brackets is redundant in the previous example. They become useful
only when scalar expressions are combined. The next sections give examples of the
use of brackets.

5.10 THE SCALAR FUNCTION

Scalar functions are used to perform calculations and transformations. A scalar
function has zero, one, or more so-called parameters. The values of the parameters
have an impact on the value of a scalar function. Consider this example of the UCASE
function:

UCASE('database')

Explanation: UCASE is the name of the scalar function, and the literal 'database'
is the parameter. UCASE stands for UpperCASE. With UCASE('database'), all letters
from the word database are replaced by their respective uppercase letter. So the
result (or the value) of this function is equal to 'DATABASE'.

The call of a scalar function is a scalar expression in itself; the parameters of each
scalar function are scalar expressions as well.

MySQL supports tens of scalar functions. Although we could fill many pages
with examples to show their possibilities, we give just a few examples of frequently
used functions. Appendix B, “Scalar Functions,” describes all the scalar functions
in detail.

Example 5.25: Get the payment number and the year of each penalty paid after
1980.

SELECT PAYMENTNO, YEAR(PAYMENT_DATE)
FROM PENALTIES
WHERE YEAR(PAYMENT_DATE) > 1980

107CHAPTER 5 SELECT Statement: Common Elements

The result is:

PAYMENTNO YEAR(PAYMENT_DATE)
--------- ------------------

2 1981
3 1983
4 1984
7 1982
8 1984

Explanation: The YEAR function extracts the year of any payment date and returns
the year as a numeric value. As already mentioned, and as this example shows, you
can use scalar functions in, among other things, the SELECT and WHERE clauses. In
fact, you can use them everywhere an expression can occur.

Scalar functions can also be nested. This means that the result of one function acts
as parameter for the other function. Thus, the expression given next is legal. First
the function MOD(30, 7) is executed, which leads to a result of 2. Next, the value of
SQRT(2)is calculated, and that result is passed to the ROUND function. The final
answer is 1. In this example, the functions have clearly been nested.

ROUND(SQRT(MOD(30, 7)), 0)

Example 5.26: For each player whose last name starts with the capital B, get the
number and the first letter of the first name, followed by a decimal and the last
name.

SELECT PLAYERNO, CONCAT(LEFT(INITIALS, 1), '. ', NAME)
AS FULL_NAME

FROM PLAYERS
WHERE LEFT(NAME, 1) = 'B'

The result is:

PLAYERNO FULL_NAME
-------- ---------

39 D. Bishop
44 E. Baker
57 M. Brown
112 I. Bailey

Explanation: For each player in the PLAYERS table, the first letter of the last
name is determined with the LEFT function first LEFT(NAME, 1). When that letter is
equal to the capital B, the nested function is calculated in the SELECT clause for
each. The CONCAT function is used to concatenate three alphanumeric values.

108 SQL for MySQL Developers

Example 5.27: For each player living in Stratford, get the first name, the last
name, and the league number. If the league number is null, give the value 1.

SELECT INITIALS, NAME, COALESCE(LEAGUENO, '1')
FROM PLAYERS
WHERE Town = 'Stratford'

The result is:

INITIALS NAME COALESCE(LEAGUENO, '1')
-------- --------- -----------------------
R Everett 2411
R Parmenter 8467
GWS Wise 1
D Bishop 1
M Brown 6409
PK Hope 1608
P Parmenter 6524

Explanation: The COALESCE function returns the values of the first parameter that
is not equal to the null value. In a way, the function acts as a kind of IF-THEN-ELSE
statement that is used in many programming languages. By using this function as
shown, for each row that is printed, the following statement is executed:

IF LEAGUENO IS NULL THEN
RETURN '1'

ELSE
RETURN LEAGUENO

ENDIF

MySQL supports many scalar functions for the manipulation of dates and times.
Several examples follow.

Example 5.28: For all players with numbers less than 10, get the player number,
the name of the day and month on which they were born, and the day’s sequence
number within the year of the birth date.

SELECT PLAYERNO, DAYNAME(BIRTH_DATE),
MONTHNAME(BIRTH_DATE), DAYOFYEAR(BIRTH_DATE)

FROM PLAYERS
WHERE PLAYERNO < 10

109CHAPTER 5 SELECT Statement: Common Elements

The result is:

PLAYERNO DAYNAME(...) MONTHNAME(...) DAYOFYEAR(...)
-------- ------------ -------------- --------------

2 Wednesday September 245
6 Thursday June 177
7 Saturday May 131
8 Sunday July 189

Explanation: The DAYNAME function determines the day of a date, MONTHNAME deter-
mines the month, and DAYOFYEAR calculates what day of the year it is.

Example 5.29: For the players who were born on a Saturday, get the number, the
date of birth, and the date that comes seven days after that date of birth.

SELECT PLAYERNO, BIRTH_DATE,
ADDDATE(BIRTH_DATE, INTERVAL 7 DAY)

FROM PLAYERS
WHERE DAYNAME(BIRTH_DATE) = 'Saturday'

The result is:

PLAYERNO BIRTH_DATE ADDDATE(BIRTH_DATE, 7)
-------- ---------- ----------------------

7 1963-05-11 1963-05-18
28 1963-06-22 1963-06-29

Example 5.30: Which players have already held a certain position for more than
500 days?

SELECT PLAYERNO, BEGIN_DATE, END_DATE,
DATEDIFF(END_DATE, BEGIN_DATE)

FROM COMMITTEE_MEMBERS
WHERE DATEDIFF(END_DATE, BEGIN_DATE) > 500
OR (END_DATE IS NULL AND

DATEDIFF(CURRENT_DATE, BEGIN_DATE) > 500)
ORDER BY PLAYERNO

The result is:

PLAYERNO BEGIN_DATE END_DATE DATEDIFF(...)
-------- ------- -- ---------- -------------

2 1990-01-01 1992-12-31 1095
2 1994-01-01 ? ?
6 1991-01-01 1992-12-31 730
6 1992-01-01 1993-12-31 730
6 1993-01-01 ? ?
8 1994-01-01 ? ?
95 1994-01-01 ? ?
112 1994-01-01 ? ?

110 SQL for MySQL Developers

Explanation: The DATEDIFF function calculates the difference in days between
two dates or timestamps. The second condition has been added to find those com-
mittee members who still hold the position (the ones that have a null value as
END_DATE). Every day, this statement can have another result, of course.

A more compact formulation for this statement follows. Now, the statement also cal-
culates the number of days for the committee members who still hold their position.

SELECT PLAYERNO, BEGIN_DATE, END_DATE,
DATEDIFF(COALESCE(END_DATE, CURRENT_DATE),
BEGIN_DATE)

FROM COMMITTEE_MEMBERS
WHERE DATEDIFF(COALESCE(END_DATE, CURRENT_DATE),

BEGIN_DATE)
> 500

ORDER BY PLAYERNO

Exercise 5.16: Try to calculate the values of the following expressions (refer to
Appendix B for explanations).

1. ASCII(SUBSTRING('database',1,1))

2. LENGTH(RTRIM(SPACE(8)))

3. LENGTH(CONCAT(CAST(100000 AS CHAR(6)),'000'))

4. LTRIM(RTRIM(' SQL '))

5. REPLACE('database','a','ee')

Exercise 5.17: Get the numbers of the penalties that were paid on a Monday.

Exercise 5.18: Get the numbers of the penalties that were paid in 1984.

5.11 CASTING OF EXPRESSIONS

Each expression has a data type, regardless of whether this is a simple expression
consisting of only one literal or a very complex one consisting of scalar functions
and multiplications. If we use an INSERT statement to store a value in a column, it is
obvious what the data type of that value is, namely, the data type of the column.
Unfortunately, it is not always that obvious. Consider a few examples here.

If somewhere in an SQL statement the literal 'monkey' is specified, the data
type is obvious. Given the possible data types, this expression can have only the

111CHAPTER 5 SELECT Statement: Common Elements

data type alphanumeric. The situation is more complex when we specify the literal
'1997-01-15'. Does this literal simply have the data type alphanumeric, or is it a
date? The answer depends on the context. Even more choices arise if simply the
number 3 is specified. The data type of this expression can be integer, decimal, or
float.

When it is not clear what the data type of an expression is, MySQL tries to
determine the data type itself. But sometimes we have to specify the data type
explicitly. To this end, MySQL supports the cast expression. Some examples follow:

Cast expression Data type Value
----------------------------- ------------ ----------
CAST('123' AS SIGNED INTEGER) Integer 123
CAST(121314 AS TIME) Time 12:13:14
CAST('1997-01-15' AS DATE) Date 1997-01-15
CAST(123 AS CHAR) Alphanumeric '123'

Explanation: Note the use of the term AS, which is often forgotten. You can spec-
ify the names of the data types after AS. Table 5.3 indicates for each allowed data
type the date type the value will have after the cast expression has been applied.

TABLE 5.3 Accepted Data Types in a Cast Expression

112 SQL for MySQL Developers

Chapter 20 returns to the CREATE TABLE statement in detail and explains the
characteristics of each data type.

If MySQL cannot execute the conversion specified in a cast expression, an error
message occurs. By way of illustration, the following two expressions will not be
executed:

CAST('John' AS SIGNED INTEGER)
CAST('1997' AS DATE)

DATA TYPE RESULTS IN

BINARY [(<length>)] Decimal values
CHAR [(<length>)] Alphanumeric values
DATE Date values
DATETIME Datetime values
DECIMAL [(<precision> , <scale>)] Decimal values
SIGNED [INTEGER] Integer values
TIME Time values
UNSIGNED [INTEGER] Integer values greater than zero

The expression is called cast because in literature specifying a data type or
altering the data type of an expression is called casting. Casting has two forms:
implicit and explicit. When a cast expression or function is used to specify the data
type of an expression, it is explicit casting. When a data type is not specified
explicitly, MySQL tries to derive one. This is called implicit casting.

Example 5.31: Get the payment numbers of the penalties that are higher than
$50.

SELECT PAYMENTNO
FROM PENALTIES
WHERE AMOUNT > 50

Explanation: This SELECT statement contains three expressions: PAYMENTNO,
AMOUNT, and 50. The data types of the first two are derived from the data types of the
columns. No data type has been specified explicitly for the literal 50. However,
because the literal is compared to a column that has the data type decimal, it is
assumed that 50 has the same data type. In fact, we have to conclude that the data
type of 50 is integer and that MySQL implicitly executes a casting from integer to
decimal.

Casting can be important when expressions with noncomparable data types are
compared.

Example 5.32: For each player resident in Inglewood, get the name and the date
of birth as one alphanumeric value.

SELECT CONCAT(RTRIM(NAME), CAST(BIRTH_DATE AS CHAR(10)))
FROM PLAYERS
WHERE TOWN = 'Inglewood'

The result is:

CONCAT(...)

Newcastle1962-07-08
Baker1963-01-09

Explanation: The two columns NAME and BIRTH_DATE do not have the same
data types. To concatenate them, BIRTH_DATE must be cast explicitly to alphanu-
meric. Next, the entire expression can be executed.

113CHAPTER 5 SELECT Statement: Common Elements

With INSERT and UPDATE statements, the data types of the new values are derived
from the columns in which they are stored. Implicit casting, therefore, also takes
place here.

Exercise 5.19: Transform the value 12 March 2004 into a value with a data data
type.

Exercise 5.20: What is the date type of the literal in the SELECT clause of the fol-
lowing statement?

SELECT '2000-12-15'
FROM PLAYERS

Exercise 5.21: Can an alphanumeric literal always be cast explicitly to a date
literal, and vice versa?

5.12 THE NULL VALUE AS AN EXPRESSION

Section 1.3.2 discussed the null value. The specification NULL itself is also a valid
scalar expression. For example, it is used in INSERT statements to enter a null value
in a new row or to change an existing value of a row in an UPDATE statement to null.

Example 5.33: Change the league number of the player with number 2 to the
null value.

UPDATE PLAYERS
SET LEAGUENO = NULL
WHERE PLAYERNO = 2

Explanation: In this example, NULL is a singular scalar expression.

Actually, the scalar expression NULL has no data type. In no way can we derive from
those four letters what it is. Is it an alphanumeric, a numeric, or a date? However,
this does not cause problems in the previous UPDATE statement. MySQL assumes
that the data type of this null value is equal to that of the column LEAGUENO. This
way, MySQL can execute an implicit cast fairly easy, but that does not work all the
time. Consider an example.

114 SQL for MySQL Developers

Example 5.34: For each team, get the number followed by the null value.

SELECT TEAMNO, CAST(NULL AS CHAR)
FROM TEAMS

The result is:

TEAMNO CAST(NULL AS CHAR)
------ ------------------

1 ?
2 ?

Explanation: An explicit casting is not really required in this SELECT statement.
MySQL determines that it has to be an alphanumeric value. Nevertheless, it is
always better to execute an explicit cast because only then is it clear which data
type the expression has.

Exercise 5.22: Does this SELECT statement return all the players without a
league number?

SELECT *
FROM PLAYERS
WHERE LEAGUENO = NULL

Exercise 5.23: What is the result of this SELECT statement, all the rows of the
TEAMS table or not even one?

SELECT *
FROM TEAMS
WHERE NULL = NULL

5.13 THE COMPOUND SCALAR EXPRESSION

The scalar expressions shown so far all have consisted of one component, such as a
literal, column specification, or system variable. They are all singular scalar
expressions. In addition, MySQL supports compound scalar expressions; see also
Section 5.3. These expressions consist of more than one component. The features of
a compound expression depend on its data type.

115CHAPTER 5 SELECT Statement: Common Elements

D E F I N I T I O N
<compound scalar expression> ::=

<compound numeric expression> |
<compound alphanumeric expression> |
<compound date expression> |
<compound time expression> |
<compound timestamp expression> |
<compound datetime expression> |
<compound boolean expression> |
<compound hexadecimal expression>

5.13.1 The Compound Numeric Expression
A compound numeric expression is a scalar expression that consists of, minimally, a
singular scalar numeric expression extended with operators, brackets, and/or other
scalar expressions. The result is a scalar value with a numeric data type.

D E F I N I T I O N
<compound numeric expression> ::=

[+ | -] <scalar numeric expression> |
(<scalar numeric expression>) |
<compound numeric expression>

<mathematical operator> <scalar numeric expression> |
~ <scalar numeric expression> |
<scalar numeric expression>

<bit operator> <scalar numeric expression>

<mathematical operator> ::= * | / | + | - | % | DIV

<bit operator> ::= "|" | & | ^ | << | >>

Consider some examples:

Compound numeric expression Value
--------------------------- -----
14 * 8 112
(-16 + 43) / 3 9
5 * 4 + 2 * 10 40
18E3 + 10E4 118E3
12.6 / 6.3 2.0

Table 5.4 lists the mathematical operators that can be used in a compound
numeric expression.

116 SQL for MySQL Developers

117CHAPTER 5 SELECT Statement: Common Elements

TABLE 5.4 The Mathematical Operators and Their Meanings

Before reading the examples, consider the following comments:

■ Non-numeric expressions can occur in a compound numeric expression. The
only requirement is that the final result of the entire expression must return a
numeric value.

■ If required, brackets can be used in numeric compound expressions to indi-
cate the order of execution.

■ If any component of a numeric compound expression has the value null, the
value of the entire expression is, by definition, null.

■ The calculation of the value of a numeric compound expression is performed
in keeping with the following priority rules: (1) left to right, (2) brackets, (3)
multiplication and division, (4) addition and subtraction.

Some examples follow (assume that the AMOUNT column has the value 25):

Compound numeric expression Value
------------------------------------- ---------
6 + 4 * 25 106
6 + 4 * AMOUNT 106
0.6E1 + 4 * AMOUNT 106
(6 + 4) * 25 250
(50 / 10) * 5 25
50 / (10 * 5) 1
NULL * 30 NULL
18 DIV 5 3
16 * '5' 80

These are incorrect compound numeric expressions:

86 + 'Jim'
((80 + 4)
4/2 (* 3)

MATHEMATICAL OPERATOR MEANING

* Multiply
/ Divide
+ Add
- Subtract
% Modulo
DIV Divide and round off

Example 5.35: Get the match number and the sets won and lost for each match
in which the number of sets won is greater than or equal to the number of sets lost
multiplied by 2.

SELECT MATCHNO, WON, LOST
FROM MATCHES
WHERE WON >= LOST * 2

The result is:

MATCHNO WON LOST
------- --- ----

1 3 1
3 3 0
7 3 0

Explanation: To be able to answer this query, we need the compound numeric
expression LOST * 2.

What are the precision and the scale of the result of a calculation that involves two
decimal values? For example, if we multiply a decimal (4,3) by a decimal (8,2),
what is the precision and the scale of that result? Here we show the rules that
MySQL uses to determine them. We assume that P1 and S1, respectively, are the
precision and the scale of the first decimal value, and that P2 and S2 are those of the
second value. In addition, assume that there exists a function called LARGEST that
enables you to determine the largest of two values.

■ Multiplication—If we multiply two decimals, the scale of the result is equal
to S1 + S2, and its precision is equal to P1+ P2. For example, multiplying a
decimal (4,3) with a decimal (5,4) returns a decimal (9,7).

■ Addition—If we add two decimals, the scale of the result is equal to
LARGEST(S1, S2), and its precision is equal to LARGEST(P1-S1, P2-S2) +
LARGEST(S1, S2) + 1. For example, adding a decimal (4,2) to a decimal (7,4)
returns a decimal (8,4).

■ Subtraction—If we subtract a decimal from another, the scale of the result
is equal to S1 + S2, and its precision is equal to LARGEST(P1-S1, P2-S2) +
LARGEST(S1, S2) + 1. In other words, for subtraction and addition, the same
rules apply.

■ Division—The scale of the result of a division is equal to S1 + 4, and the
precision is equal to P1 + 4. For example, if we divide a decimal (4,3) by a
decimal (5,4) the result is a decimal (8,6). The value 4 can be changed by
changing the value of the system variable called DIV_PRECISION_INCREMENT.

118 SQL for MySQL Developers

Besides the classic mathematical operators, MySQL supports special bit opera-
tors; see Table 5.5. Bit operators enable you to work on data on the bit level. Note
that bit operators can be used only with scalar expressions that have an integer data
type.

TABLE 5.5 Overview of Bit Operators

119CHAPTER 5 SELECT Statement: Common Elements

Example 5.36: Move the number 50 two bits to the left.

SELECT 50 << 2

The result is:

50 << 2

200

Explanation: Bit operators work on the binary representations of values. The
binary representation of the value 50 is 110010. With the operator <<, the bits are
moved several positions to the left and zeroes are placed at the end. In the previous
expression, the value 110010 is moved two bits to the left, and that gives 11001000.
In the decimal system, this value is equal to 200.

Example 5.37: Move the binary value 11 three bits to the left.

SELECT B'11' << 3

The result is:

B'11' << 3

24

BIT OPERATOR MEANING

| Binary OR
& Binary AND
^ Binary XOR
<< Move bits to the left
>> Move bits to the right
~ Invert bits

To be able to explain how bit operators work, we explain two scalar functions
first: the BIN and CONV functions. Both enable us to get the binary representation for
a decimal number.

Example 5.38: Get the binary representation of the values 6 and 10.

SELECT CONV(6,10,2), CONV(10,10,2), BIN(8), BIN(10)

The result is:

CONV(6,10,2) CONV(10,10,2) BIN(8) BIN(10)
------------ ------------- ------ -------
110 1010 110 1010

Explanation: How the BIN function works is obvious. The parameter value is con-
verted to a binary representation. The CONV function is somewhat more complex.
With this function, a value can be converted from one number base into any other.
With CONV(6,10,2), we convert the value 6 (according to the decimal base—hence,
the number 10) into a binary value (the number 2).

By switching the parameters 10 and 2, the CONV function can also retrieve the corre-
sponding decimal number of a binary representation.

Example 5.39: Get the decimal values that belong to the binary representations
1001 and 111.

SELECT CONV(1001,2,10), CONV(111,2,10)

The result is:

CONV(1001,2,10) CONV(111,2,10)
--------------- --------------

9 7

Consider some more examples of the bit operators. For example, the expression
10 | 6 results in 14. The binary representation of 10 is 1010, and 6 becomes 110.
When we use the OR operator or the | operator, both values are examined bit by bit.
If one of the values or both values has the value 1 on a certain bit position, the
resulting value also has a 1 on that same position. You could present it as follows
as well:

1010 = 10
0110 = 6
---- |
1110 = 14

120 SQL for MySQL Developers

With the AND or the & operator, the left and right values are also compared bit by
bit. Only when both values have the value 1 on a certain bit position does the result-
ing value have a 1 on that position. For example, the value of the expression 10 & 6
is equal to 2:

1010 = 10
0110 = 6
---- &
0010 = 2

Example 5.40: Get the odd player numbers from the PLAYERS table.

SELECT PLAYERNO
FROM PLAYERS
WHERE PLAYERNO & 1

The result is:

PLAYERNO

7
27
39
57
83
95

Explanation: A number is odd when a 1 occurs on the last position of the binary
representation of that number. Applying the & operator on two odd numbers always
returns a number that has a 1 on the last position of its binary representation. By
definition, the result is at least 1. Therefore, the expression PLAYERNO & 1 is true if
the player number is odd.

When the XOR operator or the ^ operator is used, the resulting value has a 1 on each
position where the left or the right value has the value 1 on that same position (but
not both 0 or 1). For example, the value of the expression 10 ^ 6 is equal to 12.

1010 = 10
0110 = 6
---- ^
1100 = 12

121CHAPTER 5 SELECT Statement: Common Elements

The << operator is used to move all the bits to the left. For example, in the
expression 3 << 1, we move the bits one position to the left: 11 becomes 110 then.
The result of this expression is 6. The operator >> can be used to move the bits to
the right. The rightmost bit is just cut off. 7>>1 has 3 as a result because the binary
representation of 7 is 111.

When you want to convert all the zeroes to ones and the other way around, use
the ~ operator. Note that this operator works on one scalar expression. The value of
~18446744073709551613 is equal to 2. If the value that needs to be moved to the left
is too large, all the 1s are moved out of the result, and the value 0 is given. For
example, the result of both the expressions 50000000000000000000 << 1 and 5 <<

70 is 0.

Consider two more examples of SELECT statements in which these bit operators
are used.

Example 5.41: Get the number and the name of each player who has an even
player number.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO = (PLAYERNO >> 1) << 1

The result is:

PLAYERNO NAME
-------- ---------

2 Everett
6 Parmenter
8 NewCastle
28 Collins
44 Baker
100 Parmenter
104 Moorman
112 Bailey

Example 5.42: Apply several binary operators to the columns of the MATCHES
table.

SELECT MATCHNO, TEAMNO, MATCHNO | TEAMNO,
MATCHNO & TEAMNO, MATCHNO ^ TEAMNO

FROM MATCHES

122 SQL for MySQL Developers

The result is:

MATCHNO TEAMNO MATCHNO | TEAMNO MATCHNO & TEAMNO MATCHNO ^ TEAMNO
------- ------ ---------------- ---------------- ----------------

1 1 1 1 0
2 1 3 0 3
3 1 3 1 2
4 1 5 0 5
5 1 5 1 4
6 1 7 0 7
7 1 7 1 6
8 1 9 0 9
9 2 11 0 11
10 2 10 2 8
11 2 11 2 9
12 2 14 0 14
13 2 15 0 15

Exercise 5.24: Determine the values of the following numeric compound
expressions:

1. 400 - (20 * 10)

2. (400 - 20) * 10

3. 400 - 20 * 10

4. 400 / 20 * 10

5. 111.11 * 3

6. 222.22 / 2

7. 50.00 * 3.00

8. 12 | 1

9. 12 & 1

10. 4 ^ 2

5.13.2 The Compound Alphanumeric Expression
The value of a compound alphanumeric expression has an alphanumeric data type.
With a compound expression, the values of alphanumeric expressions are concate-
nated using the ||. operator.

If the MySQL database server is started in a standard way, the || operator does
not lead to a concatenation of alphanumeric values, but it is seen as an OR operator
to combine predicates. You can change this by changing the value of the system
variable SQL_MODE. Use the following SET statement:

SET @@SQL_MODE= 'PIPES_AS_CONCAT'

123CHAPTER 5 SELECT Statement: Common Elements

This specification is needed for the following examples. It applies only to the
current session. Specifying the term GLOBAL in front of the system variable SQL_MODE
makes it a global specification that applies to all new sessions.

D E F I N I T I O N
<compound alphanumeric expression> ::=

<scalar alphanumeric expression> "||"
<scalar alphanumeric expression>

Two important rules apply to compound alphanumeric expressions:

■ Nonalphanumeric expressions can be used in a compound alphanumeric
expression as long as they are first converted into alphanumeric values with,
for example, a cast expression.

■ If somewhere in a compound alphanumeric expression the value null occurs,
the value of the whole expression evaluates to null.

Examples:

Compound alphanumeric expression Value
-------------------------------- --------
'Jim' Jim
'data'||'base' database
'da'||'ta'||'ba'||'se' database
CAST(1234 AS CHAR(4)) 1234
'Jim'||CAST(NULL AS CHAR) NULL

Example 5.43: Get the player number and the address of each player who lives in
Stratford.

SELECT PLAYERNO, TOWN || ' ' || STREET || ' ' || HOUSENO
FROM PLAYERS
WHERE TOWN = 'Stratford'

The result is:

PLAYERNO TOWN || ' ' || STREET ...
-------- ----------------------------

2 Stratford Stoney Road 43
6 Stratford Haseltine Lane 80
7 Stratford Edgecombe Way 39
39 Stratford Eaton Square 78
57 Stratford Edgecombe Way 16
83 Stratford Magdalene Road 16a
100 Stratford Haseltine Lane 80

124 SQL for MySQL Developers

Exercise 5.25: For each player, get the player number followed by a concatena-
tion of the data elements: the first initial, a full stop, a space, and the full last name.

Exercise 5.26: For each team, get the number and the division of the team fol-
lowed by the word division.

5.13.3 The Compound Date Expression
MySQL enables you to calculate dates. For example, you can add a few days,
months, or years to a date. The result of such a calculation is always a new date that
is later (for addition) or earlier (for subtraction) than the original date expression.

When calculating the new date, the different number of days in the months and
the leap years are taken into account. The calculation is done in a proleptic way,
which means that no adjustment is made for the fact that, in the Gregorian calendar,
the days October 5 to 14 in the year 1582 are missing completely. This also means
that we can use a date such as January 1, 1000, even though this date is earlier than
the point in time when the Gregorian calendar was introduced. That means that
what we call January 1, 1200, according to the Gregorian calendar now, probably
was called differently then.

A calculation with dates is specified with a compound date expression.

D E F I N I T I O N
<compound date expression> ::=

<scalar date expression> [+ | -] <date interval>

<date interval> ::=
INTERVAL <interval length> <date interval unit>

<interval length> ::= <scalar expression>

<date interval unit> ::=
DAY | WEEK | MONTH | QUARTER | YEAR | YEAR_MONTH

A compound date expression starts with a scalar expression (such as a date lit-
eral or a column specification with a date data type) followed by an interval that is
added to or subtracted from the scalar expression.

An interval represents not a certain moment in time, but a certain period or
length of time. This period is expressed in a number of days, weeks, months, quar-
ters, or years, or a combination of these five. Interval literals help indicate how
long, for example, a certain project lasted or how long a match took. Consider these
examples of interval literals:

125CHAPTER 5 SELECT Statement: Common Elements

Interval Value
----------------- -------------------
INTERVAL 10 DAY period of 10 days
INTERVAL 100 WEEK period of 100 weeks
INTERVAL 1 MONTH period of 1 month
INTERVAL 3 YEAR period of 3 years

An interval is not a complete expression. It must always occur within a com-
pound date expression, where it should be specified behind the + or – operators.

Example 5.44: For each penalty with a number higher than 5, get the payment
number, the day on which the penalty was paid, and the date seven days after the
payment date.

SELECT PAYMENTNO, PAYMENT_DATE, PAYMENT_DATE + INTERVAL 7 DAY
FROM PENALTIES
WHERE PAYMENTNO > 5

The result is:

PAYMENTNO PAYMENT_DATE PAYMENT_DATE + INTERVAL 7 DAY
--------- ------------ -----------------------------

6 1980-12-08 1980-12-15
7 1982-12-30 1983-01-06
8 1984-11-12 1984-11-19

Explanation: The SELECT clause contains the expression DATE + INTERVAL 7 DAY.
The second part after the plus is the interval. The word INTERVAL precedes each
interval. The word DAY is the interval unit, and 7 is the interval length. In this case,
it is an interval of seven days.

As stated, an interval should always follow an expression with a date data type. The
following statement, therefore, is not allowed:

SELECT INTERVAL 7 DAY

Example 5.45: Get the penalties that were paid between Christmas 1982
(December 25) and New Year’s Eve.

SELECT PAYMENTNO, PAYMENT_DATE
FROM PENALTIES
WHERE PAYMENT_DATE >= '1982-12-25'
AND PAYMENT_DATE <= '1982-12-25' + INTERVAL 6 DAY

126 SQL for MySQL Developers

The result is:

PAYMENTNO PAYMENT_DATE
--------- ------------

7 1982-12-30

Explanation: In the second condition of the WHERE clause after the less than or
equal to operator, an expression is specified that holds a calculation in which six
days are added to the date of Christmas 1982.

When a compound date expression contains more than one interval, it is essential
that no calculations be made with interval literals only. Interval literals can be
added to dates only. For example, MySQL rejects the expression DATE + (INTERVAL
1 YEAR + INTERVAL 20 DAY). The reason is that brackets are used, and they force
MySQL to add the two interval literals to each other first, which is not allowed. The
next two formulations cause no problems:

DATECOL + INTERVAL 1 YEAR + INTERVAL 20 DAY
(DATECOL + INTERVAL 1 YEAR) + INTERVAL 20 DAY

Instead of a literal, complex expressions can be used to specify an interval. In
most cases, brackets are required. Consider a few more correct examples:

DATECOL + INTERVAL PLAYERNO YEAR + INTERVAL 20*16 DAY
DATECOL + INTERVAL (PLAYERNO*100) YEAR + INTERVAL LENGTH('SQL') DAY

The scalar expression used to indicate the interval does not have to be a value
with an integer data type; decimals and floats are allowed as well. However, MySQL
rounds the value first. The part after the decimal point simply is removed, and the
value is rounded up or down. So the following two expressions have the same value:

DATECOL + INTERVAL 1.8 YEAR
DATECOL + INTERVAL 2 YEAR

In many of the calculations with dates and interval literals, MySQL acts as
expected. For example, if we add the interval three days to the date literal '2004-
01-12', the value January 15, 2004 results. But it is not always this easy. Consider
the processing rules with regard to interval literals.

When a random interval is added to an incorrect date literal, MySQL returns
the null value. For example, this is the case for the expression '2004-13-12' +
INTERVAL 1 DAY. However, if this happens, MySQL does not return an error mes-
sage. But if you want to see the message, you can retrieve it with SHOW WARNINGS
statement.

127CHAPTER 5 SELECT Statement: Common Elements

Example 5.46: Add one day to the date literal '2004-13-12'; next show the error
messages.

SELECT '2004-13-12' + INTERVAL 1 DAY

SHOW WARNINGS

The result is:

Level Code Message
------- ---- --
Warning 1292 Truncated incorrect datetime value: '2004-13-12'

When an interval of several days is added to a correct date (existing or non-
existing), the new date is converted into a sequence number first. This sequence
number indicates what day it is since the beginning of year 0. Next, the number of
days are added or subtracted. The new sequence number is converted again to the
corresponding date.

If SQL_MODE has the ALLOW_INVALID_DATES setting switched to on, MySQL can
perform calculations with correct nonexisting dates. A nonexisting date such as
February 31, 2004 is converted first to a sequence number that is equal to that of
the date March 2, 2004. Therefore, the expression '2004-04-31' + INTERVAL 1 DAY
returns May 2, 2004 as result because '2004-04-31' is converted to May 1, 2004
first. '2004-04-31' + INTERVAL 31 DAY gives June 1, 2004 as result.

When an interval unit of weeks is specified, the way of processing is compara-
ble to that of the days. One week equals seven days.

When the interval unit months is used, one month does not stands for 31 days.
Special rules apply when months are used for calculation. When a number of
months are added to a date, the months component is increased by that number.
When that date does not exist, it is rounded down to the last date of the correspon-
ding month. Therefore, '2004-01-31' + INTERVAL 1 MONTH gives 29 February 2004

as result. If the value of the months component is greater than 12, then 12 is sub-
tracted, and the years component is increased by 1.

When a number of months is subtracted from a date, MySQL uses the same
method of processing.

If a interval unit of quarters is specified, the processing method is comparable
to that for months. With that, one quarter equals three months.

For calculations with years, certain rules apply that are comparable to those for
months. With the years component, the number of years is added to or subtracted

128 SQL for MySQL Developers

from it. If in a leap year, one year is added to February 29, it is rounded down, and
the result is February 28. If one year is added to a correct but nonexisting date, the
days component is not changed. The result is a correct but nonexisting date again.
For example, the result of '2004-02-31' + INTERVAL 1 YEAR is February 31, 2004.

Because of these processing rules, using multiple interval literals in one com-
pound date expression sometimes leads to unexpected results. See the following
examples and compare examples three to four, five to six, and seven to eight. Even
when the interval literals are reversed, the result is different. In these examples,
assume that the setting ALLOW_INVALID_DATES for the variable SQL_MODE is turned on.

Compound date expression Value
-- ----------
'2004-02-31' + INTERVAL 1 MONTH – INTERVAL 1 MONTH 2004-02-29
'2004-02-31' + INTERVAL 1 DAY – INTERVAL 1 DAY 2004-03-02
'2004-02-31' + INTERVAL 1 YEAR + INTERVAL 1 DAY 2005-03-04
'2004-02-31' + INTERVAL 1 DAY + INTERVAL 1 YEAR 2005-03-03
'2004-02-31' + INTERVAL 1 MONTH + INTERVAL 1 DAY 2004-04-01
'2004-02-31' + INTERVAL 1 DAY + INTERVAL 1 MONTH 2004-04-03
'2000-02-29' + INTERVAL 1 YEAR – INTERVAL 1 DAY 2005-02-27
'2000-02-29' – INTERVAL 1 DAY + INTERVAL 1 YEAR 2005-02-28

MySQL also has a combined interval unit called YEAR_MONTH. For example, the
expression '2004-02-18' + INTERVAL '2-2' YEAR_MONTH has the same result as
'2004-02-18' + INTERVAL 2 YEAR + INTERVAL 2 MONTH. See how the two numbers
are enclosed by quotation marks (so they actually form one alphanumeric expres-
sion) and separated by a hyphen.

Exercise 5.27: Determine the result of the following compound date expressions.
Assume that the column DATECOL has the value 29 February 2000.

1. DATECOL + INTERVAL 7 DAY

2. DATECOL – INTERVAL 1 MONTH

3. (DATECOL – INTERVAL 2 MONTH) + INTERVAL 2 MONTH

4. CAST('2001-02-28' AS DATE) + INTERVAL 1 DAY

5. CAST('2001-02-28' AS DATE) + INTERVAL 2 MONTH – INTERVAL 2 MONTH

Exercise 5.28: For each row in the COMMITTEE_MEMBERS table, get the
player number, the begin date, and the begin date plus two months and three days.

129CHAPTER 5 SELECT Statement: Common Elements

5.13.4 The Compound Time Expression
As with dates, you can calculate with times. For example, you can add or subtract a
number of hours, minutes, or seconds to or from a specified time. The result after
the calculation is always a new time.

Calculations with times are always specified as compound time expressions.
This type of expression identifies a certain moment of a day to a millionth of a sec-
ond precisely.

MySQL does not support actual compound time expressions yet. You can use
the scalar function ADDTIME instead. This book uses this function as a substitution of
the compound time expression.

D E F I N I T I O N
<compound time expression> ::=

ADDTIME(<scalar time expression> , <time interval>)

<time interval> ::= <scalar time expression>

ADDTIME has two parameters. The first is a scalar expression (such as a time lit-
eral or a column with the time data type), and the second is an interval that is added
to or subtracted from that scalar expression.

An interval represents not a certain moment in time, but a certain period or
length of time. This period is expressed in a number of hours, minutes, and sec-
onds, or a combination of these three. Time interval literals can be used to indicate
how long, for example, a match took. An interval is specified the same way as a time
expression:

Interval Value
---------- -------------------
'10:00:00' period of 10 hours
'00:01:00' period of 1 minute
'00:00:03' period of 3 seconds

Because times do not occur in the sample database, we created an additional
table to show some examples.

Example 5.47: Create a special variant of the MATCHES table that includes the
date the match was played, the time it started, and the time it ended.

130 SQL for MySQL Developers

CREATE TABLE MATCHES_SPECIAL
(MATCHNO INTEGER NOT NULL,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON SMALLINT NOT NULL,
LOST SMALLINT NOT NULL,
START_DATE DATE NOT NULL,
START_TIME TIME NOT NULL,
END_TIME TIME NOT NULL,
PRIMARY KEY (MATCHNO))

INSERT INTO MATCHES_SPECIAL VALUES
(1, 1, 6, 3, 1, '2004-10-25', '14:10:12', '16:50:09')

INSERT INTO MATCHES_SPECIAL VALUES
(2, 1, 44, 3, 2, '2004-10-25', '17:00:00', '17:55:48')

Example 5.48: For each match, get the time it starts, and get the time it starts
plus eight hours.

SELECT MATCHNO, START_TIME,
ADDTIME(START_TIME, '08:00:00')

FROM MATCHES_SPECIAL

The result is:

MATCHNO START_TIME ADDTIME(START_TIME, '08:00:00')
------- ---------- -------------------------------

1 14:10:12 22:10:12
2 17:00:00 25:00:00

Example 5.49: Find the matches that ended at least 6.5 hours before midnight.

SELECT MATCHNO, END_TIME
FROM MATCHES_SPECIAL
WHERE ADDTIME(END_TIME, '06:30:00') <= '24:00:00'

The result is:

MATCHNO END_TIME
------- --------

2 16:50:09

Calculations with times follow predictable rules. When a few seconds are
added to a certain time, the sum of the number of seconds in the seconds compo-
nent of the time, and the number of seconds in the interval is calculated. For each

131CHAPTER 5 SELECT Statement: Common Elements

60 seconds that can be removed from the sum without the sum becoming less than
0, one is added to the minutes component. A comparable rule applies to the min-
utes component: For each 60 minutes that can be removed from the sum, 1 is added
to the hours component. The hours component, however, can become greater than
24. The expression ADDTIME('10:00:00', '100:00:00') is allowed and returns the
value 110:00:00.

Exercise 5.29: Show the expression for adding ten hours to the point in time
11:34:34.

Exercise 5.30: What is the result of the expression ADDTIME('11:34:34',
'24:00:00')?

5.13.5 The Compound Timestamp and Datetime
Expression
The value of a compound timestamp expression identifies a certain moment in a day
in the Gregorian calendar, such as 4:00 in the afternoon on January 12, 1991.

MySQL also supports the compound datetime expression. The rules for both
compound expressions are identical.

D E F I N I T I O N
<compound timestamp expression> ::=

<scalar timestamp expression> [+ | -] <timestamp interval>

<compound datetime expression> ::=
<scalar datetime expression> [+ | -] <timestamp interval>

<timestamp interval> ::=
INTERVAL <interval length> <timestamp interval unit>

<interval length> ::= <scalar expression>

<timestamp interval unit> ::=
MICROSECOND | SECOND | MINUTE | HOUR |
DAY | WEEK | MONTH | QUARTER | YEAR |
SECOND_MICROSECOND | MINUTE_MICROSECOND | MINUTE_SECOND |
HOUR_MICROSECOND | HOUR_SECOND | HOUR_MINUTE |
DAY_MICROSECOND | DAY_SECOND | DAY_MINUTE | DAY_HOUR |
YEAR_MONTH

132 SQL for MySQL Developers

Just as it is possible to calculate with dates and times, it is possible to calculate
with timestamps. For example, you can add or subtract a couple months, days,
hours, or seconds to or from a timestamp. The rules for processing are according to
those for calculating with dates and times.

If too many hours are added to a time, the surplus is simply thrown away. For a
timestamp expression, this means that the days component increases. So, if 24
hours are added to something, the result would be the same as adding one day.

If a combined interval unit is specified, such as MINUTE_SECOND or DAY_SECOND,
the interval length must be written as an alphanumeric literal—therefore, with quo-
tation marks. The two values can be separated by several characters, for example,
with a space, a colon, or a hyphen.

The result of using a combined interval unit is the same as writing it as two sep-
arate singular interval units. The expression X + INTERVAL ‘4:2’ HOUR_MINUTE is
therefore equal to X + INTERVAL 4 HOUR + INTERVAL 4 MINUTE.

Consider a few correct examples in which the expression E1 has the value 2006-
01-01 12:12:12.089:

Compound expression Value
-------------------------------- -----------------------
E1 + INTERVAL 911000 MICROSECOND 2006-01-01 12:12:13
E1 + INTERVAL 24 HOUR 2006-01-02 12:12:12.089
E1 + INTERVAL '1:1' YEAR_MONTH 2007-02-01 12:12:12.089

What holds for the timestamp literal also holds for the compound timestamp
expression. When the result is stored in a table, MySQL cuts off the microseconds
part; see the following example:

Example 5.50: Create a table in which timestamps can be stored.

CREATE TABLE TSTAMP (COL1 TIMESTAMP)

SET @TIME = TIMESTAMP('1980-12-08 23:59:59.59')

INSERT INTO TSTAMP VALUES (@TIME + INTERVAL 3 MICROSECOND)

SELECT COL1, COL1 + INTERVAL 3 MICROSECOND FROM TSTAMP

The result is:

COL1 COL1 + INTERVAL 3 MICROSECOND
------------------- -----------------------------
1980-12-08 23:59:59 1980-12-08 23:59:59.000003

133CHAPTER 5 SELECT Statement: Common Elements

Explanation: Obviously, the microseconds are missing in the result of the SELECT
statement, although they have been entered with an INSERT statement.

Exercise 5.31: Show the expression for adding 1,000 minutes to the timestamp
1995-12-12 11:34:34.

Exercise 5.32: For each penalty, find the payment number and the payment
date, followed by that same date plus 3 hours, 50 seconds, and 99 microseconds.

5.13.6 The Compound Boolean Expression
A compound Boolean expression is an expression with a Boolean result. Besides the
familiar scalar forms, such as the Boolean literal, the compound expression has
another form: the condition (see the following definition). Chapter 8, “SELECT
Statement: The WHERE Clause,” extensively discusses conditions, so for now, we
give just a few examples.

D E F I N I T I O N
<compound boolean expression> ::=

<scalar boolean expression> |
<condition>

Example 5.51: Get the number of each team.

SELECT TEAMNO
FROM TEAMS
WHERE TRUE OR FALSE

The result is:

TEAMNO

1
2

Explanation: The WHERE clause contains a condition that is always true, which is
why all the teams are displayed. However, this is not a very useful example; it just
shows that this statement is allowed.

Most Boolean expressions are used in WHERE clauses. However, all the Boolean
expressions—therefore, also the conditions—can be used anywhere where an
expression may occur, so also within a SELECT clause.

134 SQL for MySQL Developers

Example 5.52: Indicate which payment numbers are greater than 4.

SELECT PAYMENTNO, PAYMENTNO > 4
FROM PENALTIES

The result is:

PAYMENTNO PAYMENTNO > 4
--------- -------------

1 0
2 0
3 0
4 0
5 1
6 1
7 1
8 1

Explanation: The SELECT clause contains the compound Boolean expression
PAYMENTNO > 4. If it is true, MySQL prints a 1; otherwise, it prints a 0. You can
embellish the result somewhat by expanding the condition with a case expression:

SELECT PAYMENTNO, CASE PAYMENTNO > 4
WHEN 1 THEN 'Greater than 4'
ELSE 'Less than 5'

END AS GREATER_LESS
FROM PENALTIES

The result is:

PAYMENTNO GREATER_LESS
--------- --------------

1 Less than 5
2 Less than 5
3 Less than 5
4 Less than 5
5 Greater than 4
6 Greater than 4
7 Greater than 4
8 Greater than 4

Example 5.53: Find the players for whom the following two conditions are both
true or both false: The player number is less than 15, and the year of joining the
club is greater than 1979.

SELECT PLAYERNO, JOINED, PLAYERNO < 15, JOINED > 1979
FROM PLAYERS
WHERE (PLAYERNO < 15) = (JOINED > 1979)

135CHAPTER 5 SELECT Statement: Common Elements

The result is:

PLAYERNO JOINED PLAYERNO < 15 JOINED > 1979
-------- ------ ------------- -------------

7 1981 1 1
8 1980 1 1
95 1972 0 0
100 1979 0 0

Explanation: The two compound expressions in the WHERE clause have the value 1
or 0 as result. If both are equal to 1 or 0, the condition is true, and the concerned
player is included in the end result.

Exercise 5.33: Show which players are resident in Inglewood. Use the values
Yes and No.

Exercise 5.34: Find the penalties for which the next two conditions are both
true or both false: The penalty amount is equal to 25, and the player number is
equal to 44.

5.14 THE AGGREGATION FUNCTION AND THE SCALAR

SUBQUERY

For the sake of completeness, this section introduces the last two forms of the scalar
expression: the aggregation function and the scalar subquery.

As with scalar functions, aggregation functions are used to perform calcula-
tions. They also have parameters. The big difference between these two types of
functions is that a scalar function is always executed on a maximum of one row with
values. An aggregation function, on the other hand, is a calculation with a set of
rows as input. Table 5.6 shows the different aggregation functions that MySQL sup-
ports. Chapter 9, “SELECT Statement: SELECT Clause and Aggregation Func-
tions,” extensively discusses aggregation functions.

136 SQL for MySQL Developers

TABLE 5.6 Aggregation Functions in MySQL

137CHAPTER 5 SELECT Statement: Common Elements

The subquery enables us to include SELECT statements within expressions. With
this, we can formulate very powerful statement in a compact way. Section 6.6
returns to this subject briefly; Chapter 8 discusses the subquery in great detail.

5.15 THE ROW EXPRESSION

Section 5.3 introduced the concept of the row expression. The value of a
row expression is a row consisting of at least one value. The number of elements
in a row expression is called the degree. Section 4.7 gave examples of rows
expressions—namely, in the INSERT statement. There, a row expression is specified
after the word VALUES in the INSERT statement.

AGGREGATION FUNCTION MEANING

AVG Determines the weighted average of the values
in a column

BIT_AND Executes the bit operator AND (i.e., the &
operator) on all values in a column

BIT_OR Executes the bit operator OR (i.e., the |
operator) on all values in a column

BIT_XOR Executes the bit operator XOR (i.e., the ^
operator) on all values in a column

COUNT Determines the number of values in a column
or the number of rows in a table

GROUP_CONCAT Makes a list of all the values of a group
(created with the GROUP BY clause)

MAX Determines the largest value in a column

MIN Determines the smallest value in a column

STDDEV (i.e., STD or STDEV_POP) Determines the standard deviation of the
values in a column

STDTEV_SAMP Determines the sample standard deviation of
the values in a column

SUM Determines the sum of the values in a column

VARIANCE (i.e., VAR_POP) Determines the population variance of the
values in a column

VAR_SAMP Determines the sample variance of the values
in a column

Example 5.54: Add a new row to the COMMITTEE_MEMBERS table.

INSERT INTO COMMITTEE_MEMBERS
VALUES (7 + 15, CURRENT_DATE,

CURRENT_DATE + INTERVAL 17 DAY, 'Member')

Explanation: This row expression has four components—in other words, the
degree of this row expression is 4. First is a compound expression (7 + 15), fol-
lowed by a system variable and a system variable as part of a compound date
expression. A literal concludes the row expression.

Row expressions can also be used in SELECT statements, for example, to make a
comparison with multiple values simultaneously.

Example 5.55: Get the numbers of the players who live on Haseltine Lane in
Stratford.

SELECT PLAYERNO
FROM PLAYERS
WHERE (TOWN, STREET) = ('Stratford', 'Haseltine Lane')

The result is:

PLAYERNO

6
100

Explanation: In the condition of this statement, two row expressions are
compared.

A SELECT statement with one row of values as a result can also act as a row
expression.

Example 5.56: Find the numbers of the players who live on Haseltine Lane in
Stratford.

SELECT PLAYERNO
FROM PLAYERS
WHERE (TOWN, STREET) = (SELECT 'Stratford', 'Haseltine Lane')

138 SQL for MySQL Developers

Explanation: The SELECT statement in the WHERE clause returns one row with two
values. We return to this specific feature later in this book.

Each expression has a data type, so that includes a row expression as well. How-
ever, a row expression does not have one data type, but it has a data type for each
value from which it is built. So the previous row expression (TOWN, STREET) has the
data type (alphanumeric, alphanumeric).

If row expressions are compared to each other, the respective degrees should be
the same and the data types of the elements with the same order number should be
comparable. “Comparable” means that both data types are identical, or that the one
can be cast implicitly to the other. Therefore, the following comparisons are syntac-
tically correct:

(TOWN, STREET) = (1000, 'USA')
(NAME, BIRTH_DATE, PLAYERNO) = (NULL, '1980-12-12', 1)

139CHAPTER 5 SELECT Statement: Common Elements

N O T E
Section 8.2 describes in detail how conditions in which row expressions are
compared are evaluated.

Exercise 5.35: Get the numbers of the penalties of $25 incurred for player 44 on
December 8, 1980.

Exercise 5.36: Get the numbers of the players for whom the last name is equal to
the town and the initials are equal to the street name, a somewhat peculiar example.

Exercise 5.37: Get the penalties with an amount that is unequal to $25 and a
player number that is equal to 44; use row expressions in the WHERE clause for this.

5.16 THE TABLE EXPRESSION

Section 5.3 briefly discussed table expressions. The value of a table expression is a
set of row values. In the INSERT statement, this expression can be used to enter not
one, but multiple rows simultaneously.

Example 5.57: Add all eight penalties with just one INSERT statement.

INSERT INTO PENALTIES VALUES
(1, 6, '1980-12-08', 100),
(2, 44, '1981-05-05', 75),
(3, 27, '1983-09-10', 100),
(4, 104, '1984-12-08', 50),
(5, 44, '1980-12-08', 25),
(6, 8, '1980-12-08', 25),
(7, 44, '1982-12-30', 30),
(8, 27, '1984-11-12', 75)

Explanation: The result of this statement is the same as those of eight individual
INSERT statements. However, this statement guarantees that either all the eight rows
are added or none is added.

Each SELECT statement is also a valid table expression. This is obvious because the
result of a SELECT statement is always a set of rows.

Table expressions have data types as well. Just as with the row expression, a
table expression is a set of data types. In the earlier INSERT statement, the data type
of the table expression is (integer, alphanumeric, alphanumeric, alphanumeric,
integer). The rule for all row expressions within one table expression is that they
must have the same degree and that they must have comparable data types.

Chapter 6 devotes more coverage to the table expression. After all, each SELECT
statement is a table expression, and in several places in that same statement, table
expressions can be specified.

5.17 ANSWERS

5.1 1. Correct; float data type.

2. Incorrect; quotation marks must appear in front of and after the
alphanumeric literal.

3. Correct; alphanumeric data type.

4. Incorrect, characters appear outside the quotation marks of the
alphanumeric literal.

5. Correct; alphanumeric data type.

6. Correct; integer data type.

7. Correct; alphanumeric data type.

8. Correct; alphanumeric data type.

140 SQL for MySQL Developers

9. Correct; date data type.

10. If it is supposed to be an alphanumeric literal, it is correct. If it is
supposed to be a date literal, it is incorrect because the month compo-
nent is too high.

11. Correct; date data type.

12. Correct; time data type.

13. If it is supposed to be an alphanumeric literal, it is correct. If it is
supposed to be a time literal, it is incorrect because if the hours com-
ponent is equal to 24, the two other components must be equal to 0.

14. Correct; timestamp data type.

15. Incorrect; a hexadecimal data type must consist of an even number of
characters.

16. Correct; Boolean data type.

5.2 The value of a literal is fixed; MySQL must determine the value of an
expression.

5.3 Expressions can be grouped based on their respective data types, the com-
plexity of their values, and their forms. Grouping based on data type refers
to the data type of the value of the expression, such as integer, date, or
alphanumeric. Grouping based on complexity refers to whether it is a
“normal,” a row, or a table expression. Grouping based on form implies
whether it is a singular or compound expression.

5.4 SELECT MATCHNO, WON - LOST AS DIFFERENCE
FROM MATCHES

5.5 Yes, this statement is correct. It is allowed to sort on column names intro-
duced in the SELECT clause.

5.6 SELECT PLAYERS.PLAYERNO, PLAYERS.NAME,
PLAYERS.INITIALS

FROM PLAYERS
WHERE PLAYERS.PLAYERNO > 6
ORDER BY PLAYERS.NAME

5.7 This statement is incorrect because of the column specification
TEAMS.PLAYERNO. The TEAMS table does not occur in the FROM clause.
Therefore, the SQL statement cannot refer to columns of this table.

141CHAPTER 5 SELECT Statement: Common Elements

5.8 Yes, it is allowed.

5.9 SELECT @VAR

5.10 If a user variable has not been initialized yet, it has the value null.

5.11 1. User variables are indicated with a @ and system variables with @@.

2. MySQL defines and initializes system variables; the user or program-
mer defines and initializes user variables.

5.12 SELECT PLAYERNO
FROM COMMITTEE_MEMBERS
WHERE BEGIN_DATE = CURRENT_DATE

5.13 SELECT TEAMNO,
CASE DIVISION

WHEN 'first' then 'first division'
WHEN 'second' THEN 'second division'
ELSE 'unknown'

END AS DIVISION
FROM TEAMS

5.14 SELECT PAYMENTNO, AMOUNT,
CASE

WHEN AMOUNT >= 0 AND AMOUNT <= 40
THEN 'low'

WHEN AMOUNT >= 41 AND AMOUNT <= 80
THEN 'moderate'

WHEN AMOUNT >= 81
THEN 'high'

ELSE 'incorrect'
END AS CATEGORY

FROM PENALTIES

5.15 SELECT PAYMENTNO, AMOUNT
FROM PENALTIES
WHERE CASE

WHEN AMOUNT >= 0 AND AMOUNT <= 40
THEN 'low'

WHEN AMOUNT > 40 AND AMOUNT <= 80
THEN 'moderate'

WHEN AMOUNT > 80
THEN 'high'

ELSE 'incorrect'
END = 'low'

142 SQL for MySQL Developers

5.16 1. 100

2. 0

3. 9

4. SQL

5. deeteebeese

5.17 SELECT PAYMENTNO
FROM PENALTIES
WHERE DAYNAME(PAYMENT_DATE) = 'Monday'

5.18 SELECT PAYMENTNO
FROM PENALTIES
WHERE YEAR(PAYMENT_DATE) = 1984

5.19 CAST('2004-03-12' AS DATE)

5.20 Alphanumeric literal

5.21 Not every alphanumeric literal can be converted. Conversion is possible
only when the literal satisfies the requirements of a date. Converting a date
literal to an alphanumeric literal always works.

5.22 No. When the null value is compared to another expression with an equal
to operator, the entire condition evaluates to unknown and the correspon-
ding row is not included in the end result.

5.23 Not a single row.

5.24 1. 200

2. 3800

3. 200

4. 200

5. 333.33

6. 111.11

7. 150.0000

8. 13

9. 0

10. 6

5.25 SELECT PLAYERNO, SUBSTR(INITIALS,1,1) || '. ' || NAME
FROM PLAYERS

143CHAPTER 5 SELECT Statement: Common Elements

5.26 SELECT TEAMNO, RTRIM(DIVISION) || ' division'
FROM TEAMS

5.27 1. 2000-03-07

2. 2000-01-29

3. 2000-02-29

4. 2001-03-01

5. 2001-02-28

5.28 SELECT PLAYERNO, BEGIN_DATE,
BEGIN_DATE + INTERVAL 2 MONTH + INTERVAL 3 DAY

FROM COMMITTEE_MEMBERS

5.29 ADDTIME('11:34:34', '10:00:00')

5.30 The result is not 11:34:34, which you might expect, but 35:34:34.

5.31 '1995-12-12 11:34:34' + INTERVAL 1000 MINUTE

5.32 SELECT PAYMENTNO, PAYMENT_DATE,
PAYMENT_DATE + INTERVAL 3 HOUR +
INTERVAL 50 SECOND + INTERVAL 99 MICROSECOND

FROM PENALTIES

5.33 SELECT PLAYERNO,
CASE TOWN='Inglewood'

WHEN 1 THEN 'Yes' ELSE 'No' END
FROM PLAYERS

5.34 SELECT *
FROM PENALTIES
WHERE (AMOUNT = 25) = (PLAYERNO = 44)

5.35 SELECT PAYMENTNO
FROM PENALTIES
WHERE (AMOUNT, PLAYERNO, PAYMENT_DATE) =

(25, 44, '1980-12-08')

5.36 SELECT PLAYERNO
FROM PLAYERS
WHERE (NAME, INITIALS) = (TOWN, STREET)

5.37 SELECT *
FROM PENALTIES
WHERE (AMOUNT = 25, PLAYERNO = 44) = (FALSE, TRUE

144 SQL for MySQL Developers

145

SELECT Statements,
Table Expressions, and
Subqueries

C H A P T E R 6

6.1 INTRODUCTION

Earlier we introduced the SELECT statement and the table expression. You use both
of these language constructs for querying data. Within SQL, a few other related con-
structs exist, such as the subquery and select block. All these constructs have a
strong mutual relationship, which makes it difficult to keep them apart. However,
the person who is programming SQL must know the differences. That is why we
have devoted this entire chapter to this subject. For each construct, we describe
what is meant exactly and what the mutual relationships are.

We begin with the SELECT statement. In the previous chapters, you have already
seen several examples of this statement.

6.2 THE DEFINITION OF THE SELECT STATEMENT

Each SELECT statement consists of a table expression followed by several specifica-
tions. We leave these additional specifications aside for now; they are not included
in the following definition.

D E F I N I T I O N
<select statement> ::=

<table expression>

<table expression> ::=
<select block head> [<select block tail>]

<select block head> ::=
<select clause>
[<from clause>
[<where clause>]
[<group by clause>]
[<having clause>]]

<select block tail> ::=
<order by clause> |
<limit clause> |
<order by clause> <limit clause>

This chapter is completely devoted to that table expression. The value of a table
expression is always a set of rows, in which each row consists of the same number of
column values.

As described in Section 5.3, two forms of the table expression exist: the singu-
lar and the compound table expressions. This section considers only the singular
form.

You might wonder what the use is of introducing the concept of a table expres-
sion when every SELECT statement exists entirely of a table expression. Aren’t the
concepts the same? The answer is that every SELECT statement is built from a table
expression, but not every table expression is part of a SELECT statement. Table
expressions are also used within other SQL statements, such as the CREATE VIEW
statement. For example, in Figure 6.1, a table expression appears twice, the first
time as part of a SELECT statement and the next as part of a CREATE VIEW statement.

A table expression consists of one or more select blocks. A select block is a set
of clauses, such as SELECT, FROM, and ORDER BY. The clauses of a select block are
divided into two groups: the head part and the tail part.

Again, you could wonder why it is useful to make a distinction between table
expressions and select blocks. A select block always consists of only one group of
clauses—thus, one SELECT clause and one FROM clause—whereas a table expres-
sion, as you will see later, can consist of multiple select blocks and, thus, can also
contain multiple SELECT and FROM clauses.

146 SQL for MySQL Developers

147CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

CREATE VIEW SOME_PLAYERS AS

SELECT statement

table expression

CREATE VIEW statement

SELECT

FROM

WHERE

PLAYERS

PLAYERNO > 20

PLAYERNO, NAME, INITIALS

SELECT

FROM

WHERE

PLAYERS

PLAYERNO > 20

PLAYERNO, NAME, INITIALS

FIGURE 6.1 Table expressions as part of various statements

Figure 6.2 shows a graphical representation of the different constructs and their
relationships that have been introduced in this section. An arrow indicates which
concept has been built from which other concepts. The arrow head points to the
concept that forms a part.

table expression

select block

clause

select block head select block tail

CREATIVE VIEW statementSELECT statement DECLARE CURSOR statement

FIGURE 6.2 The relationships between different language constructs

When we use the term select block in this book, we mean the combination of a
select block head and a select block tail. You will learn about the advantage of nam-
ing these two parts individually later in this chapter.

The following rules are important when formulating SELECT statements:

■ Each select block (thus, also every table expression and every SELECT state-
ment) consists of at least the SELECT clause. The other clauses, such as
WHERE, GROUP BY, and ORDER BY, are optional.

■ If a WHERE, GROUP BY, and/or HAVING clause is used, SELECT and FROM clauses
are required.

■ The order of the clauses within a select block is fixed. For example, a GROUP
BY clause may never come in front of a WHERE or FROM clause, and the ORDER
BY clause (when used) is always last.

■ A HAVING clause can be used within a select block if no GROUP BY clause
exists. Most other SQL products do not support this.

Next we give a few examples of correct SELECT statements, table expressions,
and select blocks. For the sake of convenience, three dots represent what follows
each different clause.

SELECT ...
FROM ...
ORDER BY ...

SELECT ...
FROM ...
GROUP BY ...
HAVING ...

SELECT ...
FROM ...
WHERE ...

SELECT ...

SELECT ...
FROM ...
WHERE ...
GROUP BY ...
LIMIT ...

SELECT ...
FROM ...
HAVING ...

Exercise 6.1: Indicate for the following SQL statements whether they are SELECT
statements, table expressions, and/or head parts of select blocks. Multiple answers
are possible.

148 SQL for MySQL Developers

1. SELECT ...
FROM ...
WHERE ...
ORDER BY ...

2. SELECT ...
FROM ...
GROUP BY ...

3. CREATE VIEW ...
SELECT ...
FROM ...

Exercise 6.2: For the following SQL statement, indicate which part is a table
expression and which part is the tail part of a select block.

SELECT ...
FROM ...
WHERE ...
ORDER BY ...

Exercise 6.3: What is the minimum number of clauses that must be present in a
SELECT statement?

Exercise 6.4: Can a SELECT statement have an ORDER BY clause but no WHERE
clause?

Exercise 6.5: Can a SELECT statement have a HAVING clause but no GROUP BY

clause?

Exercise 6.6: Decide what is incorrect in the following SELECT statements:

1. SELECT ...
WHERE ...
ORDER BY ...

2. SELECT ...
FROM ...
HAVING ...
GROUP BY ...

3. SELECT ...
ORDER BY ...
FROM ...
GROUP BY ...

149CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

6.3 PROCESSING THE CLAUSES IN A SELECT BLOCK

Each select block consists of clauses, such as the SELECT, FROM, and ORDER BY clauses.
This section explains through examples how the different clauses from a select block
are processed. In other words, we show the steps MySQL performs to come to the
desired result. Other examples clearly show what the job of each clause is.

In all these examples, the select block forms the entire table expression and the
entire SELECT statement.

Later chapters discuss each clause in detail.

Example 6.1: Find the player number for each player who has incurred at least
two penalties of more than $25; order the result by player number (smallest number
first).

SELECT PLAYERNO
FROM PENALTIES
WHERE AMOUNT > 25
GROUP BY PLAYERNO
HAVING COUNT(*) > 1
ORDER BY PLAYERNO

Figure 6.3 shows the order in which MySQL processes the different clauses.
You likely noticed immediately that this order differs from the order in which the
clauses were entered in the select block (and, therefore, the SELECT statement). Be
careful never to confuse these two.

Explanation: Processing each clause results in one (intermediate result) table that
consists of zero or more rows and one or more columns. This automatically means
that every clause, barring the first, has one table of zero or more rows and one or
more columns as its input. The first clause, the FROM clause, retrieves data from the
database and has as its input one or more tables from the database. Those tables that
still have to be processed by a subsequent clause are called intermediate results.
SQL does not show the user any of the intermediate results; it presents the state-
ment as a single large process. The only table the end user sees is the final result
table.

MySQL developers may determine themselves how their product will process the
SELECT statements internally. They can switch the order of the clauses or combine
the processing of clauses. In fact, they can do whatever they want, as long as the
final result of the query is equal to the result they would get if the statement were
processed according to the method just described.

150 SQL for MySQL Developers

FIGURE 6.3 The clauses of the SELECT statement

151CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

start

FROM:
specifies the tables

that are queried

WHERE:
selects rows that

satisfy the condition

GROUP BY:
groups rows on basis of
equal values in columns

HAVING:
selects groups that
satisfy the condition

ORDER BY:
sorts rows on basis

of columns

SELECT:
selects

columns

LIMIT:
removes rows on basis
of their order number

end result

Chapter 25, “Using Indexes,” examines how MySQL actually processes state-
ments. The method of processing described here is extremely useful if you want to
determine the end result of a SELECT statement “by hand.”

Let’s examine the clauses for the given example one by one.

Only the PENALTIES table is named in the FROM clause. For MySQL, this
means that it works with this table. The intermediate result of this clause is an exact
copy of the PENALTIES table:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
2 44 1981-05-05 75.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
5 44 1980-12-08 25.00
6 8 1980-12-08 25.00
7 44 1982-12-30 30.00
8 27 1984-11-12 75.00

The WHERE clause specifies AMOUNT > 25 as a condition. All rows in which the
value in the AMOUNT column is greater than 25 satisfy the condition. Therefore,
the rows with payment numbers 5 and 6 are discarded, while the remaining rows
form the intermediate result table from the WHERE clause:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
2 44 1981-05-05 75.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
7 44 1982-12-30 30.00
8 27 1984-11-12 75.00

The GROUP BY clause groups the rows in the intermediate result table. The data
is divided into groups on the basis of the values in the PLAYERNO column (GROUP
BY PLAYERNO). Rows are grouped if they contain equal values in the relevant col-
umn. For example, the rows with payment numbers 2 and 7 form one group because
the PLAYERNO column has the value of 44 in both rows.

This is the intermediate result (the column name PLAYERNO has been short-
ened to PNO to conserve some space):

PAYMENTNO PNO PAYMENT_DATE AMOUNT
--------- --- ------------------------ ---------------
{1} 6 {1980-12-08} {100.00}
{2, 7} 44 {1981-05-05, 1982-12-30} {75.00, 30.00}
{3, 8} 27 {1983-09-10, 1984-11-12} {100.00, 75.00}
{4} 104 {1984-12-08} {50.00}

152 SQL for MySQL Developers

Explanation: Thus, for all but the PLAYERNO column, more than one value can
exist in one row. For example, the PAYMENTNO column contains two values in the
second and third rows. This is not as strange as it might seem because the data is
grouped and each row actually forms a group of rows. A single value for each row of
the intermediate table is found only in the PLAYERNO column because this is the
column by which the result is grouped. For the sake of clarity, the groups with val-
ues have been enclosed by brackets.

In some ways, you can compare this fourth clause, this HAVING clause, with the
WHERE clause. The difference is that the WHERE clause acts on the intermediate table
from the FROM clause and the HAVING clause acts on the grouped intermediate result
table from the GROUP BY clause. The effect is the same; in the HAVING clause, rows
are also selected with the help of a condition. In this case, the condition is as
follows:

COUNT(*) > 1

This means that all (grouped) rows made up of more than one row must satisfy
the condition. Chapter 10, “SELECT Statement: The GROUP BY Clause,” looks at
this condition in detail.

The intermediate result is:

PAYMENTNO PNO PAYMENT_DATE AMOUNT
--------- --- ------------------------ ---------------
{2, 7} 44 {1981-05-05, 1982-12-30} {75.00, 30.00}
{3, 8} 27 {1983-09-10, 1984-11-12} {100.00, 75.00}

The ORDER BY clause has no impact on the contents of the intermediate result,
but it sorts the final remaining rows. In this example, the result is sorted on
PLAYERNO.

The intermediate result is:

PAYMENTNO PNO PAYMENT_DATE AMOUNT
--------- --- ------------------------ ---------------
{3, 8} 27 {1983-09-10, 1984-11-12} {100.00, 75.00}
{2, 7} 44 {1981-05-05, 1982-12-30} {75.00, 30.00}

The SELECT clause, which is the last clause in this example, specifies which
columns must be present in the final result. In other words, the SELECT clause
selects columns.

153CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

The end user sees this end result:

PLAYERNO

27
44

Example 6.2: Get the player number and the league number of each player resi-
dent in Stratford; order the result by league number.

SELECT PLAYERNO, LEAGUENO
FROM PLAYERS
WHERE TOWN = 'Stratford'
ORDER BY LEAGUENO

The intermediate result after the FROM clause is:

PLAYERNO NAME ... LEAGUENO
-------- --------- --- --------

6 Parmenter ... 8467
44 Baker ... 1124
83 Hope ... 1608
2 Everett ... 2411
27 Collins ... 2513
104 Moorman ... 7060
7 Wise ... ?
57 Brown ... 6409
39 Bishop ... ?
112 Bailey ... 1319
8 Newcastle ... 2983

100 Parmenter ... 6524
28 Collins ... ?
95 Miller ... ?

The intermediate result after the WHERE clause is:

PLAYERNO NAME ... LEAGUENO
-------- --------- --- --------

6 Parmenter ... 8467
83 Hope ... 1608
2 Everett ... 2411
7 Wise ... ?
57 Brown ... 6409
39 Bishop ... ?
100 Parmenter ... 6524

No GROUP BY clause exists; therefore, the intermediate result remains unchanged.
In addition, no HAVING clause exists, so again, the intermediate result remains
unchanged.

154 SQL for MySQL Developers

The intermediate result after the ORDER BY clause is:

PLAYERNO NAME ... LEAGUENO
-------- --------- --- --------

7 Wise ... ?
39 Bishop ... ?
83 Hope ... 1608
2 Everett ... 2411
57 Brown ... 6409
100 Parmenter ... 6524
6 Parmenter ... 8467

Note that the null values are presented first if the result is sorted. Chapter 12,
“SELECT Statement: The ORDER BY Clause,” describes this in greater detail.

The SELECT clause asks for the PLAYERNO and LEAGUENO columns. This
gives the following final result:

PLAYERNO LEAGUENO
-------- --------

7 ?
39 ?
83 1608
2 2411
57 6409
100 6524
6 8467

The smallest SELECT statement that can be specified consists of one select block
with just a SELECT clause.

Example 6.3: How much is 89 × 73?

SELECT 89 * 73

The result is:

89 * 73

6497

The processing of this statement is simple. If no FROM clause is specified, the
statement returns a result consisting of one row. This row contains just as many val-
ues as there are expressions. In this example, that is also just one.

155CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

Exercise 6.7: For the following SELECT statement, determine the intermediate
result table after each clause has been processed; give the final result as well.

SELECT PLAYERNO
FROM PENALTIES
WHERE PAYMENT_DATE > '1980-12-08'
GROUP BY PLAYERNO
HAVING COUNT(*) > 1
ORDER BY PLAYERNO

6.4 POSSIBLE FORMS OF A TABLE EXPRESSION

We already mentioned that the value of each table expression is a set of rows. We
also stated that two forms exist: singular and compound. And we indicated that a
singular table expression can consist of a select block. This section introduces new
forms of the table expression.

D E F I N I T I O N
<table expression> ::=

{ <select block head> |
(<table expression>) |
<compound table expression> }

[<select block tail>]

<compound table expression> ::=
<table expression> <set operator> <table expression>

<set operator> ::= UNION

This definition shows that a table expression can have three forms. The first
form is the familiar form, which uses the head part of a select block. In the second
form, the table expression is enclosed in brackets. The third form is the compound
table expression, which we have mentioned but not yet clarified. It enables you to
specify the tail part of a select block after each form.

As usual, in this book, we illustrate the different forms with examples. We skip
the first form because we have already discussed it in great detail. The second form
uses brackets.

Example 6.4: Get the contents of the entire TEAMS table.

(SELECT *
FROM TEAMS)

156 SQL for MySQL Developers

Explanation: You can specify this statement without brackets; the result is the
same. However, you also can formulate the statement as follows:

(((((SELECT *
FROM TEAMS)))))

Although this is not very useful, it is allowed. Brackets are useful, for example,
when multiple select blocks occur within one table expression. We return to this
later.

Just as there is a compound version of the scalar expression, a compound ver-
sion of the table expression exists. A table expression is built from multiple select
blocks that are combined with a so-called set operator. MySQL supports several set
operators. For now, we discuss only one: the UNION operator. Chapter 14, “Combin-
ing Table Expressions,” explains the others in detail.

Example 6.5: Get the numbers of the players who are captains and the numbers
of the players who incurred a penalty.

SELECT PLAYERNO
FROM TEAMS
UNION
SELECT PLAYERNO
FROM PENALTIES

The result is:

PLAYERNO

6
8
27
44
104

Explanation: This statement consists of two select blocks. The first selects all the
captains, and the second selects all the ticketed players. The intermediate result of
the first select block is:

PLAYERNO

6
8
27

157CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

The intermediate result of the second select block is:

PLAYERNO

6
8
27
27
44
44
44
104

By linking the select blocks with a UNION, MySQL places one intermediate
result underneath the other:

PLAYERNO

6
8
27
6
8
27
27
44
44
44
104

In the final step, all the duplicate rows are removed automatically from the
result.

In front of and after a UNION operator, only the head parts of select blocks
appear. This means that a select block tail is allowed only after the last select block.
Therefore, the following statement is not allowed:

SELECT PLAYERNO
FROM TEAMS
ORDER BY PLAYERNO
UNION
SELECT PLAYERNO
FROM PENALTIES

The tail part of a select block may be used only at the end of the entire table
expression, as shown here:

158 SQL for MySQL Developers

SELECT PLAYERNO
FROM TEAMS
UNION
SELECT PLAYERNO
FROM PENALTIES
ORDER BY PLAYERNO

If you want to sort the intermediate result of a select block before it is linked
with a UNION operator, you must use brackets. Therefore, the following statement is
allowed:

(SELECT PLAYERNO
FROM TEAMS
ORDER BY PLAYERNO)
UNION
(SELECT PLAYERNO
FROM PENALTIES)
ORDER BY PLAYERNO

If a set operator is used, the degrees of the select blocks must be equal and the
data types of the columns placed below one another should be comparable.

Exercise 6.8: For each committee member, get the player number and the begin
and end date. However, the dates should be placed not next to each other, but
underneath each other.

Exercise 6.9: Following the previous exercise, now every row must express
whether it is a begin or end date.

6.5 WHAT IS A SELECT STATEMENT?
To enable MySQL to process a table expression, the expression must be wrapped in
an SQL statement. A table expression can be used in several statements, including
the CREATE VIEW and CREATE TABLE statements. However, the SELECT statement is
used most often. The first difference between a table expression and a SELECT state-
ment is that query tools such as MySQL Query Browser, Navicat, and WinSQL can
process the latter. A table expression, on the other hand, always needs a wrapping
statement.

The second difference relates to the clauses. A SELECT statement can contain an
additional clause that cannot be specified within a table expression. (See the

159CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

upcoming definition of the SELECT statement.) Chapter 18, “Loading and Unloading
Data,” describes this additional clause. Another difference is that FOR UPDATE and
LOCK IN SHARE MODE can be specified in a SELECT statement but not in a table
expression.

D E F I N I T I O N
<select statement> ::=

<table expression>
[<into file clause>]
[FOR UPDATE | LOCK IN SHARE MODE]

6.6 WHAT IS A SUBQUERY?
Another table expression can be called from within a table expression. The table
expression is called a subquery. Alternative names for subquery are subselect and
inner select. The result of the subquery is passed to the calling table expression,
which can continue processing.

Grammatically, the difference between a table expression and a subquery is
minimal; see the following definition. The difference is mainly in the use.

D E F I N I T I O N
<subquery> ::= (<table expression>)

Example 6.6: Get the numbers of the players with a number less than 10 and
who are male.

SELECT PLAYERNO
FROM (SELECT PLAYERNO, SEX

FROM PLAYERS
WHERE PLAYERNO < 10) AS PLAYERS10

WHERE SEX = 'M'

The result is:

PLAYERNO

2
6
7

160 SQL for MySQL Developers

Explanation: This statement is special because it contains a table expression in
the FROM clause. As is customary, the FROM clause is processed first and with that the
subquery. It is as if the subquery is “called” during the processing of the FROM
clause. The table expression in the FROM clause is simple and returns the following
intermediate result:

PLAYERNO SEX
-------- ---

2 M
6 M
7 M
8 F

With the specification AS PLAYERS10, this intermediate result receives the name
PLAYERS10. This name is called a pseudonym; Section 7.5 discusses the pseudonym
extensively. These types of pseudonyms are required when using subqueries within
the FROM clause.

The intermediate result is passed on to the WHERE clause where the condition
SEX = 'M' is used to select the men. Then the SELECT clause is used to select only
the PLAYERNO column.

You also can include subqueries within other subqueries. In other words, you
can nest subqueries. The following construct is grammatically allowed:

SELECT *
FROM (SELECT *

FROM (SELECT *
FROM (SELECT *

FROM PLAYERS) AS S1) AS S2) AS S3

Example 6.7: Get the numbers of the players who have a number greater than 10
and less than 100, for whom the year in which they joined the club is greater than
1980 and who are male.

SELECT PLAYERNO
FROM (SELECT PLAYERNO, SEX

FROM (SELECT PLAYERNO, SEX, JOINED
FROM (SELECT PLAYERNO, SEX, JOINED

FROM PLAYERS
WHERE PLAYERNO > 10) AS GREATER10

WHERE PLAYERNO < 100) AS LESS100
WHERE JOINED > 1980) AS JOINED1980

WHERE SEX = 'M'

161CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

The result is:

PLAYERNO

57
83

Explanation: This statement has four levels. The inner subquery is used to
search for all the players whose player number is greater than 10:

PLAYERNO SEX JOINED
------- ---- ------

27 F 1983
28 F 1983
39 M 1980
44 M 1980
57 M 1985
83 M 1982
95 M 1972
100 M 1979
104 F 1984
112 F 1984

The next subquery is used to retrieve from the previous intermediate result all
the rows in which the player number is less than 100:

PLAYERNO SEX JOINED
-------- --- ------

27 F 1983
28 F 1983
39 M 1980
44 M 1980
57 M 1985
83 M 1982
95 M 1972

The third subquery is used to search the intermediate result for all the rows of
which the year of joining the club is greater than 1980. Also the JOINED column is
not included in the intermediate result because the table expression on top does not
need it. The intermediate result is:

PLAYERNO SEX
-------- ---

27 F
28 F
57 M
83 M

Finally, this intermediate result is searched for the rows in which the SEX col-
umn is equal to M.

162 SQL for MySQL Developers

MySQL distinguishes four types of subqueries. The difference among these four
is determined by the result of the subquery. The previous subqueries are all table
subqueries because the result of each subquery is a set of rows. In addition, we have
the row, the column, and the scalar subquery. The result of a row subquery is one
row with one or more values. The result of a column subquery is a set of rows in
which each row consists of just one value. The scalar subquery has only one row,
consisting of one value as result. This means that each scalar subquery is, by defi-
nition, a row subquery and a column subquery as well, but not vice versa; not every
row or column subquery is a scalar subquery. It also holds that each row and each
column subquery is a table subquery, but not vice versa.

Column subqueries are not discussed until Chapter 8, “SELECT Statement:
The WHERE Clause.” For now, we just give a few examples of scalar and row
subqueries.

Example 6.8: For each player whose number is less than 60, get the number of
years between the year in which that player joined the club and that of player 100.

SELECT PLAYERNO, JOINED -
(SELECT JOINED
FROM PLAYERS
WHERE PLAYERNO = 100)

FROM PLAYERS
WHERE PLAYERNO < 60

The result is:

PLAYERNO JOINED - (...
-------- --------------

2 -4
6 -2
7 2
8 1
27 4
28 4
39 1
44 1
57 6

Explanation: In this statement, the subquery has been placed inside the SELECT
clause. The result of this scalar subquery is 1979. After this result has been deter-
mined, the following simple SELECT statement is executed:

SELECT PLAYERNO, JOINED - 1979
FROM PLAYERS
WHERE PLAYERNO < 60

163CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

The scalar subquery has to return zero or one row. If the subquery returns more
than one row, MySQL responds with an error message. Therefore, the next state-
ment will not work because the subquery returns too many rows:

SELECT TEAMNO
FROM TEAMS
WHERE PLAYERNO =

(SELECT PLAYERNO
FROM PLAYERS)

Almost everywhere a scalar expression can be specified, a scalar subquery can
be used.

Example 6.9: Get the numbers of the players who were born in the same year as
player 27.

SELECT PLAYERNO
FROM PLAYERS
WHERE YEAR(BIRTH_DATE) = (SELECT YEAR(BIRTH_DATE)

FROM PLAYERS
WHERE PLAYERNO = 27)

The result is:

PLAYERNO

6
27

Explanation: The subquery looks for the year of birth of player 27. The result is
one row consisting of one value. In other words, this really is a scalar subquery.
That one value is 1964. Next, the following SELECT statement is executed:

SELECT PLAYERNO
FROM PLAYERS
WHERE YEAR(BIRTH_DATE) = 1964

Player 27 appears in the end result as well, of course. If that is not the intention, the
WHERE clause can be expanded with the condition AND PLAYERNO <> 27.

Example 6.10: Get the date of birth of players 27, 44, and 100 as one row (next
to each other).

164 SQL for MySQL Developers

SELECT (SELECT BIRTH_DATE
FROM PLAYERS
WHERE PLAYERNO = 27),
(SELECT BIRTH_DATE
FROM PLAYERS
WHERE PLAYERNO = 44),
(SELECT BIRTH_DATE
FROM PLAYERS
WHERE PLAYERNO = 100)

The result is:

SELECT(... SELECT(... SELECT(...
---------- ---------- ----------
1964-12-28 1963-01-09 1963-02-28

Explanation: Using the three scalar subqueries on the position of scalar expres-
sions within a SELECT clause produces the desired result.

Example 6.11: Get the numbers of the players who have the same sex as and live
in the same town as player 100.

SELECT PLAYERNO
FROM PLAYERS
WHERE (SEX, TOWN) = (SELECT SEX, TOWN

FROM PLAYERS
WHERE PLAYERNO = 100)

The result is:

PLAYERNO

2
6
7
39
57
83
100

Explanation: The result of the subquery is one row with two values: ('M',
'Stratford'). This row value is compared to the row expression: (SEX, TOWN). See
Sections 5.3 and 5.15 for descriptions of row expressions.

Exercise 6.10: Get the numbers of the committee members who were secretary
of the tennis club between January 1, 1990, and December 31, 1994; use sub-
queries here.

165CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

Exercise 6.11: Get the numbers of the teams of which the player with the name
Parmenter and initial R is captain; in this example, we assume that no two players
have the same name and initials.

Exercise 6.12: Get the name of the player who is captain of the team for which
match 6 was played.

Exercise 6.13: Get the numbers of the penalties that are higher than the penal-
ties with payment number 4.

Exercise 6.14: Get the numbers of the players who were born on the same day
(for example, Monday or Tuesday) as player 2.

Exercise 6.15: Get the numbers of the committee members who took up a posi-
tion and who resigned that same position on the same day that player 8 took on and
resigned his position as treasurer. Player 8 cannot appear in the end result.

Exercise 6.16: Get the divisions of teams 1 and 2, and place them next to each
other.

Exercise 6.17 What is the sum of the penalties with payment numbers 1, 2,
and 3?

6.7 ANSWERS

6.1 1. This statement is a SELECT statement and also a table expression. How-
ever, it is not a head part of a select block because an ORDER BY clause
belongs to the tail part of a select block.

2. This statement is a SELECT statement, a table expression, and the head
part of a select block.

3. This statement is not a SELECT statement, but a CREATE VIEW statement.
From the word SELECT, it actually is a table expression and also the
head part of a select block.

6.2 The statement is a table expression; the ORDER BY clause is the tail part.

6.3 A SELECT statement consists of at least one clause, and that is the SELECT
clause.

6.4 Yes.

166 SQL for MySQL Developers

6.5 Yes, a SELECT statement without GROUP BY clause may have a HAVING
clause.

6.6 1. No FROM clause exists.

2. The GROUP BY clause must be specified in front of the HAVING clause.

3. The ORDER BY clause should be the last clause.

6.7 The FROM clause:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ----------

1 6 1980-12-08 100.00
2 44 1981-05-05 75.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
5 44 1980-12-08 25.00
6 8 1980-12-08 25.00
7 44 1982-12-30 30.00
8 27 1984-11-12 75.00

The WHERE clause:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ----------

2 44 1981-05-05 75.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
7 44 1982-12-30 30.00
8 27 1984-11-12 75.00

The GROUP BY clause:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------------------ ---------------
{2, 7} 44 {1981-05-05, 1982-12-30} {75.00, 30.00}
{3, 8} 27 {1983-09-10, 1984-11-12} {100.00, 75.00}
{4} 104 {1984-12-08} {50.00}

The HAVING clause:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------------------ ---------------
{2, 7} 44 {1981-05-05, 1982-12-30} {75.00, 30.00}
{3, 8} 27 {1983-09-10, 1984-11-12} {100.00, 75.00}

The ORDER BY clause:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------------------ ---------------
{3, 8} 27 {1983-09-10, 1984-11-12} {100.00, 75.00}
{2, 7} 44 {1981-05-05, 1982-12-30} {75.00, 30.00}

167CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

The SELECT clause:

PLAYERNO

27
44

6.8 SELECT PLAYERNO, BEGIN_DATE
FROM COMMITTEE_MEMBERS
UNION
SELECT PLAYERNO, END_DATE
FROM COMMITTEE_MEMBERS
RDER BY PLAYERNO

6.9 SELECT PLAYERNO, BEGIN_DATE, 'Begin date'
FROM COMMITTEE_MEMBERS
UNION
SELECT PLAYERNO, END_DATE, 'End date'
FROM COMMITTEE_MEMBERS
ORDER BY PLAYERNO

6.10 SELECT PLAYERNO
FROM (SELECT PLAYERNO

FROM (SELECT PLAYERNO, END_DATE
FROM (SELECT PLAYERNO, BEGIN_DATE,

END_DATE
FROM COMMITTEE_MEMBERS
WHERE POSITION = 'Secretary')
AS SECRETARIES

WHERE BEGIN_DATE >= '1990-01-01')
AS AFTER1989

WHERE END_DATE <= '1994-12-31') AS BEFORE1995

6.11 SELECT TEAMNO
FROM TEAMS
WHERE PLAYERNO =

(SELECT PLAYERNO
FROM PLAYERS
WHERE NAME = 'Parmenter'
AND INITIALS = 'R')

6.12 SELECT TEAMNO
FROM TEAMS
WHERE PLAYERNO =

(SELECT PLAYERNO
FROM PLAYERS
WHERE NAME =

(SELECT NAME
FROM PLAYERS
WHERE PLAYERNO = 6)

AND PLAYERNO <> 6)

168 SQL for MySQL Developers

or
SELECT NAME
FROM PLAYERS
WHERE PLAYERNO =

(SELECT PLAYERNO
FROM TEAMS
WHERE TEAMNO =

(SELECT TEAMNO
FROM MATCHES
WHERE MATCHNO = 6))

6.13 SELECT PAYMENTNO
FROM PENALTIES
WHERE AMOUNT >

(SELECT AMOUNT
FROM PENALTIES
WHERE PAYMENTNO = 4)

6.14 SELECT PLAYERNO
FROM PLAYERS
WHERE DAYNAME(BIRTH_DATE) =

(SELECT DAYNAME(BIRTH_DATE)
FROM PLAYERS
WHERE PLAYERNO = 2)

6.15 SELECT PLAYERNO
FROM COMMITTEE_MEMBERS
WHERE (BEGIN_DATE, END_DATE) =

(SELECT BEGIN_DATE, END_DATE
FROM COMMITTEE_MEMBERS
WHERE PLAYERNO = 8
AND POSITION = ‘Treasurer’)

AND PLAYERNO <> 8

6.16 SELECT (SELECT DIVISION
FROM TEAMS
WHERE TEAMNO = 1),
(SELECT DIVISION
FROM TEAMS
WHERE TEAMNO = 2)

6.17 SELECT (SELECT AMOUNT
FROM PENALTIES
WHERE PAYMENTNO = 1) +
(SELECT AMOUNT
FROM PENALTIES
WHERE PAYMENTNO = 2) +
(SELECT AMOUNT
FROM PENALTIES
WHERE PAYMENTNO = 3)

169CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries

This page intentionally left blank This page intentionally left blank

171

SELECT Statement:
The FROM Clause

C H A P T E R 7

7.1 INTRODUCTION

If a table expression contains a FROM clause, the processing starts with this clause.
In fact, in this case, it is the starting point of processing a table expression, which is
why we discuss this clause in detail first.

This chapter describes the basic features of the FROM clause. In previous chap-
ters, you saw many examples of this clause. The FROM clause is an important clause
because each table from which we “use” columns in the other clauses should be
specified here. By “using,” we mean, for example, that a column appears in a con-
dition or in the SELECT clause. Simply, in the FROM clause, we specify the tables from
which the result of a table expression is retrieved.

The FROM clause has many different forms. This chapter starts with the simplest
form.

7.2 TABLE SPECIFICATIONS IN THE FROM CLAUSE

The FROM clause is used for specifying which tables are to be queried. This is done
with table references. A table reference consists of a table specification possibly fol-
lowed by a pseudonym. This section discusses table specifications; later sections
cover pseudonyms.

D E F I N I T I O N
from clause> ::=

FROM <table reference> [, <table reference>]...

<table reference> ::=
<table specification> [[AS] <pseudonym>]

<table specification> ::= [<database name> .] <table name>

<pseudonym> ::= <name>

A table specification normally consists of the name of a table, but you can also
specify the name of a view. In both cases, we use the term table specification.

Each table is stored in a database. You can refer to a table in two ways. First,
you can make a database the current one by using a USE statement. In that case, if a
table name is specified in the FROM clause, that table should belong to the current
database. Second, you can explicitly extend the table specification with the name of
the database to which the table belongs. This feature also enables us to access
tables that are part of the current database.

Example 7.1: Create a new database called EXTRA with a new table called
CITIES.

CREATE DATABASE EXTRA

USE EXTRA

CREATE TABLE CITIES
(CITYNO INTEGER NOT NULL PRIMARY KEY,
CITYNAME CHAR(20) NOT NULL)

INSERT INTO CITIES VALUES
(1, 'Stratford')

INSERT INTO CITIES VALUES
(2, 'Inglewood')

Explanation: Do not forget to change the current database into EXTRA with the
USE statement after the CREATE DATABASE statement.

Example 7.2: Show the entire contents of the CITIES table; assume that TENNIS
is the current database.

SELECT *
FROM EXTRA.CITIES

172 SQL for MySQL Developers

Explanation: The compound name EXTRA.CITIES is the table specification. (Note
the full stop between the name of the database and the table name; this full stop is
mandatory.) We say that the table name CITIES is qualified with the database name
EXTRA.

In fact, a table name can always be qualified, even when a table from the cur-
rent database is queried.

Example 7.3: Show the contents of the TEAMS table.

SELECT *
FROM TENNIS.TEAMS

7.3 AGAIN, THE COLUMN SPECIFICATION

In the previous section, you saw that a table can be qualified with the name of the
database. When specifying columns (in the SELECT clause, for example), you can
also qualify them by specifying the table to which the columns belong. In fact, each
column specification consists of three parts; see the definition.

D E F I N I T I O N
<column specification> ::=

[<table specification> .] <column name>

<table specification> ::=
[<database name> .] <table name>

The last part is, of course, the column name itself, such as PLAYERNO or
NAME. This is the only mandatory part. The second part is the table name, such as
PLAYERS or TEAMS. The first one is the name of the database. You do not have to
specify all these parts, but it is not wrong to do so.

Example 7.4: Find the number of each team. Here are three possible solutions;
assume that the TEAMS table is stored in the TENNIS database.

SELECT TEAMNO
FROM TEAMS

and

SELECT TEAMS.TEAMNO
FROM TEAMS

173CHAPTER 7 SELECT Statement: The FROM Clause

and

SELECT TENNIS.TEAMS.TEAMNO
FROM TENNIS.TEAMS

7.4 MULTIPLE TABLE SPECIFICATIONS IN THE
FROM CLAUSE

Until now, we have used only one table specification in the FROM clause. If you want
to present data from different tables in our result table, you must specify multiple
tables in the FROM clause.

Example 7.5: Get the team number and the name of the captain of each team.

The TEAMS table holds information about team numbers and the player num-
bers of each team. However, the names of the captains are stored not in the TEAMS
table, but in the PLAYERS table. In other words, we need both tables. Both must be
mentioned in the FROM clause.

SELECT TEAMNO, NAME
FROM TEAMS, PLAYERS
WHERE TEAMS.PLAYERNO = PLAYERS.PLAYERNO

The intermediate result of the FROM clause is:

TEAMNO PLAYERNO DIVISION PLAYERNO NAME ...
------ -------- -------- -------- --------- ---

1 6 first 6 Parmenter ...
1 6 first 44 Baker ...
1 6 first 83 Hope ...
1 6 first 2 Everett ...
1 6 first 27 Collins ...
1 6 first 104 Moorman ...
1 6 first 7 Wise ...
1 6 first 57 Brown ...
1 6 first 39 Bishop ...
1 6 first 112 Bailey ...
1 6 first 8 Newcastle ...
1 6 first 100 Parmenter ...
1 6 first 28 Collins ...
1 6 first 95 Miller ...
2 27 second 6 Parmenter ...
2 27 second 44 Baker ...
2 27 second 83 Hope ...
2 27 second 2 Everett ...
2 27 second 27 Collins ...

174 SQL for MySQL Developers

2 27 second 104 Moorman ...
2 27 second 7 Wise ...
2 27 second 57 Brown ...
2 27 second 39 Bishop ...
2 27 second 112 Bailey ...
2 27 second 8 Newcastle ...
2 27 second 100 Parmenter ...
2 27 second 28 Collins ...
2 27 second 95 Miller ...

Explanation: Each row of the PLAYERS table is aligned “beside” each row of the
TEAMS table. This results in a table in which the total number of columns equals
the number of columns in one table plus the number of columns in the other table,
and in which the total number of rows equals the number of rows in one table mul-
tiplied by the number of rows in the other table. We call this result the Cartesian
product of the tables concerned.

In the WHERE clause, each row where the value in the TEAMS.PLAYERNO column
equals the one in the PLAYERS.PLAYERNO column is selected:

TEAMNO PLAYERNO DIVISION PLAYERNO NAME ...
------ -------- -------- -------- --------- ---

1 6 first 6 Parmenter ...
2 27 second 27 Collins ...

The end result is:

TEAMNO NAME
------ ---------

1 Parmenter
2 Collins

In this example, it is essential to specify the table name in front of the PLAY-
ERNO column. Without qualifying the column name, it would be impossible for
MySQL to determine which column was intended.

Conclusion: If you use a column name that appears in more than one table speci-
fied in the FROM clause, you must include a table specification with the column
specification.

Example 7.6: For each penalty, find the payment number, the amount of the
penalty, the player number, the name, and the initials of the player who incurred
the penalty.

175CHAPTER 7 SELECT Statement: The FROM Clause

The PENALTIES table contains the payment numbers, the amounts, and the
player numbers; the PLAYERS table contains the names and initials. Both tables
must be included in the FROM clause:

SELECT PAYMENTNO, PENALTIES.PLAYERNO, AMOUNT,
NAME, INITIALS

FROM PENALTIES, PLAYERS
WHERE PENALTIES.PLAYERNO = PLAYERS.PLAYERNO

The intermediate result from the FROM clause is (not all the rows have been
included):

PAYMENTNO PLAYERNO AMOUNT ... PLAYERNO NAME INITIALS ...
--------- -------- ------ --- -------- --------- -------- ---

1 6 100.00 ... 6 Parmenter R ...
1 6 100.00 ... 44 Baker E ...
1 6 100.00 ... 83 Hope PK ...
1 6 100.00 ... 2 Everett R ...
: : : : : :
2 44 75.00 ... 6 Parmenter R ...
2 44 75.00 ... 44 Baker E ...
2 44 75.00 ... 83 Hope PK ...
2 44 75.00 ... 2 Everett R ...
: : : : : :
3 27 100.00 ... 6 Parmenter R ...
3 27 100.00 ... 44 Baker E ...
3 27 100.00 ... 83 Hope PK ...
3 27 100.00 ... 2 Everett R ...
: : : : : :
: : : : : :

The intermediate result after processing the FROM clause is:

PAYMENTNO PLAYERNO AMOUNT ... PLAYERNO NAME INITIALS ...
--------- -------- ------ --- -------- --------- -------- ---

1 6 100.00 ... 6 Parmenter R ...
2 44 75.00 ... 44 Baker E ...
3 27 100.00 ... 27 Collins DD ...
4 104 50.00 ... 104 Moorman D ...
5 44 25.00 ... 44 Baker E ...
6 8 25.00 ... 8 Newcastle B ...
7 44 30.00 ... 44 Baker E ...
8 27 75.00 ... 27 Collins DD ...

176 SQL for MySQL Developers

The end result is:

PAYMENTNO PLAYERNO AMOUNT NAME INITIALS
--------- -------- ------ --------- --------

1 6 100.00 Parmenter R
2 44 75.00 Baker E
3 27 100.00 Collins DD
4 104 50.00 Moorman D
5 44 25.00 Baker E
6 8 25.00 Newcastle B
7 44 30.00 Baker E
8 27 75.00 Collins DD

To avoid ambiguity, the table name must be specified in front of the
PLAYERNO column in the SELECT clause.

The order of the table specifications in a FROM clause does not affect the result
of this clause and the end result of the table expression. The SELECT clause is the
only clause that determines the order of the columns in the result. The ORDER BY
clause determines the order in which rows are presented. Thus, the results of the
next two statements are equal:

SELECT PLAYERS.PLAYERNO
FROM PLAYERS, TEAMS
WHERE PLAYERS.PLAYERNO = TEAMS.PLAYERNO

and

SELECT PLAYERS.PLAYERNO
FROM TEAMS, PLAYERS
WHERE PLAYERS.PLAYERNO = TEAMS.PLAYERNO

Exercise 7.1: Indicate why these SELECT statements are not correctly formulated:

1. SELECT PLAYERNO
FROM PLAYERS, TEAMS

2. SELECT PLAYERS.PLAYERNO
FROM TEAMS

Exercise 7.2: For each clause of the following statement, determine the interme-
diate result and the result. Also give a description of the question that underlies the
statement.

SELECT PLAYERS.NAME
FROM TEAMS, PLAYERS
WHERE PLAYERS.PLAYERNO = TEAMS.PLAYERNO

177CHAPTER 7 SELECT Statement: The FROM Clause

Exercise 7.3: For each penalty, find the payment number, the amount, and the
number and name of the player who incurred it.

Exercise 7.4: For each penalty incurred by a team captain, find the payment
number and the captain’s name.

7.5 PSEUDONYMS FOR TABLE NAMES

When multiple table specifications appear in the FROM clause, it is sometimes eas-
ier to use so-called pseudonyms. Another name for a pseudonym is an alias. Pseu-
donyms are temporary alternative names for table names. In the previous examples,
to qualify a column, you specified the full table name. Instead of using table names,
you can use pseudonyms.

Example 7.7: For each penalty, get the payment number, the amount of the
penalty, the player number, and the name and initials of the player who incurred the
penalty. Use pseudonyms.

SELECT PAYMENTNO, PEN.PLAYERNO, AMOUNT,
NAME, INITIALS

FROM PENALTIES AS PEN, PLAYERS AS P
WHERE PEN.PLAYERNO = P.PLAYERNO

Explanation: In the FROM clause, the pseudonyms are specified or declared after
the table names. In other clauses, you must use these pseudonyms instead of the
real table names.

Because pseudonyms have been used, it is not possible to mention the original
table names in the other clauses anymore. The presence of a pseudonym implies
that a table name cannot be used in this SQL statement.

The fact that the pseudonym PEN has been used earlier in the statement (in the
SELECT clause) than its declaration (in the FROM clause) does not cause any prob-
lems. As you have seen, the FROM clause might not be the first clause specified, but
it is the first processed.

The word AS in the definition is optional. So the previous statement has the
same result as the following:

178 SQL for MySQL Developers

SELECT PAYMENTNO, PEN.PLAYERNO, AMOUNT,
NAME, INITIALS

FROM PENALTIES PEN, PLAYERS P
WHERE PEN.PLAYERNO = P.PLAYERNO

In both examples, the use of pseudonyms is not vital. However, later this book
discusses how to formulate SELECT statements when table names would have to be
repeated many times. Adding pseudonyms makes it easier to formulate and read
those statements.

A pseudonym must satisfy the naming rules for table names. More about this
subject arises in Section 20.8. Additionally, you are not allowed to define two iden-
tical pseudonyms in a FROM clause.

Exercise 7.5: For each team, get the number and the last name of the captain.

Exercise 7.6: For each match, get the match number, the last name of the player,
and the division of the team.

7.6 VARIOUS EXAMPLES OF JOINS

This section looks at some examples to illustrate various aspects of the FROM clause.
It also introduces several new terms.

Example 7.8: Get the numbers of the captains who have incurred at least one
penalty.

SELECT T.PLAYERNO
FROM TEAMS AS T, PENALTIES AS PEN
WHERE T.PLAYERNO = PEN.PLAYERNO

Explanation: The TEAMS table includes all the players who are captains. By
using the player numbers, we can search the PENALTIES table for those captains
who have incurred at least one penalty. For that reason, both tables are included in
the FROM clause. The intermediate result from the FROM clause becomes:

179CHAPTER 7 SELECT Statement: The FROM Clause

TEAMNO PLAYERNO DIVISION PAYMENTNO PLAYERNO ...
------ -------- -------- --------- -------- ---

1 6 first 1 6 ...
1 6 first 2 44 ...
1 6 first 3 27 ...
1 6 first 4 104 ...
1 6 first 5 44 ...
1 6 first 6 8 ...
1 6 first 7 44 ...
1 6 first 8 27 ...
2 27 second 1 6 ...
2 27 second 2 44 ...
2 27 second 3 27 ...
2 27 second 4 104 ...
2 27 second 5 44 ...
2 27 second 6 8 ...
2 27 second 7 44 ...
2 27 second 8 27 ...

The intermediate result from the WHERE clause is:

TEAMNO PLAYERNO DIVISION PAYMENTNO PLAYERNO ...
------ -------- -------- --------- -------- ---

1 6 first 1 6 ...
2 27 second 3 27 ...
2 27 second 8 27 ...

The end result is thus:

PLAYERNO

6
27
27

When data of different tables is merged into one table, it is called a join of
tables. The columns on which the join is executed are called the join columns. In
the previous SELECT statement, these are the columns TEAMS.PLAYERNO and
PENALTIES.PLAYERNO. The condition in the WHERE clause, with which we com-
pare the PLAYERNO column of the TEAMS table with the one of the PENALTIES
table, is called the join condition.

Note that the result of the earlier statement contains duplicate rows. MySQL
does not automatically remove duplicate rows from the end result. In our example,
player 27 appears twice because she incurred two penalties. When you do not want
duplicate rows in your result, you should specify the word DISTINCT directly behind
the word SELECT (Chapter 9, “SELECT Statement: SELECT Clause and Aggregation
Functions,” discusses DISTINCT extensively).

180 SQL for MySQL Developers

Example 7.9: Get the numbers of the captains who have incurred at least one
penalty. Remove the duplicate numbers.

SELECT DISTINCT T.PLAYERNO
FROM TEAMS AS T, PENALTIES AS PEN
WHERE T.PLAYERNO = PEN.PLAYERNO

The end result then becomes:

PLAYERNO

6
27

Example 7.10: Get the names and initials of the players who have played at least
one match. Note: A competition player does not have to appear in the MATCHES
table (perhaps he or she has been injured for the whole season).

SELECT DISTINCT P.NAME, P.INITIALS
FROM PLAYERS AS P, MATCHES AS M
WHERE P.PLAYERNO = M.PLAYERNO

The result is:

NAME INITIALS
--------- --------
Parmenter R
Baker E
Hope PK
Everett R
Collins DD
Moorman D
Brown M
Bailey IP
Newcastle B

Work out for yourself how this SELECT statement could give rise to duplicate val-
ues if DISTINCT is not used.

A join is not restricted to two tables. A FROM clause can contain many tables.

Example 7.11: For each match, get the match number, the player number, the
team number, the name of the player, and the division in which the team plays.

SELECT M.MATCHNO, M.PLAYERNO, M.TEAMNO, P.NAME, T.DIVISION
FROM MATCHES AS M, PLAYERS AS P, TEAMS AS T
WHERE M.PLAYERNO = P.PLAYERNO
AND M.TEAMNO = T.TEAMNO

181CHAPTER 7 SELECT Statement: The FROM Clause

The result is:

MATCHNO PLAYERNO TEAMNO NAME DIVISION
------- -------- ------ --------- --------

1 6 1 Parmenter first
2 6 1 Parmenter first
3 6 1 Parmenter first
4 44 1 Baker first
5 83 1 Hope first
6 2 1 Everett first
7 57 1 Brown first
8 8 1 Newcastle first
9 27 2 Collins second
10 104 2 Moorman second
11 112 2 Bailey second
12 112 2 Bailey second
13 8 2 Newcastle second

Example 7.12: Get the payment number, the player number, and the date of
each penalty incurred in the year in which the player concerned joined the club.

SELECT PEN.PAYMENTNO, PEN.PLAYERNO, PEN.PAYMENT_DATE
FROM PENALTIES AS PEN, PLAYERS AS P
WHERE PEN.PLAYERNO = P.PLAYERNO
AND YEAR(PEN.PAYMENT_DATE) = P.JOINED

The result is:

PAYMENTNO PLAYERNO PEN.PAYMENT_DATE
--------- -------- ----------------

3 27 1983-09-10
4 104 1984-12-08
5 44 1980-12-08
6 8 1980-12-08

Explanation: Most join conditions compare key columns with each other. How-
ever, that is not a requirement. In this example, the date on which the penalty was
paid is compared to the year in which the player joined the club.

Exercise 7.7: Get the numbers and names of players who have been chairman.

Exercise 7.8: Get the number of each player who incurred a penalty on the same
day that he became a committee member.

182 SQL for MySQL Developers

7.7 MANDATORY USE OF PSEUDONYMS

In some SELECT statements, you have no choice about whether a pseudonym is to be
used. This situation arises when the same table is mentioned more than once in the
FROM clause. Consider this example.

Example 7.13: Get the numbers of the players who are older than R. Parmenter;
in this example, assume that the combination of name and initials is unique.

SELECT P.PLAYERNO
FROM PLAYERS AS P, PLAYERS AS PAR
WHERE PAR.NAME = 'Parmenter'
AND PAR.INITIALS = 'R'
AND P.BIRTH_DATE < PAR.BIRTH_DATE

The intermediate result from the WHERE clause is a multiplication of the
PLAYERS table by itself (for simplicity, we have shown only the rows from the
PAR.PLAYERS table in which player 6, named R. Parmenter, is found).

PLAYERNO ... BIRTH_DATE ... PLAYERNO ... BIRTH_DATE ...
-------- --- ---------- --- -------- --- ---------- ---

6 ... 1964-06-25 ... 6 ... 1964-06-25 ...
44 ... 1963-01-09 ... 6 ... 1964-06-25 ...
83 ... 1956-11-11 ... 6 ... 1964-06-25 ...
2 ... 1948-09-01 ... 6 ... 1964-06-25 ...
27 ... 1964-12-28 ... 6 ... 1964-06-25 ...
104 ... 1970-05-10 ... 6 ... 1964-06-25 ...
7 ... 1963-05-11 ... 6 ... 1964-06-25 ...
57 ... 1971-08-17 ... 6 ... 1964-06-25 ...
39 ... 1956-10-29 ... 6 ... 1964-06-25 ...
112 ... 1963-10-01 ... 6 ... 1964-06-25 ...
8 ... 1962-07-08 ... 6 ... 1964-06-25 ...

100 ... 1963-02-28 ... 6 ... 1964-06-25 ...
28 ... 1963-06-22 ... 6 ... 1964-06-25 ...
95 ... 1963-05-14 ... 6 ... 1964-06-25 ...
: : : : : : : :
: : : : : : : :

The intermediate result of the WHERE clause is:

PLAYERNO ... BIRTH_DATE ... PLAYERNO ... BIRTH_DATE ...
-------- --- ---------- --- -------- --- ---------- ---

44 ... 1963-01-09 ... 6 ... 1964-06-25 ...
83 ... 1956-11-11 ... 6 ... 1964-06-25 ...
2 ... 1948-09-01 ... 6 ... 1964-06-25 ...
7 ... 1963-05-11 ... 6 ... 1964-06-25 ...
39 ... 1956-10-29 ... 6 ... 1964-06-25 ...
112 ... 1963-10-01 ... 6 ... 1964-06-25 ...
8 ... 1962-07-08 ... 6 ... 1964-06-25 ...

100 ... 1963-02-28 ... 6 ... 1964-06-25 ...
28 ... 1963-06-22 ... 6 ... 1964-06-25 ...
95 ... 1963-05-14 ... 6 ... 1964-06-25 ...

183CHAPTER 7 SELECT Statement: The FROM Clause

The end result is:

PLAYERNO

44
83
2
7
39
112
8

100
28
95

In the previous examples, table names were specified in front of column names
to identify columns uniquely. That would not help in the previous example because
both tables have the same name. In other words, if a FROM clause refers to two tables
with the same name, pseudonyms must be used.

Note that it would have been sufficient to assign only one of the two tables a
pseudonym in the earlier example:

SELECT P.PLAYERNO
FROM PLAYERS AS P, PLAYERS
WHERE PLAYERS.NAME = 'Parmenter'
AND PLAYERS.INITIALS = 'R'
AND P.BIRTH_DATE < PLAYERS.BIRTH_DATE

Exercise 7.9: Get the numbers and names of the players who live in the same
town as player 27. Player 27 should not appear in the end result.

Exercise 7.10: Get the number and name of every competition player, as well as
the number and name of the captain of each team for which that player has ever
competed. The result may not contain competition players who are themselves cap-
tains of a team. Desired result:

PLAYERNO NAME (PLAYERS) PLAYERNO NAME (CAPTAIN)
-------- -------------- -------- --------------

44 Baker 6 Parmenter
8 Newcastle 6 Parmenter
8 Newcastle 27 Collins
: : : :
: : : :

Exercise 7.11: Get the numbers of the penalties for which the penalty amount is
equal to a penalty amount belonging to player 44. The result should not contain the
penalties of player 44.

184 SQL for MySQL Developers

7.8 TABLES OF DIFFERENT DATABASES

In one SELECT statement, tables of different databases may be joined. That makes it
necessary to qualify the tables that do not belong to the current database.

Example 7.14: Link the PLAYERS table to the CITIES table from the EXTRA
database.

SELECT P.PLAYERNO
FROM PLAYERS AS P, EXTRA.CITIES AS TOWN
WHERE P.TOWN = TOWN.CITYNAME

The result is:

PLAYERNO

2
6
7
8
39
44
57
83
100

Explanation: The CITIES table is qualified with the EXTRA database. This state-
ment does not change the current database.

7.9 EXPLICIT JOINS IN THE FROM CLAUSE

So far, we have talked about the concept of joins, but you have not seen the word
JOIN in the table expression yet. The reason is that, until now, we have shown only
examples in which the join is “hidden” in the SELECT statement. Sometimes this
join is referred to as an implicit join. In this case, a join is then made up of several
specifications from the FROM clause (the table specifications), together with one or
more conditions from the WHERE clause.

Explicitly adding the join to the SELECT statement started in the SQL2 standard.
This new explicit join is entirely specified in the FROM clause, resulting in a consid-
erable increase in features of this clause. The effect is that it is much easier to for-
mulate certain statements. The extended definition of the FROM clause is shown
next. Most important in this definition is that a table reference is not restricted to a
simple table specification but can form a complete join.

185CHAPTER 7 SELECT Statement: The FROM Clause

D E F I N I T I O N
<from clause> ::=

FROM <table reference> [, <table reference>]...

<table reference> ::=
table specification> [[AS] <pseudonym>] |
<join specification> |
(<join specification>)

<join specification> ::=
<table reference> <join type> <table reference>

[<join condition>]

<join condition> ::=
ON <condition> | USING <column list>

<join type> ::=
[INNER] JOIN |
LEFT [OUTER] JOIN |
RIGHT [OUTER] JOIN |
NATURAL [LEFT | RIGHT] [OUTER] JOIN |
CROSS JOIN

<column list> ::=
(<column name> [, <column name>]...)

According to this definition, the following FROM clause is correct:

FROM PLAYERS INNER JOIN PENALTIES
ON (PLAYERS.PLAYERNO = PENALTIES.PLAYERNO)

In this example, PLAYERS and PENALTIES are the tables to be joined, and
the join condition is placed between brackets after the word ON. The type of join that
must be performed is the inner join. Consider the meaning of these specifications
with an example.

Example 7.15: For each player born after June 1920, find the player number,
the name, and the penalty amounts incurred by him or her.

Previous chapters showed that we can answer this question with the following
formulation:

SELECT PLAYERS.PLAYERNO, NAME, AMOUNT
FROM PLAYERS, PENALTIES
WHERE PLAYERS.PLAYERNO = PENALTIES.PLAYERNO
AND BIRTH_DATE > '1920-06-30'

186 SQL for MySQL Developers

This has the following result:

PLAYERNO NAME AMOUNT
-------- --------- ------

6 Parmenter 100.00
44 Baker 75.00
27 Collins 100.00
104 Moorman 50.00
44 Baker 25.00
8 Newcastle 25.00
44 Baker 30.00
27 Collins 75.00

This statement also has a “hidden” join. The specifications that together form
the join are spread out over the FROM and WHERE clauses. With the new definition of
the FROM clause, this join can be presented explicitly; for this, use the FROM clause
already given:

SELECT PLAYERS.PLAYERNO, NAME, AMOUNT
FROM PLAYERS INNER JOIN PENALTIES

ON (PLAYERS.PLAYERNO = PENALTIES.PLAYERNO)
WHERE BIRTH_DATE > '1920-06-30'

This statement leads to the same result as the previous one; the difference is
that now, during the processing of the FROM clause, much more work is done. In the
first formulation, the (intermediate) result of the FROM clause is equal to the Carte-
sian product of the two specified tables (see also Section 7.4). For the second formu-
lation, the result is the Cartesian product to which the condition already has been
applied. For the processing of the WHERE clause, less work has to be done.

Both statements return the same result, but it is not the desired result. These
SELECT statements return only the player number and the name of each player who
has incurred at least one penalty; they are missing the players without penalties.
That brings us to the specification INNER JOIN. Because MySQL is presenting only
data about the players in both the tables PLAYERS and PENALTIES, this join is
called an inner join. Only those players who appear in the intersection of the sets of
the two join columns are included in the end result.

Whether an inner join does or does not give what we want depends entirely, on
one hand, on the question and, on the other hand, on the relationship between the
join columns. In the previous example, we lose players (from the PLAYERS table)
because the sets of the two join columns are not equal; one is a subset of the other.
Had the question in the previous example been “For each player who incurred at
least one penalty, find the player number…,” the formulation of the statement
would have been correct.

187CHAPTER 7 SELECT Statement: The FROM Clause

A certain type of relationship always exists between join columns. “Being a
subset of” is just one possibility. Four types of relationships are possible. When a
join is specified, it is very important to know what the type of relationship is
because it has a serious influence on the result of the SELECT statement in which the
join appears.

If C1 and C2 are two columns, the four types of relationships between C1 and C2
are as follows:

1. The populations of C1 and C2 are equal.

2. The population of C1 is a subset of the population C2 (or C2 is a subset of C1).

3. The populations of C1 and C2 are conjoint (they have some values in common).

4. The populations of C1 and C2 are disjoint (they have no values in common).

Example 7.16: For each team, find the team number and the name of the captain.

With the help of an implicit join:

SELECT TEAMNO, NAME
FROM TEAMS, PLAYERS
WHERE TEAMS.PLAYERNO = PLAYERS.PLAYERNO

With an explicit join, the previous statement looks as follows:

SELECT TEAMNO, NAME
FROM TEAMS INNER JOIN PLAYERS

ON TEAMS.PLAYERNO = PLAYERS.PLAYERNO

Explanation: Obviously, the TEAMS and PLAYERS tables are joined with
an inner join. The join condition (after the word ON) is used to compare the
PLAYERNO columns in the two tables. The results of these two statements are
equal. Because the PLAYERNO column in the TEAMS table is a subset of that of
the PLAYERS table, the result contains all those players who appear in the TEAMS
table (which is in accordance with the question).

The word INNER in the join specification can be omitted. It has been added only to
show which type of join is executed. Therefore, the previous statement is equal to
the next:

SELECT TEAMNO, NAME
FROM TEAMS JOIN PLAYERS

ON TEAMS.PLAYERNO = PLAYERS.PLAYERNO

188 SQL for MySQL Developers

Multiple tables can be joined with one FROM clause. Imagine that T1, T2, T3, and
T4 are tables and C is a join condition to join two tables. Then the following exam-
ples are all allowed:

■ T1 INNER JOIN T2 ON C

■ T1 INNER JOIN T2 ON C INNER JOIN T3 ON C

■ (T1 INNER JOIN T2 ON C) INNER JOIN T3 ON C

■ T1 INNER JOIN (T2 INNER JOIN T3 ON C) ON C

■ (T1 INNER JOIN T2 ON C) INNER JOIN (T3 INNER JOIN T4 ON C) ON C

Exercise 7.12: For each team, find the number and name of the captain. Exer-
cise 7.5 used an implicit join; use an explicit join now.

Exercise 7.13: Find the numbers and names of the players who live in the same
town as player 27. Player 27 should be excluded from the end result. Exercise 7.9
used an implicit join; use an explicit join now.

Exercise 7.14: For each match, get the match number, the name of the player,
and the division of the team. Exercise 7.6 used an implicit join; use an explicit join
now.

7.10 OUTER JOINS

The only join type discussed so far has been the inner join. However, the additional
advantages of this type are limited. It is helpful to be able to indicate more explic-
itly that the statement performs a join, but this is not a huge improvement. For the
other join types, such as left outer join, however, statements become considerably
clearer, more powerful, and shorter.

This section discusses the left outer and right outer joins.

7.10.1 The Left Outer Join
Let’s start with an example.

Example 7.17: For all the players, find the player number, name, and penalties
incurred by him or her; order the result by player number.

189CHAPTER 7 SELECT Statement: The FROM Clause

To answer this question, many people would use the following SELECT

statement:

SELECT PLAYERS.PLAYERNO, NAME, AMOUNT
FROM PLAYERS, PENALTIES
WHERE PLAYERS.PLAYERNO = PENALTIES.PLAYERNO
ORDER BY PLAYERS.PLAYERNO

The result is:

PLAYERNO NAME AMOUNT
-------- --------- ------

6 Parmenter 100.00
8 Newcastle 25.00
27 Collins 100.00
27 Collins 70.00
44 Baker 75.00
44 Baker 25.00
44 Baker 30.00
104 Moorman 50.00

However, the result is incomplete because all players who have no penalties are
missing.

The intention of this question is to get all the players in the result. To get the
missing players in the result as well, a so-called left outer join must be specified:

SELECT PLAYERS.PLAYERNO, NAME, AMOUNT
FROM PLAYERS LEFT OUTER JOIN PENALTIES

ON PLAYERS.PLAYERNO = PENALTIES.PLAYERNO
ORDER BY PLAYERS.PLAYERNO

The result is:

PLAYERNO NAME AMOUNT
-------- --------- ------

2 Everett ?
6 Parmenter 100.00
7 Wise ?
8 Newcastle 25.00
27 Collins 100.00
27 Collins 75.00
28 Collins ?
39 Bishop ?
44 Baker 75.00
44 Baker 25.00
44 Baker 30.00
57 Brown ?
83 Hope ?
95 Miller ?
100 Parmenter ?
104 Moorman 50.00
112 Bailey ?

190 SQL for MySQL Developers

Explanation: In the FROM clause, the join type is specified between the two
tables—in this case, a left outer join. In addition, the join condition is specified
after the word ON. When the join is specified in this way, MySQL knows that all rows
from the PLAYERS table must appear in the intermediate result of the FROM clause.
The columns in the SELECT clause that belong to the PENALTIES table are filled
automatically with null values for all those players for whom no penalty was paid.

Note that with all outer joins, the term OUTER can be omitted without any effect on
the end result.

Whether outer joins are necessary depends, as mentioned before, on the ques-
tion and on the relationship between the join columns. Between the popula-
tions PLAYERS.PLAYERNO and PENALTIES.PLAYERNO, a subset relationship
exists: The population of PENALTIES.PLAYERNO is a subset of the population
PLAYERS.PLAYERNO, so a left outer join is useful. The other way would make no
sense; see the following example.

Example 7.18: For each penalty, get the payment number and the name of the
player.

SELECT PAYMENTNO, NAME
FROM PENALTIES LEFT OUTER JOIN PLAYERS

ON PENALTIES.PLAYERNO = PLAYERS.PLAYERNO
ORDER BY PAYMENTNO

The result is:

PAYMENTNO NAME
--------- ---------

1 Parmenter
2 Baker
3 Collins
4 Moorman
5 Baker
6 Newcastle
7 Baker
8 Collins

Explanation: In this statement, PENALTIES is the left table. Because there are
no penalties that do not belong to a specific player, no penalties are left out. In other
words, a left outer join in this example is superfluous. An inner join would have
returned the same result.

191CHAPTER 7 SELECT Statement: The FROM Clause

Example 7.19: For each player, find the player number and name, and the num-
bers and divisions of the teams that he or she captains; order the result by player
number.

SELECT P.PLAYERNO, NAME, TEAMNO, DIVISION
FROM PLAYERS AS P LEFT OUTER JOIN TEAMS AS T

ON P.PLAYERNO = T.PLAYERNO
ORDER BY P.PLAYERNO

The result is:

PLAYERNO NAME TEAMNO DIVISION
-------- --------- ------ --------

2 Everett ? ?
6 Parmenter 1 first
7 Wise ? ?
8 Newcastle ? ?
27 Collins 2 second
28 Collins ? ?
39 Bishop ? ?
44 Baker ? ?
57 Brown ? ?
83 Hope ? ?
95 Miller ? ?
100 Parmenter ? ?
104 Moorman ? ?
112 Bailey ? ?

Example 7.20: For each player born in Inglewood, find the player number,
name, list of penalties, and list of teams for which he or she has played a match.

SELECT PLAYERS.PLAYERNO, NAME, AMOUNT, TEAMNO
FROM PLAYERS LEFT OUTER JOIN PENALTIES

ON PLAYERS.PLAYERNO = PENALTIES.PLAYERNO
LEFT OUTER JOIN MATCHES
ON PLAYERS.PLAYERNO = MATCHES.PLAYERNO

WHERE TOWN = 'Inglewood'

The result is:

PLAYERNO NAME AMOUNT TEAMNO
-------- --------- ------ ------

8 Newcastle 25.00 1
8 Newcastle 25.00 2
44 Baker 75.00 1
44 Baker 25.00 1
44 Baker 30.00 1

192 SQL for MySQL Developers

Explanation: First, the PLAYERS table is joined using a left outer join to the
PENALTIES table. The result contains 17 rows consisting of two players from
Inglewood: players 8 and 44. Player 8 has incurred only one penalty, and player 44
has three penalties. Then the entire result is joined with the MATCHES table.
Because player 8 played for two teams, he appears twice in the result.

Summarizing: A left outer join is useful only if there can exist values in the join
column of the left table that do not appear in the join column of the right table.

7.10.2 The Right Outer Join
The right outer join is the mirror image of the left outer join. With the left outer join,
all rows from the left table appear in the intermediate result of the FROM clause.
With the right outer join, this guarantee is given for the right table.

Example 7.21: For all players, get the player number, name, and numbers of the
teams for which they are the captain.

SELECT PLAYERS.PLAYERNO, NAME, TEAMNO
FROM TEAMS RIGHT OUTER JOIN PLAYERS

ON TEAMS.PLAYERNO = PLAYERS.PLAYERNO

The result is:

PLAYERNO NAME TEAMNO
-------- --------- ------

2 Everett ?
6 Parmenter 1
7 Wise ?
8 Newcastle ?
27 Collins 2
28 Collins ?
39 Bishop ?
44 Baker ?
57 Brown ?
83 Hope ?
95 Miller ?
100 Parmenter ?
104 Moorman ?
112 Bailey ?

Explanation: Obviously, players such as 2, 7, and 8 have been included in the
result even though they are not captains. If a player was a captain of two teams, he
would appear twice in this result.

193CHAPTER 7 SELECT Statement: The FROM Clause

Exercise 7.15: For all players, get the player number and the list of penalties
incurred by them.

Exercise 7.16: For all players, get the player number and a list of the numbers of
teams for which they have ever played.

Exercise 7.17: For all players, get the player number, list of penalties they have
incurred, and the list of numbers of teams for which they have ever played.

Exercise 7.18: Which of the following FROM clauses would be useful and which
would not?

1. FROM PENALTIES AS PEN LEFT OUTER JOIN PLAYERS AS P
ON PEN.PLAYERNO = P.PLAYERNO

2. FROM PENALTIES AS PEN LEFT OUTER JOIN PLAYERS AS P
ON PEN.PLAYERNO > P.PLAYERNO

3. FROM TEAMS AS T RIGHT OUTER JOIN MATCHES AS M
ON T.TEAMNO = M.TEAMNO

Exercise 7.19: Determine the results of the following SELECT statements, given
the tables T1, T2, T3, and T4. Each of these tables has only one column.

T1 C T2 C T3 C T4 C
----- ----- ----- -----

1 2 ? ?
2 3 2 2
3 4 3

1. SELECT T1.C, T2.C
FROM T1 INNER JOIN T2 ON T1.C = T2.C

2. SELECT T1.C, T2.C
FROM T1 LEFT OUTER JOIN T2 ON T1.C = T2.C

3. SELECT T1.C, T2.C
FROM T1 RIGHT OUTER JOIN T2 ON T1.C = T2.C

4. SELECT T1.C, T2.C
FROM T1 RIGHT OUTER JOIN T2 ON T1.C > T2.C

5. SELECT T1.C, T3.C
FROM T1 RIGHT OUTER JOIN T3 ON T1.C = T3.C

194 SQL for MySQL Developers

6. SELECT T1.C, T3.C
FROM T1 LEFT OUTER JOIN T3 ON T1.C = T3.C

7. SELECT T3.C, T4.C
FROM T3 LEFT OUTER JOIN T4 ON T3.C = T4.C

8. SELECT T3.C, T4.C
FROM T3 RIGHT OUTER JOIN T4 ON T3.C = T4.C

Exercise 7.20: Which of the following statements are correct? Assume that the
column C1 belongs to the table T1, and the column C2 to T2.

1. If C1 is a subset of C2, the result of T1.C1 LEFT OUTER JOIN T2.C2 is equal to
an inner join of the same columns.

2. If C2 is a subset of C1, the result of T1.C1 LEFT OUTER JOIN T2.C2 is equal to
an inner join of the same columns.

3. The result of T1.C1 LEFT OUTER JOIN T1.C1 is equal to an inner join of the
same columns.

7.11 THE NATURAL JOIN

With the natural join, you can shorten the formulation of certain statements some-
what. For many joins, the names of the join columns are equivalent and only one of
the join columns in the SELECT clause is retrieved. If this is the case with a join, you
can rewrite the join with a natural join.

Example 7.22: For each player who was born after 30 June 1920, and for whom
at least one penalty has been incurred, get the number, name, and all penalty
amounts.

Without a natural join, this statement looks as follows:

SELECT PLAYERS.PLAYERNO, NAME, AMOUNT
FROM PLAYERS INNER JOIN PENALTIES

ON PLAYERS.PLAYERNO = PENALTIES.PLAYERNO
WHERE BIRTH_DATE > '1920-06-30'

195CHAPTER 7 SELECT Statement: The FROM Clause

The result is:

PLAYERNO NAME AMOUNT
-------- --------- ------

6 Parmenter 100.00
44 Baker 75.00
27 Collins 100.00
104 Moorman 50.00
44 Baker 25.00
8 Newcastle 25.00
44 Baker 30.00
27 Collins 75.00

This statement can be shortened with a natural join and gives the same result:

SELECT PLAYERS.PLAYERNO, NAME, AMOUNT
FROM PLAYERS NATURAL JOIN PENALTIES
WHERE BIRTH_DATE > '1920-06-30'

Explanation: Now MySQL can add a join condition where the two columns with
the same name (PLAYERNO) are compared. In fact, behind the scenes, MySQL
transforms the natural join to a normal join.

In a SELECT clause, if we replace all column names with an *, MySQL presents the
PLAYERNO column just once. It is assumed that nobody is interested in two
columns that are equal.

A natural left outer join also can replace a left outer join this way, and a natural
right outer join can replace a right outer join.

7.12 ADDITIONAL CONDITIONS IN THE JOIN
CONDITION

The condition in the FROM clause is primarily meant to be used to join tables. Other
conditions that do not really belong to the join are allowed to be included here.
However, you should realize that moving a condition from the WHERE clause to the
join condition can actually affect the result. The following statement shows that
distinction.

Example 7.23: The next SELECT statement contains a left outer join plus an addi-
tional condition in the WHERE clause.

SELECT TEAMS.PLAYERNO, TEAMS.TEAMNO, PENALTIES.PAYMENTNO
FROM TEAMS LEFT OUTER JOIN PENALTIES

ON TEAMS.PLAYERNO = PENALTIES.PLAYERNO
WHERE DIVISION = 'second'

196 SQL for MySQL Developers

The result is:

PLAYERNO TEAMNO PAYMENTNO
-------- ------ ---------

27 2 3
27 2 8

Explanation: The intermediate result of the FROM clause contains all the rows of
the TEAMS table of which the captain appears in the PENALTIES table. If teams
disappear from this join, they are brought back again because of the left outer join.
In other words, that intermediate result looks as follows (on the left are the columns
of the TEAMS table, and on the right are those of the PENALTIES table):

TEAMNO PLAYERNO DIVISION PAYNO PLAYERNO PAYMENT_DATE AMOUNT
------ -------- -------- ----- -------- ------------ ------

1 6 first 1 6 1980-12-08 100.00
2 27 second 3 27 1983-09-10 100.00
2 27 second 8 27 1984-11-12 75.00

Next, the WHERE clause is processed; only the last two rows are passed on to the
SELECT clause.

If we move the condition to the join condition, the following statement arises:

SELECT TEAMS.PLAYERNO, TEAMS.TEAMNO, PENALTIES.PAYMENTNO
FROM TEAMS LEFT OUTER JOIN PENALTIES

ON TEAMS.PLAYERNO = PENALTIES.PLAYERNO
AND DIVISION = 'second'

This statement has a result that differs from the previous statement:

PLAYERNO TEAMNO PAYMENTNO
-------- ------ ---------

6 1 ?
27 2 3
27 2 8

Now team 1 does appear in the result, but how did that happen? MySQL
processes the explicit join in two steps. During the first step, the join is processed
as if no outer join has to be executed, but an inner join does. So first a Cartesian
product is created; then all conditions are processed, including the condition on the
DIVISION column. This leads to the following result:

TEAMNO PLAYERNO DIVISION PAYNO PLAYERNO PAYMENT_DATE AMOUNT
------ -------- -------- ----- -------- ------------ ------

2 27 second 3 27 1983-09-10 100.00
2 27 second 8 27 1984-11-12 75.00

197CHAPTER 7 SELECT Statement: The FROM Clause

Team 1 does not appear in this intermediate result because it does not play in
the second division. During the second step, MySQL checks whether rows from the
TEAMS table (because that is the table on the left of the left outer join) have disap-
peared from this intermediate result. Those rows have to be brought back again. As
a result, team 1 is added again:

TEAMNO PLAYERNO DIVISION PAYNO PLAYERNO PAYMENT_DATE AMOUNT
------ -------- -------- ----- -------- ------------ ------

2 27 second 3 27 1983-09-10 100.00
2 27 second 8 27 1984-11-12 75.00
1 6 first ? ? ? ?

Because of the absence of a WHERE clause, all these rows are passed on to the
SELECT clause, which means that the end result differs from that of the first statement.

Example 7.24: The next SELECT statement contains a full outer join plus an addi-
tional condition in the WHERE clause.

SELECT TEAMS.PLAYERNO, TEAMS.TEAMNO, PENALTIES.PAYMENTNO
FROM TEAMS FULL OUTER JOIN PENALTIES

ON TEAMS.PLAYERNO = PENALTIES.PLAYERNO
AND TEAMS.PLAYERNO > 1000

The result is:

PLAYERNO TEAMNO PAYMENTNO
-------- ------ ---------

? ? 3
? ? 8
? ? 1
? ? 6
? ? 2
? ? 5
? ? 7
? ? 4
6 1 ?
27 2 ?

Explanation: After step 1 of the join has been processed, the intermediate result
is empty. The reason is that there are no player numbers greater than 1000. Then
during step 2, MySQL checks whether there are rows in the tables TEAMS and
PENALTIES that do not appear in the result. That involves all the teams and all the
penalties, so they are added again, and a somewhat strange end result occurs.

198 SQL for MySQL Developers

Conclusion: If an outer join is used, it matters whether certain conditions are
placed in the join condition or in the WHERE clause. Therefore, consider carefully
where you want to place them. This does not apply to the inner join (work out why
for yourself).

7.13 THE CROSS JOIN

In MySQL, the cross join is nothing more or less than a synonym of the inner join. If
you do not include a join condition with the cross join, the result is a Cartesian
product.

7.14 REPLACING JOIN CONDITIONS WITH USING
If the names of the join columns are the same and the condition is that of equality
(as it most often is), USING can be used. Therefore, the following two FROM clauses
are equal:

FROM TEAMS INNER JOIN PLAYERS
ON TEAMS.PLAYERNO = PLAYERS.PLAYERNO

and

FROM TEAMS INNER JOIN PLAYERS
USING (PLAYERNO)

USING has no influence on the result and does not create any additional possi-
bilities with respect to the other form. It has only two limited advantages. First, the
statement is a little shorter and, therefore, easier to read. Second, when a join of two
or more columns must be specified, the formulation becomes much more compact.

If USING is used, one of the joined columns automatically is removed from the
result.

Example 7.25: Do a left outer join of the PENALTIES table with the TEAMS
table.

SELECT *
FROM PENALTIES LEFT OUTER JOIN TEAMS

USING (PLAYERNO)

199CHAPTER 7 SELECT Statement: The FROM Clause

The result is:

PLAYERNO PAYMENTNO PAYMENT_DATE AMOUNT TEAMNO DIVISION
-------- --------- ------------ ------ ------ -------

6 1 1980-12-08 100.00 1 first
44 2 1981-05-05 75.00 ? ?
27 3 1983-09-10 100.00 2 second
104 4 1984-12-08 50.00 ? ?
44 5 1980-12-08 25.00 ? ?
8 6 1980-12-08 25.00 ? ?
44 7 1982-12-30 30.00 ? ?
27 8 1984-11-12 75.00 2 second

Explanation: From this result, it is clear that the PLAYERNO column is included
in the result only once, without having to specify anything.

7.15 THE FROM CLAUSE WITH TABLE EXPRESSIONS

Section 6.6 mentioned that the FROM clause itself can contain a table expression.
The table expression within the FROM clause is called a table subquery. This section
extends the definition of the FROM clause with that table subquery. Next, we present
various examples to illustrate the extensive possibilities of table subqueries.

D E F I N I T I O N
<from clause> ::=

FROM <table reference> [, <table reference>]...

<table reference> ::=
<table specification> [[AS] <pseudonym>] |
<join specification> |
(<join specification>) |
<table subquery> [[AS] <pseudonym>]

<table subquery> ::= (<table expression>)

Example 7.26: Get the numbers of the players resident in Stratford.

SELECT PLAYERNO
FROM (SELECT *

FROM PLAYERS
WHERE TOWN = 'Stratford') AS STRATFORDERS

200 SQL for MySQL Developers

Explanation: A table expression in the form of a table subquery is specified in
the FROM clause. This subquery returns all the column values of all players from
Stratford. The resulting table is named STRATFORDERS and is passed to the other
clauses. The other clauses cannot see that the table, which they receive as input,
has been generated with a subquery. This statement could have been formulated in
the classical way, but we have used this formulation just to start with a simple
example.

Example 7.27: Get the number of each player who is a captain of a team playing
in the first division.

SELECT SMALL_TEAMS.PLAYERNO
FROM (SELECT PLAYERNO, DIVISION

FROM TEAMS) AS SMALL_TEAMS
WHERE SMALL_TEAMS.DIVISION = 'first'

The result is:

SMALL_TEAMS.PLAYERNO

6

Explanation: With the table expression in the FROM clause, the following interme-
diate result is created:

PLAYERNO DIVISION
-------- --------

6 first
27 second

This intermediate table gets the name SMALL_TEAMS. Next, the condition
SMALL_TEAMS.DIVISION = 'first' is executed on this table, after which only the
PLAYERNO column is retrieved.

Table expressions can be used, for example, to prevent a repeat of complex
scalar expressions.

Example 7.28: Get the match number and the difference between the total num-
ber of sets won and the total number of sets lost for each match where that differ-
ence is greater than 2.

SELECT MATCHNO, DIFFERENCE
FROM (SELECT MATCHNO,

ABS(WON – LOST) AS DIFFERENCE
FROM MATCHES) AS M

WHERE DIFFERENCE > 2

201CHAPTER 7 SELECT Statement: The FROM Clause

The result is:

MATCHNO DIFFERENCE
------- ----------

3 3
5 3
7 3
8 3
13 3

Explanation: The subquery in the FROM clause returns for each match the match
number and the difference between the WON and LOST columns. In the main
query, a condition is executed on this difference. To refer to that calculation in the
main query, a column name has to be introduced in the subquery. For the first time,
we have an example in which the specification of a column name is of more use
than just to improve the readability of the result.

A special variant of the table expression is the one in which only the SELECT clause
is used. This variant can also be used as a table subquery.

Example 7.29: Create a virtual table called TOWNS.

SELECT *
FROM (SELECT 'Stratford' AS TOWN, 4 AS NUMBER

UNION
SELECT 'Plymouth', 6
UNION
SELECT 'Inglewood', 1
UNION
SELECT 'Douglas', 2) AS TOWNS

ORDER BY TOWN

The result is:

TOWN NUMBER
--------- ------
Douglas 2
Inglewood 1
Plymouth 6
Stratford 4

Explanation: In this FROM clause, a table is created consisting of two columns (the
first an alphanumeric one and the second a numeric one) and four rows. This table
is named TOWNS. The first column has the name TOWN and contains the name of
a town. The second is named NUMBER and contains a relative indication of the

202 SQL for MySQL Developers

number of residents in that city. Note that an end result is created here without so
much as querying one of the existing tables.

The table that is created as a result is a normal table to all the other clauses. For
example, a WHERE clause does not know whether the intermediate result from the
FROM clause is the contents of a “real” table, a subquery, a view, or a temporarily
created table. So we can use all the other operations on this temporarily created
table.

Example 7.30: For each player, find the number, the name, the town, and the
number of residents living in that town.

SELECT PLAYERNO, NAME, PLAYERS.TOWN, NUMBER * 1000
FROM PLAYERS,

(SELECT 'Stratford' AS TOWN, 4 AS NUMBER
UNION
SELECT 'Plymouth', 6
UNION
SELECT 'Inglewood', 1
UNION
SELECT 'Douglas', 2) AS TOWNS

WHERE PLAYERS.TOWN = TOWNS.TOWN
ORDER BY PLAYERNO

The result is:

PLAYERNO NAME TOWN NUMBER
-------- --------- --------- ------

2 Everett Stratford 4000
6 Parmenter Stratford 4000
7 Wise Stratford 4000
8 Newcastle Inglewood 1000
39 Bishop Stratford 4000
44 Baker Inglewood 1000
57 Brown Stratford 4000
83 Hope Stratford 4000
95 Miller Douglas 2000
100 Parmenter Stratford 4000
112 Bailey Plymouth 6000

Explanation: The PLAYERS table is joined with the TOWNS table. Because an
inner join is used, we lose all the players who live in towns that do not appear in the
TOWNS table. The next table expression makes sure that we do not lose players
from the result:

203CHAPTER 7 SELECT Statement: The FROM Clause

SELECT PLAYERNO, NAME, PLAYERS.TOWN, NUMBER
FROM PLAYERS LEFT OUTER JOIN

(SELECT 'Stratford' AS TOWN, 4 AS NUMBER
UNION
SELECT 'Plymouth', 6
UNION
SELECT 'Inglewood', 1
UNION
SELECT 'Douglas', 2) AS TOWNS
ON PLAYERS.TOWN = TOWNS.TOWN

ORDER BY PLAYERNO

Example 7.31: Find the numbers of the players who live in a town with a popu-
lation indicator greater than 2.

SELECT PLAYERNO
FROM PLAYERS LEFT OUTER JOIN

(SELECT 'Stratford' AS TOWN, 4 AS NUMBER
UNION
SELECT 'Plymouth', 6
UNION
SELECT 'Inglewood', 1
UNION
SELECT 'Douglas', 2) AS TOWNS
ON PLAYERS.TOWN = TOWNS.TOWN

WHERE TOWNS.NUMBER > 2

The result is:

PLAYERNO

2
6
7
39
57
83
100
112

Example 7.32: Get all possible combinations of the first names John, Mark, and
Arnold and the last names Berg, Johnson, and Williams.

204 SQL for MySQL Developers

SELECT *
FROM (SELECT 'John' AS FIRST_NAME

UNION
SELECT 'Mark'
UNION
SELECT 'Arnold') AS FIRST_NAMES,
(SELECT 'Berg' AS LAST_NAME
UNION
SELECT 'Johnson'
UNION
SELECT 'Williams') AS LAST_NAMES

The result is:

FIRST_NAME LAST_NAME
---------- ---------
John Berg
Mark Berg
Arnold Berg
John Johnson
Mark Johnson
Arnold Johnson
John Williams
Mark Williams
Arnold Williams

Example 7.33: For the numbers 10 to 19, find the value to the power of three.
However, if the result is greater than 4,000, it should not be included in the result.

SELECT NUMBER, POWER(NUMBER,3)
FROM (SELECT 10 AS NUMBER UNION SELECT 11 UNION SELECT 12

UNION
SELECT 13 UNION SELECT 14 UNION SELECT 15
UNION
SELECT 16 UNION SELECT 17 UNION SELECT 18
UNION
SELECT 19) AS NUMBERS

WHERE POWER(NUMBER,3) <= 4000

The result is:

NUMBER POWER(NUMBER,3)
------ -------------

10 1000
11 1331
12 1728
13 2197
14 2744
15 3375

205CHAPTER 7 SELECT Statement: The FROM Clause

This statement works well if the numbers are limited. When we want to do the
same with 100 or more numbers, the statement is not as simple. In that case, we
could try to avoid the problem by generating a long list of numbers in a more cre-
ative way.

Example 7.34: Generate the numbers 0 up to and including 999.

SELECT NUMBER
FROM (SELECT CAST(CONCAT(DIGIT1.DIGIT,

CONCAT(DIGIT2.DIGIT,
DIGIT3.DIGIT)) AS UNSIGNED INTEGER)
AS NUMBER

FROM (SELECT '0' AS DIGIT UNION SELECT '1' UNION
SELECT '2' UNION SELECT '3' UNION
SELECT '4' UNION SELECT '5' UNION
SELECT '6' UNION SELECT '7' UNION
SELECT '8' UNION SELECT '9') AS DIGIT1,
(SELECT '0' AS DIGIT UNION SELECT '1' UNION
SELECT '2' UNION SELECT '3' UNION
SELECT '4' UNION SELECT '5' UNION
SELECT '6' UNION SELECT '7' UNION
SELECT '8' UNION SELECT '9') AS DIGIT2,
(SELECT '0' AS DIGIT UNION SELECT '1' UNION
SELECT '2' UNION SELECT '3' UNION
SELECT '4' UNION SELECT '5' UNION
SELECT '6' UNION SELECT '7' UNION
SELECT '8' UNION SELECT '9') AS DIGIT3)
AS NUMBERS

ORDER BY NUMBER

The result is:

NUMBER

0
1
2
:

998
999

206 SQL for MySQL Developers

Example 7.35: Find the squares of whole numbers between 0 and 999.

SELECT NUMBER AS SQUARE, ROUND(SQRT(NUMBER)) AS BASIS
FROM (SELECT CAST(CONCAT(DIGIT1.DIGIT,

CONCAT(DIGIT2.DIGIT,
DIGIT3.DIGIT)) AS UNSIGNED INTEGER)
AS NUMBER

FROM (SELECT '0' AS DIGIT UNION SELECT '1' UNION
SELECT '2' UNION SELECT '3' UNION
SELECT '4' UNION SELECT '5' UNION
SELECT '6' UNION SELECT '7' UNION
SELECT '8' UNION SELECT '9') AS DIGIT1,
(SELECT '0' AS DIGIT UNION SELECT '1' UNION
SELECT '2' UNION SELECT '3' UNION
SELECT '4' UNION SELECT '5' UNION
SELECT '6' UNION SELECT '7' UNION
SELECT '8' UNION SELECT '9') AS DIGIT2,
(SELECT '0' AS DIGIT UNION SELECT '1' UNION
SELECT '2' UNION SELECT '3' UNION
SELECT '4' UNION SELECT '5' UNION
SELECT '6' UNION SELECT '7' UNION
SELECT '8' UNION SELECT '9') AS DIGIT3)
AS NUMBERS

WHERE SQRT(NUMBER) = ROUND(SQRT(NUMBER))
ORDER BY NUMBER

The result is:

SQUARE BASIS
------ -----

0 0
1 1
4 2
: :

900 30
961 31

Exercise 7.21: For each player, get the difference between the year they joined
the club and the year in which they were born, but return only those players for
which that difference is greater than 20.

Exercise 7.22: Get a list of all combinations of three letters that you can make
with the letters a, b, c, and d.

Exercise 7.23: Find 10 random integer numbers between 0 and 1,000.

207CHAPTER 7 SELECT Statement: The FROM Clause

7.16 ANSWERS

7.1 1. Both tables have a column called PLAYERNO.

2. The SELECT clause refers to the PLAYERS table even though it is not
specified in the FROM clause.

7.2 The question: “Get the name of each player who is captain of a team.”

The FROM clause:

TEAMNO PLAYERNO DIVISION PLAYERNO NAME ...
------ -------- -------- -------- --------- ---

1 6 first 6 Parmenter ...
1 6 first 44 Baker ...
1 6 first 83 Hope ...
1 6 first 2 Everett ...
1 6 first 27 Collins ...
1 6 first 104 Moorman ...
1 6 first 7 Wise ...
1 6 first 57 Brown ...
1 6 first 39 Bishop ...
1 6 first 112 Bailey ...
1 6 first 8 Newcastle ...
1 6 first 100 Parmenter ...
1 6 first 28 Collins ...
1 6 first 95 Miller ...
2 27 second 6 Parmenter ...
2 27 second 44 Baker ...
2 27 second 83 Hope ...
2 27 second 2 Everett ...
2 27 second 27 Collins ...
2 27 second 104 Moorman ...
2 27 second 7 Wise ...
2 27 second 57 Brown ...
2 27 second 39 Bishop ...
2 27 second 112 Bailey ...
2 27 second 8 Newcastle ...
2 27 second 100 Parmenter ...
2 27 second 28 Collins ...
2 27 second 95 Miller ...

The WHERE clause:

TEAMNO PLAYERNO DIVISION PLAYERNO NAME ...
------ -------- -------- -------- --------- ---

1 6 first 6 Parmenter ...
2 27 second 27 Collins ...

208 SQL for MySQL Developers

The SELECT clause and also the end result:

NAME

Parmenter
Collins

7.3 SELECT PAYMENTNO, AMOUNT, PLAYERS.PLAYERNO, NAME
FROM PENALTIES, PLAYERS
WHERE PENALTIES.PLAYERNO = PLAYERS.PLAYERNO

7.4 SELECT PAYMENTNO, NAME
FROM PENALTIES, PLAYERS, TEAMS
WHERE PENALTIES.PLAYERNO = TEAMS.PLAYERNO
AND TEAMS.PLAYERNO = PLAYERS.PLAYERNO

7.5 SELECT T.TEAMNO, P.NAME
FROM TEAMS AS T, PLAYERS AS P
WHERE T.PLAYERNO = P.PLAYERNO

7.6 SELECT M.MATCHNO, P.NAME, T.DIVISION
FROM MATCHES AS M, PLAYERS AS P, TEAMS AS T
WHERE M.PLAYERNO = P.PLAYERNO
AND M.TEAMNO = T.TEAMNO

7.7 SELECT P.PLAYERNO, P.NAME
FROM PLAYERS AS P, COMMITTEE_MEMBERS AS C
WHERE P.PLAYERNO = C.PLAYERNO
AND B.POSITION = 'Chairman'

7.8 SELECT DISTINCT CM.PLAYERNO
FROM COMMITTEE_MEMBERS AS CM, PENALTIES AS PEN
WHERE CM.PLAYERNO = PEN.PLAYERNO
AND CM.BEGIN_DATE = PEN.PAYMENT_DATE

7.9 SELECT P.PLAYERNO, P.NAME
FROM PLAYERS AS P, PLAYERS AS P27
WHERE P.TOWN = P27.TOWN
AND P27.PLAYERNO = 27
AND P.PLAYERNO <> 27

209CHAPTER 7 SELECT Statement: The FROM Clause

7.10 SELECT DISTINCT P.PLAYERNO AS PLAYER_PLAYERNO,
P.NAME AS PLAYER_NAME,
CAP.PLAYERNO AS CAPTAIN_PLAYERNO,
CAP.NAME AS CAPTAIN_NAME

FROM PLAYERS AS P, PLAYERS AS CAP,
MATCHES AS M, TEAMS AS T

WHERE M.PLAYERNO = P.PLAYERNO
AND T.TEAMNO = M.TEAMNO
AND M.PLAYERNO <> T.PLAYERNO
AND CAP.PLAYERNO = T.PLAYERNO

7.11 SELECT PEN1.PAYMENTNO, PEN1.PLAYERNO
FROM PENALTIES AS PEN1, PENALTIES AS PEN2
WHERE PEN1.AMOUNT = PEN2.AMOUNT
AND PEN2.PLAYERNO = 44
AND PEN1.PLAYERNO <> 44

7.12 SELECT T.TEAMNO, P.NAME
FROM TEAMS AS T INNER JOIN PLAYERS AS P

ON T.PLAYERNO = P.PLAYERNO

7.13 SELECT P.PLAYERNO, P.NAME
FROM PLAYERS AS P INNER JOIN PLAYERS AS P27

ON P.TOWN = P27.TOWN
AND P27.PLAYERNO = 27
AND P.PLAYERNO <> 27

7.14 SELECT M.MATCHNO, P.NAME, T.DIVISION
FROM (MATCHES AS M INNER JOIN PLAYERS AS P

ON M.PLAYERNO = P.PLAYERNO)
INNER JOIN TEAMS AS T
ON M.TEAMNO = T.TEAMNO

7.15 SELECT PLAYERS.PLAYERNO, PENALTIES.AMOUNT
FROM PLAYERS LEFT OUTER JOIN PENALTIES

ON PLAYERS.PLAYERNO = PENALTIES.PLAYERNO

7.16 SELECT P.PLAYERNO, M.TEAMNO
FROM PLAYERS AS P LEFT OUTER JOIN MATCHES AS M

ON P.PLAYERNO = M.PLAYERNO

7.17 SELECT P.PLAYERNO, PEN.AMOUNT, M.TEAMNO
FROM (PLAYERS AS P LEFT OUTER JOIN MATCHES AS M

ON P.PLAYERNO = M.PLAYERNO)
LEFT OUTER JOIN PENALTIES AS PEN
ON P.PLAYERNO = PEN.PLAYERNO

210 SQL for MySQL Developers

7.18 1. The left outer join is used to indicate that all rows that possibly disap-
pear from the left table (the PENALTIES table) still have to be included
in the end result. But there are no rows in the PENALTIES table for
which the player number does not appear in the PLAYERS table. So
the outer join in this FROM clause has no use; an inner join would return
the same result.

2. The left outer join is used to indicate that all rows that possibly disap-
pear from the left table (the PENALTIES table) still have to be included
in the end result. In this example, rows could disappear because a
greater-than operator is used in the join condition. Therefore, this FROM
clause serves a purpose.

3. The right outer join is used to indicate that all rows that possibly disap-
pear from the right table (the MATCHES table) still have to be included
in the end result. But there are no rows in the MATCHES table for
which the team number does not appear in the TEAMS table. So this
FROM clause has no use; an inner join would give a similar result.

7.19 1. T1.C T2.C
---- ----

2 3
2 3

2. T1.C T2.C
---- ----

1 ?
2 2
3 3

3. T1.C T2.C
---- ----

2 2
3 3
? 4

4. T1.C T2.C
---- ----

3 2
? 3
? 4

5. T1.C T3.C
---- ----

2 2
? ?

211CHAPTER 7 SELECT Statement: The FROM Clause

6. T1.C T3.C
---- ----

1 ?
2 2
3 ?

7. T3.C T4.C
---- ----

? ?
2 2

8. T3.C T4.C
---- ----

? ?
2 2
? 3

7.20 1. Correct

2. Incorrect

3. Correct

7.21 SELECT PLAYERNO, DIFFERENCE
FROM (SELECT PLAYERNO,

JOINED - YEAR(BIRTH_DATE) AS DIFFERENCE
FROM PLAYERS) AS DIFFERENCES

WHERE DIFFERENCE > 20

7.22 SELECT LETTER1 || LETTER2 || LETTER3
FROM (SELECT 'a' AS LETTER1 UNION SELECT 'b'

UNION SELECT 'c' UNION SELECT 'd') AS LETTERS1,
(SELECT 'a' AS LETTER2 UNION SELECT 'b'
UNION SELECT 'c' UNION SELECT 'd') AS LETTERS2,
(SELECT 'a' AS LETTER3 UNION SELECT 'b'
UNION SELECT 'c' UNION SELECT 'd') AS LETTERS3

7.23 SELECT ROUND(RAND() * 1000)
FROM (SELECT 0 AS NUMBER UNION SELECT 1 UNION SELECT 2

UNION
SELECT 3 UNION SELECT 4 UNION SELECT 5
UNION
SELECT 6 UNION SELECT 7 UNION SELECT 8
UNION
SELECT 9) AS NUMBERS

212 SQL for MySQL Developers

213

SELECT Statement:
The WHERE Clause

C H A P T E R 8

8.1 INTRODUCTION

In the WHERE clause, a condition is used to select rows from the intermediate result
of the FROM clause. These selected rows form the intermediate result of the WHERE

clause. The WHERE clause acts as a kind of filter that removes all the rows for which
the condition is not true (but is false or unknown). This chapter describes the dif-
ferent conditions permitted in this clause.

D E F I N I T I O N
<where clause> ::= WHERE <condition>

How is a WHERE clause processed? One by one, each row that appears in the
intermediate result table of a FROM clause is evaluated, and the value of the condi-
tion is determined. That value can be true, false, or unknown. A row is included in
the (intermediate) result of the WHERE clause only if the condition is true. If the con-
dition is false or unknown, the row is kept out of the result. Using a pseudo pro-
gramming language, this process can be formally described in the following way:

WHERE-RESULT := [];
FOR EACH R IN FROM-RESULT DO

IF CONDITION = TRUE THEN
WHERE-RESULT :+ R;

ENDFOR;

Explanation: The WHERE-RESULT and FROM-RESULT represent two sets in which
rows of data can be temporarily stored. R represents a row from a set. The symbol []
represents the empty set. A row is added to the set with the operator :+. This pseudo
programming language is used later in the book.

The definition of the term condition is shown next. This book considers the terms
condition and predicate as equivalents and uses them interchangeably.

D E F I N I T I O N
<condition> ::=

<predicate> |
<predicate> OR <predicate> |
<predicate> AND <predicate> |
(<condition>) |
NOT <condition>

<predicate> ::=
<predicate with comparison> |
<predicate without comparison> |
<predicate with in> |
<predicate with between> |
<predicate with like> |
<predicate with regexp> |
<predicate with match> |
<predicate with null> |
<predicate with exists> |
<predicate with any all>

Previous chapters gave some examples of possible conditions in the WHERE
clause. This chapter describes the following forms:

■ The comparison operators

■ Conditions coupled with AND, OR, and NOT

■ The comparison operators with subquery

■ The IN operator with expression list

■ The IN operator with subquery

■ The BETWEEN operator

■ The LIKE operator

■ The REGEXP operator

■ The MATCH operator

214 SQL for MySQL Developers

■ The NULL operator

■ The ANY and ALL operators

■ The EXISTS operator

All the conditions described in this chapter consist of one or more expressions.
In Chapter 5, “SELECT Statement: Common Elements,” you saw that an aggrega-
tion function can be a valid expression. However, aggregation functions are not per-
mitted in the condition of a WHERE clause.

8.2 CONDITIONS USING COMPARISON OPERATORS

The best-known condition is the one in which the values of two expressions are
compared. The condition is formed by an expression (for example 83 or 15 * 100),
a comparison operator or relation operator (for example, < or =), and another expres-
sion. The value on the left of the operator is compared with the expression on the
right. The condition is true, false, or unknown, depending on the operator. MySQL
supports the comparison operators shown in Table 8.1.

TABLE 8.1 Overview of Comparison Operators

215CHAPTER 8 SELECT Statement: The WHERE Clause

The definition of this condition form is as follows:

D E F I N I T I O N
<predicate with comparison> ::=

<scalar expression> <comparison operator>
<scalar expression> |

<row expression> <comparison operator> <row expression>

<comparison operator> ::=
= | <=> | < | > | <= | >= | <> | !=

COMPARISON OPERATOR MEANING

= Equal to
<=> Equal to also if null
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
<> Not equal to
!= Not equal to

The definition shows that two forms of this predicate exist. The best-known is
the one in which the values of scalar expressions are compared. In the other form,
row expressions are used. We will start with the first form.

Example 8.1: Get the numbers of the players resident in Stratford.

SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford'

The result is:

PLAYERNO

2
6
7
39
57
83
100

Explanation: Only for rows in which the value of the TOWN column is equal
to Stratford is the PLAYERNO printed because then the condition TOWN =

'Stratford' is true.

If we install MySQL in the default way, capital letters and small letters are consid-
ered equal. In other words, the comparisons with the comparison operators are not
case sensitive). The reason is that latin1_swedish_ci is the default collation. A col-
lation specifies whether certain letters are seen as equal. If we would work with a
different collation, such as latin1_general_cs, capitals and small letters are seen
as different. Chapter 22, “Character Sets and Collations,” discusses collations in
detail.

Example 8.2: Get the number, the date of birth, and the year of joining the club
for each player who joined 17 years after the year in which he or she was born.

SELECT PLAYERNO, BIRTH_DATE, JOINED
FROM PLAYERS
WHERE YEAR(BIRTH_DATE) + 17 = JOINED

216 SQL for MySQL Developers

The result is:

PLAYERNO BIRTH_DATE JOINED
-------- ---------- -------

44 1963-01-09 1980

The condition in this statement could also be expressed in other ways:

WHERE YEAR(BIRTH_DATE) = JOINED - 17
WHERE YEAR(BIRTH_DATE) - JOINED + 17 = 0

The first section mentioned that if the condition for a row is unknown, it is
excluded from the result. Here is an example.

Example 8.3: Get the player numbers for players who have league number 7060.

SELECT PLAYERNO
FROM PLAYERS
WHERE LEAGUENO = '7060'

The result is:

PLAYERNO

104

Explanation: The PLAYERNO is displayed only for rows in which the
LEAGUENO is 7060 because only then is the condition true. The rows in which
the LEAGUENO column has the null value (for players 7, 28, 39, and 95) are not
displayed because the value of such a condition is unknown.

If one of the scalar expressions in a condition has the null value, regardless of the
data type of the expression (numeric, alphanumeric, or date), the condition evalu-
ates to unknown. The following table shows what the result of a certain condition can
be, depending on whether one or two of the scalar expressions concerned are equal
to the null value. Here, the question mark represents any comparison operator
(except for <=>):

Condition Result
------------------------------- -------------
non-null value ? non-null value true or false
non-null value ? null value unknown
null value ? null value unknown
null value <=> null value true

217CHAPTER 8 SELECT Statement: The WHERE Clause

For some statements, the null value can lead to unexpected results. Here is an
example in which the condition at first looks a little peculiar.

Example 8.4: Get the numbers and league numbers of players who actually have
a league number.

SELECT PLAYERNO, LEAGUENO
FROM PLAYERS
WHERE LEAGUENO = LEAGUENO

The result is:

PLAYERNO LEAGUENO
-------- --------

2 2411
6 8467
8 2983
27 2513
44 1124
57 6409
83 1608
100 6524
104 7060
112 1319

Explanation: Each row in which the LEAGUENO column is filled is printed
because here LEAGUENO is equal to LEAGUENO. If the LEAGUENO column is
not filled, the condition evaluates to unknown. Section 8.13 describes a “cleaner”
way to formulate the previous query.

For that matter, the condition LEAGUENO <> LEAGUENO does not return one single
row. If the value of the LEAGUENO column is not equal to null, the condition eval-
uates to false, and if the value equals null, the condition evaluates to unknown.

MySQL has a special equal to operator that has the value true when the values
equal each other or when both are equal to the null value: <=>. The condition is
false if one of the values is equal to the null value or if both non-null values are
unequal. The result of this condition is never unknown.

Example 8.5: Get the numbers of the players without league numbers.

SELECT PLAYERNO, LEAGUENO
FROM PLAYERS
WHERE LEAGUENO <=> NULL

218 SQL for MySQL Developers

The result is:

PLAYERNO

7
28
39
95

Explanation: In the condition LEAGUENO <=> NULL, the special expression NULL is
used to check whether the LEAGUENO column is equal to the null value. If the
condition LEAGUENO <=> LEAGUENO were used, all rows from the PLAYERS table
would have been selected.

The comparison operators <, <=, >, and >= are used to check which value is greater.
For numeric values, the answer is always obvious; 1 is less than 2, and 99.99 is
greater than 88.3. But how does that work with alphanumeric values, dates, and
times? The answer is simple for alphanumeric values: An alphanumeric value is
less than another if it comes first in alphabetical order. Consider some examples:

Condition Result
------------------ ------
'Jim' < 'Pete' true
'Truth' >= 'Truck' true
'Jim' = 'JIM' true
'Jim' > 'JIM' false

But what do we do with special symbols such as the ß and æ? And let us not for-
get letters with diacritics, such as é, â, and ȩ. Should é come before or after è? And
when a rule applies here, does it hold for every language? In other words, what
exactly is the order of all kinds of alphanumeric characters? How letters and digits
are sorted depends on so-called character set and on the previously mentioned col-
lations. Again, Chapter 22 discusses these topics in detail.

One date, time, or timestamp is less than another if it comes earlier in time.
Some examples follow:

Condition Result
--------------------------- ------
'1985-12-08' < '1995-12-09' true
'1980-05-02' > '1979-12-31' true
'12:00:00' < '14:00:00' true

Section 5.3 already described row expressions. With comparisons between row
expressions, the values with identical positions are compared.

219CHAPTER 8 SELECT Statement: The WHERE Clause

Example 8.6: Find the numbers of the matches in which the number of sets won
is equal to 2, and the number of sets lost is equal to 3.

SELECT MATCHNO
FROM MATCHES
WHERE (WON, LOST) = (2, 3)

The result is:

MATCHNO

2
11

Explanation: MySQL rewrites the condition internally as (WON = 2) AND (LOST
= 3).

Instead of using the equal to operator, you can use other comparison operators.
However, you must pay attention to how a certain comparison is processed. For
example, the condition

(2, 4) > (1, 3)

is equivalent not to

(2 > 1) AND (4 > 3)

but to

(2 > 1) OR (2 = 1 AND 4 > 3)

So first, the first values of both row expressions are compared. If this compari-
son returns the value true, the entire condition is automatically true. If this first
comparison is not true, a check is done to see whether the first two values are equal
and whether the second value of the first row expression is greater than the second
value of the second row expression. This also means that if the second value of the
second row expression is equal to null, the entire condition still can be true (if two
or more expressions are compared).

For the different comparison operators in the following table, we have indicated
how the condition is converted to scalar expressions. The question mark represents
one of the operators <, >, <=, or, >=, and E1, E2, E3, E4, E5, and E6 represent random
scalar expressions.

220 SQL for MySQL Developers

Predicate Converted to scalar expressions
------------------------- -----------------------------------
(E1, E2) = (E3, E4) (E1 = E3) AND (E2 = E4)
(E1, E2) <> (E3, E4) (E1 <> E3) OR (E2 <> E4)
(E1, E2) ? (E3, E4) (E1 ? E3) OR (E1 = E3 AND E2 ? E4)
(E1, E2, E3) ? (E4, E5, E6) (E1 ? E4) OR (E1 = E4 AND E2 ? E5) OR

(E1 = E4 AND E2 = E5 AND E3 ? E6)

The following table contains several examples of comparisons between row
expressions and the corresponding results. In particular, pay attention to the exam-
ples with null values. If a null value appears in the condition, it does not automati-
cally evaluate to unknown; see the previous example.

Predicate Result
--------------------- -------
(2, 1) > (1, 2) true
(2, 2) > (1, 1) true
(1, 2) > (1, 1) true
(1, 2) > (1, 2) false
(1, 2) > (1, 3) false
(2, NULL) > (1, NULL) true
(NULL, 2) > (1, 1) unknown
(NULL, 2) > (NULL, 1) unknown
(2, 1) <> (2, 1) false
(2, 2) <> (2, 1) true
(3, 2) <> (2, 1) true
(3, NULL) <> (2, 1) true

Exercise 8.1: Get the payment number of each penalty greater than $60 (give at
least two formulations).

Exercise 8.2: Get the number of each team for which the captain is not player 27.

Exercise 8.3: What is the result of the following SELECT statement?

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE LEAGUENO > LEAGUENO

Exercise 8.4: Get the number of each player who won at least one match.

Exercise 8.5: Get the number of each player who played at least one match of
five sets.

221CHAPTER 8 SELECT Statement: The WHERE Clause

8.3 COMPARISON OPERATORS WITH SUBQUERIES

Chapter 5 mentioned that a scalar expression can also be a subquery. But if it is, it
must be a scalar subquery.

Example 8.7: Get the number and name of the player who captains team 1.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO =

(SELECT PLAYERNO
FROM TEAMS
WHERE TEAMNO = 1)

Explanation: It is obvious in this example that in the condition of the WHERE
clause, the value of a “normal” scalar expression, consisting of the column name
PLAYERNO, is compared with the value of a subquery. The intermediate result of
the subquery is player number 6. This value can now replace the subquery. Next,
the following SELECT statement occurs:

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO = 6

The result is:

PLAYERNO NAME
-------- ---------

6 Parmenter

Note that subqueries can be used as expressions only if the subquery returns
precisely one value at all times. In other words, it must be a scalar subquery. A
scalar subquery has one row as result, consisting of one value. Therefore, the fol-
lowing statement is incorrect, and MySQL does not process it:

SELECT *
FROM PLAYERS
WHERE BIRTH_DATE <

(SELECT BIRTH_DATE
FROM PLAYERS)

Example 8.8: Find the number and the name and initials of each player who is
older than the player with league number 8467.

SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE BIRTH_DATE <

(SELECT BIRTH_DATE
FROM PLAYERS
WHERE LEAGUENO = '8467')

222 SQL for MySQL Developers

This subquery always returns at most one value because, as indicated in Sec-
tion 2.4, the LEAGUENO column cannot contain duplicate values. The intermedi-
ate result of that subquery is the date June 25, 1964. The user sees this result:

PLAYERNO NAME INITIALS
-------- --------- --------

2 Everett R
7 Wise GWS
8 Newcastle B
28 Collins C
39 Bishop D
44 Baker E
83 Hope PK
95 Miller P
100 Parmenter P
112 Bailey IP

But what if the subquery does not return a result? In this case, the result of the
subquery is equal to the null value. The next, somewhat strange statement returns
no rows because no player has league number 9999. The condition in the WHERE
clause evaluates to unknown.

SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE BIRTH_DATE <

(SELECT BIRTH_DATE
FROM PLAYERS
WHERE LEAGUENO = '9999')

Example 8.9: Get the numbers of the matches played for the team that is cap-
tained by player 27.

SELECT MATCHNO
FROM MATCHES
WHERE TEAMNO =

(SELECT TEAMNO
FROM TEAMS
WHERE PLAYERNO = 27)

The result is:

MATCHNO

9
10
11
12
13

223CHAPTER 8 SELECT Statement: The WHERE Clause

Explanation: The subquery is used to determine the number of the team that is
captained by player 27. Next, that result is used in the condition of the main query.

Example 8.10: Get the numbers of the players who have the same league number
as player 7. If this player does not have a league number, all players without a
league number must be shown.

SELECT PLAYERNO
FROM PLAYERS
WHERE LEAGUENO <=>

(SELECT LEAGUENO
FROM PLAYERS
WHERE PLAYERNO = 7)

The result is:

PLAYERNO

7
28
39
95

Explanation: Of course, this statement returns only one row when that particular
player does have a league number.

Example 8.11: Find the number, the town, and the sex of each player living in
the same town as player 7 and having the same sex as player 2.

SELECT PLAYERNO, TOWN, SEX
FROM PLAYERS
WHERE (TOWN, SEX) =

((SELECT TOWN
FROM PLAYERS
WHERE PLAYERNO = 7),
(SELECT SEX
FROM PLAYERS
WHERE PLAYERNO = 2))

The result is:

PLAYERNO TOWN SEX
-------- --------- ---

2 Stratford M
6 Stratford M
7 Stratford M
39 Stratford M
57 Stratford M
83 Stratford M
100 Stratford M

224 SQL for MySQL Developers

Explanation: The two scalar subqueries are processed separately. One returns
Stratford as the answer, and the other returns M. After that, the condition (TOWN,
SEX) = ('Stratford', 'M') is checked for each player separately in the WHERE
clause. So the two scalar subqueries form one row expression.

If comparisons with row expressions are made, row subqueries can be included.

Example 8.12: Player 6 became secretary of the tennis club on January 1, 1990.
Find the numbers of the players who took up a committee position on that same date
and also resigned on the same date as player 6.

SELECT DISTINCT PLAYERNO
FROM COMMITTEE_MEMBERS
WHERE (BEGIN_DATE, END_DATE) =

(SELECT BEGIN_DATE, END_DATE
FROM COMMITTEE_MEMBERS
WHERE PLAYERNO = 6
AND POSITION = 'Secretary'
AND BEGIN_DATE = '1990-01-01')

The result is:

PLAYERNO

6
8
27

Explanation: The subquery is a typical row subquery. The result consists of one
row with two values at most because each player can hold only one position on a cer-
tain date. The combination of PLAYERNO and BEGIN_DATE is the primary key of
the COMMITTEE_MEMBERS table. After the subquery has been processed, those
two values are compared with the row expression (BEGIN_DATE, END_DATE). Here
the same processing rules apply as described in the previous section.

Example 8.13: Get the numbers, names, and initials of all players whose combi-
nation of name and initials comes before player 6 in alphabetical order.

SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE (NAME, INITIALS) <

(SELECT NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO = 6)

ORDER BY NAME, INITIALS

225CHAPTER 8 SELECT Statement: The WHERE Clause

The result is:

PLAYERNO NAME INITIALS
-------- --------- --------

112 Bailey IP
44 Baker E
39 Bishop D
57 Brown M
28 Collins C
27 Collins DD
2 Everett R
83 Hope PK
95 Miller P
104 Moorman D
8 Newcastle B

100 Parmenter P

The next example uses the MATCHES_SPECIAL table that was used in Exam-
ple 5.47.

Example 8.14: Get the numbers of the matches that started after match 1.

SELECT MATCHNO
FROM MATCHES_SPECIAL
WHERE (START_DATE, START_TIME) >

(SELECT START_DATE, START_TIME
FROM MATCHES_SPECIAL
WHERE MATCHNO = 1)

Explanation: Even though two matches start on the same day, if they start at dif-
ferent times, they can be included in the end result. Without using use row expres-
sions, it would become a complex statement. Try to write this statement without
using row expressions.

Exercise 8.6: Find the player number, the name, and the initials of the player
who belongs to penalty 4.

Exercise 8.7: Find the player number, the name, and the initials of the player
who captains the team belonging to match 2.

Exercise 8.8: Find the player number and name of each player who has the same
age as R. Parmenter. R. Parmenter’s name and number may not appear in the result.

Exercise 8.9: Find the numbers of all matches played by team 2 in which the
number of sets won is equal to the number of sets won in the match with number 6.
Exclude match 6 from the result.

226 SQL for MySQL Developers

Exercise 8.10: Find the number of every match that has the same number of sets
won as match 2 and the same number of sets lost as match 8.

Exercise 8.11: Find the numbers, names, and initials of all players whose com-
bination of town, street, and house number comes alphabetically before player 100.

8.4 COMPARISON OPERATORS WITH CORRELATED
SUBQUERIES

The previous section contains examples of scalar subqueries, and the previous
chapter contains examples of table subqueries. Processing these subqueries is sim-
ple for MySQL: Before it processes the main query, it processes the subquery; then
it passes this intermediate result to the main query. However, scalar subqueries can
also refer to columns of the main query. These are called correlated subqueries.

Example 8.15: Get the numbers of the matches played by players living in
Inglewood.

SELECT MATCHNO
FROM MATCHES
WHERE 'Inglewood' =

(SELECT TOWN
FROM PLAYERS
WHERE PLAYERS.PLAYERNO = MATCHES.PLAYERNO)

The result is:

MATCHNO

4
8
13

Explanation: The subquery of this table expression refers to a column belonging to
the table specified in the main query: MATCHES.PLAYERNO. For this reason, such a sub-
query is called a correlated subquery. By using the qualified column specification, we
establish a relationship or correlation between the subquery and the main query.

The effect of a correlated subquery is that MySQL cannot determine the result of
the subquery first, but for each row in the main query (every match), the result of
the subquery must be determined separately. Because the player belonging to the
first match is equal to 6, the following subquery is executed for this player:

227CHAPTER 8 SELECT Statement: The WHERE Clause

SELECT TOWN
FROM PLAYERS
WHERE PLAYERS.PLAYERNO = 6

This player does not live in Inglewood, so the first match does not appear in the
end result. The next subquery is executed for match 4 with player 44, and he lives
in Inglewood. Therefore, match 4 appears in the end result.

SELECT TOWN
FROM PLAYERS
WHERE PLAYERS.PLAYERNO = 44

The processing of this statement could also be presented as follows with the
pseudo programming language:

END-RESULT := [];
FOR EACH M IN MATCHES DO

COUNTER := 0;
FOR EACH P IN PLAYERS DO

IF M.PLAYERNO = P.PLAYERNO THEN
IF 'Inglewood' = P.TOWN THEN

COUNTER := COUNTER + 1;
ENDIF;

ENDIF;
ENDFOR;
IF COUNTER > 0 THEN

END-RESULT :+ W;
ENDIF;

ENDFOR;

Example 8.16: Get the match numbers, the player numbers, and the team num-
bers of all the matches played by a player who also captains that team.

SELECT MATCHNO, PLAYERNO, TEAMNO
FROM MATCHES
WHERE PLAYERNO =

(SELECT PLAYERNO
FROM TEAMS
WHERE TEAMS.PLAYERNO = MATCHES.PLAYERNO)

The result is:

MATCHNO PLAYERNO TEAMNO
------- -------- ------

1 6 1
2 6 1
3 6 1
9 27 2

228 SQL for MySQL Developers

Explanation: The correlated subquery is processed for each match separately. For
each match, MySQL determines whether there are teams on which the captain is
equal to the player who played the match. If so, that match is included in the end
result.

Example 8.17: Get the numbers of the matches played by players whose third
letter of their name is equal to the third letter of the division in which the team
plays.

SELECT MATCHNO
FROM MATCHES
WHERE SUBSTR((SELECT DIVISION

FROM TEAMS
WHERE TEAMS.TEAMNO =

MATCHES.TEAMNO),3,1)
=
SUBSTR((SELECT NAME

FROM PLAYERS
WHERE PLAYERS.PLAYERNO =

MATCHES.PLAYERNO),3,1)

The result is:

MATCHNO

1
2
3

Exercise 8.12: Get the numbers of the penalties incurred by players who were
born after 1965.

Exercise 8.13: Get the payment numbers and the player numbers of all penalties
of which the player is also captain of a team.

8.5 CONDITIONS WITHOUT A COMPARISON
OPERATOR

The shortest condition is the one in which only one scalar expression is specified.
Such a condition is true only if the value of that expression is not equal to the num-
ber zero. In MySQL, the value false is indicated as the number zero; every other
value represents the value true.

229CHAPTER 8 SELECT Statement: The WHERE Clause

D E F I N I T I O N
<predicate-without-comparison> ::=

<scalar expression>

Therefore, we can shorten the condition in Example 8.4.

Example 8.18: Get the numbers and league numbers of the players who have a
league number.

SELECT PLAYERNO, LEAGUENO
FROM PLAYERS
WHERE LEAGUENO

The result is similar to the result of Example 8.4.

Example 8.19: Get the numbers of the teams whose number is not equal to 1.

SELECT TEAMNO
FROM TEAMS
WHERE TEAMNO - 1

The result is:

TEAMNO

2

Explanation: For the team with team number equal to 1, the expression TEAMNO –
1 is equal to zero. Conditions with the value zero are not included in the end result
because zero is equivalent to false.

The following statements are all allowed. Determine their respective results for
yourself:

SELECT * FROM PLAYERS WHERE 18
SELECT * FROM PLAYERS WHERE NULL
SELECT * FROM PLAYERS WHERE PLAYERNO & 3
SELECT * FROM PLAYERS WHERE YEAR(BIRTH_DATE)

230 SQL for MySQL Developers

8.6 CONDITIONS COUPLED WITH AND, OR,
XOR, AND NOT

A WHERE clause can contain multiple conditions if the logical operators AND, OR, XOR,
and NOT are used.

Table 8.2 contains the truth table for two conditions C1 and C2, and all possible
values for C1 AND C2, C1 OR C2, C1 XOR C2, and NOT C1.

The operators AND, OR, and NOT do not need much explanation, but XOR probably
does. XOR should be read as an exclusive or. A condition with XOR is true if one of
the two conditions is equal to true and the other is false; the condition is false if
both conditions are true or false. Otherwise, the condition is unknown.

TABLE 8.2 Truth Table for the Logical Operators

231CHAPTER 8 SELECT Statement: The WHERE Clause

Example 8.20: Get the number, name, sex, and birth date of each male player
born after 1970.

SELECT PLAYERNO, NAME, SEX, BIRTH_DATE
FROM PLAYERS
WHERE SEX = 'M'
AND BIRTH_DATE > '1970-12-31'

The result is:

PLAYERNO NAME SEX BIRTH_DATE
-------- ----- --- ----------

57 Brown M 1971-08-17

C1 AND C1 OR C1 XOR NOT
C1 C2 C2 C2 C2 C1

true true true true false false
true false false true true false
true unknown unknown true unknown false
false true false true true true
false false false false false true
false unknown false unknown unknown true
unknown true unknown true unknown unknown
unknown false false unknown unknown unknown
unknown unknown unknown unknown unknown unknown

Explanation: For every row in the PLAYERS table in which the value in the SEX
column equals M and the value in the BIRTH_DATE column is greater than 31
December 1970, four columns are displayed.

Example 8.21: Get the numbers, the names, and the towns of all players who live
in Plymouth or Eltham.

SELECT PLAYERNO, NAME, TOWN
FROM PLAYERS
WHERE TOWN = 'Plymouth'
OR TOWN = 'Eltham'

The result is:

PLAYERNO NAME TOWN
-------- ------- --------

27 Collins Eltham
104 Moorman Eltham
112 Bailey Plymouth

Note that this SELECT statement would produce no result if AND replaced the log-
ical operator OR. Work out for yourself why.

If a WHERE clause contains AND plus OR operators, the AND operators are
processed first. So in the following WHERE clause (assume that C1, C2, and C3 repre-
sent conditions)

WHERE C1 OR C2 AND C3

C2 AND C3 is evaluated first. Imagine that the result is A1, and after this, C1 OR A1
is evaluated. This is the final result. This process can also be represented as follows:

C2 AND C3 --> A1
C1 OR A1 --> result

By using brackets, you can influence the order in which the conditions are eval-
uated. Consider the following WHERE clause:

WHERE (C1 OR C2) AND C3

The processing sequence now becomes this:

C1 OR C2 --> A1
A1 AND C3 --> result

With any given value for C1, C2, and C3, the result of the first example can differ
from the result of the second. Imagine, for example, that C1 and C2 are true and that

232 SQL for MySQL Developers

C3 is false. Then the result of the first example without brackets is true and that of
the second with brackets is false.

The NOT operator can be specified in front of each condition. The NOT operator
changes the value of a condition to false if it is true and true if it is false; if the
condition is unknown, it remains unknown.

Example 8.22: Get the numbers, names, and towns of players who do not live in
Stratford.

SELECT PLAYERNO, NAME, TOWN
FROM PLAYERS
WHERE TOWN <> 'Stratford'

The result is:

PLAYERNO NAME TOWN
-------- --------- ---------

8 Newcastle Inglewood
27 Collins Eltham
28 Collins Midhurst
44 Baker Inglewood
95 Miller Douglas
104 Moorman Eltham
112 Bailey Plymouth

This example can also be formulated as follows:

SELECT PLAYERNO, NAME, TOWN
FROM PLAYERS
WHERE NOT (TOWN = 'Stratford')

Explanation: Each row in which the condition TOWN = 'Stratford' is true or
unknown is not dislayed because the NOT operator switches the value true to false,
and NOT (unknown) remains unknown.

Before Version 5.0.2 of MySQL, using the brackets in this example was important.
If no brackets were used in the previous condition, the statement would have
returned another result. In that case, the condition NOT TOWN would have been exe-
cuted first. Because every player has a place of residence, the result would have
been true for each. Next, it would determine whether the value true was equal to
Stratford. Obviously, the result of the statement would have been empty.

Since Version 5.0.2, this does not apply anymore. Now, specifying NOT TOWN =
'Stratford' is equivalent to specifying NOT (TOWN = 'Stratford'). If you want to

233CHAPTER 8 SELECT Statement: The WHERE Clause

have that old behavior back, you must use HIGH_NOT_PRECEDENCE for the SQL_MODE
system variable.

Example 8.23: Get the number, the league number, and the phone numbers of
all the players who have a league number and a phone number.

SELECT PLAYERNO, LEAGUENO, PHONENO
FROM PLAYERS
WHERE LEAGUENO AND PHONENO

The result is:

PLAYERNO LEAGUENO PHONENO
-------- -------- ----------

2 2411 070-237893
6 8467 070-476537
8 2983 070-458458
27 2513 079-234857
44 1124 070-368753
57 6409 070-473458
83 1608 070-353548
100 6524 070-494593
104 7060 079-987571
112 1319 010-548745

Example 8.24: Get the number, town, and date of birth of each player who lives
in Stratford or was born in 1963, but do not include those who live in Stratford and
were born in 1963.

SELECT PLAYERNO, TOWN, BIRTH_DATE
FROM PLAYERS
WHERE (TOWN = 'Stratford' OR YEAR(BIRTH_DATE) = 1963)
AND NOT (TOWN = 'Stratford' AND YEAR(BIRTH_DATE) = 1963)

The result is:

PLAYERNO TOWN BIRTH_DATE
-------- --------- ----------

2 Stratford 1948-09-01
6 Stratford 1964-06-25
28 Midhurst 1963-06-22
39 Stratford 1956-10-29
44 Inglewood 1963-01-09
57 Stratford 1971-08-17
83 Stratford 1956-11-11
95 Douglas 1963-05-14
112 Plymouth 1963-10-01

234 SQL for MySQL Developers

The previous statement could have been formulated more elegantly by using
the XOR operator:

SELECT PLAYERNO, TOWN, BIRTH_DATE
FROM PLAYERS
WHERE (TOWN = 'Stratford') XOR (YEAR(BIRTH_DATE) = 1963)

Explanation: This condition is true if one of the two conditions is true and the
other is false.

Instead of using the term AND, you may use the symbol &&; instead of using OR, you
may use the symbol ||; and you may replace NOT with !. Note however, that this is
not according to the SQL standard, which is why we recommend using the words
AND, OR, and NOT. Also note that || represents OR only if the SQL_MODE system vari-
able does not have the PIPES_AS_CONCAT; otherwise, it represents a concatenation.

Exercise 8.14: Get the number, name, and town of each female player who is not
a resident of Stratford.

Exercise 8.15: Find the player numbers of those who joined the club between
1970 and 1980.

Exercise 8.16: Find the numbers, names, and dates of birth of players born in a
leap year. Just in case you need a reminder, a leap year is one in which the year fig-
ure is divisible by 4, except centuries in which the year figure must be divisible by
400. Therefore, 1900 is not a leap year, but 2000 is.

Exercise 8.17: For each competition player born after 1965 who has won at least
one match, get the match number, the name and initials, and the division of the
teams in which the player has ever played.

8.7 THE IN OPERATOR WITH EXPRESSION LIST

The condition with the IN operator has two forms. This section describes the form in
which a series of values is listed. Section 8.8 explains the form in which subqueries
are used.

235CHAPTER 8 SELECT Statement: The WHERE Clause

D E F I N I T I O N
<predicate with in> ::=

<scalar expression> [NOT] IN <scalar expression list> |
<row expression> [NOT] IN <row expression list>

<row expression list> ::=
(<scalar expression list>

[, <scalar expression list>]...)

<scalar expression list> ::=
(<scalar expression> [, <scalar expression>]...)

Conditions can become lengthy if you have to check whether a specific value
appears within a long list of given values. Consider an example to illustrate this.

Example 8.25: Find the number, name, and town of each player who lives in
Inglewood, Plymouth, Midhurst, or Douglas.

SELECT PLAYERNO, NAME, TOWN
FROM PLAYERS
WHERE TOWN = 'Inglewood'
OR TOWN = 'Plymouth'
OR TOWN = 'Midhurst'
OR TOWN = 'Douglas'

The result is:

PLAYERNO NAME TOWN
-------- --------- ---------

8 Newcastle Inglewood
28 Collins Midhurst
44 Baker Inglewood
95 Miller Douglas
112 Bailey Plymouth

The statement and the result are correct, but the statement is rather long. The
IN operator can simplify the statement:

SELECT PLAYERNO, NAME, TOWN
FROM PLAYERS
WHERE TOWN IN ('Inglewood', 'Plymouth', 'Midhurst',

'Douglas')

This condition is to be read as follows: Each row whose TOWN value occurs in the
set of four town names satisfies the condition. In this example, the four town names
form the expression list.

236 SQL for MySQL Developers

Example 8.26: Get the numbers and years of birth of the players born in 1962,
1963, or 1970.

SELECT PLAYERNO, YEAR(BIRTH_DATE)
FROM PLAYERS
WHERE YEAR(BIRTH_DATE) IN (1962, 1963, 1970)

The result is:

PLAYERNO YEAR(BIRTH_DATE)
-------- ----------------

7 1963
8 1962
28 1963
44 1963
95 1963
100 1963
104 1970
112 1963

The previous examples use only literals within the expression list. All forms of
scalar expressions can be specified here, including column specifications and
scalar subqueries.

Example 8.27: Get the match numbers and the number of sets won and lost for
all matches that have two sets won or two sets lost.

SELECT MATCHNO, WON, LOST
FROM MATCHES
WHERE 2 IN (WON, LOST)

The result is:

MATCHNO WON LOST
------- --- ----

2 2 3
4 3 2
9 3 2
10 3 2
11 2 3

Example 8.28: Find the numbers of the player whose number is equal to 100,
equal to the player number of the penalty with number 1, or equal to the number of
the captain of team 2.

237CHAPTER 8 SELECT Statement: The WHERE Clause

SELECT PLAYERNO
FROM PLAYERS
WHERE PLAYERNO IN

(100,
(SELECT PLAYERNO
FROM PENALTIES
WHERE PAYMENTNO = 1),
(SELECT PLAYERNO
FROM TEAMS
WHERE TEAMNO = 2))

The result is:

PLAYERNO

6
27
100

Explanation: The expression list consists of three scalar expressions, of which
one is a literal and the other two are scalar subqueries. Make sure that each of the
subqueries is really scalar and that they do not return more than one row consisting
of one value.

Example 8.29: Get the match numbers and the number of sets won and lost of all
matches in which the number of sets won is equal to the match number divided by
2, or equal to the number of sets lost or equal to the number of sets lost belonging to
match 1.

SELECT MATCHNO, WON, LOST
FROM MATCHES
WHERE WON IN

(TRUNCATE(MATCHNO / 2,0), LOST,
(SELECT LOST
FROM MATCHES
WHERE MATCHNO = 1))

The result is:

MATCHNO WON LOST
------- --- ----

6 1 3
7 3 0
12 1 3

238 SQL for MySQL Developers

Example 8.30: Get the numbers of the matches played by players whose names
begin with the capital letters B, C, or E.

SELECT MATCHNO
FROM MATCHES
WHERE (SELECT SUBSTR(NAME,1,1)

FROM PLAYERS
WHERE PLAYERS.PLAYERNO = MATCHES.PLAYERNO)
IN ('B','C','E')

The result is:

MATCHNO

4
6
7
9
11
12

The following rules apply to the scalar expressions used with the IN operator:
The data types must be comparable, and not every expression form can be used.

How exactly is a condition with IN processed? Imagine that E1, E2, E3, and E4 are
scalar expressions. Then the condition

E1 IN (E2, E3, E4)

is equivalent to this condition:

(E1 = E2) OR (E1 = E3) OR (E1 = E4)

This means that if one of the expressions between brackets is equal to null, the
value of the entire condition can still be true. It also means that if E1 itself is equal
to null, the entire condition evaluates to unknown.

Simultaneously, it follows that the condition

E1 NOT IN (E2, E3, E4)

is equivalent to the condition

NOT (E1 IN (E2, E3, E4))

and equivalent to:

(E1 <> E2) AND (E1 <> E3) AND (E1 <> E4)

The definition shows that the IN operator can also deal with row expressions.

239CHAPTER 8 SELECT Statement: The WHERE Clause

Example 8.31: Find the match numbers and the number of sets won and lost of
all matches that were won 3–1 or 3–2.

SELECT MATCHNO, WON, LOST
FROM MATCHES
WHERE (WON, LOST) IN ((3,1),(3,2))

The result is:

MATCHNO WON LOST
------- --- ----

1 3 1
4 3 2
9 3 2
10 3 2

Explanation: Because a row expression consisting of two expressions occurs to
the left of the IN operator, the expression list should also be a list consisting of row
expressions.

Example 8.32: Get the numbers, names, and initials of all players whose name
and initials are equal to that of players 6 or 27.

SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE (NAME, INITIALS) IN

((SELECT NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO = 6),
(SELECT NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO = 27))

The result is:

PLAYERNO NAME INITIALS
-------- --------- --------

6 Parmenter R
27 Collins DD

Exercise 8.18: Get the payment numbers of every penalty of $50, $75, or $100.

Exercise 8.19: Get the numbers of the players who do not live in Stratford or in
Douglas.

240 SQL for MySQL Developers

Exercise 8.20: Get the numbers of the penalties of which the amount is equal to
100, equal to five times the payment number, or equal to the amount belonging to
penalty 2.

Exercise 8.21: Get the numbers of the players who live in the town Stratford and
the street Haseltine Lane, or in the town Stratford and the street Edgecombe Way.

8.8 THE IN OPERATOR WITH SUBQUERY

Section 8.7 discussed the first form of the IN operator. A row from a table satisfies a
condition with the IN operator if the value of a particular column occurs in a fixed
set of expressions. The user has defined the number of elements in the set. The IN
operator can also take another form in which the set of expressions is not listed, but
is variable. MySQL determines the set at the point the statement is processed. This
section covers this process.

Section 8.7 gave a definition of the condition with the IN operator. The defini-
tion is extended as follows:

D E F I N I T I O N
<predicate with in> ::=
<scalar expression> [NOT] IN <scalar expression list> |
<scalar expression> [NOT] IN <column subquery> |
<row expression> [NOT] IN <row expression list> |
<row expression> [NOT] IN <table subquery>

<row expression list> ::=
(<scalar expression list>

[, <scalar expression list>]...)

<scalar expression list> ::=
(<scalar expression> [, <scalar expression>]...)

<column subquery> ;
<table subquery> ::= (<table expression>)

Example 8.33: Get the player number, name, and initials of each player who has
played at least one match.

The question in this example actually consists of two parts. First, we need to
work out which players have played at least one match. Then we need to look for the

241CHAPTER 8 SELECT Statement: The WHERE Clause

numbers, the names, and the initials of these players. The MATCHES table con-
tains the numbers of the players who have played at least one match, so with the fol-
lowing simple SELECT statement, we can determine these numbers:

SELECT PLAYERNO
FROM MATCHES

The result is:

PLAYERNO

6
6
6
44
83
2
57
8
27
104
112
112
8

But how do we use those numbers to look up the relevant names and initials of
the players from the PLAYERS table? If we use the IN operator, we have to remem-
ber the numbers of the previous statement somehow and then type in the following
statement:

SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO IN (6, 6, 6, 44, 83, 2, 57, 8, 27,

104, 112, 112, 8)

The result is:

PLAYERNO NAME INITIALS
-------- --------- --------

2 Everett R
6 Parmenter R
8 Newcastle B
27 Collins DD
44 Baker E
57 Brown M
83 Hope PK
104 Moorman D
112 Bailey IP

242 SQL for MySQL Developers

This method works, but it is very clumsy and would be impractical if the
MATCHES table contained a large set of different player numbers. Because this
type of query is very common, MySQL offers the possibility of specifying column
subqueries together with the IN operator (note that using subqueries with the previ-
ous form of the IN operator is allowed, but those are scalar subqueries). The SELECT
statement for the previous example now looks like this:

SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES)

We have no longer specified an expression list after the IN operator as we did in
the examples in Section 8.7; we have specified a column subquery. As a result, a
column subquery has multiple rows, with each row consisting of one value. In the
example, the result would look like the following (remember that this is an interme-
diate result that the users do not see):

(6, 6, 6, 44, 83, 2, 57, 8, 27, 104, 112, 112, 8)

When MySQL processes the table expression, it replaces the subquery with the
(intermediate) result of the subquery (this is done behind the scenes):

SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO IN (6, 6, 6, 44, 83, 2, 57, 8, 27,

104, 112, 112, 8)

This is now a familiar statement. The result of this statement is the same as the
end result that we have already shown.

The most important difference between the IN operator with a set of scalar
expressions and a column subquery is that, in the first instance, the set of values is
fixed in advance by the user, whereas in the second instance, the values are vari-
able and are determined by MySQL during the processing.

Example 8.34: Get the player number and the name of each player who has
played at least one match for the first team.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO = 1)

243CHAPTER 8 SELECT Statement: The WHERE Clause

The intermediate result of the subquery is:

(2, 6, 6, 6, 8, 44, 57, 83)

The result of the entire statement is:

PLAYERNO NAME
-------- ---------

2 Everett
6 Parmenter
8 Newcastle
44 Baker
57 Brown
83 Hope

As you can see, a subquery can also contain conditions; even other subqueries
are allowed.

Example 8.35: Get the number and name of each player who has played at least
one match for the team that is not captained by player 6.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO NOT IN

(SELECT TEAMNO
FROM TEAMS
WHERE PLAYERNO = 6))

The intermediate result of the sub-subquery is:

(1)

The subquery searches all players who do not appear in the set of teams cap-
tained by player 6. The intermediate result is:

(8, 27, 104, 112, 112)

The result of the statement is:

PLAYERNO NAME
-------- ---------

8 Newcastle
27 Collins
104 Moorman
112 Bailey

Again, users do not see any of the intermediate results.

244 SQL for MySQL Developers

When is a condition with an IN operator and a subquery true, when is it false,
and when is it unknown? Imagine that C is the name of a column and that v1, v2, …,
vn are values from which the intermediate result of subquery S is formed. It follows
that

C IN (S)

is equivalent to:

(C = C) AND ((C = v1) OR (C = v2) OR ... OR (C = vn) OR false)

The following should be noted concerning certain specific situations:

■ If C is equal to the null value, the entire condition evaluates to unknown
because the condition C = C is equal to unknown; this rule holds independ-
ently of the numbers of values in the result of the subquery.

■ If C is not equal to the null value and the subquery returns no result, the con-
dition evaluates to false because the last “term” of this “longhand” condi-
tion is false.

■ If C is not equal to the null value, and if one of the v values is equal to the
null value and one of the other v values is not equal to the null value, the
condition can be true or unknown.

■ If C is not equal to the null value and all v values are equal to the null value,
the condition evaluates to unknown.

We can apply the same reasoning to NOT IN. The condition

C NOT IN (S)

is equivalent to:

(C = C) AND (C <> v1) AND (C <> v2) AND ... AND (C <> vn) AND true

Note the following concerning certain specific situations:

■ If C is equal to the null value, the entire condition evaluates to unknown
because the condition C = C is equal to unknown; this rule holds independ-
ently of the numbers of values in the result of the subquery.

■ If C is not equal to the null value and the subquery returns no result, the con-
dition evaluates to true because the last “term” of this “longhand” condition
is true.

■ If C is not equal to the null value, and if one of the v values is equal to the
null value and one of the other v values is not equal to the null value, the
condition can be true or unknown.

245CHAPTER 8 SELECT Statement: The WHERE Clause

■ If C is not equal to the null value and all v values are equal to the null value,
the condition evaluates to unknown.

Imagine that the year of birth of player 27 is unknown. Will player 27 appear in
the end result of the following SELECT statement?

SELECT *
FROM PLAYERS
WHERE BIRTH_DATE NOT IN

(SELECT BIRTH_DATE
FROM PLAYERS
WHERE Town = 'London')

The answer is no. Only players whose dates of birth are known are included in
the end result, so player 27 does not appear.

This IN operator with subquery can be extended with row expressions. In this
case, after the IN operator, you have to specify a table expression. The number of
expressions in the row expression and the number of expressions in the SELECT clause
of the table expressions must be equal. The data types must also be comparable.

Example 8.36: Get all the details of all the rows in the COMMITTEE MEM-
BERS table that have the same begin and end date as one of those rows for which
the position is equal to Secretary.

SELECT *
FROM COMMITTEE_MEMBERS
WHERE (BEGIN_DATE, END_DATE) IN

(SELECT BEGIN_DATE, END_DATE
FROM COMMITTEE_MEMBERS
WHERE POSITION = 'Secretary')

The result is:

PLAYERNO BEGIN_DATE END_DATE POSITION
-------- ---------- ---------- ---------

6 1990-01-01 1990-12-31 Secretary
8 1990-01-01 1990-12-31 Treasurer
8 1991-01-01 1991-12-31 Secretary
27 1990-01-01 1990-12-31 Member
27 1991-01-01 1991-12-31 Treasurer
57 1992-01-01 1992-12-31 Secretary
112 1992-01-01 1992-12-31 Member

Almost all the tables of the standard example in this book have simple primary
keys consisting of one column. Imagine that the situation is different and that the
primary key of the PLAYERS table is formed by the columns NAME and INI-
TIALS. Foreign keys referring to this primary key will all be compound. In that
case, formulating queries is simple if row expressions are used. We illustrate

246 SQL for MySQL Developers

this with a few examples that use slightly adapted versions of the familiar tables
PLAYERS and PENALTIES. Assume that the primary key in the PLAYERS_
NI table is indeed formed by the combination NAME with INITIALS. In the
PENALTIES_NI table, the column PAYMENTNO is still the primary key, but it has
been extended with the columns NAME and INITIALS.

Example 8.37: Create the two tables and insert several rows.

CREATE TABLE PLAYERS_NI
(NAME CHAR(10) NOT NULL,
INITIALS CHAR(3) NOT NULL,
TOWN VARCHAR(30) NOT NULL,
PRIMARY KEY (NAME, INITIALS))

INSERT INTO PLAYERS_NI VALUES ('Parmenter', 'R', 'Stratford')

INSERT INTO PLAYERS_NI VALUES ('Parmenter', 'P', 'Stratford')

INSERT INTO PLAYERS_NI VALUES ('Miller', 'P', 'Douglas')

CREATE TABLE PENALTIES_NI
(PAYMENTNO INTEGER NOT NULL,
NAME CHAR(10) NOT NULL,
INITIALS CHAR(3) NOT NULL,
AMOUNT DECIMAL(7,2) NOT NULL,
PRIMARY KEY (PAYMENTNO),
FOREIGN KEY (NAME, INITIALS)

REFERENCES PLAYERS_NI (NAME, INITIALS))

INSERT INTO PENALTIES_NI VALUES (1, 'Parmenter', 'R', 100.00)

INSERT INTO PENALTIES_NI VALUES (2, 'Miller', 'P', 200.00)

The remaining examples in this section relate to the earlier two tables.

Example 8.38: Get the name, initials, and town of each player who has incurred
at least one penalty.

The following SELECT statement, in which no row expressions are used, does not
give the correct answer to this question, even though it looks like it will:

SELECT NAME, INITIALS, TOWN
FROM PLAYERS_NI
WHERE NAME IN

(SELECT NAME
FROM PENALTIES_NI)

AND INITIALS IN
(SELECT INITIALS
FROM PENALTIES_NI)

247CHAPTER 8 SELECT Statement: The WHERE Clause

The result is:

NAME INITIALS TOWN
--------- -------- ---------
Parmenter R Stratford
Parmenter P Stratford
Miller P Douglas

This result is the correct answer with respect to the SELECT statement, but it is
not the answer to the original question. The fact is, player P. Parmenter has not
incurred a penalty according to the PENALTIES_NI table. A correct formulation of
this question is:

SELECT NAME, INITIALS, TOWN
FROM PLAYERS_NI
WHERE (NAME, INITIALS) IN

(SELECT NAME, INITIALS
FROM PENALTIES_NI)

The result is:

NAME INITIALS TOWN
--------- -------- ---------
Parmenter R Stratford
Miller P Douglas

Another correct solution for this example is given next. This solution does not
make use of row expressions, which makes it more difficult to fathom.

SELECT NAME, INITIALS, TOWN
FROM PLAYERS_NI
WHERE NAME IN

(SELECT NAME
FROM PENALTIES_NI
WHERE PLAYERS_NI.INITIALS =

PENALTIES_NI.INITIALS)

Explanation: For every row in the main query (thus, in the PLAYERS_NI table),
the subquery looks for rows in the PENALTIES_NI table with identical initials.
Next, a verification is carried out to see whether the NAME of the player also
appears in those rows (WHERE NAME IN ...).

Example 8.39: Get the name, initials, and town of each player who has not
incurred a penalty.

248 SQL for MySQL Developers

SELECT NAME, INITIALS, TOWN
FROM PLAYERS_NI
WHERE (NAME, INITIALS) NOT IN

(SELECT NAME, INITIALS
FROM PENALTIES_NI)

The result is:

NAME INITIALS TOWN
--------- -------- ---------
Parmenter P Stratford

Explanation: The details of a player in the PLAYERS_NI table are included in
the result only if there is not one row in the PENALTIES_NI table with the same
combination of NAME and INITIALS as the player in the PLAYERS_NI table.

Section 8.16 deals more extensively with the features and limitations of sub-
queries.

Exercise 8.22: Get the player number and the name of each player who has
incurred at least one penalty.

Exercise 8.23: Get the player number and the name of each player who has
incurred at least one penalty of more than $50.

Exercise 8.24: Find the team numbers and player numbers of the team captains
from the first division who live in Stratford.

Exercise 8.25: Get the player number and the name of each player for whom at
least one penalty has been paid and who is not a captain of any team playing in the
first division.

Exercise 8.26: What is the result of the following SELECT statement?

SELECT *
FROM PLAYERS
WHERE LEAGUENO NOT IN

(SELECT LEAGUENO
FROM PLAYERS
WHERE PLAYERNO IN (28, 95))

249CHAPTER 8 SELECT Statement: The WHERE Clause

Exercise 8.27: Get the match number and player number of each match in
which the number of sets won and the number of sets lost is equal to at least one of
the set scores of a match played by a team from the second division.

Exercise 8.28: Get the numbers and names of those players who live at the same
address as at least one other player. “Address” is defined as the combination of
town, street, house number, and postcode.

8.9 THE BETWEEN OPERATOR

MySQL supports a special operator that enables you to determine whether a value
occurs within a given range of values.

D E F I N I T I O N
<predicate with between> ::=

<scalar expression> [NOT] BETWEEN <scalar expression>
AND <scalar expression>

Example 8.40: Find the number and date of birth of each player born between
1962 and 1964.

SELECT PLAYERNO, BIRTH_DATE
FROM PLAYERS
WHERE BIRTH_DATE >= '1962-01-01'
AND BIRTH_DATE <= '1964-12-31'

The result is:

PLAYERNO BIRTH_DATE
-------- ----------

6 1964-06-25
7 1963-05-11
8 1962-07-08
27 1964-12-28
28 1963-06-22
44 1963-01-09
95 1963-10-01
100 1963-02-28
112 1963-10-01

This statement can also be written using the BETWEEN operator (the result
remains the same):

250 SQL for MySQL Developers

SELECT PLAYERNO, BIRTH_DATE
FROM PLAYERS
WHERE BIRTH_DATE BETWEEN '1962-01-01' AND '1964-12-31'

If E1, E2, and E3 are expressions, the condition

E1 BETWEEN E2 AND E3

is equivalent to this condition:

(E1 >= E2) AND (E1 <= E3)

From this, we can derive that if one of the three expressions is equal to the null
value, the entire condition is unknown or false. Additionally, it follows that

E1 NOT BETWEEN E2 AND E3

is equivalent to

NOT (E1 BETWEEN E2 AND E3)

and equivalent to this:

(E1 < E2) OR (E1 > E3)

In this case, if E1 has the null value, the condition evaluates to unknown. The
condition is true, for example, if E1 is not null, E2 is null, and E1 is greater than E3.

Example 8.41: Get the numbers of the matches where the sum of the number of
sets won and lost is equal to 2, 3, or 4.

SELECT MATCHNO, WON + LOST
FROM MATCHES
WHERE WON + LOST BETWEEN 2 AND 4

The result is:

MATCHNO WON + LOST
------- ----------

1 4
3 3
5 3
6 4
7 3
8 3
12 4
13 3

251CHAPTER 8 SELECT Statement: The WHERE Clause

Example 8.42: Get the player number, the date of birth, and the name and ini-
tials of each player whose birth date is between that of B. Newcastle and P. Miller.

SELECT PLAYERNO, BIRTH_DATE, NAME, INITIALS
FROM PLAYERS
WHERE BIRTH_DATE BETWEEN

(SELECT BIRTH_DATE
FROM PLAYERS
WHERE NAME = 'Newcastle'
AND INITIALS = 'B')
AND
(SELECT BIRTH_DATE
FROM PLAYERS
WHERE NAME = 'Miller'
AND INITIALS = 'P')

The result is:

PLAYERNO BIRTH_DATE NAME INITIALS
-------- ---------- --------- --------

7 1963-05-11 Wise GWS
8 1962-07-08 Newcastle B
44 1963-01-09 Baker E
95 1963-05-14 Miller P
100 1963-02-28 Parmenter P

Exercise 8.29: Get the payment number of each penalty between $50 and $100.

Exercise 8.30: Get the payment number of each penalty that is not between $50
and $100.

Exercise 8.31: Get the numbers of the players who joined the club after the age
of 16 and before reaching their 40s (we remind you that players can join the club
only on January 1 of each year).

8.10 THE LIKE OPERATOR

The LIKE operator selects alphanumeric values with a particular pattern or mask.

D E F I N I T I O N
<predicate with like> ::=

<scalar expression> [NOT] LIKE <like pattern>
[ESCAPE <character>]

<like pattern> ::= <scalar alphanumeric expression>

252 SQL for MySQL Developers

Example 8.43: Find the name and number of each player whose name begins
with a capital B.

SELECT NAME, PLAYERNO
FROM PLAYERS
WHERE NAME LIKE 'B%'

The result is:

NAME PLAYERNO
------ --------
Bishop 39
Baker 44
Brown 57
Bailey 112

Explanation: After the LIKE operator, you find an alphanumeric literal: 'B%'.
Because this literal comes after a LIKE operator and not after a comparison operator,
two characters, the percentage sign and the underscore, have a special meaning.
Such a literal is called a pattern or a mask. In a pattern, the percentage sign stands
for zero, one, or more characters. The underscore stands for exactly one random
character.

The collation is important to the LIKE operator. The previous SELECT statement
asked for the players whose names begin with a capital B or with a small b, followed
by zero, one, or more characters. If we install MySQL in a default way, we are using
the collation latin1_swedish_ci, which considers capital and small letters to be
equal. This does not apply to, for example, the collation latin1_general_cs. Chap-
ter 22 discusses collations in detail.

Example 8.44: Get the name and number of each player whose name ends with
the small letter r.

SELECT NAME, PLAYERNO
FROM PLAYERS
WHERE NAME LIKE '%r'

The result is:

NAME PLAYERNO
--------- ---------
Parmenter 6
Baker 44
Miller 95
Parmenter 100

253CHAPTER 8 SELECT Statement: The WHERE Clause

Example 8.45: Get the name and number of each player whose name has the let-
ter e as the penultimate letter.

SELECT NAME, PLAYERNO
FROM PLAYERS
WHERE NAME LIKE '%e_'

The result is:

NAME PLAYERNO
--------- --------
Parmenter 6
Baker 44
Miller 95
Bailey 112
Parmenter 100

The pattern does not have to be a simple alphanumeric literal. Each alphanu-
meric expression is permitted.

Example 8.46: Get the name, town, and number of each player whose name ends
with a letter that is equal to the third letter of his or her town.

SELECT NAME, TOWN, PLAYERNO
FROM PLAYERS
WHERE NAME LIKE CONCAT('%', SUBSTR(TOWN,3,1))

The result is:

NAME TOWN PLAYERNO
--------- --------- --------
Parmenter Stratford 6
Parmenter Stratford 100
Bailey Plymouth 112

In a pattern, if both the percentage sign and the underscore are absent, the
equal to operator can be used. In that case, the condition

NAME LIKE 'Baker'

is equivalent to this:

NAME = 'Baker'

Imagine that A is an alphanumeric column and P a pattern; then

A NOT LIKE P

254 SQL for MySQL Developers

is equivalent to this:

NOT (A LIKE P)

If we want to search for one or both of the two special symbols (_ and %), we have
to use an escape symbol.

Example 8.47: Find the name and number of each player whose name contains
an underscore.

SELECT NAME, PLAYERNO
FROM PLAYERS
WHERE NAME LIKE '%#_%' ESCAPE '#'

Explanation: Because no player satisfies this condition, no result returns. Every
character can be specified as an escape symbol. We chose # for this, but symbols
such as @, $, and ~ are also allowed. The symbol that follows the escape symbol in a
pattern then loses its special meaning. If we had not used the escape symbol in this
example, MySQL would have looked for players whose names contain at least one
character.

Exercise 8.32: Find the number and name of each player whose name contains
the string of letters is.

Exercise 8.33: Find the number and name of each player whose name is six
characters long.

Exercise 8.34: Find the number and name of each player whose name is at least
six characters long.

Exercise 8.35: Find the number and name of each player whose name has an r
as the third and penultimate letter.

Exercise 8.36: Get the number and name of each player whose town name has
the percentage sign in the second and penultimate position.

8.11 THE REGEXP OPERATOR

The previous section used the LIKE operator to select values with a certain pattern.
MySQL supports an additional operator to select rows with the help of patterns: the

255CHAPTER 8 SELECT Statement: The WHERE Clause

REGEXP operator. REGEXP is an abbreviation of regular expression. The REGEXP opera-
tor has more features but is not part of the SQL standard, as the LIKE operator is. A
synonym for the operator REGEXP is RLIKE.

D E F I N I T I O N
<predicate with rlike> ::=

<scalar expression> [NOT] [REGEXP | RLIKE]
<regexp pattern>

<regexp pattern> ::= <scalar expression>

The LIKE operator has two symbols with a special meaning: the percentage sign
and the underscore. The REGEXP operator has many more; see Table 8.3.

TABLE 8.3 Special Symbols Belonging to the REGEXP Operator

256 SQL for MySQL Developers

SPECIAL SYMBOL MEANING

^ The beginning of the value.
$ The end of the value.
[abc] The rule is satisfied if one of the characters specified between the

brackets occurs in the value.
[a-z] The rule is satisfied if one of the characters falling within the range

of the characters a and z occurs in the value.
[^a-z] The rule is satisfied if one of the characters falling within the range

of the characters a and z does not occur in the value.
. The rule is satisfied if one random character occurs on the position

of the point.
* The rule is satisfied if what comes in front of the asterisk occurs

zero, one, or more times.
() Brackets can be used to define a set of letters as a group.
+ The rule is satisfied if what comes in front of the plus occurs one or

more times.
? The rule is satisfied if what comes in front of the question mark

occurs zero or one time.
{n} The rule is satisfied if what comes in front of the brackets occurs n

times.
| This symbol works like an OR operator. The rule is satisfied if what

stands left or right of the symbol occurs.
[[.x.]] X represents a specific symbol. The rule is satisfied if this symbol

occurs within the value. The supported symbols are defined in the
file regexp/cname.h. Examples of symbols are the backspace,
newline, hyphen, plus sign, full stop, and colon.

continues

Example 8.48 uses no special symbols.

Example 8.48: Get the name and the number of each player who has the small
letter e in his or her name.

SELECT NAME, PLAYERNO
FROM PLAYERS
WHERE NAME REGEXP 'e'

The result is:

NAME PLAYERNO
--------- --------
Everett 2
Parmenter 6
Wise 7
Newcastle 8
Baker 44
Hope 83
Miller 95
Parmenter 100
Bailey 112

Explanation: This statement does not really show the added value of the REGEXP
operator because the same result could have been created with the condition NAME
LIKE '%e%'.

Obviously, several characters may be used in the pattern, such as NAME REGEXP

'john' and NAME REGEXP 'a_b'.

The collation plays an important role for the LIKE operator. The same applies to
the REGEXP operator: For certain collations, capitals and small characters are con-
sidered equal. If we had used another collation in the previous example, such as
latin1_general_cs, this statement would have had a different result.

257CHAPTER 8 SELECT Statement: The WHERE Clause

SPECIAL SYMBOL MEANING

[[:<:]] and [[:>:]] These two symbols represent the beginning and end of a word,
respectively.

[[:x:]] The x indicates a group of characters. The rule is satisfied if one of
the characters from the group occurs within the value.

TABLE 8.3 Continued

Example 8.49: Get the name and number of each player whose name begins with
the letter combination ba.

SELECT NAME, PLAYERNO
FROM PLAYERS
WHERE NAME REGEXP '^ba'

The result is:

NAME PLAYERNO
------ --------
Baker 44
Bailey 112

Explanation: Because the symbol ^ is used, MySQL looks for names that begin
with the letters ba. Obviously, using ^ makes sense only if it is used at the beginning
of the pattern.

Example 8.50: Get the name, the street, and the number of each player whose
name ends with the same letter as the first letter of his or her street.

SELECT NAME, STREET, PLAYERNO
FROM PLAYERS
WHERE NAME REGEXP CONCAT(SUBSTR(STREET,1,1), '$')

The result is:

NAME STREET PLAYERNO
---- ------------- --------
Wise Edgecombe Way 7

Explanation: The SUBSTR function is used to subtract the first letter of the street,
which is the capital letter E in this case. Next, this letter is glued to the dollar sign
with the CONCAT function. And because the dollar sign is present, MySQL checks
whether any names end with an E. This example shows that complex expressions
can be used within a pattern.

Example 8.51: Get the name and number of each player whose name contains
the letters a, b, or c.

SELECT NAME, PLAYERNO
FROM PLAYERS
WHERE NAME REGEXP '[abc]'

258 SQL for MySQL Developers

The result is:

NAME PLAYERNO
--------- --------
Parmenter 6
Newcastle 8
Collins 27
Collins 28
Bishop 39
Baker 44
Brown 57
Parmenter 100
Moorman 104
Bailey 112

The previous pattern could also have been written as [a-c], meaning to look for
all the values that contain a letter that falls within the range a up to c.

Example 8.52: Get the name and the number of each player whose name con-
sists of the pattern m.n. The point can be any random character.

SELECT NAME, PLAYERNO
FROM PLAYERS
WHERE NAME REGEXP 'm.n'

The result is:

NAME PLAYERNO
--------- --------
Parmenter 6
Parmenter 100
Moorman 104

Explanation: For the REGEXP operator, the point has the same function as the _ for
the LIKE operator.

Example 8.53: Get the name and number of each player whose name consists of
the letters m, e, or n, followed again by m, e, or n.

SELECT NAME, PLAYERNO
FROM PLAYERS
WHERE NAME REGEXP '[men][men]'

259CHAPTER 8 SELECT Statement: The WHERE Clause

The result is:

NAME PLAYERNO
--------- --------
Parmenter 6
Newcastle 8
Parmenter 100

Explanation: This condition is used to check whether the combination mm, me, mn,
em, ee, en, nm, ne, or nn occurs somewhere.

Example 8.54: Get the number and the postcode of each player whose postcode
has a 3 as third digit.

SELECT PLAYERNO, POSTCODE
FROM PLAYERS
WHERE POSTCODE REGEXP '^[0-9][0-9]3'

The result is:

PLAYERNO POSTCODE
-------- --------

6 1234KK
104 9437AO

Example 8.55: Get the street and number of each player whose street name
begins with the St and ends with Road.

SELECT STREET, PLAYERNO
FROM PLAYERS
WHERE STREET REGEXP '^St.*Road$'

The result is:

STREET PLAYERNO
------------ --------
Stoney Road 2
Station Road 8

Explanation: The asterisk says something about the character that stands in front
of it, which is a point in this pattern. The construct .* indicates that a set of random
characters is allowed.

260 SQL for MySQL Developers

Example 8.56: Find the number and postcode of each player whose postcode
consists of one or more digits followed by one or more letters.

SELECT PLAYERNO, POSTCODE
FROM PLAYERS
WHERE POSTCODE REGEXP '[0-9][0-9]*[a-z][a-z]*'

Explanation: Evidently, the result consists of all the rows from the PLAYERS table.

The asterisk represents zero, one, or more characters. By contrast, the plus sign
stands for one or more characters, and the question mark stands for zero or one
character. Using the plus, we could simplify the previous condition as follows:
POSTCODE REGEXP '[0-9]+[a-z]+'.

Example 8.57: Get the name and number of each player whose names does not
start with the capital letters A to M.

SELECT NAME, PLAYERNO
FROM PLAYERS
WHERE NAME REGEXP '^[^A-M]'

The result is:

NAME PLAYERNO
--------- --------
Parmenter 6
Wise 7
Newcastle 8
Parmenter 100

Example 8.58: Get the number and name of each player whose name consists of
seven or more letters.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME REGEXP '^[a-z]{7}'

The result is:

PLAYERNO NAME
-------- ---------

2 Everett
6 Parmenter
8 Newcastle
27 Collins
28 Collins
100 Parmenter
104 Moorman

261CHAPTER 8 SELECT Statement: The WHERE Clause

Explanation: Names that contain a comma or a blank in the first eight positions
do not show up in the result.

Instead of one number, you may specify two. If two numbers are specified, as in
{2,5}, the string you are looking for must appear at least twice and at most five
times.

Example 8.59: Get the number and name of each player whose name consists of
at least six and at most seven letters.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME REGEXP '^[a-z]{6,7}$'

The result is:

PLAYERNO NAME
-------- -------

2 Everett
27 Collins
28 Collins
39 Bishop
95 Miller
104 Moorman
112 Bailey

The symbol * is equivalent to {0,}, + is equivalent to {1,}, and ? is equivalent
to {0,1}.

Example 8.60: Get the number and postcode of each player whose postcode con-
tains four 4s in a row.

SELECT PLAYERNO, POSTCODE
FROM PLAYERS
WHERE POSTCODE REGEXP '4{4}'

The result is:

PLAYERNO POSTCODE
-------- --------

44 4444LJ

262 SQL for MySQL Developers

Example 8.61: Get the number and street of each player whose street name con-
tains strings Street or Square.

SELECT PLAYERNO, STREET
FROM PLAYERS
WHERE STREET REGEXP 'Street|Square'

The result is:

PLAYERNO STREET
-------- ------------

39 Eaton Square
44 Lewis Street
95 High Street
104 Stout Street

Example 8.62: Get the number and name of each player whose name contains a
space.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME REGEXP '[[.space.]]'

This query does not have a result because no name in the PLAYERS table con-
tains a space.

Example 8.63: Get the number and street of each player whose street name con-
tains the word Street.

SELECT PLAYERNO, STREET
FROM PLAYERS
WHERE STREET REGEXP '[[:<:]]Street[[:>:]]'

The result is:

PLAYERNO STREET
-------- ------------

44 Lewis Street
95 High Street
104 Stout Street

The symbol [:x:] enables you to search for specific groups of characters, to so-
called character classes. The x must be replaced by one of the codes from Table 8.4.

263CHAPTER 8 SELECT Statement: The WHERE Clause

These special codes appear in these examples of conditions with REGEXP opera-
tors. All these conditions return true as a result:

'AaA' REGEXP '[[:lower:]]+'
'A!!A' REGEXP '[[:punct:]]+'
'A A' REGEXP '[[:blank:]]+'

Exercise 8.37: Get the number and name of each player whose name contains
the combination of letters en. Use the REGEXP operator.

Exercise 8.38: Get the number and name of each player whose name begins with
an n and ends with an e. Use the REGEXP operator.

Exercise 8.39: Get the number and name of each player whose name is at least
nine characters long. Use the REGEXP operator.

8.12 THE MATCH OPERATOR

With the LIKE and REGEXP operators, you can look for character strings that appear
in a certain column. If you want to store pieces of text in the tables, such as descrip-
tions of products, summaries of books, or complete manuals, the search capabilities
of LIKE and REGEXP often do not suffice because you likely want to search for words,
not character strings. Specifically, the MATCH operator was added to MySQL to
search for words in pieces of text.

264 SQL for MySQL Developers

TABLE 8.4 Codes Belonging to the Symbol [[:x:]]

CODE CHARACTER CLASS

alnum Alphanumeric characters
alpha Alphabetic characters
blank Whitespace characters
cntrl Control characters
digit Digit characters
graph Graphic characters
lower Lowercase alphabetic characters
print Graphic or space characters
punct Punctuation characters
space Space, tab, newline, and carriage return
upper Uppercase alphabetic characters
xdigit Hexadecimal digit characters

D E F I N I T I O N
<predicate with match> ::=

MATCH (<column specification>
[, <column specification>]...)

AGAINST (<scalar expression> [<search style>])

<column specification> ::=
[<table specification> .] <column name>

<search style> ::=
IN NATURAL LANGUAGE MODE |
IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION |
IN BOOLEAN MODE |
WITH QUERY EXPANSION

The different search styles are important in this definition. MySQL supports
three different search styles: a natural language search, a natural language search
with query expansion and a Boolean search. If no search style has been specified,
MySQL assumes that the natural language search should be used. MySQL has sup-
ported these search styles for some time now. However, only since Version 5.1 has
MySQL supported specifying the first two search styles in a MATCH operator.

The sample database does not contain a table with text. To illustrate the MATCH
operator and the different search styles, we create a new table.

Example 8.64: Create a table for storing the authors, title, year of publication,
and summary of a book.

CREATE TABLE BOOKS
(BOOKNO INTEGER NOT NULL PRIMARY KEY,
AUTHORS TEXT NOT NULL,
TITLE TEXT NOT NULL,
YEAR_PUBLICATION YEAR NOT NULL,
SUMMARY TEXT NOT NULL)

ENGINE = MyISAM

Explanation: The CREATE TABLE statement ends with the specification ENGINE =
MyISAM. Section 20.10.1 explains the meaning of this specification. For now, we
limit ourselves by stating that we cannot use the MATCH operator without this
specification.

265CHAPTER 8 SELECT Statement: The WHERE Clause

Example 8.65: Enter data on five books into the new BOOKS table.

SET @@SQL_MODE = 'PIPES_AS_CONCAT'

INSERT INTO BOOKS VALUES (1,
'Ramez Elmasri and Shamkant B. Navathe',
'Fundamentals of Database Systems', 2007,
'This market-leading text serves as a valued resource for '||
'those who will interact with databases in future courses '||
'and careers. Renowned for its accessible, comprehensive '||
'coverage of models and real systems, it provides an '||
'up-to-date introduction to modern database technologies.')

INSERT INTO BOOKS VALUES (2,
'George Coulouris, Jean Dollimore and Tim Kindberg',
'Distributed Systems: Concepts and Design', 2005,
'This book provides broad and up-to-date coverage of the '||
'principles and practice in the fast moving area of '||
'distributed systems. It includes the key issues in the '||
'debate between components and web services as the way '||
'forward for industry. The depth of coverage will enable '||
'students to evaluate existing distributed systems and '||
'design new ones.')

INSERT INTO BOOKS VALUES (3,
'Rick van der Lans',
'Introduction to SQL: Mastering the Relational Database '||
'Language', 2007,
'This book provides a technical introduction to the '||
'features of SQL. Aimed at those new to SQL, but not new '||
'to programming, it gives the reader the essential skills '||
'required to start programming with this language. ')

INSERT INTO BOOKS VALUES (4,
'Chris Date',
'An Introduction to Database Systems', 2004,
'Continuing in the eighth edition, this book provides a '||
'comprehensive introduction to the now very large field of '||
'database systems by providing a solid grounding in the '||
'foundations of database technology. This new edition has '||
'been rewritten and expanded to stay current with database '||
'system trends.')

INSERT INTO BOOKS VALUES (5,
'Thomas M. Connolly and Carolyn E. Begg',
'DataBase Systems: A Practical Approach to Design, '||
'Implementation and Management',
2005,
'A clear introduction to design implementation and management '||
'issues, as well as an extensive treatment of database '||
'languages and standards, make this book an indispensable '||
'complete reference for database students and professionals.')

266 SQL for MySQL Developers

To be able to use the MATCH operator on the TITLE and SUMMARY columns
(these are the columns that contain text and words), a special index must be defined
on both.

Example 8.66: Create the required indexes.

CREATE FULLTEXT INDEX INDEX_TITLE
ON BOOKS (TITLE)

CREATE FULLTEXT INDEX INDEX_SUMMARY
ON BOOKS (SUMMARY)

Explanation: Special about this statement is the specification FULLTEXT. Section
4.10 briefly explained the concept of an index, and Chapter 25, “Using Indexes,”
describes it more extensively. For now, we indicate that the term FULLTEXT creates a
special kind of index that is required to be able to work with the MATCH operator. If
a fulltext index is created, MySQL extracts all the whole words from the individual
values. For the title of the book with number 2, that means the words Distributed,
Systems, Concepts, and, and Design.

Now we are ready to use the MATCH operator. We begin with an explanation of the
natural language search.

Example 8.67: Get the numbers and titles of the books in which the word design
occurs.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('design')

The result is:

BOOKNO TITLE
------ ---

2 Distributed Systems: Concepts and Design
5 DataBase Systems: A Practical Approach to Design,

Implementation and Management

Explanation: The result contains only those rows in which the word design
occurs. This example shows that the MATCH operator does not make a distinction
between capital and lowercase letters. The operator is not case sensitive.

267CHAPTER 8 SELECT Statement: The WHERE Clause

The previous statement could have been formulated as follows:

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE)

AGAINST ('design' IN NATURAL LANGUAGE MODE)

This would have given the same result because the natural language search is
the default search style.

A natural language search has three specific characteristics. First, stopwords
are ignored. Stopwords are words such as and, or, the, and to. These words appear
so often in texts that searching on them is meaningless. After all, searching for
those words would return no result. Second, a natural language search means that if
a word appears in more than 50 percent of the rows, it is regarded as a stopword.
This means that if you fill the BOOKS table with one row only, any natural language
search would return no result. Third, the result of a natural language search is also
sorted in such a way that the most relevant rows are presented first.

Example 8.68: Get the numbers and titles of the books in which the word to
appears.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('to')

Explanation: This statement returns no result, even though the word to appears
in four out of five titles. It is a stopword, so it is not indexed.

Example 8.69: Get the numbers and titles of the books in which the word data-
base appears.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('database')

Explanation: This statement with a natural language search returns no result
because the word database appears in four out of the five books (thus, in more than
50 percent of them): books 1, 3, 4, and 5.

Searching for the word practical does give a rather interesting result; see the fol-
lowing example.

268 SQL for MySQL Developers

Example 8.70: Get the numbers and titles of the books in which the word
practical appears.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('practical')

The result is:

BOOKNO TITLE
------ ---

5 DataBase Systems: A Practical Approach to Design,
Implementation and Management

Note that if you search for a certain word, the entire word must appear in the
title; it cannot be a part of a longer word. If the word practicality appeared in the
title of a book, it would not satisfy the condition of the previous example.

As mentioned, in a natural language search, the rows are sorted on relevance.
The rows in which the searched value appears most are presented first. MySQL can
do this by adding a numeric value to the result of a MATCH operator, the so-called rel-
evance value. If the relevance value is greater than 0, the row concerned is included
in the result. If all rows are found, the result is sorted on those relevance values.

This relevance value can be retrieved.

Example 8.71: Get the numbers and relevance values of the books in which
distributed appears in the summary.

SELECT BOOKNO, MATCH(SUMMARY) AGAINST ('distributed')
FROM BOOKS

The result is:

BOOKNO MATCH(SUMMARY) AGAINST ('distributed')
------ --------------------------------------

1 0
2 1.6928264817988
3 0
4 0
5 0

Explanation: The word distributed appears twice in the summary of book 2, and
that leads to the relevance value 1.6928264817988.

Another example is the word principles. This word appears only once and,
because of that, has a lower relevance value, which is 0.99981059964612.

269CHAPTER 8 SELECT Statement: The WHERE Clause

Example 8.72: Get the numbers and relevance values of the books in which the
word introduction appears in the title.

SELECT BOOKNO, MATCH(TITLE) AGAINST ('introduction')
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('introduction')

The result is:

BOOKNO MATCH(TITLE) AGAINST ('introduction')
------ -------------------------------------

4 0.39194306797333
3 0.38341854994499

Explanation: By adding an ORDER BY clause, this sequence can be changed again,
of course.

Multiple words may also be specified behind AGAINST. In that case, MySQL checks
whether one or more of the words appear in the relevant column.

Example 8.73: Get the numbers and titles of the books in which the word
practical and/or the word distributed appears in the title.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('practical distributed')

The result is:

BOOKNO TITLE
------ ---

2 Distributed Systems: Concepts and Design
5 DataBase Systems: A Practical Approach to Design,

Implementation and Management

It is also possible to search on two or more columns. In that case, a fulltext
index must be created on the combination of those columns. If we want to search for
words in the TITLE and SUMMARY columns, we must create the following index.

Example 8.74: Create a fulltext index on the combination of TITLE and
SUMMARY.

CREATE FULLTEXT INDEX INDEX_TITLE_SUMMARY
ON BOOKS (TITLE, SUMMARY)

Now we can search in both columns.

270 SQL for MySQL Developers

Example 8.75: Get the numbers and titles of the books in which the word
careers appears in the title and/or the summary.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE, SUMMARY) AGAINST ('careers')

The result is:

BOOKNO TITLE
------ --------------------------------

1 Fundamentals of Database Systems

Explanation: The word careers appears in the summary of book 1.

The second search style is the Boolean search. With this search style, the 50 per-
cent check does not apply; every word counts now.

Example 8.76: Get the numbers and titles of the books in which database
appears in the title.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('database' IN BOOLEAN MODE)

The result is:

BOOKNO TITLE
------ --

1 Fundamentals of Database Systems
3 Introduction to SQL: Mastering the Relational Database

Language
4 An Introduction to Database Systems
5 DataBase Systems: A Practical Approach to Design,

Implementation and Management

Explanation: Despite the fact that the word database appears in more than 50
percent of the rows, it is still included in the result. Compare this result to that of
Example 8.69, which uses a natural language search. By adding the specification
IN BOOLEAN MODE, we force MySQL into a Boolean search: If the value contains the
word database, it is included in the result; otherwise, it is not.

Example 8.77: Get the numbers and titles of the books in which the word
introduction appears in the title and/or summary.

271CHAPTER 8 SELECT Statement: The WHERE Clause

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE, SUMMARY)

AGAINST ('introduction' IN BOOLEAN MODE)

The result is:

BOOKNO TITLE
------ --

1 Fundamentals of Database Systems
3 Introduction to SQL: Mastering the Relational Database

Language
4 An Introduction to Database Systems
5 DataBase Systems: A Practical Approach to Design,

Implementation and Management

Example 8.78: Get the numbers and titles of the books in which the word
database and/or the word design appears.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE)

AGAINST ('database design' IN BOOLEAN MODE)

The result is:

BOOKNO TITLE
------ --

1 Fundamentals of Database Systems
2 Distributed Systems: Concepts and Design
3 Introduction to SQL: Mastering the Relational Database

Language
4 An Introduction to Database Systems
5 DataBase Systems: A Practical Approach to Design,

Implementation and Management

In Boolean searches, you may specify several operators before the search
words; see Table 8.5. These Boolean search operators affect the end result.

TABLE 8.5 Overview of Boolean Search Operators

272 SQL for MySQL Developers

+data Search for the values in which the word data appears.
-data Search for the values in which the word data does not

appear.
>data Search for the values in which the word data appears,

and increase the relevance value 50%.

continues

Example 8.79: Get the numbers and titles of the books in which the words
database and design appear.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE)

AGAINST ('+database +design' IN BOOLEAN MODE)

The result is:

BOOKNO TITLE
------ ---

5 DataBase Systems: A Practical Approach to Design,
Implementation and Management

Explanation: The words we are searching need not be right after each other in
the text.

Example 8.80: Give the numbers and titles of the books in which the word
database appears, but not the word design.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE)

AGAINST ('+database -design' IN BOOLEAN MODE)

The result is:

BOOKNO TITLE
------ --

1 Fundamentals of Database Systems
3 Introduction to SQL: Mastering the Relational Database

Language
4 An Introduction to Database Systems

273CHAPTER 8 SELECT Statement: The WHERE Clause

BOOLEAN SEARCH OPERATORS MEANING

<data Search for the values in which the word data appears
and decrease the relevance value 33%.

() With this, search words can be nested.
~data Search for the values in which the word data appears,

and make the relevance value negative.
data* Search for the values in which words appear that

begin with the term data.
"data data data" Search for the values in which the phrase data data

data appears literally.

TABLE 8.5 Continued

If you want to search for a certain phrase, you must place double quotation
marks before and after the phrase.

Example 8.81: Get the numbers and titles of the books in which the phrase
design implementation appears.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE)

AGAINST ('"design implementation"' IN BOOLEAN MODE)

The result is:

BOOKNO TITLE
------ --

5 DataBase Systems: A Practical Approach to Design,
Implementation and Management

Explanation: The fact that a comma exists between the two words in the original
text is not important.

With the Boolean search, you may also search on parts of words. In that case, we
use the asterisk, comparable to using the LIKE operator.

Example 8.82: Get the numbers and titles of the books in which words appear
that begin with data.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('data*' IN BOOLEAN MODE)

The result is:

BOOKNO TITLE
------ --

1 Fundamentals of Database Systems
2 Distributed Systems: Concepts and Design
3 Introduction to SQL: Mastering the Relational Database

Language
4 An Introduction to Database Systems
5 DataBase Systems: A Practical Approach to Design,

Implementation and Management

Fulltext indexes are not necessary for the execution of a Boolean search. How-
ever, these indexes improve the processing, of course.

274 SQL for MySQL Developers

The third search style is the natural language search with query expansion. In
that case, the statement is performed in two steps. Consider an example.

Example 8.83: Get the numbers and titles of the books in which words appear
that begin with data.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('practical'

IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION)

The following natural language search is processed first:

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('practical')

The intermediate result is:

BOOKNO TITLE
------ ---

5 DataBase Systems: A Practical Approach to Design,
Implementation and Management

Next, all words that are found are included in the MATCH operator:

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST (' DataBase Systems: A Practical

Approach to Design, Implementation and Management')

The result is:

BOOKNO TITLE
------ ---

5 DataBase Systems: A Practical Approach to Design,
Implementation and Management

2 Distributed Systems: Concepts and Design

Explanation: The term query expansion means that the statement is expanded
with the words from the first intermediate result. The specification IN NATURAL LAN-
GUAGE MODE may be omitted in the MATCH operator.

Several system variables relate to conditions with the MATCH operator: FT_MAX_

WORD_LEN, FT_MIN_WORD_LEN, FT_QUERY_EXPANSION_LIMIT, FT_STOPWORD_FILE, and
FT_BOOLEAN_SYNTAX. FT_MAX_WORD_LEN represents the maximum length of words that

275CHAPTER 8 SELECT Statement: The WHERE Clause

can be included in a fulltext index. This variable has a standard value of 84.
FT_MIN_WORD_LEN represents the minimum length of words that are included. This
value is usually equal to 4, which means that it makes no sense to look for words
such as SQL.

Example 8.84: Give the numbers and titles of the books in which the word sql
appears.

SELECT BOOKNO, TITLE
FROM BOOKS
WHERE MATCH(TITLE) AGAINST ('sql')

This statement does not have a result because the search word consists of three
letters only. You can adjust this variable at MySQL startup. Keep in mind, however,
that all relevant indexes have to be rebuilt in this case.

FT_QUERY_EXPANSION_LIMIT indicates the number of top matches executed for
queries that include query expansion.

FT_STOPWORD_FILE gives the name of the file containing the stopwords. If the
value of this variable is equal to the value built-in, the list is used that is standard
included. You will find this list in the manual of MySQL.

FT_BOOLEAN_SYNTAX indicates which operators can be used with Boolean
searches.

Exercise 8.40: Get the numbers and summaries of the books in which the word
students appears in the summary; use a natural language search.

Exercise 8.41: Get the numbers and summaries of the books in which the word
database appears in the summary; use a Boolean search.

Exercise 8.42: Get the numbers and summaries of the books in which the words
database and languages appear in the summary; use a natural language search.

Exercise 8.43: Get the numbers and summaries of the books in which the word
database but not the word languages appears in the summary; use a Boolean
search.

8.13 THE IS NULL OPERATOR

The IS NULL operator selects rows that have no value in a particular column.

276 SQL for MySQL Developers

D E F I N I T I O N
<predicate with null> ::=

<scalar expression> IS [NOT] NULL

Example 8.4 showed how to find all players with a league number. This state-
ment can also be formulated in another way that corresponds more to the original
question.

Example 8.85: Get the player number and the league number of each player who
has a league number.

SELECT PLAYERNO, LEAGUENO
FROM PLAYERS
WHERE LEAGUENO IS NOT NULL

Explanation: Note that the word IS may not be replaced by the equals sign.

This condition could have been simplified by leaving out the specification IS NOT
NULL; see Section 8.5. Still, we recommend the previous syntax because it is in
accordance with the SQL standard.

If NOT is omitted, you get all the players who have no league number.

Example 8.86: Get the name, number, and league number of each player whose
league number is not equal to 8467.

SELECT NAME, PLAYERNO, LEAGUENO
FROM PLAYERS
WHERE LEAGUENO <> '8467'
OR LEAGUENO IS NULL

The result is:

NAME PLAYERNO LEAGUENO
--------- -------- --------
Everett 2 2411
Wise 7 ?
Newcastle 8 2983
Collins 27 2513
Collins 28 ?
Bishop 39 ?
Baker 44 1124
Brown 57 6409
Hope 83 1608
Miller 95 ?
Parmenter 100 6524
Moorman 104 7060
Bailey 112 1319

277CHAPTER 8 SELECT Statement: The WHERE Clause

If the condition LEAGUENO IS NULL were left out, the result would contain only
rows in which the LEAGUENO column is not equal to null and not equal to 8467
(see the result table here). This is because the value of the condition LEAGUENO <>
'8467' is unknown if the LEAGUENO column has the value null. The result table is:

NAME PLAYERNO LEAGUENO
--------- -------- --------
Everett 2 2411
Newcastle 8 2983
Collins 27 2513
Baker 44 1124
Brown 57 6409
Hope 83 1608
Parmenter 100 6524
Moorman 104 7060
Bailey 112 1319

Imagine that E1 is an expression; then

E1 IS NOT NULL

is equivalent to this:

NOT (E1 IS NULL)

278 SQL for MySQL Developers

N O T E
A condition with IS NULL or IS NOT NULL can never have the value unknown;
work this out by yourself.

Exercise 8.44: Get the number of each player who has no league number.

Exercise 8.45: Why is the condition in the following SELECT statement not
useful?

SELECT *
FROM PLAYERS
WHERE NAME IS NULL

8.14 THE EXISTS OPERATOR

This section discusses another operator with which subqueries can be used in con-
junction with main queries: the EXISTS operator:

D E F I N I T I O N
<predicate with exists> ::= EXISTS <table subquery>

<table subquery> ::= (<table expression>)

Example 8.87: Find the names and initials of players for whom at least one
penalty has been paid.

The question in this example can be answered using an IN operator:

SELECT NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)

The result is:

NAME INITIALS
--------- --------
Parmenter R
Baker E
Collins DD
Moorman D
Newcastle B

The question can also be answered using the EXISTS operator:

SELECT NAME, INITIALS
FROM PLAYERS
WHERE EXISTS

(SELECT *
FROM PENALTIES
WHERE PLAYERNO = PLAYERS.PLAYERNO)

But what does this statement mean exactly? For every player in the PLAYERS
table, MySQL determines whether the subquery returns a row. In other words, it
checks to see whether there is a non-empty result (EXISTS). If the PENALTIES table
contains at least one row with a player number that is equal to that of the player
concerned, that row satisfies the condition. Consider an example. For the first row
in the PLAYERS table, player 6, the following subquery is executed (behind the
scenes):

SELECT *
FROM PENALTIES
WHERE PLAYERNO = 6

279CHAPTER 8 SELECT Statement: The WHERE Clause

The (intermediate) result consists of one row, so in the end result, we see the
name and initials of the player whose number is 6.

The previous subquery is executed for the second, third, and subsequent rows
of the PLAYERS table. The only thing that changes each time is the value for
PLAYERS.PLAYERNO in the condition of the WHERE clause. The subquery can
therefore have a different intermediate result for each player in the PLAYERS
table.

The difference between how these two different solutions work can best be
explained by examples written in the pseudo language introduced in Section 8.1.
The formulation with the IN operator is as follows:

SUBQUERY-RESULT := [];
FOR EACH PEN IN PENALTIES DO

SUBQUERY-RESULT :+ PEN;
ENDFOR;
END-RESULT := [];
FOR EACH P IN PLAYERS DO

IF P.PLAYERNO IN SUBQUERY-RESULT THEN
END-RESULT :+ P;

ENDIF;
ENDFOR;

The formulation with the EXISTS operator is:

END-RESULT := [];
FOR EACH P IN PLAYERS DO

FOR EACH PEN IN PENALTIES DO
COUNTER := 0;
IF P.PLAYERNO = PEN.PLAYERNO THEN

COUNTER := COUNTER + 1;
ENDIF;

ENDFOR;
IF COUNTER > 0 THEN

END-RESULT :+ P;
ENDIF;

ENDFOR;

Example 8.88: Get the names and initials of the players who are not team
captains.

SELECT NAME, INITIALS
FROM PLAYERS
WHERE NOT EXISTS

(SELECT *
FROM TEAMS
WHERE PLAYERNO = PLAYERS.PLAYERNO)

280 SQL for MySQL Developers

The result is:

NAME INITIALS
--------- --------
Everett R
Wise GWS
Newcastle B
Collins C
Bishop D
Baker E
Brown M
Hope PK
Miller P
Parmenter P
Moorman D
Bailey IP

A condition that contains only an EXISTS operator always has the value true or
false and is never unknown. Section 8.16 returns to the EXISTS operator and corre-
lated subqueries.

As mentioned before, during the evaluation of a condition with the EXISTS oper-
ator, MySQL looks to see if the result of the subquery returns rows but does not look
at the contents of the rows. This makes what you specify in the SELECT clause com-
pletely irrelevant. You can even specify a literal. Therefore, the previous statement
is equivalent to the following statement:

SELECT NAME, INITIALS
FROM PLAYERS
WHERE NOT EXISTS

(SELECT 'nothing'
FROM TEAMS
WHERE PLAYERNO = PLAYERS.PLAYERNO)

Exercise 8.46: Get the name and initial(s) of each player who is a captain of at
least one team.

Exercise 8.47: Get the name and initial(s) of each player who is not a captain of
any team in which player 112 has ever played. The player may not be a captain of
one of the teams in which player 112 has ever played.

8.15 THE ALL AND ANY OPERATORS

Another way of using a subquery is with the ALL and ANY operators. These operators
resemble the IN operator with subquery. The SOME operator has the same meaning as
the ANY operator; ANY and SOME are just synonyms.

281CHAPTER 8 SELECT Statement: The WHERE Clause

As the following definition shows, in the ANY and ALL operators, only scalar
expressions can be used, not row expressions.

D E F I N I T I O N
<predicate with any all> ::=

<scalar expression> <any all operator> <column subquery>

<column subquery> ::= (<table expression>)

<any all operator> ::=
<comparison operator> { ALL | ANY | SOME }

Example 8.89: Get the player numbers, names, and dates of birth of the oldest
players. The oldest players are those whose date of birth is less than or equal to that
of every other player.

SELECT PLAYERNO, NAME, BIRTH_DATE
FROM PLAYERS
WHERE BIRTH_DATE <= ALL

(SELECT BIRTH_DATE
FROM PLAYERS)

The result is:

PLAYERNO NAME BIRTH_DATE
-------- ------- ----------

2 Everett 1948-09-01

Explanation: The intermediate result of the subquery consists of the dates of
birth of all players. Next, MySQL evaluates each player in the main query and
checks whether the date of birth of that player is less than or equal to each date of
birth that is in the intermediate result of the subquery.

Example 8.90: Get the player numbers and dates of birth of the players who are
older than all the players who have ever played for team 2.

SELECT PLAYERNO, BIRTH_DATE
FROM PLAYERS
WHERE BIRTH_DATE < ALL

(SELECT BIRTH_DATE
FROM PLAYERS AS P INNER JOIN MATCHES AS M

ON P.PLAYERNO = M.PLAYERNO
WHERE M.TEAMNO = 2)

282 SQL for MySQL Developers

The result is:

PLAYERNO BIRTH_DATE
-------- ----------

2 1948-09-01
39 1956-10-29
83 1956-11-11

Explanation: The subquery is used to retrieve the dates of birth of all the players
who have ever played a match for team 2. In chronological order, these are 1962-
07-08, 1964-12-28, 1970-05-10, 1963-10-01, and 1963-10-01. Next, the main query
is used to determine for each player whether his or her date of birth is less than all
these five dates. If we had used <= in the condition, player 8 would also have
appeared in the result. However, that would not have been right because player 8
has played for team 2, and he is not older than all players because he cannot be
older than himself.

Example 8.91: For each team, find the team number and the number of the
player with the lowest number of sets won.

SELECT DISTINCT TEAMNO, PLAYERNO
FROM MATCHES AS M1
WHERE WON <= ALL

(SELECT WON
FROM MATCHES AS M2
WHERE M1.TEAMNO = M2.TEAMNO)

The result is:

TEAMNO PLAYERNO
------ --------

1 83
1 8
2 8

Explanation: Again, the SELECT statement contains a correlated subquery. The
result is that, for each match (that is found in the main query), a set of matches is
retrieved with the subquery. For example, for match 1 (played by team 1), the
(intermediate) result of the subquery consists of the matches 1, 2, 3, 4, 5, 6, 7, and
8. These are all matches played with a team number that is equal to the team num-
ber belonging to match 1. The final result of the subquery for this first match con-
sists of the won values of those matches—respectively, 3, 2, 3, 3, 0, 1, 3, and 0. Next,
MySQL checks whether the won value is smaller than or equal to each of these val-
ues. For any match where this is so, the number of the team and player is printed.

283CHAPTER 8 SELECT Statement: The WHERE Clause

For the IN operator, we have shown precisely when such a condition is true, false,
or unknown. We can do the same for the ALL operator. Imagine that C is the name of
the column and that v1, v2, …, vn are values that form the intermediate result of sub-
query (S). It follows that

C <= ALL (S)

is equivalent to this:

(C = C) AND (C <= v1) AND (C = v2) AND ... AND (C = vn) AND true

The following should be noted concerning certain specific situations:

■ If C is equal to the null value, the entire condition evaluates to unknown
because the condition C = C is equal to unknown; this rule holds independ-
ently of the numbers of values in the result of the subquery.

■ If C is not equal to the null value and the subquery returns no result, the con-
dition evaluates to true because at the end of this “longhand” condition,
true is specified.

■ If C is not equal to the null value, and if one of the v values is equal to the
null value and one of the other v values is not equal to the null value, the
condition can be false or unknown.

■ If C is not equal to the null value and all v values are equal to the null value,
the condition evaluates to unknown.

The following examples illustrate some of these rules.

Example 8.92: Get the highest league number and the corresponding player
number.

SELECT LEAGUENO, PLAYERNO
FROM PLAYERS
WHERE LEAGUENO >= ALL

(SELECT LEAGUENO
FROM PLAYERS)

Because the LEAGUENO column contains null values, the intermediate result
of the subquery will also have null values. Therefore, the following condition is
evaluated for each row:

(LEAGUENO >= 2411) AND
(LEAGUENO >= 8467) AND
(LEAGUENO >= NULL) AND ... AND true

284 SQL for MySQL Developers

This condition can be true only if all conditions are true, and that does not
hold for, among other things, the third condition. So this statement returns an empty
result.

We must add a condition to the subquery to eliminate the null value.

SELECT LEAGUENO, PLAYERNO
FROM PLAYERS
WHERE LEAGUENO >= ALL

(SELECT LEAGUENO
FROM PLAYERS
WHERE LEAGUENO IS NOT NULL)

The result is:

LEAGUENO PLAYERNO
-------- --------
8467 6

This result also shows that when a player does not have a league number, he or
she will not appear in the final result.

Example 8.93: Find the player number, the town, and the league number for
each player who has the lowest league number of all players resident in his or her
town.

Many people will execute this statement:

SELECT PLAYERNO, TOWN, LEAGUENO
FROM PLAYERS AS P1
WHERE LEAGUENO <= ALL

(SELECT P2.LEAGUENO
FROM PLAYERS AS P2
WHERE P1.TOWN = P2.TOWN)

The result is:

PLAYERNO TOWN LEAGUENO
-------- --------- --------

27 Eltham 2513
44 Inglewood 1124
112 Plymouth 1319

Explanation: This statement returns an unexpected result. Where is Stratford?
Where is player 83? Don’t forget, he is the one with the lowest league number in
Stratford. This statement looks correct, but it is not. We explain the problem step by
step. For player 6, who lives in Stratford, for example, the (intermediate) result of the
subquery consists of the league numbers 8467, 1608, 2411, 6409, and 6524, and

285CHAPTER 8 SELECT Statement: The WHERE Clause

two null values. These are the league numbers of all players living in Stratford.
Because the subquery contains a null value, the condition for this player evaluates to
unknown. For player 83 with league number 1608, also living in Stratford, the condi-
tion evaluates to unknown as well. So both players are not included in the end result.

You can correct this omission by extending the condition in the subquery, as
follows:

SELECT PLAYERNO, TOWN, LEAGUENO
FROM PLAYERS AS P1
WHERE LEAGUENO <= ALL

(SELECT P2.LEAGUENO
FROM PLAYERS AS P2
WHERE P1.TOWN = P2.TOWN
AND LEAGUENO IS NOT NULL)

The result is:

PLAYERNO TOWN LEAGUENO
-------- --------- --------

27 Eltham 2513
44 Inglewood 1124
83 Stratford 1608
112 Plymouth 1319

Explanation: Player 83 from Stratford has correctly been added to the result.

The ANY operator is the counterpart of ALL. Consider an example.

Example 8.94: Get the player numbers, names, and dates of birth of all players
except the oldest.

SELECT PLAYERNO, NAME, BIRTH_DATE
FROM PLAYERS
WHERE BIRTH_DATE > ANY

(SELECT BIRTH_DATE
FROM PLAYERS)

The result is:

PLAYERNO NAME BIRTH_DATE
-------- --------- ----------

6 Parmenter 1964-06-25
7 Wise 1963-05-11
8 Newcastle 1962-07-08
27 Collins 1964-12-28
28 Collins 1963-06-22

286 SQL for MySQL Developers

continues

39 Bishop 1956-10-29
44 Baker 1963-01-09
57 Brown 1971-08-17
83 Hope 1956-11-11
95 Miller 1963-05-14
100 Parmenter 1963-02-28
104 Moorman 1970-05-10
112 Bailey 1963-10-01

Explanation: Again, the intermediate result of the subquery contains all the
dates of birth. However, this time we are searching for all the players whose date of
birth is greater than at least one date of birth of one other player. When such a date
of birth is found, the player is not the oldest. The result of this statement consists of
all players except the oldest one, and that is Everett; see the answer in the previous
example.

Imagine that C is the name of a column and that v1, v2, …, vn are values that form the
intermediate result of subquery (S). It follows that

C > ANY (S)

is equivalent to this:

(C = C) AND ((C > v1) OR (C > v2) OR ... OR (C > vn) OR false)

The following should be noted concerning certain specific situations:

■ If C is equal to the null value, the entire condition evaluates to unknown
because the condition C = C is equal to unknown; this rule holds independ-
ently of the numbers of values in the result of the subquery.

■ If C is not equal to the null value and the subquery returns no result, the con-
dition evaluates to false because at the end of this “longhand” condition,
false is specified.

■ If C is not equal to the null value, and if one of the v values is equal to the
null value and one of the other v values is not equal to the null value, the
condition can be true or unknown.

■ If C is not equal to the null value and all v values are equal to the null value,
the condition evaluates to unknown.

Instead of the greater than (>) and the less than or equal to (<=) operators that
we used in this section in our two examples, any of the other comparison operators
may be used.

287CHAPTER 8 SELECT Statement: The WHERE Clause

Example 8.95: Get the numbers of the players who have incurred at least one
penalty that is higher than a penalty paid for player 27; this player may not appear
in the result.

SELECT DISTINCT PLAYERNO
FROM PENALTIES
WHERE PLAYERNO <> 27
AND AMOUNT > ANY

(SELECT AMOUNT
FROM PENALTIES
WHERE PLAYERNO = 27)

The result is:

PLAYERNO

6

Explanation: The main query contains the additional condition PLAYERNO <> 27
because otherwise this player might also appear in the final result.

Example 8.96: Get the player number, date of birth, and town of each player who
is younger than at least one other player from the same town.

SELECT PLAYERNO, BIRTH_DATE, TOWN
FROM PLAYERS AS P1
WHERE BIRTH_DATE > ANY

(SELECT BIRTH_DATE
FROM PLAYERS AS P2
WHERE P1.TOWN = P2.TOWN)

The result is:

PLAYERNO BIRTH_DATE TOWN
-------- ---------- ---------

6 1964-06-25 Stratford
7 1963-05-11 Stratford
39 1956-10-29 Stratford
44 1963-01-09 Inglewood
57 1971-08-17 Stratford
83 1956-11-11 Stratford
100 1963-02-28 Stratford
104 1970-05-10 Eltham

288 SQL for MySQL Developers

Explanation: Because the subquery is correlated, for each player, the subquery
returns another result. The subquery gives the list with dates of birth of all players
who live in the same town.

Finally, try to deduce for yourself that the condition C = ANY (S) is equivalent to C
IN (S). Also try to prove that the condition C <> ALL (S) is equivalent to both C NOT

IN (S) and NOT (C IN (S)).

The condition C = ALL (S) is, by definition, false if the subquery returns mul-
tiple, distinct values because the value in a column can never be equal to two or
more different values simultaneously. We can illustrate this proposition with a sim-
ple example. Imagine that v1 and v2 are two different values from the intermediate
result of subquery S; it follows that C = ALL (S) is equal to (C = v1) AND (C = v2).
By definition, this is false.

The opposite applies for the condition C <> ANY (S). If the subquery returns
multiple values, the condition is, by definition, true. This is because, again, if the
intermediate result of subquery S consists of the values v1 and v2, it follows that C <>
ANY (S) is equivalent to (C <> v1) OR (C <> v2). This, by definition, is true.

Exercise 8.48: Find the player number of the oldest players from Stratford.

Exercise 8.49: Find the player number and name of each player who has
incurred at least one penalty (do not use the IN operator).

Exercise 8.50: Get the payment number, penalty amount, and payment date for
each penalty that is the highest of all penalties incurred in the same year.

Exercise 8.51: Get the lowest and highest player numbers in the PLAYER table,
and present these two values as one row.

8.16 SCOPE OF COLUMNS IN SUBQUERIES

This chapter has shown many SQL statements with subqueries. This section lingers
on an important aspect of the subquery: the scope of columns. To explain this con-
cept well, we again use select blocks. For example, the following table expression is
constructed from five select blocks: S1, S2, S3, S4, and S5.

289CHAPTER 8 SELECT Statement: The WHERE Clause

A SELECT clause marks the beginning of a select block. A subquery belongs to
the select block formed by the table expression of which it is a subquery. The
columns of a table can be used anywhere in the select block in which the table is
specified. Therefore, in the example, columns from table A can be used in select
blocks S1, S3, S4, and S5, but not in S2. We can say, then, that S1, S3, S4, and S5 together
form the scope of the columns from table A. Columns from table B can be used only
in select blocks S3 and S5, making S3 and S5 the scope of the table B columns.

Example 8.97: Get the number and name of each player who has incurred at least
one penalty.

290 SQL for MySQL Developers

SELECT

FROM PLAYERS

PENALTIES

WHERE EXISTS

*

PLAYERS.PLAYERNO = PLAYERNO)

(SELECT

FROM

WHERE

PLAYERNO, NAME

S1

S2

SELECT

FROM A

B

WHERE . . .

. . .

. . .

. . .

C))

(SELECT

FROM

(SELECT

FROM

. . .

D)

(SELECT

FROM

. . .

E

SELECT

FROM

WHERE

AND

UNION

*

S1

S3

S5

S4

S2

The columns from the PLAYERS table can be used in select blocks S1 and S2,
but columns from the PENALTIES table can be used only in select block S2.

In this example, the PLAYERNO column from the PLAYERS table is used in
S2. What would happen if, instead of PLAYERS.PLAYERNO, only PLAYERNO
were specified? In that case, MySQL would interpret the column as being
PLAYERNO from the PENALTIES table. This would give another result: The
NAME of each player would be printed because PLAYERNO = PLAYERNO is valid for
every row in the PENALTIES table.

Select block S2 is a correlated subquery because it contains a column that
belongs to a table specified in another select block.

If no table name is specified in front of a column name in a subquery, MySQL
first checks whether that column belongs to one of the tables in the FROM clause of
the subquery. If so, MySQL assumes that the column belongs to that table. If not,
MySQL checks whether the column belongs to one of the tables in the FROM clause
in the select block that the subquery is part of. However, a statement is much eas-
ier to read when the table name is explicitly specified in front of the column name.

How does MySQL process the previous statement? Again, we illustrate this by
using the intermediate results from the various clauses. The intermediate result of
the FROM clause in select block S1 is a copy of the PLAYERS table:

PLAYERNO NAME ...
-------- --------- ---

6 Parmenter ...
44 Baker ...
83 Hope ...
2 Everett ...
27 Collins ...
: : :
: : :

When processing the WHERE clause, the subquery is executed for each row in the
intermediate result. The intermediate result of the subquery for the first row, in
which the player number is equal to 6, looks as follows:

PAYMENTNO PLAYERNO DATE AMOUNT
--------- -------- ---------- ------

1 6 1980-12-08 100.00

The PENALTIES table has only one row in which the player number equals the
player number from the row in the PLAYERS table. The condition of select block S1
is true because the intermediate result of the select block consists of at least one row.

291CHAPTER 8 SELECT Statement: The WHERE Clause

The intermediate result of the subquery for the second row from select block S1
consists of three rows:

PAYMENTNO PLAYERNO DATE AMOUNT
--------- -------- ---------- ------

2 44 1981-05-05 75.00
5 44 1980-12-08 25.00
7 44 1982-12-30 30.00

We see, then, that player 44 appears in the end result. The next player, number
83, is not included in the end result because no row in the PENALTIES table
records a player number of 83.

The final result of the statement is:

PLAYERNO NAME
-------- ---------

6 Parmenter
44 Baker
27 Collins
104 Moorman
8 Newcastle

In processing a correlated subquery, a column from the outer or enveloping
select block is considered to be a constant for the subquery.

As already mentioned in Chapter 6, “SELECT Statements, Table Expressions,
and Subqueries,” in reality, MySQL tries to find a more efficient method. However,
regardless of the method, the result is always the same.

The following are a couple alternatives for the previous example.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE EXISTS

(SELECT *
FROM PENALTIES
WHERE PLAYERS.PLAYERNO = PLAYERS.PLAYERNO)

The subquery is executed separately for each player. The WHERE clause in the
subquery contains a condition that is always true, so the subquery always returns
rows. The conclusion is, therefore, that this statement returns the names of all
players.

The result would be different if the PLAYERNO column in the PLAYERS table
did (could) contain null values (work out why for yourself).

292 SQL for MySQL Developers

This next statement has the same effect as the first example in this section:

SELECT PLAYERNO, NAME
FROM PLAYERS AS P
WHERE EXISTS

(SELECT *
FROM PENALTIES AS PEN
WHERE P.PLAYERNO = PEN.PLAYERNO)

Note that the pseudonym for the PENALTIES table can be omitted without
affecting the result.

Exercise 8.52: For each of the following columns, indicate which select blocks
of the SELECT statement they can be used in.

1. A.C1

2. B.C1

3. C.C1

4. D.C1

5. E.C1

293CHAPTER 8 SELECT Statement: The WHERE Clause

SELECT

FROM A

B

WHERE . . .

. . .

. . .

. . .

C)

. . .

(SELECT

FROM

(SELECT

FROM

. . .

D))

(SELECT

FROM

. . .

E)

(SELECT

FROM

WHERE

AND

AND

AND

*

S1

S2

S3

S4

S5

Exercise 8.53: Get the name and initials of each player who has played for a
first-division team, who has won at least one match, and who has not incurred a sin-
gle penalty.

Exercise 8.54: Get the number and name of each player who has played for both
the first and second teams.

8.17 MORE EXAMPLES WITH CORRELATED SUBQUERIES

A correlated subquery is defined as a subquery in which a column is used that
belongs to a table specified in another select block. To make readers more familiar
with this type of subquery, we present more examples in this section.

Example 8.98: Get the team number and division of each team in which player
44 has played.

SELECT TEAMNO, DIVISION
FROM TEAMS
WHERE EXISTS

(SELECT *
FROM MATCHES
WHERE PLAYERNO = 44
AND TEAMNO = TEAMS.TEAMNO)

The result is:

TEAMNO DIVISION
------ --------

1 first

Explanation: Look in the MATCHES table to check whether, for each team, at
least one row exists in which the TEAMNO value equals the team number of the team
concerned and the player number is 44. We now rewrite this statement in the
pseudo language already used in other parts of this book.

RESULT-MAIN := [];
FOR EACH T IN TEAMS DO

RESULT-SUB := [];
FOR EACH M IN MATCHES DO

IF (M.PLAYERNO = 44)
AND (T.TEAMNO = M.TEAMNO) THEN

RESULT-SUB :+ M;
ENDFOR;
IF RESULT-SUB <> [] THEN

RESULT-MAIN :+ T;
ENDFOR;

294 SQL for MySQL Developers

Example 8.99: Get the player number of each player who has incurred more
than one penalty.

SELECT DISTINCT PLAYERNO
FROM PENALTIES AS PEN
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES
WHERE PAYMENTNO <> PEN.PAYMENTNO)

The result is:

PLAYERNO

27
44

Explanation: For each row in the PENALTIES table, MySQL checks whether
there is another row in this table with the same player number but with a different
payment number. If so, these players have incurred at least two penalties.

Example 8.100: Get the number and name of each player who has not played
matches for team 1.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE 1 <> ALL

(SELECT TEAMNO
FROM MATCHES
WHERE PLAYERNO = PLAYERS.PLAYERNO)

The result is:

PLAYERNO NAME
-------- ---------

7 Wise
27 Collins
28 Collins
39 Bishop
95 Miller
100 Parmenter
104 Moorman
112 Bailey

Explanation: The subquery produces a list of team numbers for which a given
player has played. The main query presents the names of those players for whom
team number 1 does not appear on the list.

295CHAPTER 8 SELECT Statement: The WHERE Clause

Example 8.101: Get the team number of each team in which player 57 has not
played.

SELECT TEAMNO
FROM TEAMS
WHERE NOT EXISTS

(SELECT *
FROM MATCHES
WHERE PLAYERNO = 57
AND TEAMNO = TEAMS.TEAMNO)

The result is:

TEAMNO

2

Explanation: Get the numbers of the teams for which, in the MATCHES table, no
row appears with the same team number and player number 57.

Example 8.102: Which players have played for all teams named in the TEAMS
table?

SELECT PLAYERNO
FROM PLAYERS AS P
WHERE NOT EXISTS

(SELECT *
FROM TEAMS AS T
WHERE NOT EXISTS

(SELECT *
FROM MATCHES AS M
WHERE T.TEAMNO = M.TEAMNO
AND P.PLAYERNO = M.PLAYERNO))

The result is:

PLAYERNO

8

Explanation: We can formulate the original question in another way: Find each
player for whom no team exists for which the player concerned has never played.
The two subqueries together produce a list of teams for which a specific player has
not played. The main query presents those players for whom the result table of the

296 SQL for MySQL Developers

subquery is empty. SQL determines for each player, separately, whether the sub-
query yields no result. Let us consider player 27 as an example. SQL checks
whether the following statement has a result for this player:

SELECT *
FROM TEAMS AS T
WHERE NOT EXISTS

(SELECT *
FROM MATCHES AS M
WHERE T.TEAMNO = M.TEAMNO
AND M.PLAYERNO = 27)

This statement has a result if a team exists for which player 27 has never
played. Player 27 has not played for team 1, but has for team 2. We conclude that
the result of this statement consists of the data from team 1. This means that player
27 does not appear in the end result because the WHERE clause specifies players for
whom the result of the subquery is empty (NOT EXISTS).

We can do the same with player number 8. In this case, the result of the sub-
query is empty because the player has played for team 1 as well as for team 2. This
means that the condition in the main query is true, and player 8 is included in the
end result.

Example 8.103: Get the player number of each player who has played for at
least all the teams for which player 57 has ever played.

SELECT PLAYERNO
FROM PLAYERS
WHERE NOT EXISTS

(SELECT *
FROM MATCHES AS M1
WHERE PLAYERNO = 57
AND NOT EXISTS

(SELECT *
FROM MATCHES AS M2
WHERE M1.TEAMNO = M2.TEAMNO
AND PLAYERS.PLAYERNO = M2.PLAYERNO))

The result is:

PLAYERNO

2
6
8
44
57
83

297CHAPTER 8 SELECT Statement: The WHERE Clause

Explanation: This statement is very similar to the previous one. However, the
question asks not for players who have played for all teams, but for teams for which
player 57 has also played. This difference is apparent in the first subquery. Here,
MySQL does not check all the teams (in contrast to the subquery in the previous
example), but only teams for which player 57 has played.

Example 8.104: Get the player number of each player who has played only for
the same teams as player 57.

We can formulate this question differently: Get the numbers of the players who,
first of all, have played for all the teams for which player 57 has played and, sec-
ond, have not played for teams for which player 57 has not played. The first part of
the question is like the previous one. The second part of the question can be
answered with the following SELECT statement. This statement retrieves all players
who have competed in teams for which player 57 has not competed:

SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO IN

(SELECT TEAMNO
FROM TEAMS
WHERE TEAMNO NOT IN

(SELECT TEAMNO
FROM MATCHES
WHERE PLAYERNO = 57))

Combining this statement with that of the previous question supplies the
answer:

SELECT PLAYERNO
FROM PLAYERS AS P
WHERE NOT EXISTS

(SELECT *
FROM MATCHES AS M1
WHERE PLAYERNO = 57
AND NOT EXISTS

(SELECT *
FROM MATCHES AS M2
WHERE M1.TEAMNO = M2.TEAMNO
AND P.PLAYERNO = M2.PLAYERNO))

AND PLAYERNO NOT IN
(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO IN

(SELECT TEAMNO
FROM TEAMS
WHERE TEAMNO NOT IN

(SELECT TEAMNO
FROM MATCHES
WHERE PLAYERNO = 57)))

298 SQL for MySQL Developers

The result is:

PLAYERNO

2
6
44
57
83

Explanation: Player 57 also appears in the result, of course, but can be removed
with a simple condition. Player 8 does not appear in the result because she has
played for team 1 as well as for team 2, and player 57 has played only for team 1.
Try to fill in a few other player numbers for yourself to check whether the statement
is correct.

Exercise 8.55: Find the player number and name of each player who has
incurred at least one penalty; use a correlated subquery.

Exercise 8.56: Find the player number and name of each player who has won at
least two matches.

Exercise 8.57: Get the name and initials of each player who incurred no penal-
ties between January 1, 1980, and December 31, 1980.

Exercise 8.58: Get the player number of each player who has incurred at least
one penalty that is equal to an amount that has occurred at least twice.

8.18 CONDITIONS WITH NEGATION

This section discusses an error that programmers often make. This error refers to
conditions with negation. A condition in which we search for the rows that do not
contain a specific value in a column is (informally) called a condition with negation.
A negative condition can be made by placing a NOT in front of a positive condition.
Two examples demonstrate the problem.

Example 8.105: Get the player numbers of each player who lives in Stratford.

SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford'

299CHAPTER 8 SELECT Statement: The WHERE Clause

The result is:

PLAYERNO

2
6
7
39
57
83
100

By placing the NOT operator in front of the condition, we get a SELECT statement
with a negative condition:

SELECT PLAYERNO
FROM PLAYERS
WHERE NOT (TOWN = 'Stratford')

The result is:

PLAYERNO

8
27
28
44
95
104
112

In this example, we can also specify a negative condition using the comparison
operator <> (not equal to):

SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN <> 'Stratford'

The last example found the players who do not live in Stratford by simply
adding NOT to the condition. All went well because the SELECT clause contains one
of the candidate keys of the PLAYERS table completely, and that is the primary key
PLAYERNO. Problems arise, however, if the SELECT clause contains only a part of a
candidate key or no candidate key. The next example illustrates this.

Example 8.106: Get the number of each player who has incurred a penalty
of $25.

300 SQL for MySQL Developers

This example and the corresponding SELECT statement appear similar to those
of the previous example:

SELECT PLAYERNO
FROM PENALTIES
WHERE AMOUNT = 25

Now let us find the players who have not incurred a penalty of $25. If we do it
in the same way as the last example, the statement looks like this:

SELECT PLAYERNO
FROM PENALTIES
WHERE AMOUNT <> 25

The result of this is:

PLAYERNO

6
44
27
104
44
27

If you examine the PENALTIES table, you can see that player 44 incurred a
penalty of $25. In other words, the SELECT statement does not return the correct
result to the original question. This is because the SELECT clause of this statement
contains none of the candidate keys of the PENALTIES table (this table has only
one candidate key, PAYMENTNO). The correct answer is obtained by formulating
an entirely different statement. We use a subquery coupled with the NOT operator:

SELECT PLAYERNO
FROM PLAYERS
WHERE PLAYERNO NOT IN

(SELECT PLAYERNO
FROM PENALTIES
WHERE AMOUNT = 25)

The subquery determines which players have incurred a penalty of $25. In the
main query, MySQL looks to see which players do not appear in the result of the
subquery. However, pay attention to the fact that the main query searches not the
PENALTIES table, but the PLAYERS table. If the PENALTIES table had been
used in the FROM clause in this statement, we would have received a list of all play-
ers who had incurred at least one penalty that was not equal to $25, and this was not
the original question.

301CHAPTER 8 SELECT Statement: The WHERE Clause

Now that we have a negative statement defined using NOT IN, it is possible to
create the positive SELECT statement with a comparable structure:

SELECT PLAYERNO
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES
WHERE AMOUNT = 25)

The result is:

PLAYERNO

8
44

Conclusion: If a SELECT clause does not contain a complete candidate key of the
table in the FROM clause, and if the WHERE clause has a negative condition, be very
careful!

Exercise 8.59: Get the player number of each player who has not won a single
match by winning three sets.

Exercise 8.60: Get the team number and the division of each team for which
player 6 has not competed.

Exercise 8.61: Get the player number for each player who has played only in
teams for which player 57 has never competed.

8.19 ANSWERS

8.1 SELECT PAYMENTNO
FROM PENALTIES
WHERE AMOUNT > 60

or
SELECT PAYMENTNO
FROM PENALTIES
WHERE 60 < AMOUNT

302 SQL for MySQL Developers

or
SELECT PAYMENTNO
FROM PENALTIES
WHERE AMOUNT - 60 > 0

8.2 SELECT TEAMNO
FROM TEAMS
WHERE PLAYERNO <> 27

8.3 No row in the PLAYERS table satisfies the condition. No row in which the
LEAGUENO column has a value satisfies the condition because the con-
dition is false. In addition, each row in which the LEAGUENO column
has no value (and thus contains the null value) is not returned.

8.4 SELECT DISTINCT PLAYERNO
FROM MATCHES
WHERE WON > LOST

8.5 SELECT DISTINCT PLAYERNO
FROM MATCHES
WHERE WON + LOST = 5

8.6 SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO =

(SELECT PLAYERNO
FROM PENALTIES
WHERE PAYMENTNO = 4)

8.7 SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO =

(SELECT PLAYERNO
FROM TEAMS
WHERE TEAMNO =

(SELECT TEAMNO
FROM MATCHES
WHERE MATCHNO = 2))

8.8 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE BIRTH_DATE =

(SELECT BIRTH_DATE
FROM PLAYERS
WHERE NAME = 'Parmenter'
AND INITIALS = 'R')

AND NOT (NAME = 'Parmenter'
AND INITIALS = 'R')

303CHAPTER 8 SELECT Statement: The WHERE Clause

8.9 SELECT MATCHNO
FROM MATCHES
WHERE WON =

(SELECT WON
FROM MATCHES
WHERE MATCHNO = 6)

AND MATCHNO <> 6
AND TEAMNO = 2

8.10 SELECT MATCHNO
FROM MATCHES
WHERE (WON, LOST) =

((SELECT WON
FROM MATCHES
WHERE MATCHNO = 2),
(SELECT LOST
FROM MATCHES
WHERE MATCHNO = 8))

8.11 SELECT PLAYERNO, TOWN, STREET, HOUSENO
FROM PLAYERS
WHERE (TOWN, STREET, HOUSENO) <

(SELECT TOWN, STREET, HOUSENO
FROM PLAYERS
WHERE PLAYERNO = 100)

ORDER BY TOWN, STREET, HOUSENO

8.12 SELECT PAYMENTNO
FROM PENALTIES
WHERE 1965 <

(SELECT YEAR(BIRTH_DATE)
FROM PLAYERS
WHERE PLAYERS.PLAYERNO = PENALTIES.PLAYERNO)

8.13 SELECT PAYMENTNO, PLAYERNO
FROM PENALTIES
WHERE PLAYERNO =

(SELECT PLAYERNO
FROM TEAMS
WHERE TEAMS.PLAYERNO = PENALTIES.PLAYERNO)

8.14 SELECT PLAYERNO, NAME, TOWN
FROM PLAYERS
WHERE SEX = 'F'
AND TOWN <> 'Stratford'

304 SQL for MySQL Developers

or
SELECT PLAYERNO, NAME, TOWN
FROM PLAYERS
WHERE SEX = 'F'
AND NOT (TOWN = 'Stratford')

8.15 SELECT PLAYERNO
FROM PLAYERS
WHERE JOINED >= 1970
AND JOINED <= 1980

or
SELECT PLAYERNO
FROM PLAYERS
WHERE NOT (JOINED < 1970 OR JOINED > 1980)

8.16 SELECT PLAYERNO, NAME, BIRTH_DATE
FROM PLAYERS
WHERE MOD(YEAR(BIRTH_DATE), 400) = 0
OR (MOD(YEAR(BIRTH_DATE), 4) = 0

AND NOT(MOD(YEAR(BIRTH_DATE), 100) = 0))

8.17 SELECT MATCHNO, NAME, INITIALS, DIVISION
FROM MATCHES AS M, PLAYERS AS P, TEAMS AS T
WHERE M.PLAYERNO = P.PLAYERNO
AND M.TEAMNO = T.TEAMNO
AND YEAR(BIRTH_DATE) > 1965
AND WON > LOST

8.18 SELECT PAYMENTNO
FROM PENALTIES
WHERE AMOUNT IN (50, 75, 100)

8.19 SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN NOT IN ('Stratford', 'Douglas')

or
SELECT PLAYERNO
FROM PLAYERS
WHERE NOT (TOWN IN ('Stratford', 'Douglas'))

or
SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN <> 'Stratford'
AND TOWN <> 'Douglas'

305CHAPTER 8 SELECT Statement: The WHERE Clause

8.20 SELECT PAYMENTNO
FROM PENALTIES
WHERE AMOUNT IN

(100, PAYMENTNO * 5,
(SELECT AMOUNT
FROM PENALTIES
WHERE PAYMENTNO = 2))

8.21 SELECT PLAYERNO, TOWN, STREET
FROM PLAYERS
WHERE (TOWN, STREET) IN

(('Stratford','Haseltine Lane'),
('Stratford','Edgecombe Way'))

8.22 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)

8.23 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES
WHERE AMOUNT > 50)

8.24 SELECT TEAMNO, PLAYERNO
FROM TEAMS
WHERE DIVISION = 'first'
AND PLAYERNO IN

(SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford')

8.25 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)

AND PLAYERNO NOT IN
(SELECT PLAYERNO
FROM TEAMS
WHERE DIVISION = 'first')

306 SQL for MySQL Developers

or
SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES
WHERE PLAYERNO NOT IN

(SELECT PLAYERNO
FROM TEAMS
WHERE DIVISION = 'first'))

8.26 The result is empty.

8.27 SELECT MATCHNO, PLAYERNO
FROM MATCHES
WHERE (WON, LOST) IN

(SELECT WON, LOST
FROM MATCHES
WHERE TEAMNO IN

(SELECT TEAMNO
FROM TEAMS
WHERE DIVISION = 'second'))

8.28 SELECT PLAYERNO, NAME
FROM PLAYERS AS P1
WHERE (TOWN, STREET, HOUSENO, POSTCODE) IN

(SELECT TOWN, STREET, HOUSENO, POSTCODE
FROM PLAYERS AS P2
WHERE P1.PLAYERNO <> P2.PLAYERNO)

8.29 SELECT PAYMENTNO
FROM PENALTIES
WHERE AMOUNT BETWEEN 50 AND 100

8.30 SELECT PAYMENTNO
FROM PENALTIES
WHERE NOT (AMOUNT BETWEEN 50 AND 100)

or
SELECT PAYMENTNO
FROM PENALTIES
WHERE AMOUNT NOT BETWEEN 50 AND 100

307CHAPTER 8 SELECT Statement: The WHERE Clause

or
SELECT PAYMENTNO
FROM PENALTIES
WHERE AMOUNT < 50
OR AMOUNT > 100

8.31 SELECT SPELERSNR
FROM SPELERS
WHERE JAARTOE BETWEEN

YEAR(GEB_DATUM + INTERVAL 16 YEAR + INTERVAL 1 DAY)
AND YEAR(GEB_DATUM + INTERVAL 40 YEAR + INTERVAL -1 DAY)

8.32 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME LIKE '%is%'

8.33 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME LIKE '______'

8.34 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME LIKE '______%'

or
SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME LIKE '%______'

or
SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME LIKE '%______%'

or
SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE LENGTH(RTRIM(NAME)) > 6

8.35 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME LIKE '_r%r_'

8.36 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE TOWN LIKE '_@%%@%_' ESCAPE '@'

308 SQL for MySQL Developers

8.37 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME REGEXP 'en'

8.38 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME REGEXP '^n.*e$'

8.39 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE NAME REGEXP ' [a-z]{9}'

8.40 SELECT BOOKNO, SUMMARY
FROM BOOKS
WHERE MATCH(SUMMARY)

AGAINST ('students' IN NATURAL LANGUAGE MODE)

8.41 SELECT BOOKNO, SUMMARY
FROM BOOKS
WHERE MATCH(SUMMARY)

AGAINST ('database' IN BOOLEAN MODE)

8.42 SELECT BOOKNO, SUMMARY
FROM BOOKS
WHERE MATCH(SUMMARY)

AGAINST ('database languages'
IN NATURAL LANGUAGE MODE)

8.43 SELECT BOOKNO, SUMMARY
FROM BOOKS
WHERE MATCH(SUMMARY)

AGAINST ('+database -languages' IN BOOLEAN MODE)

8.44 SELECT PLAYERNO
FROM PLAYERS
WHERE LEAGUENO IS NULL

8.45 The NAME column has been defined as NOT NULL. Therefore, the column
will never contain a null value, which is why the condition is false for
each row.

8.46 SELECT NAME, INITIALS
FROM PLAYERS
WHERE EXISTS

(SELECT *
FROM TEAMS
WHERE PLAYERNO = PLAYERS.PLAYERNO)

309CHAPTER 8 SELECT Statement: The WHERE Clause

8.47 SELECT NAME, INITIALS
FROM PLAYERS AS P
WHERE NOT EXISTS

(SELECT *
FROM TEAMS AS T
WHERE T.PLAYERNO = P.PLAYERNO
AND EXISTS

(SELECT *
FROM MATCHES AS M
WHERE M.TEAMNO = T.TEAMNO
AND M.PLAYERNO = 112))

8.48 SELECT PLAYERNO
FROM PLAYERS
WHERE BIRTH_DATE <= ALL

(SELECT BIRTH_DATE
FROM PLAYERS
WHERE TOWN = 'Stratford')

AND TOWN = 'Stratford'

8.49 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO = ANY

(SELECT PLAYERNO
FROM PENALTIES)

8.50 SELECT PAYMENTNO, AMOUNT, PAYMENT_DATE
FROM PENALTIES AS PEN1
WHERE AMOUNT >= ALL

(SELECT AMOUNT
FROM PENALTIES AS PEN2
WHERE YEAR(PEN1.PAYMENT_DATE) =

YEAR(PEN2.PAYMENT_DATE))

8.51 SELECT (SELECT PLAYERNO
FROM PLAYERS
WHERE PLAYERNO <= ALL

(SELECT PLAYERNO
FROM PLAYERS)),

(SELECT PLAYERNO
FROM PLAYERS
WHERE PLAYERNO >= ALL

(SELECT PLAYERNO
FROM PLAYERS))

310 SQL for MySQL Developers

8.52 1. A.C1: S1, S2, S3, S4, S5
2. B.C1: S2, S3, S4

3. C.C1: S3

4. D.C1: S4

5. E.C1: S5

8.53 SELECT NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO IN

(SELECT TEAMNO
FROM TEAMS
WHERE DIVISION = 'first'))

AND PLAYERNO IN
(SELECT PLAYERNO
FROM MATCHES
WHERE WON > LOST)

AND PLAYERNO NOT IN
(SELECT PLAYERNO
FROM PENALTIES)

8.54 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO = 1)

AND PLAYERNO IN
(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO = 2)

8.55 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE EXISTS

(SELECT *
FROM PENALTIES
WHERE PLAYERNO = PLAYERS.PLAYERNO)

311CHAPTER 8 SELECT Statement: The WHERE Clause

8.56 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES AS M1
WHERE WON > LOST
AND EXISTS

(SELECT *
FROM MATCHES AS M2
WHERE M1.PLAYERNO = M2.PLAYERNO
AND WON > LOST
AND M1.MATCHNO <> M2.MATCHNO))

or
SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE 1 < (SELECT COUNT(*)

FROM MATCHES
WHERE WON > LOST
AND PLAYERS.PLAYERNO = PLAYERNO)

8.57 SELECT NAME, INITIALS
FROM PLAYERS
WHERE NOT EXISTS

(SELECT *
FROM PENALTIES
WHERE PLAYERS.PLAYERNO = PLAYERNO
AND PAYMENT_DATE BETWEEN '1980-01-01'

AND '1980-12-31')

8.58 SELECT DISTINCT PLAYERNO
FROM PENALTIES AS PEN1
WHERE EXISTS

(SELECT *
FROM PENALTIES AS PEN2
WHERE PEN1.AMOUNT = PEN2.AMOUNT
AND PEN1.PAYMENTNO <> PEN2.PAYMENTNO)

8.59 SELECT PLAYERNO
FROM PLAYERS
WHERE PLAYERNO NOT IN

(SELECT PLAYERNO
FROM MATCHES WHERE WON = 3)

312 SQL for MySQL Developers

8.60 SELECT TEAMNO, DIVISION
FROM TEAMS
WHERE TEAMNO NOT IN

(SELECT TEAMNO
FROM MATCHES
WHERE PLAYERNO = 6)

8.61 SELECT DISTINCT PLAYERNO
FROM MATCHES
WHERE PLAYERNO NOT IN

(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO IN

(SELECT TEAMNO
FROM MATCHES
WHERE PLAYERNO = 57))

313CHAPTER 8 SELECT Statement: The WHERE Clause

This page intentionally left blank This page intentionally left blank

315

SELECT Statement:
SELECT Clause and
Aggregation Functions

C H A P T E R 9

9.1 INTRODUCTION

The WHERE clause, described in the previous chapter, is used to select rows. The
intermediate result from this clause forms a horizontal subset of a table. In contrast,
the SELECT clause selects only columns, not rows; the result forms a vertical subset
of a table.

The features, limitations, and use of the SELECT clause depend on the presence
or absence of a GROUP BY clause. This chapter discusses table expressions without a
GROUP BY clause. Chapter 10, “SELECT Statement: The GROUP BY Clause,” dis-
cusses the features of the SELECT clause when the table expression does contain a
GROUP BY clause.

A large part of this chapter is devoted to so-called aggregation functions. Chap-
ter 5, “SELECT Statement: Common Elements,” referred to these functions but did
not explore them in depth.

D E F I N I T I O N
<select clause> ::=

SELECT <select option>... <select element list>

<select option> ::=
DISTINCT | DISTINCTROW | ALL | HIGH_PRIORITY |
SQL_BUFFER_RESULT | SQL_CACHE | SQL_NO_CACHE |
SQL_CALC_FOUND_ROWS | SQL_SMALL_RESULT | SQL BIG_RESULT |
STRAIGHT_JOIN

<select element list> ::=
<select element> [, <select element>]... |
*

<select element> ::=
<scalar expression> [[AS] <column name>] |
<table specification>.* |
<pseudonym>.*

<column name> ::= <name>

9.2 SELECTING ALL COLUMNS (*)
The shortest SELECT clause is the one in which only an asterisk (*) is specified. This
asterisk is shorthand notation for all columns in each table mentioned in the FROM
clause. Example 9.1 includes two equivalent SELECT statements:

Example 9.1: Get the entire PENALTIES table.

SELECT *
FROM PENALTIES

and

SELECT PAYMENTNO, PLAYERNO, PAYMENT_DATE, AMOUNT
FROM PENALTIES

Explanation: The * symbol, then, does not mean multiplication in this context.

When a FROM clause contains two or more tables, it is sometimes necessary to
use a table specification in front of the * symbol to clarify which columns should be
presented.

316 SQL for MySQL Developers

Example 9.2: Get all the information on all the penalties incurred by players
who are also captains.

The following three statements are equivalent:

SELECT PENALTIES.*
FROM PENALTIES INNER JOIN TEAMS

ON PENALTIES.PLAYERNO = TEAMS.PLAYERNO

SELECT PENALTIES.PAYMENTNO, PENALTIES.PLAYERNO,
PENALTIES.PAYMENT_DATE, PENALTIES.AMOUNT

FROM PENALTIES INNER JOIN TEAMS
ON PENALTIES.PLAYERNO = TEAMS.PLAYERNO

SELECT PEN.*
FROM PENALTIES AS PEN INNER JOIN TEAMS

ON PEN.PLAYERNO = TEAMS.PLAYERNO

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
3 27 1983-09-10 100.00
8 27 1984-11-12 75.00

9.3 EXPRESSIONS IN THE SELECT CLAUSE

In processing the SELECT clause, the intermediate result is evaluated row by row.
Each expression gives rise to a value in each result row. Most of the examples of the
SELECT clause that we have described so far contain only column names, but an
expression can also take the form of a literal, a calculation, or a scalar function.

Example 9.3: For each match, get the match number, the word Tally, the differ-
ence between the columns WON and LOST, and the value of the WON column mul-
tiplied by 10.

SELECT MATCHNO, 'Tally', WON - LOST,
WON * 10

FROM MATCHES

317CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

The result is:

MATCHNO TALLY WON - LOST WON * 10
------- ----- ---------- --------

1 Tally 2 30
2 Tally -1 20
3 Tally 3 30
4 Tally 1 30
5 Tally -3 0
6 Tally -2 10
7 Tally 3 30
8 Tally -3 0
9 Tally 1 30
10 Tally 1 30
11 Tally -1 20
12 Tally -2 10
13 Tally -3 0

9.4 REMOVING DUPLICATE ROWS WITH DISTINCT
A SELECT clause can consist of a number of expressions preceded by the word
DISTINCT (see the definition at the beginning of this chapter). When DISTINCT is
specified, MySQL removes duplicate rows from the intermediate result.

Example 9.4: Find all the different town names from the PLAYERS table.

SELECT TOWN
FROM PLAYERS

The result is:

TOWN

Stratford
Stratford
Stratford
Inglewood
Eltham
Midhurst
Stratford
Inglewood
Stratford
Stratford
Douglas
Stratford
Eltham
Plymouth

318 SQL for MySQL Developers

In this result table, the towns Stratford, Inglewood, and Eltham appear seven,
two, and two times, respectively. If the statement is expanded to include DISTINCT

SELECT DISTINCT TOWN
FROM PLAYERS

it produces the following result, in which all duplicate rows are removed:

TOWN

Stratford
Midhurst
Inglewood
Plymouth
Douglas
Eltham

Example 9.5: Get every existing combination of street and town names.

SELECT STREET, TOWN
FROM PLAYERS

The result is:

STREET TOWN
-------------- ---------
Stoney Road Stratford
Haseltine Lane Stratford
Edgecombe Way Stratford
Station Road Inglewood
Long Drive Eltham
Old Main Road Midhurst
Eaton Square Stratford
Lewis Street Inglewood
Edgecombe Way Stratford
Magdalene Road Stratford
High Street Douglas
Haseltine Lane Stratford
Stout Street Eltham
Vixen Road Plymouth

This result also contains duplicate rows; for example, Edgecombe Way and
Haseltine Lane in Stratford are each mentioned twice. When DISTINCT is added:

SELECT DISTINCT STREET, TOWN
FROM PLAYERS

319CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

the result is:

STREET TOWN
-------------- ---------
Edgecombe Way Stratford
Eaton Square Stratford
Haseltine Lane Stratford
High Street Douglas
Lewis Street Inglewood
Long Drive Eltham
Magdalena Road Stratford
Old Main Road Midhurst
Station Road Inglewood
Stoney Road Stratford
Stout Street Eltham
Vixen Road Plymouth

DISTINCT, then, is concerned with the whole row, not only with the expression
that directly follows the word DISTINCT in the statement. In these two constructs,
the use of DISTINCT is superfluous (but not forbidden):

■ When the SELECT clause includes at least one candidate key for each table
specified in the FROM clause, DISTINCT is superfluous. The most important
property of a candidate key is that the set of columns that forms the candi-
date key never allows duplicate values, so a table that has a candidate key
never has duplicate rows. The inclusion of a candidate key in the SELECT
clause offers a guarantee that no duplicate rows will appear in the end result.

■ When the table expression results in no rows with values or only one row
with values, DISTINCT is superfluous. For equal rows, at least two rows are
necessary. For example, if you are looking for players with a certain player
number (WHERE PLAYERNO = 45), the statement results in one row if that
player number exists; otherwise, no rows result.

The user may specify the word ALL in the same position in the statement where
DISTINCT appears. Note that ALL actually has the opposite effect of DISTINCT and
does not alter the result of a ‘normal’ table expression. In other words, the results of
the following two statements are equivalent:

SELECT TOWN
FROM PLAYERS

and

SELECT ALL TOWN
FROM PLAYERS

320 SQL for MySQL Developers

Exercise 9.1: In which of the following statements is DISTINCT superfluous?

1. SELECT DISTINCT PLAYERNO
FROM TEAMS

2. SELECT DISTINCT PLAYERNO
FROM MATCHES
WHERE TEAMNO = 2

3. SELECT DISTINCT *
FROM PLAYERS
WHERE PLAYERNO = 100

4. SELECT DISTINCT M.PLAYERNO
FROM MATCHES AS M, PENALTIES AS PEN
WHERE M.PLAYERNO = PEN.PLAYERNO

5. SELECT DISTINCT PEN.PAYMENTNO
FROM MATCHES AS M, PENALTIES AS PEN
WHERE M.PLAYERNO = PEN.PLAYERNO

6. SELECT DISTINCT PEN.PAYMENTNO, M.TEAMNO,
PEN.PLAYERNO

FROM MATCHES AS M, PENALTIES AS PEN
WHERE M.PLAYERNO = PEN.PLAYERNO

9.5 WHEN ARE TWO ROWS EQUAL?
When are two rows identical or equal? At first, this seems a trivial question, but are
two rows still equal when one of the values is equal to the null value? We answer
these two questions somewhat formally.

Imagine that two rows, R1 and R2, both consist of n values vi (1 <= i <= n). These
two rows R1 and R2 are equal under the following conditions:

■ The number of values in the rows is equal.

■ For each i (1 <= i <= n), R1vi is equal to R2vi, or R1vi and R2vi are both equal
to the null value.

This means, for example, if the value R1v3 is equal to the null value and R2v3 is
not, the rows R1 and R2 cannot be equal (regardless of the other values). However, if
both R1v3 and R2v3 are equal to the null value and the other values are all equal, the
rows are equal.

Example 9.6: Get all the different league numbers.

SELECT DISTINCT LEAGUENO
FROM PLAYERS

321CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

The result is:

LEAGUENO

1124
1319
1608
2411
2513
2983
6409
6524
7060
8467
?

Explanation: The null value appears only once in the result because rows that
consist of only a null value are equal to each other.

This rule does not seem to be in line with the rules in Section 8.2, which stated that
two null values are not equal to each other. Also, when comparing row expressions,
two null values are not considered to be equal or unequal. For example, the next
two conditions both evaluate to unknown.

NULL = 4
(1, NULL) = (1, NULL)

Informally, we could say that MySQL executes a horizontal comparison with
conditions. The values that must be compared are next to each other, or respec-
tively to the left and right of the comparison operator. That’s the difference with
DISTINCT. We could state that DISTINCT rows “underneath” each other in the inter-
mediate result are compared instead of rows that are “next to” each other. In other
words, with DISTINCT, a vertical comparison takes place. In that case, null values
are equal to each other. Imagine the intermediate result of a table expression that
looks as follows:

(1, NULL)
(1, NULL)

Two rows are compared vertically when processing DISTINCT. In the end result,
only one of the two rows is left.

This rule might look somewhat strange, but it follows the rules of the original
relational model.

322 SQL for MySQL Developers

Example 9.7: Determine which rows DISTINCT will delete.

SELECT DISTINCT *
FROM (SELECT 1 AS A, 'Hello' AS B, 4 AS C UNION

SELECT 1, 'Hello', NULL UNION
SELECT 1, 'Hello', NULL UNION
SELECT 1, NULL, NULL) AS X

The result is:

A B C
- ----- -
1 Hello 4
1 Hello ?
1 ? ?

Exercise 9.2: termine the results of these SELECT statements for the following
T table:

T: C1 C2 C3
-- -- --
c1 c2 c3
c2 c2 c3
c3 c2 ?
c4 c2 ?
c5 ? ?
c6 ? ?

1. SELECT DISTINCT C2
FROM T

2. SELECT DISTINCT C2, C3
FROM T

9.6 MORE SELECT OPTIONS

In addition to DISTINCT and ALL, MySQL supports the following select options:
DISTINCTROW, HIGH_PRIORITY, SQL_BUFFER_RESULT, SQL_CACHE, SQL_NO_CACHE,
SQL_CALC_FOUND_ROWS, SQL_SMALL_RESULT, SQL BIG_RESULT, and STRAIGHT_JOIN. We
describe some here and discuss others later.

DISTINCTROW is a synonym for DISTINCT. We advise using the latter as much as
possible because other SQL products do not support DISTINCTROW.

The select option HIGH_PRIORITY deals with locking of data. Chapter 37,
“Transactions and Multiuser Usage,” discusses this option.

323CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

The specification of SQL_BUFFER_RESULT affects the processing speed of SELECT
statements. Normally, the rows in the end result of a SELECT statement are locked.
At that specific moment, other users cannot update these rows; Chapter 37
describes this extensively. If we specify SQL_BUFFER_RESULT, the end result of the
SELECT statement is stored in a temporary table. This makes it possible for other
users to update the original data. This requires storage space and additional exter-
nal memory, but it improves the progress of statements.

The select options SQL_CACHE and SQL_NO_CACHE are relevant when the query
cache operates in the so-called demand modus. If SQL_CACHE is specified in a
SELECT statement, the end result of the statement is stored in this cache, which is
not the case with SQL_NO_CACHE. This can considerably affect the processing speed
of certain statements. If the result of a certain statement is placed in the query
cache and the same statement is executed once again, the result is retrieved
directly from the cache. There’s no need to access the tables again or to perform
joins and sorts, and complex calculations can be left out. This optimization works
only if the SELECT statements have been formulated in exactly the same way. When
tables from which the end result has been created change, the end result immedi-
ately is removed from the cache. This ensures that the results do not show out-of-
date data.

With the LIMIT clause, the number of rows in the end result of a SELECT state-
ment can be limited; see Chapter 13, “SELECT Statement: The LIMIT Clause.”
With the select option SQL_CALC_FOUND_ROWS, you can still query the original num-
ber of rows. Chapter 13 revisits this.

The two select options SQL_SMALL_RESULT and SQL_BIG_RESULT give the opti-
mizer of MySQL some information on the size of the end result in advance. This
module can use this to its advantage when it must determine the smartest way to
process the statement.

With STRAIGHT_JOIN, you indicate that the tables must be joined in the order in
which they appear in the FROM clause. Again, this influences the optimizer to
improve processing time.

9.7 AN INTRODUCTION TO AGGREGATION FUNCTIONS

Expressions in the SELECT clause can contain so-called aggregation functions (also
called statistical, group, set, or column functions). If the table expression has no
GROUP BY clause, an aggregation function in a SELECT clause operates on all rows. If
a SELECT clause does contain an aggregation function, the entire table expression
yields only one row as an end result (remember, we still assume here that the table

324 SQL for MySQL Developers

expression has no GROUP BY clause). In fact, the values of a group of rows are aggre-
gated to one value. For example, all penalty amounts in the PENALTIES table are
added up to one value with the SUM function.

D E F I N I T I O N
<aggregation function> ::=

COUNT ([DISTINCT | ALL] { * | <expression> }) |
MIN ([DISTINCT | ALL] <expression>) |
MAX ([DISTINCT | ALL] <expression>) |
SUM ([DISTINCT | ALL] <expression>) |
AVG ([DISTINCT | ALL] <expression>) |
STDDEV ([DISTINCT | ALL] <expression>) |
STD ([DISTINCT | ALL] <expression>) |
VARIANCE ([DISTINCT | ALL] <expression>) |
BIT_AND ([DISTINCT | ALL] <expression>) |
BIT_OR ([DISTINCT | ALL] <expression>) |
BIT_XOR ([DISTINCT | ALL] <expression>) |
GROUP_CONCAT ([DISTINCT | ALL] <expression>)

Example 9.8: How many players are registered in the PLAYERS table?

SELECT COUNT(*)
FROM PLAYERS

The result is:

COUNT(*)

14

Explanation: The function COUNT(*) counts the number of rows that remain after
processing the FROM clause. In this case, the number equals the number of rows in
the PLAYERS table.

Example 9.9: How many players live in Stratford?

SELECT COUNT(*)
FROM PLAYERS
WHERE TOWN = 'Stratford'

The result is:

COUNT(*)

7

325CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

Explanation: Because the SELECT clause is processed after the WHERE clause, the
number of rows in which the TOWN column has the value Stratford are counted.

The following sections look at various aggregation functions in more detail. We skip
only the GROUP_CONCAT function because Chapter 10 discusses this function.

Several general rules apply to the use of aggregation functions when the con-
cerning table expression contains no GROUP BY clause.

■ A table expression with an aggregation function yields only one row as a
result. This can be a row consisting of only null values, but one row always
exists. The result can never consist of zero rows or more than one row.

■ Nesting aggregation functions is not allowed. Several expression forms can
be used as parameters for an aggregation function but not an aggregation
function itself. Therefore, this expression is not allowed: COUNT(MAX(…)).

■ If the SELECT clause contains one or more aggregation functions, a column
specification in the SELECT clause can occur only within an aggregation
function.

The last rule requires some explanation. According to this rule, the following
statement is not correct because the SELECT clause contains an aggregation function
as an expression, while the column name PLAYERNO occurs outside an aggrega-
tion function.

SELECT COUNT(*), PLAYERNO
FROM PLAYERS

The reason for this limitation is that the result of an aggregation function always
consists of one value, while the result of a column specification consists of a set of
values. MySQL considers this to be incompatible results.

Note, however, that this rule applies only to column specifications and not to, for
example, literals and system variables. Therefore, the following statement is correct:

SELECT 'The number of players', COUNT(*)
FROM PLAYERS

The result is:

'The number of players is' COUNT(*)
-------------------------- --------
The number of players is 14

Chapter 10 extends these rules for the SELECT clause for table expressions that
do contain a GROUP BY clause.

326 SQL for MySQL Developers

Exercise 9.3: Is the following SELECT statement correct?

SELECT TEAMNO, COUNT(*)
FROM MATCHES

Exercise 9.4: Find the number of penalties and the highest penalty amount.

9.8 COUNT FUNCTION

With the COUNT function, an asterisk (*) or an expression can be specified between
brackets. The previous section discussed the first case in which an asterisk is used.
This section discusses the other possibilities.

Example 9.10: How many league numbers are there?

SELECT COUNT(LEAGUENO)
FROM PLAYERS

The result is:

COUNT(LEAGUENO)

10

Explanation: The function COUNT(LEAGUENO) is used to count the number of non-
null values in the LEAGUENO column instead of the number of rows in the inter-
mediate result. So the result is 10, not 14 (the number of non-null values and all
values in the column, respectively).

Specifying ALL does not change the result of a query. This applies to all the aggre-
gation functions. Therefore, the previous statement could have been written as
follows:

SELECT COUNT(ALL LEAGUENO)
FROM PLAYERS

The COUNT function can also be used to calculate the number of different values
in a column.

Example 9.11: How many different town names are there in the TOWN column?

SELECT COUNT(DISTINCT TOWN)
FROM PLAYERS

327CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

The result is:

COUNT(DISTINCT TOWN)

6

Explanation: When DISTINCT is specified in front of the column name, all the
duplicate values are removed first; then the addition is carried out.

Example 9.12: Get the number of different characters that start the names of the
players.

SELECT COUNT(DISTINCT SUBSTR(NAME, 1, 1))
FROM PLAYERS

The result is:

COUNT(DISTINCT SUBSTR(NAME, 1, 1))

8

Explanation: This example shows clearly that all kinds of expression forms can be
used within aggregation functions, including scalar functions (see Appendix B,
“Scalar Functions,” for a description of the SUBSTR function).

Example 9.13: Get the number of different years that appear in the PENALTIES
table.

SELECT COUNT(DISTINCT YEAR(PAYMENT_DATE))
FROM PENALTIES

The result is:

COUNT(DISTINCT YEAR(PAYMENT_DATE))

5

Example 9.14: Get the number of different town names and the number of sexes
represented.

SELECT COUNT(DISTINCT TOWN), COUNT(DISTINCT SEX)
FROM PLAYERS

328 SQL for MySQL Developers

The result is:

COUNT(DISTINCT TOWN) COUNT(DISTINCT SEX)
-------------------- -------------------

6 2

Explanation: More than one aggregation function can be specified in a SELECT
clause.

Example 9.15: Get the numbers and names of players who incurred more penal-
ties than they played matches.

SELECT PLAYERNO, NAME
FROM PLAYERS AS P
WHERE (SELECT COUNT(*)

FROM PENALTIES AS PEN
WHERE P.PLAYERNO = PEN.PLAYERNO)
>
(SELECT COUNT(*)
FROM MATCHES AS M
WHERE P.PLAYERNO = M.PLAYERNO)

The result is:

PLAYERNO NAME
-------- -------

27 Collins
44 Baker

Explanation: Aggregation functions can appear in the SELECT clause of each table
expression, including subqueries.

Example 9.16: For each player, find the player number, the name, and the num-
ber of penalties incurred by him or her, but only for players who have at least two
penalties.

SELECT PLAYERNO, NAME,
(SELECT COUNT(*)
FROM PENALTIES
WHERE PENALTIES.PLAYERNO = PLAYERS.PLAYERNO)
AS NUMBER

FROM PLAYERS
WHERE (SELECT COUNT(*)

FROM PENALTIES
WHERE PENALTIES.PLAYERNO = PLAYERS.PLAYERNO) >= 2

329CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

The result is:

PLAYERNO NAME NUMBER
-------- ------- ------

27 Collins 2
44 Baker 3

Explanation: The correlated subquery in the SELECT clause is used to calculate
the number of penalties for each player. That same subquery is used to check
whether that number is greater than 1.

This statement can also be formulated in a more compact way by placing the sub-
query within the FROM clause:

SELECT PLAYERNO, NAME, NUMBER
FROM (SELECT PLAYERNO, NAME,

(SELECT COUNT(*)
FROM PENALTIES
WHERE PENALTIES.PLAYERNO =

PLAYERS.PLAYERNO)
AS NUMBER

FROM PLAYERS) AS PN
WHERE NUMBER >= 2

Explanation: The subquery in the FROM clause determines the number, the name,
and the number of penalties for each player. Next, this number becomes a column
in the intermediate result. After that, a condition can be specified (NUMBER >= 2);
finally, the value of that column in the SELECT clause is retrieved.

Example 9.17: Get the total number of penalties followed by the total number of
matches.

SELECT (SELECT COUNT(*)
FROM PENALTIES),
(SELECT COUNT(*)
FROM MATCHES)

The result is:

SELECT ... SELECT ...
---------- ----------

8 13

Explanation: If the result of a SELECT statement is empty, the COUNT function
returns the value 0.

330 SQL for MySQL Developers

Exercise 9.5: Get the number of different committee positions.

Exercise 9.6: Get the number of league numbers of players resident in Inglewood.

Exercise 9.7: For each team, find the number, division, and number of matches
played for that team.

Exercise 9.8: For each player, get the number, name, and number of matches
won.

Exercise 9.9: Create a SELECT statement that results in the following table:

TABLES NUMBERS
----------------- -------
Number of players 14
Number of teams 2
Number of matches 13

9.9 MAX AND MIN FUNCTIONS

With the MAX and MIN functions, you can determine the largest and smallest values,
respectively, in a column.

Example 9.18: What is the highest penalty?

SELECT MAX(AMOUNT)
FROM PENALTIES

The result is:

MAX(AMOUNT)

100.00

Example 9.19: What is the lowest penalty incurred by a player resident in
Stratford?

SELECT MIN(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford')

331CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

The result is:

MIN(AMOUNT)

100.00

Example 9.20: How many penalties are equal to the lowest one?

SELECT COUNT(*)
FROM PENALTIES
WHERE AMOUNT =

(SELECT MIN(AMOUNT)
FROM PENALTIES)

The result is:

COUNT(AMOUNT)

2

Explanation: The subquery calculates the lowest penalty, which is $25. The
SELECT statement calculates the number of penalties equal to the amount of this
lowest penalty.

Example 9.21: For each team, find the team number followed by the player
number of the player who has won the most matches for that team.

SELECT DISTINCT TEAMNO, PLAYERNO
FROM MATCHES AS M1
WHERE WON =

(SELECT MAX(WON)
FROM MATCHES AS M2
WHERE M1.TEAMNO = M2.TEAMNO)

The result is:

TEAMNO PLAYERNO
------ --------

1 6
1 44
1 57
2 27
2 104

Explanation: In the result, more than one player appears for each team because
several players won a match in three sets.

Aggregation functions can occur in calculations. Two examples of this follow.

332 SQL for MySQL Developers

Example 9.22: What is the difference between the highest and lowest penalties
in cents?

SELECT (MAX(AMOUNT) - MIN(AMOUNT)) * 100
FROM PENALTIES

The result is:

(MAX(AMOUNT) - MIN(AMOUNT)) * 100

7500.00

Example 9.23: Of all the players, get the first letter of the last name that is
alphabetically sorted last.

SELECT SUBSTR(MAX(NAME), 1, 1)
FROM PLAYERS

The result is:

SUBSTR(MAX(NAME), 1, 1)

W

Explanation: First, the MAX function finds the last name in alphabetical order;
then the scalar function SUBSTR identifies the first letter from this name. See Appen-
dix B for a description of this and other functions.

In principle, DISTINCT can be used with the MAX and MIN functions, but, of course,
this does not change the end result (determine why for yourself).

When MAX and MIN functions are processed, two special situations must be
taken into consideration:

■ If a column in a given row contains only null values, the values of the MIN
and MAX functions are also null.

■ If the MIN and MAX functions are executed on an empty intermediate result,
the value of these functions is also null.

Here is an example of each.

333CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

Example 9.24: What is the highest league number of all players from Midhurst?

SELECT MAX(LEAGUENO)
FROM PLAYERS
WHERE TOWN = 'Midhurst'

The result is:

MAX(LEAGUENO)

?

Explanation: The PLAYERS table contains only one player from Midhurst, and
she has no league number. That is why the answer to this statement has only one
row consisting of the null value.

Example 9.25: What is the lowest league number of all players from Amster-
dam? If a player does not exist, print the text Unknown.

SELECT CASE WHEN MIN(LEAGUENO) IS NULL
THEN 'Unknown'
ELSE MIN(LEAGUENO)

END
FROM PLAYERS
WHERE TOWN = 'Amsterdam'

The result is:

CASE WHEN ...

Unknown

Example 9.26: For each player who incurred at least one penalty, find the player
number, the highest penalty, and the date on which that penalty was paid.

SELECT PLAYERNO, AMOUNT, PAYMENT_DATE
FROM PENALTIES AS PEN1
WHERE AMOUNT =

(SELECT MAX(AMOUNT)
FROM PENALTIES AS PEN2
WHERE PEN2.PLAYERNO = PEN1.PLAYERNO)

334 SQL for MySQL Developers

The result is:

PLAYERNO AMOUNT PAYMENT_DATE
-------- ------ ------------

6 100.00 1980-12-08
8 25.00 1980-12-08
27 100.00 1983-09-10
44 75.00 1981-05-05
104 50.00 1984-12-08

Example 9.27: For each player, get the player number, the highest penalty
amount that was paid for him or her, and the highest number of sets won in a match.

SELECT PLAYERNO,
(SELECT MAX(AMOUNT)
FROM PENALTIES
WHERE PENALTIES.PLAYERNO = PLAYERS.PLAYERNO)
AS HIGHESTPENALTY,
(SELECT MAX(WON)
FROM MATCHES
WHERE MATCHES.PLAYERNO = PLAYERS.PLAYERNO)
AS NUMBEROFSETS

FROM PLAYERS

The result is:

PLAYERNO HIGHESTPENALTY NUMBEROFSETS
-------- -------------- ------------

2 ? 1
6 100.00 3
7 ? ?
8 25.00 0
27 100.00 3
28 ? ?
39 ? ?
44 75.00 3
57 ? 3
83 ? 0
95 ? ?
100 ? ?
104 50.00 3
112 ? 2

Explanation: The two correlated subqueries are processed for each player sepa-
rately. When no rows are found, the subquery returns a null value.

335CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

Example 9.28: Get the number of each player whose lowest penalty amount is
equal to his or her highest penalty amount.

SELECT PLAYERNO
FROM PLAYERS
WHERE (SELECT MIN(AMOUNT)

FROM PENALTIES
WHERE PENALTIES.PLAYERNO = PLAYERS.PLAYERNO) =
(SELECT MAX(AMOUNT)
FROM PENALTIES
WHERE PENALTIES.PLAYERNO = PLAYERS.PLAYERNO)

The result is:

PLAYERNO

6
8

104

Exercise 9.10: Get the lowest number of sets by which a match has been won.

Exercise 9.11: For each player, get the number and the difference between his
or her lowest and highest penalty amounts.

Exercise 9.12: Get the number and the date of birth of each player born in the
same year as the youngest player who played for the first team.

9.10 THE SUM AND AVG FUNCTION

The SUM function calculates the sum of all values in a particular column. The AVG
function calculates the arithmetic average of the values in a particular column. Of
course, both functions apply only to columns with a numeric data type.

Example 9.29: What is the total amount of penalties incurred by players from
Inglewood?

SELECT SUM(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Inglewood')

336 SQL for MySQL Developers

The result is:

SUM(AMOUNT)

155.00

You can specify the word ALL in front of the column name without affecting the
result. By adding ALL, you explicitly demand that all values be considered. In con-
trast, using DISTINCT within the SUM function can alter the end result. If you extend
the SUM function in the previous SELECT statement with DISTINCT, you get the follow-
ing result:

SELECT SUM(DISTINCT AMOUNT)
FROM PENALTIES
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Inglewood')

The result is:

SUM(AMOUNT)

130.00

Note that, unlike the COUNT, MIN, and MAX functions, the SUM function applies
only to columns with a numeric data type. The former three functions can also be
applied to columns with alphanumeric and temporal data types.

Example 9.30: Get the average amount of penalties incurred by player 44.

SELECT AVG(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO = 44

The result is:

AVG(AMOUNT)

43.33

Explanation: The amount $43.33 is the average of the amounts $75, $25,
and $30.

337CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

Example 9.31: Which players have ever incurred a penalty greater than the
average penalty?

SELECT DISTINCT PLAYERNO
FROM PENALTIES
WHERE AMOUNT >

(SELECT AVG(AMOUNT)
FROM PENALTIES)

The result is:

PLAYERNO

6
27
44

Explanation: The average penalty is $60.

Adding the word ALL does not affect the result because it simply reinforces the idea
that all values are included in the calculation. On the other hand, adding DISTINCT
within the AVG function does influence the result.

Example 9.32: What is the unweighted arithmetic mean of the penalty amounts?
(By “unweighted,” we mean that each value is considered only once in the calcula-
tion, even when it occurs more than once.)

SELECT AVG(DISTINCT AMOUNT)
FROM PENALTIES

The result is:

AVG(DISTINCT AMOUNT)

56.00

Explanation: The amount $56 is equal to $100 + $75 + $50 + $30 + $25 divided
by 5.

Example 9.33: What is the average length (in number of characters) of the
names of the players, and how long is the longest name?

SELECT AVG(LENGTH(RTRIM(NAME))), MAX(LENGTH(RTRIM(NAME)))
FROM PLAYERS

338 SQL for MySQL Developers

The result is:

AVG(LENGTH(RTRIM(NAME))) MAX(LENGTH(RTRIM(NAME)))
------------------------ ------------------------

6.5000 9

Example 9.34: For each penalty, get the payment number, the amount, and the
difference between the amount and the average penalty amount.

SELECT PAYMENTNO, AMOUNT,
ABS(AMOUNT - (SELECT AVG(AMOUNT)

FROM PENALTIES)) AS DIFFERENCE
FROM PENALTIES AS P

The result is:

PAYMENTNO AMOUNT DIFFERENCE
--------- ------ ----------

1 100.00 40.00
2 75.00 15.00
3 100.00 40.00
4 50.00 10.00
5 25.00 35.00
6 25.00 35.00
7 30.00 30.00
8 75.00 15.00

Explanation: In this example, the subquery is part of a compound expression.
The result of the subquery is subtracted from the AMOUNT column; next, the
absolute value of this result is calculated with the scalar function ABS.

For the SUM and AVG functions, the same rules apply as for MIN and MAX:

■ If a column in a given row contains only null values, the value of the function
is equal to null.

■ If some of the values in a column are null, the value of the function is equal
to the sum of the average of all non-null values divided by the number of
non-null values (and, therefore, not divided by the total number of values).

■ If the intermediate result for which SUM or AVG must be calculated is empty,
the result of the function is equal to the null value.

339CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

Exercise 9.13: Determine the value of these functions for the following set of
values in the NUMBER column: { 1, 2, 3, 4, 1, 4, 4, NULL, 5 }.

1. COUNT(*)

2. COUNT(NUMBER)

3. MIN(NUMBER)

4. MAX(NUMBER)

5. SUM(NUMBER)

6. AVG(NUMBER)

7. COUNT(DISTINCT NUMBER)

8. MIN(DISTINCT NUMBER)

9. MAX(DISTINCT NUMBER)

10. SUM(DISTINCT NUMBER)

11. AVG(DISTINCT NUMBER)

Exercise 9.14: What is the average penalty for players who have ever competed
for team 1?

Exercise 9.15: Get the numbers and names of the players for whom the total
amount of penalties is higher than 100.

Exercise 9.16: Get the names and initials of each players who has won for at
least one of his matches more sets than player 27 has won in total.

Exercise 9.17: Get the numbers and names of the players for whom the sum of
all sets won is equal to 8.

Exercise 9.18: Get the numbers and names of the players for whom the length of
their name is greater than the average length.

Exercise 9.19: For each player (also those without penalties), get the player
number and the difference between his or her maximum and the average penalty.

Exercise 9.20: For each player, get the average penalty amount in the form of a
simple, horizontal histogram. Make use of the scalar function REPEAT.

340 SQL for MySQL Developers

9.11 THE VARIANCE AND STDDEV FUNCTIONS

The VARIANCE and STDDEV functions calculate, respectively, the variance (sometimes
called the population variance) and the standard deviation (sometimes called the
population standard deviation) of the values in a particular column. Of course, these
functions apply only to columns with a numeric data type.

The VARIANCE function (the VAR function, for short) is used to calculate the vari-
ance. Variance is a measurement that indicates how close all values are to the aver-
age. In other words, it refers to the distribution of all values. The closer each value
is to the average, the lower the variance is.

Example 9.35: Get the variance of all penalties incurred by player 44.

SELECT VARIANCE(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO = 44

The result is:

VARIANCE(AMOUNT)

505.555

Explanation: The variance is calculated on the basis of the following steps:

■ Calculate the average of the column concerned.

■ For each value in the column, determine how much the value differs from the
average.

■ Calculate the sum of the squares of the differences.

■ Divide the sum by the number of values (in the column).

If you execute these steps for the previous statement, the first step returns the
answer: 43.33333, the average of the three values 75, 25, and 30. Next, for each of
the three values, the difference with the average is calculated. You can determine
this with the following SELECT statement:

SELECT AMOUNT –
(SELECT AVG(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO = 44)

FROM PENALTIES
WHERE PLAYERNO = 44

341CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

This gives the result: 31.666667, -18.33333, and -13.33333. The following
SELECT statement calculates the sum of the differences between the squares:

SELECT SUM(P)
FROM (SELECT POWER(AMOUNT -

(SELECT AVG(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO = 44),2) AS P

FROM PENALTIES
WHERE PLAYERNO = 44) AS POWERS

The result is 1516.6666666667. In the final step, this amount is divided by the
number of values, which gives an end result of 505.5555. To calculate all these
steps without the VARIANCE function, you can use the following statement:

SELECT SUM(P) /
(SELECT COUNT(*) FROM PENALTIES WHERE PLAYERNO = 44)

FROM (SELECT POWER(AMOUNT -
(SELECT AVG(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO = 44),2) AS P

FROM PENALTIES
WHERE PLAYERNO = 44) AS POWERS

The STDDEV function calculates the standard deviation of a set of values. Stan-
dard deviation is another measure of distribution for determining how close the val-
ues are to the average. By definition, the standard deviation is equal to the square
root of the variance. In other words, the following two expressions are equal: STD-
DEV(…) and SQRT(VARIANCE(…)).

Example 9.36: Get the standard deviation for all penalties incurred by player 44.

SELECT STDDEV(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO = 44

The result is:

STDDEV(AMOUNT)

22.484563

The word STDDEV may be abbreviated to STD; this has no effect on the result.

Exercise 9.21: Get the standard deviation of all penalties of player 44 without
using the STDDEV function.

342 SQL for MySQL Developers

9.12 THE VAR_SAMP AND STDDEV_SAMP
FUNCTIONS

The VARIANCE and STDDEV functions operate on all the values in the specified col-
umn. For functions, special versions exist that include not all the values in the cal-
culation, but a sample of those values. These are called VAR_SAMP and STDDEV_SAMP,
respectively. In the world of statistics, these are called the sample variance and the
sample standard deviation.

Example 9.37: Get the sample variance and the (population) variance of all
penalty amounts.

SELECT VAR_SAMP(AMOUNT), VARIANCE(AMOUNT)
FROM PENALTIES

The result is:

VAR_SAMP(AMOUNT) VARIANCE(AMOUNT)
---------------- ----------------

1062.500000 850.000000

Explanation: The formula to calculate the spot check variance is in line with the
one of the population variance, but this time, all values are used at random.

Example 9.38: Get the sample standard deviation and the population standard
deviation of all penalty amounts.

SELECT STDDEV_SAMP(AMOUNT), STDDEV(AMOUNT)
FROM PENALTIES

The result is:

STDDEV_SAMP(AMOUNT) STDDEV(AMOUNT)
------------------- --------------

32.596012 29.154759

9.13 THE BIT_AND, BIT_OR, AND BIT_XOR
FUNCTIONS

Section 5.13.1 describes the binary operators | (or), & (and), and ^ (xor). Equivalent
aggregation functions of these operators also exist: BIT_OR, BIT_AND, and BIT_XOR.

343CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

For example, the function BIT_OR executes a binary OR on all values that appear in
a column.

Example 9.39: Create a new table called BITS, and store three values in it: 001,
011, and 111. (You will need them in the other examples.)

CREATE TABLE BITS
(BIN_VALUE INTEGER NOT NULL PRIMARY KEY)

INSERT INTO BITS
VALUES (CONV(001,2,16)),

(CONV(011,2,16)),
(CONV(111,2,16))

Example 9.40: Get the result of the BIT_OR function executed on the
BIN_VALUE column.

SELECT BIN(BIT_OR(BIN_VALUE))
FROM BITS

The result is:

BIN(BIT_OR(BIN_VALUE))

111

Explanation: Behind the scenes MySQL executes the following expression: (001
| 011) | 111. The result is 111 because on each position of at least one of the three
values a 1 occurs.

When you replace BIT_OR by BIT_AND in the previous statement, the result is
001 because on only one position of all the three values a 1 occurs. When you use
the BIT_XOR function, the result is 101.

If the BIT_OR and BIT_XOR functions are executed on an empty intermediate
result, MySQL returns the number 0 as answer. For BIT_AND, the result is then equal
to 18,446,744,073,709,551,615. This is a BIGINTEGER value, of which the binary
representation is equal to a long list of 64 ones.

344 SQL for MySQL Developers

9.14 ANSWERS

9.1 1. Not superfluous

2. Not superfluous

3. Superfluous because a condition appears on the primary key

4. Not superfluous

5. Not superfluous

6. Not superfluous

9.2 1. C2
--
c2
?

2. C2 C3
-- --
c2 c3
c2 ?
? ?

9.3 This statement is not correct. An aggregation function is used in the
SELECT clause; therefore, all other column names must appear within an
aggregation function.

9.4 SELECT COUNT(*), MAX(AMOUNT)
FROM PENALTIES

9.5 SELECT COUNT(DISTINCT POSITION)
FROM COMMITTEE_MEMBERS

9.6 SELECT COUNT(LEAGUENO)
FROM PLAYERS
WHERE TOWN = 'Inglewood'

9.7 SELECT TEAMNO, DIVISION,
(SELECT COUNT(*)
FROM MATCHES
WHERE TEAMS.TEAMNO = MATCHES.TEAMNO)

FROM TEAMS

345CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

9.8 SELECT PLAYERNO, NAME,
(SELECT COUNT(*)
FROM MATCHES
WHERE MATCHES.PLAYERNO = PLAYERS.PLAYERNO
AND WON > LOST)

FROM PLAYERS

9.9 SELECT 'Number of players' AS TABLES,
(SELECT COUNT(*) FROM PLAYERS) AS NUMBERS UNION

SELECT 'Number of teams',
(SELECT COUNT(*) FROM TEAMS) UNION

SELECT 'Number of matches',
(SELECT COUNT(*) FROM MATCHES)

9.10 SELECT MIN(WON)
FROM MATCHES
WHERE WON > LOST

9.11 SELECT PLAYERNO,
(SELECT MAX(AMOUNT)
FROM PENALTIES
WHERE PENALTIES.PLAYERNO =

PLAYERS.PLAYERNO) -
(SELECT MIN(AMOUNT)
FROM PENALTIES
WHERE PENALTIES.PLAYERNO =

PLAYERS.PLAYERNO)
FROM PLAYERS

9.12 SELECT PLAYERNO, BIRTH_DATE
FROM PLAYERS
WHERE YEAR(BIRTH_DATE) =

(SELECT MAX(YEAR(BIRTH_DATE))
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO = 1))

9.13 1. 9

2. 8

3. 1

4. 5

5. 24

6. 3

346 SQL for MySQL Developers

7. 5

8. 1

9. 5

10. 15

11. 15 / 5 = 3

9.14 SELECT AVG(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO = 1)

9.15 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE (SELECT SUM(AMOUNT)

FROM PENALTIES
WHERE PENALTIES.PLAYERNO = PLAYERS.PLAYERNO)
> 100

9.16 SELECT NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES
WHERE WON >

(SELECT SUM(WON)
FROM MATCHES
WHERE PLAYERNO = 27))

9.17 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE (SELECT SUM(WON)

FROM MATCHES
WHERE MATCHES.PLAYERNO =

PLAYERS.PLAYERNO) = 8

9.18 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE LENGTH(RTRIM(NAME)) >

(SELECT AVG(LENGTH(RTRIM(NAME)))
FROM PLAYERS)

347CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions

9.19 SELECT PLAYERNO,
(SELECT MAX(AMOUNT)
FROM PENALTIES
WHERE PENALTIES.PLAYERNO =

PLAYERS.PLAYERNO) -
(SELECT AVG(AMOUNT)
FROM PENALTIES
WHERE PENALTIES.PLAYERNO =

PLAYERS.PLAYERNO)
FROM PLAYERS

9.20 SELECT PLAYERNO,
REPEAT('*',

CAST((SELECT AVG(AMOUNT)
FROM PENALTIES
WHERE PENALTIES.PLAYERNO =

PLAYERS.PLAYERNO)/10
AS SIGNED INTEGER))

FROM PLAYERS

9.21 SELECT SQRT(SUM(P) /
(SELECT COUNT(*) FROM PENALTIES WHERE

PLAYERNO = 44))
FROM (SELECT POWER(AMOUNT -

(SELECT AVG(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO = 44),2) AS P

FROM PENALTIES
WHERE PLAYERNO = 44) AS POWERS

348 SQL for MySQL Developers

349

SELECT Statement:
The GROUP BY Clause

C H A P T E R 1 0

10.1 INTRODUCTION

The GROUP BY clause groups rows on the basis of similarities among them. For
example, we could group all the rows in the PLAYERS table on the basis of the
place of residence. The result would be one group of players per town. From there,
we could query the number of players in each group. The final result answers the
question, how many players live in each town? Other examples are: How many
matches has each team played, and how much has each player incurred in penal-
ties? In short, the GROUP BY clause is frequently used to formulate questions based
on the word per.

By adding aggregation functions, such as COUNT and SUM, to a select block with
the use of a GROUP BY clause, data can be aggregated. These functions owe their
name to this. Aggregation means that we ask for summations, averages, frequen-
cies, and subtotals instead of individual values.

D E F I N I T I O N
<group by clause> ::=

GROUP BY <group by specification list> [WITH ROLLUP]

<group by specification list> ::=
<group by specification> [, <group by specification>]...

<group by specification> ::=
<group by expression> [<sort direction>]

<group by expression> ::= <scalar expression>

<sort direction> ::= ASC | DESC

10.2 GROUPING ON ONE COLUMN

The simplest form of the GROUP BY clause is the one in which only one column is
grouped. Previous chapters gave several examples of statements with such a GROUP
BY clause. For the sake of clarity, we show several other examples in this section.

Example 10.1: Get all the different town names from the PLAYERS table.

SELECT TOWN
FROM PLAYERS
GROUP BY TOWN

The intermediate result from the GROUP BY clause could look similar to this:

TOWN PLAYERNO NAME
--------- -------------------------- ----------------------
Stratford {6, 83, 2, 7, 57, 39, 100} {Parmenter, Hope, ...}
Midhurst {28} {Collins}
Inglewood {44, 8} {Baker, Newcastle}
Plymouth {112} {Bailey}
Douglas {95} {Miller}
Eltham {27, 104} {Collins, Moorman}

Explanation: All rows with the same TOWN form one group. Each row in the
intermediate result has one value in the TOWN column, whereas all other columns
can contain multiple values. To indicate that these columns are special, the values
are placed between brackets. We show those columns in this way for illustrative
purposes only; MySQL probably would solve this internally in a different way. Fur-
thermore, these two columns cannot be presented like this because a column that is
not grouped is completely omitted from the end result. We return to this topic later
in the chapter.

The end result of the statement is:

TOWN

Stratford
Midhurst
Inglewood
Plymouth
Douglas
Eltham

A frequently used term in this particular context is grouping. The GROUP BY

clause in the previous statement has one grouping, which consists of only one
column—the TOWN column. In this chapter, we sometimes represent this as

350 SQL for MySQL Developers

follows: The result is grouped by [TOWN]. Later in this chapter, we give examples
of groupings with multiple columns and GROUP BY clauses consisting of multiple
groupings.

The earlier question could be solved more easily by leaving out the GROUP BY
clause and adding DISTINCT to the SELECT clause instead (work this out by yourself).
Using the GROUP BY clause becomes interesting when we extend the SELECT clause
with aggregation functions.

Example 10.2: For each town, find the number of players.

SELECT TOWN, COUNT(*)
FROM PLAYERS
GROUP BY TOWN

The result is:

TOWN COUNT(*)
--------- --------
Stratford 7
Midhurst 1
Inglewood 2
Plymouth 1
Douglas 1
Eltham 2

Explanation: In this statement, the result is grouped by [TOWN]. The COUNT(*)
function is now executed against each grouped row (for each town) instead of
against all rows.

In this result, the data is clearly aggregated. The individual data of players cannot
be displayed anymore, and the data is aggregated by TOWN. The aggregation level
of this result is TOWN.

Example 10.3: For each team, get the team number, the number of matches that
has been played for that team, and the total number of sets won.

SELECT TEAMNO, COUNT(*), SUM(WON)
FROM MATCHES
GROUP BY TEAMNO

The result is:

TEAMNO COUNT(*) SUM(WON)
------ -------- --------

1 8 15
2 5 9

351CHAPTER 10 SELECT Statement: The GROUP BY Clause

Explanation: This statement contains one grouping, consisting of the TEAMNO
column.

Example 10.4: For each team that is captained by a player resident in Eltham,
get the team number and number of matches that has been played for that team.

SELECT TEAMNO, COUNT(*)
FROM MATCHES
WHERE TEAMNO IN

(SELECT TEAMNO
FROM TEAMS INNER JOIN PLAYERS

ON TEAMS.PLAYERNO = PLAYERS.PLAYERNO
WHERE TOWN = 'Eltham')

GROUP BY TEAMNO

The result is:

TEAMNO COUNT(*)
------ --------

2 5

The column on which the result has been grouped might also appear in the
SELECT clause as a parameter within an aggregation function. This does not happen
often, but it is allowed.

Example 10.5: Get each different penalty amount, followed by the number of
times that the amount occurs in the PENALTIES table, and also show the result of
that amount multiplied by the number.

SELECT AMOUNT, COUNT(*), SUM(AMOUNT)
FROM PENALTIES
GROUP BY AMOUNT

The PENALTIES table is grouped on the AMOUNT column first. The interme-
diate result could be presented as follows:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------------------ ------
{5, 6} {44, 8} {1980-12-08, 1980-12-08} 25.00
{7} {44} {1982-12-30} 30.00
{4} {104} {1984-12-08} 50.00
{2, 8} {44, 27} {1981-05-05, 1984-11-12} 75.00
{1, 3} {6, 27} {1980-12-08, 1983-09-10} 100.00

Again, the values of the columns that are not grouped are placed between
brackets, and the AMOUNT column shows only one value. However, that is not

352 SQL for MySQL Developers

entirely correct. Behind the scenes, MySQL also creates a group for this column. So
the intermediate result should, in fact, be presented as follows:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------------------ ----------------
{5, 6} {44, 8} {1980-12-08, 1980-12-08} {25.00, 25.00}
{7} {44} {1982-12-30} {30.00}
{4} {104} {1984-12-08} {50.00}
{2, 8} {44, 27} {1981-05-05, 1984-11-12} {75.00, 75.00}
{1, 3} {6, 27} {1980-12-08, 1983-09-10} {100.00, 100.00}

The values in the AMOUNT column are also represented as a group now. Of
course, only equal values appear in each group. And because it is a group, aggrega-
tion functions can be used.

The result is:

AMOUNT COUNT(*) SUM(AMOUNT)
------ -------- -----------
25.00 2 50.00
30.00 1 30.00
50.00 1 50.00
75.00 2 150.00
100.00 2 200.00

However, this book does not present the values of the grouped columns between
brackets.

Exercise 10.1: Show the different years in which players joined the club; use the
PLAYERS table.

Exercise 10.2: For each year, show the number of players who joined the club.

Exercise 10.3: For each player who has incurred at least one penalty, give the
player number, average penalty amount, and number of penalties.

Exercise 10.4: For each team that has played in the first division, give the team
number, number of matches, and total number of sets won.

10.3 GROUPING ON TWO OR MORE COLUMNS

A GROUP BY clause can contain two or more columns—or, in other words, a grouping
can consist of two or more columns. The next two examples illustrate this topic.

353CHAPTER 10 SELECT Statement: The GROUP BY Clause

Example 10.6: For the MATCHES table, get all the different combinations of
team numbers and player numbers.

SELECT TEAMNO, PLAYERNO
FROM MATCHES
GROUP BY TEAMNO, PLAYERNO

The result is grouped not on one column, but on two. All rows with the same
team number and the same player number form a group.

The intermediate result from the GROUP BY clause is:

TEAMNO PLAYERNO MATCHNO WON LOST
------ -------- --------- --------- ---------

1 2 {6} {1} {3}
1 6 {1, 2, 3} {3, 2, 3} {1, 3, 0}
1 8 {8} {0} {3}
1 44 {4} {3} {2}
1 57 {7} {3} {0}
1 83 {5} {0} {3}
2 8 {13} {0} {3}
2 27 {9} {3} {2}
2 104 {10} {3} {2}
2 112 {11, 12} {2, 1} {3, 3}

The end result is:

TEAMNO PLAYERNO
------ --------

1 2
1 6
1 8
1 44
1 57
1 83
2 8
2 27
2 104
2 112

The sequence of the columns in the GROUP BY clause has no effect on the end
result of a statement. The following statement, therefore, is equivalent to the previ-
ous one:

SELECT TEAMNO, PLAYERNO
FROM MATCHES
GROUP BY PLAYERNO, TEAMNO

As an example, let us add some aggregation functions to the previous SELECT
statement:

354 SQL for MySQL Developers

SELECT TEAMNO, PLAYERNO, SUM(WON),
COUNT(*), MIN(LOST)

FROM MATCHES
GROUP BY TEAMNO, PLAYERNO

The result is:

TEAMNO PLAYERNO SUM(WON) COUNT(*) MIN(LOST)
------ -------- -------- -------- ---------

1 2 1 1 3
1 6 8 3 0
1 8 0 1 3
1 44 3 1 2
1 57 3 1 0
1 83 0 1 3
2 8 0 1 3
2 27 3 1 2
2 104 3 1 2
2 112 3 2 3

In this example, the grouping is equal to [TEAMNO, PLAYERNO], and the aggrega-
tion level of the result is the combination of team number and player number. This
aggregation level is lower than that of a statement in which the grouping is equal to
[TEAMNO] or [TOWN].

Example 10.7: For each player who has ever incurred at least one penalty, get
the player number, name, and total amount of penalties incurred.

SELECT P.PLAYERNO, NAME, SUM(AMOUNT)
FROM PLAYERS AS P INNER JOIN PENALTIES AS PEN

ON P.PLAYERNO = PEN.PLAYERNO
GROUP BY P.PLAYERNO, NAME

The result is:

P.PLAYERNO NAME SUM(AMOUNT)
---------- --------- -----------

6 Parmenter 100.00
8 Newcastle 25.00
27 Collins 175.00
44 Baker 130.00
104 Moorman 50.00

Explanation: This example also has a grouping consisting of two columns. The
statement would have given the same result if the PEN.PLAYERNO column had
also been added to the grouping. Work this out by yourself.

355CHAPTER 10 SELECT Statement: The GROUP BY Clause

Exercise 10.5: For each combination of won-lost sets in the MATCHES table,
get the number of matches won.

Exercise 10.6: Group the matches on town of player and division of team, and
get the sum of the number of sets won for each combination of town-division.

Exercise 10.7: For each player who lives in Inglewood, get the name, initials,
and number of penalties incurred by him or her.

Exercise 10.8: For each team, get the team number, division, and total number
of sets won.

10.4 GROUPING ON EXPRESSIONS

Until now, we have shown only examples in which the result was grouped on one or
more columns, but what happens when we group on expressions? See the next two
examples.

Example 10.8: For each year in the PENALTIES table, get the number of penal-
ties paid.

SELECT YEAR(PAYMENT_DATE), COUNT(*)
FROM PENALTIES
GROUP BY YEAR(PAYMENT_DATE)

The intermediate result from the GROUP BY clause is:

YEAR(PAYMENT_DATE) PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
------------------ --------- ---------- ------------ --------
1980 {1, 5, 6} {6, 44, 8} {1980-12-08, {100.00,

1980-12-08, 25,00,
1980-12-08} 25,00}

1981 {2} {44} {1981-05-05} {75,00}
1982 {7} {44} {1982-12-30} {30,00}
1983 {3} {27} {1983-09-10} {100,00}
1984 {4, 8} {104, 27} {1984-12-08, {50,00,

1984-11-12} 75,00}

The result is:

YEAR(PAYMENT_DATE) COUNT(*)
------------------ --------
1980 3
1981 1
1982 1
1983 1
1984 2

356 SQL for MySQL Developers

Explanation: The result is now grouped on the values of the scalar expression
YEAR(PAYMENT_DATE). Rows for which the value of the expression YEAR(PAYMENT_
DATE) is equal form a group.

Example 10.9: Group the players on the basis of their player numbers. Group 1
should contain the players with number 1 up to and including 24. Group 2 should
contain the players with numbers 25 up to and including 49, and so on. For each
group, get the number of players and the highest player number.

SELECT TRUNCATE(PLAYERNO/25,0), COUNT(*), MAX(PLAYERNO)
FROM PLAYERS
GROUP BY TRUNCATE(PLAYERNO/25,0)

The result is:

TRUNCATE(PLAYERNO/25,0) COUNT(*) MAX(PLAYERNO)
----------------------- -------- -------------

0 4 8
1 4 44
2 1 57
3 2 95
4 3 112

The scalar expression on which rows are grouped can be rather complex. This
can consist of system variables, user variables, functions, and calculations. Even
certain scalar subqueries are allowed.

Exercise 10.9: Group the players on the length of their names and get the num-
ber of players for each length.

Exercise 10.10: For each match, determine the difference between the number
of sets won and lost, and group the matches on that difference.

Exercise 10.11: For each combination of year-month in the COMMITTEE_
MEMBERS table, get the number of committee members who started in that year
and that month.

10.5 GROUPING OF NULL VALUES

If grouping is required on a column that contains null values, all these null values
form one group because a GROUP BY clause applies a vertical comparison. This is in
accordance with the rules described in Section 9.5.

357CHAPTER 10 SELECT Statement: The GROUP BY Clause

Example 10.10: Find the different league numbers.

SELECT LEAGUENO
FROM PLAYERS
GROUP BY LEAGUENO

The result is:

LEAGUENO

1124
1319
1608
2411
2513
2983
6409
6524
7060
8467
?

Explanation: Players 7, 28, 39, and 95 do not have a league number and, there-
fore, form one group (the last row) in the end result.

10.6 GROUPING WITH SORTING

In many cases, a select block containing a GROUP BY clause ends with an ORDER BY
clause. And many times the columns specified in that ORDER BY clause are the same
as the ones specified in the GROUP BY clause. These statements can be simplified by
combining the two clauses.

Example 10.11: For each team, get the number of matches and sort the result in
descending order by team number.

The obvious formulation is:

SELECT TEAMNO, COUNT(*)
FROM MATCHES
GROUP BY TEAMNO
ORDER BY TEAMNO DESC

358 SQL for MySQL Developers

The result is:

TEAMNO COUNT(*)
------ --------

2 5
1 8

Explanation: The specification DESC is a sort direction and indicates that the
result must be sorted in a descending order. This statement can be simplified by
including the specification DESC in the GROUP BY clause.

SELECT TEAMNO, COUNT(*)
FROM MATCHES
GROUP BY TEAMNO DESC

If the result must have an ascending sort direction, ASC (ascending) must be
specified.

10.7 GENERAL RULES FOR THE GROUP BY CLAUSE

This section describes a number of important rules for select blocks with a GROUP
BY clause.

Rule 1: Section 9.7 gives several rules for the use of aggregation functions in the
SELECT clause. For many SQL products, the following rule applies: If a select block
has a GROUP BY clause, any column specification in the SELECT clause must exclu-
sively occur as a parameter of an aggregation function, or in the list of columns
given in the GROUP BY clause, or in both. Therefore, for most products, the following
statement is incorrect because the TOWN column appears in the SELECT clause, yet
it is not the parameter of an aggregation function and does not occur in the list of
columns by which the result is grouped.

SELECT TOWN, COUNT(*)
FROM PLAYERS
GROUP BY SEX

This restriction is because the result of an aggregation function always consists
of one value for each group. The result of a column specification on which grouping
is performed also always consists of one value per group. These results are compat-
ible. In contrast, the result of a column specification on which no grouping is per-
formed consists of a set of values. This would not be compatible with the results of
the other expressions in the SELECT clause.

359CHAPTER 10 SELECT Statement: The GROUP BY Clause

This rule does not apply for MySQL. The previous query will return the follow-
ing result:

TOWN COUNT(*)
--------- --------
Stratford 9
Inglewood 5

The value of the second column is understandable—it is the number of players
per sex. But the answer of the first column is unexpected. Why does it show Strat-
ford in the first row and Inglewood in the second? This is strange because, for each
sex, there can be multiple towns. The answer is that MySQL itself determines the
values to be returned. Those values are selected almost randomly. We can enforce
this rule if we add the setting ONLY_FULL_GROUP_BY to the SQL_MODE system variable.

Therefore, we strongly recommend that you do not formulate this type of SQL
statement, and instead adhere to this rule that applies to most SQL products.

Rule 2: In most examples, the expressions used to form groups also occur in the
SELECT clause. However, that is not necessary. An expression that occurs in the
GROUP BY clause can appear in the SELECT clause.

Rule 3: An expression that is used to form groups can also occur in the SELECT
clause within a compound expression. See the next example.

Example 10.12: Get the list with the different penalty amounts in cents.

SELECT CAST(AMOUNT * 100 AS SIGNED INTEGER)
AS AMOUNT_IN_CENTS

FROM PENALTIES
GROUP BY AMOUNT

The result is:

AMOUNT_IN_CENTS

2500
3000
5000
7500
10000

Explanation: A grouping is performed on a simple expression consisting of the
column name AMOUNT. In the SELECT clause, that same AMOUNT column occurs
within a compound expression. This is allowed.

360 SQL for MySQL Developers

No matter how complex a compound expression is, if it occurs in a GROUP BY clause,
it can be included in its entirety only in the SELECT clause. For example, if the
compound expression PLAYERNO * 2 occurs in a GROUP BY clause, the expressions
PLAYERNO * 2, (PLAYERNO * 2) – 100 and MOD(PLAYERNO * 2, 3) – 100 can occur
in the SELECT clause. On the other hand, the expressions PLAYERNO, 2 * PLAYERNO,
PLAYERNO * 100, and 8 * PLAYERNO * 2 are not allowed.

Rule 4: If an expression occurs more than once in a GROUP BY clause, double expres-
sions are simply removed. The GROUP BY clause GROUP BY TOWN, TOWN is converted to
GROUP BY TOWN. Also GROUP BY SUBSTR(TOWN,1,1), SEX, SUBSTR(TOWN,1,1) is con-
verted to GROUP BY SUBSTR(TOWN,1,1), SEX.

Rule 5: Section 9.4 described the cases in which the use of DISTINCT in the
SELECT clause is superfluous. The rules given in that section apply to SELECT state-
ments without a GROUP BY clause. A different rule exists for SELECT statements with
a GROUP BY clause: DISTINCT (if used outside an aggregation function) is superfluous
when the SELECT clause includes all the columns specified in the GROUP BY clause.
The GROUP BY clause groups the rows in such a way that the column(s) on which they
are grouped no longer contain duplicate values.

Exercise 10.12: Describe why the following statements are incorrect:

1. SELECT PLAYERNO, DIVISION
FROM TEAMS
GROUP BY PLAYERNO

2. SELECT SUBSTR(TOWN,1,1), NAME
FROM PLAYERS
GROUP BY TOWN, SUBSTR(NAME,1,1)

3. SELECT PLAYERNO * (AMOUNT + 100)
FROM PENALTIES
GROUP BY AMOUNT + 100

Exercise 10.13: In which of the following statements is DISTINCT superfluous?

1. SELECT DISTINCT PLAYERNO
FROM TEAMS
GROUP BY PLAYERNO

361CHAPTER 10 SELECT Statement: The GROUP BY Clause

2. SELECT DISTINCT COUNT(*)
FROM MATCHES
GROUP BY TEAMNO

3. SELECT DISTINCT COUNT(*)
FROM MATCHES
WHERE TEAMNO = 2
GROUP BY TEAMNO

10.8 THE GROUP_CONCAT FUNCTION

A special aggregation function that MySQL supports is the GROUP_CONCAT function.
The value of this function is equal to all values of the specified column belonging to
a group. These values are placed behind each other, separated by commas, and are
presented as one long alphanumeric value.

Example 10.13: For each team, get the team number and list of players who
played matches for that team.

SELECT TEAMNO, GROUP_CONCAT(PLAYERNO)
FROM MATCHES
GROUP BY TEAMNO

The result is:

TEAMNO GROUP_CONCAT(PLAYERNO)
------ ----------------------

1 6,8,57,2,83,44,6,6
2 27,104,112,112,8

The GROUP_CONCAT function can also be used on the column on which the result
is grouped.

Example 10.14: For each team, get the team number and for each player, who
played matches for that team, get that same team number.

SELECT TEAMNO, GROUP_CONCAT(TEAMNO)
FROM MATCHES
GROUP BY TEAMNO

The result is:
TEAMNO GROUP_CONCAT(TEAMNO)

------ --------------------
1 1,1,1,1,1,1,1,1
2 2,2,2,2,2

362 SQL for MySQL Developers

If a select block contains no GROUP BY clause, the GROUP_CONCAT function is
processed on all the values of a column.

Example 10.15: Get all the payment numbers.

SELECT GROUP_CONCAT(PAYMENTNO)
FROM PENALTIES

The result is:

GROUP_CONCAT(BETALINGSNR)

1,2,3,4,5,6,7,8

The length of the alphanumeric value of a GROUP_CONCAT function is restricted.
The system variable GROUP_CONCAT_MAX_LEN indicates the maximum length. This
variable has a standard value of 1,024 and can be adjusted with a SET statement.

Example 10.16: Reduce the length of the GROUP_CONCAT function to seven char-
acters and execute the statement of the previous example.

SET @@GROUP_CONCAT_MAX_LEN=7

SELECT TEAMNO, GROUP_CONCAT(TEAMNO)
FROM MATCHES
GROUP BY TEAMNO

The result is:

TEAMNO GROUP_CONCAT(TEAMNO)
------ --------------------

1 1,1,1,1
2 2,2,2,2

10.9 COMPLEX EXAMPLES WITH GROUP BY
Consider the following examples that illustrate the extensive possibilities of the
GROUP BY clause.

363CHAPTER 10 SELECT Statement: The GROUP BY Clause

Example 10.17: What is the average total amount of penalties for players who
live in Stratford and Inglewood?

SELECT AVG(TOTAL)
FROM (SELECT PLAYERNO, SUM(AMOUNT) AS TOTAL

FROM PENALTIES
GROUP BY PLAYERNO) AS TOTALS

WHERE PLAYERNO IN
(SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford' OR TOWN = 'Inglewood')

The result is:

AVG(TOTAL)

85

Explanation: The intermediate result of the subquery in the FROM clause is a
table consisting of two columns, called PLAYERNO and TOTAL, and five rows
(players 6, 8, 27, 44, and 104). This table is passed on to the WHERE clause, in which
a subquery is used to select players from Stratford and Inglewood (players 6, 8, and
44). Finally, the average is calculated in the SELECT clause of the column TOTAL.

Example 10.18: For each player (who incurred penalties and is captain), get the
player number, name, number of penalties that he or she incurred, and number of
teams that he or she captains.

SELECT PLAYERS.PLAYERNO, NAME, NUMBER_OF_PENALTIES,
NUMBER_OF_TEAMS

FROM PLAYERS,
(SELECT PLAYERNO, COUNT(*) AS NUMBER_OF_PENALTIES
FROM PENALTIES
GROUP BY PLAYERNO) AS NUMBER_PENALTIES,
(SELECT PLAYERNO, COUNT(*) AS NUMBER_OF_TEAMS
FROM TEAMS
GROUP BY PLAYERNO) AS NUMBER_TEAMS

WHERE PLAYERS.PLAYERNO = NUMBER_PENALTIES.PLAYERNO
AND PLAYERS.PLAYERNO = NUMBER_TEAMS.PLAYERNO

The result is:
PLAYERNO NAME NUMBER_OF_PENALTIES NUMBER_OF_TEAMS

-------- --------- ------------------- ---------------
6 Parmenter 1 1
27 Collins 2 1

364 SQL for MySQL Developers

Explanation: The FROM clause contains two subqueries that both have a GROUP BY
clause.

We could more easily formulate the previous statement by including subqueries in
the SELECT clause, which eliminates the need for GROUP BY clauses. See the next
example, and note that the only difference is that all players appear in the result.

SELECT PLAYERS.PLAYERNO, NAME,
(SELECT COUNT(*)
FROM PENALTIES
WHERE PLAYERS.PLAYERNO =

PENALTIES.PLAYERNO) AS NUMBER_OF_PENALTIES,
(SELECT COUNT(*)
FROM TEAMS
WHERE PLAYERS.PLAYERNO =

TEAMS.PLAYERNO) AS NUMBER_OF_TEAMS
FROM PLAYERS

Example 10.19: Get the player number and total number of penalties for each
player who played a match.

SELECT DISTINCT M.PLAYERNO, NUMBERP
FROM MATCHES AS M LEFT OUTER JOIN

(SELECT PLAYERNO, COUNT(*) AS NUMBERP
FROM PENALTIES
GROUP BY PLAYERNO) AS NP

ON M.PLAYERNO = NP.PLAYERNO

Explanation: In this statement, the subquery creates the following intermediate
result (this is the NP table):

PLAYERNO NUMBERP
-------- -------

6 1
8 1
27 2
44 3
104 1

Next, this table is joined with the MATCHES table. We execute a left outer join, so
no players will disappear from this table. The final result is:

365CHAPTER 10 SELECT Statement: The GROUP BY Clause

PLAYERNO NUMBERP
-------- -------

2 ?
6 1
8 1
27 2
44 3
57 ?
83 ?
104 1
112 ?

Example 10.20: Group the penalties on the basis of payment date. Group 1
should contain all penalties between January 1, 1980, and June 30, 1982; group 2
should contain all penalties between July 1, 1981, and December 31, 1982; and
group 3 should contain all penalties between January 1, 1983, and December 31,
1984. For each group, get the sum of all penalties.

SELECT GROUPS.PGROUP, SUM(P.AMOUNT)
FROM PENALTIES AS P,

(SELECT 1 AS PGROUP, '1980-01-01' AS START,
'1981-06-30' AS END

UNION
SELECT 2, '1981-07-01', '1982-12-31'
UNION
SELECT 3, '1983-01-01', '1984-12-31') AS GROUPS

WHERE P.PAYMENT_DATE BETWEEN START AND END
GROUP BY GROUPS.PGROUP
ORDER BY GROUPS.PGROUP

The result is:

GROUP SUM(P.AMOUNT)
----- -------------

1 225.00
2 30.00
3 225.00

Explanation: In the FROM clause, a new (virtual) table is created in which the
three groups have been defined. This GROUPS table is joined with the PENAL-
TIES table. A BETWEEN operator is used to join the two tables. Penalties with a pay-
ment date that falls outside these groups will not be included in the result.

Example 10.21: For each penalty, get the penalty amount plus the sum of that
amount and the amounts of all penalties with a lower payment number (cumulative
value).

366 SQL for MySQL Developers

SELECT P1.PAYMENTNO, P1.AMOUNT, SUM(P2.AMOUNT)
FROM PENALTIES AS P1, PENALTIES AS P2
WHERE P1.PAYMENTNO >= P2. PAYMENTNO
GROUP BY P1. PAYMENTNO, P1.AMOUNT
ORDER BY P1. PAYMENTNO

For convenience, assume that the PENALTIES table consists of the following
three rows only (you can create this, too, by temporarily removing all penalties with
a number greater than 3):

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100
2 44 1981-05-05 75
3 27 1983-09-10 100

The desired result is:

PAYMENTNO AMOUNT SUM
--------- ------ -----

1 100 100
2 75 175
3 100 275

The intermediate result of the FROM clause (showing only the columns
PAYMENTNO and AMOUNT):

P1.PAYNO P1.AMOUNT P2.PAYNO P2.AMOUNT
-------- --------- -------- ---------

1 100 1 100
1 100 2 75
1 100 3 100
2 75 1 100
2 75 2 75
2 75 3 100
3 100 1 100
3 100 2 75
3 100 3 100

The intermediate result of the WHERE clause:

P1.PAYNO P1.AMOUNT P2.PAYNO P2.AMOUNT
-------- --------- -------- ---------

1 100 1 100
2 75 1 100
2 75 2 75
3 100 1 100
3 100 2 75
3 100 3 100

367CHAPTER 10 SELECT Statement: The GROUP BY Clause

The intermediate result of the GROUP BY clause:

P1.PAYNO P1.AMOUNT P2.PAYNO P2.AMOUNT
-------- --------- --------- --------------

1 100 {1} {100}
2 75 {1, 2} {100, 75}
3 100 {1, 2, 3} {100, 75, 100}

The intermediate result of the SELECT clause:

P1.PAYNO P1.AMOUNT SUM(P2.AMOUNT)
-------- --------- --------------

1 100 100
2 75 175
3 100 275

This final result is equal to the desired table.

Most joins in this book (and in the real world) are equi joins. Non-equi joins are
rare. However, the previous statement shows an example where non-equi joins can
be useful and the powerful statements they can formulate.

Example 10.22: For each penalty, get the payment number, penalty amount,
and percentage that the amount forms of the sum of all amounts (use the same
PENALTIES table as in the previous example).

SELECT P1.PAYMENTNO, P1.AMOUNT,
(P1.AMOUNT * 100) / SUM(P2.AMOUNT)

FROM PENALTIES AS P1, PENALTIES AS P2
GROUP BY P1.PAYMENTNO, P1.AMOUNT
ORDER BY P1.PAYMENTNO

The intermediate result of the FROM clause is equal to that of the previous exam-
ple. However, the intermediate result of the GROUP BY clause differs:

P1.PAYNO P1.AMOUNT P2.PAYNO P2.AMOUNT
-------- --------- --------- --------------

1 100 {1, 2, 3} {100, 75, 100}
2 75 {1, 2, 3} {100, 75, 100}
3 100 {1, 2, 3} {100, 75, 100}

The intermediate result of the SELECT clause is:

P1.PAYNO P1.AMOUNT (P1.AMOUNT * 100) / SUM(P2.AMOUNT)
-------- --------- ----------------------------------

1 100 36.36
2 75 27.27
3 100 36.36

Determine yourself whether this is the final result.

368 SQL for MySQL Developers

Exercise 10.14: How many players live in a town, on average?

Exercise 10.15: For each team, get the team number, division, and number of
players that played matches for that team.

Exercise 10.16: For each player, get the player number, name, sum of all penal-
ties that he or she incurred, and number of teams from the first division that he or
she captains.

Exercise 10.17: For each team captained by a player who lives in Stratford, get
the team number and number of players who have won at least one match for that
team.

Exercise 10.18: For each player, get the player number, name, and difference
between the year in which he or she joined the club and the average year of joining
the club.

Exercise 10.19: For each player, get the player number, name, and difference
between the year in which he or she joined the club and the average year in which
players who live in the same town joined the club.

10.10 GROUPING WITH WITH ROLLUP
The GROUP BY clause has many features to group data and calculate aggregated data,
such as the total number of penalties or the sum of all penalties. However, all
statements return results in which all data is on the same level of aggregation. But
what if we want to see data belonging to different aggregation levels within one
statement? Imagine that with one statement we want to see the total penalty amount
for each player, followed by the total penalty amount for all players. The forms of the
GROUP BY clauses discussed so far do not make this possible. To achieve the desired
result, more than two groupings within one GROUP BY clause are required. By adding
the specification WITH ROLLUP to the GROUP BY clause, it becomes possible.

Example 10.23: For each player, find the sum of all his or her penalties, plus
the sum of all penalties.

Use the UNION operator as a way to combine these two groupings into one
statement.

369CHAPTER 10 SELECT Statement: The GROUP BY Clause

SELECT PLAYERNO, SUM(AMOUNT)
FROM PENALTIES
GROUP BY PLAYERNO
UNION
SELECT NULL, SUM(AMOUNT)
FROM PENALTIES

The result is:

PLAYERNO SUM(AMOUNT)
-------- -----------

6 100.00
8 25.00
27 175.00
44 130.00
104 50.00
? 480.00

Explanation: The rows of this intermediate result in which the PLAYERNO
column is filled form the result of the first select block. The rows in which
PLAYERNO is equal to null make up the result of the second select block. The first
five rows contain data on the aggregation level of the player numbers, and the last
row contains data on the aggregation level of all rows.

The specification WITH ROLLUP has been introduced to simplify this kind of state-
ment. WITH ROLLUP can be used to ask for multiple groupings with one GROUP BY
clause. Using this approach, the previous statement would then be

SELECT PLAYERNO, SUM(AMOUNT)
FROM PENALTIES
GROUP BY PLAYERNO WITH ROLLUP

Explanation: The result of this statement is the same as the previous one. The
specification WITH ROLLUP indicates that after the result has been grouped on
[PLAYERNO], another grouping is needed—in this case, on all rows.

To further define this concept, imagine that the expressions E1, E2, E3, and E4 are
specified in a GROUP BY clause. The grouping performed is [E1, E2, E3, E4]. When
we add the specification WITH ROLLUP to this GROUP BY clause, an entire set of
groupings is performed: [E1, E2, E3, E4], [E1, E2, E3], [E1, E2], [E1], and finally
[]. The specification [] means that all rows are grouped into one group. The speci-
fied grouping is seen as the highest aggregation level that is asked and also indi-
cates that all higher aggregation levels must be calculated again. To aggregate
upward is called rollup. So the result of this statement contains data on five differ-
ent levels of aggregation.

370 SQL for MySQL Developers

If an expression occurs in the SELECT clause in which the result of a certain
grouping is not grouped, the null value is placed in the result.

Example 10.24: For each combination of sex-town, get the number of players,
total number of players per sex, and total number of players in the entire table.

SELECT SEX, TOWN, COUNT(*)
FROM PLAYERS
GROUP BY SEX, TOWN WITH ROLLUP

The result is:

SEX TOWN COUNT(*)
--- --------- --------
M Stratford 7
M Inglewood 1
M Douglas 1
M ? 9
F Midhurst 1
F Inglewood 1
F Plymouth 1
F Eltham 2
F ? 5
? ? 14

Explanation: This result has three levels of aggregation. Rows 1, 2, 3, 5, 6, 7, and
8 form the lowest level and have been added because of the grouping [SEX, TOWN];
rows 4 and 9 have been added because of the grouping [SEX]; and the last row
forms the highest level of aggregation and has been added because of the grouping
[]. It contains the total number of players.

Exercise 10.20: For each team, get the number of matches played and also the
total number of matches.

Exercise 10.21: Group the matches by the name of the player and division of the
team, and execute a ROLLUP. Then for each group, get the name of the player, divi-
sion of the team, and total number of sets won.

371CHAPTER 10 SELECT Statement: The GROUP BY Clause

10.11 ANSWERS

10.1 SELECT JOINED
FROM PLAYERS
GROUP BY JOINED

10.2 SELECT JOINED, COUNT(*)
FROM PLAYERS
GROUP BY JOINED

10.3 SELECT PLAYERNO, AVG(AMOUNT), COUNT(*)
FROM PENALTIES
GROUP BY PLAYERNO

10.4 SELECT TEAMNO, COUNT(*), SUM(WON)
FROM MATCHES
WHERE TEAMNO IN

(SELECT TEAMNO
FROM TEAMS
WHERE DIVISION = 'first')

GROUP BY TEAMNO

10.5 SELECT WON, LOST, COUNT(*)
FROM MATCHES
WHERE WON > LOST
GROUP BY WON, LOST
ORDER BY WON, LOST

10.6 SELECT P.TOWN, T.DIVISION, SUM(WON)
FROM (MATCHES AS M INNER JOIN PLAYERS AS P

ON M.PLAYERNO = P.PLAYERNO)
INNER JOIN TEAMS AS T
ON M.TEAMNO = T.TEAMNO

GROUP BY P.TOWN, T.DIVISION
ORDER BY P.TOWN

10.7 SELECT NAME, INITIALS, COUNT(*)
FROM PLAYERS AS P INNER JOIN PENALTIES AS PEN

ON P.PLAYERNO = PEN.PLAYERNO
WHERE P.TOWN = 'Inglewood'
GROUP BY P.PLAYERNO, NAME, INITIALS

10.8 SELECT T.TEAMNO, DIVISION, SUM(WON)
FROM TEAMS AS T, MATCHES AS M
WHERE T.TEAMNO = M.TEAMNO
GROUP BY T.TEAMNO, DIVISION

372 SQL for MySQL Developers

10.9 SELECT LENGTH(RTRIM(NAME)), COUNT(*)
FROM PLAYERS
GROUP BY LENGTH(RTRIM(NAME))

10.10 SELECT ABS(WON - LOST), COUNT(*)
FROM MATCHES
GROUP BY ABS(WON – LOST)

10.11 SELECT YEAR(BEGIN_DATE), MONTH(BEGIN_DATE), COUNT(*)
FROM COMMITTEE_MEMBERS
GROUP BY YEAR(BEGIN_DATE), MONTH(BEGIN_DATE)
ORDER BY YEAR(BEGIN_DATE), MONTH(BEGIN_DATE)

10.12 1. Although this column appears in the SELECT clause, the result of the
DIVISION column has not been grouped.

2. The NAME column cannot appear like this in the SELECT clause
because the result has not been grouped on the full NAME column.

3. The PLAYERNO column appears in the SELECT clause, although the
result has not been grouped; furthermore, the column does not appear
as a parameter of an aggregation function.

10.13 1. Superfluous

2. Not superfluous

3. Superfluous

10.14 SELECT AVG(NUMBERS)
FROM (SELECT COUNT(*) AS NUMBERS

FROM PLAYERS
GROUP BY TOWN) AS TOWNS

10.15 SELECT TEAMS.TEAMNO, DIVISION, NUMBER_PLAYERS
FROM TEAMS LEFT OUTER JOIN

(SELECT TEAMNO, COUNT(*) AS NUMBER_PLAYERS
FROM MATCHES
GROUP BY TEAMNO) AS M
ON (TEAMS.TEAMNO = M.TEAMNO)

373CHAPTER 10 SELECT Statement: The GROUP BY Clause

10.16 SELECT PLAYERS.PLAYERNO, NAME, SUM_AMOUNT,
NUMBER_TEAMS

FROM (PLAYERS LEFT OUTER JOIN
(SELECT PLAYERNO, SUM(AMOUNT) AS SUM_AMOUNT
FROM PENALTIES
GROUP BY PLAYERNO) AS TOTALS
ON (PLAYERS.PLAYERNO = TOTALS.PLAYERNO))

LEFT OUTER JOIN
(SELECT PLAYERNO, COUNT(*) AS NUMBER_TEAMS
FROM TEAMS
WHERE DIVISION = 'first'
GROUP BY PLAYERNO) AS NUMBERS
ON (PLAYERS.PLAYERNO = NUMBERS.PLAYERNO)

10.17 SELECT TEAMNO, COUNT(DISTINCT PLAYERNO)
FROM MATCHES
WHERE TEAMNO IN

(SELECT TEAMNO
FROM PLAYERS AS P INNER JOIN TEAMS AS T

ON P.PLAYERNO = T.PLAYERNO
AND TOWN = 'Stratford')

AND WON > LOST
GROUP BY TEAMNO

10.18 SELECT PLAYERNO, NAME, JOINED - AVERAGE
FROM PLAYERS,

(SELECT AVG(JOINED) AS AVERAGE
FROM PLAYERS) AS T

10.19 SELECT PLAYERNO, NAME, JOINED – AVERAGE
FROM PLAYERS,

(SELECT TOWN, AVG(JOINED) AS AVERAGE
FROM PLAYERS
GROUP BY TOWN) AS TOWNS

WHERE PLAYERS.TOWN = TOWNS.TOWN

10.20 SELECT TEAMNO, COUNT(*)
FROM MATCHES
GROUP BY TEAMNO WITH ROLLUP

10.21 SELECT P.NAME, T.DIVISION, SUM(WON)
FROM (MATCHES AS M INNER JOIN PLAYERS AS P

ON M.PLAYERNO = P.PLAYERNO)
INNER JOIN TEAMS AS T
ON M.TEAMNO = T.TEAMNO

GROUP BY P.NAME, T.DIVISION WITH ROLLUP

374 SQL for MySQL Developers

375

SELECT Statement:
The HAVING Clause

C H A P T E R 1 1

11.1 INTRODUCTION

The purpose of the HAVING clause of a select block is comparable to that of the WHERE
clause. The difference is that the WHERE clause is used to select rows after the FROM
clause has been processed, whereas the HAVING clause is used to select rows after a
GROUP BY clause has been executed. A HAVING clause can be used without a GROUP
BY clause.

D E F I N I T I O N
<having clause> ::=

HAVING <condition>

In the previous chapter, you saw that the GROUP BY clause groups the rows of the
result from the FROM clause. The HAVING clause enables you to select groups (with
rows) based upon their particular group properties. The condition in the HAVING
clause looks a lot like a “normal” condition in the WHERE clause. Nevertheless, one
difference exists: Expressions in the condition of a HAVING clause can contain
aggregation functions, whereas expressions in the condition of a WHERE clause can-
not (unless they appear within a subquery).

Example 11.1: Get the number of each player who has incurred more than one
penalty.

SELECT PLAYERNO
FROM PENALTIES
GROUP BY PLAYERNO
HAVING COUNT(*) > 1

The intermediate result of the GROUP BY clause looks like this:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------------------ ---------------
{1} 6 {1980-12-08} {100.00}
{6} 8 {1980-12-08} {25.00}
{3, 8} 27 {1983-09-10, 1984-11-12} {100.00, 75.00}
{2, 5, 7} 44 {1981-05-05, 1980-12-08, {75.00, 25.00,

1982-12-30} 30.00}
{4} 104 {1984-12-08} {50.00}

In the HAVING condition, we specified the groups in which the number of rows
exceeds 1. This is the intermediate result of the HAVING clause:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------------------ ---------------
{3, 8} 27 {1983-09-10, 1984-11-12} {100.00, 75.00}
{2, 5, 7} 44 {1981-05-05, 1980-12-08, {75.00, 25.00,

1982-12-30} 30.00}

Finally, the end result is this:

PLAYERNO

27
44

Explanation: Just as with the SELECT clause, the value of an aggregation function
in a HAVING clause is calculated for each group separately. In the previous example,
the number of rows for each group in the intermediate result of the GROUP BY is
counted.

11.2 EXAMPLES OF THE HAVING CLAUSE

This section contains examples of applications of aggregation functions in the
HAVING clause.

Example 11.2: Get the player number of each player whose last penalty was
incurred in 1984.

SELECT PLAYERNO
FROM PENALTIES
GROUP BY PLAYERNO
HAVING MAX(YEAR(PAYMENT_DATE)) = 1984

376 SQL for MySQL Developers

The result is:

PLAYERNO

27
104

Explanation: The intermediate result of the GROUP BY clause is equal to the one in
Example 11.1. The scalar function YEAR pulls the year figure from each date while
processing the HAVING clause. So MySQL searches in the PAYMENT_DATE column
for the highest year figures for each row. They are, respectively, 1980-12-08, 1980-
12-08, 1984-11-12, 1982-12-30, and 1984-12-08.

Example 11.3: For each player who has incurred more than $150 in total penal-
ties, find the player number and the total amount of penalties.

SELECT PLAYERNO, SUM(AMOUNT)
FROM PENALTIES
GROUP BY PLAYERNO
HAVING SUM(AMOUNT) > 150

The result is:

PLAYERNO SUM(AMOUNT)
-------- -----------

27 175.00

Example 11.4: For each player who is a captain and who has incurred more than
$80 in total penalties, find the player number and the total amount of penalties.

SELECT PLAYERNO, SUM(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM TEAMS)

GROUP BY PLAYERNO
HAVING SUM(AMOUNT) > 80

The result is:

PLAYERNO SUM(AMOUNT)
-------- -----------

6 100.00
27 175.00

377CHAPTER 11 SELECT Statement: The HAVING Clause

Example 11.5: Get the player number and the total amount of penalties for the
player with the highest penalty total.

SELECT PLAYERNO, SUM(AMOUNT)
FROM PENALTIES
GROUP BY PLAYERNO
HAVING SUM(AMOUNT) >= ALL

(SELECT SUM(AMOUNT)
FROM PENALTIES
GROUP BY PLAYERNO)

The intermediate result of the GROUP BY clause is equal to the one in Example
11.1. The result from the subquery is shown here:

AMOUNT

100.00
25.00
175.00
130.00
50.00

For each group (that is, player), MySQL determines whether the result of the
function SUM(AMOUNT) is greater than or equal to all values in the result of the sub-
query. The final result is shown here:

PLAYERNO SUM(AMOUNT)
-------- -----------

27 175.00

11.3 A HAVING CLAUSE BUT NOT A GROUP
BY CLAUSE

If a SELECT statement has a HAVING clause but not a GROUP BY clause, all rows of the
table are grouped into one row.

Example 11.6: Give the sum of all penalty amounts, but only if that sum is
greater than $250.

SELECT SUM(AMOUNT)
FROM PENALTIES
HAVING SUM(AMOUNT) >= 250

378 SQL for MySQL Developers

The result is:

SUM(AMOUNT)

480.00

Explanation: Because this statement has a HAVING clause and not a GROUP BY

clause, all rows are placed into one group. We refer to this as grouping on [], mean-
ing, we group on zero expressions. This intermediate result could be represented as
follows:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- ------------ ------------------------ ---------------
{1, 2, 3, {6, 44, 27, {1980-12-08, 1981-05-05, {100.00, 75.00,
4, 5, 6, 104, 44, 8, 1983-09-10, 1984-12-08, 100.00, 50.00,
7, 8} 44, 27} 1980-12-08, 1980-12-08, 25.00, 25.00,

1982-12-30, 1984-11-12} 30.00, 75.00}

Note that if the grouped row does not satisfy the condition, the result is empty.

Example 11.7: Give the list of the numbers of players who played matches for a
team.

SELECT GROUP_CONCAT(PLAYERNO) AS LIST
FROM MATCHES
HAVING TRUE

The result is:

LIST

2,6,6,6,8,8,27,44,57,83,104,112,112

Explanation: Again, we group on []. Because the condition in this HAVING clause
is always true, one row appears in the result.

11.4 GENERAL RULE FOR THE HAVING CLAUSE

Section 10.7 outlined rules for the use of columns and aggregation functions in the
SELECT clause. The HAVING clause requires a similar type of rule, as follows: Each
column specification in the HAVING clause must occur within an aggregation function
or in the list of columns named in the GROUP BY clause. Therefore, the following
statement is incorrect because the BIRTH_DATE column appears in the HAVING

379CHAPTER 11 SELECT Statement: The HAVING Clause

clause but does not appear within an aggregation function or in the list of columns by
which grouping is performed.

SELECT TOWN, COUNT(*)
FROM PLAYERS
GROUP BY TOWN
HAVING BIRTH_DATE > '1970-01-01'

The reason for this limitation is the same as that for the SELECT clause rule. The
result of an aggregation function always consists of one value for each group. In
addition, the result of the column specification on which the result is grouped
always consists of only one value for each group. However, the result of a column
specification, which has not been grouped, consists of a set of values. We are then
dealing with incompatible results.

Exercise 11.1: In which town do more than four players live?

Exercise 11.2: Get the player number of each player who has incurred more
than $150 in penalties.

Exercise 11.3: Get the name, initials, and number of penalties for each player
who has incurred more than one penalty.

Exercise 11.4: Get the number of the team for which the most players have
played, and give the number of players who have played for this team.

Exercise 11.5: Get the team number and the division of each team for which
more than four players have competed.

Exercise 11.6: Get the name and initials of each player who has incurred two or
more penalties of more than $40.

Exercise 11.7: Get the name and initials of each player whose total amount of
penalties is the highest.

Exercise 11.8: Get the number of each player who has incurred twice as many
penalties as player 104. Player 104 should be excluded from the result.

Exercise 11.9: Get the numbers of the players who have incurred as many
penalties as player 6. Player 6 should be excluded from the result.

Exercise 11.10: Find the player number and name of each player who has won
in total more sets than lost.

380 SQL for MySQL Developers

11.5 ANSWERS

11.1 SELECT TOWN
FROM PLAYERS
GROUP BY TOWN
HAVING COUNT(*) > 4

11.2 SELECT PLAYERNO
FROM PENALTIES
GROUP BY PLAYERNO
HAVING SUM(AMOUNT) > 150

11.3 SELECT NAME, INITIALS, COUNT(*)
FROM PLAYERS INNER JOIN PENALTIES

ON PLAYERS.PLAYERNO = PENALTIES.PLAYERNO
GROUP BY PLAYERS.PLAYERNO, NAME, INITIALS
HAVING COUNT(*) > 1

11.4 SELECT TEAMNO, COUNT(*)
FROM MATCHES
GROUP BY TEAMNO
HAVING COUNT(*) >= ALL

(SELECT COUNT(*)
FROM MATCHES
GROUP BY TEAMNO)

11.5 SELECT TEAMNO, DIVISION
FROM TEAMS
WHERE TEAMNO IN

(SELECT TEAMNO
FROM MATCHES
GROUP BY TEAMNO
HAVING COUNT(DISTINCT PLAYERNO) > 4)

11.6 SELECT NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES
WHERE AMOUNT > 40
GROUP BY PLAYERNO
HAVING COUNT(*) >= 2)

381CHAPTER 11 SELECT Statement: The HAVING Clause

11.7 SELECT NAME, INITIALS
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES
GROUP BY PLAYERNO
HAVING SUM(AMOUNT) >= ALL

(SELECT SUM(AMOUNT)
FROM PENALTIES
GROUP BY PLAYERNO))

11.8 SELECT PLAYERNO
FROM PENALTIES
WHERE PLAYERNO <> 104
GROUP BY PLAYERNO
HAVING SUM(AMOUNT) =

(SELECT SUM(AMOUNT) * 2
FROM PENALTIES
WHERE PLAYERNO = 104)

11.9 SELECT PLAYERNO
FROM PENALTIES
WHERE PLAYERNO <> 6
GROUP BY PLAYERNO
HAVING COUNT(*) =

(SELECT COUNT(*)
FROM PENALTIES
WHERE PLAYERNO = 6)

11.10 SELECT P.PLAYERNO, P.NAME
FROM PLAYERS AS P, MATCHES AS M1
WHERE P.PLAYERNO = M1.PLAYERNO
GROUP BY P.PLAYERNO, P.NAME
HAVING SUM(WON) >

(SELECT SUM(LOST)
FROM MATCHES AS M2
WHERE M2.PLAYERNO = P.PLAYERNO
GROUP BY M2.PLAYERNO)

382 SQL for MySQL Developers

383

SELECT Statement:
The ORDER BY Clause

C H A P T E R 1 2

12.1 INTRODUCTION

In what actual sequence are the rows in the result of a SELECT statement presented?
If the SELECT statement has no ORDER BY clause, the sequence is unpredictable.
When working through the examples or exercises, you might have found once or
twice that the sequence of the rows in your result differs from the one in the book.
Adding an ORDER BY clause at the end of a SELECT statement is the only guarantee
that the rows in the end result are sorted in a certain way.

D E F I N I T I O N
<order by clause> ::=

ORDER BY <sort specification> [, <sort specification>]...

<sort specification> ::=
<column name> [<sort direction>] |
<scalar expression> [<sort direction>] |
<sequence number> [<sort direction>]

<sort direction> ::= ASC | DESC

12.2 SORTING ON COLUMN NAMES

Sorting on one column is the simplest method. In this case, the sorting consists of
one column specification. You may sort on each column specified in the SELECT
clause.

Example 12.1: Find the payment number and player number of each penalty
incurred; sort the result by player number.

SELECT PAYMENTNO, PLAYERNO
FROM PENALTIES
ORDER BY PLAYERNO

The result is:

PAYMENTNO PLAYERNO
--------- --------

1 6
6 8
3 27
8 27
5 44
2 44
7 44
4 104

Explanation: The rows are sorted based on the values in the PLAYERNO column,
with the lowest value first and the highest value last.

You may sort on more than one column. This could be relevant if the first column
consists of duplicate values. For example, the PLAYERNO column in the PENAL-
TIES table contains duplicate values. If we sort on one column only, MySQL is
allowed to determine how the rows with duplicate player numbers are sorted. When
we add another column for sorting, we explicitly indicate how the duplicate values
must be sorted.

Example 12.2: For each penalty, get the player number and the penalty amount;
sort the result on both columns.

SELECT PLAYERNO, AMOUNT
FROM PENALTIES
ORDER BY PLAYERNO, AMOUNT

The result is:

PLAYERNO AMOUNT
-------- ------

6 100.00
8 25.00
27 75.00
27 100.00
44 25.00
44 30.00
44 75.00
104 50.00

384 SQL for MySQL Developers

Explanation: The result shows that if the player numbers are equal, the penalty
amount is used to sort. Two sort keys are needed to get the rows in the desired
sequence.

In most cases, sorting is specified on columns and expressions that also appear in
the SELECT clause. However, this is not necessary. The ORDER BY clause can contain
expressions that do not appear in the SELECT clause.

Example 12.3: Get all penalty amounts, and sort the result on player number
and penalty amount.

SELECT AMOUNT
FROM PENALTIES
ORDER BY PLAYERNO, AMOUNT

The result is:

AMOUNT

100.00
25.00
75.00
100.00
25.00
30.00
75.00
50.00

Explanation: When the previous result is compared to the result of Example
12.2, we can see that the rows are indeed sorted on player number, even though this
column does not appear in the SELECT clause.

12.3 SORTING ON EXPRESSIONS

Besides sorting on column names, a sorting can consist of scalar expressions.

Example 12.4: For all players, get the last name, initials, and player number;
sort the result on the first letter of the last name.

SELECT NAME, INITIALS, PLAYERNO
FROM PLAYERS
ORDER BY SUBSTR(NAME, 1, 1)

385CHAPTER 12 SELECT Statement: The ORDER BY Clause

The result is:

NAME INITIALS PLAYERNO
--------- -------- --------
Bishop D 39
Baker E 44
Brown M 57
Bailey IP 112
Collins DD 27
Collins C 28
Everett R 2
Hope PK 83
Miller P 95
Moorman D 104
Newcastle B 8
Parmenter R 6
Parmenter P 100
Wise GWS 7

Explanation: Because several names begin with the same letter, MySQL can
decide the sequence in which the rows with equal letters are presented.

The expressions in the ORDER BY clause can even contain subqueries.

Example 12.5: Get the player number and the amount of all penalties and sort
the result on the difference between the amount and the average penalty amount.

SELECT PLAYERNO, AMOUNT
FROM PENALTIES
ORDER BY ABS(AMOUNT - (SELECT AVG(AMOUNT) FROM PENALTIES))

The result is:

PLAYERNO AMOUNT
-------- ------

104 50.00
44 75.00
27 75.00
44 30.00
44 25.00
8 25.00
6 100.00
27 100.00

Explanation: The value of the subquery is calculated first. Next, the value of the
scalar expression is calculated for each row individually; the result is sorted on that.

Subqueries that are used in the ORDER BY clause can even be correlated.

386 SQL for MySQL Developers

Example 12.6: Get the player number and the amount of all penalties and sort
the result on the average penalty amount of each player.

SELECT PLAYERNO, AMOUNT
FROM PENALTIES AS P1
ORDER BY (SELECT AVG(AMOUNT)

FROM PENALTIES AS P2
WHERE P1.PLAYERNO = P2.PLAYERNO)

The result is:

PLAYERNO AMOUNT
-------- ------

8 25.00
44 75.00
44 25.00
44 30.00
104 50.00
27 100.00
27 75.00
6 100.00

Explanation: The average penalty amount of player 8 is 25, so this amount comes
first. The penalties of player 44 follow because his average penalty amount is
$43.33. The average of player 104 is $50, that of player 27 is $87.50, and, finally,
the average penalty amount of player 6 is $100.

12.4 SORTING WITH SEQUENCE NUMBERS

In the ORDER BY clause, we can use sequence numbers to replace a sorting that con-
sists of column names or expressions. A sequence number assigns a number to the
expression in the SELECT clause on which sorting is performed. The next two state-
ments are, therefore, equivalent:

SELECT PAYMENTNO, PLAYERNO
FROM PENALTIES
ORDER BY PLAYERNO

and

SELECT PAYMENTNO, PLAYERNO
FROM PENALTIES
ORDER BY 2

The sequence number 2 stands for the second expression in the SELECT clause.
It is not essential to use sequence numbers, but this can simplify the formulation of
a statement.

387CHAPTER 12 SELECT Statement: The ORDER BY Clause

Example 12.7: For each player who has incurred at least one penalty, get the total
penalty amount; sort the result on this total.

SELECT PLAYERNO, SUM(AMOUNT)
FROM PENALTIES
GROUP BY PLAYERNO
ORDER BY 2

The result is:

PLAYERNO SUM(AMOUNT)
-------- -----------

8 25.00
104 50.00
6 100.00
44 130.00
27 175.00

Example 12.8: For each player, get the player number, last name, and sum of his
or her penalties; sort the result on this sum.

SELECT PLAYERNO, NAME,
(SELECT SUM(AMOUNT)
FROM PENALTIES AS PEN
WHERE PEN.PLAYERNO=P.PLAYERNO)

FROM PLAYERS AS P
ORDER BY 3

The result is:

PLAYERNO NAME SELECT SUM
-------- --------- ----------

2 Everett ?
100 Parmenter ?
95 Miller ?
83 Hope ?
57 Brown ?
112 Bailey ?
39 Bishop ?
28 Collins ?
7 Wise ?
8 Newcastle 25.00

104 Moorman 50.00
6 Parmenter 100.00
44 Baker 130.00
27 Collins 175.00

388 SQL for MySQL Developers

Your question might be: Isn’t a sequence number a form of an expression as
well? The answer is, no. In the ORDER BY clause, the sequence number is not consid-
ered to be an expression consisting of one literal. A sequence number is regarded
as an exception here.

The previous problem can also be solved by introducing column names in the
SELECT clause; see Section 5.4. These column names can also be used to sort rows.
The next statement is equivalent, then, to the previous one:

SELECT PLAYERNO, NAME,
(SELECT SUM(AMOUNT)
FROM PENALTIES AS PEN
WHERE PEN.PLAYERNO=P.PLAYERNO) AS TOTAL

FROM PLAYERS AS P
ORDER BY TOTAL

389CHAPTER 12 SELECT Statement: The ORDER BY Clause

N O T E
Sorting on sequence numbers is allowed, but we discourage the use of this
feature. Try to be as explicit as possible when formulating ORDER BY clauses,
to avoid any confusion. Use column names when you can.

12.5 SORTING IN ASCENDING AND DESCENDING
ORDER

If you do not specify anything after a sorting, MySQL sorts the result in ascending
order. You can achieve the same result by explicitly specifying ASC (ascending) after
the sorting. If you specify DESC (descending), the rows in the result are presented in
descending order. Sorting values in a descending order always returns the reverse
presentation of sorting in an ascending order, regardless of the data type of the
values.

Example 12.9: For each penalty, get the player number and penalty amount; sort
the result in descending order on player number and in ascending order on penalty
amount.

SELECT PLAYERNO, AMOUNT
FROM PENALTIES
ORDER BY PLAYERNO DESC, AMOUNT ASC

The result is:

PLAYERNO AMOUNT
-------- ------

104 50.00
44 25.00
44 30.00
44 75.00
27 75.00
27 100.00
8 25.00
6 100.00

Sorting numeric values in ascending order is obvious: The lowest value is
presented first, and the highest is presented last. Sorting on dates, times, and time-
stamps is also obvious. In an ascending sort of dates, for example, dates are pre-
sented in chronological order.

Sorting alphanumeric values in ascending order is the same as sorting words
alphabetically (such as in a dictionary). First come the words beginning with the
letter A, then those with B, and so on. Nevertheless, sorting alphanumeric values is
not as simple as it seems. For example, does the lowercase letter a come before or
after the uppercase A? And do digits come before or after letters? And what do we
do with letters with diacritics, such as ë, é, and è? And let us not forget special let-
ters, such as œ, ß, and Æ. How letters with diacritics, digits, and special symbols
are sorted depends on the character set with which you work. In a character set, an
internal value is defined for each character. Well-known character sets are Ameri-
can Standard Code for Information Interchange (ASCII), Extended Binary Coded
Decimal Interchange Code (EBCDIC), and Unicode. A given operating system usu-
ally works with a specific character set. For example, modern versions of Windows
use the Unicode character set, while the classic IBM mainframes support the
EBCDIC character set. The sequence also depends on the collations. Chapter 22,
“Character Sets and Collations,” discusses character sets and collations in detail.

In this book, we assume that you work with the Unicode character set. Under
Windows, it is simple to examine the Unicode character set with the program Char-
acter Map, which is one of the accessories of Windows (see Figure 12.1). This fig-
ure shows that all uppercase letters come before the lowercase letters and that
digits come before uppercase letters.

390 SQL for MySQL Developers

FIGURE 12.1 The program Character Map that shows the Unicode character set

Example 12.10: Create the following CODES table, add the six rows, and see
how the different values are sorted.

CREATE TABLE CODES
(CODE CHAR(4) NOT NULL)

INSERT INTO CODES VALUES ('abc')
INSERT INTO CODES VALUES ('ABC')
INSERT INTO CODES VALUES ('-abc')
INSERT INTO CODES VALUES ('a bc')
INSERT INTO CODES VALUES ('ab')
INSERT INTO CODES VALUES ('9abc')

This is the SELECT statement:

SELECT *
FROM CODES
ORDER BY CODE

391CHAPTER 12 SELECT Statement: The ORDER BY Clause

The result is:

CODE

-abc
9abc
a bc
ab
abc
ABC

Explanation: This result clearly shows that digits come before letters, that the
hyphen comes before the digits, and that short values are placed before long values.
We can also see that uppercase letters come after lowercase letters.

12.6 SORTING NULL VALUES

Null values introduce a problem with sorting. MySQL treats null values as the low-
est values in a column. Therefore, they are always placed at the bottom of the result
if the order is descending and at the top if the order is ascending. See the following
example and the accompanying result.

Example 12.11: Get the different league numbers and sort the result in
descending order.

SELECT DISTINCT LEAGUENO
FROM PLAYERS
ORDER BY LEAGUENO DESC

The result is:

LEAGUENO

8467
7060
6524
6409
2983
2513
2411
1608
1319
1124
?

392 SQL for MySQL Developers

Exercise 12.1: Show at least three different ORDER BY clauses that would sort the
PLAYERS table in ascending order by player number.

Exercise 12.2: Indicate which of the following SELECT statements are incorrect:

1. SELECT *
FROM PLAYERS
ORDER BY 2

2. SELECT *
FROM PLAYERS
ORDER BY 20 DESC

3. SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
ORDER BY 2, INITIALS DESC, 3 ASC

4. SELECT *
FROM PLAYERS
ORDER BY 1, PLAYERNO DESC

Exercise 12.3: For each match, get the player number, team number, and differ-
ence between the number of sets won and the number of sets lost; order the result in
ascending order on this difference.

12.7 ANSWERS

12.1 1. ORDER BY 1

2. ORDER BY PLAYERNO

3. ORDER BY 1 ASC

4. ORDER BY PLAYERNO ASC

12.2 1. Correct
2. Incorrect because there is no twentieth column in the PLAYERS table

3. Incorrect because sorting is specified twice on the INITIALS column

4. Incorrect because a column in an ORDER BY clause cannot be specified
twice

12.3 SELECT PLAYERNO, TEAMNO, WON - LOST
FROM MATCHES
ORDER BY 3 ASC

393CHAPTER 12 SELECT Statement: The ORDER BY Clause

This page intentionally left blank This page intentionally left blank

395

SELECT Statement:
The LIMIT Clause

C H A P T E R 1 3

13.1 INTRODUCTION

Many questions that MySQL will have to process begin with such phrases as “Get
the top three…” or “Get the last six…” If we want to know one highest or one low-
est value, we can use the MAX and MIN functions, respectively. If we ask for more
than one row, it becomes difficult. This is where the LIMIT clause is useful. With
such a clause, you can extend a select block from which a table expression has
been built.

The LIMIT clause is the last clause of a select block with which a subset of the
rows can be selected, so the number of rows in the intermediate result can be
reduced again. No condition is specified with the LIMIT clause, as with the WHERE
and HAVING clauses, but an indication is given of how many of the first and last rows
are selected.

D E F I N I T I O N
<select statement> ::=

<table expression>

<table expression> ::=
<select block head> [<select block tail>]

<select block head> ::=
<select clause>
[<from clause>
[<where clause>]
[<group by clause>]
[<having clause>]]

<select block tail> ::=
<order by clause> |
<limit clause> |
<order by clause> <limit clause>

<limit clause> ::=
LIMIT [<fetch offset> ,] <fetch number of rows> |
LIMIT <fetch number of rows> [OFFSET <fetch offset>]

<fetch number of rows> ;
<fetch offset> ::= <whole number>

Let us begin with a simple example.

Example 13.1: Get the numbers and names of the players with the four highest
player numbers.

If only the highest player number should be given, the following SELECT state-
ment would have given the desired result:

SELECT MAX(PLAYERNO)
FROM PLAYERS

The result is:

MAX(PLAYERNO)

112

However, this statement with the MAX function cannot be used to determine the
four highest player numbers. We can use the following statement for this:

396 SQL for MySQL Developers

SELECT PLAYERNO, NAME
FROM PLAYERS AS P1
WHERE 4 >

(SELECT COUNT(*)
FROM PLAYERS AS P2
WHERE P1.PLAYERNO < P2.PLAYERNO)

ORDER BY PLAYERNO DESC

The result is:

PLAYERNO NAME
-------- ---------

112 Bailey
104 Moorman
100 Parmenter
95 Miller

However, this is a rather complex statement. The LIMIT clause helps simplify
this statement:

SELECT PLAYERNO, NAME
FROM PLAYERS
ORDER BY PLAYERNO DESC
LIMIT 4

Explanation: First, the rows are sorted on player number. The LIMIT clause states
that the first four rows must be retrieved from the intermediate result. MySQL sim-
ply removes all rows from the intermediate result that come after the fourth row,
regardless of the values in those rows. Because the sequence of the rows in the
(intermediate) result has been sorted in a descending order, it is obvious which val-
ues remain: those with the highest four player numbers. If this statement had not
had an ORDER BY clause, the four rows returned would have been unpredictable.
This probably would have been the four rows that gave MySQL the least trouble.

If sorting is performed on a column with null values, they are seen as the lowest
value.

Example 13.2: Get the five lowest league numbers with the corresponding
player numbers and names from the PLAYERS table.

SELECT LEAGUENO, PLAYERNO, NAME
FROM PLAYERS
ORDER BY LEAGUENO ASC
LIMIT 5

397CHAPTER 13 SELECT Statement: The LIMIT Clause

The result is:

LEAGUENO PLAYERNO NAME
-------- -------- -------

? 7 Wise
? 28 Collins
? 39 Bishop
? 95 Miller

1124 44 Baker

13.2 GET THE TOP…
As mentioned, the LIMIT clause is used frequently to answer questions about the
best, the least, and the lowest. But what exactly is the top three when there are four
equal values at the top? We illustrate this problem with several examples.

Example 13.3: Get the numbers of the top three best players. The best player is
defined as the person with the highest number of matches won.

SELECT PLAYERNO, COUNT(*) AS NUMBER
FROM MATCHES
WHERE WON > LOST
GROUP BY PLAYERNO
ORDER BY NUMBER DESC
LIMIT 3

The result is:

PLAYERNO NUMBER
-------- ------

6 2
27 1
44 1

Explanation: With the WHERE clause, all matches won are selected. The GROUP BY
clause creates a group for each player. Next, for each group, the player number and
the number of matches won are determined. After this, the intermediate result is
sorted on the number in descending order; the highest value comes first. When
there are equal numbers, a sort must be performed on player numbers. Finally, the
first three rows are fetched from that intermediate result.

But why do players 27 and 44 appear in the result? Logically, player 6 appears in
the final result because he is the only one who has won two matches. However, four

398 SQL for MySQL Developers

players have won one match: players 27, 44, 57, and 104. This means that, to get
the top three players, two must be selected from these four. If no indication is given
which two must be selected, MySQL chooses two at random. By adding another
sorting, we can explicitly indicate what must happen when equal values exist; see
the following example.

Example 13.4: Get the numbers of the best three players. The best player is
defined as the person with the highest number of matches won. If players with an
equal number exist, only those with the highest player number must be presented.

SELECT PLAYERNO, COUNT(*) AS NUMBER
FROM MATCHES
WHERE WON > LOST
GROUP BY PLAYERNO
ORDER BY NUMBER DESC, PLAYERNO DESC
LIMIT 3

The result is:

PLAYERNO NUMBER
-------- ------

6 2
104 1
57 1

If we want to sort the end result of the previous statement on player number, we
need to wrap the entire statement in another statement and add a second ORDER BY
clause.

Example 13.5: Get the numbers of the best three players and sort the end result
on player number; also see Example 13.4.

SELECT *
FROM (SELECT PLAYERNO, COUNT(*) AS NUMBER

FROM MATCHES
WHERE WON > LOST
GROUP BY PLAYERNO
ORDER BY NUMBER DESC, PLAYERNO DESC
LIMIT 3) AS T

ORDER BY 1

The result is:

PLAYERNO NUMBER
-------- ------

6 2
57 1
104 1

399CHAPTER 13 SELECT Statement: The LIMIT Clause

Explanation: By using the LIMIT clause to define the select block as a subquery
within a FROM clause, we can still sort the result in the desired way.

Example 13.6: What is the average of the four lowest penalty amounts?

SELECT AVG(AMOUNT)
FROM (SELECT AMOUNT

FROM PENALTIES
ORDER BY AMOUNT
LIMIT 4) AS T

The result is:

AVG(AMOUNT)

32.50

Explanation: The intermediate result of the subquery consists of the following
four rows:

AMOUNT

25.00
25.00
30.00
50.00

The statistical function AVG is applied to these four.

Example 13.7: What is the third highest penalty amount?

SELECT MIN(AMOUNT)
FROM (SELECT AMOUNT

FROM PENALTIES
ORDER BY AMOUNT DESC
LIMIT 3) AS T

The result is:

MIN(AMOUNT)

75.00

400 SQL for MySQL Developers

Explanation: The intermediate result of the subquery consists of the following
four rows:

AMOUNT

100.00
100.00
75.00

Because the result is sorted in a descending order (ORDER BY AMOUNT DESC),
these are the three highest penalty amounts. Next, the MIN function is used to deter-
mine the last, or the third highest value. Had we replaced the MIN function with
the MAX function and sorted in an ascending order, we would have gotten the third
lowest penalty amount.

Example 13.8: Get the three highest penalty amounts and leave out the duplicate
amounts.

SELECT DISTINCT AMOUNT
FROM PENALTIES
ORDER BY AMOUNT DESC
LIMIT 3

The result is:

AMOUNT

100.00
75.00
50.00

Explanation: The SELECT clause is processed before the LIMIT clause. Because
DISTINCT is used here, all duplicate rows are removed first.

Exercise 13.1: Get the payment numbers, penalty amounts, and payment dates
of the four highest penalties. If duplicate values exist, the penalties with the most
recent payment date are preferred.

Exercise 13.2: Get the match numbers of the matches with the two highest num-
bers and also the two lowest numbers.

401CHAPTER 13 SELECT Statement: The LIMIT Clause

13.3 SUBQUERIES WITH A LIMIT CLAUSE

The LIMIT clause may also be used in select blocks that appear within a subquery.
The previous section showed several examples of this; we continue with more in
this section.

Example 13.9: Get the numbers of the players with the three lowest player num-
bers who belong to the group of players with the six highest league numbers.

SELECT PLAYERNO
FROM (SELECT PLAYERNO

FROM PLAYERS
WHERE LEAGUENO IS NOT NULL
ORDER BY LEAGUENO DESC
LIMIT 6) AS T

ORDER BY PLAYERNO
LIMIT 3

The result is:

PLAYERNO

6
8
27

Explanation: The subquery (the inner select block) retrieves only the player
numbers that belong to the players with the six highest league numbers. The addi-
tional condition is necessary to remove the null value. The outer select block looks
in this intermediate result for the three lowest player numbers.

Example 13.10: Get the numbers and names of the three players who incurred
the highest total amount of penalties.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM (SELECT PLAYERNO, SUM(AMOUNT) AS TOTAL

FROM PENALTIES
GROUP BY PLAYERNO
ORDER BY TOTAL DESC
LIMIT 3) AS T)

402 SQL for MySQL Developers

The result is:

PLAYERNO NAME
-------- ---------

6 Parmenter
27 Collins
44 Baker

Explanation: The inner subquery has the following intermediate result:

PLAYERNO TOTAL
-------- ------

27 175.00
44 130.00
6 100.00

The main query retrieves the number and name of those players for whom the
player number appears in the intermediate result of the inner subquery. However,
because there are two columns, we cannot link the main query directly to the inner
subquery. That is why a subquery comes in between—to retrieve only the player
numbers from the intermediate result.

Example 13.11: Get the numbers and names of those players who have incurred
at least one penalty that is not equal to one of the two highest nor to one of the two
lowest penalties.

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)

AND PLAYERNO NOT IN
(SELECT PLAYERNO
FROM PENALTIES
ORDER BY AMOUNT DESC
LIMIT 2)

AND PLAYERNO NOT IN
(SELECT PLAYERNO
FROM PENALTIES
ORDER BY AMOUNT ASC
LIMIT 2)

The result is:

PLAYERNO NAME
-------- -------

104 Moorman

403CHAPTER 13 SELECT Statement: The LIMIT Clause

Explanation: The first subquery determines whether a player has incurred a
penalty. The second checks whether it is one of the two highest penalties, and the
third determines whether it is one of the two lowest.

This statement could have been written as follows:

SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES
WHERE PLAYERNO NOT IN

(SELECT PLAYERNO
FROM PENALTIES
ORDER BY AMOUNT DESC
LIMIT 2)

AND PLAYERNO NOT IN
(SELECT PLAYERNO
FROM PENALTIES
ORDER BY AMOUNT ASC
LIMIT 2))

Exercise 13.3: Get the numbers and names of players whose number belongs
to the lowest ten and whose name alphabetically belongs to the last five from the list
of ten.

Exercise 13.4: Get the numbers and names of the two players who have won the
most matches. If players have won the same number of matches, give preference to
the player with the lower player number.

Exercise 13.5: Get the numbers and names of the two players who have incurred
a penalty that belongs to the three highest penalties. If equal penalties exist, give
preference to the player whose name comes first alphabetically.

13.4 LIMIT WITH AN OFFSET

Normally, the LIMIT clause is used to select the head or tail of a list with rows.
Adding an offset skips several rows.

Example 13.12: Get the numbers and names of the players with the five lowest
player numbers, beginning at number 4.

404 SQL for MySQL Developers

SELECT PLAYERNO, NAME
FROM PLAYERS
ORDER BY PLAYERNO ASC
LIMIT 5 OFFSET 3

The result is:

PLAYERNO NAME
-------- ---------

8 Newcastle
27 Collins
28 Collins
39 Bishop
44 Baker

Explanation: The players who are dropped from this result are the players with
numbers 2, 6, and 7. So an offset equal to 3 means that three rows are skipped.

MySQL has two ways to specify an offset. The last LIMIT clause could have been
specified as follows:

LIMIT 3, 5

However, we recommend using the first formulation, which more explicitly
indicates the number of rows that must be presented and the offset.

Exercise 13.6: Get the three highest penalty amounts.

13.5 THE SELECT OPTION
SQL_CALC_FOUND_ROWS

After a SELECT statement has been executed with a LIMIT clause, it sometimes can
be useful to ask what the original number of rows in the end result would have been
if we had not specified a LIMIT clause. By specifying the select option SQL_CALC_
FOUND_ROWS, the total number of rows is determined behind the scenes; see
also Section 9.6. After that, you can query this number with a separate SELECT
statement.

Example 13.13: Give the first five payment numbers.

SELECT SQL_CALC_FOUND_ROWS PAYMENTNO
FROM PENALTIES
LIMIT 5

405CHAPTER 13 SELECT Statement: The LIMIT Clause

The result is:

PAYMENTNO

1
2
3
4
5

With the following statement, we can query the original number of rows now:

SELECT FOUND_ROWS()

The result is:

FOUND_ROWS()

8

Explanation: FOUND_ROWS is a special scalar function that can be used to query
the original number of rows in the end result of the previous SELECT statement.

Note that the select option cannot be specified in the SELECT clause of
subqueries.

13.6 ANSWERS

13.1 SELECT PAYMENTNO, AMOUNT, PAYMENT_DATE
FROM PENALTIES
ORDER BY AMOUNT DESC, PAYMENT_DATE DESC
LIMIT 4

13.2 (SELECT MATCHNO
FROM MATCHES
ORDER BY MATCHNO ASC
LIMIT 2)
UNION
(SELECT MATCHNO
FROM MATCHES
ORDER BY MATCHNO DESC
LIMIT 2)

406 SQL for MySQL Developers

13.3 SELECT PLAYERNO, NAME
FROM (SELECT PLAYERNO, NAME

FROM PLAYERS
ORDER BY PLAYERNO ASC
LIMIT 10) AS S10

ORDER BY NAME DESC
LIMIT 5

13.4 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM (SELECT PLAYERNO, COUNT(*) AS NUMBER

FROM MATCHES
WHERE WON > LOST
GROUP BY PLAYERNO) AS WINNERS

ORDER BY NUMBER DESC, PLAYERNO ASC
LIMIT 2)

13.5 SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PENALTIES.PLAYERNO
FROM PENALTIES INNER JOIN PLAYERS

ON PENALTIES.PLAYERNO = PLAYERS.PLAYERNO
ORDER BY AMOUNT DESC, NAME ASC
LIMIT 4)

13.6 SELECT PAYMENTNO, AMOUNT
FROM PENALTIES
ORDER BY AMOUNT DESC
LIMIT 1 OFFSET 2

407CHAPTER 13 SELECT Statement: The LIMIT Clause

This page intentionally left blank This page intentionally left blank

409

Combining Table
Expressions

C H A P T E R 1 4

14.1 INTRODUCTION

Section 6.4 introduced the term compound table expression. Set operators allow us to
combine multiple table expressions into one compound table expression. Examples
in Section 6.4 and several other chapters used the set operator called UNION, which
places results of table expressions underneath each other. MySQL supports other
set operators besides the UNION operator:

■ UNION

■ UNION DISTINCT

■ UNION ALL

Chapter 6, “SELECT Statements, Table Expressions, and Subqueries,” defined
the table expression and the compound table expression. However, that chapter
mentions only the UNION operator. Now we extend that definition with the complete
set of set operators.

D E F I N I T I O N
<table expression> ::=

{ <select block head> |
(<table expression>) |
<compound table expression> }

[<select block tail>]

<compound table expression> ::=
<table expression> <set operator> <table expression>

<set operator> ::= UNION | UNION DISTINCT | UNION ALL

14.2 COMBINING WITH UNION
If two table expressions are combined with the UNION operator, the end result con-
sists of every row that appears in the result of one of the two table expressions or in
both. UNION is the equivalent of the operator union from set theory.

Example 14.1: Get the player number and town of each player from Inglewood
and Plymouth.

SELECT PLAYERNO, TOWN
FROM PLAYERS
WHERE TOWN = 'Inglewood'
UNION
SELECT PLAYERNO, TOWN
FROM PLAYERS
WHERE TOWN = 'Plymouth'

The result is:

PLAYERNO TOWN
-------- ---------

8 Inglewood
44 Inglewood
112 Plymouth

Explanation: Each of the two table expressions returns a table consisting of two
columns and zero or more rows. As mentioned, the UNION operator puts the two
tables underneath each other. The end result of the entire statement is one table.

Note that the previous statement could, of course, also have been formulated using
an OR operator:

SELECT PLAYERNO, TOWN
FROM PLAYERS
WHERE TOWN = 'Inglewood'
OR TOWN = 'Plymouth'

However, it is not always possible to replace the UNION operator with an OR oper-
ator. Consider an example.

Example 14.2: Get a list of all the dates that appear in the PLAYERS and
PENALTIES tables.

410 SQL for MySQL Developers

SELECT BIRTH_DATE AS DATES
FROM PLAYERS
UNION
SELECT PAYMENT_DATE
FROM PENALTIES

The result is:

DATES

1948-09-01
1956-10-29
1956-11-11
1962-07-08
1963-01-09
1963-02-28
1963-05-11
1963-05-14
1963-06-22
1963-10-01
1964-06-25
1964-12-28
1970-05-10
1971-08-17
1980-12-08
1981-05-05
1982-12-30
1983-09-10
1984-11-12
1984-12-08

This statement cannot be formulated with OR because rows from different tables
are combined and are not from the same table, as in the previous example.

A special property of the UNION operator is that all duplicate (or equal) rows are
removed automatically from the end result. Section 9.5 describes the rule concern-
ing the equality of two rows when DISTINCT is used in the SELECT clause. The same
rule also applies, of course, to the UNION operator.

Example 14.3: Get the number of each player who has incurred at least one
penalty or who is a captain, or for whom both conditions apply.

SELECT PLAYERNO
FROM PENALTIES
UNION
SELECT PLAYERNO
FROM TEAMS

411CHAPTER 14 Combining Table Expressions

The result is:

PLAYERNO

6
8
27
44
104

Explanation: The result obviously shows that all the duplicate rows have been
deleted.

You can combine more than two table expressions into one table expression, as in
the following example.

Example 14.4: Get the player number of each player who has incurred at least
one penalty, who is a captain, who lives in Stratford, or for whom two or three of
these conditions apply.

SELECT PLAYERNO
FROM PENALTIES
UNION
SELECT PLAYERNO
FROM TEAMS
UNION
SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford'

The result is:

PLAYERNO

2
6
7
8
27
39
44
57
83
100
104

412 SQL for MySQL Developers

Exercise 14.1: Get a list of numbers of the players who have ever been com-
mittee members, plus the numbers of the players who have incurred at least two
penalties.

Exercise 14.2: Determine what the most recent date is: the most recent date of
birth or the most recent date on which a penalty has been paid.

14.3 RULES FOR USING UNION
The following rules for using the UNION operator must be observed:

■ The SELECT clauses of all relevant table expressions must have the same
number of expressions, and the expressions that are placed under one
another must have comparable data types. If this applies, the table expres-
sions are union compatible. Note that two data types are comparable if they
are the same or if the expressions can be transformed into the same data type
by an implicit case.

■ An ORDER BY clause can be specified only after the last table expression. The
sorting is performed on the entire end result, after all intermediate results
have been combined.

■ The SELECT clauses should not contain DISTINCT because MySQL automati-
cally removes duplicate rows from the end result when using UNION; thus, an
additional DISTINCT is superfluous but allowed.

The following SELECT statements have not been written according to these rules
(work through them for yourself):

SELECT *
FROM PLAYERS
UNION
SELECT *
FROM PENALTIES

SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford'
ORDER BY 1
UNION
SELECT PLAYERNO
FROM TEAMS
ORDER BY 1

413CHAPTER 14 Combining Table Expressions

The UNION operator in combination with the GROUP BY clause offers the possibil-
ity of calculating subtotals and totals. Yet the use of WITH ROLLUP results in simpler
statements.

Example 14.5: For each combination of team number and player number, get the
sum of all sets won and sets lost, and find for each team a subtotal and final total.

SELECT CAST(TEAMNO AS CHAR(4)) AS TEAMNO,
CAST(PLAYERNO AS CHAR(4)) AS PLAYERNO,
SUM(WON + LOST) AS TOTAL

FROM MATCHES
GROUP BY TEAMNO, PLAYERNO
UNION
SELECT CAST(TEAMNO AS CHAR(4)),

'subtotal',
SUM(WON + LOST)

FROM MATCHES
GROUP BY TEAMNO
UNION
SELECT 'total', 'total', SUM(WON + LOST)
FROM MATCHES
ORDER BY 1, 2

The result is:

TEAMNO PLAYERNO TOTAL
------ -------- -----
1 2 4
1 44 5
1 57 3
1 6 2
1 8 3
1 83 3
1 subtotal 30
2 104 5
2 112 9
2 27 5
2 8 3
2 subtotal 22
total total 52

Explanation: The statement consists of three table expressions. The first calcu-
lates the sum of all sets played for each combination of team number and player
number. The second table expression calculates the sum of sets won and lost for
each team. In the column PLAYERNO, the word subtotal is represented. To make
the two table expressions union compatible, the player number in the first table
expression of the SELECT clause is converted to an alphanumeric value. The third

414 SQL for MySQL Developers

table expression calculates the total of all sets in the two columns. The ORDER BY
clause ensures that the rows in the final result are in the correct sequence.

Instead of using the word UNION, you may specify UNION DISTINCT. This does not
change the end result of the statement; it only indicates that duplicate rows are
removed.

Exercise 14.3: Indicate which of the following (parts of the) SELECT statements
are correct and which are incorrect and state why:

1. SELECT ...
FROM ...
GROUP BY ...
HAVING ...
UNION
SELECT ...
FROM ...
ORDER BY ...

2. SELECT PLAYERNO, NAME
FROM PLAYERS
UNION
SELECT PLAYERNO, POSTCODE
FROM PLAYERS

3. SELECT TEAMNO
FROM TEAMS
UNION
SELECT PLAYERNO
FROM PLAYERS
ORDER BY 1

4. SELECT DISTINCT PLAYERNO
FROM PLAYERS
UNION
SELECT PLAYERNO
FROM PENALTIES
ORDER BY 1

5. SELECT ...
FROM ...
GROUP BY ...
ORDER BY ...
UNION
SELECT ...
FROM ...

415CHAPTER 14 Combining Table Expressions

Exercise 14.4: If we assume the original contents of the sample tables, how
many rows appear in the end result of each of the following statements?

1. SELECT TOWN
FROM PLAYERS
UNION
SELECT TOWN
FROM PLAYERS

2. SELECT PLAYERNO
FROM PENALTIES
UNION
SELECT PLAYERNO
FROM PLAYERS

3. SELECT YEAR(BIRTH_DATE)
FROM PLAYERS
UNION
SELECT YEAR(PAYMENT_DATE)
FROM PENALTIES

14.4 KEEPING DUPLICATE ROWS

All previous examples made it clear that duplicate rows are automatically removed
from the end result if the set operator UNION is used. You can suppress duplicate row
removal by using the ALL version of this operator.

If two table expressions are combined with the UNION ALL operator, the end
result consists of the resulting rows from both of the table expressions. The only dif-
ference between UNION and UNION ALL is that when you use UNION, the duplicate
rows are automatically removed, whereas when you use UNION ALL, they are
retained.

The result of the following statement shows that duplicate rows are not
removed.

Example 14.6: Combine the set of player numbers from the PENALTIES table
with the one from the TEAMS table. Do not remove duplicate rows.

SELECT PLAYERNO
FROM PENALTIES
UNION ALL
SELECT PLAYERNO
FROM TEAMS

416 SQL for MySQL Developers

The result is:

PLAYERNO

6
44
27
104
44
8
44
27
6
27

Exercise 14.5: Get the numbers of players and add the number of teams.

Exercise 14.6: Get the squares for the numbers 0 up to and including 9, and
carry the numbers to the third power. Do not remove duplicate numbers.

14.5 SET OPERATORS AND THE NULL VALUE

MySQL automatically removes duplicate rows from the result if the UNION operator
is specified. That is why the following (somewhat peculiar) SELECT statement pro-
duces only one row, even if both individual table expressions have one row as their
intermediate result:

SELECT PLAYERNO, LEAGUENO
FROM PLAYERS
WHERE PLAYERNO = 27
UNION
SELECT PLAYERNO, LEAGUENO
FROM PLAYERS
WHERE PLAYERNO = 27

But what happens to null values? What is the result of the previous statement if
we substitute player number 7 for 27? Player 7 has no league number. Maybe you
think that the statement will produce two rows now because the two null values are
not considered equivalent. However, this is not true. MySQL produces only one row
in this situation. MySQL considers null values to be equivalent when set operators
are processed. In other words, the rule used here to determine whether two rows are
equal is the same as the one for DISTINCT; see Section 9.5. This is in accordance
with the theory of the original relational model defined by E. F. Codd (see
[CODD90]).

417CHAPTER 14 Combining Table Expressions

14.6 ANSWERS

14.1 SELECT PLAYERNO
FROM COMMITTEE_MEMBERS
UNION
SELECT PLAYERNO
FROM PENALTIES
GROUP BY PLAYERNO
HAVING COUNT(*) >= 2

14.2 SELECT MAX(ADATE)
FROM (SELECT MAX(BIRTH_DATE) AS ADATE

FROM PLAYERS
UNION
SELECT MAX(PAYMENT_DATE) AS ADATE
FROM PENALTIES) AS TWODATES

14.3 1. Correct

2. Correct, even though the lengths of the columns NAME and
POSTCODE are not equal

3. Correct

4. Correct, even though, in a SELECT clause, DISTINCT is superfluous with
a UNION operator

5. Incorrect because when a UNION operator is used, only the last SELECT
statement can include an ORDER BY clause

14.4 1. 6
2. 14

3. 412

14.5 SELECT SUM(NUMBER)
FROM (SELECT COUNT(*) AS NUMBER

FROM PLAYERS
UNION ALL
SELECT COUNT(*) AS NUMBER
FROM TEAMS) AS NUMBERS

418 SQL for MySQL Developers

14.6 SELECT POWER(DIGIT,2)
FROM (SELECT 0 AS DIGIT UNION SELECT 1 UNION

SELECT 2 UNION SELECT 3 UNION
SELECT 4 UNION SELECT 5 UNION
SELECT 6 UNION SELECT 7 UNION
SELECT 8 UNION SELECT 9) AS DIGITS1

UNION ALL
SELECT POWER(DIGIT,3)
FROM (SELECT 0 AS DIGIT UNION SELECT 1 UNION

SELECT 2 UNION SELECT 3 UNION
SELECT 4 UNION SELECT 5 UNION
SELECT 6 UNION SELECT 7 UNION
SELECT 8 UNION SELECT 9) AS DIGITS2

ORDER BY 1

419CHAPTER 14 Combining Table Expressions

This page intentionally left blank This page intentionally left blank

421

The User Variable and the
SET Statement

C H A P T E R 1 5

15.1 INTRODUCTION

In MySQL, we can define variables—the user variables or user-defined variables.
We can assign values to user variables and use them in the same place where scalar
expressions normally are used. As a result, the statement becomes partly variable.
By changing the value of the user variable, the statement changes.

Before you introduce a user variable, you must define it. You do this with the
special SET statement or with a SELECT statement.

After defining a variable, you must assign a value; otherwise, the variable has
the null value. Again, with SET and SELECT statements, a value can be assigned
explicitly to a user variable.

Section 5.6 briefly described the user variable; this chapter contains a more
complete description and also explains the DO statement.

15.2 DEFINING VARIABLES WITH THE SET STATEMENT

The definition of the SET statement follows:

D E F I N I T I O N
<set statement> ::=

SET <user variable definition>
[, <user variable definition>]...

<user variable definition> ::=
<user variable> { = | := } <scalar expression>

Example 15.1: Define the user variable PI and initialize this with the value
3.141592654.

SET @PI = 3.141592654

Explanation: The @ symbol must always appear in front of a user variable, to dis-
tinguish user variables from column names. The new value stands behind the equal
to operator. It may be any random, compound scalar expression, as long as no col-
umn specifications appear in it.

The data type of the user variable is derived from the value of the scalar expression.
So in the previous example, it is a decimal. The data type of the variable can change
later if a new value with another data type is assigned.

A simple SELECT statement can retrieve the value of a user variable. The result
is a table with one row.

Example 15.2: Get the value of the user variable PI.

SELECT @PI

The result is:

@PI

3.141592654

A defined user variable, such as PI, may be used in other SQL statements after
it has been created.

Example 15.3: Get the last name, place of residence, and postcode of all players
with a number less than the value of the user variable PI that was just created.

SELECT NAME, TOWN, POSTCODE
FROM PLAYERS
WHERE PLAYERNO < @PI

The result is:

NAME TOWN POSTCODE
------- --------- --------
Everett Stratford 3575NH

One SET statement can define multiple variables simultaneously.

422 SQL for MySQL Developers

Example 15.4: Define three new user variables.

SET @ABC = 5, @DEF = 'Inglewood',
@GHI = DATE('2004-01-01')

The scalar expression that is used to assign a value to a variable may be com-
pound. Calculations, functions, system variables, and other user variables are
allowed, along with subqueries.

Example 15.5: Define the user variable PI with the help of a formula.

SET @PI = CAST(22 AS BINARY)/7

Example 15.6: Define a user variable that has the player number of the captain
of team 1 as a value.

SET @ANR = (SELECT PLAYERNO
FROM TEAMS
WHERE TEAMNO = 1)

In an expression that is used to assign a value to a user variable, other user
variables may be specified as well. The statement SET @A = @B + 1 is allowed. How-
ever, be careful with the following construct: SET @A = 5, @B = @A. After this state-
ment, the variable B does not have the value 5. B gets the old value of A. MySQL
determines the values of all expressions first and only then assigns the values to the
variables. Therefore, this SET statement does not have the same result as the follow-
ing two SET statements: SET @A = 5 and SET @B = @A.

You also may use the := symbol instead of the equal to symbol =. This has no
effect on the result.

15.3 DEFINING VARIABLES WITH THE SELECT
STATEMENT

Instead of using the SET statement, you may use the SELECT statement to define a
user variable. Note that, because it is a SELECT statement, there will be a result in
the form of a table. Compare that to a SET statement that does not return a table as a
result. Consider an example.

423CHAPTER 15 The User Variable and the SET Statement

Example 15.7: Create the user variable PLAYERNO and initialize it with the
value 5.

SELECT @PLAYERNO := 7

The result is:

@PLAYERNO := 7

7

Explanation: With the SET statement, the symbols = and := may be used to assign
a value; with the SELECT statement, only the symbol := is allowed. This is because
the expression @PLAYERNO = 7 is seen as a condition that has the value 0 or 1 as a
result. Also in the SELECT statement, any random scalar expression may be used to
assign a value to a user variable—even a column specification is allowed here.

Multiple variables also may be defined with a SELECT statement.

Example 15.8: Define the user variables NAME, TOWN, and POSTCODE, and assign
values.

SELECT @NAME := 'Johnson', @TOWN := 'Inglewood',
@POSTCODE := '1234AB'

You could have achieved the same result by retrieving the values from the
PLAYERS table.

Example 15.9: Define the user variables NAME, TOWN, and POSTCODE, and give
them the values that belong to player 2.

SELECT @NAME := NAME, @TOWN := TOWN,
@POSTCODE := POSTCODE

FROM PLAYERS
WHERE PLAYERNO = 2

The result is:

@NAME := NAME @TOWN := TOWN @POSTCODE := POSTCODE
------------- ------------- ---------------------
Everett Stratford 3575NH

424 SQL for MySQL Developers

Example 15.10: Define the user variables PENALTIESTOTAL and NUMBERPENALTIES,
and give them the values that belong to player 2.

SELECT @PENALTIESTOTAL := SUM(AMOUNT),
@NUMBERPENALTIES := COUNT(*)

FROM PENALTIES

The result is:

@PENALTIESTOTAL := SUM(AMOUNT) @NUMBERPENALTIES := COUNT(*)
------------------------------ ----------------------------

480.00 8

If the SELECT statement used returns more than one row, the values of the last
row are assigned to the variables.

Example 15.11: Define the user variable PLAYERNO and assign the value of the
highest player number from the PLAYERS table.

SELECT @PLAYERNO := PLAYERNO
FROM PLAYERS
ORDER BY PLAYERNO DESC

SELECT @PLAYERNO

The result is:

@PLAYERNO

2

As mentioned, user variables may be used anywhere scalar expressions are
allowed—for example, also in the WHERE clause. Note that when they are used in a
WHERE or HAVING clause, they must be defined first with another statement. Remem-
ber that the WHERE clause is executed before the SELECT clause. Therefore, the fol-
lowing statement does not return the players whose numbers are less than 7.

SELECT @PNR7 := 7
FROM PLAYERS
WHERE PLAYERNO < @PNR7

15.4 APPLICATION AREAS FOR USER VARIABLES

User variables have several application areas. For example, the result of one SELECT
statement can be passed to another.

425CHAPTER 15 The User Variable and the SET Statement

Example 15.12: Get the name of the captain of team 1.

SET @CNO = (SELECT PLAYERNO
FROM TEAMS
WHERE TEAMNO = 1)

SELECT NAME
FROM PLAYERS
WHERE PLAYERNO = @CNO

Explanation: The SET statement finds the player number of the captain of team 1.
Next, the SELECT statement looks for the name of that player. The variable CNO acts
as an intermediary between these two statements.

Another area of application is to prevent repeated execution of the same expression.
It is better to define the expression once and use it many times. Especially if it con-
cerns a complex value, this could be useful and even improve the processing speed.

Example 15.13: Give all data of the penalties of which the payment number is
smaller than the result of the expression (((3/7)*100)/124)+3 and the player num-
ber is greater than that same expression.

SET @VAR = (((3/7)*100)/124)+3

SELECT *
FROM PENALTIES
WHERE PAYMENTNO < @VAR
AND PLAYERNO > @VAR

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
2 44 1981-05-05 75.00
3 27 1983-09-10 100.00

15.5 LIFE SPAN OF USER VARIABLES

User variables exist as long as your session has not finished. So when you log off
and on again, you lose all user variables, including their values. If you want to save
the values for a future session, you must register them in a special table with an
INSERT statement. You must create that table yourself.

426 SQL for MySQL Developers

Example 15.14: Create two user variables that you can use again in future
sessions.

First, you must create a table in which these variables can be stored.

CREATE TABLE VARIABLES
(VARNAME CHAR(30) NOT NULL PRIMARY KEY,
VARVALUE CHAR(30) NOT NULL)

Next, define and initialize the two variables and store them in the new table:

SET @VAR1 = 100, @VAR2 = 'John'

INSERT INTO VARIABLES VALUES ('VAR1', @VAR1)

INSERT INTO VARIABLES VALUES ('VAR2', @VAR2)

After this, log off. This finishes the actual session. Then log on again to start a
new session. Then retrieve the values of the variables with two SELECT statements:

SELECT @VAR1 := VARVALUE
FROM VARIABLES
WHERE VARNAME = 'VAR1'

SELECT @VAR2 := VARVALUE
FROM VARIABLES
WHERE VARNAME = 'VAR2'

SELECT @VAR1, @VAR2

The result is:

@VAR1 @VAR2
----- -----
100 John

Exercise 15.1: Define the user variable TODAY and assign the date of today by
using a SET and a SELECT statement.

Exercise 15.2: Get the penalties that were incurred more than five years ago,
and use the variable defined in the previous example.

Exercise 15.3: Rewrite the following SET statement to a SELECT statement:

SET @VAR = (SELECT SUM(AMOUNT) FROM PENALTIES)

427CHAPTER 15 The User Variable and the SET Statement

15.6 THE DO STATEMENT

A special and simple SQL statement is the DO statement. In a DO statement, one or
more scalar expressions are formulated, which MySQL processes one by one. How-
ever, the results of these expressions are not shown, as with a SELECT statement.
This can be useful, for example, for calling a function that executes something into
the background for which we do not need to see a result.

D E F I N I T I O N
<do statement> ::=

DO <scalar expression>
[, <scalar expression>]...

Example 15.15: Add two years to today.

DO CURRENT_DATE + INTERVAL 2 YEAR

Section 37.13 gives some examples that clearly show the use of this DO
statement.

15.7 ANSWERS

15.1 SET @TODAY = CURRENT_DATE

and
SELECT @TODAY := CURRENT_DATE

15.2 SELECT *
FROM PENALTIES
WHERE PENALTIES_DATE < @TODAY - INTERVAL 5 YEAR

15.3 SELECT @VAR := SUM(AMOUNT)
FROM PENALTIES

428 SQL for MySQL Developers

429

The HANDLER Statement
C H A P T E R 1 6

16.1 INTRODUCTION

So far, we have discussed only the SELECT statement for querying table data. Typical
of this statement is that it always returns a set of rows. The statement is representa-
tive of the declarative character of the SQL language.

MySQL supports an additional statement to retrieve data: the HANDLER state-
ment. This statement enables us to browse the data of a table row by row. For some
applications, this statement is more suitable than the SELECT statement, such as for
applications in which the data of a table is always processed row by row.

However, the HANDLER statement does not have all the features of the SELECT
statement. In addition, the HANDLER statement has not been included in the SQL
standard; it is specific to MySQL.

16.2 A SIMPLE EXAMPLE OF THE HANDLER
STATEMENT

We start with a simple example to explain the way the HANDLER statement works.

Example 16.1: Browse the PENALTIES table row by row; each time, show the
data of the row concerned.

HANDLER PENALTIES OPEN

This statement does not have a result. The effect is that we indicate which table
we would like to browse. In fact, we declare a handler here called PENALTIES. After
that, we can retrieve the first row:

HANDLER PENALTIES READ FIRST

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00

This presents the first row. Next, we can retrieve the following row:

HANDLER PENALTIES READ NEXT

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

2 44 1981-05-05 75.00

We can keep retrieving rows until they are all presented. The HANDLER statement
returns an empty result if we execute NEXT again after the last row has been
retrieved. When we are finished, we must close the handler:

HANDLER PENALTIES CLOSE

As mentioned, this was a simple example. The difference with the SELECT state-
ment is obvious: the SELECT statement returns all relevant rows at once, whereas the
HANDLER statement returns only one row at a time. The next sections discuss in
detail the features for opening a handler, browsing the rows, and closing a handler.

16.3 OPENING A HANDLER

Note the following definition of the HANDLER OPEN statement. A table specification
indicates which table will be queried. If no explicit handler name is specified, the
name of the opened handler is the same as that of the table.

D E F I N I T I O N
<handler open statement> ::=

HANDLER <table specification> OPEN [AS <handler name>]

<table specification> ::= [<database name> .] <table name>

430 SQL for MySQL Developers

MySQL registers a handler internally; it does not store it in the catalog. For the
handler, MySQL lists, among other things, the table to be browsed, the index to use,
and the current row. A handler one user creates is invisible to another user. Han-
dlers can be opened more than once, but they must be closed again every time.

16.4 BROWSING THE ROWS OF A HANDLER

With the HANDLER READ statement, we can browse the rows of an opened handler.
This statement offer many features; see the following definition.

D E F I N I T I O N
<handler read statement> ::=

HANDLER <handler name> READ <read specification>
[<where clause>]
[<limit clause>]

<read specification> ::=
FIRST |
NEXT |
{ <index name> { FIRST | NEXT | PREV | LAST } } |
{ <index name> { = | > | >= | <= | < }

<scalar expression list> }

<scalar expression list> ::=
(<scalar expression> [, <scalar expression>]...)

Section 16.2 gave examples in which the read specification consists of FIRST
and NEXT. Evidently, FIRST refers to the first row, and NEXT refers to the next row.
But what exactly is the first row? Because there are no additional specifications,
MySQL decides the order in which the rows are presented. We can enforce a certain
order by specifying an index. MySQL shows the rows in the order determined by the
specified index. By way of illustration, we create an additional index on the
PENALTIES table in the following example.

Example 16.2: Create an index on the AMOUNT column of the PENALTIES
table.

CREATE INDEX PENALTIES_AMOUNT ON PENALTIES (AMOUNT)

431CHAPTER 16 The HANDLER Statement

Example 16.3: From the PENALTIES table, get all rows sorted by penalty
amount (the smallest value first).

HANDLER PENALTIES OPEN AS P

HANDLER P READ PENALTIES_AMOUNT FIRST

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

5 44 1980-12-08 25.00

Explanation: The penalty with payment number 1 is not the first row now (as in
the example of Section 16.2); payment number 5 is the first. The amount for that
penalty is equal to 25, which is the lowest amount in the table.

Get the following row:

HANDLER P READ PENALTIES_AMOUNT NEXT

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

6 8 1980-12-08 25.00

We are not restricted to retrieving the next row only. With LAST, we can jump to
the last row at once, and we can use PREV to retrieve the previous row.

We can add a WHERE clause if we do not want to browse all the rows of a table.
Here, the WHERE clause has the same function as the SELECT statement: It works as a
filter.

Example 16.4: From the PENALTIES table, get only those rows for which the
player number is greater than 100; sort the rows on penalty amount.

HANDLER PENALTIES OPEN AS P

HANDLER P READ PENALTIES_AMOUNT FIRST WHERE PLAYERNO > 100

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

4 104 1984-12-08 50.00

432 SQL for MySQL Developers

Explanation: Clearly, the first row differs from the one in the previous example.

Note, however, that with NEXT, the WHERE clause must be repeated:

HANDLER P READ PENALTIES_AMOUNT NEXT WHERE PLAYERNO > 100

Not all conditions that can be used in the WHERE clause of a SELECT statement are
allowed in the HANDLER READ statement. For example, subqueries are not permitted.
On the other hand, scalar functions; the BETWEEN, LIKE, and IN operators; and
logical operators can be used.

We can also retrieve multiple rows with a HANDLER READ statement. For this, we
add a LIMIT clause.

Example 16.5: Get all the rows from the PENALTIES table, sort them on penalty
amount, and get three rows at a time.

HANDLER PENALTIES OPEN AS P

HANDLER P READ PENALTIES_AMOUNT FIRST LIMIT 3

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

5 44 1980-12-08 25.00
6 8 1980-12-08 25.00
7 44 1982-12-30 30.00

Here, the function of the LIMIT clause is not equal to that of the SELECT state-
ment. Adding a LIMIT clause to a SELECT statement restricts the total number of
rows in the end result. With the HANDLER statement, this clause determines the num-
ber of rows retrieved with one HANDLER READ statement.

We can also specify which row to begin with. This is done by specifying a value
for the indexed column.

Example 16.6: Get all the rows from the PENALTIES table, sort them on penalty
amount, and start with a penalty of which the amount is equal to $30.

HANDLER PENALTIES OPEN AS P

HANDLER P READ PENALTIES_AMOUNT = (30.00)

433CHAPTER 16 The HANDLER Statement

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

7 44 1982-12-30 30.00

Behind the scenes, MySQL browses all the rows until one satisfies the condi-
tion AMOUNT = (30.00). With NEXT, we go on browsing:

HANDLER P READ PENALTIES_AMOUNT NEXT

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

4 104 1984-12-08 50.00

Instead of using the equal-to operator, other comparison operators can be used.

MySQL assigns indexes the name PRIMARY to indexes that are created because
of a primary key. If you use this name within a HANDLER statement, note that it must
be placed between quotation marks because it is a reserved word; see Section 20.8.

If the relevant index has been defined on two or more columns, we can specify
multiple values between brackets. To illustrate this, we create an additional index.

Example 16.7: Create an index on the AMOUNT and PLAYERNO columns of
the PENALTIES table.

CREATE INDEX AMOUNT_PLAYERNO ON PENALTIES (AMOUNT, PLAYERNO)

Example 16.8: Get all the rows from the PENALTIES table, sort them on penalty
amount, and begin with a penalty of which the amount is equal to $30 and the
player number is equal to 44.

HANDLER PENALTIES OPEN AS P

HANDLER P READ AMOUNT_PLAYERNO > (30.00, 44) LIMIT 100

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

4 104 1984-12-08 50.00
8 27 1984-11-12 75.00
2 44 1981-05-05 75.00
1 6 1980-12-08 100.00
3 27 1983-09-10 100.00

434 SQL for MySQL Developers

The number of values that is specified between brackets must be equal to or
less than the number of columns of the index. We specified LIMIT 100 to give us
more than one row, and we assume that no more than 100 rows will be returned.

16.5 CLOSING A HANDLER

In the end, the HANDLER CLOSE statement must close each handler.

D E F I N I T I O N
<handler close statement> ::=

HANDLER <handler name> CLOSE

If an application is stopped, all the handlers that are still open are automati-
cally closed.

Exercise 16.1: Show all HANDLER statements that are needed to show all rows
from the MATCHES table. The order of the rows is not important.

Exercise 16.2: Show all HANDLER statements that are needed to show all rows
from the MATCHES table, sorted on match number.

Exercise 16.3: Show all HANDLER statements that are needed to show all rows
from the MATCHES table in descending order sorted on match number, but only
the rows of players 6, 104, and 112.

16.6 ANSWERS

16.1 HANDLER MATCHES OPEN AS M1

HANDLER M1 READ FIRST

HANDLER M1 READ NEXT

The previous statement must be executed several times.
HANDLER M1 CLOSE

435CHAPTER 16 The HANDLER Statement

16.2 HANDLER MATCHES OPEN AS M2

HANDLER M2 READ 'PRIMARY' FIRST

HANDLER M2 READ 'PRIMARY' NEXT

The previous statement must be executed several times.
HANDLER M2 CLOSE

16.3 HANDLER MATCHES OPEN AS M3

HANDLER M3 READ 'PRIMARY' LAST
WHERE PLAYERNO IN (6, 104, 112)

HANDLER M3 READ 'PRIMARY' PREV
WHERE PLAYERNO IN (6, 104, 112)

The previous statement must be executed several times.
HANDLER M3 CLOSE

436 SQL for MySQL Developers

437

Updating Tables
C H A P T E R 1 7

17.1 INTRODUCTION

MySQL offers various statements for updating the contents (the column values in
the rows) of tables. Statements exist for inserting new rows, changing column
values, and deleting rows. This chapter describes the extensive features of these
statements.

N O T E
In most examples of this book, we assume that the tables contain their orig-
inal contents. If you execute the statements discussed in this chapter, you
will change the contents of the tables. Consequently, the results of your
statements in the next examples can differ from those in the book. On the
web site of the book, www.r20.nl, you can read how to restore the original
contents of the tables after an update.

17.2 INSERTING NEW ROWS

In MySQL, you can use the INSERT statement to add rows to an existing table. With
this statement, you can add new rows and populate a table with rows taken from
another table.

www.r20.nl

D E F I N I T I O N
<insert statement> ::=

INSERT [IGNORE] [INTO] <table specification>
<insert specification> [<on duplicate key specification>]

<insert specification> ::=
[<column list>] <values clause> |
[<column list>] <table expression> |
SET <column assignment> [, <column assignment>]...

<column list> ::=
(<column name> [, <column name>]...)

<values clause> ::=
VALUES <row expression> [, <row expression>]...

<row expression> ::=
<scalar row expression>

<on duplicate key specification> ::=
ON DUPLICATE KEY UPDATE <column assignment>

[, <column assignment>]...

<column assignment> ::=
<column name> = <scalar expression>

Section 4.7, among others, contains several examples of INSERT statements.
This section shows other simple examples to illustrate the possibilities of the
INSERT statement.

Example 17.1: The tennis club has a new team. This third team is captained by
player 100 and will compete in the third division.

INSERT INTO TEAMS (TEAMNO, PLAYERNO, DIVISION)
VALUES (3, 100, 'third')

Explanation: Behind the term INSERT INTO, the name of the table is specified for
which rows must be added. Following that are the names of the columns of that
table; finally, a VALUES clause specifies the values of the new row. The structure of a
VALUES clause is simple and consists of one or more row expressions, with each row
expression consisting of one or more scalar expressions.

438 SQL for MySQL Developers

You can omit the word INTO with MySQL, but all other SQL products require it;
therefore, we recommend always including the word.

You do not have to specify column names if a value is specified for all columns
of the table concerned. The TEAMS table contains three columns, and three values
have been specified; thus, we could have omitted the column names:

INSERT INTO TEAMS
VALUES (3, 100, 'third')

If column names are omitted, MySQL assumes that the order in which the
values are entered is the same as the default sequence of the columns (see
COLUMN_NO in the COLUMNS table).

You are not required to specify columns in the default sequence. Therefore, the
next statement is equivalent to the previous two:

INSERT INTO TEAMS (PLAYERNO, DIVISION, TEAMNO)
VALUES (100, 'third', 3)

If the column names had not been specified in this statement, the result would
have been entirely different. MySQL would have considered the value 100 to be a
TEAMNO, the value 'third' a PLAYERNO, and the value 3 a DIVISION. Of
course, the insert would not have been performed at all because the value 'third'
is an alphanumeric literal, and the PLAYERNO column has a numeric data type.

For all columns in the CREATE TABLE statement that have been defined as NOT
NULL, a value must be specified (work out for yourself why). The following statement
is therefore not correct because the PLAYERNO column has been defined as NOT
NULL and does not have a value in the INSERT statement:

INSERT INTO TEAMS
(TEAMNO, DIVISION)

VALUES (3, 'third')

However, the next example is correct.

Example 17.2: Add a new player.

INSERT INTO PLAYERS
(PLAYERNO, NAME, INITIALS, SEX,
JOINED, STREET, TOWN)

VALUES (611, 'Jones', 'GG', 'M', 1977, 'Green Way', 'Stratford')

In all columns that have not been specified in the INSERT statement, null values
are entered.

439CHAPTER 17 Updating Tables

Instead of using a literal, you can specify a null value. Then the concerning row
is filled with the null value. In the following statement, the LEAGUENO column,
among other things, is filled with the null value:

INSERT INTO PLAYERS
(PLAYERNO, NAME, INITIALS, BIRTH_DATE,
SEX, JOINED, STREET, HOUSENO, POSTCODE,
TOWN, PHONENO, LEAGUENO)

VALUES (611, 'Jones', 'GG', NULL, 'M', 1977,
'Green Way', NULL, NULL, 'Stratford', NULL, NULL)

Because it is possible to specify more than one row expression in a VALUES
clause, one INSERT statement can add multiple new rows.

Example 17.3: Add four new teams.

INSERT INTO TEAMS (TEAMNO, PLAYERNO, DIVISION)
VALUES (6, 100, 'third'),

(7, 27, 'fourth'),
(8, 39, 'fourth'),
(9, 112, 'sixth')

Explanation: The new rows are separated by apostrophes within the VALUES
clause.

Instead of using literals, you may also include expressions within the VALUES
clause, and these expressions can be compound. Therefore, calculations, scalar
functions, and even scalar subqueries are allowed.

Example 17.4: Create a new table in which the number of players and the sum of
all penalties is stored.

CREATE TABLE TOTALS
(NUMBERPLAYERS INTEGER NOT NULL,
SUMPENALTIES DECIMAL(9,2) NOT NULL)

INSERT INTO TOTALS (NUMBERPLAYERS, SUMPENALTIES)
VALUES ((SELECT COUNT(*) FROM PLAYERS),

(SELECT SUM(AMOUNT) FROM PENALTIES))

Explanation: Remember that each subquery must always be placed between
brackets in this construct.

440 SQL for MySQL Developers

MySQL has an alternative formulation for adding a new row to a table. Example
17.1 contains the following INSERT statement:

INSERT INTO TEAMS (TEAMNO, PLAYERNO, DIVISION)
VALUES (3, 100, 'third')

This statement can also be rewritten as follows:

INSERT INTO TEAMS SET
TEAMNO = 3, PLAYERNO = 100, DIVISION = 'third'

This formulation is somewhat old. Here we can enter only one row per
statement.

MySQL checks whether the new data that has been entered with an INSERT
statement satisfies all the integrity constraints. For example, by adding a new row,
it is possible to create duplicate rows in a primary key. With a normal INSERT state-
ment, MySQL gives an error message and interrupts the processing of the state-
ment. Adding IGNORE prevents the error message from appearing. However, the
entire INSERT statement is still stopped.

Example 17.5: Add team 1 to the TEAMS table again.

INSERT IGNORE INTO TEAMS VALUES (1, 39, 'second')

Explanation: Usually, this statement results in an error message because the
TEAMS table already contains a team number 1. However, now that the term
IGNORE has been added, an error message will not be presented. The new row is not
entered. If there is no team with the number 1, the INSERT statement will actually be
processed.

You can add an ON DUPLICATE KEY specification to each INSERT statement. This
specification becomes active if the row that is added causes trouble with the pri-
mary key or one of the alternate keys. When a new row conflicts with an existing
row, we can indicate that the values in the existing row must be adjusted.

Example 17.6: Add team 1 to the TEAMS table again. If team 1 already exists,
enter 39 as the player number and ‘second’ as the division.

INSERT INTO TEAMS VALUES (1, 39, 'second')
ON DUPLICATE KEY UPDATE PLAYERNO = 39, DIVISION='second'

441CHAPTER 17 Updating Tables

Explanation: In fact, the following statements are executed behind the scenes:

INSERT INTO TEAMS VALUES (1, 39, 'second')

IF TEAMNO 1 IS NOT UNIQUE
BEGIN

UPDATE TEAMS
SET PLAYERNO = 39,

DIVISION='second'
WHERE TEAMNO = 1

END

The changes behind the word UPDATE should satisfy the same requirements and
display the same behavior as that of the UPDATE statement; see Section 17.4.

17.3 POPULATING A TABLE WITH ROWS FROM
ANOTHER TABLE

In the previous section, we showed only examples of INSERT statements in which
new rows are added. With the INSERT statement, we can fill a table with rows from
another table (or other tables). You could say that data is copied from one table to
another. Instead of using the VALUES clause, we use a table expression in the INSERT
statement.

Example 17.7: Create a separate table in which the number, name, town, and
telephone number of each noncompetition player are recorded.

We start by creating a new table:

CREATE TABLE RECR_PLAYERS
(PLAYERNO SMALLINT NOT NULL,
NAME CHAR(15) NOT NULL,
TOWN CHAR(10) NOT NULL,
PHONENO CHAR(13),
PRIMARY KEY (PLAYERNO))

The following INSERT statement populates the RECR_PLAYERS table with
data about recreational players registered in the PLAYERS table:

INSERT INTO RECR_PLAYERS
(PLAYERNO, NAME, TOWN, PHONENO)

SELECT PLAYERNO, NAME, TOWN, PHONENO
FROM PLAYERS
WHERE LEAGUENO IS NULL

442 SQL for MySQL Developers

After this INSERT statement, the contents of the new table look like this:

PLAYERNO NAME TOWN PHONENO
-------- ------- --------- ----------

7 Wise Stratford 070-347689
28 Collins Midhurst 071-659599
39 Bishop Stratford 070-393435
95 Miller Douglas 070-867564

Explanation: The first part of the INSERT statement is a normal INSERT statement.
The second part is based not on a VALUES clause, but on a table expression. The
result of a table expression is a number of rows with values. However, these rows
are not displayed on the screen, but are stored directly in the RECR_PLAYERS
table.

The rules that apply to the first form of the INSERT statement also apply here.
The next two statements, then, have an equivalent result to the previous INSERT
statement:

INSERT INTO RECR_PLAYERS
SELECT PLAYERNO, NAME, TOWN, PHONENO
FROM PLAYERS
WHERE LEAGUENO IS NULL

INSERT INTO RECR_PLAYERS
(TOWN, PHONENO, NAME, PLAYERNO)

SELECT TOWN, PHONENO, NAME, PLAYERNO
FROM PLAYERS
WHERE LEAGUENO IS NULL

Several other rules apply:

■ The table to which rows are added can be the same as the one from which
they are copied. In this case, the result of the SELECT statement is determined
first to avoid a continuous loop; see the next example.

■ The table expression is a fully fledged table expression and, therefore, can
include subqueries, joins, set operators, GROUP BY and ORDER BY clauses,
functions, and so on.

■ The number of columns in the INSERT INTO clause must be equal to the num-
ber of expressions in the SELECT clause of the table expression.

■ The data types of the columns in the INSERT INTO clause must conform to the
data types of the expressions in the SELECT clause.

We use two examples to illustrate the first rule.

443CHAPTER 17 Updating Tables

Example 17.8: Duplicate the number of rows in the RECR_PLAYERS table.

INSERT INTO RECR_PLAYERS
(PLAYERNO, NAME, TOWN, PHONENO)

SELECT PLAYERNO + 1000, NAME, TOWN, PHONENO
FROM RECR_PLAYERS

Explanation: One thousand is added to the value of the PLAYERNO column to
make sure no problems arise with the primary key.

Example 17.9: Add all penalties to the PENALTIES table for which the amount
is greater than the average amount.

INSERT INTO PENALTIES
SELECT PAYMENTNO + 100, PLAYERNO, PAYMENT_DATE, AMOUNT
FROM PENALTIES
WHERE AMOUNT >

(SELECT AVG(AMOUNT)
FROM PENALTIES)

Exercise 17.1: Add a new row to the PENALTIES table; the payment number is
15, this concerns player 27, the payment date was 1985-11-08, and the penalty
amount is $75.

Exercise 17.2: Add all the penalties to the PENALTIES table for which the
amount is smaller than the average amount, plus all penalties of player 27. Make
sure that the penalty numbers remain unique.

17.4 UPDATING VALUES IN ROWS

You can change values in a table with the UPDATE statement. A table reference indi-
cates which table needs to be updated. The WHERE clause of an UPDATE statement
specifies which rows must be changed; the SET clause is used to assign new values
to one or more columns.

444 SQL for MySQL Developers

D E F I N I T I O N
<update statement> ::=

UPDATE [IGNORE] <table reference>
SET <column assignment> [, <column assignment>]...
[<where clause>]
[<order by clause>]
[<limit clause>]

<table reference> ::=
<table specification> [[AS] <pseudonym>]

<pseudonym> ::= <name>

<column assignment> ::=
<column name> = <scalar expression>

Example 17.10: Update the league number for player 95 to 2,000.

UPDATE PLAYERS
SET LEAGUENO = '2000'
WHERE PLAYERNO = 95

Explanation: For every row in the PLAYERS table (UPDATE PLAYERS) in which the
player number equals 95 (WHERE PLAYERNO = 95), you must change the
LEAGUENO to 2,000 (SET LEAGUENO = '2000'). The last specification is called a
column assignment.

In most examples, it is not necessary, but you can specify a pseudonym behind a
table name, just as in a SELECT statement. The earlier UPDATE statement has the
same result as the following:

UPDATE PLAYERS AS P
SET P.LEAGUENO = '2000'
WHERE P.PLAYERNO = 95

A literal is specified in the column assignment of this first example. Because of
this, the LEAGUENO column gets a new value that replaces the existing value. A
column assignment can also contain complex expressions that can even refer to the
column that is updated.

445CHAPTER 17 Updating Tables

Example 17.11: Increase all penalties by 5 percent.

UPDATE PENALTIES
SET AMOUNT = AMOUNT * 1.05

Explanation: Because the WHERE clause has been omitted, as in the previous
example, the update is performed on all rows in the table concerned. In this exam-
ple, the amount in each row of the PENALTIES table increases by 5 percent.

Example 17.12: Set the number of sets won to 0 for all competitors resident in
Stratford.

UPDATE MATCHES
SET WON = 0
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford')

The earlier examples show SET clauses with only one column assignment. You
are allowed to update multiple columns with one statement simultaneously.

Example 17.13: The Parmenter family has moved to 83 Palmer Street in Ingle-
wood, the postcode has become 1234UU, and the telephone number is unknown.

UPDATE PLAYERS
SET STREET = 'Palmer Street',

HOUSENO = '83',
TOWN = 'Inglewood',
POSTCODE = '1234UU',
PHONENO = NULL

WHERE NAME = 'Parmenter'

Explanation: In this case, the PHONENO column has been filled with the null
value. Remember the comma between two items. With this statement, both players
named Parmenter are moved to the same address.

Be careful when the column that is updated is used in the expressions of column
assignments.

The following statement could give the impression that the values of the
STREET and TOWN columns for player 44 are exchanged:

446 SQL for MySQL Developers

UPDATE PLAYERS
SET STREET = TOWN,

TOWN = STREET
WHERE PLAYERNO = 44

Explanation: These are the original contents of the PLAYERS table:

PLAYERNO STREET TOWN
-------- ------------ ---------
44 Lewis Street Inglewood

The result of the UPDATE statement is:

PLAYERNO STREET TOWN
-------- --------- ------------
44 Inglewood Lewis Street

So the values of the columns have not been switched, but now the question is,
why not? This is caused by the processing method of the UPDATE statement. For each
row, MySQL checks whether the condition in the WHERE clause is true. If so, the
value of the expression of the first column assignment is determined first, and this
value is assigned to the column concerned. The value of the second expression is
determined next, and that value also is assigned to the column concerned. In this
example, first the value of the TOWN column is assigned to the STREET column.
After that, the value of the STREET column in the second column assignment is
calculated, which already is the TOWN column. It looks as if MySQL processed the
following statements in succession:

UPDATE PLAYERS
SET STREET = TOWN
WHERE PLAYERNO = 44

UPDATE PLAYERS
SET TOWN = STREET
WHERE PLAYERNO = 44

When exchanging values, the values of one of the columns must be entered in a
temporary table.

Expressions consisting of scalar subqueries can also be used in the SET clause.

Example 17.14: Create a new table to store for each player the player number,
the number of matches he or she played, and the sum of all penalties incurred by
him or her.

447CHAPTER 17 Updating Tables

CREATE TABLE PLAYERS_DATA
(PLAYERNO INTEGER NOT NULL PRIMARY KEY,
NUMBER_MAT INTEGER,
SUM_PENALTIES DECIMAL(7,2))

INSERT INTO PLAYERS_DATA (PLAYERNO)
SELECT PLAYERNO FROM PLAYERS

UPDATE PLAYERS_DATA AS PD
SET NUMBER_MAT = (SELECT COUNT(*)

FROM MATCHES AS M
WHERE M.PLAYERNO = PD.PLAYERNO),

SUM_PENALTIES = (SELECT SUM(AMOUNT)
FROM PENALTIES AS PEN
WHERE PEN.PLAYERNO = PD.PLAYERNO)

Explanation: In the UPDATE clause of the UPDATE statement, a pseudonym (PD) is
used to reference this table in the subqueries. Note that this example does not
require the use of the pseudonym.

In a subquery used in a SET clause, it is not allowed to specify the table that is
updated.

Example 17.15: Subtract the average penalty amount from each penalty amount.

The following solution is therefore not allowed:

UPDATE PENALTIES
SET AMOUNT = AMOUNT – (SELECT AVG(AMOUNT)

FROM PENALTIES)

To create a comparable result, this statement must be divided into two parts:

SET @AVERAGE_AMOUNT = (SELECT AVG(AMOUNT) FROM PENALTIES)

UPDATE PENALTIES
SET AMOUNT = AMOUNT – @AVERAGE_AMOUNT

When an ORDER BY clause is added to an UPDATE statement, the sequence in
which the rows must be updated is specified.

Example 17.16: Increase all penalties by 5 percent and begin with the highest
amount.

UPDATE PENALTIES
SET AMOUNT = AMOUNT * 1.05
ORDER BY AMOUNT DESC

448 SQL for MySQL Developers

This can be useful and even necessary for certain changes on multiple rows.
Imagine that we want to increase the payment number of all penalties by 1. If
MySQL started processing with the penalty holding payment number 1, this new
value 2 would conflict with the existing payment number 2. To make sure no con-
flicts arise, we can force MySQL to begin with the last penalty by adding an ORDER
BY clause—see the following example.

Example 17.17: Increase all payment numbers by 1.

UPDATE PENALTIES
SET PAYMENTNO = PAYMENTNO + 1
ORDER BY PAYMENTNO DESC

Including an ORDER BY clause can also be useful when a LIMIT clause is added
as well.

Example 17.18: Increase the four highest penalties by 5 percent.

UPDATE PENALTIES
SET AMOUNT = AMOUNT * 1.05
ORDER BY AMOUNT DESC, PLAYERNO ASC
LIMIT 4

Explanation: An additional sorting on the PLAYERNO column has been added
to the ORDER BY clause to indicate clearly which rows must be updated if equal
penalty amounts exist.

MySQL checks whether the new rows that have been entered with an UPDATE state-
ment, satisfy all integrity constraints. For example, a certain update could create
duplicate values in a primary key. With a normal UPDATE statement, MySQL gives
an error message and interrupts the processing of the statement. As with the INSERT
statement, you can add IGNORE to have this error message ignored. In this situation,
the entire update is stopped.

Example 17.19: For the match with number 4, increase the number by 1 and
make the number of sets won 2 and the number of sets lost 3.

UPDATE IGNORE MATCHES
SET MATCHNO = MATCHNO + 1,

WON = 2,
LOST = 3

WHERE MATCHNO = 4

449CHAPTER 17 Updating Tables

Explanation: Because you added the term IGNORE, no error messages arise when
the increase of the match number causes conflicts. If match number 5 does not
exist, the UPDATE statement is processed correctly.

Exercise 17.3: Change the value F in the SEX column of the PLAYERS table to
W (woman).

Exercise 17.4: Update the SEX column in the PLAYERS table as follows:
Where M is recorded, change it to F, and where F exists, change it to M.

Exercise 17.5: Increase all penalties that are higher than the average penalty by
20 percent.

17.5 UPDATING VALUES IN MULTIPLE TABLES

MySQL enables you to change data in two or more tables with only one UPDATE
statement. For this, the definition of the UPDATE statement has been adjusted some-
what; you may specify more than one table in the UPDATE clause.

D E F I N I T I O N
<update statement> ::=

UPDATE [IGNORE] <table reference>
[, <table reference>]...

SET <update> [, <update>]...
[<where clause>]
[<order by clause>]
[<limit clause>]

<table reference> ::=
<table specification> [[AS] <pseudonym>]

<pseudonym> ::= <name>

<update> ::=
<column name> = <scalar expression>

Before we give an example of an update on two tables, we give an example in
which two tables are mentioned in the UPDATE clause but only one table is updated.

Example 17.20: Set the number of sets won to 0 for all matches that have been
played for a team in the first division.

450 SQL for MySQL Developers

UPDATE MATCHES AS M, TEAMS AS T
SET WON = 0
WHERE T.TEAMNO = M.TEAMNO
AND T.DIVISION = 'first'

Explanation: Two tables are mentioned in the UPDATE clause, but the SET clause
contains only columns of one table. When processing this statement, MySQL first
executes the following SELECT statement:

SELECT ...
FROM MATCHES AS M, TEAMS AS T
WHERE T.TEAMNO = M.TEAMNO
AND T.DIVISION = 'first'

This statement is derived from the UPDATE statement. The SELECT clause of this
statement is insignificant. After MySQL processes the FROM and WHERE clauses, sev-
eral rows are selected in both tables. These rows satisfy the join condition and the
condition T.DIVISION = 'first'. The actual update is performed on those selected
rows. Because the SET clause contains only columns of the MATCHES table, only
the selected rows in that table are updated.

This statement could also have been solved with a subquery in the WHERE
clause:

UPDATE MATCHES
SET WON = 0
WHERE TEAMNO IN

(SELECT TEAMNO
FROM TEAMS
WHERE DIVISION = 'first')

Example 17.21: Set the number of sets won to 0 for all matches that have been
played for a team in the first division and set the number of the captain to 112 for
those first-division teams.

UPDATE MATCHES AS M, TEAMS AS T
SET M.WON = 0,

T.PLAYERNO = 112
WHERE T.TEAMNO = M.TEAMNO
AND T.DIVISION = 'first'

Explanation: This statement actually updates data in two tables. The SET clause
clearly shows that the WON column from the MATCHES table and the PLAYERNO
column from the TEAMS table have been updated. The update concerns all rows
from both tables for which the conditions in the WHERE clause are true.

451CHAPTER 17 Updating Tables

The advantage of updating multiple tables with one statement is that either the
entire statement is executed or none of it is. If we had split the statement into two
UPDATE statements and a problem arose after the first was processed but before the
processing of the second, the first update could be performed, but the second could
not. With one statement, this is impossible.

Example 17.22: If the player with number 2 appears in all five tables of the
sample database, that number must be changed to 1 in all five tables.

UPDATE PLAYERS AS P,
TEAMS AS T,
MATCHES AS M,
PENALTIES AS PEN,
COMMITTEE_MEMBERS AS C

SET P.PLAYERNO = 1,
T.PLAYERNO = 1,
M.PLAYERNO = 1,
PEN.PLAYERNO = 1,
C.PLAYERNO = 1

WHERE P.PLAYERNO = T.PLAYERNO
AND T.PLAYERNO = M.PLAYERNO
AND M.PLAYERNO = PEN.PLAYERNO
AND PEN.PLAYERNO = C.PLAYERNO
AND C.PLAYERNO = 2

Explanation: If player 2 appears in all tables, all join conditions are true, and in
all tables the player number is changed to 1.

Exercise 17.6: Change the division in 'third' for all teams that are captained
by a player living in Stratford.

Exercise 17.7: Use one statement to change the amounts of all penalties in $50
and the divisions of all teams in 'fourth'.

17.6 SUBSTITUTING EXISTING ROWS

With the INSERT statement, new rows are added to a table. The REPLACE statement
can also add new rows, but there is a difference. When a new row is added, the
assigned primary key or one of the alternate keys conflicts with that of an existing
row. In that case, the INSERT statement rejects the addition, but the old row is over-
written by the new row in the REPLACE statement. The new row essentially replaces
the old row. In fact, REPLACE changes into a kind of UPDATE statement. The structure
of this statement looks very much like that of the INSERT statement.

452 SQL for MySQL Developers

D E F I N I T I O N
<replace statement> ::=

REPLACE [IGNORE] [INTO] <table specification>
<insert specification>

<insert specification> ::=
[<column list>] <values clause> |
[<column list>] <table expression> |
SET <column assignment> [, <column assignment>]...

<column list> ::=
(<column name> [, <column name>]...)

<values clause> ::=
VALUES <row expression> [, <row expression>]...

<row expression> ::=
<scalar row expression>

<column assignment> ::=
<column name> = <scalar expression>

By way of illustration, we convert several INSERT statements from the previous
sections into REPLACE statements.

Example 17.23: Add a new player; if the primary keys already exist, the old val-
ues must be overwritten (based upon Example 17.2).

REPLACE INTO PLAYERS
(PLAYERNO, NAME, INITIALS, SEX,
JOINED, STREET, TOWN)

VALUES (611, 'Jones', 'GG', 'M', 1977, 'Green Way', 'Stratford')

Explanation: If player 611 already exists, the values in the REPLACE statement
overwrite the existing values.

Example 17.24: Add four new teams; if the primary keys already exist, the old
values must be overwritten (based upon Example 17.3).

REPLACE INTO TEAMS (TEAMNO, PLAYERNO, DIVISION)
VALUES (6, 100, 'third'),

(7, 27, 'fourth'),
(8, 39, 'fourth'),
(9, 112, 'sixth')

453CHAPTER 17 Updating Tables

Example 17.25: Double the number of rows in the RECR_PLAYERS table; if
the primary keys already exist, the old values must be overwritten (based upon
Example 17.8).

REPLACE INTO RECR_PLAYERS
(PLAYERNO, NAME, TOWN, PHONENO)

SELECT PLAYERNO + 1000, NAME, TOWN, PHONENO
FROM RECR_PLAYERS

Of course, it is not allowed to add an ON DUPLICATE KEY specification to the
REPLACE statement. The IGNORE option works as it does with the INSERT and UPDATE

statements.

17.7 DELETING ROWS FROM A TABLE

The DELETE statement removes rows from a table. The definition of the DELETE state-
ment reads as follows:

D E F I N I T I O N
<delete statement> ::=

DELETE [IGNORE]
FROM <table reference>
[<where clause>]
[<order by clause>]
[<limit clause>]

<table reference> ::=
<table specification> [[AS] <pseudonym>]

<pseudonym> ::= <name>

Example 17.26: Delete all penalties incurred by player 44.

DELETE
FROM PENALTIES
WHERE PLAYERNO = 44

or:

DELETE
FROM PENALTIES AS PEN
WHERE PEN.PLAYERNO = 44

454 SQL for MySQL Developers

If the WHERE clause is omitted, all the rows of the specified table are deleted.
This is not the same as dropping a table with the DROP statement. DELETE removes
only the contents, whereas the DROP statement also deletes the definition of the table
from the catalog. After the DELETE statement, the table remains intact.

Example 17.27: Delete all players for whom the year in which they joined the
club is greater than the average year that all players from Stratford joined the club.

DELETE
FROM PLAYERS
WHERE JOINED >

(SELECT AVG(JOINED)
FROM PLAYERS
WHERE TOWN = 'Stratford')

Explanation: As with the UPDATE statement, some SQL products do not allow sub-
queries in the WHERE clause of a DELETE statement to refer to the table from which
rows are deleted. Again, this restriction does not apply to MySQL.

As with the UPDATE statement, an ORDER BY clause and a LIMIT clause may be spec-
ified in a DELETE statement. The effect and method of processing are comparable.

Example 17.28: Delete the four highest penalties.

DELETE
FROM PENALTIES
ORDER BY AMOUNT DESC, PLAYERNO ASC
LIMIT 4

Example 17.29: Remove all players and do not return an error message if some-
thing goes wrong during the processing.

DELETE IGNORE
FROM PLAYERS

Explanation: You may specify an IGNORE option in the DELETE statement as well.

Exercise 17.8: Delete all penalties incurred by player 44 in 1980.

Exercise 17.9: Delete all penalties incurred by players who have ever played for
a team in the second division.

455CHAPTER 17 Updating Tables

Exercise 17.10: Delete all players who live in the same town as player 44 but
keep the data about player 44.

17.8 DELETING ROWS FROM MULTIPLE TABLES

MySQL enables you to delete data from two or more tables with one DELETE state-
ment. You can formulate these DELETE statements in two ways. The possibilities of
these two are the same.

D E F I N I T I O N
<delete statement> ::=

{ DELETE [IGNORE]
<table reference> [, <table reference>]...
FROM <table reference> [, <table reference>]...
[<where clause>] } |

{ DELETE [IGNORE]
FROM <table reference> [, <table reference>]...
USING <table reference> [, <table reference>]...
[<where clause>] }

<table reference> ::=
<table specification> [[AS] <pseudonym>]

<pseudonym> ::= <name>

As with the UPDATE statement, we first give an example that mentions multiple
tables but removes rows from only one table.

Example 17.30: Delete all matches of all players living in Inglewood.

DELETE MATCHES
FROM MATCHES, PLAYERS
WHERE MATCHES.PLAYERNO = PLAYERS.PLAYERNO
AND PLAYERS.TOWN = 'Inglewood'

Explanation: As with the UPDATE statement, the following SELECT statement is
executed first:

SELECT ...
FROM MATCHES, PLAYERS
WHERE MATCHES.PLAYERNO = PLAYERS.PLAYERNO
AND PLAYERS.TOWN = 'Inglewood'

456 SQL for MySQL Developers

With this, rows in both tables are selected. Because only the MATCHES table
is mentioned in the DELETE clause of the DELETE statement, only the selected rows
from this table are removed.

In the DELETE clause, only table references may be specified that also appear in
the FROM clause. Therefore, the following statement is incorrect because the
MATCHES table gets the pseudonym M. The statement would have been correct if,
in the DELETE clause, the name MATCHES also was replaced by M.

DELETE MATCHES
FROM MATCHES AS M, PLAYERS
WHERE M.PLAYERNO = PLAYERS.PLAYERNO
AND PLAYERS.TOWN = 'Inglewood'

Example 17.31: Delete all data about team 1 from the TEAMS and MATCHES
tables.

DELETE TEAMS, MATCHES
FROM TEAMS, MATCHES
WHERE TEAMS.TEAMNO = MATCHES.TEAMNO
AND TEAMS.TEAMNO = 1

Explanation: All rows that satisfy the join and the condition TEAMS.TEAMNO = 1
are deleted now, including those from the TEAMS table as well as from the
MATCHES table.

The second formulation for this statement looks as follows:

DELETE
FROM TEAMS, MATCHES
USING TEAMS, MATCHES
WHERE TEAMS.TEAMNO = MATCHES.TEAMNO
AND TEAMS.TEAMNO = 1

The table references in the first formulation in the DELETE clause are now in the
FROM clause, and those in the FROM clause are in the USING clause. In brief, every-
thing is descended one line.

Exercise 17.11: Delete all penalties and matches of player 27, but only if player
27 appears in both tables.

Exercise 17.12: Delete all penalties and matches of player 27, regardless of
whether the player appears in both tables.

457CHAPTER 17 Updating Tables

17.9 THE TRUNCATE STATEMENT

If all rows from a large table must be removed, it could take a lot of time. For this
special case, MySQL has the TRUNCATE statement. With this statement, all rows are
deleted at once. In most cases, the rows are removed faster than when a DELETE
statement is used.

D E F I N I T I O N
<truncate statement> ::=

TRUNCATE TABLE <table specification>

Example 17.32: Delete all committee members.

TRUNCATE TABLE COMMITTEE_MEMBERS

17.10 ANSWERS

17.1 INSERT INTO PENALTIES
VALUES (15, 27, '1985-11-08', 75)

17.2 INSERT INTO PENALTIES
SELECT PAYMENTNO + 1000, PLAYERNO, PAYMENT_DATE, AMOUNT
FROM PENALTIES
WHERE AMOUNT >

(SELECT AVG(AMOUNT)
FROM PENALTIES)

UNION
SELECT PAYMENTNO + 2000, PLAYERNO, PAYMENT_DATE, AMOUNT
FROM PENALTIES
WHERE PLAYERNO = 27

17.3 UPDATE PLAYERS
SET SEX = 'W'
WHERE SEX = 'F'

458 SQL for MySQL Developers

17.4 UPDATE PLAYERS
SET SEX = 'X'
WHERE SEX = 'F'

UPDATE PLAYERS
SET SEX = 'F'
WHERE SEX = 'M'

UPDATE PLAYERS
SET SEX = 'M'
WHERE SEX = 'X'

or

UPDATE PLAYERS
SET SEX = CASE SEX

WHEN 'F' THEN 'M'
ELSE 'F'

END

17.5 UPDATE PENALTIES
SET AMOUNT = AMOUNT * 1.2
WHERE AMOUNT >

(SELECT AVG(AMOUNT)
FROM PENALTIES)

17.6 UPDATE TEAMS AS T, PLAYERS AS P
SET DIVISION = 'third'
WHERE T.PLAYERNO = P.PLAYERNO
AND P.TOWN = 'Stratford'

17.7 UPDATE PENALTIES, TEAMS
SET AMOUNT = 50,

DIVISION = 'fourth'

17.8 DELETE
FROM PENALTIES
WHERE PLAYERNO = 44
AND YEAR(PAYMENT_DATE) = 1980

17.9 DELETE
FROM PENALTIES
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO IN

(SELECT TEAMNO
FROM TEAMS
WHERE DIVISION = 'second'))

459CHAPTER 17 Updating Tables

17.10 DELETE
FROM PLAYERS
WHERE TOWN =

(SELECT TOWN
FROM PLAYERS
WHERE PLAYERNO = 44)

AND PLAYERNO <> 44

17.11 DELETE PEN, M
FROM PENALTIES AS PEN, MATCHES AS M
WHERE PEN.PLAYERNO = M.PLAYERNO
AND PEN.PLAYERNO = 27

17.12 DELETE PEN, M
FROM PENALTIES AS PEN, MATCHES AS M
WHERE PEN.PLAYERNO = 27
AND M.PLAYERNO = 27

460 SQL for MySQL Developers

461

Loading and Unloading Data
C H A P T E R 1 8

18.1 INTRODUCTION

All SQL statements use data that is stored in tables of a database. However, some-
times we want to take the data out of the database and store it in an output file.
Other programs that do not support SQL then can process this file. This process is
called unloading data.

The opposite of loading data is, obviously, loading data. Here, data stored in
files is added to the database. These files are created by another program or sup-
plied by a company, for example. Usually, this file is called the input file.

Loading and unloading data can also transfer data from one MySQL database to
another. For example, this can be useful if we want to build a second version of the
database somewhere else.

When unloading data, MySQL uses the SELECT statement; it uses the special
LOAD statement when loading data. The next two sections discuss the features of
these two statements.

N O T E
Section 20.11 discusses the CSV storage engine. This subject is also related
to loading and unloading data.

18.2 UNLOADING DATA

The result of every SELECT statement can be written to a file. For this, an additional
clause has been added to the SELECT statement, the INTO FILE clause.

462 SQL for MySQL Developers

D E F I N I T I O N
<select statement> ::=

<table expression>
[<into file clause>]
[FOR UPDATE | LOCK IN SHARE MODE]

<into file clause> ::=
INTO OUTFILE '<file name>' <export option>... |
INTO DUMPFILE '<file name>' |
INTO <user variable> [, <user variable>]...

<export option> ::=
FIELDS [TERMINATED BY <alphanumeric literal>]

[[OPTIONALLY] ENCLOSED BY <alphanumeric literal>]
[ESCAPED BY <alphanumeric literal>] |

LINES TERMINATED BY <alphanumeric literal>

Example 18.1: Unload all the data of the TEAMS table.

SELECT *
FROM TEAMS
INTO OUTFILE 'C:/TEAMS.TXT'

The contents of the output file look as follows:

1 6 first
2 27 second

Explanation: The output file is called TEAMS.TXT. The file may not exist in the
specified directory. Additionally, the specified directory must exist. Tab symbols
separate the values in the rows, and each row starts on a new line.

Example 18.2: Unload all the data of the TEAMS table, place commas between
the values, and terminate every row with a question mark.

SELECT *
FROM TEAMS
INTO OUTFILE 'C:/TEAMS.TXT'

FIELDS TERMINATED BY ','
LINES TERMINATED BY '?'

The file TEAMS.TXT looks as follows:

1,6,first?2,27,second?

Explanation: The data is written to the output file called TEAMS.TXT. Commas are
placed between the different column values, and a question mark is placed after
each row. Because of this, a row no longer starts on a new line. The alphanumeric
literal used may consist of more than one letter or symbol.

In this and the following examples, we use very simple SELECT statements, but note
that every SELECT statement is allowed.

If necessary, we also can place values in the output file between quotation marks
or other symbols. We can do this by extending the FIELDS TERMINATED specification.

Example 18.3: Unload all the data of the TEAMS table, place commas between
the values, terminate every row with a question mark, and place the alphanumeric
values between double quotation marks.

SELECT *
FROM TEAMS
INTO OUTFILE 'C:/TEAMS.TXT'

FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY '?'

The file TEAMS.TXT looks as follows:

1,6,"first"?2,27,"second"?

Explanation: Only the alphanumeric values are placed between double quotation
marks now. If we want to place all the values between quotation marks, we must
omit the word OPTIONALLY; see the following example.

Example 18.4: Unload all the data of the TEAMS table.

SELECT *
FROM TEAMS
INTO OUTFILE 'C:/TEAMS.TXT'

FIELDS TERMINATED BY ','
ENCLOSED BY '"'

LINES TERMINATED BY '?'

The file TEAMS.TXT looks as follows:

"1","6","first"?"2","27","second"?

If a column contains null values, they are represented in the output file with the
code \N.

463CHAPTER 18 Loading and Unloading Data

Example 18.5: Unload all the data of the TEAMS table.

SELECT *, NULL
FROM TEAMS
INTO OUTFILE 'C:/TEAMS.TXT'

FIELDS TERMINATED BY ','
ENCLOSED BY '"'

LINES TERMINATED BY '?'

The file TEAMS.TXT looks as follows:

"1","6","first",\N?"2","27","second",\N?

Instead of a backslash in front of the capital letter N, you may use another
symbol.

Example 18.6: Unload all the data of the TEAMS table and present the null
values with the code *N.

SELECT *, NULL
FROM TEAMS
INTO OUTFILE 'C:/TEAMS.TXT'

FIELDS TERMINATED BY ','
ENCLOSED BY '"'
ESCAPED BY '*'

LINES TERMINATED BY '?'

The file TEAMS.TXT looks as follows:

"1","6","first",*N?"2","27","second",*N?

Table 5.1 contained several special symbols that may be included within an
alphanumeric literal. These special symbols may also be used as symbols within an
INTO FILE clause.

Example 18.7: Unload all the data of the TEAMS table, place commas between
the values, terminate every row with a carriage return, and place the alphanumeric
values between double quotation marks.

SELECT *
FROM TEAMS
INTO OUTFILE 'C:/TEAMS.TXT'

FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY '\n'

464 SQL for MySQL Developers

The file TEAMS.TXT looks as follows:

1,6,"first"
2,27,"second"

The first example of this section did not include a FIELDS or LINES specifica-
tion. MySQL interprets this as the following specification:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPE BY '\\'
LINES TERMINATED BY '\n'

Instead of using OUTFILE, you may also use DUMPFILE. All the rows are placed
right after each other without any markings between the values and the rows; it
becomes one long value.

Example 18.8: Unload all the data of the TEAMS table in a dumpfile.

SELECT *
FROM TEAMS
INTO DUMPFILE 'C:/TEAMS.DUMP'

In a special form of the INTO FILE clause, the result is not written to a file, but
is assigned to user variables. This works only if the SELECT statement returns just
one row.

Example 18.9: Assign the data of team 1 to the user variables V1, V2, and V3.
Next, show the values of these variables.

SELECT *
FROM TEAMS
WHERE TEAMNO = 1
INTO @V1, @V2, @V3

SELECT @V1, @V2, @V3

The result is:

@V1 @V2 @V3
--- --- -----
1 6 first

18.3 LOADING DATA

The LOAD statement is the opposite of the SELECT statement with an INTO FILE

clause.

465CHAPTER 18 Loading and Unloading Data

D E F I N I T I O N
<load statement> ::=

LOAD DATA [LOW_PRIORITY] [CONCURRENT] [LOCAL]
INFILE '<file name>'
[REPLACE | IGNORE]
INTO TABLE <table specification>
[<fields specification>]
[<lines specification>]
[IGNORE <whole number> LINES]
[{ <column name> | <user variable> }

[, { <column name> | <user variable> }]...]
[<set statement>]

<fields specification> ::=
FIELDS [TERMINATED BY <alphanumeric literal>]

[[OPTIONALLY] ENCLOSED BY <alphanumeric literal>]
[ESCAPED BY <alphanumeric literal>]

<lines specification> ::=
LINES [TERMINATED BY <alphanumeric literal>]

[STARTING BY <alphanumeric literal>]

In all examples in this section, we assume that the TEAMS table is empty.

Example 18.10: Load the data of the file TEAMS.TXT, created in Example 18.2, in
the TEAMS table.

LOAD DATA INFILE 'C:/TEAMS.TXT'
REPLACE
INTO TABLE TEAMS
FIELDS TERMINATED BY ','
LINES TERMINATED BY '?'

Explanation: After this statement, the TEAMS table is filled with the original
data again.

In this example, a file is loaded that has been created with a SELECT statement. That
is not a necessity; input files can also be created by hand or with other programs.

If the term REPLACE is specified and if there are rows in the table of which the
value of the primary key or that of an unique index equals that of a row in the input
file, the new data overwrites the existing data. When IGNORE is specified, the new
data is ignored, and no error message is given. If neither term is specified and a
value already appears, an error message is returned and loading is stopped.

466 SQL for MySQL Developers

If we include the specification IGNORE followed by a number, MySQL skips the
first rows of the input file.

Example 18.11: Load the data from the file TEAMS.TXT, created in Example
18.2, in the TEAMS table, but skip the first row.

LOAD DATA INFILE 'C:/TEAMS.TXT'
REPLACE
INTO TABLE TEAMS
FIELDS TERMINATED BY ','
LINES TERMINATED BY '?'
IGNORE 1 LINES

By including column names, we can determine which value in the file must go
to which column.

Example 18.12: Load the data from the file TEAMS.TXT, as created in Example
18.2, in the TEAMS table, but switch the columns PLAYERNO and TEAMNO.
Next, show the contents of the TEAMS table.

LOAD DATA INFILE 'C:/TEAMS.TXT'
REPLACE
INTO TABLE TEAMS
FIELDS TERMINATED BY ','
LINES TERMINATED BY '?'
(PLAYERNO,TEAMNO,DIVISION)

SELECT * FROM TEAMS

The result is:

TEAMNO PLAYERNO DIVISION
------ -------- --------

6 1 first
27 2 second

Example 18.13: Load the data from the file TEAMS.TXT, created in Example
18.2, in the TEAMS table, and assign the value xxx to the DIVISION column. Next,
show the contents of the TEAMS table.

LOAD DATA INFILE 'C:/TEAMS.TXT'
REPLACE
INTO TABLE TEAMS
FIELDS TERMINATED BY ','
LINES TERMINATED BY '?'
SET DIVISION='xxx'

SELECT * FROM TEAMS

467CHAPTER 18 Loading and Unloading Data

The result is:

TEAMNO PLAYERNO DIVISION
------ -------- --------

1 6 xxx
2 27 xxx

Instead of using a literal, more complex expressions can be used in this special
SET statement. Scalar functions, system variables, and calculations are all allowed.
We can even use the value of a column.

Example 18.14: Load the data from the file TEAMS.TXT, created in Example
18.2, in the TEAMS table, and use the user variable DIV to fill the DIVISION. Next,
show the contents of the TEAMS table.

LOAD DATA INFILE 'C:/TEAMS.TXT'
REPLACE
INTO TABLE TEAMS
FIELDS TERMINATED BY ','
LINES TERMINATED BY '?'
(TEAMNO,PLAYERNO,@DIV)
SET DIVISION=SUBSTRING(@DIV,1,1)

SELECT * FROM TEAMS

The result is:

TEAMNO PLAYERNO DIVISION
------ -------- --------

1 6 f
2 27 s

Explanation: This statement is processed as follows. Space is reserved in internal
memory to keep one row with data. Because rows are added to the TEAMS table,
MySQL knows that this row consists of three values and that the column names of
that row are equal to TEAMNO, PLAYERNO, and DIVISION, successively.
MySQL retrieves this data from the catalog, including the data types of the
columns. If this space is reserved, the first row of the file is read. The first value of
this row is assigned to the column TEAMNO of the temporary row, the second to
the column PLAYERNO, and the third value to the user variable DIV, not to the
DIVISION column. Next, the SET statement is processed. This means that the first
symbol of the user variable DIV is determined, and that result is assigned to the
DIVISION column of the temporary row. Only now is this temporary row stored in
the TEAMS table, so we can continue with the next row.

468 SQL for MySQL Developers

By way of illustration, the following more complex specification is allowed:

(@A,PLAYERNO,@B)
SET TEAMNO=@A*@B, PLAYERNO=PLAYERNO,

DIVISION=SUBSTRING(CURRENT_USER(),1,1)

As with UPDATE and DELETE statements, LOW_PRIORITY may be specified. Load-
ing then is executed only if no other SQL users are reading the data with SELECT
statements. Chapter 37, “Transactions and Multiuser Usage,” returns to this topic.

If CONCURRENT is specified during the loading of a MyISAM table, the loading
can happen concurrently with the processing of SELECT statements.

The specification LOCAL refers to the location of the input file. Does the file
reside on the server on which the database server runs as well, or does it reside on
the machine on which the program runs, the client? If LOCAL is specified, the input
file should be on the client and is sent to the server. If LOCAL is not specified,
MySQL assumes that the file is on the server in the designated directory.

Example 18.15: Load the data from the input file TEAMS2.TXT. This file has the
following contents:

This is the beginning
/*/1,6,first
/*/2,27,second
This is the end

Next, show the contents of the TEAMS table.

LOAD DATA INFILE 'C:/TEAMS2.TXT'
REPLACE
INTO TABLE TEAMS
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\r'

STARTING BY '/*/'

SELECT * FROM TEAMS

The result is:

TEAMNO PLAYERNO DIVISION
------ -------- --------

6 1 first
27 2 second

Explanation: With the STARTING BY specification, we indicate which lines in the
input file to include. In this example, all lines that begin with the code /*/ are
included.

469CHAPTER 18 Loading and Unloading Data

This page intentionally left blank This page intentionally left blank

471

Working with
XML Documents

C H A P T E R 1 9

19.1 XML IN A NUTSHELL

Extensible Markup Language (XML) is the most popular language for exchanging
data electronically. For example, if a company wants to send an electronic invoice
to a customer, it can put the invoice data in an XML document and send it through
the Internet. The web site of a travel agency also might communicate with that of an
airline to reserve seats, which can be done using XML documents. Some ATM
machines even communicate with computers in the main office using XML
documents.

XML is not a programming language, such as Java, PHP, or C#. Nor is it a data-
base language, such as SQL. It is a language in which data such as addresses,
invoices, articles, and bills of materials can be recorded. The power of XML is that
an XML document contains not only the data itself, but also the metadata. In a doc-
ument, we record the value Inglewood and also describe that Inglewood is the name
of a town.

The best way to explain what this language looks like is to show an example.
Following is a simple example of an XML document that includes some data of the
player with number 6:

<player>
<number>6</number>
<name>

<lastname>Parmenter</lastname>
<initials>R</initials>

</name>
<address>

<street>Haseltine Lane</street>
<houseno>80</houseno>
<postcode>1234KK</postcode>
<town>Stratford</town>

</address>
</player>

This example clearly shows that data and metadata go hand in hand. For exam-
ple, the number 6 is enclosed by the tags <number> and </number>. The tag
<number> indicates the beginning, and </number> indicates the end. A start tag and
end tag together form an element, so <number> and </number> together from the ele-
ment number. This example clearly shows that XML is not a programming or data-
base language.

An XML document has a hierarchic structure. In the previous example, the ele-
ment player forms the top. The elements number, name, and address form the next
level. The name element itself consists of two subelements: lastname and initials.

Each element may contain attributes. The previous example can also be struc-
tured as follows. Here the element number has been replaced by the attribute
number:

<player number=6>
<name>

<lastname>Parmenter</lastname>
<initials>R</initials>

</name>
<address>

<street>Haseltine Lane</street>
<houseno>80</houseno>
<postcode>1234KK</postcode>
<town>Stratford</town>

</address>
</player>

Like SQL, XML is standardized. The World Wide Web Consortium (W3C) man-
ages the XML standard. The first version of this standard appeared in 1998. Version
3, the most recent version, was published in 2004. Without a doubt, new versions
will appear.

Storing XML documents in a MySQL database has always been possible. Each
XML document can be seen as a long alphanumeric value and can be stored in a
column with an alphanumeric data type, such as TEXT or LONGTEXT. Since

472 SQL for MySQL Developers

Version 5.1.5, MySQL also supports special scalar functions to query and update
these stored XML documents in a smart way. These functions form the topic of this
chapter.

For more information on XML, refer to the website of the W3C (www.w3c.org)
and to [HARO04] and [BENZ03].

19.2 STORING XML DOCUMENTS

As mentioned, storing XML documents has always been possible. Here we create a
special version of the MATCHES table to register several XML documents. Figure
19.1 shows the three documents to store in this table.

Example 19.1: Create the XML_MATCHES table.

CREATE TABLE XML_MATCHES
(MATCHNO INTEGER NOT NULL PRIMARY KEY,
MATCH_INFO TEXT)

Explanation: The last column can be used to store XML documents.

Example 19.2: Add three rows to the new XML_MATCHES table.

INSERT INTO XML_MATCHES VALUES (1,
'<match number=1>Match info of 1

<team>Team info of 1
<number>1</number>
<division>first</division>

</team>
<player>Player info of 6

<number>6</number>
<name>The name of 6

<lastname>Parmenter</lastname>
<initials>R</initials>

</name>
<address>The address of 6

<street>Haseltine Lane</street>
<houseno>80</houseno>
<postcode>1234KK</postcode>
<town>Stratford</town>

</address>
</player>
<sets>Info about sets of 1

<won>3</won>
<lost>1</lost>

</sets>
</match>')

473CHAPTER 19 Working with XML Documents

www.w3c.org

INSERT INTO XML_MATCHES VALUES (9,
'<match number=9>Match info of 9

<team>Team info of 2
<number>2</number>
<division>second</division>

</team>
<player>Player info of 27

<number>27</number>
<name>The name of 27

<lastname>Collins</lastname>
<initials>DD</initials>

</name>
<address>The address of 27

<street>Long Drive</street>
<houseno>804</houseno>
<postcode>8457DK</postcode>
<town>Eltham</town>

</address>
<phones>Phone numbers of 27

<number>1234567</number>
<number>3468346</number>
<number>6236984</number>
<number>6587437</number>

</phones>
</player>
<sets>Info about sets of 9

<won>3</won>
<lost>2</lost>

</sets>
</match>')

INSERT INTO XML_MATCHES VALUES (12,
'<match number=12>Match info of 12

<team>Team info of 2
<number>2</number>
<division>second</division>

</team>
<player>Player info of 8

<number>8</number>
<name>The name of 8

<lastname>Newcastle</lastname>
<initials>B</initials>

</name>

474 SQL for MySQL Developers

<address>The first address van 8
<street>Station Road</street>
<houseno>4</houseno>
<postcode>6584RO</postcode>
<town>Inglewood</town>

</address>
<address>The second address of 8

<street>Trolley Lane</street>
<houseno>14</houseno>
<postcode>2728YG</postcode>
<town>Douglas</town>

</address>
</player>
<sets>Info about sets of 12

<won>1</won>
<lost>3</lost>

</sets>
</match>')

Explanation: This data deviates somewhat from the data in the original database.

475CHAPTER 19 Working with XML Documents

match

team player sets

won lostnumber

1 16 3first

lastname initials street townhouseno postcode

division number name address

Parmenter R 80 1234KK StratfordHaseltine Lane

FIGURE 19.1(A) Graphic representation of the three XML documents

FIGURE 19.1(B) continued

476 SQL for MySQL Developers

number

3468346

match

team player sets

won lostnumber

2 27 3 2second

lastname initials street

Long DriveDD 804 8457DK Eltham 1234567 6236984 6587437

townhouseno postcode

Collins

division number name address phones

numbernumber number

match

team player sets

won lostnumber

2 8 1 3second

lastname initials street

Station RoadB 4 6584RO Inglewood Trolley Lane 14 2728YG Douglas

townhouseno postcode

Newcastle

division number name address address

houseno postcode townstreet

FIGURE 19.1(C) continued

19.3 QUERYING XML DOCUMENTS

Several additional standards have been defined for working with XML documents.
One of these standards is called XPath (XML Path Language). XPath is a language
specially developed for selecting element values from a certain XML document,
like a miniature query language. MySQL uses this language to query XML docu-
ments stored in tables.

We can use the EXTRACTVALUE function to extract values from an XML
document. The first parameter of this function refers to a column or expression that

has an XML document as a value. The second parameter contains the query and,
thus, an XPath expression.

This chapter uses examples to give you an idea of what is possible with this
scalar function and XPath. If we described all the features, this chapter would turn
into a complete book by itself. Hopefully, this chapter will help get you started. See
[KAY04] for an extensive description of XPath.

Example 19.3: Get the match number and division of the team for each match.

SELECT MATCHNO,
EXTRACTVALUE(MATCH_INFO, '/match/team/division')

AS DIVISION
FROM XML_MATCHES

The result is:

MATCHNO DIVISION
------- --------

1 first
9 second
12 second

Explanation: The specification /match/team/division is an XPath expression.
This should be read as follows: Get the value of the division element that belongs
hierarchically to the team element, which belongs hierarchically to the match ele-
ment. Note that the match element must be the top element of the XML document.
The expression /team would mean: Get the value of the top element /team. Because
team is not a top element, nothing would be found.

Example 19.4: For each match of which the number of sets won is equal to 3, get
the match number and the last name of the player concerned.

SELECT MATCHNO,
EXTRACTVALUE(MATCH_INFO,
'/match/player/name/lastname')
AS PLAYER

FROM XML_MATCHES
WHERE EXTRACTVALUE(MATCH_INFO,

'/match/sets/won') = 3

The result is:

MATCHNO PLAYER
------- ---------

1 Parmenter
9 Collins

477CHAPTER 19 Working with XML Documents

Explanation: As with every scalar function, we may use EXTRACTVALUE in other
clauses than the SELECT clause. The XPath expression /match/player/name/
lastname returns the value of the lastname element that belongs to the name ele-
ment, which belongs to the player element, which belongs hierarchically to the
match element.

If the element that an XPath expression returns has no value, that expression
returns an alphanumeric value without characters (or an empty string) as result.

Example 19.5: From the following XML document, get the value of the team
element.

SELECT EXTRACTVALUE('
<team>

<number>2</number>
<division>second</division>

</team>'
,'/team') = '' AS TEAM

The result is:

TEAM

0

Explanation: The result of the expression in the SELECT clause is 0. This means
that the value of the EXTRACTVALUE function is indeed an empty string. Because all
the elements in the XML_MATCHES table have a value, we do not use XML_
MATCHES in this example. This example also shows that the first parameter of the
EXTRACTVALUE function does not have to be a column. It may be any alphanumeric
value, as long as its value is a XML document.

If the result of an XPath expression consists of multiple values, they are glued
together and separated by spaces.

Example 19.6: Get all the phone numbers of player 27 who belongs to match 9.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/player/phones/number')
AS PHONES

FROM XML_MATCHES
WHERE MATCHNO = 9

478 SQL for MySQL Developers

The result is:

MATCHNO PHONES
------- -------------------------------

9 1234567 3468346 6236984 6587437

All the previous examples retrieved only values of elements that did not contain
any subelements. You may use EXTRACTVALUE to use the value of one of the higher
elements.

Example 19.7: Get the values of the player elements.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/player')
AS PLAYERS

FROM XML_MATCHES

The result is:

MATCHNO PLAYERS
------- -----------------

1 Player info of 6

9 Player info of 27

12 Player info of 8

Explanation: This result demands an explanation—because why are all those
empty lines included? MySQL generates many spaces. They become more visible
when they are replaced by another symbol:

SELECT REPLACE(EXTRACTVALUE(MATCH_INFO,
'/match/player'), ' ', '#')
AS PLAYER_INFO

FROM XML_MATCHES

479CHAPTER 19 Working with XML Documents

The result is:

PLAYER INFO

Player info of 6
########
########
########
####
Player info of 27
########
########
########
########
####
Player info of 8
########
########
########
########
####

The value of an element player is the combination of a piece of text (Player
info of …) and a number of subelements. The first match has three subelements
(number, name, and address), the second match has four elements (number, name,
address, and phones), and the third match has four elements (number, name, and two
addresses). For each match, the text is displayed, followed by an empty line for
each subelement, followed by an additional empty line.

XPath enables you to formulate powerful queries. For example, the asterisk can
specify a random element. The XPath expression in Example 19.4 can also be writ-
ten as follows: /*/*/*/lastname.

Example 19.8: Get the match number, the team number, and the player number
of each match.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/*/number')
AS NUMBERS

FROM XML_MATCHES

The result is:

MATCHNO NUMBERS
------- -------

1 1 6
9 2 27
12 2 8

480 SQL for MySQL Developers

Explanation: The XPath expression /match/*/number returns the value of each
number element that belongs to any element that subsequently belongs to the match
element. It does not matter to XPath whether they are different kinds of numbers. In
fact, XPath treats everything as alphanumeric values.

This expression /match/*/*/number would have returned all the phone numbers.
The reason is that XPath returns the value of each number element that belongs to
any element that subsequently belongs to any element and that belongs to the match
element.

If we place two slashes (//) right behind each other, it means that it does not
matter how many elements are in between hierarchically. Thus, the expression
/match//number is equivalent to the expressions /match/*/number, plus
/match/*/*/number, plus /match/*/*/*/number, etc.

Example 19.9: Get the match number, team number, player number, and phone
numbers for each match.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match//number')
AS NUMBERS

FROM XML_MATCHES

The result is:

MATCHNO NUMBERS
------- ------------------------------------

1 1 6
9 2 27 1234567 3468346 6236984 6587437
12 2 8

This statement can still be simplified because we know that all stored docu-
ments have match as the top element.

SELECT MATCHNO,
EXTRACTVALUE(MATCH_INFO, '//number')
AS NUMBERS

FROM XML_MATCHES

Example 19.10: For match 1, get all the data from the XML document.

SELECT EXTRACTVALUE(MATCH_INFO, '/match//*')
AS EVERYTHING

FROM XML_MATCHES
WHERE MATCHNO = 1

481CHAPTER 19 Working with XML Documents

The result is:

EVERYTHING

Team info of 1

1
first

Player info of 6
6
The name of 6

Parmenter
R

The address of 6
Haseltine Lane
80
1234KK
Stratford

Info about sets of 1
3
1

Explanation: The specification //* actually refers to the values of all elements
that belong directly or indirectly to the match element. The expression
/match/player//* would return all the information on players.

You can retrieve the values of multiple elements with the | symbol.

Example 19.11: For each match, get the match number, followed by the town of
the player concerned and the number of sets won.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'//town|//won')
AS TOWN_WON

FROM XML_MATCHES

The result is:

MATCHNO TOWN_WON
------- -------------------

1 Stratford 3
9 Eltham 3
12 Inglewood Douglas 1

Explanation: We could have obtained the same result with a concatenation of two
EXTRACTVALUE functions (such as the following), but the previous formulation is
more efficient.

482 SQL for MySQL Developers

SELECT MATCHNO,
CONCAT(EXTRACTVALUE(MATCH_INFO, '//town'),

' ',
EXTRACTVALUE(MATCH_INFO, '//won'))

AS TOWN_WON
FROM XML_MATCHES

You also can retrieve the value of an attribute. In the XML_MATCHES table,
the match element has an attribute.

Example 19.12: For each match, get the match number and the number that
occurs in the XML document concerned.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/@number')
AS XML_MATCHNO

FROM XML_MATCHES

The result is:

MATCHNO XML_MATCHNO
------- -----------

1 1
9 9
12 12

Explanation: By specifying the @ symbol in front of the attribute number, we tell
XPath that we are looking for an attribute.

In an XPath expression, you may include simple calculations as well.

Example 19.13: For each match, get the match number, followed by the number
of sets won plus 10.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/sets/won+10')
AS WON_PLUS_10

FROM XML_MATCHES

The result is:

MATCHNO WON_PLUS_10
------- -----------

1 13
9 13
12 11

483CHAPTER 19 Working with XML Documents

19.4 QUERYING USING POSITIONS

On a level in a hierarchy, multiple instances of an element can occur. For example,
player 8 belonging to match 12 has two addresses, and player 27 has four phone
numbers at match 9. If we are interested in only one, we can specify a sequence
number between square brackets in an XPath expression.

Example 19.14: For each match, get the match number and the town of the first
address of the player who played the match.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/player/address[1]/town')
AS TOWN

FROM XML_MATCHES

The result is:

MATCHNO TOWN
------- ---------

1 Stratford
9 Eltham
12 Inglewood

Explanation: Because we specified address[1], only the first address is
returned. If we had specified address[2], the result would have been as follows:

MATCHNO TOWN
------- ----------

1
9
12 Douglas

The asterisk and the square brackets may also be combined.

Example 19.15: For each match, get the match number and the value of the first
element.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/player/*[1]')
AS A_VALUE

FROM XML_MATCHES

484 SQL for MySQL Developers

The result is:

MATCHNO A_VALUE
------- -------

1 6
9 27
12 8

Explanation: The player element has four subelements: number, name, address,
and phones. In all three XML documents, the number element is specified first every
time. If this had not been the case, this statement could have given values of differ-
ent elements.

For example, the expression /match/player/address/*[3] gives the third ele-
ment (the postcode) of the address of the player of a match. The expression
/match/player/*[2]/*[2] returns the second element (the initials) of the second
element (the name) of the player of a match.

With the special XPath function last(), we can retrieve the last subelement.

Example 19.16: For each match, get the last phone number of the relevant
player.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/player/phones/number[last()]')
AS LAST

FROM XML_MATCHES

The result is:

MATCHNO LAST
------- -------

1
9 6587437
12

Explanation: The players belonging to matches 1 and 12 do not have a phone
number. The number 6587437 is indeed the last number of the player belonging to
match 9. The expression /match/player/phones/number[last()-1] returns the
penultimate phone number.

485CHAPTER 19 Working with XML Documents

19.5 THE EXTENDED NOTATION OF XPATH

The examples in the previous sections used the so-called shortened notation form
(abbreviated syntax) of XPath. An extended notation (expanded syntax) also exists.
For example, the expression /match/team/number is equivalent to /child::match/
child::team/child::number. And the expression /match//number is equivalent to
/child::match/descendant-or-self::node()/child::number. With this extended
notation, we can easily browse an XML document. From an element, we can step
up, down, or aside in the hierarchy to another element. Here are a few examples of
this notation.

Example 19.17: For each match, get the match number and team number of the
corresponding team.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/child::match/child::team/child::number ')
AS NUMBERS

FROM XML_MATCHES

The result is:

MATCHNO NUMBERS
------- -------

1 1
9 2
12 2

Example 19.18: For each match, get all address information for the correspon-
ding player.

SELECT EXTRACTVALUE(MATCH_INFO,
'/match/player/address/descendant::* ')
AS ADDRESS_INFO

FROM XML_MATCHES

The result is:

ADDRESS INFO
--

Haseltine Lane 80 1234KK Stratford
Long Drive 804 8457DK Eltham
Station Road 4 6584RO Inglewood Trolley Lane 14 2728YG Douglas

Explanation: descendant returns not only the subelements, but also the sub-
subelements and the sub-sub-subelements, and so on.

486 SQL for MySQL Developers

In the previous example, all subelements of address had only a piece of text as the
value. In that case, all words of a value are shown. If the subelements contain
subelements themselves, the EXTRACTVALUE function returns the entire hierarchy.

Example 19.19: For each match, get all the data of the player concerned.

SELECT EXTRACTVALUE(MATCH_INFO,
'/match/player/descendant::* ')
AS PLAYER_INFO

FROM XML_MATCHES

The result is:

PLAYER INFO

6 The name of 6

Parmenter
R

The address of 6
Haseltine Lane
80
1234KK
Stratford

27 The name of 27
Collins
DD

The address of 27
Long Drive
804
8457DK
Eltham

Phone numbers of 27
1234567
3468346
6236984
6587437

8 The name of 8
Newcastle
B

The first address of 8
Station Road
4
6584RO
Inglewood

The second address of 8
Trolley Lane
14
2728YG
Douglas

487CHAPTER 19 Working with XML Documents

We can also retrieve the value of the parent and the ancestor of a certain ele-
ment. The former gives the value of the element that is above, and the latter gives
the top of the hierarchy.

Example 19.20: For each match, get all the data of the player concerned.

SELECT EXTRACTVALUE(MATCH_INFO,
'/match/player/descendant::* ')
AS PLAYER_INFO

FROM XML_MATCHES

19.6 XPATH EXPRESSIONS WITH CONDITIONS

Conditions can be added to an XPath expression.

Example 19.21: For each match, get the player number, but only if that number
is equal to 8.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/player[number=8]')
AS PLAYER8

FROM XML_MATCHES

The result is:

MATCHNO PLAYER8
------- ----------------

1
9
12 Player info of 8

Explanation: If a row does not satisfy the condition, the result is an empty string.
The row itself will appear in the result because the condition is not in the WHERE
clause, but in the SELECT clause. If we move the condition to the WHERE clause, we
can use the EXTRACTVALUE function to select rows.

Example 19.22: Get only those matches for which the player number is equal
to 8.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/player')
AS PLAYER8

FROM XML_MATCHES
WHERE EXTRACTVALUE(MATCH_INFO,

'/match/player[number=8]') <> ''

488 SQL for MySQL Developers

The result is:

MATCHNO PLAYER8
------- ----------------

12 Player info of 8

In conditions, only the comparison operators = and != (unequal to) can be used,
plus the logical operators and and or.

Example 19.23: Get only those matches in which the number of sets won is
equal to 3 and the number of sets lost is equal to 1.

SELECT MATCHNO, EXTRACTVALUE(MATCH_INFO,
'/match/sets')
AS THREE_AND_ONE

FROM XML_MATCHES
WHERE EXTRACTVALUE(MATCH_INFO,

'/match/sets[won=3 and lost=1]') <>''

The result is:

MATCHNO THREE_AND_ONE
------- --------------------

1 Info about sets of 1

19.7 CHANGING XML DOCUMENTS

To replace an entire XML document by another, use a normal UPDATE statement.
The new XML document is included in the SET clause. However, if we want to
change a part of an XML document, such as the value of one element, we have to
use the special function UPDATEXML.

UPDATEXML has three parameters. The first parameter identifies the document
that must be changed. The second parameter contains an XPath expression with
which we indicate which elements need to be changed. The third parameter is the
new piece of the XML document that must be inserted.

489CHAPTER 19 Working with XML Documents

Example 19.24: For match 1, change the number of sets lost to 2. Show the
result next.

UPDATE XML_MATCHES
SET MATCH_INFO =

UPDATEXML(MATCH_INFO,
'/match/sets/lost',
'<lost>2</lost>')

WHERE MATCHNO = 1

SELECT EXTRACTVALUE(MATCH_INFO,
'/match/sets/lost') AS LOST

FROM XML_MATCHES
WHERE MATCHNO = 1

The result is:

LOST

2

Example 19.25: For match 3, change the address to Jolly Lane 30, Douglas,
5383GH. Show the result next.

UPDATE XML_MATCHES
SET MATCH_INFO =

UPDATEXML(MATCH_INFO,
'/match/player/address',
'<address>The new address of 8

<street>Jolly Lane</street>
<houseno>30</houseno>
<postcode>5383GH</postcode>
<town>Douglas</town>

</address>')
WHERE MATCHNO = 1

SELECT EXTRACTVALUE(MATCH_INFO,
'/match/player/address/*') AS NEW_ADDRESS

FROM XML_MATCHES
WHERE MATCHNO = 1

The result is:

NEW_ADDRESS

Jolly Lane 30 5383GH Douglas

490 SQL for MySQL Developers

Part III
Creating Database Objects

This third part describes how database objects are created. Database
object is the generic term for, among other things, tables, keys, views, and
indexes. These are the objects that we must create and that together form
a database.

Chapter 20, “Creating Tables,” describes all the statements for creat-
ing tables and details the properties of the different data types.

When tables are created, it is possible to specify integrity constraints.
Chapter 21, “Specifying Integrity Constraints,” explains these constraints
and also reviews primary keys, alternate keys, foreign keys, and check
integrity constraints, along with some other topics.

Chapter 22, “Character Sets and Collations,” explains the terms char-
acter set and collation, and illustrates how MySQL supports them.

This book has not yet addressed the special data types ENUM and SET.
By using these data types, it becomes possible to store multiple values in
a column of a row. Chapter 23, “The ENUM and SET Types,” focuses com-
pletely on creating and changing columns with these data types.

Chapter 24, “Changing and Dropping Tables,” concentrates entirely
on the SQL statements and the features for changing and deleting existing
tables. Changes might include adding new columns, updating data types,
and deleting columns.

S Q L F O R M Y S Q L D E V E L O P E R S

491

Chapter 25, “Using Indexes,” describes how to use indexes to reduce the
required processing time of certain SQL statements. This chapter gives an overview
of how indexes work internally and gives guidelines on which columns to index.

Chapter 26, “Views,” deals with views, or virtual tables. With views, we define
a “layer” on top of the tables so that the users can see the tables in a form that is
most suitable for them.

Chapter 27, “Creating Databases,” discusses creating, updating, and deleting
entire databases.

Chapter 28, “Users and Data Security,” handles data security. We explain
which SQL statements to use to create new users (with passwords) and discuss how
to authorize these users to perform certain statements against certain data.

492 SQL for MySQL Developers

493

Creating Tables
C H A P T E R 2 0

20.1 INTRODUCTION

This chapter describes the statements for creating, updating, and deleting tables.
We take the view that the user knows what data must be stored and what the struc-
ture of the data is—that is, what tables are to be created and what the appropriate
columns are. In other words, the user has a ready-to-use database design at his or
her disposal.

20.2 CREATING NEW TABLES

You can use the CREATE TABLE statement to construct new tables to store rows of
data. The definition of this statement is complex and extensive. For that reason, we
explain the statement’s features step by step and build up the definition slowly. The
following sections and chapters explain the concepts of column definition, table
integrity constraint, column integrity constraint, data type, and index definition.
First, we focus on the core of the CREATE TABLE statement.

494 SQL for MySQL Developers

D E F I N I T I O N
<create table statement> ::=

CREATE [TEMPORARY] TABLE [IF NOT EXISTS]
<table specification> <table structure>

<table specification> ::= [<database name> .] <table name>

<table structure> ::= <table schema>

<table schema> ::=
(<table element> [, <table element>]...)

<table element> ::=
<column definition> |
<table integrity constraint> |
<index definition>

<column definition> ::=
<column name> <data type> [<null specification>]

[<column integrity constraint>]

<null specification> ::= [NOT] NULL

<column integrity constraint> ::=
PRIMARY KEY |
UNIQUE [KEY] |
<check integrity constraint>

<table integrity constraint> ::=
<primary key> |
<alternate key> |
<foreign key> |
<check integrity constraint>

We begin with a simple example.

Example 20.1: Show the statement to create the PLAYERS table in the tennis
club database.

CREATE TABLE PLAYERS
(PLAYERNO INTEGER NOT NULL PRIMARY KEY,
NAME CHAR(15) NOT NULL,
INITIALS CHAR(3) NOT NULL,
BIRTH_DATE DATE NULL,
SEX CHAR(1) NOT NULL,
JOINED SMALLINT NOT NULL,
STREET VARCHAR(30) NOT NULL,
HOUSENO CHAR(4) NULL,
POSTCODE CHAR(6) NULL,
TOWN VARCHAR(30) NOT NULL,
PHONENO CHAR(13) NULL,
LEAGUENO CHAR(4) UNIQUE)

We explain this statement step by step. The name of this table is PLAYERS.
The table is created in the current database. Two tables belonging to the same data-
base cannot have the same name.

The table schema of a table consists of one or more table elements. These ele-
ments determine how the table looks and what data we can store in it. Table elements
include, for example, column definitions and integrity constraints, such as primary
and foreign keys. Chapter 21, “Specifying Integrity Constraints,” discusses these
concepts. In this chapter, we concentrate primarily on column definitions and pri-
mary keys.

A column definition contains a column name, a data type, possibly a null spec-
ification, and a column integrity constraint. It is not allowed to have duplicate col-
umn names in one table. However, two different tables may have similar column
names, such as the columns with the name PLAYERNO that appear in all tables.

You must specify a data type for a column to indicate what kind of values can be
entered in a column. In other words, the data type of a column restricts the type of
values that can be entered. Therefore, it is important to choose a suitable data
type. Section 5.2 describes the data types of literals in detail. The next section
discusses all data types and their respective qualities as they appear in a CREATE
TABLE statement.

For every column, you can include a null specification (see Section 1.3.2).
Again, we emphasize that MySQL supports the null value as a possible value for a
column in a row. The null value can be compared to “value unknown” or “value not
present” and should not be confused with the number zero or a set of spaces. In a
CREATE TABLE statement, you can specify NOT NULL after the data type of a column.
This indicates which columns cannot contain null values. In other words, every NOT
NULL column must contain a value in every row. If only NULL is specified, null values
are allowed. Not including a null specification is equal to specifying NULL.

A column definition may end with a column integrity constraint. This could be
a primary key, for example. Specifying the term PRIMARY KEY after a column makes
this column the primary key of the table. In the previous example, PLAYERNO is
the primary key. This specification can appear only within one column definition of
a table. After this, MySQL guarantees that the column concerned does not contain
duplicate values. If PRIMARY KEY is specified, the column can no longer contain null
values; it is as if the null specification NOT NULL has been included implicitly.

Another column integrity constraint is UNIQUE. After this specification, MySQL
enforces that this column must not contain duplicate values. We can specify UNIQUE
for multiple column definitions belonging to the same table. A difference with
PRIMARY KEY is that UNIQUE columns can contain null values; that is why we can
define the LEAGUENO column as UNIQUE.

495CHAPTER 20 Creating Tables

Section 21.6 discusses the check integrity constraint.

Imagine that a new table is built in the current database. If we want to create a
table in another database, we must specify a database name in front of the table
name.

Example 20.2: Create the PENALTIES table in the database called TEST.

CREATE TABLE TEST.PENALTIES
(PAYMENTNO INTEGER NOT NULL PRIMARY KEY,
PLAYERNO INTEGER NOT NULL,
PAYMENT_DATE DATE NOT NULL,
AMOUNT DECIMAL(7,2) NOT NULL)

Explanation: However, the TEST database should exist (see Section 4.4 on creat-
ing databases). After this statement, the TEST database is not automatically the
current database; the current database remains unchanged.

Exercise 20.1: Do you have to specify a data type for each column?

Exercise 20.2: What should be defined first in a column definition, the null
specification or the data type?

20.3 DATA TYPES OF COLUMNS

Chapter 5, “SELECT Statement: Common Elements,” extensively discusses the
concept of data type. In that chapter, we showed how literals and expressions can
have different data types. In this section, we explain how these data types within
CREATE TABLE statements must be defined. We also discuss the properties and limi-
tations of each data type. The definition of data type follows:

D E F I N I T I O N

<data type> ::=
<numeric data type> [<numeric data type option>...] |
<alphanumeric data type> [<alphanumeric data type option>..] |
<temporal data type> |
<blob data type> |
<geometric data type> |
<complex data type>

496 SQL for MySQL Developers

continues

497CHAPTER 20 Creating Tables

<numeric data type> ::=
<integer data type> |
<decimal data type> |
<float data type> |
<bit data type>

<integer data type> ::=
TINYINT [(<presentation width>)] |
INT1 [(<presentation width>)] |
BOOLEAN |
SMALLINT [(<presentation width>)] |
INT2 [(<presentation width>)] |
MEDIUMINT [(<presentation width>)] |
INT3 [(<presentation width>)] |
MIDDLEINT [(<presentation width>)] |
INT [(<presentation width>)] |
INTEGER [(<presentation width>)] |
INT4 [(<presentation width>)] |
BIGINT [(<presentation width>)] |
INT8 [(<presentation width>)]

<decimal data type> ::=
DEC [(<precision> [, <scale>])] |
DECIMAL [(<precision> [, <scale>])] |
NUMERIC [(<precision> [, <scale>])] |
FIXED [(<precision> [, <scale>])]

<float data type> ::=
FLOAT [(<length>) | (<presentation width> , <scale>)] |
FLOAT4 [(<presentation width> , <scale>)] |
REAL [(<presentation width> , <scale>)] |
DOUBLE [PRECISION] [(<presentation width> , <scale>)]

<bit data type> ::=
BIT [(<length>)]

<alphanumeric data type> ::=
[NATIONAL] CHAR [(<length>)] |
[NATIONAL] CHARACTER [(<length>)] |
NCHAR [(<length>)] |
[NATIONAL] VARCHAR (<length>) |
[NATIONAL] CHAR VARYING (<length>) |
[NATIONAL] CHARACTER VARYING (<length>) |
NCHAR VARYING (<length>) |
TINYTEXT |
TEXT (<length>) |
MEDIUM TEXT |
LONG VARCHAR |
LONGTEXT

continues

498 SQL for MySQL Developers

<temporal data type> ::=
DATE |
DATETIME |
TIME |
TIMESTAMP |
YEAR [(2) | (4)]

<blob data type> ::=
BINARY [(<length>)] |
VARBINARY (<length>) |
TINYBLOB |
BLOB (<length>) |
MEDIUMBLOB |
LONG VARBINARY |
LONGBLOB

<geometric data type> ::=
GEOMETRY |
GEOMETRYCOLLECTION |
LINESTRING |
MULTILIMESTRING |
MULTIPOINT |
MULTIPOLYGON |
POINT |
POLYGON

<complex data type> ::=
ENUM (<alphanumeric expression list>) |
SET (<alphanumeric expression list>)

<numeric data type option> ::=
UNSIGNED |
ZEROFILL |
AUTO_INCREMENT |
SERIAL DEFAULT VALUE

<alphanumeric data type option> ::=
CHARACTER SET <name> |
COLLATE <name>

<presentation width> ;
<precision> ;
<scale> ;
<length> ::= <whole number>

20.3.1 The Integer Data Types
Columns with an integer data type can store whole numbers or integers. For exam-
ple, all primary keys in the tables of the sample database are integers and, for that
reason, have an integer data type.

MySQL supports various integer data types. The differences between the data
types stem from their different sizes. Table 20.1 shows which integer data types are
supported and their respective ranges. For example, columns with the data type
INTEGER can store values that are less than or equal to 2.147.483.647. After that,
the column is “full.”

TABLE 20.1 Ranges of Different Integer Data Types

499CHAPTER 20 Creating Tables

INTEGER LITERAL RANGE

TINYINT –27 up to and including +27–1, or –128 up to and including 127
SMALLINT –215 up to and including +215–1, or –32,768 up to and including

32,767
MEDIUMINT –223 up to and including +223–1, or –8,388,608 up to and

including 8,388,607
INTEGER –231 up to and including +231–1 or –2,147,483,648 up to and

including 2,147,483,647
BIGINT –263 up to and including +263–1, or –9,223,372,036,854,775,808

up to and including 9,223,372,036,854,775,807

Every data type also has a synonym; see Table 20.2. We recommend that you
use the names from Table 20.1 because most other SQL products support them.

TABLE 20.2 Synonyms for the Names of Integer Data Types

ORIGINAL DATA TYPE SYNONYMS

TINYINT INT1
SMALLINT INT2
MEDIUMINT INT3, MIDDLEINT
INTEGER INT, INT4
BIGINT INT8

For each integer data type, you may specify a display width. However, the width
does not indicate how big or wide the values that are stored can be. Instead, appli-
cations and tools can use the width to display the values in a certain way. Imagine
that the PLAYERS column has a width of four positions. Applications can then
decide to always reserve at least four positions for each value.

Example 20.3: Create a table with one integer data type and add a row.

CREATE TABLE WIDTH (C4 INTEGER(4))

INSERT INTO WIDTH VALUES (1)

Next, when we retrieve the contents of this table with the statement SELECT *
FROM WIDTH, we can see that the value 1 has been moved to the right and that room
has been made for four digits:

C4

1

If the value is too large for the width—for example, if we store the number
10,000 in the WIDTH table—most applications will reserve more positions. The
specified width is seen as only the minimal width. So the width has to do with the
display of integers, not with storage.

The data type BOOLEAN is equal to TINYINT(1). Up to Version 5.0.2, the same
applied to the BIT data type. From Version 5.0.3 onward, BIT is no longer a numeric
data type, but a separate data type.

20.3.2 The Decimal Data Types
For the storage of nonwhole numbers, MySQL has several decimal data types. This
data type can be used to store amounts and measurement data, for example. For this
data type you can specify how many digits you can have in front of and after the
decimal point. For example, in DECIMAL(12,4), the first number (12) represents the
precision and the second number (4) represents the scale. This means that columns
with this data type can have a maximum of eight digits in front of the decimal point
(scale minus precision) and four after it (the precision), or the range of this data
type is –99,999,999.9999 up to and including 99,999,999.9999. The scale of a
decimal data type must always be equal to or smaller than the precision.

500 SQL for MySQL Developers

If the precision is specified and the scale is not, the scale is equal to 0. If nei-
ther is specified, the precision is equal to 10, and the scale is equal to 0. The preci-
sion is at least equal to 1 but never more than 30. Note that when the specified
precision is equal to 0, MySQL thinks that no precision has been specified; there-
fore, it becomes equal to 10.

The name DECIMAL may be abbreviated to DEC. The names NUMERIC and FIXED

can be used as synonyms for DECIMAL.

20.3.3 The Float Data Types
The float data type is used to store very big or very small numbers. This could be
numbers consisting of, for example, 30, 100, or even more digits in front of the dec-
imal point, or it could be numbers with many digits after the decimal point. Con-
sider numbers in which the number of digits after the decimal point is infinite, such
as the well-known number pi and the fraction [1/3]. However, because a restricted
amount of storage space is available for a float value, the real numbers are not
stored. If a number is very big or very small, an approximation of that number is
stored. This is why they are sometimes called estimated values.

In columns with a decimal data type, the decimal point has the same position in
every value. This does not apply to the float data type; in every value, the decimal
point can be somewhere else. In other words, the decimal point “floats around.”
This is why we call it a floating decimal point.

MySQL has two float data types: single precision and double precision. They
differ in the amount of storage space that is reserved for a value. Because of this,
they differ in range. The range of the single-precision float data type is between
–3.402823466E38 and –1.175494351E-38, and between 1.175494351E-38 and
3.402823466E38. The range of the double precision is bigger: from
–1.7976931348623157E308 to –2.2250738585072014E-308, and from
2.2250738585072014E-308 to 1.7976931348623157E308.

The length that can be specified in a float data type determines the type of the
float data type. It is single precision if the length is between 0 and 24, and double
precision if the length is between 25 and 53.

501CHAPTER 20 Creating Tables

Example 20.4: Create a new table consisting of two columns; one has a single-
precision data type. Store several float values in it and show the contents of this
table next.

CREATE TABLE MEASUREMENTS
(NR INTEGER, MEASUREMENT_VALUE FLOAT(1))

INSERT INTO MEASUREMENTS VALUES
(1, 99.99),
(2, 99999.99),
(3, 99999999.99),
(4, 99999999999.99),
(5, 99999999999999.99),
(6, 0.999999),
(7, 0.9999999),
(8, 99999999.9999),
(9, (1.0/3))

SELECT * FROM MEASUREMENTS

The result is:

NO MEASUREMENT_VALUE
-- -----------------
1 99.99
2 100000
3 1e+008
4 1e+011
5 1e+014
6 0.999999
7 1
8 1e+008
9 0.333333

Explanation: In the first row, the actual value can be stored; therefore, an estimate
is not necessary. However, that is not the case in rows 2, 3, 4, and 5. The number of
digits in front of the decimal point is too big. For that reason, the value is rounded
in these four rows, and MySQL can just store the simple value 1.0E+xx. Row 6 is
stored accurately. The number of digits after the decimal point is high, but not in
front of the decimal point. In row 7, the number of digits after the decimal point is
indeed too big, and the value is rounded to 1. For the value in row 8, an estimate is
stored as well. The result of the division 1.0 / 3 is rounded after six digits after the
decimal point.

If we create the previous table again, but this time with FLOAT(30) as the data type
instead of FLOAT(1), the following result arises:

502 SQL for MySQL Developers

NO MEASUREMENT_VALUE
-- -----------------
1 99.99
2 99999.99
3 99999999.99
4 99999999999.99
5 100000000000000
6 0.999999
7 0.9999999
8 99999999.9999
9 0.333333333

Explanation: More storage space is available, so the need to store an estimate is
reduced. Rows 1, 2, 3, 4, 6, 7, and 8 all contain actual numbers, not estimates. Row
5 stores an estimate, and in row 9, the number was rounded after nine digits after
the decimal point.

With the float data type, you may specify two parameters instead of one. If only one
parameter is specified (the length), it determines whether it is a single- or double-
precision float data type. If two parameters exist, MySQL interprets the first one dif-
ferently. In this case, the two parameters are seen as the width and the scale and are
used to present the float values. If the width and scale are specified, this is automat-
ically a single-precision float data type.

Example 20.5: Create a new version of the MEASUREMENTS table (see Exam-
ple 20.4) in which the column with the float data type has a width of ten positions
and a scale of 3. Store the same float values in it, and show the contents of this table
next.

CREATE TABLE MEASUREMENTS
(NR INTEGER, MEASUREMENT_VALUE FLOAT(10,3))

INSERT INTO MEASUREMENTS VALUES
(1, 99.99),
(2, 99999.99),
(3, 99999999.99),
(4, 99999999999.99),
(5, 99999999999999.99),
(6, 0.999999),
(7, 0.9999999),
(8, 99999999.9999),
(9, (1.0/3))

SELECT * FROM MEASUREMENTS

503CHAPTER 20 Creating Tables

The result is:

NO MEASUREMENT_VALUE
-- -----------------
1 99.990
2 99999.992
3 10000000.000
4 10000000.000
5 10000000.000
6 1.000
7 1.000
8 10000000.000
9 0.333

Explanation: Now a floating decimal point is no longer used. All values have
three digits after the decimal point (the scale) and a maximum of six positions in
front of the decimal point (width minus 1 for the point minus the scale). In that
respect, the width of the float data type looks much like the width of an integer data
type. The behavior starts to look somewhat like that of a decimal data type. The dif-
ference is that, with the float data type, if necessary, estimates of values are still
stored, and that never happens with decimal values.

The width of the float data type must be between 1 and 255, and the scale must be
between 0 and 30.

Synonyms for FLOAT with a width and scale are REAL and FLOAT4. Behind both
data types, only a width and a scale are specified, not a length. DOUBLE and DOUBLE

PRECISION are also synonyms for FLOAT but always have a double-precision charac-
ter. In other words, specifying DOUBLE is equivalent to specifying FLOAT(30); only a
width and a scale may be specified behind these data types as well.

20.3.4 The Bit Data Type
The bit data type is used to store bit-based values. If no length is specified, the
maximum length is 1. The maximum length that can be specified is 64.

20.3.5 The Alphanumeric Data Types
MySQL supports the following alphanumeric data types (string data types) for stor-
ing alphanumeric values: CHAR, VARCHAR, LONG VARCHAR, and LONGTEXT. Each
alphanumeric data type is suitable for storing words, names, text, and codes.

Each column with an alphanumeric data type has an assigned character set and
collation; see Chapter 22, “Character Sets and Collations.” MySQL must make sure

504 SQL for MySQL Developers

that if we store common letters, letters with diacritics (such as é, á, and ç), and spe-
cial symbols (such as ?, %, and >) in the database and retrieve them later, they still
look the same. This could mean that MySQL has to perform several translations.
Imagine that the data is stored in a database that has been installed on a UNIX
machine. However, the data is displayed on a Windows machine. The different
machines could present a certain letter or symbol internally in a different way. By
using an alphanumeric data type, we indicate that all internal translations must be
done automatically and transparently. MySQL is responsible for this.

An alphanumeric column has a maximum length. This length indicates how
many characters, at most, can be stored in the column concerned. However, do not
confuse the number of characters with the number of bytes that those values will
occupy on disk; that depends on the chosen character set. With the ASCII charac-
ter set, each character uses 1 byte; in other character sets, this could go up to
4 bytes per character (which means that an alphanumeric value of, for example, ten
characters could occupy 40 bytes on disk). Again, see Chapter 22.

The alphanumeric data types can be divided into two groups: those with a fixed
length (CHAR) and those with a variable length (VARCHAR, LONG VARCHAR, and LONG-
TEXT). Fixed or variable has to do with the way in which the values are stored on the
hard disk. For example, if CHARACTER(20) is used in a CREATE TABLE statement, we
have to assume that each value that we store in that column indeed occupies 20
characters on disk. If we store a value consisting of only 4 characters, then 16
spaces are added to fill the 20 characters. The other three data types store only rel-
evant characters. This is where the data types VARCHAR and LONG VARCHAR get their
names: VARCHAR stands for VARYING CHARACTER, which refers to an alphanumeric
value with variable length. In many SQL statements, the difference between CHAR
and VARCHAR has no effect; it mainly has to do with performance and storage space.

Table 20.3 shows the maximum length for the different alphanumeric data
types.

TABLE 20.3 Maximum Length of Alphanumeric Data Types

505CHAPTER 20 Creating Tables

ALPHANUMERIC DATA TYPE MAXIMUM LENGTH

CHAR 255 (28–1) characters
VARCHAR 255 (28–1) characters and from version 5.03

65,535 (216–1) characters
LONG VARCHAR 16,777,215 (224–1) characters
LONGTEXT 4,294,967,295 (232–1) characters

For the CHAR data type, a value between 0 and 255 may be specified; for
VARCHAR, a value between 0 and 255 must be specified. If the length is equal to 0,
only the null value or an empty numeric value ('') can be stored.

Many of these data types also have synonyms. Synonyms for the CHAR data type
are CHARACTER, NCHAR, NATIONAL CHAR, and NATIONAL CHARACTER. Synonyms for
VARCHAR are CHAR VARYING, CHARACTER VARYING, NATIONAL VARCHAR, NATIONAL CHAR
VARYING, NATIONAL CHARACTER VARYING, and TEXT. The data type TINYTEXT is equiv-
alent to VARCHAR with a maximum length of 255. The data type MEDIUMTEXT is a syn-
onym for LONG VARCHAR. We recommend that you use the names in Table 20.8 as
much as possible, to simplify a possible switch to other SQL products.

20.3.6 The Temporal Data Types
MySQL supports five temporal data types: DATE, TIME, DATETIME, TIMESTAMP, and
YEAR. The DATE data type is used to record dates in a column. The TIME data type
represents a time of the day. The DATETIME and TIMESTAMP data types are both com-
binations of a date and a time. YEAR is used to record year values. YEAR can have a
parameter, whose value has to be 2 or 4. The value 2 means that only the last two
digits of a year can be stored; the value 4 means all four, so the millenniums as well.
Chapter 5 extensively describes these data types and their features.

The required storage space for columns with the DATE and TIME data types is
3 bytes, for DATETIME 8 bytes, for TIMESTAMP 4 bytes, and, finally, for columns with
the YEAR data type only 1 byte.

20.3.7 The Blob Data Types
Section 20.3.5 showed that when alphanumeric columns are used, MySQL must
make sure that an a remains an a and a b a b. Sometimes we want to store strings of
bytes that MySQL does not use. These bytes must be stored and retrieved again
without any form of translation This is necessary for the storage of, for example, dig-
ital photographs, video, and scanned documents. MySQL supports the blob data
type for storing this data. Blob stands for binary large object—in other words, it is
an object that consists of many bytes.

Blob data types have several features in common with the alphanumeric data
types. First, both have two versions: those with a fixed length and those with a vari-
able length. Second, blob data types have a maximum length.

MySQL supports the following blob data types: BINARY, VARBINARY, and LONG

VARBINARY.

506 SQL for MySQL Developers

TABLE 20.4 Maximum Length of Blob Data Types

507CHAPTER 20 Creating Tables

BINARY 255 (28–1) CHARACTERS

BINARY 255 (28–1) characters
VARBINARY 255 (28–1) characters and, from Version 5.03,

65,535 (216–1) characters
BLOB 65,535 (216–1) characters
LONG VARBINARY 16,777,215 (224–1) characters
LONGBLOB 4,294,967,295 (232–1) characters

A synonym for BINARY is TINYBLOB, and a synonym for LONG VARBINARY is
MEDIUMBLOB.

20.3.8 The Geometric Data Types
For the storage data on geometric figures, such as dots, lines, planes, and polygons,
MySQL supports several special geometric data types. For the processing of values
belonging to these data types, several scalar functions have been added. Because
the processing of geometric data is relevant for only a small group of applications,
we skip these data types in this book.

Exercise 20.3: Describe in your own words the differences among the numeric
data types integer, decimal, and float.

Exercise 20.4: When would you prefer an alphanumeric data type with a vari-
able length to one with a fixed length?

Exercise 20.5: Determine acceptable data types for the following columns:

■ Phone number at which a player can be reached

■ Age of a player in whole months

■ Name of the company where the player works

■ Number of children a player has

■ Date of a player’s first match for the club

Exercise 20.6: Write a CREATE TABLE statement for a table with the name
DEPARTMENT and with these columns: DEPNO (unique code consisting of always
five characters), BUDGET (maximum amount of 999,999), and LOCATION (name
of maximum 30 characters). The DEPNO column always has a value.

20.4 ADDING DATA TYPE OPTIONS

After some alphanumeric data types and all numeric data types, you may specify
so-called data type options. A data type option changes the properties and features
of the data type and, thus, the column. MySQL supports two data type options for
the alphanumeric data types: CHARACTER SET and COLLATE. Chapter 22 discusses
this extensively. This section is completely devoted to the data type options of the
numeric columns.

For every numeric data type except BIT, one or more of the following data type
options may be added: UNSIGNED, ZEROFILL, AUTO_INCREMENT, and SERIAL DEFAULT
VALUE.

For the sake of clarity, data type options are specified behind the data type in a
column definition and in front of the null specification and integrity constraints.

20.4.1 The Data Type Option UNSIGNED
When you specify the data type option UNSIGNED, values smaller than zero are no
longer allowed, only positive numbers. The primary keys of all tables from the sam-
ple database contain no negative values, so they could all be defined as UNSIGNED.

UNSIGNED can be used at every numeric data type. By adding UNSIGNED to a col-
umn with an integer data type, the range changes; see Table 20.5. In fact, the max-
imum value allowed increases with two.

TABLE 20.5 Range of Unsigned Integer Data Types

508 SQL for MySQL Developers

INTEGER LITERAL RANGE

TINYINT UNSIGNED 0 up to and including +28–1, or 255
SMALLINT UNSIGNED 0 up to and including +216–1, or 65.535
MEDIUMINT UNSIGNED 0 up to and including +224–1, or 16.777.215
INTEGER UNSIGNED 0 up to and including +232–1, or 4.294.967.295
BIGINT UNSIGNED 0 up to and including +264–1, or

18.446.744.073.709.551.615

Example 20.6: Create a new variant of the PENALTIES table in which all key
columns are defined as INTEGER UNSIGNED.

CREATE TABLE PENALTIESDEF
(PAYMENTNO INTEGER UNSIGNED NOT NULL PRIMARY KEY,
PLAYERNO INTEGER UNSIGNED NOT NULL,
PAYMENT_DATE DATE NOT NULL,
AMOUNT DECIMAL(7,2) NOT NULL)

The range does not change when UNSIGNED is added to a decimal data type.
However, the additional byte reserved for the storage of the minus symbol can be
left out, thus saving storage space. If a column may not contain values smaller than
0, UNSIGNED also works as an integrity constraint, which is an additional advantage.

UNSIGNED may be used in combination with a float data type.

20.4.2 The Data Type Option ZEROFILL
Adding ZEROFILL affects the way in which numeric values are presented. If the
width of a numeric value is smaller than that of the maximum width allowed, the
value is filled in the front with zeroes.

Example 20.7: Create the WIDTH table from Example 20.3 again, but add
ZEROFILL to the column this time.

CREATE TABLE WIDTH (C4 INTEGER(4) ZEROFILL)

INSERT INTO WIDTH VALUES (1)

INSERT INTO WIDTH VALUES (200)

If we retrieve the contents of the C4 columns, we see that every integer value
has been moved to the right and that, respectively, three zeroes and one zero in the
front have been added:

C4

0001
0200

If ZEROFILL is specified, the column automatically is set UNSIGNED.

The effect of ZEROFILL at decimal data types is equivalent to that at the integer
data types.

Example 20.8: Create a new version of the PENALTIES table in which the
AMOUNT column (with a decimal data type) is extended with ZEROFILL. Show the
contents of this column.

CREATE TABLE PENALTIES
(PAYMENTNO INTEGER NOT NULL PRIMARY KEY,
PLAYERNO INTEGER NOT NULL,
PAYMENT_DATE DATE NOT NULL,
AMOUNT DECIMAL(7,2) ZEROFILL NOT NULL)

SELECT AMOUNT FROM PENALTIES

509CHAPTER 20 Creating Tables

The result is:

AMOUNT

00100.00
00075.00
00100.00
00050.00
00025.00
00025.00
00030.00
00075.00

Example 20.9: Create a new version of the MEASUREMENTS table (see Exam-
ple 20.4) in which the column with the float data type has a precision of 19 and a
scale of 3. Store several float values in it. Show the contents of this table next.

CREATE TABLE MEASUREMENTS (NO INTEGER,
MEASUREMENT_VALUE FLOAT(19,3) ZEROFILL)

INSERT INTO MEASUREMENTS VALUES
(1, 99.99),
(2, 99999.99),
(3, 99999999.99),
(4, 99999999999.99),
(5, 99999999999999.99),
(6, 0.999999),
(7, 0.9999999),
(8, 99999999.9999),
(9, (1.0/3))

SELECT * FROM MEASUREMENTS

The result is:

NO MEASUREMENT_VALUE
-- -------------------
1 000000000000099.990
2 000000000099999.992
3 000000100000000.000
4 000099999997952.000
5 100000000376832.000
6 000000000000001.000
7 000000000000001.000
8 000000100000000.000
9 000000000000000.333

Explanation: The width of the float data type is large enough now for all values in
the column. However, it is also obvious that for all rows except Row 1, an estimated
value is presented.

510 SQL for MySQL Developers

20.4.3 The Data Type Option AUTO_INCREMENT
All the primary keys of the tables in the sample database contain simple sequence
numbers. Every time a new row is added, a new number must be assigned. This new
number can be calculated by determining the highest number issued and adding 1
to it. This is the application’s responsibility. This could be done more easily by hav-
ing MySQL generate the numbers itself. For this, the option AUTO_INCREMENT must
be added to the data type of the column. However, this is allowed only for integer
data types.

511CHAPTER 20 Creating Tables

N O T E
Not all storage engines support the AUTO_INCREMENT option, but InnoDB
and MyISAM do.

Example 20.10: Create a new table called CITY_NAMES with an AUTO_
INCREMENT column.

CREATE TABLE CITY_NAMES
(SEQNO INTEGER UNSIGNED AUTO_INCREMENT

NOT NULL PRIMARY KEY,
NAME VARCHAR(30) NOT NULL)

Explanation: MySQL sets each column with the AUTO_INCREMENT option automat-
ically on NOT NULL. The AUTO_INCREMENT option can be used for only one column per
table. The option UNSIGNED is used so that the numbering will continue up to
4,294,967,295 and doesn’t stop at 2,147,483,647.

If a null value is specified for the AUTO_INCREMENT column in the INSERT statement,
or if no value is specified, MySQL determines what the next sequence number
should be.

Example 20.11: Add three new rows to the CITY_NAMES table and show the
contents next.

INSERT INTO CITY_NAMES VALUES (NULL, 'London')

INSERT INTO CITY_NAMES VALUES (NULL, 'New York')

INSERT INTO CITY_NAMES (NAME) VALUES ('Paris')

SELECT * FROM CITY_NAMES

The result is:

SEQNO NAME
----- --------

1 London
2 New York
3 Paris

Explanation: The first two rows specify null values, and these are replaced by the
sequence numbers 1 and 2. In the third row, no value is specified, so MySQL fills
the row with sequence number 3. Make sure that the first sequence number given is
1, not 0.

MySQL remembers what the last given sequence number is. When assigning a new
sequence number, the last sequence number is located and the highest value in the
column is determined. The next sequence number is the highest of the two plus
(possibly) 1. This means that if we specify a normal value with an INSERT statement,
we could get gaps in the set of sequence numbers. MySQL does not guarantee the
absence of holes in the numbering; it only guarantees that the generated numbers
will be unique.

Example 20.12: Add two new rows to the CITY_NAMES table, in which the first
row has the sequence number 8; show the new contents again next.

INSERT INTO CITY_NAMES VALUES (8, 'Bonn')

INSERT INTO CITY_NAMES VALUES (NULL, 'Amsterdam')

SELECT * FROM CITY_NAMES

The result is:

SEQNO NAME
----- ---------

1 London
2 New York
3 Paris
8 Bonn
9 Amsterdam

Example 20.13: Remove all rows from the CITY_NAMES table and then add
two again. Show the new contents next.

512 SQL for MySQL Developers

DELETE FROM CITY_NAMES

INSERT INTO CITY_NAMES VALUES (NULL, 'Phoenix')

INSERT INTO CITY_NAMES VALUES (NULL, 'Rome')

The result is:

SEQNO NAME
----- -------

10 Phoenix
11 Rome

Explanation: Clearly, even though all rows have been removed, the numbering
continues from where it was. If we want to start again at 1, we must delete the entire
table and re-create it.

By default, a sequence number starts at 1 and is subsequently incremented by 1.
You can change the starting value with the system variable AUTO_INCREMENT_
OFFSET. The system variable AUTO_INCREMENT_INCREMENT indicates the value by
which the generated numbers are incremented. By default, this variable is equal to
1, but you can change it with the SET statement.

Example 20.14: Start the sequence numbers at 10 and increase them every time
by 10. Next, create a new table.

SET @@AUTO_INCREMENT_OFFSET = 10,
@@AUTO_INCREMENT_INCREMENT = 10

CREATE TABLE T10
(SEQNO INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY)

INSERT INTO T10 VALUES (NULL),(NULL)

SELECT * FROM T10

The result is:

SEQNO

10
20

20.4.4 The Data Type Option SERIAL DEFAULT VALUE
Finally, the data type option SERIAL DEFAULT VALUE is shorthand for and equivalent
to the specification of AUTO_INCREMENT NOT NULL UNIQUE.

513CHAPTER 20 Creating Tables

20.5 CREATING TEMPORARY TABLES

In most cases, the tables that we create are granted a long life. Applications will use
them for months or even years. The tables created with a CREATE TABLE statement
are, therefore, sometimes called permanent tables. Usually, multiple SQL users and
several applications use permanent tables.

However, sometimes temporary tables are needed. Unlike permanent tables,
temporary tables have a short lifespan and are visible only for the SQL users who
created them; essentially, one SQL user owns a temporary table for a limited time
span. Temporary tables are useful, for example, for temporarily storing the results of
complex SELECT statements. Afterward, other statements can repeatedly access
those tables.

MySQL supports temporary tables. After they have been created, they act as
permanent tables. Every SELECT, UPDATE, INSERT, and DELETE statement can be exe-
cuted on these tables. A DROP TABLE statement can remove a temporary table, but if
that does not happen, MySQL removes them automatically when the session ends.

You can use the CREATE TABLE statement to create a temporary table; you simply
have to add the word TEMPORARY.

Example 20.15: Create the temporary table SUMPENALTIES and store in it the
sum of all penalties.

CREATE TEMPORARY TABLE SUMPENALTIES
(TOTAL DECIMAL(10,2))

INSERT INTO SUMPENALTIES
SELECT SUM(AMOUNT)
FROM PENALTIES

Explanation: From now on, only the SQL user who started the application in
which this table was created can access it.

The name of a temporary table can be equal to the name of an existing permanent
table. In that case, the permanent table is not removed, but the temporary table of
the current SQL user hides the permanent one. See the following example.

Example 20.16: Create a permanent table and a temporary table with similar
names.

514 SQL for MySQL Developers

CREATE TABLE TESTTABLE (C1 INTEGER)

INSERT INTO TESTTABLE VALUES (1)

CREATE TEMPORARY TABLE TESTTABLE (C1 INTEGER, C2 INTEGER)

INSERT INTO TESTTABLE VALUES (2, 3)

SELECT * FROM TESTTABLE

The result is:

C1 C2
-- --
2 3

Explanation: The result of the SELECT statement clearly shows that the contents of
the temporary table are presented instead of those of the permanent table. This
example also shows that, in this situation, the two tables involved need not have the
same table schema.

If a DROP TABLE statement is executed on the TESTTABLE after the SELECT state-
ment and, subsequently, a SELECT statement is executed again, the original perma-
nent table appears again and the following result is presented:

C1
--
1

20.6 WHAT IF THE TABLE ALREADY EXISTS?
If we process a CREATE TABLE statement with a table name that already exists,
MySQL returns an error message. Adding IF NOT EXISTS represses this error
message.

Example 20.17: Create the TEAMS table and do not give an error message if a
table exists with a similar name.

CREATE TABLE IF NOT EXISTS TEAMS
(TEAMNO INTEGER NOT NULL PRIMARY KEY,
PLAYERNO INTEGER NOT NULL,
DIVISION CHAR(6) NOT NULL)

515CHAPTER 20 Creating Tables

Explanation: If the TEAMS table already exists, MySQL does not return an error
message. Of course, the statement also will not be processed, even though that
seems to be the case.

The specification IF NOT EXISTS can also be used with temporary tables. In that
case, this specification suppresses an error message only when you create a tempo-
rary table with the same name as that of an existing temporary table .

20.7 COPYING TABLES

All CREATE TABLE statements shown in this chapter and the previous chapters
assume that the table is created from scratch. However, it is also possible to create a
new table that is based on an existing table. The specifications and/or the contents of
the existing tables are used to create the new table and possibly fill it as well.

D E F I N I T I O N
<create table statement> ::=

CREATE [TEMPORARY] TABLE [IF NOT EXISTS]
<table specification> <table structure>

<table structure> ::=
LIKE <table specification> |
(LIKE <table specification>) |
<table contents> |
<table schema> [<table contents>]

<table contents> ::=
[IGNORE | REPLACE] [AS] <table expression>

<table schema> ::=
(<table element> [, <table element>]...)

Example 20.18: Create a copy of the TEAMS table called TEAMS_COPY1.

CREATE TABLE TEAMS_COPY1 LIKE TEAMS

Explanation: A new table was created with the same structure as the TEAMS
table. Column names, data types, null specifications, and indexes were all copied,
but not the contents of the table. Therefore, this table is still empty after this state-
ment. The foreign keys and the specialized privileges that might be present have
not been copied, either.

516 SQL for MySQL Developers

The specification LIKE TEAMS also can be placed between brackets, but this does
not affect the result.

In another way of copying that includes copying the data, a table expression is
used.

Example 20.19: Create a copy of the TEAMS table called TEAM_COPY2 and
copy the contents as well.

CREATE TABLE TEAMS_COPY2 AS
(SELECT *
FROM TEAMS)

Explanation: During the processing of the statement, MySQL first determines the
structure of the result of the SELECT statement. This involves determining how many
columns the result contains (three, in this example) and what the data types of these
columns are (INTEGER for TEAMNO, INTEGER for PLAYERNO, and CHAR(6) for
DIVISION, respectively). MySQL also determines what the null specification is: It
checks each column to see whether null values are allowed. Next, a CREATE TABLE
statement is executed behind the scenes. The table that is created has the same
structure as the original TEAMS table. Finally, the result of the SELECT statement is
added to the new table. In fact, the entire TEAMS table is copied in this example.

For MySQL, the word AS and the brackets around the table expression can be omit-
ted. However, we recommend using them as much as possible because many other
SQL products require them.

When you create a copy like this, indexes and integrity constraints are not
copied. MySQL cannot derive from a SELECT statement what the indexes and
integrity constraints should be.

This example used a simple table expression. However, any table expression
can be used, including the complex forms. The table expression can contain sub-
queries, set operators, and GROUP BY clauses.

If we want the column names of the new table to differ from those in the original
table, we have to specify those new names in the table expression.

Example 20.20: Create a copy of the TEAMS table and assign the columns
TEAMNO and PLAYERNO different names—respectively, TNO and PNO. Show
the contents of this new table next.

CREATE TABLE TEAMS_COPY3 AS
(SELECT TEAMNO AS TNO, PLAYERNO AS PNO, DIVISION
FROM TEAMS)

SELECT *
FROM TEAMS_COPY3

517CHAPTER 20 Creating Tables

The result is:

TNO PNO DIVISION
--- --- --------
1 6 first
2 27 second

Example 20.21: Create a copy of the TEAMS table but without the DIVISION
column and only with the teams of player 27.

CREATE TABLE TEAMS_COPY4 AS
(SELECT TEAMNO, PLAYERNO
FROM TEAMS
WHERE PLAYERNO = 27)

Example 20.22: Create a temporary copy of the TEAMS table and assign this
table the same name.

CREATE TEMPORARY TABLE TEAMS AS
(SELECT *
FROM TEAMS

Explanation: Chapter 17, “Updating Tables,” contains several INSERT, UPDATE,
and DELETE statements that change the contents of the permanent TEAMS table. If
you want to return to the original contents of the tables, you must remove the avail-
able rows and add the common rows again. You can simplify this process by using
temporary tables. After the earlier CREATE TABLE statement has been processed, you
can process transactions on the TEAMS table to your heart’s content. If the applica-
tion is stopped or started again, or after the temporary table has been removed, the
original TEAMS table, including the original contents, reappears.

If you want to change certain properties of a column, such as the data type or the
null specification, during the copying, you must add a table schema to the CREATE
TABLE statement.

Example 20.23: Create a copy of the TEAMS table in which null values are
allowed in the PLAYERNO column and in which the data type of the DIVISION
column is extended from six to ten characters.

CREATE TABLE TEAMS_COPY5
(TEAMNO INTEGER NOT NULL PRIMARY KEY,
PLAYERNO INTEGER NULL,
DIVISION CHAR(10) NOT NULL) AS

(SELECT *
FROM TEAMS)

518 SQL for MySQL Developers

Explanation: Columns in which the properties do not change can be omitted from
the table schema. The following statement would give the same result:

CREATE TABLE TEAMS_COPY5
(PLAYERNO INTEGER NULL,
DIVISION CHAR(10) NOT NULL) AS

(SELECT *
FROM TEAMS)

Make sure that all column names that appear in the table schema are equal to
the names of the original columns. MySQL considers columns with unfamiliar
names as new columns.

Example 20.24: Create a copy of the TEAMS table, but the PLAYERNO column
should now allow null values. In addition, a new column called COMMENT must
be added. Show the contents of this table next.

CREATE TABLE TEAMS_COPY6
(PLAYERNO INTEGER NULL,
COMMENT VARCHAR(100)) AS

(SELECT *
FROM TEAMS)

SELECT * FROM TEAMS_COPY6

The result is:

COMMENT TEAMNO PLAYERNO DIVISION
------- ------ -------- --------
? 1 6 first
? 2 27 second

Explanation: The result shows that the TEAMS_COPY6 table has an additional
column compared to the TEAMS table. This new column is filled with null values,
of course. You can add columns to existing tables in another way, but Chapter 24,
“Changing and Dropping Tables,” explains that.

The table expression can give a result with column values that conflict with the
present primary or alternate keys. Specifying the concept IGNORE instructs MySQL
to ignore these rows; they then are not added to the new table, and no error message
is returned. If REPLACE is specified, the existing rows are overwritten.

519CHAPTER 20 Creating Tables

Example 20.25: Create a copy of the TEAMS table in which an additional row is
added.

CREATE TABLE TEAMS_COPY7
(TEAMNO INTEGER NOT NULL PRIMARY KEY)

REPLACE AS
(SELECT * FROM TEAMS
UNION ALL
SELECT 2, 27, 'third'
ORDER BY 1, 3 DESC)

SELECT * FROM TEAMS_COPY7

The result is:

TEAMNO PLAYERNO DIVISION
------ -------- --------

1 6 first
2 27 third

Explanation: The result of the table expression consists of the following three
rows:

TEAMNO PLAYERNO DIVISION
------ -------- --------

1 6 first
2 27 second
2 27 third

Team 2 appears twice in this list. Because we specified REPLACE, the last of the
two rows overwrites the first. An ORDER BY clause has been added to make sure that
the row in which the DIVISION column is equal to 'third' is processed last. If
IGNORE had been specified, the first row of team 2 would have stayed in the result.

Exercise 20.7: Create a table called P_COPY with the same table schema as the
PLAYERS table.

Exercise 20.8: Create a table called P2_COPY with the same table schema and
contents as the PLAYERS table.

Exercise 20.9: Create a table called NUMBERS that contains only the player
numbers of players resident in Stratford.

520 SQL for MySQL Developers

20.8 NAMING TABLES AND COLUMNS

Users may select names for columns and tables. MySQL has only the following
restrictions:

■ Two tables belonging to the same database may not have the same name.

■ Two columns in a table may not have the same name.

■ The length of a table or column name is restricted to 64 characters.

■ A name may consist of only letters, digits, and the special symbols _ and $.

■ Each name must begin with a letter or digit.

■ Table and column names may not be reserved words; Appendix A, “Syntax of
SQL,” includes a list of all reserved words.

You can avoid the restrictions imposed by the last two rules by placing a grave
accent (or back tick) in front of and after the table name. The table names SELECT
and FAMOUS PLAYERS are incorrect, but 'SELECT' and 'FAMOUS PLAYERS' are correct.
However, this means that everywhere these table names are used, grave accents
must be included. Instead of the grave accents, we could use the double quotation
marks; however, the SQL_MODE variable must be set to ANSI_QUOTES then:

SET @@SQL_MODE='ANSI_QUOTES'

Defining sensible names for tables and columns is extremely important. Col-
umn and table names are used in almost every statement. Awkward names, espe-
cially during interactive use of SQL, can lead to irritating mistakes, so observe the
following naming conventions:

■ Keep the table and column names short but not cryptic (so PLAYERS instead
of PLYRS).

■ Use the plural form for table names (so PLAYERS instead of PLAYER), so
that statements “flow” better.

■ Do not use information-bearing names (so PLAYERS instead of
PLAYERS_2, where the digit 2 represents the number of indexes on the
table); if this information changed, it would be necessary to change the
table name together with all the statements that use the table.

■ Be consistent (PLAYERNO and TEAMNO instead of PLAYERNO and
TEAMNUM).

■ Avoid names that are too long (so STREET instead of STREETNAME).

521CHAPTER 20 Creating Tables

■ As much as possible, give columns with comparable populations the same
name (so PLAYERNO in PLAYERS, PLAYERNO in TEAMS, and
PLAYERNO in PENALTIES).

To prevent potential problems, avoid words that have a special meaning within
the operating system, such as CON and LPT.

20.9 COLUMN OPTIONS: DEFAULT AND COMMENT

A table schema consists of column definitions, among other things. Section 20.2
mentioned that a column definition consists of a column name, a data type, possibly
a null specification, and some column integrity constraints. Several column options
can be added to each column definition as well. This section covers column
options.

D E F I N I T I O N
<column definition> ::=

<column name> <data type> [<null specification>]
[<column integrity constraint>] [<column option>...]

<column option> ::=
DEFAULT <literal> |
COMMENT <alphanumeric literal>

The first column option is the default value, which is used when a new row is
added to a table and no value has been specified for that column.

Example 20.26: Create the PENALTIES table in which the default value of the
AMOUNT column is equal to 50 and the default value for the PAYMENT_DATE is
1 January 1990.

CREATE TABLE PENALTIES
(PAYMENTNO INTEGER NOT NULL PRIMARY KEY,
PLAYERNO INTEGER NOT NULL,
PAYMENT_DATE DATE NOT NULL DEFAULT '1990-01-01',
AMOUNT DECIMAL(7,2) NOT NULL DEFAULT 50.00)

Next, we add a new row with an INSERT statement in which we do not specify a
value for the columns PAYMENT_DATE and AMOUNT.

522 SQL for MySQL Developers

INSERT INTO PENALTIES
(PAYMENTNO, PLAYERNO)

VALUES (15, 27)

After this statement, the new PENALTIES table contains the following con-
tents:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

15 27 1990-01-01 50.00

Instead of specifying no value in the INSERT statement, we can include the
specification DEFAULT. The previous INSERT statement then looks as follows:

INSERT INTO PENALTIES
(PAYMENTNO, PLAYERNO, PAYMENT_DATE, AMOUNT)

VALUES (15, 27, DEFAULT, DEFAULT)

In the UPDATE statement, DEFAULT also can replace an existing value by the
default value of the column.

Example 20.27: Replace the amount of all penalties by the default value.

UPDATE PENALTIES
SET AMOUNT = DEFAULT

Note that DEFAULT is not a system variable and, therefore, cannot appear within
compound expressions. The scalar function DEFAULT can be used to retrieve the
default value of a column. Of course, this function can be included within
expressions.

Example 20.28: Replace the amount of all penalties by the year of the default
value of the PAYMENT_DATE column and multiply this by 10.

UPDATE PENALTIES
SET AMOUNT = YEAR(DEFAULT(PAYMENT_DATE))*10

Default values cannot be specified for columns with the data types BLOB or TEXT
or one of the geometric data types.

The second column option is COMMENT, which you can use to add a comment to
each column. This documentation about the columns is stored in the catalog and is
available to every SQL user. The comment can be 255 characters long at most.

523CHAPTER 20 Creating Tables

Example 20.29: Create the PENALTIES table and add a comment to each col-
umn. Show the comment as it is stored in the catalog tables next.

CREATE TABLE PENALTIES
(PAYMENTNO INTEGER NOT NULL PRIMARY KEY

COMMENT 'Primary key of the table',
PLAYERNO INTEGER NOT NULL

COMMENT 'Player who has incurred the penalty',
PAYMENT_DATE DATE NOT NULL

COMMENT 'Date on which the penalty has been paid',
AMOUNT DECIMAL(7,2) NOT NULL

COMMENT 'Amount of the penalty in dollars')

SELECT COLUMN_NAME, COLUMN_COMMENT
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'PENALTIES'

The result is:

COLUMN_NAME COLUMN_COMMENT
------------ ---------------------------------------
PAYMENTNO Primary key of the table
PLAYERNO Player who has incurred the penalty
PAYMENT_DATE Date on which the penalty has been paid
AMOUNT Amount of the penalty in dollars

20.10 TABLE OPTIONS

In a CREATE TABLE statement, several table options can be specified behind the table
structure. Most table options involve how and where table data is stored. This sec-
tion explains a few of these options. Chapter 22 extensively discusses the table
options CHARACTER SET and COLLATE.

524 SQL for MySQL Developers

D E F I N I T I O N
<create table statement> ::=

CREATE [TEMPORARY] TABLE [IF NOT EXISTS]
<table specification> <table structure> [<table option>...]

<table option> ::=
ENGINE = <engine name> |
TYPE = <engine name> |
UNION = (<table name> [, <table name>]...) |
INSERT_METHOD = { NO | FIRST | LAST } |
AUTO_INCREMENT = <whole number> |
COMMENT = <alphanumeric literal> |
AVG_ROW_LENGTH = <whole number> |
MAX_ROWS = <whole number> |
MIN_ROWS = <whole number> |
[DEFAULT] CHARACTER SET { <name> | DEFAULT } |
[DEFAULT] COLLATE { <name> | DEFAULT } |
DATA DIRECTORY = <directory> |
INDEX DIRECTORY = <directory> |
CHECK_SUM = { 0 | 1 } |
DELAY_KEY_WRITE = { 0 | 1 } |
PACK_KEYS = { 0 | 1 | DEFAULT } |
PASSWORD = <alphanumeric literal> |
RAID_TYPE = { 1 | STRIPED | RAID0 } |
RAID_CHUNKS = <whole number> |
RAID_CHUNKSIZE = <whole number> |
ROW_FORMAT = { DEFAULT | DYNAMIC | FIXED | COMPRESSED }

20.10.1 The ENGINE Table Option
Probably the most important table option is ENGINE, which indicates the storage
engine of the table. A storage engine determines how data is stored and how it can
be accessed, as well as how transactions are processed. The cleverness and power
of a storage engine strongly influences the required storage space and the speed
with which SQL statements are processed; different storage engines have different
qualities. Some storage engines are very well suited when many complex SELECT
statements must be processed, while others are more focused on quickly imple-
menting updates. Other engines are optimized to keep temporary tables efficiently
in internal memory.

MySQL allows another storage engine to be defined for each table. If a storage
engine has not been defined in a CREATE TABLE statement, MySQL selects the default

525CHAPTER 20 Creating Tables

storage engine; this depends on the version of MySQL. For quite a long time now, a
storage engine called MyISAM has been the default engine; at the beginning of
MySQL, it was one called ISAM. If you want to create a table but you don’t want to
use the default storage engine, and if you don’t want to be dependent on what the
default is, you can specify the desired storage engine in the CREATE TABLE statement.

MySQL includes a number of storage engines, and this list has grown over the
years. You can see which engines are included and installed with a SHOW statement.

Example 20.30: Show all registered storage engines.

SHOW ENGINES

The result is (created with Version 5.0):

ENGINE SUPPORT COMMENT
---------- ------- --
MyISAM YES Default engine as of MySQL 3.23 with great

performance
MEMORY YES Hash based, stored in memory, useful for temporary

tables
HEAP YES Alias for MEMORY
MERGE YES Collection of identical MyISAM tables
MRG_MYISAM YES Alias for MERGE
ISAM NO Obsolete storage engine, now replaced by MyISAM
MRG_ISAM NO Obsolete storage engine, now replaced by MERGE
InnoDB DEFAULT Supports transactions, row-level locking, and

foreign keys
INNOBASE YES Alias for INNODB
BDB NO Supports transactions and page-level locking
BERKELEYDB NO Alias for BDB
NDBCLUSTER NO Clustered, fault-tolerant, memory-based tables
NDB NO Alias for NDBCLUSTER
EXAMPLE NO Example storage engine
ARCHIVE NO Archive storage engine
CSV NO CSV storage engine
FEDERATED NO Federated MySQL storage engine
BLACKHOLE NO /dev/null storage engine (anything you write to

it disappears)

A number of these storage engines exist but are not available for the database
on which this SHOW statement has been executed, so, they are not a standard acces-
sory. These are the ones for which NO is specified in the SUPPORT column.

You can see that InnoDB is the default storage engine (the SUPPORT column
includes DEFAULT) for Version 5.0. This is an ideal storage engine for “normal”
use. InnoDB supports transactions, the definition of foreign keys, and locking on

526 SQL for MySQL Developers

row level—in short, it is a classic and mature storage engine for applications that
must process many SELECT statements or update much data. The engine is strong
enough to handle many applications concurrently. For most applications, this
default engine is the right one.

As indicated, in Version 5.1 of MySQL, MyISAM is the default storage engine.
This storage engine once replaced the ISAM storage engine. However, MyISAM
was more powerful. MyISAM and InnoDB are highly competitive engines; choosing
will be difficult.

Example 20.31: Create a new table named SEXES and store it with the
MyISAM storage engine.

CREATE TABLE SEXES
(SEX CHAR(1) NOT NULL PRIMARY KEY)
ENGINE = MYISAM

A synonym for the table option ENGINE is TYPE. However, the use of ENGINE is
recommended.

Example 20.32: Get the names of the storage engines used by the tables
PLAYERS, PENALTIES, and the new table SEXES; see Example 20.3.1.

SELECT TABLE_NAME, ENGINE
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME IN ('PLAYERS', 'PENALTIES', 'SEXES')

The result is:

TABLE_NAME ENGINE
---------- ------
penalties InnoDB
sexes MyISAM
players InnoDB

The storage engine called MEMORY (formerly called HEAP) makes sure that data is
not stored on hard disk, but remains in memory. By doing so, adding, updating, and
querying in these tables is processed very fast. Notice, however, that when the data-
base server is stopped, the contents of those tables are deleted because the data is
not stored on disk. When the database server is started again, those tables will be
empty. So these do look like temporary tables, but temporary tables disappear com-
pletely when the application stops. Anyone can access the tables that use MEMORY,
just like all the other permanent tables.

527CHAPTER 20 Creating Tables

We recommend using the MEMORY storage engine when temporary tables are cre-
ated; see the next example.

Example 20.33: As in Example 20.15, create the temporary table SUMPENALTIES
and make use of the MEMORY storage engine.

CREATE TEMPORARY TABLE SUMPENALTIES
(TOTAL DECIMAL(10,2))
ENGINE = MEMORY

The storage engine MERGE enables us to treat multiple tables as if they are one.
Imagine that the PENALTIES table contains so many rows that we decide to create
a separate PENALTIES table for each year. In other words, we create three tables:
PENALTIES_1990, PENALTIES_1991, and PENALTIES_1992. These three
tables have the same table schema and, therefore, the same columns. However, the
disadvantage of dividing this table is that when a SELECT statement must access the
three tables simultaneously, we must use the UNION operator. This can be prevented
by using the MERGE storage engine.

Example 20.34: Create the three tables PENALTIES_1990, PENALTIES_
1991, and PENALTIES_1992, as just described, and make use of the MERGE
storage engine.

CREATE TABLE PENALTIES_1990
(PAYMENTNO INTEGER NOT NULL PRIMARY KEY)
ENGINE=MYISAM

INSERT INTO PENALTIES_1990 VALUES (1),(2),(3)

CREATE TABLE PENALTIES_1991
(PAYMENTNO INTEGER NOT NULL PRIMARY KEY)
ENGINE=MYISAM

INSERT INTO PENALTIES_1991 VALUES (4),(5),(6)

CREATE TABLE PENALTIES_1992
(PAYMENTNO INTEGER NOT NULL PRIMARY KEY)
ENGINE=MYISAM

INSERT INTO PENALTIES_1992 VALUES (7),(8),(9);

CREATE TABLE PENALTIES_ALL
(PAYMENTNO INTEGER NOT NULL PRIMARY KEY)
ENGINE = MERGE
UNION = (PENALTIES_1990,PENALTIES_1991,PENALTIES_1992)
INSERT_METHOD = NO

SELECT * FROM PENALTIES_ALL

528 SQL for MySQL Developers

The result is:

PAYMENTNO

1
2
3
4
5
6
7
8
9

Explanation: MERGE works only if the underlying tables have MyISAM as its stor-
age engine. This is why all three have an ENGINE table option. In the CREATE TABLE
statement of the PENALTIES_ALL table, we use three table options: ENGINE, UNION,
and INSERT_METHOD. The first table option gets the value MERGE. The second option,
UNION, indicates which tables should be merged. The third table option,
INSERT_METHOD, indicates whether INSERT statements can be executed on the
PENALTIES_ALL table. NO means that it is not allowed, of course. If FIRST is spec-
ified, the rows are added to the table mentioned first (PENALTIES_1990); with
LAST, the rows are added to the table mentioned last.

You can achieve the same with a view; see Section 4.11.

Example 20.35: Create a view that merges the contents of the three tables from
Example 20.34.

CREATE VIEW PENALTIES_ALL AS
SELECT * FROM PENALTIES_1990
UNION
SELECT * FROM PENALTIES_1991
UNION
SELECT * FROM PENALTIES_1992

The use of views gives more possibilities than the MERGE storage engine for
merging tables into one table. The only disadvantage is that a view is based on the
UNION operator and cannot process INSERT statements. Chapter 26, “Views,” covers
views in greater depth and discusses their possibilities and limitations.

You can determine the default storage engine with the system variable
STORAGE_ENGINE. You can use the SET statement to change the value of this variable.

For a more detailed description of the storage engines, refer to the MySQL
manuals.

529CHAPTER 20 Creating Tables

Many of the other table options are relevant only for the MyISAM storage
engine: CHECKSUM, DATA and INDEX DIRECTORY, DELAY_KEY_WRITE, INSERT_METHOD,
PACK_KEYS, RAID_TYPE, RAID_CHUNKS, RAID_CHUNKSIZE, and ROW_FORMAT.

Because the default storage engine changes regularly, it is important to specify
the desired engine when creating tables. Only then can you be certain which engine
is used.

20.10.2 The AUTO_INCREMENT Table Option
Section 20.4.3 discussed the AUTO_INCREMENT data type option. If a table is still
empty, 1 is the first sequence number assigned. By including the table option
AUTO_INCREMENT, we can deviate from that.

Example 20.36: Create a new table called CITY_NAMES with an AUTO_
INCREMENT column, and start the numbering at 10.

CREATE TABLE CITY_NAMES
(SEQNO INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
NAME VARCHAR(30) NOT NULL)

AUTO_INCREMENT = 10

INSERT INTO CITY_NAMES VALUES (NULL, 'London')

INSERT INTO CITY_NAMES VALUES (NULL, 'New York')

INSERT INTO CITY_NAMES VALUES (NULL, 'Paris')

SELECT * FROM CITY_NAMES

The result is:

SEQNO NAME
----- --------

10 London
11 New York
12 Paris

20.10.3 The COMMENT Table Option
The column option COMMENT enables you to store some documentation about
columns in the catalog. The table option COMMENT also makes this possible for
tables.

530 SQL for MySQL Developers

Example 20.37: Create the PENALTIES table, and add comment to the columns
and to the table. Next, show the comment about the table as it is stored in the cata-
log tables.

CREATE TABLE PENALTIES
(PAYMENTNO INTEGER NOT NULL PRIMARY KEY

COMMENT 'Primary key of the table',
PLAYERNO INTEGER NOT NULL

COMMENT 'Player who has incurred the penalty',
PAYMENT_DATE DATE NOT NULL

COMMENT 'Date on which the penalty has been paid',
AMOUNT DECIMAL(7,2) NOT NULL

COMMENT 'Sum of the penalty in Euro''s')
COMMENT = 'Penalties that have been paid by the tennis club'

SELECT TABLE_NAME, TABLE_COMMENT
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = 'PENALTIES'

The result is:

TABLE_NAME TABLE_COMMENT
---------- ------------------------------------
PENALTIES Penalties that have been paid by the

tennis club;InnoDB free: 3072 kB

Explanation: Behind the stored comment, you see some more comments that the
InnoDB storage engine added.

20.10.4 The AVG_ROW_LENGTH, MAX_ROWS, and
MIN_ROWS Table Options

The table option AVG_ROW_LENGTH returns an estimate of the average length in bytes
that is occupied by the rows of a table. MAX_ROWS and MIN_ROWS estimate the maxi-
mum number and minimum number of rows of a table, respectively. Storage engines
can use these values when they build the tables concerned. Especially when a table
becomes bigger and the MyISAM storage engine is used, it is better to specify these
table options. This could prevent MySQL from suddenly indicating that a table
is full.

Example 20.38: Create the MATCHES table again and indicate that the number
of rows is between one million and two million.

531CHAPTER 20 Creating Tables

CREATE TABLE MATCHES
(MATCHNO INTEGER NOT NULL PRIMARY KEY,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON SMALLINT NOT NULL,
LOST SMALLINT NOT NULL)
AVG_ROW_LENGTH = 15
MAX_ROWS = 2000000
MIN_ROWS = 1000000

20.11 THE CSV STORAGE ENGINE

Chapter 18, “Loading and Unloading Data,” discussed loading and unloading of
data. Data stored in tables can be written to external files using a SELECT statement.
A LOAD statement can copy data from external files to tables. You can access exter-
nal data in another way through the CSV storage engine. This special storage
engine was developed to access data stored not in the database, but in external
files. These files must have a certain structure: The values in the rows must be sep-
arated by commas (CSV stands for comma-separated value). This implies that a file
created with a SELECT INTO statement can be accessed through a CSV table.

Example 20.39: Create a new version of the TEAMS table and use the CSV stor-
age engine. Next, add two rows.

CREATE TABLE TEAMS_CSV
(TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
DIVISION CHAR(6) NOT NULL)

ENGINE = CSV

INSERT INTO TEAMS_CSV VALUES (1, 6, 'first')

INSERT INTO TEAMS_CSV VALUES (2, 27, 'second')

As a result of this statement, a file named TEAMS_CSV.CSV is created. This file is
stored in the directory of the current database and has the following contents:

"1","6","first"
"2","27","second"

Files that were created outside the MySQL environment can also be accessed in
this way with MySQL. Suppose that we created a file with a SELECT INTO statement
and that we want to access it. The following example illustrates how to do that.

532 SQL for MySQL Developers

Example 20.40: Copy all data of the MATCHES table to a file, put commas
between the values, begin each row on a new line, and place all values between
double quotes.

SELECT *
FROM MATCHES
INTO OUTFILE 'C:/MATCHES_EXTERN.TXT'

FIELDS TERMINATED BY ',' ENCLOSED BY '"'

This new file looks as follows:

"1","1","6","3","1"
"2","1","6","2","3"
"3","1","6","3","0"
"4","1","44","3","2"
"5","1","83","0","3"
"6","1","2","1","3"
"7","1","57","3","0"
"8","1","8","0","3"
"9","2","27","3","2"
"10","2","104","3","2"
"11","2","112","2","3"
"12","2","112","1","3"
"13","2","8","0","3"

Of course, we can load this file with a LOAD statement. However, we could also
create a CSV table. For this, we begin with creating the following empty table (make
sure that the structure of the table corresponds to that of the file):

CREATE TABLE MATCHES_CSV
(MATCHNO INTEGER NOT NULL,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON SMALLINT NOT NULL,
LOST SMALLINT NOT NULL)

ENGINE = CSV

A FLUSH TABLE statement guarantees that MySQL “releases” the table:

FLUSH TABLE MATCHES_CSV

Next, we change the name of the MATCHES_EXTERNAL.TXT file to MATCHES_
CSV.CSV. Finally, we can execute SELECT statements on this table:

SELECT *
FROM MATCHES_CSV
WHERE MATCHNO <= 4

533CHAPTER 20 Creating Tables

The result is:

MATCHNO TEAMNO PLAYERNO WON LOST
------- ------ -------- --- ----

1 1 6 3 1
2 1 6 2 3
3 1 6 3 0
4 1 44 3 2

20.12 TABLES AND THE CATALOG

Section 4.16 mentioned that the catalog stores descriptions of tables. Two of these
catalog tables are used to record tables and columns: TABLES and COLUMNS. We
give the descriptions of these tables next. Other chapters explain some of the
columns.

The TABLE_CREATOR and TABLE_NAME columns form the primary key of
the table.

TABLE 20.6 Description of the TABLE catalog table

534 SQL for MySQL Developers

COLUMN NAME DATA TYPE DESCRIPTION

TABLE_CREATOR CHAR Name of the database (not the owner) in
which the table was created. MySQL
does not recognize an owner of a table,
as other SQL products do, which is why
the database name was chosen.

TABLE_NAME CHAR Name of the table.

CREATE_TIMESTAMP TIMESTAMP Date and time the table was created.

COMMENT CHAR Comments that were entered using the
COMMENT statement.

The three columns TABLE_CREATOR, TABLE_NAME, and COLUMN_
NAME form the primary key of the COLUMNS table.

Example 20.41: For each column in the PLAYERS table (which was created in
the TENNIS database), get the name, the data type, and the length and indicate
whether it is a NULL column.

SELECT COLUMN_NAME, DATA_TYPE, CHAR_LENGTH, NULLABLE
FROM COLUMNS
WHERE TABLE_NAME = 'PLAYERS'
AND TABLE_CREATOR = 'TENNIS'
ORDER BY COLUMN_NO

535CHAPTER 20 Creating Tables

COLUMN NAME DATA TYPE DESCRIPTION

TABLE_CREATOR CHAR Name of the database in which the table
was created; see the TABLES table.

TABLE_NAME CHAR Name of the table of which the column
is a part.

COLUMN_NAME CHAR Name of the column.

COLUMN_NO NUMERIC Sequence number of the column within
the table. This sequence reflects the
order in which columns appear in the
CREATE TABLE statement.

DATA_TYPE CHAR Data type of the column.

CHAR_LENGTH NUMERIC If the DATA_TYPE is equal to alphanu-
meric, the length is indicated here.

PRECISION NUMERIC If the value of DATA_TYPE is equal to
N(umeric), the number of digits in front
of the decimal point is indicated. For all
other data types, the value is equal to 0.

SCALE NUMERIC If the value of DATA_TYPE is equal to
N(umeric), the number of digits after the
decimal point is indicated. For all other
data types, the value is equal to 0.

NULLABLE CHAR If the column has been defined as NOT
NULL, the value is equal to NO; otherwise,
it is equal to YES.

COMMENT CHAR Comments that have been entered using
the COMMENT statement.

TABLE 20.7 Description of the COLUMNS Catalog Table

The result is:

COLUMN_NAME DATA_TYPE CHAR_LENGTH NULLABLE
----------- --------- ----------- --------
PLAYERNO INT ? NO
NAME CHAR 15 NO
INITIALS CHAR 3 NO
BIRTH_DATE DATE ? YES
SEX CHAR 1 NO
JOINED SMALLINT ? NO
STREET VARCHAR 30 NO
HOUSENO CHAR 4 YES
POSTCODE CHAR 6 YES
TOWN VARCHAR 30 NO
PHONENO CHAR 13 YES
LEAGUENO CHAR 4 YES

Example 20.42: For each of the tables of the tennis club, get the number of rows
and the number of columns.

SELECT 'PLAYERS' AS TABLE_NAME, COUNT(*) AS NUMBER_ROWS,
(SELECT COUNT(*)
FROM COLUMNS
WHERE TABLE_NAME = 'PLAYERS'
AND TABLE_CREATOR = 'TENNIS') AS P

FROM PLAYERS
UNION
SELECT 'TEAMS', COUNT(*),

(SELECT COUNT(*)
FROM COLUMNS
WHERE TABLE_NAME = 'TEAMS'
AND TABLE_CREATOR = 'TENNIS') AS T

FROM TEAMS
UNION
SELECT 'PENALTIES', COUNT(*),

(SELECT COUNT(*)
FROM COLUMNS
WHERE TABLE_NAME = 'PENALTIES'
AND TABLE_CREATOR = 'TENNIS') AS PEN

FROM PENALTIES
UNION
SELECT 'MATCHES', COUNT(*),

(SELECT COUNT(*)
FROM COLUMNS
WHERE TABLE_NAME = 'MATCHES'
AND TABLE_CREATOR = 'TENNIS') AS M

FROM MATCHES

536 SQL for MySQL Developers

continues

UNION
SELECT 'COMMITTEE_MEMBERS', COUNT(*),

(SELECT COUNT(*)
FROM COLUMNS
WHERE TABLE_NAME = 'COMMITTEE_MEMBERS'
AND TABLE_CREATOR = 'TENNIS') AS CM

FROM COMMITTEE_MEMBERS
ORDER BY 1

The result is:

TABLE_NAME NUMBER_ROWS NUMBER_COLUMNS
----------------- ------------ --------------
COMMITTEE_MEMBERS 17 4
PENALTIES 8 4
PLAYERS 14 13
TEAMS 2 3
MATCHES 13 5

In the catalog called INFORMATION_SCHEMA, table and column data is
stored in the tables TABLES and COLUMNS, respectively.

Exercise 20.10: Show how the TABLES and COLUMNS tables are filled after
the execution of the CREATE TABLE statement in Exercise 20.6.

20.13 ANSWERS

20.1 Yes, a data type is mandatory.

20.2 First the data type.

20.3 Own words.

20.4 Variable length is useful when the difference between the longest value
possible for a column and the average length is considerable. If both are
equal, a fixed length for a column is preferable.

20.5 CHARACTER(13). No phone number in the world is longer than 13 digits.
SMALLINT or DECIMAL(3,0).
VARCHAR(50). Company names can be very long.
SMALLINT.
DATE.

537CHAPTER 20 Creating Tables

20.6 CREATE TABLE DEPARTMENT
(DEPNO CHAR(5) NOT NULL PRIMARY KEY,
BUDGET DECIMAL(8,2),
LOCATION VARCHAR(30))

20.7 CREATE TABLE P_COPY LIKE PLAYERS

20.8 CREATE TABLE P2_COPY AS (SELECT * FROM PLAYERS)

20.9 CREATE TABLE NUMBERS AS
(SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford')

20.10 The TABLES table:

CREATOR TABLE_NAME CREATE_TIMESTAMP COMMENT
------- ---------- ------------------- ---------------------
TENNIS DEPARTMENT 2005-08-29 11:43:48 InnoDB free: 10240 kB

The COLUMNS table:

TABLE_CREATOR TABLE_NAME COLUMN_NAME COLUMN_NO
------------- ---------- ----------- ---------
TENNIS DEPARTMENT DEPNO 1
TENNIS DEPARTMENT BUDGET 2
TENNIS DEPARTMENT LOCATION 3

DATA_TYPE CHAR_LENGTH PRECISION SCALE NULLABLE COMMENT
--------- ----------- --------- ----- -------- -------
CHAR 5 ? ? NO ?
DECIMAL ? 8 2 YES ?
VARCHAR 30 ? ? YES ?

538 SQL for MySQL Developers

539

Specifying Integrity
Constraints

C H A P T E R 2 1

21.1 INTRODUCTION

Chapter 1, “Introduction to MySQL,” discussed the fact that enforcement of data
integrity in the database is one of the most important responsibilities of a database
server. By data integrity, we mean consistency and correctness of the data. Data is
consistent if individual items do not contradict one another. Data is correct if it sat-
isfies all relevant rules, which can be company rules but also be tax rules, laws of
nature, and so on. For example, if in the example database the total number of sets
in a match is greater than five, this data item is incorrect.

MySQL can take care of data integrity if integrity constraints (or constraints) are
defined. After each update, MySQL tests whether the new database contents still
comply with the relevant integrity constraints. In other words, it checks whether the
state of the database is still valid. A valid update transforms the valid state of a
database to a new valid state. Therefore, the specification of integrity constraints
places restrictions on the possible values of a table.

Integrity constraints are the rules with which the contents of a database must
comply at all times; they describe which updates to the database are permitted.

Several integrity constraints can be defined within a CREATE TABLE statement.
For each column, NOT NULL can be specified, for example. This means that the null
value is not permitted—in other words, the column must be populated. Section 20.2
discussed this integrity constraint. This chapter covers all other kinds of integrity
constraints. Primary and foreign keys are other examples of integrity constraints.

540 SQL for MySQL Developers

D E F I N I T I O N
<create table statement> ::=

CREATE [TEMPORARY] TABLE [IF NOT EXISTS]
<table specification> <table structure>

<table structure> ::= <table schema>

<table schema> ::= (<table element> [, <table element>]...)

<table element> ::=
<column definition> |
<table integrity constraint> |
<index definition>

<column definition> ::=
<column name> <data type> [<null specification>]

[<column integrity constraint>]

<null specification> ::= [NOT] NULL

<column integrity constraint> ::=
PRIMARY KEY |
UNIQUE [KEY] |
<check integrity constraint>

<table integrity constraint> ::=
[CONSTRAINT [<constraint name>]]
{ <primary key> |
<alternate key> |
<foreign key> |
<check integrity constraint> }

<primary key> ::=
PRIMARY KEY [<index name>]
[{ USING | TYPE } <index type>] <column list>

<alternate key> ::=
UNIQUE [INDEX | KEY] [<index name>]
[{ USING | TYPE } <index type>] <column list>

<foreign key> ::=
FOREIGN KEY [<index name>]

<column list> <referencing specification>

<referencing specification> ::=
REFERENCES <table specification> <column list>

[<referencing action>...]

continues

<referencing action> ::=
ON { UPDATE | DELETE }

{ CASCADE | RESTRICT | SET NULL | NO ACTION | SET DEFAULT } |
[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

<column list> ::=
(<column name> [, <column name>]...)

<check integrity constraint> ::= CHECK (<condition>)

<column list> ::=
<column name> [, <column name>]...

<table name> ;
<constraint name> ;

<index name> ::= <name>

21.2 PRIMARY KEYS

A primary key is (informally) known as a column or group of columns of a table of
which the values are always unique. Null values are not permitted in columns that
form part of a primary key. In the example in Section 20.2, the column PLAYERNO
is defined as the primary key of the PLAYERS table.

Primary keys can be defined in two ways: as column or table integrity con-
straints. In the first case, the term PRIMARY KEY is simply added to the column
definition.

Example 21.1: Create the PLAYERS table, including the primary key.

CREATE TABLE PLAYERS (
PLAYERNO INTEGER NOT NULL PRIMARY KEY,
: :
LEAGUENO CHAR(4))

Explanation: The primary key is defined after the null specification. The null
specification may also be specified behind the primary key.

In this example, we can also define the primary key as a table integrity constraint:

CREATE TABLE PLAYERS (
PLAYERNO INTEGER NOT NULL,
: :
LEAGUENO CHAR(4),
PRIMARY KEY (PLAYERNO))

541CHAPTER 21 Specifying Integrity Constraints

You can define primary keys over multiple columns in a table. These are called
composite primary keys. The COMMITTEE_MEMBERS table contains such a com-
posite primary key. A composite primary key can be defined as only a table
integrity constraint. All relevant columns are placed between brackets.

Example 21.2: Create a DIPLOMAS table to record, among other things, which
course members followed on which date; the STUDENT, COURSE, and DDATE
columns form a composite primary key.

CREATE TABLE DIPLOMAS
(STUDENT INTEGER NOT NULL,
COURSE INTEGER NOT NULL,
DDATE DATE NOT NULL,
SUCCESSFUL CHAR(1),
LOCATION VARCHAR(50),
PRIMARY KEY (STUDENT, COURSE, DDATE))

Explanation: By defining the primary key on the three columns, you can ensure
that a student can obtain only one diploma for each course on a specific date.

If a column that is part of a primary key has not been defined as NOT NULL, MySQL
defines the column as NOT NULL. In fact, you could omit the specification NOT NULL
in the PLAYERNO column in the previous examples; however, we do not recom-
mend that. For the sake of clarity, it is better to include this null specification.

In principle, any column or group of columns can function as a primary key.
Nevertheless, primary key columns must follow a number of rules. Some of these
rules stem from the theory of the relational model; MySQL enforces others. We
advise you to follow these rules when you define primary keys:

■ Only one primary key can be defined for each table. This rule comes from
the relational model and applies to MySQL as well.

■ The theory (the relational model) requires that one primary key be defined
for each table. However, MySQL does not enforce this; you can create tables
without a primary key. Still, we strongly recommend that you specify a pri-
mary key for each base table. The main reason is that, without a primary key,
it is possible (accidentally or deliberately) to store two identical rows in a
table; as a result, the two rows no longer would be distinguishable from one
another. In query processes, they would satisfy the same conditions, and in
updating, they would always be updated together, so a high probability exists
that eventually the database would become corrupted.

542 SQL for MySQL Developers

■ Two different rows in a table may never have the same value for the primary
key. In the literature, this is called the uniqueness rule. As an example, the
TOWN column in the PLAYERS table should not be specified as a primary
key because many players live in the same town.

■ A primary key is not correct if it is possible to delete a column from the pri-
mary key and have this “smaller” primary key still satisfy the uniqueness
rule. This rule is called the minimality rule. In short, this means that a pri-
mary key should not consist of an unnecessarily high number of columns.
Imagine that we defined PLAYERNO with NAME as the primary key for the
PLAYERS table. We already know that player numbers are unique, so in this
case, the primary key contains more columns than necessary and, therefore,
does not satisfy the minimality rule.

■ A column name may occur only once in the column list of a primary key.

■ The populations of the columns belonging to a primary key may not contain
null values. This rule is known as either the first integrity constraint or the
entity integrity constraint. What would happen if we allowed null values in a
primary key? It would be possible to insert two rows with null values as the
primary key values and other columns with identical data. These two rows
would not be uniquely identifiable and would always satisfy the same condi-
tions for selection or updating. In fact, you cannot break this rule because
MySQL requires that the columns concerned be defined as NOT NULL.

MySQL automatically creates an index for each primary key. Usually the name
of that index is equal to PRIMARY. However, you may come up with your own name
for this index.

Example 21.3: Create the same DIPLOMAS table as in Example 21.2 but now
name the index created for the primary key as INDEX_PRIM.

CREATE TABLE DIPLOMAS
(STUDENT INTEGER NOT NULL,
COURSE INTEGER NOT NULL,
DDATE DATE NOT NULL,
SUCCESSFUL CHAR(1),
LOCATION VARCHAR(50),

PRIMARY KEY INDEX_PRIM (STUDENT, COURSE, DDATE))

Chapter 25, “Using Indexes,” returns to the topic of defining indexes.

Exercise 21.1: Do you have to specify a NOT NULL integrity constraint for a col-
umn defined as the primary key?

543CHAPTER 21 Specifying Integrity Constraints

Exercise 21.2: What is the minimum and maximum number of primary keys that
can be defined for each table?

Exercise 21.3: Define the primary key for the MATCHES table.

21.3 ALTERNATE KEYS

In the relational model, an alternate key is, like a primary key, a column or group of
columns of a table of which the values are unique at all times. Chapter 1 indicated
that an alternate key is a candidate key that is not chosen to be the primary key. A
table may have many alternate keys but may have only one primary key.

Example 21.4: Define the PLAYERNO column in the TEAMS table as if it is an
alternate key (we assume in this example that a player may captain only one team).

CREATE TABLE TEAMS
(TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL UNIQUE,
DIVISION CHAR(6) NOT NULL,
PRIMARY KEY (TEAMNO))

Explanation: The word UNIQUE indicates that PLAYERNO is an alternate key and
that the values must remain unique.

The previous statement could also have been defined as follows. The alternate key
is defined as a table integrity constraint.

CREATE TABLE TEAMS
(TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
DIVISION CHAR(6) NOT NULL,
PRIMARY KEY (TEAMNO),
UNIQUE (PLAYERNO))

According to the relational model, an alternate key may not contain null values.
MySQL deviates from this. In MySQL, alternate keys are allowed to have null val-
ues. Separately, we must use the NULL or NOT NULL specification to indicate whether
null values are allowed. For example, we can see the LEAGUENO column in the
PLAYERS table as an alternate key that allows null values; see the next example.

Example 21.5: Define the PLAYERNO column in the PLAYERS table as an
alternate key.

544 SQL for MySQL Developers

CREATE TABLE PLAYERS
(PLAYERNO INTEGER NOT NULL,
NAME CHAR(15) NOT NULL,
INITIALS CHAR(3) NOT NULL,
BIRTH_DATE DATE,
SEX CHAR(1) NOT NULL,
JOINED SMALLINT NOT NULL,
STREET VARCHAR(30) NOT NULL,
HOUSENO CHAR(4),
POSTCODE CHAR(6),
TOWN VARCHAR(30) NOT NULL,
PHONENO CHAR(13),
LEAGUENO CHAR(4) UNIQUE,
PRIMARY KEY (PLAYERNO))

Explanation: The LEAGUENO column can now have multiple null values.

Each table can have several alternate keys, and they may even overlap. We can
define one alternate key on the columns C1 and C2 and another on C2 with C3. There
is overlap on the C2 column, then, which MySQL allows. Alternative keys may also
overlap with the primary key. However, it makes no sense to define a set of columns
as an alternate key when that set is a superset of the columns of another key. If a
primary key has been defined on the column C1, for example, the definition of an
alternate key on the columns C1 and C2 is unnecessary. The primary key already
guarantees the uniqueness of the combination C1, C2. However, MySQL allows this
construct, so be careful that you do not make mistakes.

Exercise 21.4: Indicate what is incorrect in the following CREATE TABLE

statements:

1. CREATE TABLE T1
(C1 INTEGER NOT NULL,
C2 INTEGER NOT NULL UNIQUE,
C3 INTEGER NOT NULL,
PRIMARY KEY (C1, C4))

2. CREATE TABLE T1
(C1 INTEGER NOT NULL PRIMARY KEY,
C2 INTEGER NOT NULL,
C3 INTEGER UNIQUE,
PRIMARY KEY (C1, C2, C1))

3. CREATE TABLE T1
(C1 INTEGER NOT NULL PRIMARY KEY,
C2 INTEGER NOT NULL,
C3 INTEGER UNIQUE,
UNIQUE (C2, C3))

545CHAPTER 21 Specifying Integrity Constraints

21.4 FOREIGN KEYS

In the sample database, a number of rules are associated with the relationships
between the tables; see Chapter 2, “The Tennis Club Sample Database.” For exam-
ple, all player numbers stored in the TEAMS table must exist in the PLAYERNO
column of the PLAYERS table. Also all team numbers in the MATCHES table must
appear in the TEAMNO column of the TEAMS table. This type of relationship is
called a referential integrity constraint. Referential integrity constraints are a spe-
cial type of integrity constraint that can be implemented as a foreign key with the
CREATE TABLE statements. We give a number of examples here.

546 SQL for MySQL Developers

N O T E
Foreign keys can be used only for tables that are created with the storage
engine InnoDB; the others do not support foreign keys (see Section
20.10.1). This is one of the reasons to prefer InnoDB. Because of this, we
assume in this chapter that InnoDB is the default storage engine. If that is
not the case, you can achieve this with the following SET statement:

SET @@STORAGE_ENGINE = 'InnoDB'

Example 21.6: Create the TEAMS table so that all player numbers (captains)
must appear in the PLAYERS table. We assume that the PLAYERS table has
already been created with the PLAYERNO column as the primary key.

CREATE TABLE TEAMS
(TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
DIVISION CHAR(6) NOT NULL,
PRIMARY KEY (TEAMNO),
FOREIGN KEY (PLAYERNO)

REFERENCES PLAYERS (PLAYERNO))

Explanation: The foreign key specification has been added to the CREATE TABLE
statement. Each foreign key specification consists of three parts. The first part indi-
cates which column (or combination of columns) is the foreign key. This is the spec-
ification FOREIGN KEY (PLAYERNO). In the second part, we indicate the table and
column(s) the foreign key refers to (REFERENCES PLAYERS (PLAYERNO)). The third
part is the referencing action (this does not appear in this example but is discussed
in the next section).

Foreign keys can refer to only primary and alternate keys. A foreign key cannot
refer to a random group of columns; it must be a combination of columns for which
the combined value is guaranteed unique.

Before we give a detailed explanation of this example, we introduce two new
terms. The table in which a foreign key is defined is called a referencing table. A
table to which a foreign key points is called a referenced table. Thus, in the previous
example, TEAMS is the referencing table, and PLAYERS is the referenced table.

What is the actual effect of defining a foreign key? After the statement has been
executed, MySQL guarantees that each non-null value inserted in the foreign key
already occurs in the primary key of the referenced table. In the previous example,
this means that for each new player number in the TEAMS table, a check is carried
out on whether that number already occurs in the PLAYERNO column (primary
key) of the PLAYERS table. If this is not the case, the user or application receives
an error message, and the update is rejected. This also applies to updating the
PLAYERNO column in the TEAMS table with the UPDATE statement. We could also
say that MySQL guarantees that the population of the PLAYERNO column in the
TEAMS table is always a subset of the PLAYERNO column in the PLAYERS table.
This means, for example, that the following SELECT statement never returns
any rows:

SELECT *
FROM TEAMS
WHERE PLAYERNO NOT IN

(SELECT PLAYERNO
FROM PLAYERS)

Naturally, the definition of a foreign key has a huge influence on the updating of
the tables involved. We illustrate this with a number of examples. We assume here
that the PLAYERS and TEAM tables have the same data as the tables described in
Chapter 2.

1. Deleting a player from the PLAYERS table is now permitted only if that
player is not a captain.

2. Updating a player number of a player in the PLAYERS table is possible only
if that player is not a captain.

3. When inserting new players into the PLAYERS table, the foreign key
enforces no restrictions.

4. When deleting existing teams from the TEAMS table, the foreign key
enforces no restrictions.

547CHAPTER 21 Specifying Integrity Constraints

5. Updating a player number of a captain in the TEAMS table is permitted only
if the new player number already occurs in the PLAYERS table.

6. Inserting new teams into the TEAMS table is permitted only if the player
number of the captain already occurs in the PLAYERS table.

Where clarity on terminology is concerned, we refer to the PLAYERNO column
in the TEAMS table as the foreign key; the referential integrity constraint is the
check stating that each player number added to the TEAMS table must occur in the
PLAYERS table.

The following rules apply when a foreign key is specified:

■ The referenced table must already have been created by a CREATE TABLE
statement or must be the table that is currently being created. In the latter
case, the referencing table is the same as the referenced table.

■ A primary key must be defined for the referenced table.

■ A column name (or combination of column names) must be specified behind
the referenced table name. This column (or combination) must be the pri-
mary key of this table.

■ A null value is permitted in a foreign key, although a primary key can never
contain null values. This means that the contents of a foreign key are correct
if each non-null value occurs in a specific primary key.

■ The number of columns in the foreign key must be the same as the number of
columns in the primary key of the referenced table

■ The data types of the columns in the foreign key must match those of the cor-
responding columns in the primary key of the referenced table.

Next we give the definitions of three tables from the sample database, including
all primary and foreign keys.

Example 21.7: Create the TEAMS table, including all relevant primary and
foreign keys.

CREATE TABLE TEAMS
(TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
DIVISION CHAR(6) NOT NULL,
PRIMARY KEY (TEAMNO),
FOREIGN KEY (PLAYERNO) REFERENCES PLAYERS (PLAYERNO))

548 SQL for MySQL Developers

Explanation: Team captains must be players who occur in the PLAYERS table.
Players who are captains cannot be deleted.

Example 21.8: Create the MATCHES table, including all relevant primary and
foreign keys.

CREATE TABLE MATCHES
(MATCHNO INTEGER NOT NULL,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON INTEGER NOT NULL,
LOST INTEGER NOT NULL,
PRIMARY KEY (MATCHNO),
FOREIGN KEY (TEAMNO) REFERENCES TEAMS (TEAMNO),
FOREIGN KEY (PLAYERNO) REFERENCES PLAYERS (PLAYERNO))

Explanation: A match may be played only by someone who appears in the
PLAYERS table and only for a team that appears in the TEAMS table. Players and
teams may be deleted only if their numbers do not occur in the MATCHES table.

Example 21.9: Create the PENALTIES table, including all relevant primary and
foreign keys.

CREATE TABLE PENALTIES
(PAYMENTNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
PAYMENT_DATE DATE NOT NULL,
AMOUNT DECIMAL(7,2) NOT NULL,
PRIMARY KEY (PAYMENTNO),
FOREIGN KEY (PLAYERNO) REFERENCES PLAYERS (PLAYERNO))

Explanation: A penalty can be inserted only for a player who appears in the
PLAYERS table. A player can be deleted from the PLAYERS table only if he or she
has no penalties.

For the sake of clarity, we note that the following constructs are permitted:

■ A foreign key may consist of one or more columns. This means that if a
foreign key consists of two columns, for example, the primary key of the
referenced table must also consist of two columns.

■ A column may be part of several different foreign keys.

■ A subset of columns in a primary key, or the entire set of columns in a pri-
mary key, may form a foreign key.

549CHAPTER 21 Specifying Integrity Constraints

The referenced and referencing table associated with a foreign key may be the
same. Such a table is called a self-referencing table, and the construct is called self-
referential integrity. Consider an example:

CREATE TABLE EMPLOYEES
(EMPLOYEE_NO CHAR(10) NOT NULL,
MANAGER_NO CHAR(10),
PRIMARY KEY (EMPLOYEE_NO),
FOREIGN KEY (MANAGER_NO)

REFERENCES EMPLOYEES (EMPLOYEE_NO))

Exercise 21.5: Describe the reason for defining foreign keys.

Exercise 21.6: Indicate which updates are no longer allowed after the following
definition:

CREATE TABLE MATCHES
(MATCHNO INTEGER NOT NULL,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON INTEGER NOT NULL,
LOST INTEGER NOT NULL,
PRIMARY KEY (MATCHNO),
FOREIGN KEY (TEAMNO)

REFERENCES TEAMS (TEAMNO),
FOREIGN KEY (PLAYERNO)

REFERENCES PLAYERS (PLAYERNO))

Exercise 21.7: Describe the concept of self-referential integrity.

Exercise 21.8: Can a self-referencing table be created with one CREATE TABLE
statement?

21.5 THE REFERENCING ACTION

The previous section deferred the discussion of one part of the foreign key: the
referencing action. In that section, we assumed that a player can be deleted only if
he or she had not played a match. By defining a referencing action, we can change
this behavior.

Referencing actions can be defined for each foreign key. A referencing action
consists of two parts: In the first part, we indicate the statement to which the refer-
encing action applies. Two statements are relevant here: the UPDATE and DELETE

550 SQL for MySQL Developers

statements. In the second part, we specify which action is taken. Five possible
actions exist: CASCADE, RESTRICT, SET NULL, NO ACTION, and SET DEFAULT. We
explain what these different actions mean next.

If you do not specify referencing actions, by default, the following two referenc-
ing actions are used:

ON UPDATE RESTRICT
ON DELETE RESTRICT

Example 21.10: Create the PENALTIES table with two referencing actions.

CREATE TABLE PENALTIES
(PAYMENTNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
PAYMENT_DATE DATE NOT NULL,
AMOUNT DECIMAL(7,2) NOT NULL,
PRIMARY KEY (PAYMENTNO),
FOREIGN KEY (PLAYERNO) REFERENCES PLAYERS (PLAYERNO)

ON UPDATE RESTRICT
ON DELETE RESTRICT)

Explanation: The first referencing action specifies explicitly that if the number of
a players in the PLAYERS table for whom penalties occur in the PENALTIES table
is updated (UPDATE), that update must be rejected (RESTRICT). The same applies to
the second referencing action: If a player for whom penalties occur in the PENAL-
TIES table is removed (DELETE) from the PLAYERS table, the delete must be
rejected (RESTRICT).

When CASCADE is used instead of RESTRICT, the behavior changes.

Example 21.11: Create the PENALTIES table with a CASCADE referencing action
for the DELETE statement.

CREATE TABLE PENALTIES
(PAYMENTNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
PAYMENT_DATE DATE NOT NULL,
AMOUNT DECIMAL(7,2) NOT NULL,
PRIMARY KEY (PAYMENTNO),
FOREIGN KEY (PLAYERNO) REFERENCES PLAYERS (PLAYERNO)

ON DELETE CASCADE)

551CHAPTER 21 Specifying Integrity Constraints

Explanation: If a player is deleted, all his or her penalties are automatically
removed as well. Imagine that the following DELETE statement is executed:

DELETE
FROM PLAYERS
WHERE PLAYERNO = 127

MySQL automatically executes the following DELETE statement (behind the
scenes):

DELETE
FROM PENALTIES
WHERE PLAYERNO = 127

If we had specified ON UPDATE CASCADE, the same would have applied to chang-
ing the player numbers. If a player number in the PLAYERS table is updated, all
player numbers in the PENALTIES table are updated accordingly.

If we replace the word CASCADE with SET NULL, which is the third possibility, we
have another result:

Example 21.12: Create the PENALTIES table with a SET NULL referencing
action for the DELETE statement.

CREATE TABLE PENALTIES
(PAYMENTNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
PAYMENT_DATE DATE NOT NULL,
AMOUNT DECIMAL(7,2) NOT NULL,
PRIMARY KEY (PAYMENTNO),
FOREIGN KEY (PLAYERNO) REFERENCES PLAYERS (PLAYERNO)

ON DELETE SET NULL)

If you delete a player, the player number is replaced by the null value in all
rows of the PENALTIES table in which that player number appears.

552 SQL for MySQL Developers

N O T E
The previous statement is actually a little strange because the PLAYERNO
column in the PENALTIES table has been defined as NOT NULL. This means
that no null values can be entered. Still, MySQL will accept the previous
CREATE TABLE statement.

An alternative to SET NULL is SET DEFAULT. Instead of the null value, the default
value is specified, but only if a default value has been specified for the column.

553CHAPTER 21 Specifying Integrity Constraints

The three MATCH specifications have been added, but MySQL will not yet
process them. Other SQL products support these options, which is why they have
been added.

The referencing action NO ACTION is equal to RESTRICT.

A foreign key may use different actions for the two statements. For example,
you can define a foreign key with the referencing actions ON UPDATE RESTRICT and
ON DELETE CASCADE.

You may include a MATCH specification in the definition of a referencing action,
but MySQL ignores it. This specification relates to whether a foreign key allows null
values.

Exercise 21.9: Not specifying referencing actions is equal to specifying which
referencing actions?

Exercise 21.10: Which update restrictions does the following definition
impose?

CREATE TABLE MATCHES
(MATCHNO SMALLINT NOT NULL,
TEAMNO SMALLINT NOT NULL,
PLAYERNO SMALLINT NOT NULL,
WON SMALLINT NOT NULL,
LOST SMALLINT NOT NULL,
PRIMARY KEY (MATCHNO),
FOREIGN KEY (TEAMNO)

REFERENCES TEAMS
ON UPDATE CASCADE
ON DELETE RESTRICT,

FOREIGN KEY (PLAYERNO)
REFERENCES PLAYERS
ON UPDATE RESTRICT
ON DELETE CASCADE)

21.6 CHECK INTEGRITY CONSTRAINTS

Primary, alternate, and foreign keys are examples of common integrity constraints.
In addition, each database has a number of special integrity constraints. For exam-
ple, the SEX column in the PLAYERS table can contain only two types of values: M
or F. Likewise, the value of the AMOUNT column must be greater than 0. We can
specify such rules with check integrity constraints.

554 SQL for MySQL Developers

N O T E
In MySQL, check integrity constraints can be included in the CREATE TABLE
statements; unfortunately, they are not enforced yet. This will change in a
future version.

Example 21.13: Create a special version of the PLAYERS table with only the
columns PLAYERNO and SEX and take into account that the SEX column may
contain only the values M or F.

CREATE TABLE PLAYERS_X
(PLAYERNO INTEGER NOT NULL,
SEX CHAR(1) NOT NULL

CHECK(SEX IN ('M', 'F')))

Explanation: The check integrity constraint specifies which values are permit-
ted. Because CHECK is included within the definition of the column itself, only the
column SEX may occur in the condition. This is why this form is called a column
integrity constraint.

Example 21.14: Create another version of the PLAYERS table containing only
the columns PLAYERNO and BIRTH_DATE and take into account that all values
in the BIRTH_DATE column must be greater than 1 January 1920.

CREATE TABLE PLAYERS_Y
(PLAYERNO INTEGER NOT NULL,
BIRTH_DATE DATE NOT NULL

CHECK(BIRTH_DATE > '1920-01-01'))

If an integrity constraint is specified in which two or more columns of a table
are compared to each other, the column integrity constraint must be defined as a
table integrity constraint.

Example 21.15: Create another version of the PLAYERS table that contains
only the columns PLAYERNO, BIRTH_DATE, and JOINED and take into account
that all the values in the BIRTH_DATE column must be smaller than the values in
the JOINED column. In other words, a player can join the tennis club only after he
or she has been born.

CREATE TABLE PLAYERS_Z
(PLAYERNO SMALLINT NOT NULL,
BIRTH_DATE DATE,
JOINED SMALLINT NOT NULL,
CHECK(YEAR(BIRTH_DATE) < JOINED))

The specification NOT NULL is a special variant of the check integrity constraint.
Instead of NOT NULL, we can specify the following column integrity constraint for all
columns concerned: CHECK(COLUMN IS NOT NULL). However, we advise you to use
the null specification because MySQL checks this in a more efficient way.

Be sure that a combination of check integrity constraints does not mean that a
table (or column) can no longer be filled. MySQL does not check this. For example,
after the following statement, it is no longer possible to enter rows in the
PLAYERS_W table:

CREATE TABLE PLAYERS_W
(PLAYERNO SMALLINT,
BIRTH_DATE DATE NOT NULL,
JOINED SMALLINT NOT NULL,
CHECK(YEAR(BIRTH_DATE) < JOINED),
CHECK(BIRTH_DATE > '1920-01-01'),
CHECK(JOINED < 1880))

The scalar expressions we used in the check integrity constraints in the earlier
examples are all simple. However, MySQL allows more complex expressions.

Example 21.16: Create another version of the PLAYERS table containing only
the columns PLAYERNO and SEX and make sure that all values in the SEX col-
umn appear in the SEX column of the original PLAYERS table.

CREATE TABLE PLAYERS_V
(PLAYERNO SMALLINT NOT NULL,
SEX CHAR(1) NOT NULL

CHECK(SEX IN
(SELECT SEX FROM PLAYERS)))

Exercise 21.11: Define a check integrity constraint that guarantees that each
penalty amount in the PENALTIES table is greater than zero.

555CHAPTER 21 Specifying Integrity Constraints

Exercise 21.12: Define a check integrity constraint that guarantees that, in the
MATCHES table, the total number of sets won is always greater than the number of
sets lost, and make sure that the total is less than 6.

Exercise 21.13: Define a check integrity constraint that guarantees that, in the
COMMITTEE_MEMBERS table, the begin date is always less than the end date
and that the begin date must be after 31 December 1989.

21.7 NAMING INTEGRITY CONSTRAINTS

If an INSERT, UPDATE, or DELETE statement violates an integrity constraint, MySQL
returns an error message and rejects the update. One update can result in the viola-
tion of more than one integrity constraint. In that case, the application receives sev-
eral error messages. To indicate exactly which integrity constrains were violated, a
name can be assigned to each integrity constraint; the error message then includes
the name, to make the message more meaningful to the application.

If no names have been specified, MySQL comes up with a name itself. You can
see that in the catalog tables; see Section 21.9.

Example 21.17: Create the same DIPLOMAS table as in Example 21.2; how-
ever, the primary key should have a name this time.

CREATE TABLE DIPLOMAS
(STUDENT INTEGER NOT NULL,
COURSE INTEGER NOT NULL,
DDATE DATE NOT NULL,
SUCCESSFUL CHAR(1),
LOCATION VARCHAR(50),
CONSTRAINT PRIMARY_KEY_DIPLOMAS

PRIMARY KEY (STUDENT, COURSE, DDATE))

Assigning the name is done by specifying the name behind the word
CONSTRAINT in front of the integrity constraint (in this case, the primary key).

Example 21.18: Create the PLAYERS table and assign names to the primary
key and to the various check integrity constraints.

556 SQL for MySQL Developers

CREATE TABLE PLAYERS
(PLAYERNO INTEGER NOT NULL,
NAME CHAR(15) NOT NULL,
INITIALS CHAR(3) NOT NULL,
BIRTH_DATE DATE,
SEX CHAR(1) NOT NULL,
JOINED SMALLINT NOT NULL,
STREET VARCHAR(30) NOT NULL,
HOUSENO CHAR(4),
POSTCODE CHAR(6),
TOWN VARCHAR(30) NOT NULL,
PHONE CHAR(13),
LEAGUENO CHAR(4),
CONSTRAINT PRIMARY_KEY_PLAYERS

PRIMARY KEY(PLAYERNO),
CONSTRAINT JOINED

CHECK(JOINED > 1969),
CONSTRAINT POSTCODE_SIX_CHARACTERS_LONG

CHECK(POSTCODE LIKE '______'),
CONSTRAINT ALLOWED_VALUES_SEX

CHECK(SEX IN ('M', 'F')))

We recommend assigning names as often as possible when defining integrity
constraints, to more easily refer to them when deleting integrity constraints, for
example. This implies that we prefer the table integrity constraint to the column
integrity constraint because it is not possible to assign a name to the latter.

21.8 DELETING INTEGRITY CONSTRAINTS

If a table is deleted with a DROP TABLE statement, all integrity constraints are auto-
matically deleted. All foreign keys for which the table is the referenced table are
also deleted. With the ALTER TABLE statement, integrity constraints can be dropped
independently without dropping the table itself. Chapter 24, “Changing and Drop-
ping Tables,” describes this feature in detail.

21.9 INTEGRITY CONSTRAINTS AND THE CATALOG

INFORMATION_SCHEMA contains several tables in which we can find data on integrity
constraints. The TABLE_CONSTRAINTS table records which integrity constraints
have been defined on a table. The KEY_COLUMN_USAGE table indicates the
columns for which an integrity constraint has been defined. The REFERENTIAL_
CONSTRAINTS table stores foreign keys.

557CHAPTER 21 Specifying Integrity Constraints

21.10 ANSWERS

21.1 A primary key cannot contain null values. MySQL does not require that
NOT NULL be defined for each column belonging to a primary key. MySQL
will define the column as NOT NULL itself.

21.2 For each table, only one primary key can be defined, but it is not
mandatory.

21.3 CREATE TABLE MATCHES
(MATCHNO INTEGER NOT NULL,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON INTEGER NOT NULL,
LOST INTEGER NOT NULL,
PRIMARY KEY (MATCHNO))

or
CREATE TABLE MATCHES

(MATCHNO INTEGER NOT NULL PRIMARY KEY,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON INTEGER NOT NULL,
LOST INTEGER NOT NULL)

21.4 Column C4 in the definition of the primary key does not exist.

Column C1 is defined as the primary key twice; this is not permitted.

The first alternate key on the column C3 is a subset of the second on the
columns C2 and C3.

21.5 Foreign keys are defined to force MySQL to check that no incorrect data
can be entered in the tables.

21.6 The following updates are no longer permitted:

■ Deleting a player from the PLAYERS table is now permitted only if that
player has played no matches.

■ Updating a player number in the PLAYERS table is possible only if
that player has played no matches.

■ Deleting a team from the TEAMS table is now permitted only if no
matches have been played for that team.

■ Updating a team number in the TEAMS table is possible only if no
matches have been played for that team.

558 SQL for MySQL Developers

■ The foreign keys have not imposed any restrictions on inserting new
players into the PLAYERS table.

■ The foreign keys have not imposed any restrictions on inserting new
teams into the TEAMS table.

■ The foreign keys have not imposed any restrictions on deleting matches
from the MATCHES table.

■ Updating a player number in the MATCHES table is permitted only if
the new player number already occurs in the PLAYERS table.

■ Updating a team number in the MATCHES table is permitted only if
the new team number already occurs in the TEAMS table.

■ Inserting new matches in the MATCHES table is permitted only if the
new player number already occurs in the PLAYERS table and the new
team number already occurs in the TEAMS table.

21.7 If the referencing table and the referenced table are the same for the same
foreign key, we call this self-referential integrity.

21.8 Yes.

21.9 This is the same as the specification of ON UPDATE RESTRICT and ON

DELETE RESTRICT.

21.10 The following updates are no longer permitted:

■ Updating a player from the PLAYERS table is now permitted only if
that player has played no matches: ON UPDATE RESTRICT.

■ Deleting a player number in the PLAYERS table is allowed: ON DELETE
CASCADE.

■ Deleting a team from the TEAMS table is not permitted: ON DELETE
RESTRICT.

■ Updating a team number in the TEAMS table is allowed: ON UPDATE
CASCADE.

■ The foreign keys have not imposed any restrictions on inserting new
players into the PLAYERS table.

■ The foreign keys have not imposed any restrictions on inserting new
teams into the TEAMS table

■ The foreign keys have not imposed any restrictions on deleting matches
from the MATCHES table.

559CHAPTER 21 Specifying Integrity Constraints

■ Updating a player number in the MATCHES table is permitted only if
the new player number already occurs in the PLAYERS table.

■ Updating a team number in the MATCHES table is permitted only if
the new team number already occurs in the TEAMS table.

■ Inserting new matches in the MATCHES table is permitted only if the
new player number already occurs in the PLAYERS table and the new
team number already occurs in the TEAMS table.

21.11 CHECK(AMOUNT > 0)

21.12 CHECK(WON > LOST AND WON + LOST < 6)

21.13 CHECK(BEGIN_DATE BETWEEN '1990-01-01' AND
COALESCE(END_DATE, '9999-01-01'))

560 SQL for MySQL Developers

561

Character Sets and
Collations

C H A P T E R 2 2

22.1 INTRODUCTION

This book has described the concepts character sets and collation a few times. What
exactly do these concepts mean, and how does MySQL handle them? This chapter
addresses these topics.

Alphanumeric values consist of letters, digits, and special symbols. Before
these values can be stored, the letters, digits, and symbols must be converted into
numeric codes. Something like a translation table must be built that contains a
unique numeric code for each relevant character. Therefore, each character gets a
position in that translation table. Such a translation table is called a character set
in the SQL world. The literature sometimes uses the terms code character set and
character encoding.

For a character set, an encoding scheme must exist. The character set indicates
only that, for example, the uppercase letter A has the position 41 and that the lower-
case letter h has the position 68. But how will we store that in bytes? For each trans-
lation table, several encoding schemes can be invented; the more creative you are,
the more schemes you can come up with. At first, you always think of a fixed num-
ber of bits and bytes for each character. So for the storage of a character set consist-
ing of a maximum of 256 characters, we can decide to reserve 8 bits for each
character. But we could also decide to use flexible storage. For characters that
occur frequently, for example, we reserve 4 bits; for the others, we reserve 8 or 12.

Morse code also uses flexible lengths. In Morse, dots and dashes represent let-
ters. However, not every letter has the same number of dots or dashes. The letter e,
for example, is only one dash, whereas the c is built up from a dash, a dot, a dash,
and finally a dot—four symbols for one letter. Such a solution can also serve as an
encoding scheme for a character set.

So the encoding scheme contains information about how positions such as 1,
100, and 1,000 are stored on hard disk or in internal memory.

In MySQL, the concepts of character set and encoding scheme are seen as syn-
onyms. A character set is a combination of a translation table with an encoding
scheme.

Through the years, many character sets have been invented. The first standard-
ized character set was the American Standard Code for Information Interchange
(ASCII), and the American National Standards Institute (ANSI) defined its first ver-
sion in 1960. Another well-known character set is Extended Binary Coded Decimal
Interchange Code (EBCDIC), invented by IBM for its System 360 operating system.
It has been the standard on the IBM mainframes since 1964.

With ASCII, the number of characters was limited to a maximum of 256 (28)
characters. That used to be enough, but nowadays applications and their users
require much more. Applications must be capable of handling special letters such
as ß, D, Œ, and æ, as well as letters with all sorts of diacritics, such as ş, ũ, and ě.
And that is not to mention the languages in which other letters are used. Think
about languages from the Middle East and the Far East. In short, 256 positions are
no longer sufficient; character sets must be able to code thousands of different char-
acters. Unicode (short for Universal Code) is one of the most used new character
sets, but others also can hold large sets of characters.

Different encoding schemes exist for Unicode, including UTF-8, UTF-16, and
UTF-32. UTF stands for Unicode Transformation Format. These encoding schemes
vary in the minimum of number bytes they reserve for one character.

The concept of collation deals with the sort order or the grouping of the charac-
ters. If numeric values are sorted or compared, it is always obvious how that must
be done. The number 10 is smaller than the number 100, so 10 comes before 100
when sorted. Sorting and comparing alphanumeric values is not always that simple.
If we have to place the words Monkey and monkey in alphabetical order, which one
comes first, the spelling with the uppercase letter or the one with the lowercase let-
ter? If we sort on the positions of the characters, the spelling with the uppercase let-
ters comes first with character sets such as ASCII and Unicode. But is that what you
want? If so, does that mean that a user living in Georgia wants that as well? It
becomes even more difficult when we want to sort the Dutch words scène, schaaf,
and scepter. These words begin to differ only on the third letter. When we look at
the ASCII codes for these three letters, scepter comes first, then schaaf, and
finally scène. However, most users would like to see scepter and scène behind
each other. But then the question is, which of these two comes first?

To shed some light on this, the collation was added. If a character set is
assigned to a column, a collation can be specified; for one character set, several
collations can be relevant. A collation always belongs to only one character set.

562 SQL for MySQL Developers

22.2 AVAILABLE CHARACTER SETS AND COLLATIONS

During MySQL installation, a number of character sets is introduced. You can
retrieve this list by using a special SHOW statement or by querying a catalog table.

Example 22.1: Show the available character sets.

SHOW CHARACTER SET

or

SELECT CHARACTER_SET_NAME, DESCRIPTION,
DEFAULT_COLLATE_NAME, MAXLEN

FROM INFORMATION_SCHEMA.CHARACTER_SETS

The results of both statements are the same, except for the column names:

CHARSET DESCRIPTION DEFAULT COLLATION MAXLEN
------- --------------------------- ----------------- ------
big5 Big5 Traditional Chinese big5_chinese_ci 2
dec8 DEC West European dec8_swedish_ci 1
cp850 DOS West European cp850_general_ci 1
hp8 HP West European hp8_english_ci 1
koi8r KOI8-R Relcom Russian koi8r_general_ci 1
latin1 ISO 8859-1 West European latin1_swedish_ci 1
latin2 ISO 8859-2 Central European latin2_general_ci 1
swe7 7bit Swedish swe7_swedish_ci 1
ascii US ASCII ascii_general_ci 1
:
utf8 UTF-8 Unicode utf8_general_ci 3
ucs2 UCS-2 Unicode ucs2_general_ci 2
:
cp932 SJIS for Windows Japanese cp932_japanese_ci 2
eucjpms UJIS for Windows Japanese eucjpms_japanese_ci 3

Explanation: The column on the left contains the name of the character set. We
use this name in SQL statements to indicate which character set must be applied.
The second column contains a short description of each character set. The third
column contains the default collation of each character set. And on the complete
right side, you can find the maximum number of bytes reserved for a character. For
example, this is 3 bytes for the last one.

In the SELECT statement, the column names, not a *, have been specified to make
sure that the SELECT statement presents the columns in the same order as the SHOW
statement.

All available collations can be retrieved as well.

563CHAPTER 22 Character Sets and Collations

Example 22.2: Show the available collations for the character set utf8.

SHOW COLLATION LIKE 'utf8%'

or

SELECT *
FROM INFORMATION_SCHEMA.COLLATIONS
WHERE COLLATION_NAME LIKE 'utf8%'

The results of both statements are the same, except for the column names:

COLLATION CHARSET ID DEFAULT COMPILED SORTLEN
------------------ ------- --- ------- -------- -------
utf8_general_ci utf8 33 Yes Yes 1
utf8_bin utf8 83 Yes 1
utf8_unicode_ci utf8 192 Yes 8
utf8_icelandic_ci utf8 193 Yes 8
utf8_latvian_ci utf8 194 Yes 8
utf8_romanian_ci utf8 195 Yes 8
utf8_slovenian_ci utf8 196 Yes 8
utf8_polish_ci utf8 197 Yes 8
utf8_estonian_ci utf8 198 Yes 8
utf8_spanish_ci utf8 199 Yes 8
utf8_swedish_ci utf8 200 Yes 8
utf8_turkish_ci utf8 201 Yes 8
utf8_czech_ci utf8 202 Yes 8
utf8_danish_ci utf8 203 Yes 8
utf8_lithuanian_ci utf8 204 Yes 8
utf8_slovak_ci utf8 205 Yes 8
utf8_spanish2_ci utf8 206 Yes 8
utf8_roman_ci utf8 207 Yes 8
utf8_persian_ci utf8 208 Yes 8

Explanation: The column on the left contains the names of the collations that we
can use in SQL statements. The second column contains the name of the character
set to which the collation belongs. ID contains a unique number of the sequence.
The DEFAULT column indicates whether the collation is the default for this char-
acter set. The last two columns we ignore.

22.3 ASSIGNING CHARACTER SETS TO COLUMNS

Each alphanumeric column has a character set. When a table is created, a charac-
ter set can explicitly be assigned to each column. For this, a data type option is
used.

564 SQL for MySQL Developers

Example 22.3: Create a new table with two alphanumeric columns and assign
the character set ucs2 to both.

CREATE TABLE TABUCS2
(C1 CHAR(10) CHARACTER SET ucs2

NOT NULL PRIMARY KEY,
C2 VARCHAR(10) CHARACTER SET ucs2)

Explanation: The character set is included as data type option and, therefore, is
placed after the data type and in front of the null specification and primary key. You
may enter the name of the character set in uppercase or lowercase letters. You may
also specify the name as an alphanumeric literal. CHARACTER SET may be abbrevi-
ated to CHAR SET or CHARSET.

Columns belonging to the same table can have different character sets. This can be
useful for registering a company name in different languages, for example.

If a character set has not explicitly been defined for a column, the default char-
acter set is used.

Example 22.4: Create a new table with two alphanumeric columns, do not assign
a character set, and look in the catalog tables next to see what the default character
set is.

CREATE TABLE TABDEFKARSET
(C1 CHAR(10) NOT NULL,
C2 VARCHAR(10))

SELECT COLUMN_NAME, CHARACTER_SET_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'TABDEFKARSET'

The result is:

COLUMN_NAME CHARACTER_SET_NAME
----------- ------------------
C1 latin1
C2 latin1

The default character set is latin1 for both columns. But where exactly has that
default been defined? A default character set can be defined on three levels, on the
table, database, or database server level. Section 20.10 describes the table options,
one of which is the character set. The CHARACTER SET table option specifies the
default character set.

565CHAPTER 22 Character Sets and Collations

Example 22.5: Create a new table with two alphanumeric columns and define
utf8 as the default character set.

CREATE TABLE TABUTF8
(C1 CHAR(10) NOT NULL,
C2 VARCHAR(10))

DEFAULT CHARACTER SET utf8

SELECT COLUMN_NAME, CHARACTER_SET_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'TABUTF8'

The result is:

COLUMN_NAME CHARACTER_SET_NAME
----------- ------------------
C1 utf8
C2 utf8

If no default character set has been defined for a table, MySQL checks whether
one has been defined on the database level.

Each created database has a default character set, which is latin1 if nothing
has been specified. Chapter 27, “Creating Databases,” shows how you can specify
and change this default character set.

Every time the MySQL database server is started, a file is read. On Windows,
this file is called my.ini; on Linux, it is my.cnf. This file contains the values for
some parameters, one of which is the default character set. So this is the third level
on which a character set can be defined. If a default character set is missing on the
table or database level, this character set is used.

Character sets that have been assigned once explicitly do not change if we
change the default of the table, database, or database server later.

Exercise 22.1: Are the internal byte codes of two characters belonging to the
same character set but with different collations equal?

Exercise 22.2: Show the SELECT statement with which the number of collations
for each character set can be determined.

22.4 ASSIGNING COLLATIONS TO COLUMNS

Each column should also have a collation. If this has not been specified, MySQL
uses the default collation that belongs to the character set. The next example shows
how such a default collation of a character set can be retrieved.

566 SQL for MySQL Developers

Example 22.6: Get the collations of the columns of the tables created in Exam-
ples 22.3 and 22.4.

SELECT TABLE_NAME, COLUMN_NAME, COLLATION_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME IN ('TABUCS2', 'TABDEFKARSET')

The result is:

TABLE_NAME COLUMN_NAME COLLATION_NAME
------------ ----------- -----------------
tabdefkarset C1 latin1_swedish_ci
tabdefkarset C2 latin1_swedish_ci
tabucs2 C1 ucs2_general_ci
tabucs2 C2 ucs2_general_ci

Of course, it is possible to explicitly specify a collation with the data type
option COLLATE.

Example 22.7: Create a new table with two alphanumeric columns, define utf8
as the character set, and use two different collations.

CREATE TABLE TABCOLLATE
(C1 CHAR(10)

CHARACTER SET utf8
COLLATE utf8_romanian_ci NOT NULL,

C2 VARCHAR(10)
CHARACTER SET utf8
COLLATE utf8_spanish_ci)

SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'TABCOLLATE'

The result is:

COLUMN_NAME CHARACTER_SET_NAME COLLATION_NAME
----------- ------------------ ----------------
C1 utf8 utf8_romanian_ci
C2 utf8 utf8_spanish_ci

Explanation: The name of the collation may also be written in uppercase letters
and may be placed between brackets. If a character set and a collation are speci-
fied, the character set should go first.

If all alphanumeric columns of a table need to have the same collation, a default
collation can be defined for the entire table. Even though the character sets have
their own collations, that of the table still takes priority.

567CHAPTER 22 Character Sets and Collations

Example 22.8: Create a new table with two alphanumeric columns and define
utf8 as character set and utf8_romanian_ci as the collation.

CREATE TABLE TABDEFCOL
(C1 CHAR(10) NOT NULL,
C2 VARCHAR(10))

CHARACTER SET utf8
COLLATE utf8_romanian_ci

SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'TABDEFCOL'

The result is:

COLUMN_NAME CHARACTER_SET_NAME COLLATION_NAME
----------- ------------------ ----------------
C1 utf8 utf8_romanian_ci
C2 utf8 utf8_romanian_ci

It is also possible to specify a default collation on the database level; see Chap-
ter 27.

22.5 EXPRESSIONS WITH CHARACTER SETS AND

COLLATIONS

The character set and the collation play a big part in the processing of alphanu-
meric expressions. Especially when making comparisons and sorting data, MySQL
must include the character sets and collation of the expressions concerned. You
may not compare two alphanumeric values belonging to two different collations. We
can conclude that two expressions with two different character sets cannot be com-
pared either because, by definition, they have different collations.

Example 22.9: Create a new table with two columns based upon different char-
acter sets.

568 SQL for MySQL Developers

CREATE TABLE TWOCHARSETS
(C1 CHAR(10) CHARACTER SET 'latin1' NOT NULL,
C2 VARCHAR(10) CHARACTER SET 'hp8')

INSERT INTO TWOCHARSETS VALUES ('A', 'A')

SELECT *
FROM TWOCHARSETS
WHERE C1 = C2

MySQL returns an error message when processing this SELECT.

Example 22.10: Create a new table with two columns based upon the same
character set, but with different collations.

CREATE TABLE TWOCOLL
(C1 CHAR(10) COLLATE 'latin1_general_ci' NOT NULL,
C2 VARCHAR(10) COLLATE 'latin1_danish_ci')

INSERT INTO TWOCOLL VALUES ('A', 'A')

SELECT *
FROM TWOCOLL
WHERE C1 = C2

Explanation: Both the columns C1 and C2 have the character set latin1 (the
default of the database), but their collations differ; as a result, comparisons, such as
in the earlier SELECT statement, will lead to error messages.

To be able to compare two values with different collations, we could change the col-
lation of one. We would then specify the term COLLATE behind the column con-
cerned, followed by the name of the sequence:

SELECT *
FROM TWOCOLL
WHERE C1 COLLATE latin1_danish_ci = C2

Because of this, the definition of the alphanumeric expression is extended
somewhat:

569CHAPTER 22 Character Sets and Collations

D E F I N I T I O N
<alphanumeric expression> ::=

<alphanumeric scalar expression> |
<alphanumeric row expression> |
<alphanumeric table expression>

<alphanumeric scalar expression> ::=
<singular alphanumeric scalar expression>

COLLATE <collation name> |
<compound alphanumeric scalar expression>

<alphanumeric singular scalar expression> ::=
_<character set name> <alphanumeric literal> |
<alphanumeric column specification> |
<alphanumeric user variable> |
<alphanumeric system variable> |
<alphanumeric cast expression> |
<alphanumeric case expression> |
NULL |
(<alphanumeric scalar expression>) |
<alphanumeric scalar function> |
<alphanumeric aggregation function> |
<alphanumeric scalar subquery>

Clearly, we can specify only a collation that belongs to the character set of the
column or expression. The following statement also returns an error message
because utf8_general_ci is not a collation that belongs to latin1:

SELECT *
FROM TWOCOLL
WHERE C1 COLLATE utf8_general_ci = C2

What exactly is the character set of an alphanumeric literal? If nothing is spec-
ified, that is the default character set of the database. If we want to assign a literal
another character set, we should place the name of the character set in front of the
literal. And in front of that name, the underscore symbol must be placed.

Example 22.11: Present the word database in the utf8 character set.

SELECT _utf8'database'

To retrieve the collation of a certain expression, we added the COLLATE function.

Example 22.12: Get the collation of the expressions _utf8'database' and
_utf8'database' COLLATE utf8_bin and of the NAME column of the PLAYERS
table.

570 SQL for MySQL Developers

SELECT COLLATION(_utf8'database'),
COLLATION(_utf8'database' COLLATE utf8_bin),
COLLATION((SELECT MAX(NAME) FROM PLAYERS))

The result is:

COLLATION(_utf8'database') COLLATION(...) COLLATION(...)
-------------------------- -------------- -----------------
utf8_general_ci utf8_bin latin1_swedish_ci

With the CHARSET function, we retrieve the character set.

Example 22.13: Get the character sets of the expression _utf8'database' and
of the NAME column of the PLAYERS table.

SELECT CHARSET(_utf8'database'),
CHARSET((SELECT MAX(NAME) FROM PLAYERS))

The result is:

CHARSET(_utf8'database') CHARSET((...))
------------------------ --------------
utf8 latin1

Exercise 22.3: How does a comparison look in which two alphanumeric expres-
sions with the same character set but with different collations are compared on the
basis of a third collation?

22.6 SORTING AND GROUPING WITH COLLATIONS

COLLATE may also be used in ORDER BY clauses to specify a sorting on another
collation.

Example 22.14: Sort the two names Muller and Müller with two different colla-
tions: latin1_swedish_ci and latin1_german2_ci.

SELECT _latin1'Muller' AS NAME
UNION
SELECT CONCAT('M', _latin1 x'FC', 'ller')
ORDER BY NAME COLLATE latin1_swedish_ci

571CHAPTER 22 Character Sets and Collations

The result is:

NAME

Muller
Müller

Explanation: The first select block returns the name Muller with the character
set latin1; the second select block returns the name Müller. When we change the
collation to latin1_german2_ci in this statement, the two rows are flipped in
sequence, as the following result shows:

NAME

Müller
Muller

For the grouping of data, a check is done to see whether values in a column are
equal. If that is the case, they are joined in one group. If the column contains
alphanumeric values, the collation plays a big part. In one collation, two different
characters might be seen as equal; in another sequence, they might be considered
unequal.

Example 22.15: Create a table in which the characters e, é, and ë are stored.

CREATE TABLE LETTERS
(SEQNO INTEGER NOT NULL PRIMARY KEY,
LETTER CHAR(1) CHARACTER SET UTF8 NOT NULL)

INSERT INTO LETTERS VALUES (1, 'e'), (2, 'é'),(3, 'ë')

SELECT LETTER, COUNT(*)
FROM (SELECT LETTER COLLATE latin2_czech_cs AS LETTER

FROM LETTERS) AS LATIN2_CZECH_LETTERS
GROUP BY LETTER

The result is:

LETTER COUNT(*)
------ --------
e 1
é 1
ë 1

572 SQL for MySQL Developers

Explanation: In the subquery, all letters are converted into the latin2_czech_cs
collation. The result shows that all letters are considered to be nonequal. If we
change the collation, we get another result:

SELECT LETTER, COUNT(*)
FROM (SELECT LETTER COLLATE latin2_croatian_ci AS LETTER

FROM LETTERS) AS LATIN2_CROATIAN_LETTERS
GROUP BY LETTER

The result is:

LETTER COUNT(*)
------ --------
e 3

Now all three characters form one group and are grouped together. So be care-
ful when you group and sort alphanumeric values when collations are involved.

Exercise 22.4: Determine the character set and collation of the TOWN column
in the PLAYERS table.

Exercise 22.5: Sort the players on the basis of the TOWN column but use a col-
lation other than the one in the previous exercise.

22.7 THE COERCIBILITY OF EXPRESSIONS

For many expressions and statements, MySQL can decide which collation must be
used. For example, if we sort the values of a column or we compare a column with
itself, the collation of the relevant column is used; see the following example.

Example 22.16: Use the LETTERS table from Example 22.15, and sort this
table on the LETTER column.

SELECT LETTER
FROM LETTERS
ORDER BY LETTER

Which collation is used if we compare values that are of the same character set
but that have different collations? MySQL solves this problem by means of the
coercibility. Each expression has a coercibility value between 0 and 5. If two expres-
sions are compared with different coercibility values, the collation of the expression
with the lowest coercibility value is selected. These are the rules for coercibility:

573CHAPTER 22 Character Sets and Collations

■ If an explicit collation is assigned to an expression, the coercibility is equal
to 0.

■ The concatenation of two alphanumeric expressions with different collations
gives a coercibility equal to 1.

■ The coercibility of a column specification is 2.

■ The value of functions such as USER() and VERSION() has a coercibility of 3.

■ The coercibility of an alphanumeric literal is 4.

■ The null value of an expression that has a null value as a result, has 5 as
coercibility.

For the comparison COLUMN1 = 'e', the column specification COLUMN1 has a
coercibility of 2, and the literal has a coercibility of 4. This implies that MySQL will
use the collation of the column specification.

You can retrieve the coercibility of an expression with the COERCIBILITY
function.

Example 22.17: Get the coercibility value of several expressions.

SELECT COERCIBILITY('Rick' COLLATE latin1_general_ci) AS C0,
COERCIBILITY(TEAMNO) AS C2,
COERCIBILITY(USER()) AS C3,
COERCIBILITY('Rick') AS C4,
COERCIBILITY(NULL) AS C5

FROM TEAMS
WHERE TEAMNO = 1

The result is:

C0 C2 C3 C4 C5
-- -- -- -- --
0 2 3 4 5

22.8 RELATED SYSTEM VARIABLES

Various system variables have a relationship with character sets and collations.
Table 22.1 contains their names and the corresponding explanations.

574 SQL for MySQL Developers

TABLE 22.1 System Variables for Character Sets and Collations

575CHAPTER 22 Character Sets and Collations

SYSTEM VARIABLE EXPLANATION

CHARACTER_SET_CLIENT The character set of the statements sent from the
client to the server.

CHARACTER_SET_CONNECTION The character set of the client/server connection.

CHARACTER_SET_DATABASE The default character set of the current database.
The value of this variable can change every time the
USE statement is used to “jump” to another database.
If there is no current database, this variable has the
value of the CHARACTER_SET_SERVER variable.

CHARACTER_SET_RESULTS The character set of the end results of SELECT state-
ments that are sent from the server to the client.

CHARACTER_SET_SERVER The default character set of the server.

CHARACTER_SET_SYSTEM The character set of the system. This character set is
used for the names of database objects, such as
tables and columns, but also for the names of func-
tions that are stored in the catalog tables. The value
of this variable is always equal to utf8.

CHARACTER_SET_DIR The name of the directory in which the files with all
the character sets are registered.

COLLATION_CONNECTION The character set of the current connection.

COLLATION_DATABASE The default collation of the current database. The
value of this variable can change every time the USE
statement is used to “jump” to another database. If
there is no current database, this variable has the
value of the COLLATION_SERVER variable.

COLLATION_SERVER The default collation of the server.

Besides CHARACTER_SET_DIR, the value of each of these system variables can be
retrieved with the help of @ symbols within SQL statements.

Example 22.18: Give the value of the default collation of the current database.

SELECT @@COLLATION_DATABASE

The result is:

@@COLLATION_DATABASE

latin1_swedish_ci

Example 22.19: Give the values of the system variables whose names begin with
CHARACTER_SET.

SHOW VARIABLES LIKE 'CHARACTER_SET%'

The result is:

VARIABLE_NAME VALUE
------------------------ -----------------------------------
character_set_client latin1
character_set_connection latin1
character_set_database latin1
character_set_results latin1
character_set_server latin1
character_set_system utf8
character_sets_dir C:\Program Files\MySQL\MySQL Server

5.0\share\charsets/

22.9 CHARACTER SETS AND THE CATALOG

In the catalog called INFORMATION_SCHEMA, we can find information on character
sets in the CHARACTER_SETS table and on collations in the COLLATIONS
tables. The COLLATION_CHARACTER_SET_APPLICABILITY table indicates
which character set belongs to which collation.

22.10 ANSWERS

22.1 The internal byte codes are not equal then.

22.2 SELECT CHARACTER_SET_NAME, COUNT(*)
FROM INFORMATION_SCHEMA.COLLATIONS
GROUP BY CHARACTER_SET_NAME

22.3 EXPRESSION1 COLLATE utf8 = EXPRESSION2 COLLATE utf8

22.4 SELECT CHARSET((SELECT MAX(TOWN) FROM PLAYERS)),
COLLATION((SELECT MAX(TOWN) FROM PLAYERS))

22.5 SELECT TOWN
FROM PLAYERS
ORDER BY TOWN COLLATE latin1_danish_ci

576 SQL for MySQL Developers

577

The ENUM and SET Types
C H A P T E R 2 3

23.1 INTRODUCTION

Two special data types have not been discussed at all in this book: ENUM (enumera-
tion) and SET. Both data types can be used if the number of values that a column
may contain is restricted. For example, in the SEX column of the PLAYERS table,
only two values may be entered: M or F. And in the POSITION column of the
COMMITTEE_MEMBERS table, only the values Member, Secretary, Treasurer, or
Chairman may appear. For both columns, the number of permitted values is
restricted. This differs from columns such as PLAYERNO and AMOUNT, which
must fulfill certain conditions but ultimately may contain all kinds of values.

The way the PLAYERS and COMMITTEE_MEMBERS tables have been defined
now makes it possible to store all kinds of values also in the columns mentioned.
Nothing keeps us from entering the sex X or the function Warehouseman. We could let
MySQL check whether the value entered is correct with the help of the data types
ENUM and SET. For columns with these two data types, the set of permitted values has
been defined. The difference between the two is that with ENUM, only one value can be
chosen; with SET (the word already indicates it), this can be more than one.

D E F I N I T I O N
<data type> ::=

<numeric data type> [<numeric data type option>...] |
<alphanumeric data type> [<alphanumeric data type option>] |
<temporal data type> |
<blob data type> |
<geometric data type> |
<complex data type>

<complex data type> ::=
ENUM (<alphanumeric expression list>) |
SET (<alphanumeric expression list>)

<alphanumeric expression list> ::=
<alphanumeric scalar expression>

[, <alphanumeric scalar expression>]...

23.2 THE ENUM DATA TYPE

When defining a column with an ENUM data type, the list of permitted values is
given.

Example 23.1: Create a special variant of the PLAYERS table in which only the
columns PLAYERNO, NAME, INITIALS, BIRTH_DATE, and SEX are included.
The SEX column may contain only two values: M and F.

CREATE TABLE PLAYERS_SMALL
(PLAYERNO INTEGER NOT NULL PRIMARY KEY,
NAME CHAR(15) NOT NULL,
INITIALS CHAR(3) NOT NULL,
BIRTH_DATE DATE,
SEX ENUM ('M','F'))

Explanation: Behind the term ENUM, all legal values are specified between brackets.
A maximum of 65,536 can be entered. This example uses alphanumeric literals, but
more complex expressions are also allowed. Note that all expressions must have an
alphanumeric data type.

You cannot adjust the set of permitted values later; you must remove the existing
table with a DROP TABLE statement and build it again afterward, or you must remove
the column and then it add again.

578 SQL for MySQL Developers

Example 23.2: Add several rows to the PLAYERS_SMALL table (see Example
23.1) and show the contents of the table next.

INSERT INTO PLAYERS_SMALL
VALUES (24, 'Jones', 'P', '1985-04-22', 'M')

INSERT INTO PLAYERS_SMALL
VALUES (25, 'Marx', 'L', '1981-07-01', 'F')

INSERT INTO PLAYERS_SMALL
VALUES (111, 'Cruise', 'T', '1982-11-11', 'm')

INSERT INTO PLAYERS_SMALL
VALUES (199, 'Schroder', 'L', '1970-02-12', 'X')

INSERT INTO PLAYERS_SMALL
VALUES (201, 'Lie', 'T', '1972-02-12', NULL)

SELECT * FROM PLAYERS_SMALL

The result is:

PLAYERNO NAME INITIALS BIRTH_DATE SEX
-------- -------- -------- ---------- ---

24 Jones P 1985-04-22 M
25 Marx L 1981-07-01 F
111 Cruise T 1982-11-11 M
199 Schroder L 1970-02-12
201 Lie T 1972-02-12 ?

Explanation: The table stores the first two rows introduced with INSERT state-
ments without a problem. In the third row, the value of the SEX column is not an
uppercase letter. MySQL converts the letter into a capital itself, so the value is pre-
sented in an uppercase letter. Value X in row four is not allowed. MySQL adds the
row nevertheless and returns no error message, but it stores a special value, called
the error value. In the result, it looks like a blank. The fifth row has been added to
show that null values can be entered explicitly (provided that the column has not
been defined as NOT NULL).

MySQL does not store the values M and F internally. It assigns a sequence number
to each value from the list of permitted values. The first value (M, in our example)
gets sequence number 1, the second 2, and so on. We can see these internal values
if we include the column with the ENUM data type in a numeric expression.

579CHAPTER 23 The ENUM and SET Types

Example 23.3: For each row from the PLAYERS_SMALL table, get the player
number, SEX column, and internal value of that column.

SELECT PLAYERNO, SEX, SEX * 1
FROM PLAYERS_SMALL

The result is:

PLAYERNO SEX SEX * 1
-------- --- -------

24 M 1
25 F 2
111 M 1
199 0
201 ? ?

Explanation: Because the SEX column occurs in a numeric expression, MySQL
assumes that the internal value is used for a calculation. The first three rows con-
tain the internal values of, respectively, M, F, and again M. The error value remains
equal to zero, which you can see clearly now. In the last row, the null value just
remains the null value.

When ENUM values are compared and sorted, MySQL works with the internal values.
Sometimes this leads to unexpected results. The internal value of M equals 1, and
that of F is 2. Sorting would put the males at the beginning of the list, and that is
probably not what you want.

Example 23.4: For each row from the PLAYERS_SMALL table, get the player
number and sex; sort the result on sex.

SELECT PLAYERNO, SEX
FROM PLAYERS_SMALL
ORDER BY SEX

The result is:

PLAYERNO SEX
-------- ---

201 ?
199
25 F
24 M
111 M

580 SQL for MySQL Developers

Explanation: In this result, the females are placed before the males. However,
this is not because the F comes before the M in alphabetical order; it is the result of
sorting on those internal values. Therefore, it is important that the values in the list
be specified in the correct order.

Chapter 21, “Specifying Integrity Constraints,” describes the check integrity con-
straints. As mentioned, this category of integrity constraints can already be entered,
but MySQL is not capable of checking them yet. A future version of MySQL will
remedy that; we recommend that you avoid using the ENUM data type to prepare for
this. Instead, use a normal alphanumeric data type and add a check integrity con-
straint. The first reason for this is that when values are sorted and compared, the
behavior of MySQL will probably be more like you would expect. The second rea-
son is that no other SQL products support the ENUM data type, whereas many support
the check integrity constraint.

Another way to limit the set of permitted values of a column is to create a sepa-
rate table consisting of one column in which all those permitted values are stored.
Additionally, the original ENUM column must be defined as a foreign key pointing
to this new table; see the following example.

Example 23.5: Create a separate table for the registration of the permitted
values of the SEX column.

CREATE TABLE SEXES
(SEX CHAR(1) NOT NULL PRIMARY KEY)

INSERT INTO SEXES VALUES ('M'),('F')

CREATE TABLE PLAYERS_SMALL2
(PLAYERNO INTEGER NOT NULL PRIMARY KEY,
NAME CHAR(15) NOT NULL,
INITIALS CHAR(3) NOT NULL,
BIRTH_DATE DATE,
SEX CHAR(1),
FOREIGN KEY (SEX) REFERENCES SEXES (SEX))

This approach has a dual advantage. First, standard SQL is used now. Second,
it is easier to extend the list of permitted values without having to delete a table
temporarily.

Exercise 23.1: Create the MATCHES table again and make sure that the
columns WON and LOST can contain only the values 0, 1, 2, and 3.

581CHAPTER 23 The ENUM and SET Types

Exercise 23.2: Determine the result of the following INSERT statement:

1. INSERT INTO MATCHES VALUES (1,1,27,'1','2')

2. INSERT INTO MATCHES VALUES (2,1,27,'4','2')

3. INSERT INTO MATCHES VALUES (3,1,27,'','2')

4. INSERT INTO MATCHES VALUES (4,1,27,NULL,'2')

23.3 THE SET DATA TYPE

The SET data type looks like the ENUM data type. A list of permitted values is speci-
fied here as well. However, the difference is that a column with the SET data type
can contain more than one value from the list. Normally, we store in a specific row
only one value per column. For example, a player has only one name, one town, and
one year of birth. The SET data type makes it possible to record in a row multiple
values in one column. That way, we can store, for example, several phone numbers
of a player without having to create a separate table. The SET data type can also be
used when a team can play in several divisions. However, this data type can be used
only if the number of permitted values is not too large because a column with a SET
data type can contain a maximum of 64 values only.

Example 23.6: Imagine that teams can play in more than one division; four divi-
sions exist called first, second, third, and fourth.

CREATE TABLE TEAMS_NEW
(TEAMNO INTEGER NOT NULL PRIMARY KEY,
PLAYERNO INTEGER NOT NULL,
DIVISION SET ('first','second','third','fourth'))

Explanation: Behind the word SET, the permitted values have been specified
between brackets. These must always be alphanumeric expressions, so even if the
permitted values are a series of numbers, they must be written as alphanumeric
literals.

The permitted values are sometimes called the elements. Here, the list of permitted
values in the DIVISION column consists of four elements.

When rows are added to a table, special rules govern the formulation of the ele-
ments of a SET data type. These elements must be specified as one alphanumeric
value and must be separated by quotation marks.

582 SQL for MySQL Developers

Example 23.7: Add several rows to the TEAMS_NEW table and show the con-
tents of the table next.

INSERT INTO TEAMS_NEW VALUES (1, 27, 'first')

INSERT INTO TEAMS_NEW VALUES (2, 27, 'first,third')

INSERT INTO TEAMS_NEW VALUES (3, 27, 'first,third,sixth')

INSERT INTO TEAMS_NEW VALUES (4, 27, 'first,fifth')

INSERT INTO TEAMS_NEW VALUES (5, 27, NULL)

INSERT INTO TEAMS_NEW VALUES (6, 27, 7)

INSERT INTO TEAMS_NEW VALUES (7, 27, CONV(1001,2,10))

SELECT * FROM TEAMS_NEW

The result is:

TEAMNO PLAYERNO DIVISION
------ -------- ------------------

1 27 first
2 27 first,third
3 27 first,third
4 27 first
5 27 ?
6 27 first,second,third
7 27 first,fourth

Explanation: In the first row, a team is added that plays in only one division: the
first league. The team in the second row plays in two divisions. Notice that the two
values have been specified not as two separate literals, but as one—therefore, as
'first,third' and not as 'first', 'third'. The third row contains the incorrect
value sixth. This value is simply ignored. In the fifth row, the null value has been
entered; as a result, that team does not play for a single division. The last two rows
need some explanation. As with the ENUM data type, the actual values are not stored
but exist as a string of 64 bits. In this string, the first bit (counted from the right
side) is 1 if the first value occurs in this column; otherwise, it is 0. The second bit to
the right is 1 if the second value occurs in the set, and so on. The bit pattern for the
division of team 1 is, therefore 1; the bit pattern for team 2 is 101 (first and third);
and the bit pattern for team 7 is 1001 (first and fourth). So by adding the number 7
in row 6, we add the bit pattern 111, and that means the divisions first, second, and
third. In row 7, we add the bit pattern 1001, and that means the second and fifth val-
ues, or the first and fourth divisions.

583CHAPTER 23 The ENUM and SET Types

Example 23.8: Show the internal values of the DIVISION column in the
TEAMS_NEW table.

SELECT TEAMNO, DIVISION * 1, BIN(DIVISION * 1)
FROM TEAMS_NEW

The result is:

TEAMNO DIVISION * 1 BIN(DIVISION * 1)
------ ------------ -----------------

1 1 1
2 5 101
3 5 101
4 1 1
5 ? ?
6 7 111
7 9 1001

Explanation: By multiplying the DIVISION column by 1, we show the numeric
internal value of this column. With the BIN function, we can convert a decimal
value into the binary equivalent and can see the bit pattern that MySQL uses.

Note that this bit pattern can be very long.

Example 23.9: Create a table with one column that can store only the numbers 1
up to and including 40.

CREATE TABLE SERIES_NUMBERS
(NUMBERS SET

('1','2','3','4','5','6','7','8','9','10',
'11','12','13','14','15','16','17','18','19','20',
'21','22','23','24','25','26','27','28','29','30',
'31','32','33','34','35','36','37','38','39','40'))

INSERT INTO SERIES_NUMBERS VALUES ('1'),('20'),('40')

SELECT NUMBERS, BIN(NUMBERS * 1)
FROM SERIES_NUMBERS

The result is:

NUMBERS BIN(NUMBERS * 1)
------- --

1 1
20 10000000000000000000
40 1000000000000000000000000000000000000000

584 SQL for MySQL Developers

Example 23.10: Add two new rows to the TEAMS_NEW table and show the
contents of the table next.

INSERT INTO TEAMS_NEW VALUES (8, 27, 'eighth')

INSERT INTO TEAMS_NEW VALUES (9, 27, '')

SELECT TEAMNO, DIVISION, DIVISION * 1, BIN(DIVISION * 1)
FROM TEAMS_NEW
WHERE TEAMNO IN (8, 9)

The result is:

TEAMNO DIVISION DIVISION * 1 BIN(DIVISION * 1)
------ -------- ------------ -----------------

8 0 0
9 0 0

Explanation: Both rows contain values that do not belong to the list of permitted
values. Furthermore, both rows do not contain correct values; 'eighth' and the
empty alphanumeric literal are not valid values. When not one correct value has
been entered, the value 0 is stored. This means that there are no correct values for
that team.

If in an INSERT statement duplicate values have been specified, MySQL will auto-
matically delete them.

When retrieving information about teams on the basis of specific divisions, you
must formulate the conditions very carefully.

Example 23.11: Get the numbers of the teams that play in the first division.

SELECT TEAMNO
FROM TEAMS_NEW
WHERE DIVISION = 'first'

The result is:

TEAMNO

1
4

Explanation: MySQL returns only those teams that play in the first division. For
example, team 3 plays in the first division, but it is not included in the end result

585CHAPTER 23 The ENUM and SET Types

because this team also plays in the third division. With the condition DIVISION =
'first,third', we find all the teams that play in the first and in the third divisions,
but not in any other.

For many queries, we have to use so-called bit operators; see Section 5.13.1.

Example 23.12: Get the numbers and divisions of all teams that play in at least
the third division.

SELECT TEAMNO, DIVISION
FROM TEAMS_NEW
WHERE DIVISION & POWER(2,3-1) = POWER(2,3-1)

The result is:

TEAMNO DIVISION
------ --------------------

2 first,third
3 first,third
6 first,second,third

Explanation: With the POWER function, we can determine the decimal value of the
third division. The third division is the third element. This gives the decimal value
4, and that equals the bit pattern 100. Next, the & operator (or the AND operator)
checks whether the value of the DIVISION column on the third position to the right
contains a 1.

For a better reading of the statement, we have used the POWER function here; it
stands out more clearly now that we are looking for the row where position 3 has
been filled. The same result can be achieved with the condition DIVISION &

CONV(100,2,10) = CONV(100,2,10). Here 100 is the binary value of 4. However, the
statement is processed faster if these functions are replaced by the literal 4.

Example 23.13: Get the numbers and divisions of all teams playing in the first
and fourth divisions.

SELECT TEAMNO, DIVISION
FROM TEAMS_NEW
WHERE DIVISION & 9 = 9

The result is:

TEAMNO DIVISION
------ ------------

7 first,fourth

586 SQL for MySQL Developers

Explanation: The code 9 is used here because the first division has the bit pat-
tern 1 and the fourth division has the bit pattern 1000 (or 8). The sum of these two
numbers is 9.

Example 23.14: For each team, get the team number and number of elements in
the DIVISION column.

SELECT TEAMNO,
LENGTH(REPLACE(CONV((DIVISION * 1),10,2),'0',''))
AS NUMBER

FROM TEAMS_NEW

The result is:

TEAMNO NUMBER
------ ------

1 1
2 2
3 2
4 1
5 ?
6 3
7 2
8 0
9 0

Explanation: You can use the REPLACE function to delete all zeroes from the bit
pattern, and you can add the remaining ones with the LENGTH function. The number
of ones represents the number of divisions.

Example 23.15: Create a report that displays the teams on a vertical axis and
the divisions in which they play on a horizontal axis.

SELECT TEAMNO,
CASE WHEN (DIVISION & POWER(2,1-1) = POWER(2,1-1)) = 1

THEN 'YES' ELSE 'NO' END AS FIRST,
CASE WHEN (DIVISION & POWER(2,2-1) = POWER(2,2-1)) = 1

THEN 'YES' ELSE 'NO' END AS SECOND,
CASE WHEN (DIVISION & POWER(2,3-1) = POWER(2,3-1)) = 1

THEN 'YES' ELSE 'NO' END AS THIRD,
CASE WHEN (DIVISION & POWER(2,4-1) = POWER(2,4-1)) = 1

THEN 'YES' ELSE 'NO' END AS FOURTH
FROM TEAMS_NEW

587CHAPTER 23 The ENUM and SET Types

The result is:

TEAMNO FIRST SECOND THIRD FOURTH
------ ----- ------ ----- ------

1 YES NO NO NO
2 YES NO YES NO
3 YES NO YES NO
4 YES NO NO NO
5 NO NO NO NO
6 YES YES YES NO
7 YES NO NO YES
8 NO NO NO NO
9 NO NO NO NO

Example 23.16: For each combination of divisions available, get the number of
teams that belong to it.

SELECT DIVISION, COUNT(*)
FROM TEAMS_NEW
WHERE DIVISION > 0
OR DIVISION IS NULL
GROUP BY DIVISION

The result is:

DIVISION COUNT(*)
------------------ --------
? 1
first 2
first,third 2
first,second,third 1
first,fourth 1

Explanation: The first condition has been added to leave out the rows that con-
tain only error values. The second condition has been added to include the rows
with null values in the result.

No special SQL statement exists for adding new elements to the list of a certain row.
However, we can use an UPDATE statement to add a value as a third or fourth divi-
sion, but that must be done with the OR operator.

Example 23.17: Insert the fact that team 1 also plays in the third division.

UPDATE TEAMS_NEW
SET DIVISION = DIVISION | POWER(2,3-1)
WHERE TEAMNO = 1

588 SQL for MySQL Developers

Explanation: By executing the OR operator on the DIVISION column and on the
value of the POWER function, a new bit pattern is created in which the bit for the third
division is always active, regardless of what the value was. The expression
POWER(2,3-1) can be replaced again by CONV(100,2,10).

Example 23.18: Delete the third division for all teams.

UPDATE TEAMS_NEW
SET DIVISION = DIVISION & CONV(1011,2,10)

Explanation: In the bit pattern, the third position to the right is a zero because the
value of the third division is in the third position.

Example 23.19: For each team, delete all divisions.

UPDATE TEAMS_NEW
SET DIVISION = 0

Explanation: Only four ones have been used because the list contains only four
elements.

Finally, as with the ENUM data type, SET has not been implemented in many SQL
products. Therefore, use it to a limited degree.

23.4 ANSWERS

23.1 CREATE TABLE MATCHES
(MATCHNO INTEGER NOT NULL PRIMARY KEY,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON ENUM('0','1','2','3') NOT NULL,
LOST ENUM('0','1','2','3') NOT NULL)

23.2 1. This statement is accepted.

2. The value 4 cannot be entered in the WON column; MySQL will enter
an error value.

3. This statement is accepted.

4. This statement is not accepted because the WON column cannot con-
tain null values. The entire statement will not be processed.

589CHAPTER 23 The ENUM and SET Types

This page intentionally left blank This page intentionally left blank

591

Changing and Dropping
Tables

C H A P T E R 2 4

24.1 INTRODUCTION

The UPDATE, INSERT, and DELETE statements are used to update the contents of a
table. In MySQL, we can also change the structure of a table, even when that table
contains millions of rows. We can add columns, change the data type of an existing
column, add integrity constraints, and even delete entire tables. This chapter
describes all the features for dropping tables (with the DROP TABLE statement),
renaming them (with the RENAME statement), and changing them (with the ALTER
TABLE statement).

N O T E
Most examples in this book assume that each table contains its original
contents. If you execute the statements in this chapter with MySQL, you
change the structure and the contents, of course. Because of this, the
results of your statements in the following examples could differ from those
in the book. On the website of the book, www.r20.nl, you find information
on how to restore the tables to their original structure.

24.2 DELETING ENTIRE TABLES

The DROP TABLE statement is used to delete a table. MySQL also removes the descrip-
tions of the table from all relevant catalog tables, along with all integrity con-
straints, indexes, and privileges that are “linked” to that table. In fact, MySQL
removes each database object that has no right to exist after the table has been
deleted.

www.r20.nl

D E F I N I T I O N
<drop table statement> ::=

DROP [TEMPORARY] { TABLE | TABLES } [IF EXISTS]
<table specification> [, <table specification>]...
[CASCADE | RESTRICT]

Example 24.1: Delete the PLAYERS table.

DROP TABLE PLAYERS

Explanation: After this statement has been processed, the table no longer exists.
Furthermore, all linked database objects, such as indexes, views, and privileges,
are removed as well.

A table can be removed only if no foreign keys point to the table—in other words,
the table cannot be a referenced table. In that case, either the relevant foreign key
or the entire referencing table must be removed first.

When the word TEMPORARY is added, a temporary table is removed (unless a
temporary table exists with the specified name). IF EXISTS can be added to repress
an error message if the table mentioned does not exist.

Example 24.2: Delete the table TAB1 that belongs to the database DB8.

DROP TABLE DB8.TAB1

Explanation: By qualifying the table name with a database name, you can remove
tables from other databases.

It is possible to remove multiple tables simultaneously with one DROP TABLE

statement.

Example 24.3: Delete all five tables of the tennis club.

DROP TABLES COMMITTEE_MEMBERS, MATCHES, TEAMS,
PENALTIES, PLAYERS

The options RESTRICT and CASCADE may be added but do not have any effect
yet. If they are activated in a future version of MySQL, the specification of CASCADE
will mean that all tables that are “linked” to the specified table via foreign keys are
removed. With the statement DROP TABLE PLAYERS CASCADE, we would remove the

592 SQL for MySQL Developers

entire database at once. The specification of RESTRICT means that a table can be
removed only if no foreign keys point to the relevant table. The statement DROP
TABLE PLAYERS RESTRICT would fail because of the various foreign keys, but it
would be possible to execute DROP TABLE COMMITTEE_MEMBERS RESTRICT.

24.3 RENAMING TABLES

The RENAME TABLE statement gives an existing table a new name.

D E F I N I T I O N
<rename table statement> ::=

RENAME { TABLE | TABLES } <table name change>
[, <table name change>]...

<table name change> ::= <table name> TO <table name>

Example 24.4: Change the name of the PLAYERS table to TENNIS_PLAYERS.

RENAME TABLE PLAYERS TO TENNIS_PLAYERS

All other database objects that refer to this table are changed accordingly.
Assigned privileges do not disappear, foreign keys remain, and views that use this
renamed table keep working.

One RENAME TABLE statement can change the names of multiple tables at once.

Example 24.5: Change the name of the PLAYERS table to TENNIS_PLAYERS
and that of COMMITTEE_MEMBERS to MEMBERS.

RENAME TABLES PLAYERS TO TENNIS_PLAYERS,
COMMITTEE_MEMBERS TO MEMBERS

24.4 CHANGING THE TABLE STRUCTURE

MySQL supports the ALTER TABLE statement for this for changing many aspects of
the table structure. Because this statement offers so many possibilities, we describe
its features in several sections. This section describes the possibilities for altering
the table itself. The following section discusses the ways to change the specifica-
tions of columns. Section 24.6 covers the possibilities of changing integrity con-
straints. Section 25.5 describes how to change existing indexes (after we explain
how indexes are created).

593CHAPTER 24 Changing and Dropping Tables

D E F I N I T I O N
<alter table statement> ::=

ALTER [IGNORE] TABLE <table specification>
<table structure change>

<table structure change> ::=
<table change> |
<column change> |
<integrity constraint change> |
<index change>

<table change> ::=
RENAME [TO | AS] <table name> |
<table options>... |
CONVERT TO CHARACTER SET { <character set name> | DEFAULT }

[COLLATE <collation name>] |
ORDER BY <sort specification>

[, <sort specification>]... |
{ ENABLE | DISABLE } KEYS

<sort specification> ::= <column name> [<sort direction>]

<sort direction> ::= { ASC | DESC }

<table name> ;
<column name> ;
<character set name> ;
<collation name> ::= <name>

Example 24.6: Change the name of the PLAYERS table to TENNIS_
PLAYERS.

ALTER TABLE PLAYERS RENAME TO TENNIS_PLAYERS

Explanation: The result of this statement is, of course, equal to that of the
RENAME TABLE statement; see Section 24.3. The word TO can be replaced by AS,
and it can be omitted.

Each table option described in Section 20.10 may be changed.

Example 24.7: Set the numbering of the CITY_NAMES table to 10,000, and
change the comment.

ALTER TABLE CITY_NAMES
AUTO_INCREMENT = 10000
COMMENT = 'New comment'

594 SQL for MySQL Developers

An ALTER TABLE statement also can change the default character set and colla-
tion. Obviously, this no longer has any effect on the existing columns of a table;
those properties have already been assigned to those columns. However, for the
columns that are added with another ALTER TABLE statement later, it is still relevant.

If we want to change the character set of existing columns, we use the CONVERT
feature of the ALTER TABLE statement.

Example 24.8: For all alphanumeric columns in the PLAYERS table, change the
character set to utf8 and set the collation to utf8_general_ci.

ALTER TABLE PLAYERS
CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_ci

You may add IGNORE to each ALTER TABLE statement. The same rule applies
here: If the processing of the statement would result in error messages, they are
repressed.

The features ENABLE and DISABLE KEYS apply only to tables that work with the
MyISAM storage engine. If updates are executed on a table, MySQL updates the
indexes automatically. The automatic update of the indexes can be switched off
with ALTER TABLE ... DISABLE KEYS and can be switched on again with ENABLE
KEYS.

To increase the processing time of SELECT statements with sort specifications,
the rows of a table can be sorted explicitly on a specific column or combination of
columns; see also Section 25.3.

Example 24.9: Sort all players in the PLAYERS table on league number in
descending order.

ALTER TABLE PLAYERS ORDER BY LEAGUENO DESC

Exercise 24.1: Change the storage engine of the TEAMS table to MyISAM.

Exercise 24.2: Sort the COMMITTEE_MEMBERS table on player number in
ascending order and next sort on function in descending order.

24.5 CHANGING COLUMNS

The ALTER TABLE statement can change many properties of columns.

595CHAPTER 24 Changing and Dropping Tables

D E F I N I T I O N
<alter table statement> ::=

ALTER [IGNORE] TABLE <table specification>
<table structure change>

<table structure change> ::=
<table change> |
<column change |
<integrity constraint change> |
<index change>

<column change> ::=
ADD [COLUMN] <column definition>

[FIRST | AFTER <column name>] |
ADD [COLUMN] <table schema> |
DROP [COLUMN] <column name> [RESTRICT | CASCADE] |
CHANGE [COLUMN] <column name> <column definition>

[FIRST | AFTER <column name>] |
MODIFY [COLUMN] <column definition>

[FIRST | AFTER <column name>] |
ALTER [COLUMN] { SET DEFAULT <expression> | DROP DEFAULT }

<column definition> ::=
<column name> <data type> [<null specification>]

[<column integrity constraint>] [<column option>...]

<table name> ;
<column name> ;
<index name> ;
<constraint name> ;
<character set name> ;
<collation name> ::= <name>

Example 24.10: Add a new column called TYPE to the TEAMS table. This col-
umn shows whether it is a ladies’ or a men’s team.

ALTER TABLE TEAMS
ADD TYPE CHAR(1)

The TEAMS table now looks like this:

TEAMNO PLAYERNO DIVISION TYPE
------ -------- -------- ----

1 6 first ?
2 27 second ?

Explanation: In all rows, the TYPE column is filled with the null value. This is
the only possible value that MySQL can use to fill the column (how would MySQL

596 SQL for MySQL Developers

know, for example, whether team 1 is a men’s team?). The new column automati-
cally becomes the last column unless the “position” is specified.

Because you may specify a full column definition, you may also enter a null speci-
fication, integrity constraints, and column options.

The word COLUMN may be added but does not change the result.

Example 24.11: Add a new column called TYPE to the TEAMS table. This col-
umn shows whether it is a ladies’ or a men’s team. The column must be placed right
behind the TEAMNO column.

ALTER TABLE TEAMS
ADD TYPE CHAR(1) AFTER TEAMNO

This TEAMS table now looks like this:

TEAMNO TYPE PLAYERNO DIVISION
------ ---- -------- --------

1 ? 6 first
2 ? 27 second

Explanation: By replacing AFTER TEAMNO by FIRST, the new column is positioned
at the beginning.

With a somewhat different formulation, two or more new columns can be added
at once.

Example 24.12: Add two new columns to the TEAMS table.

ALTER TABLE TEAMS
ADD (CATEGORY VARCHAR(20) NOT NULL,

IMAGO INTEGER DEFAULT 10)

Explanation: The CATEGORY column has been defined as NOT NULL. This
means that MySQL cannot assign a null value to each row for this column. Depend-
ing on the data type, MySQL fills in an actual value: the value 0 for numeric
columns, the empty string for alphanumeric columns, the date 0000-00-00 for date
data types, and the time 00:00:00 for time data types.

Example 24.13: Delete the TYPE column from the TEAMS table.

ALTER TABLE TEAMS
DROP TYPE

597CHAPTER 24 Changing and Dropping Tables

Explanation: All other database objects that depend on this column, such as
privileges, indexes, and views, will also be deleted.

Example 24.14: In the TEAMS table, change the column name BIRTH_DATE
to DATE_OF_BIRTH.

ALTER TABLE PLAYERS
CHANGE BIRTH_DATE DATE_OF_BIRTH DATE

Explanation: Behind the column name, a new column definition is specified.
Because we want to change only the column name, we leave the other specifications
unchanged so they remain equal to those of the original column. But we are allowed
to change those as well.

Example 24.15: Increase the length of the TOWN column from 30 to 40.

ALTER TABLE PLAYERS
CHANGE TOWN TOWN VARCHAR(40) NOT NULL

The length of a data type may be increased or decreased. In the case of the lat-
ter, the existing values are shortened.

Example 24.16: Shorten the length of the TOWN column to five characters.

ALTER TABLE PLAYERS
CHANGE TOWN TOWN VARCHAR(5) NOT NULL

Example 24.17: Change the data type of the PLAYERNO column in the
PLAYERS table from INTEGER to SMALLINT.

ALTER TABLE PLAYERS
CHANGE PLAYERNO PLAYERNO SMALLINT

When data types are changed, the usual rule is that it must be possible to trans-
form the values in the column into the new data type. So the previous example is
executed correctly because the current player numbers fit into the SMALLINT data
type.

Example 24.18: Move the TOWN column to the second position.

ALTER TABLE PLAYERS
CHANGE TOWN TOWN VARCHAR(5) NOT NULL AFTER PLAYERNO

598 SQL for MySQL Developers

Specifications that are not mentioned, such as the comment and the character
set, remain unchanged.

ALTER TABLE MODIFY can also change properties of columns; you do not have to
specify the new column names first. That also means that, when using MODIFY, you
cannot change the column name itself.

Example 24.19: Rewrite Example 24.18 with MODIFY.

ALTER TABLE PLAYERS
MODIFY TOWN VARCHAR(5) NOT NULL AFTER PLAYERNO

Example 24.20: Assign the default value Member to the POSITION column of the
COMMITTEE_MEMBERS table.

ALTER TABLE COMMITTEE_MEMBERS
ALTER POSITION SET DEFAULT 'Member'

or

ALTER TABLE COMMITTEE_MEMBERS
MODIFY POSITION CHAR(20) DEFAULT 'Member'

Example 24.21: Delete the default value of the POSITION column in the
COMMITTEE_MEMBERS table.

ALTER TABLE COMMITTEE_MEMBERS
ALTER POSITION DROP DEFAULT

Exercise 24.3: Change the column name POSITION in the COMMITTEE_
MEMBERS table to COMMITTEE_POSITION.

Exercise 24.4: Next, increase the length of the COMMITTEE_POSITION col-
umn from 20 to 30.

Exercise 24.5: Assign the default value Stratford to the TOWN column in the
PLAYERS table.

24.6 CHANGING INTEGRITY CONSTRAINTS

Chapter 21, “Specifying Integrity Constraints,” we extensively discussed the differ-
ent kinds of integrity constraints that you can add to a table. With the ALTER TABLE
statement, you can add or delete constraints afterward.

599CHAPTER 24 Changing and Dropping Tables

D E F I N I T I O N
<alter table statement> ::=

ALTER [IGNORE] TABLE <table specification>
<table structure change>

<table structure change> ::=
<table change> |
<column change> |
<integrity constraint change> |
<index change>

<integrity constraint change> ::=
ADD <primary key> |
DROP PRIMARY KEY |
ADD <alternate key> |
DROP FOREIGN KEY <index name> |
ADD <foreign key> |
ADD <check integrity constraint> |
DROP CONSTRAINT <constraint name>

<primary key> ::=
[CONSTRAINT [<constraint name>]]
PRIMARY KEY [<index name>]
[{ USING | TYPE } <index type>] <column list>

<alternate key> ::=
[CONSTRAINT [<constraint name>]]
UNIQUE [INDEX | KEY] [<index name>]
[{ USING | TYPE } <index type>] <column list>

<foreign key> ::=
[CONSTRAINT [<constraint name>]]
FOREIGN KEY [<index name>] <column list>
<referencing specification>

<check integrity constraint> ::=
[CONSTRAINT [<constraint name>]] CHECK (<condition>)

<column list> ::= (<column name> [, <column name>]...)

<table name> ;
<database name> ;
<column name> ;
<index name> ;
<constraint name> ::= <name>

The syntax for adding integrity constraints with an ALTER TABLE statement is
identical to the syntax for table integrity constraints in the CREATE TABLE statement.
We refer to Chapter 21 for this.

600 SQL for MySQL Developers

Consider this special situation: Imagine that two tables, T1 and T2, both have a
foreign key referring to the other table. This is called cross-referential integrity.
Cross-referential integrity can cause problems. If T1 is defined and T2 does not yet
exist, the foreign key cannot be defined. You can solve this problem by adding one
of the two foreign keys later with an ALTER TABLE statement.

Example 24.22: Create the two tables T1 and T2.

CREATE TABLE T1
(A INTEGER NOT NULL PRIMARY KEY,
B INTEGER NOT NULL)

CREATE TABLE T2
(A INTEGER NOT NULL PRIMARY KEY,
B INTEGER NOT NULL,
CONSTRAINT C1 CHECK (B > 0),
CONSTRAINT FK1 FOREIGN KEY (A) REFERENCES T1 (A))

ALTER TABLE T1
ADD CONSTRAINT FK2 FOREIGN KEY (A) REFERENCES T2 (A)

Explanation: After these three statements, the cross-referential integrity is
defined.

To remove integrity constraints, you can use the DROP version of the ALTER TABLE
statement. Consider some examples:

Example 24.23: Delete the primary key from the PLAYERS table.

ALTER TABLE PLAYERS DROP PRIMARY KEY

Example 24.24: Delete the foreign key called FK2 that refers from the T1 to the
T2 table; see the previous example.

ALTER TABLE T1 DROP CONSTRAINT FK2

With DROP CONSTRAINT, all kinds of integrity constraints can be removed,
including primary and alternate keys, and check integrity constraints.

Example 24.25: Delete the check integrity constraint C1 that is defined on the B
column of the T2 table.

ALTER TABLE T2 DROP CONSTRAINT C1

601CHAPTER 24 Changing and Dropping Tables

It is easier to delete an integrity constraint later if a name has explicitly been
specified because then it is not necessary to determine which name MySQL has
assigned to it.

24.7 ANSWERS

24.1 ALTER TABLE TEAMS
ENGINE = MYISAM

24.2 ALTER TABLE COMMITTEE_MEMBERS
ORDER BY PLAYERNO ASC, POSITION DESC

24.3 ALTER TABLE COMMITTEE_MEMBERS
CHANGE POSITION COMMITTEE_POSITION CHAR(20)

24.4 ALTER TABLE COMMITTEE_MEMBERS
MODIFY COMMITTEE_POSITION CHAR(30)

24.5 ALTER TABLE PLAYERS
ALTER TOWN SET DEFAULT 'Stratford'

602 SQL for MySQL Developers

603

Using Indexes
C H A P T E R 2 5

25.1 INTRODUCTION

Some SQL statements, such as the CREATE TABLE and GRANT statements, have a rea-
sonably constant execution time. It does not matter under which circumstances
such statements are executed; they always need a certain execution time, and it
cannot be reduced. However, this is not the case for all statements. The time
required to process SELECT, UPDATE, and DELETE statements varies. One SELECT
statement might be processed in two seconds, and another could take minutes. You
can influence the required execution time for this type of statement.

Many techniques exist for reducing the execution time of SELECT, UPDATE, and
DELETE statements, ranging from reformulating statements to purchasing faster com-
puters. This chapter describes one technique—using indexes to strongly influence
execution times.

N O T E
The next few sections provide useful background information on how
MySQL uses indexes rather than explain SQL statements.

25.2 ROWS, TABLES, AND FILES

This book assumes that if we add rows, they are stored in tables. However, a table is
a concept that MySQL understands but the operating system does not. This section
explains how rows are actually stored on hard disk. This information is important to
understand before we concentrate on the workings of an index.

Rows are stored in files. Depending on the storage engine of the table, rows of
different tables are stored in the same or different files. MyISAM creates a separate
file for each table. On the other hand, InnoDB places tables into one file, unless
explicitly specified not to do so.

Each file is divided into data pages, or pages, for short. Figure 25.1 shows a file
that contains the data of the PLAYERS table. The file consists of five pages (the
horizontal gray strips form the boundaries between the pages). In other words, the
data of the PLAYERS table is spread over five pages of this file.

604 SQL for MySQL Developers

Parmenter

page

6 ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

44

83

2

27

104

7

57

39

112

8

100

28

95

Baker

Hope

Everett

Collins

Moorman

Wise

Brown

Bishop
Bailey

Newcastle

Parmenter

Collins

Miller

FIGURE 25.1 The rows of a table are stored in pages.

In this example, each page clearly has enough space for four rows and is not
completely filled. How do these “gaps” arise? When new rows are added, MySQL

automatically stores them after the last row of the final page. If that page is full, an
empty page is added to the file. So a gap is created not during the process of adding
rows, but when rows are deleted. MySQL does not fill the gaps automatically. If it
did, MySQL would need to find an empty space when a row is added; for large
tables, this would take too much time. Imagine that the table contains one million
rows and that all pages are full except for the penultimate page. If a new row had to
be stored in a gap, first all other rows would need to be accessed to locate a gap.
Again, this would delay processing and explains why rows are inserted at the end.

In this example, we have also assumed that a page consists of a maximum of
four rows. Two factors determine how many rows really fit in a page: the size of the
page and the length of the rows. The size of a page depends on the operating system
and the storage engine. Sizes such as 2K, 4K, 8K, and 32K are very common. The
length of a row from the PLAYERS table is about 90 bytes. This means that approx-
imately 45 rows would fit into a 4K page.

It is important to realize that pages always form the unit of I/O. If an operating
system retrieves data from a hard disk, it occurs page by page. Systems such as
UNIX or Windows do not retrieve 2 bytes from disk. Instead, they collect the page
in which these 2 bytes are stored. Therefore, a database server can ask an operating
system to retrieve one page from the file, but not just one row.

Two steps are required to retrieve a row from a table. First, the page in which
the row is recorded is collected from disk. Second, we need to find the row in the
page. This step takes place entirely within internal memory. Each row has a unique
identification. This row identification consists of two parts: a page identification
and a specification that indicates which row is involved. This row-identification
process looks different for each storage engine.

25.3 HOW DOES AN INDEX WORK?
MySQL has several methods of accessing rows in a table. The two best-known
methods are the sequential access method (also called scanning or browsing) and the
indexed access method.

The sequential access method is best described as browsing a table row by row.
Each row in a table is read. If only one row needs to be found in a table with many
rows, this method is very time-consuming and inefficient, comparable to going
through a telephone book page by page. If you are looking for the number of some-
one whose name begins with an L, you certainly do not want to start looking under
the letter A.

605CHAPTER 25 Using Indexes

When MySQL uses the indexed access method, it reads only the rows that
exhibit the required characteristics. However, an index is necessary. An index is a
type of alternative access to a table and can be compared to the index in a book.

An index in MySQL is built like a tree consisting of a number of nodes. Figure
25.2 shows an index on the PLAYERNO column. Notice that this is a simplified
version of an actual index tree. Nevertheless, the example is detailed enough to
show how MySQL handles indexes. At the top of the figure (in the light gray area) is
the index itself, and at the bottom are two columns of the PLAYERS table:
PLAYERNO and NAME. The long rectangles represent the nodes of the index. The
node at the top forms the starting point of the index and is known as the root. Each
node contains up to three values from the PLAYERNO column. Each value in a
node points to another node or to a row in the PLAYERS table, and each row in the
table is referenced through one node. A node that points to a row is called a leaf
page. The values in a node have been ordered. For each node except the root, the
values in that node are always less than or equal to the value that points to that
node. Leaf pages are themselves linked to one another. A leaf page has a pointer to
the leaf page with the next set of values. Figure 25.2 represents these pointers with
open arrows.

What does a pointer from a leaf page to a row in the PLAYERS table really look
like? A pointer is nothing more than arow identification. We introduced this concept
in the previous section. Because arow identification consists of two parts, the same
also applies to an index pointer. The two parts are the page in which the row occurs,
and the entity of the list that indicates the location of the row within the page.

Broadly speaking, MySQL supports three algorithms for using indexes. The first
algorithm is for searching rows in which a particular value occurs. The second algo-
rithm is for browsing through an entire table or a part of a table via an ordered col-
umn. The third algorithm is used if several values of a column must be retrieved.
We illustrate these algorithms with three examples. The first example is how
MySQL uses the index to select particular rows.

Example 25.1: Imagine that all rows with player number 44 must be found.

Step 1. Look for the root of the index. This root becomes the active node.

Step 2. Is the active node a leaf page? If so, continue with step 4. If not, con-
tinue with step 3.

Step 3. Does the active node contain the value 44? If so, the node to which this
value points becomes the active node; go back to step 2. If not, choose
the lowest value that is greater than 44 in the active node. The node to
which this value points becomes the active node; go back to step 2.

606 SQL for MySQL Developers

FIGURE 25.2 Example of an index tree

Step 4. Look for the value 44 in the active node. Now this value points to all
pages in which rows of the PLAYERS table appear, and the value of the
PLAYERNO column is 44. Retrieve all these pages from the database
for further processing.

Step 5. For each page, find the row where the value of the PLAYERNO column
is equal to 44.

Without browsing all the rows, MySQL has found the desired row(s). In most
cases, the time spent answering this type of question can be reduced considerably
if MySQL uses an index.

In the next example, MySQL uses the index to retrieve ordered rows from a
table.

607CHAPTER 25 Using Indexes

Parmenter6 ...
...
...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

44
83

2
27

104

7
57

39
112

8

100
28

95

Baker
Hope

Everett
Collins

Moorman

Wise
Brown

Bishop
Bailey
Newcastle

Parmenter
Collins

Miller

44 112 -

7 27 44

2 6 7 8 27 - 28 39 44 57 83 95 100 104 112

95 112 -

Example 25.2: Get all players ordered by player number.

Step 1. Look for the leaf page with the lowest value. This leaf page becomes the
active node.

Step 2. Retrieve all pages to which the values in the active node are pointing,
for further processing.

Step 3. If a subsequent leaf page exists, make this the active node and go back
to step 2.

The disadvantage of this method is that if players are retrieved from disk, there
is a good chance that a page must be fetched several times. For example, the second
page in Figure 25.2 must be fetched first to retrieve player 2. Next, the first page is
needed for player 6, then the third page for player 7, and finally the fourth page for
player 8. No problem exists so far. However, if player 27 needs to be retrieved next,
the second page must be retrieved from disk again. Many other pages have been
fetched since the second page; therefore, the second page is probably no longer in
internal memory and cannot be read again. Because the rows were not ordered in
the file, many pages must be fetched several times, which slows processing time.

To speed up this process, we must try to store the rows within the file in an
ordered way. The ORDER BY clause in the ALTER TABLE statement can be used to
reorder the rows of a table; see Section 24.4. Figure 25.3 contains an example of
this process. If we now retrieve the players from the file in an ordered way, each
page is probably fetched only once. MySQL understands that when player 6 is
retrieved, the correct page is already in the internal memory from when player 2
was retrieved. The same applies to player 7.

The third algorithm is a combination of the first two.

Example 25.3: Get all players numbers 39 through 95.

Step 1. Look for the root of the index. This root becomes the active node.

Step 2. Is the active node a leaf page? If so, continue with step 4. If not, con-
tinue with step 3.

Step 3. Does the active node contain the value 39? If so, the node to which this
value points becomes the active node; go back to step 2. If not, choose
the lowest value that is greater than 39 in the active node. The node to
which this value points becomes the active node; go back to step 2.

Step 4. Look for the value 39 in the active node.

Step 5. In the active node, retrieve all rows that belong to the values between
39 and 95. If 95 appears in this node, you are ready. Otherwise, con-
tinue with step 6.

608 SQL for MySQL Developers

FIGURE 25.3 Example of a clustered index

Step 6. If a subsequent leaf page exists, make this the active node and go back
to step 5.

This algorithm can be useful when a SELECT statement contains conditions with
a BETWEEN, a greater than operator, or certain LIKE operators.

See the following remarks about indexes:

■ If values in a table are updated or rows are added or deleted, MySQL auto-
matically updates the index, so the index tree is always consistent with the
contents of the table.

■ In the previous table, an index was defined on the PLAYERNO column of the
PLAYERS table. This is the primary key of this table and contains no dupli-
cate values. An index can also be defined on a nonunique column, such as
the NAME column. As a result, one value in a leaf page points to multiple
rows—one pointer for each row in which the value occurs.

609CHAPTER 25 Using Indexes

Everett2 ...
...
...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

6
7

8
27
28

39
44

57
83
95

100
104

112

Parmenter
Wise

Newcastle
Collins
Collins

Bishop
Baker

Brown
Hope
Miller

Parmenter
Moorman

Bailey

44 112 -

7 27 44

2 6 7 8 27 - 28 39 44 57 83 95 100 104 112

95 112 -

■ You can define many indexes on a table.

■ Indexes can also be defined on combinations of values. Those are called
compound indexes or composite indexes. Each value in a node is then a con-
catenation of the individual values. The leaf pages point to rows in which
that combination of values appears.

Consider these two other important points about the use of indexes:

■ Nodes of an index are just like rows in a table, stored in files. Therefore, an
index takes up physical storage space (just like an index in a book).

■ Updates to tables can lead to updates to indexes. When an index must be
updated, MySQL tries to fill the gaps in the nodes to complete the process as
quickly as possible; however, an index can become so “full” that new nodes
must be added. This can require a total reorganization of the index, which
can be very time-consuming.

Several types of indexes exist. This section discussed what is called the B-tree
index. The letter B stands for balanced. A typical characteristic of a B-tree index is
that all the branches of the tree have roughly the same length. Later in this chapter,
we describe other types of indexes. MySQL also supports the hash index. With a
hash index, no tree structure is built, but all values are kept in a list that points to
the relevant pages and rows. When retrieving a specific row based upon one value,
a hash index is very fast. For example, for the query, “Give me the player with num-
ber 27,” a hash index would be perfect. However, hash indexes are not useful for
sorting rows or fetching a row based on subvalues, such as, “Give the players whose
names begin with a capital P.” The hash index can be combined with tables that are
kept in internal memory. These are the tables that have been built with the MEMORY
storage engine; see Section 20.10.1.

As we already mentioned, this section presents a very simplified picture of how
an index works. In reality, a node in an index tree can accommodate not just three,
but many values, for example. For a more detailed description of indexes, see
[ELMA06].

25.4 PROCESSING A SELECT STATEMENT: THE STEPS

Chapter 6, “SELECT Statements, Table Expressions, and Subqueries,” described
which clauses are executed successively during the processing of a SELECT state-
ment. These clauses form a basic strategy for processing a statement. In a basic
strategy, we assume sequential access to the data. This section discusses how using
an index can change the basic strategy to an optimized strategy.

610 SQL for MySQL Developers

MySQL tries to choose the most efficient strategy for processing each state-
ment. This analysis is performed by a module within MySQL called the optimizer.
(The analysis of statements is also referred to as query optimization.) The optimizer
defines a number of alternative strategies for each statement. It estimates which
strategy is likely to be the most efficient, based upon factors such as the expected
execution time, the number of rows, and the presence of indexes (in the absence of
indexes, this can be the basic strategy). MySQL then executes the statement
according to its chosen strategy.

See the next examples of optimized processing strategies.

Example 25.4: Get all information about player 44; we assume that there is an
index defined on the PLAYERNO column.

SELECT *
FROM PLAYERS
WHERE PLAYERNO = 44

The FROM clause: Usually, all rows would be retrieved from the PLAYERS table.
Speeding up the processing by using an index means that only the rows in which the
value in the PLAYERNO column is 44 are fetched.

The intermediate result is:

PLAYERNO NAME ...
-------- ----- ---

44 Baker ...

The WHERE clause: In this example, this clause was processed simultaneously with
the FROM clause.

The SELECT clause: All columns are presented.

The difference between the basic strategy and this “optimized” strategy can be
represented in another way.

The basic strategy is:

RESULT := [];
FOR EACH P IN PLAYERS DO

IF P.PLAYERNO = 44 THEN
RESULT :+ P;

ENDFOR;

The optimized strategy is:

RESULT := [];
FOR EACH P IN PLAYERS WHERE PLAYERNO = 44 DO

RESULT :+ P;
ENDFOR;

611CHAPTER 25 Using Indexes

With the first strategy, the FOR EACH statement fetches all rows. The second
strategy works much more selectively. When an index is used, only those rows in
which the player number is 44 are retrieved.

Example 25.5: Get the player number and town of each player whose player
number is less than 10 and who lives in Stratford; order the result by player
number.

SELECT PLAYERNO, TOWN
FROM PLAYERS
WHERE PLAYERNO < 10
AND TOWN = 'Stratford'
ORDER BY PLAYERNO

The FROM clause: Fetch all rows in which the player number is less than 10. Again,
use the index on the PLAYERNO column. Fetch the rows in ascending order using
the ORDER BY clause. This is simple because the values in an index are always
ordered.

The intermediate result is:

PLAYERNO ... TOWN ...
-------- --- --------- ---

2 ... Stratford ...
6 ... Stratford ...
7 ... Stratford ...
8 ... Inglewood ...

The WHERE clause: The WHERE clause specifies two conditions. Each row in the
intermediate result satisfies the first condition, which has already been evaluated
in the FROM clause. Now only the second condition must be evaluated.

The intermediate result is:

PLAYERNO ... TOWN ...
-------- --- --------- ---

2 ... Stratford ...
6 ... Stratford ...
7 ... Stratford ...

The ORDER BY clause: Because we used an index while processing the FROM clause,
no extra sorting needs to be done.

The SELECT clause: Two columns are selected. The end result is:

PLAYERNO TOWN
-------- ---------

2 Stratford
6 Stratford
7 Stratford

612 SQL for MySQL Developers

Next we show the basic strategy and the optimized strategy for this example.

The basic strategy is:

RESULT := [];
FOR EACH P IN PLAYERS DO

IF (P.PLAYERNO < 10)
AND (P.TOWN = 'Stratford') THEN

RESULT :+ P;
ENDFOR;

The optimized strategy is:

RESULT := [];
FOR EACH P IN PLAYERS WHERE PLAYERNO < 10 DO

IF P.TOWN = 'Stratford' THEN
RESULT :+ P;

ENDFOR;

Example 25.6: Get the name and initials of each player who lives in the same
town as player 44.

SELECT NAME, INITIALS
FROM PLAYERS
WHERE TOWN =

(SELECT TOWN
FROM PLAYERS
WHERE PLAYERNO = 44)

We again show both strategies for this example.

The basic strategy is:

RESULT := [];
FOR EACH P IN PLAYERS DO

HELP := FALSE;
FOR EACH P44 IN PLAYERS DO

IF (P44.TOWN = P.TOWN)
AND (P44.PLAYERNO = 44) THEN

HELP := TRUE;
ENDFOR;
IF HELP = TRUE THEN

RESULT :+ P;
ENDFOR;

The optimized strategy is:

RESULT := [];
FIND P44 IN PLAYERS WHERE PLAYERNO = 44;
FOR EACH P IN PLAYERS WHERE TOWN = P44.TOWN DO

RESULT :+ P;
ENDFOR;

613CHAPTER 25 Using Indexes

These were three relatively simple examples. As the statements become more
complex, it also becomes more difficult for MySQL to determine the optimal strat-
egy, which adds to the processing time. The quality of the optimizer is an important
factor here.

If you want to know more about the optimization of SELECT statements, see
[KIM85]. However, you do not actually need this knowledge to understand SQL
statements, which is why we have given only a summary of the topic.

Exercise 25.1: For the following two statements, write the basic strategy and an
optimized strategy; assume that an index has been defined on each column.

1. SELECT *
FROM TEAMS
WHERE TEAMNO > 1
AND DIVISION = 'second'

2. SELECT P.PLAYERNO
FROM PLAYERS AS P, MATCHES AS M
WHERE P.PLAYERNO = M.PLAYERNO
AND BIRTH_DATE > '1963-01-01'

25.5 CREATING INDEXES

The definition of the CREATE INDEX statement follows:

D E F I N I T I O N
<create index statement> ::=

CREATE [<index type>] INDEX <index name>
[USING { BTREE | HASH }]
ON <table specification>
(<column in index> [, <column in index>]...)

<index type> ::= UNIQUE | FULLTEXT | SPATIAL

<column in index> ::= <column name> [ASC | DESC]

Example 25.7: Create an index on the POSTCODE column of the PLAYERS
table.

CREATE INDEX PLAY_PC
ON PLAYERS (POSTCODE ASC)

614 SQL for MySQL Developers

Explanation: In this example, a nonunique index is created (correctly). The
inclusion of ASC or DESC indicates whether the index should be built in ascending
(ASC) or descending (DESC) order. If neither is specified, MySQL uses ASC as its
default. If a certain column in a SELECT statement is sorted in descending order,
processing is quicker if a descending-order index is defined on that column.

If we do not assign the USING specification, MySQL normally creates a B-tree. So
the previous statement could have been formulated as follows:

CREATE INDEX PLAY_PC USING BTREE
ON PLAYERS (POSTCODE ASC)

However, if the relevant table has been built with the MEMORY storage engine,
MySQL uses the hash index.

Example 25.8: Create a hash index on the TOWN column of the PLAYERS
table.

CREATE INDEX PLAY_TOWN USING HASH
ON PLAYERS (TOWN)

Example 25.9: Create a compound index on the WON and LOST columns of the
MATCHES table.

CREATE INDEX MAT_WL
ON MATCHES (WON, LOST)

Explanation: Multiple columns may be included in the definition of an index as
long as they all belong to the same table.

Example 25.10: Create a unique index on the NAME and INITIALS columns of
the PLAYERS table.

CREATE UNIQUE INDEX NAMEINIT
ON PLAYERS (NAME, INITIALS)

Explanation: After this statement has been entered, MySQL prevents two equal
combinations of name and initials from being inserted into the PLAYERS table.
The same could have been achieved by defining the column combination as an
alternate key.

615CHAPTER 25 Using Indexes

You can create indexes at any time; you do not need to create all the indexes for a
table right after the CREATE TABLE statement. You can also create indexes on tables
that already have data in them. Obviously, creating a unique index on a table in
which the column concerned already contains duplicate values is not possible.
MySQL identifies this and does not create the index. The user needs to remove the
duplicate values first. The following SELECT statement helps locate the duplicate C
values (C is the column on which the index must be defined):

SELECT C
FROM T
GROUP BY C
HAVING COUNT(*) > 1

Besides UNIQUE, MySQL has two other special index types: FULLTEXT and
SPATIAL. FULLTEXT indexes can be used in combination only with tables that are
defined with the MyISAM storage engine. After they have been created, the special
full-text queries containing the MATCH operator can be used; see Section 8.12. This
is useful for alphanumeric columns in which names and text are stored.

The SPATIAL index can be used to index columns with geometric data types.
We do not discuss the SPATIAL index or geometric data types in this book.

Indexes can also be entered with an ALTER TABLE statement; see the following
definition.

D E F I N I T I O N
<alter table statement> ::=

ALTER TABLE <table specification> <table structure change>

<table structure change> ::=
<table change> |
<column change> |
<integrity constraint change> |
<index change>

<index change> ::=
ADD [<index type>] INDEX <index name>
[USING { BTREE | HASH }]
(<column in index> [, <column in index>]...)

<index type> ::= UNIQUE | FULLTEXT | SPATIAL

<column in index> ::= <column name> [ASC | DESC]

616 SQL for MySQL Developers

Example 25.11: Create a nonunique index on the DIVISION column of the
TEAMS table.

ALTER TABLE TEAMS
ADD INDEX TEAMS_DIVISION USING BTREE (DIVISION)

Example 25.12: Create a unique hash index to the PLAYERS table on the com-
bination of the columns TOWN, STREET, and BIRTH_DATE.

ALTER TABLE PLAYERS
ADD UNIQUE INDEX TEAMS_DIVISION

USING HASH (TOWN, STREET, BIRTH_DATE)

25.6 DEFINING INDEXES TOGETHER WITH THE TABLES

The previous section showed how indexes can be created with a CREATE INDEX or an
ALTER TABLE statement. In both cases, the indexes are created after the tables have
been created and perhaps filled with rows. Indexes can also be created with the
table. We can include the index definition within the CREATE TABLE statement.

D E F I N I T I O N
<create table statement> ::=

CREATE [TEMPORARY] TABLE [IF NOT EXISTS]
<table specification> <table structure>

<table structure> ::=
<table schema>

<table schema> ::=
(<table element> [, <table element>]...)

<table element> ::=
<column definition> |
<table integrity constraint> |
<index definition>

<index definition> ::=
<index type> { INDEX | KEY } [<index name>]
[USING { BTREE | HASH }]
(<column in index> [, <column in index>]...)

<index type> ::= UNIQUE | FULLTEXT | SPATIAL

<column in index> ::= <column name> [ASC | DESC]

<table name> ;
<index name> ::= <name>

617CHAPTER 25 Using Indexes

Example 25.13: Create the MATCHES table with a compound index on the
WON and LOST columns; see also Example 25.9.

CREATE TABLE MATCHES
(MATCHNO INTEGER NOT NULL PRIMARY KEY,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON SMALLINT NOT NULL,
LOST SMALLINT NOT NULL,
INDEX MAT_WL (WON, LOST))

Explanation: The syntax for the index as a table element looks much like that of
the CREATE INDEX statement. The result is also the same.

Index types such as UNIQUE, FULLTEXT, and SPATIAL may also be added.

Example 25.14: Create the PLAYERS table with a unique hash index on the
NAME and INITIALS columns; see also Example 25.10.

CREATE TABLE PLAYERS
(PLAYERNO INTEGER NOT NULL PRIMARY KEY,
NAME CHAR(15) NOT NULL,
INITIALS CHAR(3) NOT NULL,
BIRTH_DATE DATE,
SEX CHAR(1) NOT NULL,
JOINED SMALLINT NOT NULL,
STREET VARCHAR(30) NOT NULL,
HOUSENO CHAR(4),
POSTCODE CHAR(6),
TOWN VARCHAR(30) NOT NULL,
PHONENO CHAR(13),
LEAGUENO CHAR(4),
UNIQUE INDEX NAMEINIT USING HASH (NAME, INITIALS))

25.7 DROPPING INDEXES

The DROP INDEX statement is used to remove indexes.

D E F I N I T I O N
<drop index statement> ::=

DROP INDEX <index name> ON <table specification>

618 SQL for MySQL Developers

Example 25.15: Remove the three indexes that were defined in the previous
examples.

DROP INDEX PLAY_PC ON PLAYERS

DROP INDEX MATD_WL ON MATCHES

DROP INDEX NAMEINIT ON PLAYERS

Explanation: When you drop an index, the index type is not mentioned. In other
words, you do not need to specify the words UNIQUE, FULLTEXT, and SPATIAL. Neither
is it necessary to indicate whether it is a B-tree of hash index.

Instead of using the DROP INDEX statement, you can use the ALTER TABLE statement
to remove an index.

D E F I N I T I O N
<alter table statement> ::=

ALTER [IGNORE] TABLE <table specification>
<table structure change>

<table structure change> ::=
<table change> |
<column change> |
<integrity constraint change> |
<index change>

<index change> ::=
DROP { INDEX | KEY } <index name>

25.8 INDEXES AND PRIMARY KEYS

MySQL creates a unique index automatically if a primary or alternate key is
defined within a CREATE TABLE statement or with an ALTER TABLE statement. MySQL
determines the name of the index based on a set of rules. The index for a primary
key is called PRIMARY. For an alternate key, the name of the first column of the
key is used. If more than one alternate key exists for which the name begins with a
certain column name, a sequence number is placed behind the column name.

619CHAPTER 25 Using Indexes

Example 25.16: Create the T1 table with one primary key and three alternate
keys.

CREATE TABLE T1
(COL1 INTEGER NOT NULL,
COL2 DATE NOT NULL UNIQUE,
COL3 INTEGER NOT NULL,
COL4 INTEGER NOT NULL,
PRIMARY KEY (COL1, COL4),
UNIQUE (COL3, COL4),
UNIQUE (COL3, COL1))

After the table has been created, MySQL executes the following CREATE INDEX
statements behind the scenes:

CREATE UNIQUE INDEX "PRIMARY" USING BTREE
ON T1 (COL1, COL4)

CREATE UNIQUE INDEX COL2 USING BTREE
ON T1 (COL2)

CREATE UNIQUE INDEX COL3 USING BTREE
ON T1 (COL3, COL4)

CREATE UNIQUE INDEX COL3_2 USING BTREE
ON T1 (COL3, COL1)

Be sure that the name PRIMARY is placed between double quotes because it is a
reserved word; see Section 20.8.

25.9 THE BIG PLAYERS_XXL TABLE

In the next sections, as well as in other chapters, we use a special version of the
PLAYERS table. This new table contains the same columns as the original
PLAYERS table. However, the new table might hold thousands of rows, not just 14.
This is why we called the table PLAYERS_XXL.

The original PLAYERS table contains normal values, such as Inglewood and
Parmenter. The PLAYERS_XXL table contains artificially created data. The POST-
CODE column, for example, contains values such as p4 and p25, and the STREET
column contains values such as street164 and street83. The following sections
show how this big table can be created and filled.

620 SQL for MySQL Developers

Example 25.17: Create the PLAYERS_XXL table.

CREATE TABLE PLAYERS_XXL
(PLAYERNO INTEGER NOT NULL PRIMARY KEY,
NAME CHAR(15) NOT NULL,
INITIALS CHAR(3) NOT NULL,
BIRTH_DATE DATE,
SEX CHAR(1) NOT NULL,
JOINED SMALLINT NOT NULL,
STREET VARCHAR(30) NOT NULL,
HOUSENO CHAR(4),
POSTCODE CHAR(6),
TOWN VARCHAR(30) NOT NULL,
PHONENO CHAR(13),
LEAGUENO CHAR(8))

Example 25.18: Then create the stored procedure FILL_PLAYERS_XXL.

CREATE PROCEDURE FILL_PLAYERS_XXL
(IN NUMBER_PLAYERS INTEGER)

BEGIN
DECLARE COUNTER INTEGER;
TRUNCATE TABLE PLAYERS_XXL;
COMMIT WORK;
SET COUNTER = 1;
WHILE COUNTER <= NUMBER_PLAYERS DO
INSERT INTO PLAYERS_XXL VALUES(
COUNTER,
CONCAT('name',CAST(COUNTER AS CHAR(10))),
CASE MOD(COUNTER,2) WHEN 0 THEN 'vl1' ELSE 'vl2' END,
DATE('1960-01-01') + INTERVAL (MOD(COUNTER,300)) MONTH,
CASE MOD(COUNTER,20) WHEN 0 THEN 'F' ELSE 'M' END,
1980 + MOD(COUNTER,20),
CONCAT('street',CAST(COUNTER /10 AS UNSIGNED INTEGER)),
CAST(CAST(COUNTER /10 AS UNSIGNED INTEGER)+1 AS CHAR(4)),
CONCAT('p',MOD(COUNTER,50)),
CONCAT('town',MOD(COUNTER,10)),
'070-6868689',
CASE MOD(COUNTER,3) WHEN 0

THEN NULL ELSE cast(COUNTER AS CHAR(8)) END);
IF MOD(COUNTER,1000) = 0 THEN
COMMIT WORK;
END IF;
SET COUNTER = COUNTER + 1;
END WHILE;
COMMIT WORK;

END

621CHAPTER 25 Using Indexes

Explanation: This stored procedure has been created, but the table is not yet
filled.

Example 25.19: Fill the PLAYERS_XXL table.

CALL FILL_PLAYERS_XXL(100000)

Explanation: With this statement, the PLAYERS_XXL table is filled with
100,000 rows. The stored procedure begins by emptying the table using a TRUNCATE
statement. Next, the number of rows specified in the CALL statement are added. See
Chapter 37, “Transactions and Multiuser Usage,” for a description of the COMMIT
statement.

Example 25.20: Create the following indexes on the PLAYERS_XXL table.

CREATE INDEX PLAYERS_XXL_INITIALS
ON PLAYERS_XXL(INITIALS)

CREATE INDEX PLAYERS_XXL_POSTCODE
ON PLAYERS_XXL(POSTCODE)

CREATE INDEX PLAYERS_XXL_STREET
ON PLAYERS_XXL(STREET)

25.10 CHOOSING COLUMNS FOR INDEXES

To be absolutely sure that inefficient processing of SELECT statements is not due to
the absence of an index, you could create an index on every column and combina-
tion of columns. If you intend to enter only SELECT statements against the data, this
could be a good approach. However, such a solution raises a number of problems,
such as the cost of index storage space. Another important disadvantage is that
each update (INSERT, UPDATE, or DELETE statement) requires a corresponding index
update and reduces the processing speed. So you need to make a choice. We dis-
cuss some guidelines next.

25.10.1 A Unique Index on Candidate Keys
In CREATE TABLE statements, we can specify primary and alternate keys. The result
is that the relevant column(s) will never contain duplicate values. It is recom-
mended that an index be defined on each candidate key so that the uniqueness of

622 SQL for MySQL Developers

new values can be checked quickly. As mentioned in Section 25.8, MySQL auto-
matically creates a unique index for each candidate key.

25.10.2 An Index on Foreign Keys
Joins can take a long time to execute if no indexes are defined on the join columns.
For a large percentage of joins, the join columns are also keys of the tables con-
cerned. They can be primary and alternate keys, but they may also be foreign keys.
According to the first rule of thumb, you should define an index on the primary and
alternate key columns. Indexes on foreign keys remain.

25.10.3 An Index on Columns Included in Selection Criteria
In some cases, SELECT, UPDATE, and DELETE statements can be executed faster if an
index has been defined on the columns named in the WHERE clause.

See this example:

SELECT *
FROM PLAYERS
WHERE TOWN = 'Stratford'

Rows are selected on the basis of the value in the TOWN column, and process-
ing this statement could be more efficient if an index were created on this column.
Earlier sections of this chapter discussed this extensively.

An index is worthwhile not just when the = operator is used, but also for <, <=,
>, and >=. (Note that the <> operator does not appear in this list.) However, this
saves time only when the number of rows selected is a small percentage of the total
number of rows in the table.

This section started with “In some cases.” So when is it necessary to define an
index? This depends on several factors, of which the most important are the number
of rows in the table (or the cardinality of the table), the number of different values
in the column concerned (or the cardinality of the column), and the distribution of
values within the column. We explain these rules and illustrate them with some fig-
ures created from a test performed with MySQL.

This test uses the PLAYERS_XXL table; see the previous section. The results
of the tests are represented in three diagrams; see Figure 25.4. Diagrams A, B, and
C contain the processing times of the following SELECT statements, respectively:

623CHAPTER 25 Using Indexes

SELECT COUNT(*)
FROM PLAYERS_XXL
WHERE INITIALS = 'in1'

SELECT COUNT(*)
FROM PLAYERS_XXL
WHERE POSTCODE = 'p25'

SELECT COUNT(*)
FROM PLAYERS_XXL
WHERE STREET = 'street164'

Each SELECT statement has been executed on the PLAYERS_XXL table with
three different sizes: small (100,000 rows), medium (500,000 rows), and large
(1,000,000 rows). Each statement has also been executed with (light gray bars) and
without (dark gray bars) an index. Each of the three statements was run in six differ-
ent environments. To give reliable figures, each statement was run several times in
each environment, and the average processing speed is shown in seconds in the
diagrams.

624 SQL for MySQL Developers

0
10
20
30
40
50

60

small medium large
0

10
20
30
40
50

60

small medium large

FIGURE 25.4 The impact of the cardinality of a column on the processing speed

0
10
20
30
40
50

60

small medium large

(A) (B)

(C)

It is important to know that the INITIALS column contains only two different
values, in1 and in2; the POSTCODE column contains 50 different values; and, in
the STREET column, every value occurs ten times at most. This means that the first
SELECT statement contains a condition on a column with a low cardinality, the third
statement has a condition on a column with a high cardinality, and the second state-
ment has a condition on a column with an average cardinality.

The following rules can be derived from the results. First, all three diagrams
show that the larger the table is, the bigger the impact of the index is. Of course, we
can define an index on a table consisting of 20 rows, but the effect is minimal.
Whether a table is large enough for it to be worth defining an index depends
entirely on the system on which the application runs. You need to try for yourself.

Second, the diagrams show that the effect of an index on a column with a low
cardinality (so few different values) is minimal; see diagram A in Figure 25.4. As
the table becomes larger, the processing speed starts to improve somewhat, but it
remains minimal. For the third statement with a condition on the STREET column,
the opposite applies. Here the presence of an index has a major impact on the pro-
cessing speed. Moreover, as the database gets larger, that difference becomes more
apparent. Diagram B in Figure 25.4 confirms the results for a table with an average
cardinality.

The third significant factor in deciding whether you will define an index is the
distribution of the values within a column. In the previous statements, each column
has an equal distribution of values. (Each value occurs the same number of times
within the column.) What if that is not the case? Figure 25.5 shows the results of the
following two statements:

SELECT COUNT(*)
FROM PLAYERS_XXL
WHERE SEX = 'M'

SELECT COUNT(*)
FROM PLAYERS_XXL
WHERE SEX = 'F'

For these tests, the division of the values in the SEX column is as follows: The
M value is present in 95 percent of the rows, and the F value is present in 5 percent
of the rows. This is an extreme example of an unequal distribution and indicates the
difference clearly. In diagram A in Figure 25.5, we can see that the impact of the
index is minimal; however, the impact in diagram B in that figure is large. If an
index is defined, counting all women in the large PLAYERS table is carried out
approximately 180 times faster.

625CHAPTER 25 Using Indexes

626 SQL for MySQL Developers

0

20

40

60

80

100

small medium large

FIGURE 25.5 The impact on the processing speed of the distribution of values
within a column

25.10.4 An Index on a Combination of Columns
If a WHERE clause contains an AND operator, an index is usually defined on the com-
bination of columns to ensure more efficient processing. See the following example:

SELECT *
FROM PLAYERS
WHERE NAME = 'Collins'
AND INITIALS = 'DD'

The associated index is:

CREATE INDEX NAMEINIT
ON PLAYERS (NAME, INITIALS)

In some cases, when you are executing such a SELECT statement, it can suffice
to have an index on only one of the columns. Imagine that duplicate names seldom
occur in the NAME column and that this is the only column with an index. MySQL
usually finds all the rows that satisfy the condition NAME = 'Collins' by using this
index. Only infrequently does it retrieve a few too many rows. In this case, an index
on the combination of columns takes up more storage space than necessary and will
not significantly improve the processing speed of the SELECT statement.

Indexes defined on combinations of columns are also used for selections in
which only the first column (or columns) of the index is specified. Therefore,

0

20

40

60

80

100

small medium large

(A) (B)

MySQL uses the previous NAMEINIT index to process the condition NAME =

'Collins', but not for INITIALS = 'DD' because the INITIALS column is not the
first one in the NAMEINIT index.

25.10.5 An Index on Columns Used for Sorting
If MySQL needs to sort the result of a SELECT statement by a column that has no
index, a separate (time-consuming) sort process must be performed. You can avoid
this extra sorting if you define a clustered index on the relevant column. When the
rows are fetched from the database (with the FROM clause), this index can be used.
The intermediate result from the FROM clause is already ordered by the correct col-
umn, so no extra sorting is necessary. This rule is valid only if the column con-
cerned does not contain many null values (because null values are not stored in an
index) and if the SELECT statement does not have a WHERE clause with a condition
that can be optimized.

When exactly does MySQL perform a sort? If you add an ORDER BY clause to a
SELECT statement, there is a good chance that SQL performs a sort. In addition,
when columns are to be grouped (with the GROUP BY clause), all the rows must be
sorted first. MySQL can process a GROUP BY clause more quickly when the rows are
already ordered. If you use DISTINCT in the SELECT clause, all rows must be ordered
(behind the scenes) to determine whether they are equal. Therefore, the order rule
again applies: MySQL can process DISTINCT more quickly when the rows are
already ordered.

Finally, note that it makes little sense to define two indexes on the same column
or combination of columns. Therefore, consult the COLUMNS_IN_INDEX table for
whether an index has already been defined on a column or on a combination of
columns.

25.11 INDEXES AND THE CATALOG

As with tables and columns, indexes are recorded in catalog tables—the INDEXES
table and the COLUMNS_IN_INDEX table. The descriptions of these table
columns are given here. The columns INDEX_CREATOR and INDEX_NAME are
the primary key of the INDEXES table.

627CHAPTER 25 Using Indexes

TABLE 25.1 Description of the INDEXES Catalog Table

628 SQL for MySQL Developers

COLUMN NAME DATA TYPE DESCRIPTION

INDEX_CREATOR CHAR Name of the database in which the index
is created

INDEX_NAME CHAR Name of the index

CREATE_TIMESTAMP DATETIME Date and time the index was created

TABLE_CREATOR NUMERIC Name of the database in which the table
was created

TABLE_NAME CHAR Name of the table on which the index is
defined

UNIQUE_ID CHAR Whether the index is unique (YES) or
not (NO)

INDEX_TYPE CHAR Form of the index: BTREE or HASH

COLUMN NAME DATA TYPE DESCRIPTION

INDEX_CREATOR CHAR Name of the database in which the index was
created

INDEX_NAME CHAR Name of the index

TABLE_CREATOR NUMERIC Name of the database in which the table was
created

TABLE_NAME CHAR Name of the table on which the index is defined

COLUMN_NAME CHAR Name of the column on which the index is
defined

COLUMN_SEQ NUMERIC Sequence number of the column in the index

ORDERING CHAR Has the value ASC if the index has been built in
ascending order; otherwise, has the value DESC

The columns on which an index is defined are recorded in a separate table—
the COLUMNS_IN_INDEX table. The columns INDEX_CREATOR, INDEX_
NAME, and COLUMN_NAME form the primary key of this table.

TABLE 25.2 Description of the COLUMNS_IN_INDEX Catalog Table

The sample indexes from this section are recorded in the INDEXES and
COLUMNS_IN_INDEX tables, as follows (we assume that all the tables and
indexes are created in the TENNIS database):

INDEX_CREATOR INDEX_NAME TABLE_NAME UNIQUE_ID INDEX_TYPE
------------- ---------- ---------- --------- ----------
TENNIS PLAY_PC PLAYERS NO BTREE
TENNIS MAT_WL MATCHES NO BTREE
TENNIS NAMEINIT PLAYERS YES BTREE

INDEX_NAME TABLE_NAME COLUMN_NAME COLUMN_SEQ ORDERING
---------- ---------- ----------- ---------- --------
PLAY_PC PLAYERS POSTCODE 1 ASC
MAT_WL MATCHES WON 1 ASC
MAT_WL MATCHES LOST 2 ASC
NAMEINIT PLAYERS NAME 1 ASC
NAMEINIT PLAYERS INITIALS 2 ASC

Example 25.21: Determine which base table has more than one index.

SELECT TABLE_CREATOR, TABLE_NAME, COUNT(*)
FROM INDEXES
GROUP BY TABLE_CREATOR, TABLE_NAME
HAVING COUNT(*) > 1

Explanation: If a particular base table appears more than once in the INDEXES
table, it is based upon more than one index.

Example 25.22: Determine which base table does not have any unique index.

SELECT TABLE_CREATOR, TABLE_NAME
FROM TABLES AS TAB
WHERE NOT EXISTS

(SELECT *
FROM INDEXES AS IDX
WHERE TAB.TABLE_CREATOR = IDX.TABLE_CREATOR
AND TAB.TABLE_NAME = TAB.TABLE_NAME
AND IDX.UNIQUE_ID = 'YES')

In the INFORMATION_SCHEMA catalog, we can find data on indexes in the
STATISTICS table.

We also can retrieve information about indexes with a SHOW statement. If we use
this statement, more information in the indexes is presented.

629CHAPTER 25 Using Indexes

D E F I N I T I O N
<show index statement> ::=

SHOW { INDEX | KEY } { FROM | IN }
<table specification> [{ FROM | IN } <database name>]

Example 25.23: Get information about the indexes of the PLAYERS table.

SHOW INDEX FROM PLAYERS

25.12 ANSWERS
25.1 1. Basic strategy:

RESULT := [];
FOR EACH T IN TEAMS DO

IF (T.TEAMNO > 1)
AND (T.DIVISION = 'second') THEN

RESULT :+ T;
ENDFOR;

Optimized strategy:

RESULT := [];
FOR EACH T IN TEAMS
WHERE DIVISION = 'second' DO

IF T.TEAMNO > 1 THEN
RESULT :+ T;

ENDFOR;

2. Basic strategy:

RESULT := [];
FOR EACH P IN PLAYERS DO

FOR EACH M IN MATCHES DO
IF P.PLAYERNO = M.PLAYERNO AND

P.BIRTH_DATE > '1963-01-01' THEN
RESULT :+ P;

ENDFOR;
ENDFOR;

Optimized strategy:

RESULT := [];
FOR EACH P IN PLAYERS
HERE P.BIRTH_DATE > '1963-01-01' DO
FOR EACH M IN MATCHES DO

IF M.PLAYERNO = P.PLAYERNO THEN
RESULT :+ P;

ENDFOR;
ENDFOR;

630 SQL for MySQL Developers

631

Views
C H A P T E R 2 6

26.1 INTRODUCTION

MySQL supports two types of tables: real tables, generally known as base tables,
and derived tables, also called views. Base tables are created with CREATE TABLE
statements and are the only ones in which data can be stored. Examples are the
PLAYERS and TEAMS tables from the tennis club database.

A derived table, or view, stores no rows itself. Instead, it serves as a prescription
or formula for combining certain data from base tables to make a “virtual” table. The
word virtual is used because the contents of a view exist only when it is used in a
statement. At that moment, MySQL retrieves the prescription that makes up the view
formula, executes it, and presents the user with what seems to be a real table.

This chapter describes how views are created and how they can be used. Some
useful applications include simplifying routine statements and reorganizing tables.
Two sections cover restrictions on querying and updating views.

26.2 CREATING VIEWS

Views are created with the CREATE VIEW statement.

D E F I N I T I O N
<create view statement> ::=

CREATE [OR REPLACE] VIEW <view name> [<column list>]
AS <table expression>
[WITH [CASCADED | LOCAL] CHECK OPTION]

Example 26.1: Create a view that holds all town names from the PLAYERS table
and show the virtual contents of this new view.

CREATE VIEW TOWNS AS
SELECT DISTINCT TOWN
FROM PLAYERS

SELECT *
FROM TOWNS

The result is:

TOWN

Stratford
Inglewood
Eltham
Midhurst
Douglas
Plymouth

Example 26.2: Create a view that holds the player numbers and league numbers
of all players who have a league number and show the virtual contents of this view.

CREATE VIEW CPLAYERS AS
SELECT PLAYERNO, LEAGUENO
FROM PLAYERS
WHERE LEAGUENO IS NOT NULL

SELECT *
FROM CPLAYERS

The result is:

PLAYERNO LEAGUENO
-------- --------

44 1124
112 1319
83 1608
2 2411
27 2513
8 2983
57 6409
100 6524
104 7060
6 8467

These two CREATE VIEW statements create two views: TOWNS and CPLAYERS.
A table expression defines the contents of each view and forms the view formula.

632 SQL for MySQL Developers

These two views can be queried just like base tables, and the CPLAYERS view can
even be updated (see Section 26.8).

Example 26.3: Get the player and league numbers for competition players
whose numbers are between 6 and 44.

SELECT *
FROM CPLAYERS
WHERE PLAYERNO BETWEEN 6 AND 44

The result is:

PLAYERNO LEAGUENO
-------- --------

6 8467
44 1124
27 2513
8 2983

If we did not use the CPLAYERS view for the same question but instead
accessed the PLAYERS table directly, we would need a more complex SELECT state-
ment to retrieve the same information:

SELECT PLAYERNO, LEAGUENO
FROM PLAYERS
WHERE LEAGUENO IS NOT NULL
AND PLAYERNO BETWEEN 6 AND 44

Example 26.4: Remove the competition player whose league number is 7060.

DELETE
FROM CPLAYERS
WHERE LEAGUENO = '7060'

When this statement is executed, it deletes the row in the base (PLAYERS)
table in which the LEAGUENO column equals 7060.

The contents of a view are not stored, but are instead derived when the view is
referenced. This means that the contents, by definition, are always in line with the
contents of the base tables. Every update made to the data in a base table is imme-
diately visible in a view. Users don’t need to be concerned about the integrity of the
contents of the view, as long as the integrity of the base tables is maintained. We
return to the subject of updating views in Section 26.8.

Another view may be specified in a view formula. In other words, we may nest
views.

633CHAPTER 26 Views

Example 26.5: Create a view that holds all competition players whose player
numbers are between 6 and 27, and show the virtual contents of this view.

CREATE VIEW SEVERAL AS
SELECT *
FROM CPLAYERS
WHERE PLAYERNO BETWEEN 6 AND 27

SELECT *
FROM SEVERAL

The result is:

PLAYERNO LEAGUENO
-------- --------

6 8467
8 2983
27 2513

In most cases, table expressions retrieve data from base tables or views; how-
ever, table expressions can give a result without accessing a table (see Example
7.34). Therefore, views do not have to be defined on base tables. See this example:

Example 26.6: Create a view in which the digits 0 through 9 appear, and show its
contents.

CREATE VIEW DIGITS AS
SELECT 0 DIGIT UNION SELECT 1 UNION
SELECT 2 UNION SELECT 3 UNION
SELECT 4 UNION SELECT 5 UNION
SELECT 6 UNION SELECT 7 UNION
SELECT 8 UNION SELECT 9

SELECT * FROM DIGITS

The result is:

DIGIT

0
1
2
3
4
5
6
7
8
9

634 SQL for MySQL Developers

Behind the word CREATE, we can specify OR REPLACE. If the name of the view
already exists, the new view formula overwrites the old one.

26.3 THE COLUMN NAMES OF VIEWS

The column names in a view default to the column names in the SELECT clause. For
example, the two columns in the SEVERAL view are called PLAYERNO and
LEAGUENO. A view, therefore, inherits the column names. You can also explicitly
define the column names of views.

Example 26.7: Create a view that holds the player number, name, initials, and
date of birth of each player who lives in Stratford.

CREATE VIEW STRATFORDERS (PLAYERNO, NAME, INIT, BORN) AS
SELECT PLAYERNO, NAME, INITIALS, BIRTH_DATE
FROM PLAYERS
WHERE TOWN = 'Stratford'

SELECT *
FROM STRATFORDERS
WHERE PLAYERNO > 90

Note the column names in the result:

PLAYERNO NAME INITIALS BORN
-------- --------- -------- ----------

100 Parmenter P 1963-02-08

These new column names are permanent. You can no longer refer to the
columns PLAYERNO or BIRTH_DATE in the STRATFORDERS view.

MySQL allows an expression in the SELECT clause of a view formula to be a
function or calculation instead of a column specification. The name of the column is
equal to the expression.

Example 26.8: For each town, create a view that holds the place name and num-
ber of players who live in that town and then show the contents of the view.

CREATE VIEW RESIDENTS AS
SELECT TOWN, COUNT(*)
FROM PLAYERS
GROUP BY TOWN

SELECT TOWN, "COUNT(*)"
FROM RESIDENTS

635CHAPTER 26 Views

The result is:

TOWN COUNT(*)
--------- --------
Douglas 1
Eltham 2
Inglewood 2
Midhurst 1
Plymouth 1
Stratford 7

Explanation: This view has two column names: TOWN and COUNT(*). Note that
the name COUNT(*) must be enclosed by double quotes.

Exercise 26.1: Create a view called NUMBERPLS that contains all the team
numbers and total number of players who have played for that team. (Assume that
at least one player has competed for each team.)

Exercise 26.2: Create a view called WINNERS that contains the number and
name of each player who, for at least one team, has won one match.

Exercise 26.3: Create a view called TOTALS that records the total amount of
penalties for each player who has incurred at least one penalty.

26.4 UPDATING VIEWS: WITH CHECK OPTION
We have already seen a number of examples where underlying tables are being
updated through views. Careful with updating views, it can have unexpected
results. The following example illustrates this situation.

Example 26.9: Create a view that holds all players born earlier than 1960.

CREATE VIEW VETERANS AS
SELECT *
FROM PLAYERS
WHERE BIRTH_DATE < '1960-01-01'

Now we would like to change the date of birth of the veteran whose player num-
ber is 2 from 1 September 1948 to 1 September 1970. The update statement reads:

UPDATE VETERANS
SET BIRTH_DATE = '1970-09-01'
WHERE PLAYERNO = 2

636 SQL for MySQL Developers

This update is correct. The date of birth of player number 2 in the PLAYERS
table is changed. However, the unexpected effect of this update is that player num-
ber 2 no longer appears if we look at the view using a SELECT statement. This is
because the player ceased to satisfy the condition specified in the view formula
after the update occurred.

If you extend the view definition using the so-called WITH CHECK OPTION,
MySQL ensures that such an unexpected effect does not arise.

The view definition then becomes this:

CREATE VIEW VETERANS AS
SELECT *
FROM PLAYERS
WHERE BIRTH_DATE < '1960-01-01'
WITH CHECK OPTION

If a view includes the WITH CHECK OPTION clause, all changes on the view with
UPDATE, INSERT, and DELETE statements are checked for validity:

■ An UPDATE statement is correct if the updated rows still belong to the (virtual)
contents of the view.

■ An INSERT statement is correct if the new rows belong to the (virtual) con-
tents of the view.

■ A DELETE statement is correct if the deleted rows belong to the (virtual) con-
tents of the view.

As mentioned earlier, views can be nested, or in other words, a view can be
stacked on top of another view. You might wonder to what extent the check of the
WITH CHECK OPTION can be carried out. If we specify WITH CASCADED CHECK
OPTION, all views are checked. When WITH LOCAL CHECK OPTION is used, checks that
relate to conditions in the view being updated are the only ones checked. CASCADED
is the default option.

Example 26.10: Create a view of all players born earlier than 1960 and who live
in Inglewood.

CREATE VIEW INGLEWOOD_VETERANS AS
SELECT *
FROM VETERANS
WHERE TOWN = 'Inglewood'
WITH CASCADED CHECK OPTION

637CHAPTER 26 Views

Explanation: If we use an INSERT statement to add a player to this view, he or she
must live in Inglewood and must have been born earlier than January 1, 1960.
When we leave out CASCADED, every player who we add to the INGLEWOOD_
VETERANS table must live in Inglewood. MySQL no longer carries out the check.

The WITH CHECK OPTION can be used only in conjunction with views that can be
updated according to the rules mentioned in Section 26.8.

26.5OPTIONS OF VIEWS

You can define special options such as privileges and method of processing for each
view.

D E F I N I T I O N
<create view statement> ::=

CREATE [OR REPLACE]
[DEFINER = { <user name> | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]
[ALGORITHM = { MERGE | TEMPTABLE | UNDEFINED }]
VIEW <viewnaam> [<column list>] AS <table expression>
[WITH [CASCADED | LOCAL] CHECK OPTION]

With the definer option, we can indicate who the creator, or the definer, of the
view is. If this option is not specified, the user who creates the view is the definer.
We can change this by creating a view for another SQL user.

Example 26.11: Create a view with user JACO as the definer.

CREATE DEFINER = 'JACO'@'%' VIEW JACO_VIEW AS
SELECT *
FROM PLAYERS
WHERE PLAYERNO > 100

Specifying the term CURRENT_USER as the definer has the same result as omitting
the definer option.

A user might have the privilege to query a view, but what happens if that view
queries tables for which that same user has no SELECT privilege? The SQL SECURITY
option determines the outcome. If SQL SECURITY has not been specified, the rule is
that the user who creates the view must have SELECT privileges on the queries
tables. For example, if the view V1 queries the table T1, the definer of the view must
have SELECT privilege for T1. Other users of V1 do not need those privileges. Not

638 SQL for MySQL Developers

specifying an SQL SECURITY option is equal to specifying SQL SECURITY DEFINER. If
we specify SQL SECURITY INVOKER, the users of the view must explicitly be granted
the required privileges for the tables accessed. Therefore, every user who queries
V1 should be granted the SELECT privilege for the T1 table.

The ALGORITHM option indicates how the view must be processed internally. Two
methods can process a statement on a view. In the first method, called MERGE, the
SELECT statement with which the view is queried is combined with the view formula.
As a result, one (combined) SELECT statement is processed. With the method called
TEMPTABLE, a SELECT statement on a view is processed in two steps. During step 1,
the intermediate result of the view formula is determined and stored in a temporary
table. In step 2, the SELECT statement is executed on this intermediate result. If the
ALGORITHM option has not been specified or if it is set to UNDEFINED, MySQL deter-
mines which method it will apply.

Example 26.12: Create a view processed using the MERGE method for which the
user should have the right privileges.

CREATE SQL SECURITY INVOKER
ALGORITHM = MERGE
VIEW SIMPLE_VIEW AS

SELECT PLAYERNO
FROM PLAYERS
WHERE PLAYERNO > 100

All options, including the creator and even the view formula, can be changed
later with an ALTER USER statement.

D E F I N I T I O N
<alter view statement> ::=

ALTER
[DEFINER = { <user name> | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]
[ALGORITHM = { MERGE | TEMPTABLE | UNDEFINED }]
VIEW <view name> [<column list>] AS <table expression>
[WITH [CASCADED | LOCAL] CHECK OPTION]

26.6 DELETING VIEWS

The DROP VIEW statement is used to delete a view. By using this statement, every
other view that references the dropped view is also dropped automatically. When a
base table is dropped, all views that have been defined directly or indirectly on that
table are also dropped.

639CHAPTER 26 Views

D E F I N I T I O N
<drop view statement> ::=

DROP VIEW [IF EXISTS] <table specification>
[, <table specification>]...
[RESTRICT | CASCADE]

Example 26.13: Drop the CPLAYERS view.

DROP VIEW CPLAYERS

When IF EXISTS is specified, no error messages appear if the view that must be
dropped does not exist. RESTRICT and CASCADE can be specified, but they have no
effect.

26.7 VIEWS AND THE CATALOG

Information about views is recorded in various tables. In the VIEWS table, a row is
stored for each view. The column VIEW_ID forms the primary key of this catalog
table. The columns VIEW_NAME and CREATOR form an alternate key.

TABLE 26.1 Description of the VIEWS Catalog Table

640 SQL for MySQL Developers

COLUMN NAME DATA TYPE DESCRIPTION

VIEW_CREATOR CHAR Name of the database to which the view
belongs

VIEW_NAME CHAR Name of the view

CREATE_TIMESTAMP TIMESTAMP Date on which the view was created; how-
ever, this column is not filled by MySQL

WITHCHECKOPT CHAR Value is YES if the view is defined with
WITH CHECK, CASCADED, or LOCAL
OPTION); otherwise, it has the value NO

IS_UPDATABLE CHAR Value is YES if the view can be updated;
otherwise, it has the value NO

COMMENT CHAR Comment that is entered with the COMMENT
statement

VIEWFORMULA CHAR The view formula (table expression)

The columns of the view inherit the data type of the column expressions from
the SELECT clause of the view formula.

Example 26.14: Can a table called STOCK be created in the TENNIS DATA-
BASE, or does that name already exist?

SELECT TABLE_NAME
FROM TABLES
WHERE TABLE_NAME = 'STOCK'
AND TABLE_CREATOR = 'TENNIS'
UNION
SELECT VIEW_NAME
FROM VIEWS
WHERE VIEW_NAME = 'STOCK'
AND VIEW_CREATOR = 'TENNIS'

Explanation: The SELECT statement checks whether a table or view was created
with the name STOCK in the TENNIS database. If the statement has a result, this
table name cannot be used again.

The VIEWS table in the INFORMATION_SCHEMA catalog contains data on
views.

26.8 RESTRICTIONS ON UPDATING VIEWS

INSERT, UPDATE, and DELETE statements may be executed on views. However,
MySQL has several restrictions. For example, rows of some views may not be
deleted or updated. This section covers the restrictions that apply to updating
views.

A view can be updated only if a one-to-one correspondence exists between the
rows of the view and the rows of the underlying table. Additionally, the view formula
should satisfy the following conditions. The first seven conditions apply to all
update statements.

1. The SELECT clause may not contain DISTINCT.

2. The SELECT clause may not contain aggregation functions.

3. The FROM clause may not contain more than one table.

4. The WHERE clause may not contain a correlated subquery.

5. The SELECT statement may not contain a GROUP BY clause (or a HAVING
clause).

6. The SELECT statement may not contain an ORDER BY clause.

7. The SELECT statement may not contain set operators.

641CHAPTER 26 Views

In addition, the following restriction holds for the UPDATE statement:

8. A virtual column may not be updated.

The BEGIN_AGE column in the following view may not be updated (though
the PLAYERNO column may be updated):

CREATE VIEW AGES (PLAYERNO, BEGIN_AGE) AS
SELECT PLAYERNO, JOINED – YEAR(BIRTH_DATE)
FROM PLAYERS

In addition, the following restriction holds for the INSERT statement:

9. The SELECT clause must contain, from the table that is specified in the FROM
clause, all columns in which the null value is not allowed or for which no
default value is specified.

This is why INSERT statements may not be performed against the following
view—it does not contain all NOT NULL columns, such as SEX and TOWN:

CREATE VIEW PLAYERS_NAMES AS
SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS

Exercise 26.4: This chapter has shown many examples of views. For each of the
following views, indicate whether an UPDATE, INSERT, or DELETE statement may be
performed:

1. TOWNS

2. CPLAYERS

3. SEVERAL

4. DIGITS

5. STRATFORDERS

6. RESIDENTS

7. VETERANS

8. TOTALS

9. AGES

26.9 PROCESSING VIEW STATEMENTS

How will statements that access views be processed? The processing steps (see
Chapter 6, “SELECT Statements, Table Expressions, and Subqueries”) cannot be

642 SQL for MySQL Developers

executed one by one, as happens for base tables. MySQL reaches the FROM clause
and attempts to fetch rows from the database; it encounters a problem because a
view contains no stored rows. So which rows must be retrieved from the database
when a statement refers to a view? MySQL knows that it is working with a view
(thanks to a routine look in the catalog). To process the steps, MySQL can choose
between two methods called substitution and materialization.

With the first method, the view formula is merged into the SELECT statement.
This method is called substitution because the view name in the SELECT statement
is replaced (substituted) by the view formula. Next, the obtained SELECT statement is
processed. The following example illustrates this method.

Example 26.15: Create a view of all data of the players who incurred a penalty.
Next, give the number of each player from the COST_RAISERS view who has
incurred at least one penalty and lives in Stratford.

CREATE VIEW COST_RAISERS AS
SELECT *
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)

SELECT PLAYERNO
FROM COST_RAISERS
WHERE TOWN = 'Stratford'

The first processing step comprises the merging of the view formula into the
SELECT statement and produces the following statement:

SELECT PLAYERNO
FROM (SELECT *

FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)) AS VIEWFORMULA

WHERE TOWN = 'Stratford'

Now this statement can be processed by moving through the remaining steps.

The final result is:

PLAYERNO

6

See the next example that uses the STRATFORDERS view from Section 26.3.

643CHAPTER 26 Views

Example 26.16: Delete all Stratford people born later than 1965.

DELETE
FROM STRATFORDERS
WHERE BORN > '1965-12-31'

After the name has been substituted by the view formula, the statement reads:

DELETE
FROM PLAYERS
WHERE BIRTH_DATE > '1965-12-31'
AND TOWN = 'Stratford'

Another method of processing is called materialization. In this method, the
table expression of the view formula processes first, which gives an intermediate
result. Next, the actual SELECT statement is executed on that intermediate result. If
we would process Example 26.15 through materialization, the following statement
would be executed first:

SELECT *
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)

This gives the following intermediate result (for simplicity, only the columns
PLAYERNO and TOWN have been displayed):

PLAYERNO TOWN
-------- ---------

6 Stratford
8 Inglewood
27 Eltham
44 Inglewood
104 Eltham

MySQL keeps this intermediate result in internal memory. After that, the fol-
lowing statement is executed:

SELECT PLAYERNO
FROM <intermediate result>
WHERE TOWN = 'Stratford'

Both methods have their advantages and disadvantages. MySQL itself deter-
mines which method should be used in each situation; however, the user can choose
the processing method by specifying it in the view definition.

Example 26.17: Create a view of all data of the players who incurred a penalty
and make sure that MySQL uses the materialization method during the processing.

644 SQL for MySQL Developers

CREATE VIEW EXPENSIVE_PLAYERS AS
ALORITHM = TEMPTABLE

SELECT *
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)

Explanation: With the word TEMPTABLE, we indicate that a temporary table must
be created during the processing of SELECT statements on this view—that a materi-
alization must be carried out. If MERGE is specified as algorithm, the substitution
method is used. With UNDEFINED, MySQL makes the decision itself.

Exercise 26.5: How will the following statements appear after the view formula
has been included through the substitution method?

1. SELECT YEAR(BORN) – 1900 AS DIFFERENCE, COUNT(*)
FROM STRATFORDERS
GROUP BY DIFFERENCE

2. SELECT COST_RAISERS.PLAYERNO
FROM COST_RAISERS, STRATFORDERS
WHERE COST_RAISERS.PLAYERNO = STRATFORDERS.PLAYERNO

3. UPDATE STRATFORDERS
SET BORN = '1950-04-04'
WHERE PLAYERNO = 7

26.10 APPLICATION AREAS FOR VIEWS

Views can be used in a variety of applications. This section covers some of them.
There is no significance to the order in which they are discussed.

26.10.1 Simplification of Routine Statements
Statements that are used frequently or are structurally similar can be simplified
through the use of views.

Example 26.18: Imagine that these two statements are frequently entered.

SELECT *
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)

AND TOWN = 'Stratford'

645CHAPTER 26 Views

and

SELECT TOWN, COUNT(*)
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)

GROUP BY TOWN

Both statements are concerned with the players who have incurred at least one
penalty, so this subset of players can be defined by a view:

CREATE VIEW PPLAYERS AS
SELECT *
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)

Now the two previous SELECT statements can be greatly simplified by using the
PPLAYERS view:

SELECT *
FROM PPLAYERS
WHERE TOWN = 'Stratford'

and

SELECT TOWN, COUNT(*)
FROM PPLAYERS
GROUP BY TOWN

Example 26.19: Imagine that the PLAYERS table is often joined with the
MATCHES table.

SELECT ...
FROM PLAYERS, MATCHES
WHERE PLAYERS.PLAYERNO = MATCHES.PLAYERNO
AND ...

In this case, the SELECT statement becomes simpler if the join is defined as a
view:

CREATE VIEW PLAY_MAT AS
SELECT ...
FROM PLAYERS, MATCHES
WHERE PLAYERS.PLAYERNO = MATCHES.PLAYERNO

646 SQL for MySQL Developers

The join now takes this simplified form:

SELECT ...
FROM PLAY_MAT
WHERE ...

26.10.2 Reorganizing Tables
Tables are designed and implemented on the basis of a particular situation. The sit-
uation can sometimes change, which means that the structure also changes. For
example, a new column might be added to a table, or two tables might be joined to
make a single table. In most cases, the reorganization of a table structure requires
altering already developed and operational statements. Such changes can be time-
consuming and expensive. Appropriate use of views can keep this time and cost to
a minimum. Let us see how.

Example 26.20: For each competition player, get the name, initials, and divi-
sions in which he or she has ever played.

SELECT DISTINCT NAME, INITIALS, DIVISION
FROM PLAYERS AS P, MATCHES AS M, TEAMS AS T
WHERE P.PLAYERNO = M.PLAYERNO
AND M.TEAMNO = T.TEAMNO

The result is:

NAME INITIALS DIVISION
--------- -------- --------
Parmenter R first
Baker E first
Hope PK first
Everett R first
Collins DD second
Moorman D second
Brown M first
Bailey IP second
Newcastle B first
Newcastle B second

For unknown reasons, the TEAMS and MATCHES tables need to be reorgan-
ized; they are combined to form one table, the RESULT table, shown here:

647CHAPTER 26 Views

MATCH_NO TEAMNO PLAYERNO WON LOST CAPTAIN DIVISION
-------- ------ -------- --- ---- ------- --------

1 1 6 3 1 6 first
2 1 6 2 3 6 first
3 1 6 3 0 6 first
4 1 44 3 2 6 first
5 1 83 0 3 6 first
6 1 2 1 3 6 first
7 1 57 3 0 6 first
8 1 8 0 3 6 first
9 2 27 3 2 27 second
10 2 104 3 2 27 second
11 2 112 2 3 27 second
12 2 112 1 3 27 second
13 2 8 0 3 27 second

The CAPTAIN column in the RESULT table is the former PLAYERNO column
from the TEAMS table. This column has been given another name; otherwise, there
would have been two columns called PLAYERNO. All statements that refer to the
two tables, including the previous SELECT statement, now need to be rewritten. To
prevent the need for a total rewrite, a better solution is to define two views that rep-
resent the former TEAMS and MATCHES tables, respectively:

CREATE VIEW TEAMS (TEAMNO, PLAYERNO, DIVISION) AS
SELECT DISTINCT TEAMNO, CAPTAIN, DIVISION
FROM RESULT

CREATE VIEW MATCHES AS
SELECT MATCHNO, TEAMNO, PLAYERNO,

WON, LOST
FROM RESULT

The virtual contents of each of these two views are the same as the contents of
the two original tables. No statements need to be rewritten, including the SELECT
statement from the beginning of this section.

Of course, you cannot manage every reorganization of a table with views. It
might be decided, for example, to store data about male and female players in sep-
arate tables. Both tables contain the same columns as the PLAYERS table but omit
the SEX column. It is possible to reconstruct the original PLAYERS table with a
view using the UNION operator; however, inserts on this view are not allowed.

26.10.3 Stepwise Development of SELECT Statements
Imagine that you need to answer the following question: For each player from Strat-
ford who has incurred a penalty that is greater than the average penalty for players
from the second team and who played for at least one first-division team, get the

648 SQL for MySQL Developers

name and initials. You could write a huge SELECT statement to answer this, but you
could also develop a query in a stepwise fashion.

First, we create a view of all the players who have incurred at least one penalty
that is greater than the average penalty for players from the second team:

CREATE VIEW GREATER AS
SELECT DISTINCT PLAYERNO
FROM PENALTIES
WHERE AMOUNT >

(SELECT AVG(AMOUNT)
FROM PENALTIES
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES
WHERE TEAMNO = 2))

Then we create a view of all players who have competed for a team in the first
division:

CREATE VIEW FIRST AS
SELECT DISTINCT PLAYERNO
FROM MATCHES
WHERE TEAMNO IN

(SELECT TEAMNO
FROM TEAMS
WHERE DIVISION = 'first')

Using these two views, we can answer the original question:

SELECT NAME, INITIALS
FROM PLAYERS
WHERE TOWN = 'Stratford'
AND PLAYERNO IN

(SELECT PLAYERNO
FROM GREATER)

AND PLAYERNO IN
(SELECT PLAYERNO
FROM FIRST)

We can split the problem into “mini-problems” and execute it in steps, creating
one long SELECT statement.

26.10.4 Specifying Integrity Constraints
Use the WITH CHECK OPTION clause to implement rules that restrict the possible set
of values that may be entered into columns.

649CHAPTER 26 Views

Example 26.21: The SEX column in the PLAYERS table may contain either the
value 'M' or the value 'F'. Using the WITH CHECK OPTION clause provides an auto-
matic control for this. The following view should be defined:

CREATE VIEW PLAYERSS AS
SELECT *
FROM PLAYERS
WHERE SEX IN ('M', 'F')
WITH CHECK OPTION

We don’t give anyone the privilege of accessing the PLAYERS table directly;
instead, others need to use the PLAYERSS view. The WITH CHECK OPTION clause
tests every UPDATE and INSERT statement to determine whether the value in the SEX
column falls into the permitted range.

Note: If the desired check can be defined with a check integrity constraint, we
recommend that you use it in this application.

26.10.5 Data Security
Views can also be used to protect parts of tables. Chapter 28, “Users and Data
Security,” covers this topic in detail.

Exercise 26.6: Decide whether the following reorganizations of the database
structure are possible through the use of views.

1. The NAME column is added to the PENALTIES table but also remains in the
PLAYERS table.

2. The TOWN column is removed from the PLAYERS table and placed together
with the PLAYERNO column in a separate table.

26.11 ANSWERS

26.1 CREATE VIEW NUMBERPLS (TEAMNO, NUMBER) AS
SELECT TEAMNO, COUNT(*)
FROM MATCHES
GROUP BY TEAMNO

26.2 CREATE VIEW WINNERS AS
SELECT PLAYERNO, NAME
FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM MATCHES
WHERE WON > LOST)

650 SQL for MySQL Developers

26.3 CREATE VIEW TOTALS (PLAYERNO, SUM_PENALTIES) AS
SELECT PLAYERNO, SUM(AMOUNT)
FROM PENALTIES
GROUP BY PLAYERNO

26.4

651CHAPTER 26 Views

VIEW UPDATE INSERT DELETE

TOWNS No No No
CPLAYERS Yes No Yes
SEVERAL Yes No Yes
DIGITS No No No
STRATFORDERS Yes No Yes
RESIDENTS No No No
VETERANS Yes Yes Yes
TOTALS No No No
AGES Yes No Yes

26.5 1. SELECT YEAR(BORN) – 1900 AS DIFFERENCE, COUNT(*)
FROM (SELECT PLAYERNO, NAME,

INITIALS, BIRTH_DATE AS BORN
FROM PLAYERS
WHERE TOWN = 'Stratford') AS STRATFORDERS

GROUP BY DIFFERENCE

2. SELECT EXPENSIVE.PLAYERNO
FROM (SELECT *

FROM PLAYERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES)) AS EXPENSIVE,

(SELECT PLAYERNO, NAME,
INITIALS, BIRTH_DATE AS BORN

FROM PLAYERS
WHERE TOWN = 'Stratford') AS STRATFORDERS

WHERE EXPENSIVE.PLAYERNO = STRATFORDERS.PLAYERNO

3. UPDATE PLAYERS
SET BIRTH_DATE = '1950-04-04'
WHERE PLAYERNO = 7

26.6 1. Yes

2. Yes, but the view can be queried only, not updated, because the view
formula contains a join.

This page intentionally left blank This page intentionally left blank

653

Creating Databases
C H A P T E R 2 7

27.1 INTRODUCTION

Each table that is created is stored in a database. During MySQL installation, two
databases are created automatically and used to store the catalog tables. We do not
recommend adding your own tables to these databases. It is better to create new
databases for this by using the CREATE DATABASE statement. Section 4.4 contains an
example of this statement. In this relatively short chapter, we deal with this state-
ment at great length.

27.2 DATABASES AND THE CATALOG

MySQL stores information on databases in the catalog table called INFORMATION_
SCHEMA.

Example 27.1: Show the names of all databases.

SELECT SCHEMA_NAME
FROM INFORMATION_SCHEMA.SCHEMATA

The result is:

SCHEMA_NAME

information_schema
mysql
tennis
test

Explanation: No catalog table called DATABASES exists. Instead, this table is
called SCHEMATA. This is somewhat confusing. MySQL is one of the few products
that use the terms database and schema interchangeably.

The previous result contains four databases. MySQL created the first two,
INFORMATION_SCHEMA and MYSQL, during installation. If you remove these
databases, MySQL can no longer function. The last two databases were created
separately.

The tables of a database can be retrieved by querying the catalog table
TABLES and specifying the database name or schema name in the condition.

Example 27.2: Show the names of the tables belonging to the TENNIS database.

SELECT TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'TENNIS’
ORDER BY TABLE_NAME

The result is:

TABLE_NAME

COMMITTEE_MEMBERS
PENALTIES
PLAYERS
TEAMS
MATCHES

27.3 CREATING DATABASES

With the CREATE DATABASE statement, you can create new databases. During this
process, you can specify a default character set and a default collation.

D E F I N I T I O N
<create database statement> ::=

CREATE DATABASE [IF NOT EXISTS] <database name>
[<database option>...]

<database option> ::=
[DEFAULT] CHARACTER SET <character set name> |
[DEFAULT] COLLATE <collation name>

<database name> ;
<character set name> ;
<collation name> ::= <name>

654 SQL for MySQL Developers

Example 27.3: Create a new database called TENNIS2.

CREATE DATABASE TENNIS2
DEFAULT CHARACTER SET utf8
DEFAULT COLLATE utf8_general_ci

Explanation: This creates a new database without tables. If you want to use this
database, do not forget to make it the current database using the USE statement.

Example 27.4: For each database, get the name and default character set and
collation.

SELECT SCHEMA_NAME, DEFAULT_CHARACTER_SET_NAME,
DEFAULT_COLLATION_NAME

FROM INFORMATION_SCHEMA.SCHEMATA

The result is:

SCHEMA_NAME DEFAULT_CHARACTER_SET_NAME DEFAULT_COLLATION_NAME
------------------ -------------------------- ----------------------
information_schema utf8 utf8_general_ci
mysql latin1 latin1_swedish_ci
tennis latin1 latin1_swedish_ci
tennis2 utf8 utf8_general_ci
test latin1 latin1_swedish_ci

27.4 CHANGING DATABASES

You can change the existing default character set and collation with an ALTER
DATABASE statement. These new defaults apply only to the tables and columns that
are created after the update.

D E F I N I T I O N
<alter database statement> ::=

ALTER DATABASE [<database name>]
[<database option>...]

<database option> ::=
[DEFAULT] CHARACTER SET <character set name> |
[DEFAULT] COLLATE <collation name>

<database name> ;
<character set name> ;
<collation name> ::= <name>

655CHAPTER 27 Creating Databases

Example 27.5: Change the character set and collation of the TENNIS2 database.

ALTER DATABASE TENNIS2
DEFAULT CHARACTER SET sjis
DEFAULT COLLATE sjis_japanese_ci

Explanation: The TENNIS2 database does not have to be current for this
statement.

Example 27.6: Define hp8 as the default character set for the TENNIS database
and then create a new table with two alphanumeric columns. Do not assign a char-
acter set. Look in the catalog tables to see what the default collation is.

ALTER DATABASE TENNIS CHARACTER SET hp8

CREATE TABLE CHARSETHP8
(C1 CHAR(10) NOT NULL,
C2 VARCHAR(10))

SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'CHARSETHP8'

The result is:

COLUMN_NAME CHARACTER_SET_NAME COLLATION_NAME
----------- ------------------ --------------
K1 hp8 hp8_english_ci
K2 hp8 hp8_english_ci

The default of the database is, of course, the default collation (latin1_swedish_
ci) of the default character set (latin1). With ALTER DATABASE, you can change this
default.

Example 27.7: Change the default collation of the TENNIS database to hp8_bin.

ALTER DATABASE TENNIS COLLATE hp8_bin

27.5 DROPPING DATABASES

One of the most drastic SQL statements is the DROP DATABASE statement. This state-
ment removes the entire database at once. All tables of that database will disappear
permanently, so be very careful.

656 SQL for MySQL Developers

D E F I N I T I O N
<drop database statement> ::=

DROP DATABASE [IF NOT EXISTS] <database name>

<database name> ::= <name>

Example 27.8: Drop the TENNIS2 database.

DROP DATABASE TENNIS2

If you add IF NOT EXISTS, no error messages are presented when the database
mentioned does not exist.

657CHAPTER 27 Creating Databases

This page intentionally left blank This page intentionally left blank

659

Users and Data Security
C H A P T E R 2 8

28.1 INTRODUCTION

This chapter describes the features that MySQL offers for protecting data in the
tables against deliberate or accidental unauthorized use: SQL users, passwords,
and privileges.

SQL users must be known to MySQL before they can access the database data.
Chapter 3, “Installing the Software,” showed you how one user is created automati-
cally during the installation of MySQL, and Chapter 4, “SQL in a Nutshell,” showed
how a new SQL user called BOOKSQL was introduced. Logging on to MySQL with-
out an existing user name is just not possible.

A password can also be assigned to each SQL user. When a password is
required, accessing the database data becomes even more difficult because the
name of an SQL user is no longer sufficient. After following the procedure described
in this book for installing the sample database, the user BOOKSQL has the pass-
word BOOKSQLPW. You have probably entered this password many times and per-
haps already have discovered what happens if you make a typing error—no access.

New SQL users are not allowed to access tables belonging to other SQL users,
not even with the SELECT statement. Nor can they immediately create their own
tables. New SQL users must explicitly be granted privileges. We can indicate, for
example, that an SQL user is allowed to query a certain table or change specific
columns of a table. Another SQL user might be allowed to create tables, and
another user might be allowed to create and remove complete databases.

The privileges that can be granted are divided into four groups:

■ Column privileges relate to one specific column of a table, such as the privi-
lege to update the values in the AMOUNT column of the PENALTIES table
with UPDATE statements.

■ Table privileges relate to all data of one specific table, such as the privilege to
query all the data of the PLAYERS table with SELECT statements.

■ Database privileges relate to all tables of one specific database, such as the
privilege to create new tables in the existing TENNIS database.

■ User privileges relate to all databases that are known to MySQL, such as the
privilege to remove existing databases or to create new ones.

This chapter explains how new SQL users can be entered and how privileges
can be assigned with the GRANT statement. The catalog stores all privileges. We also
describe how privileges can be recalled with the REVOKE statement and how SQL
users can be removed from the catalog.

660 SQL for MySQL Developers

N O T E
For convenience, this chapter uses the term user instead of the somewhat
longer SQL user. See Section 4.3 to understand the difference between the
two terms.

28.2 ADDING AND REMOVING USERS

We can add other users in addition to BOOKSQL. Section 4.3 showed an example
of how to add a new user. This section explains the process in more detail.

To add new users in the catalog, MySQL uses the simple CREATE USER statement.

D E F I N I T I O N
<create user statement> ::=

CREATE USER <user specification>
[, <user specification>]...

<user specification> ::=
<user name> [IDENTIFIED BY [PASSWORD] <password>]

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

<password> ::= <alphanumeric literal>

In a CREATE USER statement, a user name and a password are entered. In most
SQL products, the user name and password are just names consisting of letters and
numbers.

Example 28.1: Introduce two new users: CHRIS with the password CHRISSEC
and PAUL with the password LUAP.

CREATE USER
'CHRIS'@'localhost' IDENTIFIED BY 'CHRISSEC',
'PAUL'@'localhost' IDENTIFIED BY 'LUAP'

Explanation: Behind the user name, the term localhost is specified. This term
specifies the host from which the user creates a connection with MySQL. We return
to this topic later. If the name of a user or host contains special characters, quota-
tion marks must be placed before and after it—for example 'CHRIS'@'localhost'
or 'CHRIS'@'xxx.r20.com'. Quotation marks must always be placed before and
after the password.

This example specified a certain host; however, the percent sign may be used to
indicate a group of hosts.

Example 28.2: Add three new users and then show the contents of the USERS
catalog view.

CREATE USER
'CHRIS1'@'sql.r20.com' IDENTIFIED BY 'CHRISSEC1',
'CHRIS2'@'%' IDENTIFIED BY 'CHRISSEC2',
'CHRIS3'@'%.r20.com' IDENTIFIED BY 'CHRISSEC3'

SELECT *
FROM USERS
WHERE USER_NAME LIKE '''CHRIS%'
ORDER BY 1

The result is:

USER_NAME

'CHRIS1'@'SQL.R20.COM'
'CHRIS2'@'%'
'CHRIS3'@'%.R20.COM'

Explanation: Now the user named CHRIS1 is allowed to log on to MySQL from
the host called sql.r20.com. CHRIS2 may log on from every host, and CHRIS3 may
log on from all hosts whose names end with r20.com. Not specifying a host is equal
to specifying the host '%'.

661CHAPTER 28 Users and Data Security

If two users have the same user name but different hosts, MySQL regards them as
different users, allowing us to assign different sets of privileges to the two users.

If no password is entered, the relevant user is allowed to log on without a pass-
word. However, this is not a good idea from a security standpoint.

Users who have just been introduced do not have many privileges yet. They can
log on to MySQL, but they cannot use the USE statement to make any database cur-
rent that has been created by users; therefore, they cannot access the tables of those
databases. They are allowed to perform only operations for which no privileges are
required, such as querying the list of all storage engines and character sets with a
SHOW statement. However, they are allowed to work with the INFORMATION_
SCHEMA databases and execute statements such as SELECT TABLE_NAME FROM

TABLES. They can see only the tables of the catalog itself.

We can use the DROP USER statement to remove users from the system, and all
their privileges are also removed automatically.

D E F I N I T I O N
<drop user statement> ::=

DROP USER <user name> [, <user name>]...

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

Example 28.3: Drop the user JIM.

DROP USER JIM

If the removed user has created tables, indexes, or other database objects, they
remain because MySQL does not register who created the objects.

Exercise 28.1: Create a user with the name RONALDO and password NIKE.

Exercise 28.2: Remove user RONALDO.

28.3 CHANGING THE NAMES OF USERS

The name of an existing SQL user can be later changed with the RENAME USER

statement.

662 SQL for MySQL Developers

D E F I N I T I O N
<rename user statement> ::=

RENAME USER <user name> TO <user name>
[, <user name> TO <user name>]...

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

Example 28.4: Change the names of the users CHRIS1 and CHRIS2 to
COMBO1 and COMBO2, respectively, and then show the contents of the USERS
catalog view.

RENAME USER
'CHRIS1'@'sql.r20.com' TO 'COMBO1'@'sql.r20.com',
'CHRIS2'@'%' TO 'COMBO2'@'sql.r20.com'

SELECT *
FROM USERS
WHERE USER_NAME LIKE '''COMBO%'
ORDER BY 1

The result is:

USER_NAME

'COMBO1'@'SQL.R20.COM'
'COMBO2'@'SQL.R20.COM'

This statement cannot be used to change the password of a user. A separate
SQL statement is available for this; see the following section.

28.4 CHANGING PASSWORDS

Each user has the right to change his or her own password, or that of someone else,
by using the SET PASSWORD statement.

D E F I N I T I O N
<set password statement> ::=

SET PASSWORD [FOR <user name>]
= PASSWORD(<password>)

<password> ::= <alphanumeric literal>

663CHAPTER 28 Users and Data Security

Example 28.5: Change the password of JOHN to JOHN1.

SET PASSWORD FOR 'JOHN'= PASSWORD('JOHN1')

Explanation: In this statement, we assume that JOHN enters this statement
himself.

If JOHN wants to change the password of another user, he needs to specify the
name of that user.

Example 28.6: Change the password of ROB to ROBSEC.

SET PASSWORD FOR ROB = PASSWORD('ROBSEC')

28.5 GRANTING TABLE AND COLUMN PRIVILEGES

MySQL supports the following table privileges.

■ SELECT—This privilege gives a user the right to access the specified table
with the SELECT statement. He or she can also include the table in a view
formula. However, a user must have the SELECT privilege for every table
(or view) specified in a view formula.

■ INSERT—This privilege gives a user the right to add rows to the specified
table with the INSERT statement.

■ DELETE—This privilege gives a user the right to remove rows from the speci-
fied table with the DELETE statement.

■ UPDATE—This privilege gives a user the right to change values in the speci-
fied table with the UPDATE statement.

■ REFERENCES—This privilege gives a user the right to create foreign keys that
refer to the specified table.

■ CREATE—This privilege gives a user the right to create a table with the speci-
fied name.

■ ALTER—This privilege gives a user the right to change the table with the
ALTER TABLE statement.

■ INDEX—This privilege gives a user the right to define indexes on the table.

■ DROP—This privilege gives a user the right to remove the table.

■ ALL or ALL PRIVILEGES—This privilege is a shortened form for all the privi-
leges named.

664 SQL for MySQL Developers

A table privilege may be granted only by users who own enough privileges.

D E F I N I T I O N
<grant statement> ::=

<grant table privilege statement>

<grant table privilege statement> ::=
GRANT <table privileges>
ON <table specification>
TO <grantees>
[WITH <grant option>...]

<table privileges> ::=
ALL [PRIVILEGES] |
<table privilege> [, <table privileges>]...

<table privileges> ::=
SELECT |
INSERT |
DELETE [<column list>] |
UPDATE [<column list>] |
REFERENCES [<column list>] |
CREATE |
ALTER |
INDEX [<column list>] |
DROP

<grantees> ::=
<user specification> [, <user specification>]...

<user specification> ::=
<user name> [IDENTIFIED BY [PASSWORD] <password>]

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

<grant option> ::=
GRANT OPTION |
MAX_CONNECTIONS_PER_HOUR <whole number> |
MAX_QUERIES_PER_HOUR <whole number> |
MAX_UPDATES_PER_HOUR <whole number> |
MAX_USER_CONNECTIONS <whole number>

<column list> ::=
(<column name> [, <column name>]...)

665CHAPTER 28 Users and Data Security

See these examples of how table privileges must be granted. We assume, unless
otherwise mentioned, that the user called BOOKSQL enters the statements.

Example 28.7: Give JAMIE the SELECT privilege on the PLAYERS table.

GRANT SELECT
ON PLAYERS
TO JAMIE

Explanation: After this GRANT statement has been processed, JAMIE may use a
USE statement to log on to the TENNIS database. After that, she may use any SELECT
statement to query the PLAYERS table, regardless of who has created the table.

If privileges are granted to a user who does not exist yet, MySQL creates this user
by automatically executing a CREATE USER statement. The statement does not spec-
ify a host, which means that the new user is granted '%' as host. No password has
been specified, either, so JAMIE is allowed to log on without entering a password.
For security purposes, it would be better to specify a user name and password for
this user.

Example 28.8: Give the new user BOB the SELECT privilege on the PLAYERS
table.

GRANT SELECT
ON PLAYERS
TO 'BOB'@'localhost' IDENTIFIED BY 'BOBPASS'

Multiple table privileges can be granted to multiple users simultaneously.

Example 28.9: Give JAMIE and PETE the INSERT and UPDATE privileges for all
columns of the TEAMS table.

GRANT INSERT, UPDATE
ON TEAMS
TO JAMIE, PETE

Granting one table privilege does not automatically lead to another. If we grant
an INSERT privilege to a user, he or she does not automatically receive the SELECT
privilege. It needs to be granted separately.

With several privileges, including UPDATE and REFERENCES, you can indicate the
columns to which the privilege applies. In that case, we call it column privileges.
When you do not specify a column, as in the previous examples, the privilege
applies to all columns of the table.

666 SQL for MySQL Developers

Example 28.10: Give PETE the UPDATE privilege for the columns PLAYERNO
and DIVISION of the TEAMS table.

GRANT UPDATE (PLAYERNO, DIVISION)
ON TEAMS
TO PETE

Exercise 28.3: Give RONALDO the SELECT and INSERT privileges on the
PLAYERS table.

Exercise 28.4: Give RONALDO the UPDATE privilege for the columns STREET,
HOUSENO, POSTCODE, and TOWN of the PLAYERS table.

28.6 GRANTING DATABASE PRIVILEGES

Table privileges apply to a specific table. MySQL also supports privileges for
an entire database, such as the privilege to create tables or views in a specific
database.

MySQL supports the following database privileges:

■ SELECT—This privilege gives the user the right to access all tables and views
of the specified database with the SELECT statement.

■ INSERT—This privilege gives the user the right to add rows to all tables of the
specified database with the INSERT statement.

■ DELETE—This privilege gives the user the right to remove rows from all tables
of the specified database with the DELETE statement.

■ UPDATE—This privilege gives the user the right to update values in all tables
of the specified database with the UPDATE statement.

■ REFERENCES—This privilege gives the user the right to create foreign keys
that point to tables of the specified database.

■ CREATE—This privilege gives the user the right to create new tables in the
specified database with the CREATE TABLE statement.

■ ALTER—This privilege gives the user the right to alter all tables of the speci-
fied database with the ALTER TABLE statement.

■ DROP—This privilege gives the user the right to remove all tables and views
of the specified database.

■ INDEX—This privilege gives the user the right to define and remove indexes
on all tables of the specified database.

667CHAPTER 28 Users and Data Security

■ CREATE TEMPORARY TABLES—This privilege gives the user the right to create
temporary tables in the specified database.

■ CREATE VIEW—This privilege gives the user the right to create new views in
the specified database with the CREATE VIEW statement.

■ SHOW VIEW—This privilege gives the user the right to look at the view defini-
tions of existing views in the specified database with the SHOW VIEW
statement.

■ CREATE ROUTINE—This privilege gives the user the right to create new stored
procedures and stored functions for the specified database; see Chapters 31,
“Stored Procedures,” and 32, “Stored Functions.”

■ ALTER ROUTINE—This privilege gives the user the right to update and remove
existing stored procedures and stored functions of the specified database.

■ EXECUTE ROUTINE—This privilege gives the user the right to invoke existing
stored procedures and stored functions of the specified database.

■ LOCK TABLES—This privilege gives the user the right to block existing tables
of the specified database; see Section 37.9.

■ ALL or ALL PRIVILEGES—This privilege is a shortened form for all the privi-
leges named.

The definition of the following GRANT statement resembles the one for granting
table privileges. However, two important differences exist: The list with privileges
is longer, and the ON clause looks different.

D E F I N I T I O N
<grant statement> ::=

<grant database privilege statement>

<grant database privilege statement> ::=
GRANT <database privileges>
ON [<database name> .] *
TO <grantees>
[WITH <grant option>...]

<database privileges> ::=
ALL [PRIVILEGES] |
<database privilege> [, <database privilege>]...

668 SQL for MySQL Developers

continues

<database privilege> ::=
SELECT |
INSERT |
DELETE |
UPDATE |
REFERENCES |
CREATE |
ALTER |
DROP |
INDEX |
CREATE TEMPORARY TABLES |
CREATE VIEW |
SHOW VIEW |
CREATE ROUTINE |
ALTER ROUTINE |
EXECUTE ROUTINE |
LOCK TABLES

<grantees> ::=
<user specification> [, <user specification>]...

<user specification> ::=
<user name> [IDENTIFIED BY [PASSWORD] <password>]

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

Example 28.11: Give PETE the SELECT privilege for all tables in the TENNIS
database.

GRANT SELECT
ON TENNIS.*
TO PETE

Explanation: This privilege applies to all existing tables and also any tables that
are added to the TENNIS database later.

Example 28.12: Give JIM the privilege to create, update, and remove new tables
and views in the TENNIS database.

GRANT CREATE, ALTER, DROP, CREATE VIEW
ON TENNIS.*
TO JIM

Similar to table privileges, granting one database privilege does not imply
another. JIM is now allowed to create new tables and views, but he may not access
them yet. For that to occur, he needs to be granted a separate SELECT privilege or
more privileges.

669CHAPTER 28 Users and Data Security

Example 28.13: Give PETE the SELECT privilege to query all catalog tables in
the INFORMATION_SCHEMA database.

GRANT SELECT
ON INFORMATION_SCHEMA.*
TO PETE

Example 28.14: Give ALYSSA the SELECT and INSERT privileges for all tables in
the current database.

GRANT SELECT, INSERT
ON *
TO ALYSSA

Explanation: The asterisk represents the current database here.

Exercise 28.5: Give JACO and DIANE the INSERT privilege on all tables of the
TENNIS database.

28.7 GRANTING USER PRIVILEGES

The most effective privileges are the user privileges. For all statements for which
database privileges need to be granted, user privileges can be defined as well. For
example, by granting someone the privilege CREATE on the user level, this user can
create new databases as well as tables in all databases (instead of in one specific
database). MySQL also supports the following user privileges:

■ CREATE USER—This privilege gives a user the right to create and remove new
users.

■ SHOW DATABASE—This privilege gives a user the right to look at the defini-
tions of all databases with the SHOW DATABASE statement.

We list other user privileges, but we don’t explain them in this book because
they are primarily used in managing the database server instead of programming
with SQL.

670 SQL for MySQL Developers

671CHAPTER 28 Users and Data Security

D E F I N I T I O N
<grant statement> ::=

<grant user privilege statement>

<grant user privilege statement> ::=
GRANT <user privileges>
ON *.*
TO <grantees>
[WITH <grant option>...]

<user privileges> ::=
ALL [PRIVILEGES] |
<user privilege> [, <user privilege>]...

<user privilege> ::=
SELECT |
INSERT |
DELETE |
UPDATE |
REFERENCES |
CREATE |
ALTER |
DROP |
INDEX |
CREATE TEMPORARY TABLES |
CREATE VIEW |
SHOW VIEW |
CREATE ROUTINE |
ALTER ROUTINE |
EXECUTE ROUTINE |
LOCK TABLES |
CREATE USER |
SHOW DATABASES |
FILE |
PROCESS |
RELOAD |
REPLICATION CLIENT |
REPLICATION SLAVE |
SHUTDOWN |
SUPER |
USAGE

<grantees> ::=
<user specification> [, <user specification>]...

<user specification> ::=
<user name> [IDENTIFIED BY [PASSWORD] <password>]

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

Example 28.15: Give MAX the CREATE, ALTER, and DROP privileges for all tables
of all databases.

GRANT CREATE, ALTER, DROP
ON *.*
TO MAX

Explanation: User MAX now has the privileges to create, drop, and alter all
existing and future databases.

Example 28.16: Give ALYSSA the privilege to create new users.

GRANT CREATE USER
ON *.*
TO ALYSSA

The user called root gets the following privilege during the installation of
MySQL:

GRANT ALL PRIVILEGES
ON *.*
TO ROOT

To summarize privileges, Table 28.1 lists the levels at which certain SQL state-
ment privileges can be granted.

TABLE 28.1 Overview of Privileges

672 SQL for MySQL Developers

USER DATABASE TABLE COLUMN

STATEMENT PRIVILEGE PRIVILEGE PRIVILEGE PRIVILEGE

SELECT yes yes yes no
INSERT yes yes yes no
DELETE yes yes yes yes
UPDATE yes yes yes yes
REFERENCES yes yes yes yes
CREATE yes yes yes no
ALTER yes yes yes no
DROP yes yes yes no
INDEX yes yes yes yes
CREATE TEMPORARY TABLES yes yes no no
CREATE VIEW yes yes no no
SHOW VIEW yes yes no no
CREATE ROUTINE yes yes no no
ALTER ROUTINE yes yes no no

continues

28.8 PASSING ON PRIVILEGES: WITH GRANT
OPTION

A GRANT statement can be concluded with the WITH GRANT OPTION. By using this
statement, all users specified in the TO clause can themselves pass on the privilege
(or part of the privilege) to other users, even if they are not the owner of it.

Example 28.17: Give JIM the REFERENCES privilege on the TEAMS table and
allow him to pass it on to other users.

GRANT REFERENCES
ON TEAMS
TO JIM
WITH GRANT OPTION

Because of the WITH GRANT OPTION clause, JIM can pass on this privilege to
PETE, for example:

GRANT REFERENCES
ON TEAMS
TO PETE

JIM can himself extend the statement by using WITH GRANT OPTION so that
PETE, in turn, can pass on the privilege.

So if a user has been granted the WITH GRANT OPTION on a specific table, it
applies to all the privileges that the user has on that table. The next example illus-
trates this.

673CHAPTER 28 Users and Data Security

USER DATABASE TABLE COLUMN

STATEMENT PRIVILEGE PRIVILEGE PRIVILEGE PRIVILEGE

EXECUTE ROUTINE yes yes no no
LOCK TABLES yes yes no no
CREATE USER yes no no no
SHOW DATABASES yes no no no
FILE yes no no no
PROCESS yes no no no
RELOAD yes no no no
REPLICATION CLIENT yes no no no
REPLICATION SLAVE yes no no no
SHUTDOWN yes no no no
SUPER yes no no no
USAGE yes no no no

TABLE 28.1 Continued

Example 28.18: Give MARC the INSERT and SELECT privileges for the COM-
MITTEE_MEMBERS table. He may pass both privileges to other users.

GRANT INSERT
ON COMMITTEE_MEMBERS
TO MARC

GRANT SELECT
ON COMMITTEE_MEMBERS
TO MARC
WITH GRANT OPTION

Explanation: With these two statements, it might look as if MARC has the privi-
lege to pass on only SELECT, but that is not the case. WITH GRANT OPTION applies to
all relevant table privileges.

Example 28.19: Give SAM the SELECT privilege for all tables in all databases,
which he can pass on to other users.

GRANT SELECT
ON *.*
TO SAM
WITH GRANT OPTION

Explanation: This example shows that WITH GRANT OPTION can be added to every
kind of privilege, including database and user privileges.

28.9 RESTRICTING PRIVILEGES

It is also possible to grant usage restrictions to a user, such as how many times
someone may query the database per hour.

Example 28.20: Give JIM the right to process only one SELECT statement per
hour.

GRANT SELECT
ON *
TO JIM
WITH MAX_QUERIES_PER_HOUR 1

In addition to MAX_QUERIES_PER_HOUR, you are allowed to specify MAX_

CONNECTIONS_PER_HOUR, MAX_UPDATES_PER_HOUR, and MAX_USER_CONNECTIONS. For
the first three specifications, the rule applies that if the value is equal to 0, no
restrictions are in effect.

674 SQL for MySQL Developers

28.10 RECORDING PRIVILEGES IN THE CATALOG

Several catalog tables are used to record users, roles, and privileges:

■ The USERS table records users.

■ The ROLES table stores roles.

■ The USER_ROLES table records which user has which role.

■ The COLUMN_AUTHS table contains information about the privileges
granted on specific columns.

■ The TABLE_AUTHS table contains information about privileges on specific
tables.

The USERS table contains only one column, the name of the user. This column
also forms the primary key of this table.

TABLE 28.2 Description of the USERS Catalog Table

675CHAPTER 28 Users and Data Security

COLUMN NAME DATA TYPE DESCRIPTION

USER_NAME CHAR Name of the user followed by the name of
the host

The column privileges are recorded in a separate catalog table, the COLUMN_
AUTHS table. The primary key of this table is formed by the columns GRANTOR,
TABLE_NAME, GRANTEE, and COLUMN_NAME. The table has the following
structure:

TABLE 28.3 Description of the COLUMN_AUTHS Catalog Table

COLUMN NAME DATA TYPE DESCRIPTION

GRANTOR CHAR User who granted the privilege.

GRANTEE CHAR User who received the privilege.

TABLE_CREATOR CHAR Name of the database of the table on which the
privilege is granted.

TABLE_NAME CHAR Table or view on which the privilege is granted.

COLUMN_NAME CHAR Column name on which the privilege is granted.

PRIVILEGE CHAR Type of privilege.

WITHGRANTOPT LOGICAL If this column is filled with the value YES, the
user can pass on the privilege to other users;
otherwise, the value of this column is equal to NO.

The TABLE_AUTHS table has the following structure. The columns
GRANTOR, GRANTEE, TABLE_CREATOR, TABLE_NAME, and PRIVILEGE
form the primary key of this table. You can see that the column privileges are not
recorded in this table.

TABLE 28.4 Description of the TABLE_AUTHS catalog table

676 SQL for MySQL Developers

COLUMN NAME DATA TYPE DESCRIPTION

GRANTOR CHAR User who granted the privilege.

GRANTEE CHAR User who received the privilege.

DATABASE_NAME CHAR Database on which the privilege is granted.

PRIVILEGE CHAR Type of privilege.

WITHGRANTOPT CHAR If this column is filled with the value YES, the
user can pass on the privilege to other users;
otherwise, the value of this column is equal
to NO.

The DATABASE_AUTHS table has the following structure. The primary key of
this table is formed by the columns GRANTOR, GRANTEE, DATABASE_NAME,
and PRIVILEGE.

TABLE 28.5 Description of the DATABASE_AUTHS Catalog Table

COLUMN NAME DATA TYPE DESCRIPTION

GRANTOR CHAR User who granted the privilege.

GRANTEE CHAR User who received the privilege.

TABLE_CREATOR CHAR Name of the database of the table on which the
privilege is granted.

TABLE_NAME CHAR Table or view on which the privilege is granted.

PRIVILEGE CHAR Type of privilege.

WITHGRANTOPT CHAR If this column is filled with the value YES, the
user can pass on the privilege to other users;
otherwise, the value of this column is equal to NO.

The USER_AUTHS table has the following structure. The primary key of this
table is formed by the columns GRANTOR, GRANTEE, and PRIVILEGE.

TABLE 28.6 Description of the USER_AUTHS Catalog Table

677CHAPTER 28 Users and Data Security

COLUMN NAME DATA TYPE DESCRIPTION

GRANTOR CHAR User who granted the privilege.

GRANTEE CHAR User who received the privilege.

PRIVILEGE CHAR Type of privilege; if this column is filled with the
value USAGE, this user does not have any user
privilege.

WITHGRANTOPT CHAR If this column is filled with the value YES, the
user can pass the privilege on to other users;
otherwise, the value of this column is equal to NO.

Example 28.21: Which users are allowed to query the PLAYERS table in the
TENNIS database?

SELECT GRANTEE
FROM USER_AUTHS
WHERE PRIVILEGE = 'SELECT'
UNION
SELECT GRANTEE
FROM DATABASE_AUTHS
WHERE DATABASE_NAME = 'TENNIS'
AND PRIVILEGE = 'SELECT'
UNION
SELECT GRANTEE
FROM TABLE_AUTHS
WHERE TABLE_CREATOR = 'TENNIS'
AND PRIVILEGE = 'SELECT'
AND TABLE_NAME = 'PLAYERS'

Explanation: This example requires a search in three tables because SELECT priv-
ileges can be defined on three levels.

The tables USER_PRIVILEGES, SCHEMA_PRIVILEGES, TABLE_PRIVILEGES,
and COLUMN_PRIVILEGES, all belonging to the catalog called INFORMATION_
SCHEMA, contain information on privileges.

28.11 REVOKING PRIVILEGES

To withdraw privileges from a user without deleting that user from the USERS table,
use the REVOKE statement. This statement has the opposite effect of the GRANT
statement.

678 SQL for MySQL Developers

D E F I N I T I O N
<revoke statement> ::=

<revoke table privilege statement> |
<revoke database privilege statement |
<revoke user privilege>

<revoke table privilege statement> ::=
REVOKE [<table privileges>] [GRANT OPTION]
ON <table specification>
FROM <user name> [, <user name>]...

<table privileges> ::=
ALL [PRIVILEGES] |
<table privilege> [, <table privilege>]...

<table privilege> ::=
SELECT |
INSERT |
DELETE [<column list>] |
UPDATE [<column list>] |
REFERENCES [<column list>] |
CREATE |
ALTER |
INDEX [<column list>] |
DROP

<revoke database privilege statement> ::=
REVOKE [<database privileges>] [GRANT OPTION]
ON [<database name> .] *
FROM <user name> [, <user name>]...

<database privileges> ::=
ALL [PRIVILEGES] |
<database privilege> [, <database privilege>]...

<database privilege> ::=
SELECT |
INSERT |
DELETE |
UPDATE |
REFERENCES |
CREATE |
ALTER |
DROP |
INDEX |
CREATE TEMPORARY TABLES |
CREATE VIEW |
SHOW VIEW |
CREATE ROUTINE |
ALTER ROUTINE |
EXECUTE ROUTINE |
LOCK TABLES

continues

<revoke user privilege statement> ::=
REVOKE [<user privileges>] [GRANT OPTION]
ON *.*
FROM <user name> [, <user name>]...

<user privileges> ::=
ALL [PRIVILEGES] |
<user privilege> [, <user privilege>]...

<user privilege> ::=
SELECT |
INSERT |
DELETE |
UPDATE |
REFERENCES |
CREATE |
ALTER |
DROP |
INDEX |
CREATE TEMPORARY TABLES |
CREATE VIEW |
SHOW VIEW |
CREATE ROUTINE |
ALTER ROUTINE |
EXECUTE ROUTINE |
LOCK TABLES |
CREATE USER |
SHOW DATABASES |
FILE |
PROCESS |
RELOAD |
REPLICATION CLIENT |
REPLICATION SLAVE |
SHUTDOWN |
SUPER |
USAGE

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

Example 28.22: Withdraw JIM’s SELECT privilege on the PLAYERS table
(assume that the situation is as it was at the end of Section 28.10).

REVOKE SELECT
ON PLAYERS
FROM JIM

The relevant privilege is now deleted from the catalog.

679CHAPTER 28 Users and Data Security

Example 28.23: Withdraw JIM’s REFERENCES privilege on the TEAMS table.

REVOKE REFERENCES
ON TEAMS
FROM JIM

This privilege is withdrawn, in addition to all the privileges that are directly or
indirectly dependent on it. In the example, PETE also loses his REFERENCES privi-
lege on the TEAMS table.

If a privilege has been granted with a WITH GRANT OPTION, it is not withdrawn
when a table privilege is removed. The next example is based upon the privileges
that were granted in Example 28.18.

Example 28.24: Withdraw MARC’s INSERT and SELECT privileges on the
COMMITTEE_MEMBERS table.

REVOKE INSERT, SELECT
ON COMMITTEE_MEMBERS
FROM MARC

The WITH GRANT OPTION remains after this statement, so if we want to grant
MARC a new table privilege on the same table again, he can immediately pass it on
to other users. An additional REVOKE statement is required to withdraw MARC’s
WITH GRANT privilege.

REVOKE GRANT OPTION
ON COMMITTEE_MEMBERS
FROM MARC

A user can be granted overlapping privileges. For example, he could receive
the table privilege UPDATE on the PLAYERS table and also the user privilege UPDATE
for all tables in all databases. If one of the two is withdrawn, the other privilege
remains.

28.12 SECURITY OF AND THROUGH VIEWS

A GRANT statement can refer not only to tables, but also to views (see the definition
of the GRANT statement in Section 28.5). Let us look at this more closely.

Because privileges can also be granted for views, it is possible to provide users
with access to only a part of a table or only to information derived or summarized
from tables. See the following examples of both features.

680 SQL for MySQL Developers

Example 28.25: Give DIANE the privilege to read only the names and
addresses of noncompetitive players.

First, DIANE must be entered with a CREATE USER statement.

CREATE USER 'DIANE'@'localhost' IDENTIFIED BY 'SECRET'

Second, a view is created specifying which data she may see.

CREATE VIEW NAME_ADDRESS AS
SELECT NAME, INITIALS, STREET, HOUSENO,

TOWN
FROM PLAYERS
WHERE LEAGUENO IS NULL

The last step is to grant DIANE the SELECT privilege on the NAME_ADDRESS
view:

GRANT SELECT
ON NAME_ADDRESS
TO DIANE

With this statement, DIANE has access to only that part of the PLAYERS table
defined in the view formula of NAME_ADDRESS.

Example 28.26: Restrict user GERARD to view only the number of players in
each town. First, we introduce GERARD.

CREATE USER 'GERARD'@'localhost' IDENTIFIED BY 'XYZ1234'

The view that we use looks like this:

CREATE VIEW RESIDENTS (TOWN, NUMBER_OF) AS
SELECT TOWN, COUNT(*)
FROM PLAYERS
GROUP BY TOWN

Now we give GERARD the privilege for the previous view:

GRANT SELECT
ON RESIDENTS
TO GERARD

All types of table privileges can be granted on views.

681CHAPTER 28 Users and Data Security

28.13 ANSWERS

28.1 CREATE USER RONALDO IDENTIFIED BY 'NIKE'

28.2 DROP USER RONALDO

28.3 GRANT SELECT, INSERT
ON PLAYERS
TO RONALDO

28.4 GRANT UPDATE(STREET, HOUSENO, POSTCODE, TOWN)
ON PLAYERS
TO RONALDO

28.5 GRANT INSERT
ON TENNIS.*
TO JACO, DIANE

682 SQL for MySQL Developers

683

Statements for Table
Maintenance

C H A P T E R 2 9

29.1 INTRODUCTION

MySQL supports several SQL statements that relate to the maintenance and man-
agement of databases. For example, with one we can repair a damaged table, and
with another one we can check whether a table with indexes is still correct. Gener-
ally, database managers, not developers, use these statements. Still, we discuss
them here to be complete.

This chapter discusses the following statements:

■ ANALYZE TABLE

■ CHECKSUM TABLE

■ OPTIMIZE TABLE

■ CHECK TABLE

■ REPAIR TABLE

■ BACKUP TABLE

■ RESTORE TABLE

These statements belong to the group called table maintenance statements.

Note that MySQL also supports special utilities with which comparable actions
can be performed. Because this book focuses on the SQL dialect of MySQL, we
leave those utilities aside.

29.2 THE ANALYZE TABLE STATEMENT

If the optimizer determines the processing strategy for an SQL statement, it starts
by gathering some information. An important piece of required information is the
cardinality of the data in an indexed column—that is, how many different values
are there in a column on which an index has been defined? The catalog stores this
cardinality, and we can retrieve it with a SHOW INDEX statement, for example.

Example 29.1: Show the cardinalities of the indexes belonging to the PLAYERS
table.

SHOW INDEX FROM PLAYERS

The result follows (only a few columns have been shown, for the sake of clarity):

TABLE KEY_NAME COLUMN_NAME CARDINALITY
------- -------- ----------- -----------
PLAYERS PRIMARY PLAYERNO 14

The cardinality of an indexed column is not automatically updated. If a new
player is added, we cannot assume that the cardinality increases by 1. Also, when
we create a new index, the cardinality is not calculated immediately; that would
take too much time.

Example 29.2: Create an index on the TOWN column of the PLAYERS table;
next, show the cardinality of that new index.

CREATE INDEX PLAYERS_TOWN
ON PLAYERS (TOWN)

SHOW INDEX FROM PLAYERS

The result follows (only a few columns have been shown, for the sake of clarity):

TABLE KEY_NAME COLUMN_NAME CARDINALITY
------- -------------- ----------- -----------
SPELERS PRIMARY PLAYERNO 14
SPELERS PLAYERS_TOWN TOWN ?

Explanation: Clearly, the cardinality of the PLAYERS_TOWN index has not been
updated.

The special ANALYZE TABLE statement can update the cardinalities of indexed
columns.

684 SQL for MySQL Developers

D E F I N I T I O N
<analyze table statement> ::=

ANALYZE [<analyze option>]
TABLE <table specification> [, <table specification>]...

<table specification> ::= [<database nam > .] <table name>

<analyze option> ::= NO_WRITE_TO_BINLOG | LOCAL

Example 29.3: Update the cardinalities of the indexes belonging to the PLAY-
ERS table and show those cardinalities next.

ANALYZE TABLE PLAYERS

SHOW INDEX FROM PLAYERS

The result follows (only a few columns have been shown):

TABLE KEY_NAME COLUMN_NAME CARDINALITY
------- ------------ ----------- -----------
PLAYERS PRIMARY PLAYERNO 14
PLAYERS PLAYERS_TOWN TOWN 7

All updates executed on a MySQL database are also written to a binary log file.
It falls outside the context of this book to explain this. However, developers should
realize that data is written not only to the database, but to this log file as well. Data
resulting from processing the ANALYZE TABLE statement is also written to this log
file. You can switch off this function by specifying the option NO_WRITE_TO_BINLOG.
The term LOCAL is a synonym for NO_WRITE_TO_BINLOG. If this is switched off, the
ANALYZE TABLE statement finishes more quickly.

29.3 THE CHECKSUM TABLE STATEMENT

For each table, a checksum can be retrieved. Sometimes, when data is transferred,
some data gets lost or changed by mistake. To detect such a problem, a checksum
can be calculated in advance and afterward. After the data has been transferred, a
check tells us whether the two checksums are still the same. If so, the data was
transferred correctly. For example, the formula used to calculate a checksum can be
compared to the check digit used for Universal Product Codes and International
Standard Book Numbers.

For each table created with the MyISAM storage engine, the checksum is
stored in the table. This is called a live checksum. If rows are added or values are
changed, the live checksum is updated immediately.

685CHAPTER 29 Statements for Table Maintenance

686 SQL for MySQL Developers

The CHECKSUM TABLE statement retrieves the checksum of a table.

D E F I N I T I O N
<checksum table statement> ::=

CHECKSUM TABLE <table specification> [, <table specification>]...
[<checksum option>]

<table specification> ::= [<database name> .] <table name>

<checksum option> ::= QUICK | EXTENDED

Example 29.4: Determine the value of the checksum of the PLAYERS table.

CHECKSUM TABLE PLAYERS

The result is:

TABLE CHECKSUM
-------------- ----------
TENNIS.PLAYERS 3394683388

You can specify QUICK or EXTENDED behind a CHECKSUM TABLE statement. If the
latter is used, the original table is analyzed and the checksum is calculated. Even if
the table has been built with MyISAM, the live checksum is not used, but the
checksum is calculated. If QUICK is used, MySQL returns the value of the live
checksum if it concerns a MyISAM table (and this is done very quickly). Otherwise,
MySQL returns the value null.

Not specifying QUICK and EXTENDED is equal to specifying the latter.

29.4 THE OPTIMIZE TABLE STATEMENT

If you continuously create and remove files on your own computer, you know that
your hard disk splits into fragments. In other words, your hard disk becomes a real
mess, which reduces the speed of the machine.

The same applies to tables. If we continuously update a table with INSERT,
DELETE, and UPDATE statements, the internal structure of the table becomes frag-
mented, which reduces the speed of SQL statements on this table. In this case, it is
time to organize the data in the table properly. You can do this with the OPTIMIZE
TABLE statement.

This statement also works with tables created with the MyISAM or the InnoDB
storage engine.

D E F I N I T I O N
<optimize table statement> ::=

OPTIMIZE [<optimize option>]
TABLE <table specification> [, <table specification>]...

<table specification> ::= [<database name> .] <table name>

<optimize option> ::= NO_WRITE_TO_BINLOG | LOCAL

Example 29.5: Optimize the PLAYERS table.

OPTIMIZE TABLE PLAYERS

The result is:

TABLE OP MSG_TYPE MSG_TEXT
-------------- -------- -------- --------
TENNIS.PLAYERS optimize status OK

In fact, you should periodically execute an OPTIMIZE TABLE statement on tables
that are updated frequently.

As with the ANALYZE TABLE statement, you can turn off the writing to the log file
by specifying NO_WRITE_TO_BINLOG or LOCAL.

29.5 THE CHECK TABLE STATEMENT

Sometimes things go wrong with a database. When new data is written to the hard
disk at a time an error occurs, the question is whether the table is still correct. Or
has the table been updated correctly, but the indexes of the table haven’t? Another
problem could be that the computer on which MySQL runs is turned off suddenly,
with no chance for MySQL to close the database properly. In all circumstances, the
state of the data is not clear. Odds are, a table or an index has been damaged.
Maybe the pointers between the table and an index are no longer correct.

You might notice, for example, that a table is damaged when MySQL displays
the following error message after querying a table:

Incorrect key file for table: ' '. Try to repair it.

If you question the condition of the data, use the CHECK TABLE statement to
check whether everything is still correct. This statement checks one or more tables
with their corresponding indexes.

687CHAPTER 29 Statements for Table Maintenance

D E F I N I T I O N
<check table statement> ::=

CHECK TABLE <table specification> [, <table specification>]...
[<check option>]...

<table specification> ::= [<database name> .] <table name>

<check option> ::=
FOR UPGRADE | QUICK | FAST | MEDIUM | EXTENDED | CHANGED

Example 29.6: Check whether the PLAYERS table is still correct.

CHECK TABLE PLAYERS

The result is:

TABLE OP MSG_TYPE MSG_TEXT
-------------- ----- -------- --------
TENNIS.PLAYERS check status OK

Explanation: The result shows whether the table is still correct. In this case, the
table proves to be okay. Another message could be: Table is already up to date.
In all other cases, a problem exists with the table. In that case, the table must be
repaired; see the following section.

MySQL keeps track in the catalog of when a table was checked last. Each time the
CHECK TABLE is executed for a table, it stores this information.

Example 29.7: Show when the PLAYERS table was checked last.

SELECT TABLE_NAME, CHECK_TIME
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = 'PLAYERS'
AND TABLE_SCHEMA = 'TENNIS'

The result is:

TABLE_NAME CHECK_TIME
---------- -------------------
PLAYERS 2006-08-21 16:44:25

A CHECK TABLE statement can include different options. If we specify FOR
UPGRADE, MySQL determines whether the table, which might have been created with

688 SQL for MySQL Developers

an older version of MySQL, is compatible with the version of MySQL that is cur-
rently being used. This could happen, for example, when we decide to record values
with a certain data type differently.

The other options apply only to tables created with the MyISAM storage engine.

■ QUICK—This is the fastest option. The rows in the table you are working with
are not checked for incorrect links. This option is recommended if you do not
really expect any problems.

■ FAST—This option checks only whether the tables have been closed cor-
rectly. This option is recommended if you do not expect serious problems or
right after a power failure that probably did not cause any problems.

■ CHANGED—This is comparable to the FAST option, but it checks only tables
that changed after the previous CHECK statement.

■ MEDIUM—This option checks whether the links between the index data and
the table data are correct. In addition, the checksum of all keys are com-
pared to the checksum of all the rows. This is the default option.

■ EXTENDED—This is the most extensive and, therefore, slowest option. All the
checks performed by the other options are now checked in detail.

29.6 THE REPAIR TABLE STATEMENT

The CHECK TABLE statement can detect a problem in a table. If a table or index
appears to be damaged, we can try to repair it with the REPAIR TABLE statement. If
that does not work, we can deploy utilities such as myisamchk.

Note that the REPAIR TABLE statement works only for tables created with the
MyISAM and the ARCHIVE storage engines.

D E F I N I T I O N
<repair table statement> ::=

REPAIR [<repair option>]
TABLE <table specification> [, <table specification>]...
[QUICK] [EXTENDED] [USE_FRM]

<table specification> ::= [<database name> .] <table name>

<repair option> ::= NO_WRITE_TO_BINLOG | LOCAL

689CHAPTER 29 Statements for Table Maintenance

Example 29.8: Suppose that the PLAYERS table is damaged. Make sure that it
is repaired.

REPAIR TABLE PLAYERS

The result is:

TABLE OP MSG_TYPE MSG_TEXT
-------------- ------ -------- --------
TENNIS.PLAYERS repair status OK

We can also include options with the REPAIR TABLE statement to indicate how
thorough the repair must be.

■ QUICK—This is the fastest option. Here, MySQL tries to repair only the index
tree.

■ EXTENDED—With this option, the index is rebuilt row by row instead of creat-
ing the entire index at once.

■ USE_FRM—This option must be used if the MYI file is missing completely or
if the header is damaged. The entire index is then set up once again.

As with the ANALYZE TABLE statement, you can turn off writing to the log file by
specifying NO_WRITE_TO_BINLOG or LOCAL.

29.7 THE BACKUP TABLE STATEMENT

With the BACKUP TABLE statement, we can make a backup (as the name implies) of
one or more tables. Make sure they are MyISAM tables.

Note that the BACKUP TABLE and RESTORE TABLE statements are referred to as
deprecated. That means that these statements will slowly disappear. In the end,
more powerful alternatives will appear. Therefore, we limit ourselves to a short
overview.

<backup table statement> ::=
BACKUP TABLE <table specification>

[, <table specification>]...
TO <directory>

<table specification> ::= [<database name> .] <table name>

Example 29.9: Create a backup of the PLAYERS table and store it in the direc-
tory called C:/WORKING_AREA.

BACKUP TABLE PLAYERS TO 'C:/WORKING_AREA'

690 SQL for MySQL Developers

The result is:

TABLE OP MSG_TYPE MSG_TEXT
-------------- ------ -------- --------
TENNIS.PLAYERS backup status OK

Explanation: The specified directory should already exist. After this statement,
this directory contains a few files: one for the table (FRM file) and one for each
index (MYD file).

29.8 THE RESTORE TABLE STATEMENT

With the RESTORE TABLE statement, we can retrieve a backup of one or more tables
created with the BACKUP TABLE statement. The data in the backup files is read into a
table again.

D E F I N I T I O N
<restore table statement> ::=

RESTORE TABLE <table specification> [, <table specification>]...
FROM <directory>

<table specification> ::= [<database name> .] <table name>

Example 29.10: Restore the PLAYERS table with data from the backup created
in the previous section.

RESTORE TABLE PLAYERS FROM 'C:/WORKING_AREA'

The result is:

TABLE OP MSG_TYPE MSG_TEXT
-------------- ------ -------- --------
TENNIS.PLAYERS backup status OK

Explanation: The specified table should not exist yet.

691CHAPTER 29 Statements for Table Maintenance

This page intentionally left blank This page intentionally left blank

693

The SHOW, DESCRIBE, and
HELP Statements

C H A P T E R 3 0

30.1 INTRODUCTION

Everywhere in this book you can see examples of the SHOW statement. With these
statements, you can show information stored in the catalog tables. Consider a SHOW
statement as a predefined SELECT statement on the catalog. The result of this
statement is a table, just as with a SELECT statement. This chapter lists all the SHOW
statements with their corresponding definitions and discusses the DESCRIBE and the
HELP statements. These three statements belong to the group called the informative
statements.

Note that all the SHOW and DESCRIBE statements access the tables in the MYSQL
and INFORMATION_SCHEMA databases, not our catalog views.

30.2 OVERVIEW OF SHOW STATEMENTS

SHOW CHARACTER SET: Shows the list of several or all of the character sets that
MySQL supports.

D E F I N I T I O N
<show character set statement> ::=

SHOW CHARACTER SET [LIKE <alphanumeric literal>]

SHOW COLLATION: Shows the list of several or all the collations that MySQL supports.

D E F I N I T I O N
<show collation statement> ::=

SHOW COLLATION [LIKE <alphanumeric literal>]

SHOW COLUMN TYPES: Shows information about all data types.

D E F I N I T I O N
<show column types statement> ::=

SHOW COLUMN TYPES

SHOW COLUMNS: Shows information about all columns of one or more tables.

D E F I N I T I O N
<show columns statement> ::=

SHOW [FULL] COLUMNS { FROM | IN } <table specification>
[{ FROM | IN } <database name>]
[LIKE <alphanumeric literal>]

SHOW CREATE DATABASE: Shows the CREATE DATABASE statement for a certain
database.

D E F I N I T I O N
<show create database statement> ::=

SHOW CREATE DATABASE [IF NOT EXISTS] <database name>

SHOW CREATE EVENT: Shows the CREATE EVENT statement for a certain event.

D E F I N I T I O N
<show create event statement> ::=

SHOW CREATE EVENT [<database name> .] <event name>

694 SQL for MySQL Developers

SHOW CREATE FUNCTION: Shows the CREATE FUNCTION statement for a certain stored
function.

D E F I N I T I O N
<show create function statement> ::=

SHOW CREATE FUNCTION
[<database name> .] <stored function name>

SHOW CREATE PROCEDURE: Shows the CREATE PROCEDURE statement for a certain
stored procedure.

D E F I N I T I O N
<show create procedure statement> ::=

SHOW CREATE PROCEDURE
[<database name> .] <stored procedure name>

SHOW CREATE TABLE: Shows the CREATE TABLE statement for a certain table.

D E F I N I T I O N
<show create table statement> ::=

SHOW CREATE TABLE <table specification>

SHOW CREATE VIEW: Shows the CREATE VIEW statement for a certain view.

D E F I N I T I O N
<show create view statement> ::=

SHOW CREATE VIEW <table specification>

SHOW DATABASES: Shows a list of several or all created databases.

D E F I N I T I O N
<show databases statement> ::=

SHOW DATABASES [LIKE <alphanumeric literal>]

All users are allowed to execute the SHOW DATABASES statement. If you want only
users who were granted the privilege for the SHOW DATABASES statement to execute

695CHAPTER 30 The SHOW, DESCRIBE, and HELP Statements

this statement, you must switch the value of the system variable SKIP_SHOW_
DATABASE to ON.

SHOW ENGINE: Shows the status of a certain storage engine.

D E F I N I T I O N
<show engine statements::=

SHOW ENGINE <engine name> { LOGS | STATUS }

SHOW ENGINES: Shows the list of all storage engines that MySQL supports.

D E F I N I T I O N
<show engines statement> ::=

SHOW [STORAGE] ENGINES

SHOW EVENTS: Shows the list of all events.

D E F I N I T I O N
<show events statement> ::=

SHOW EVENTS [FROM <database name>]
[LIKE <alphanumeric literal>]

SHOW FUNCTION STATUS: Shows the status of a certain stored function.

D E F I N I T I O N
<show function status statement> ::=

SHOW FUNCTION STATUS [LIKE <alphanumeric literal>]

SHOW GRANTS: Shows information about the privileges of certain users.

D E F I N I T I O N
<show grants statement> ::=

SHOW ACCOUNTS [FOR <user name>]

696 SQL for MySQL Developers

SHOW INDEX: Shows information about the indexes of several tables.

D E F I N I T I O N
<show index statement> ::=

SHOW { INDEX | KEY } { FROM | IN }
<table specification> [{ FROM | IN } <database name>]

SHOW PRIVILEGES: Shows the list of all privileges that MySQL recognizes.

D E F I N I T I O N
<show privileges statement> ::=

SHOW PRIVILEGES

SHOW PROCEDURE STATUS: Shows the status of a certain stored procedure.

D E F I N I T I O N
<show procedure status statement> ::=

SHOW PROCEDURE STATUS [LIKE <alphanumeric literal>]

SHOW TABLE TYPES: This statement is an outdated alternative for SHOW ENGINES. Use
the latter as much as possible.

D E F I N I T I O N
<show table types statement> ::=

SHOW TABLE TYPES

SHOW TABLES: Shows information about several tables.

D E F I N I T I O N
<show tables statement> ::=

SHOW [FULL] TABLES [{ FROM | IN } <database name>]
[LIKE <alphanumeric literal>]

697CHAPTER 30 The SHOW, DESCRIBE, and HELP Statements

SHOW TRIGGERS: Shows information about several triggers.

D E F I N I T I O N
<show triggers statement> ::=

SHOW TRIGGERS [FROM <database name>]
[LIKE <alphanumeric literal>]

SHOW VARIABLES: Shows the values of several or all system and user variables.

D E F I N I T I O N
<show variables statement> ::=

SHOW [GLOBAL | SESSION] VARIABLES
[LIKE <alphanumeric literal>]

30.3 ADDITIONAL SHOW STATEMENTS

Besides the SHOW statements described in the previous section, MySQL offers sev-
eral others that we can use to study the status of the database server itself:

■ SHOW BINLOG EVENTS

■ SHOW ERRORS

■ SHOW INNODB STATUS

■ SHOW LOGS

■ SHOW MASTER LOGS

■ SHOW MASTER STATUS

■ SHOW OPEN TABLES

■ SHOW PROCESSLIST

■ SHOW SLAVE HOSTS

■ SHOW SLAVE STATUS

■ SHOW STATUS

■ SHOW TABLE STATUS

■ SHOW WARNINGS

However, these SHOW statements do not show any catalog information, which is
why we do not discuss them.

698 SQL for MySQL Developers

30.4 THE DESCRIBE STATEMENT

The result of the DESCRIBE statement is equal to that of the SHOW COLUMNS statement.
The statement gives information about the columns of a table. The statement has
been added because many other SQL products also support this statement.

D E F I N I T I O N
<describe statement> ::=

{ DESCRIBE | DESC } <table specification>
[<column name> | <alphanumeric literal>]

Examples of the DESCRIBE statement are shown here:

DESCRIBE PLAYERS

DESCRIBE PLAYERS TOWN

DESCRIBE PLAYERS 'G%'

The special symbols % en _ may be used within the alphanumeric literals; they
have the same function as when used with the LIKE operator.

30.5 THE HELP STATEMENT

With the HELP statement, we can retrieve information from the MySQL reference
manual.

D E F I N I T I O N
<help statement> ::=

HELP <alphanumeric literal>

Examples of the HELP statement are shown here:

HELP 'CREATE TABLE'
HELP 'date'

The following HELP statement returns all the topics you can retrieve informa-
tion on.

HELP 'contents'

699CHAPTER 30 The SHOW, DESCRIBE, and HELP Statements

The result is:

SOURCE_CATEGORY_NAME NAME
-------------------- -------------------------- ---
Contents Account Management
Contents Administration
Contents Data Definition
Contents Data Manipulation
Contents Data Types
Contents Functions
Contents Functions and Modifiers for Use

with GROUP BY
Contents Geographic Features
Contents Language Structure
: :

After that, you can use the different categories in a HELP statement again—for
example, HELP 'data types'.

700 SQL for MySQL Developers

Part IV
Procedural Database
Objects

In Section 1.4, we mentioned that, for a long time SQL, was a purely
declarative language, but this changed in 1986–1987 when SQL products
on the market began to support so-called stored procedures. That changed
the character of SQL. A stored procedure can informally be described as
a piece of code that can be called from applications, among other things.
This piece of code consists of well-known SQL statements, such as INSERT
and SELECT, but also procedural statements, such as IF-THEN-ELSE and
WHILE DO. Because stored procedures offered many practical advantages,
other vendors started to implement them. This meant the end of the pure
declarative character of SQL. Since their inclusion in the SQL2 standard,
stored procedures have formed a real part of the language.

Later, other nondeclarative database objects were added, such as
stored functions and triggers. These are all database objects that we cre-
ate with CREATE statements and store in the catalog. They differ, however,
because they are based on procedural code. That is why we call them pro-
cedural database objects.

Since version 5.0, MySQL has supported stored procedures, stored
functions, triggers, and events. This part discusses these four procedural
database objects.

S Q L F O R M Y S Q L D E V E L O P E R S

701

This page intentionally left blank This page intentionally left blank

703

Stored Procedures
C H A P T E R 3 1

31.1 INTRODUCTION

This chapter covers the procedural database object called the stored procedure or
database procedure. We start by giving its definition:

A stored procedure is a certain piece of code (the procedure) consisting
of declarative and procedural SQL statements stored in the catalog of a
database that can be activated by calling it from a program, a trigger, or
another stored procedure.

Thus, a stored procedure is a piece of code. This code can consist of declarative
SQL statements, such as CREATE, UPDATE, and SELECT, possibly complemented with
procedural statements, such as IF-THEN-ELSE and WHILE-DO. The code from which a
stored procedure is built is, therefore, not a part of a program, but is stored in the
catalog.

Calling a stored procedure is comparable to calling a “normal” procedure
(otherwise called a function or routine) in procedural languages. For calling stored
procedures, a new SQL statement has been introduced. When calling stored proce-
dures, you can also specify input and output parameters. As the definition indi-
cates, stored procedures can be called from other stored procedures, just as
functions in C can call other functions. The definition states that triggers also can
activate stored procedures; Chapter 33, “Triggers,” returns to this subject.

We can best illustrate a stored procedure and shows its possibilities with a
number of examples. Therefore, this chapter includes several examples of increas-
ing complexity.

31.2 AN EXAMPLE OF A STORED PROCEDURE

We start with a simple example.

Example 31.1: Create a stored procedure that removes all matches played by a
specific player.

CREATE PROCEDURE DELETE_MATCHES
(IN P_PLAYERNO INTEGER)

BEGIN
DELETE
FROM MATCHES
WHERE PLAYERNO = P_PLAYERNO;

END

Explanation: The CREATE PROCEDURE statement is one SQL statement, just as
CREATE TABLE and SELECT are. The statement consists of several other SQL state-
ments. We return to this subject and discuss it extensively later in this chapter.
Each stored procedure consists of at least three parts: a list of parameters, a body,
and a name.

The previous procedure has only one parameter: P_PLAYERNO (the player number).
The word IN indicates that this parameter is an input parameter. The value of this
parameter can be used within the procedure, but after the execution of the proce-
dure, the variable used at the call remains unchanged.

Between the keywords BEGIN and END, the procedure body is specified. In this
example, the body is very simple because it consists of only a single DELETE state-
ment. New in this statement is the use of the parameter P_PLAYERNO. This is the rule:
Everywhere a scalar expression is allowed, a parameter may be used.

The names of the procedures within a database must be unique, just like the
names of tables.

The result of the previous CREATE PROCEDURE statement is not the execution of
the DELETE statement; the syntax of the statement is merely verified and, if it is cor-
rect, is stored in the catalog. This is comparable to creating views.

To activate a stored procedure, a separate SQL statement must be used: the
CALL statement.

Example 31.2: Remove all matches of player 8 by using the DELETE_MATCHES
procedure.

CALL DELETE_MATCHES (8)

704 SQL for MySQL Developers

Explanation: This statement is straightforward. The value of the player number
assigned to the parameter P_PLAYERNO is included between the brackets. If we com-
pare this with classic programming languages, the CREATE PROCEDURE statement is
comparable to the declaration of a procedure; with CALL, the procedure is invoked.

Figure 31.1 shows how a stored procedure is processed. The left block represents
the program from which the procedure is called, the middle block represents the
database server, and the right side represents the database and its catalog. The
process begins when the procedure is called from the program (step 1). The data-
base server receives this call and finds the matching procedure in the catalog (step
2). Next, the procedure is executed (step 3). This can result in inserting new rows
or, in the situation of the DELETE_MATCHES procedure, removing rows. When the pro-
cedure is finished, the result of the procedure is returned (step 4). No communica-
tion takes place between the database server and the program during the execution
of the procedure.

705CHAPTER 31 Stored Procedures

program

call procedure
:
process
result
:

catalog

1.

2.

3.
4.

database

MySQL

stored
procedure

analyze

return
result

find
procedure

process
statements

FIGURE 31.1 The processing steps of a stored procedure

How the database server really calls and processes the stored procedure is not
important to the programmer or the program. The processing of a stored procedure
can be seen as an extension of the processing of the program itself. Imagine that a
program calling the stored procedure DELETE_MATCHES looks as follows:

Answer := 'Y';
WHILE answer = 'Y' DO

PRINT 'Do you want to remove all matches of another player (Y/N)? '
READ answer
IF answer = 'Y' THEN

PRINT 'Enter a player number: ';
READ pno;
CALL DELETE_MATCHES(pno);

ENDIF;
ENDWHILE;

The final result of this program is the same as if we replaced the stored proce-
dure call with the body of the procedure itself:

Answer := 'Y';
WHILE answer = 'Y' DO

PRINT 'Do you want to remove all matches of another player (Y/N)? '
READ answer
IF answer = 'Y' THEN

PRINT 'Enter a player number: ';
READ pno;
DELETE
FROM MATCHES
WHERE PLAYERNO = :pno;

ENDIF;
ENDWHILE;

The following sections describe the features and syntax of stored procedures
step by step, along with the statements that can be used within the body of a stored
procedure.

31.3 THE PARAMETERS OF A STORED PROCEDURE

A stored procedure has zero, one, or multiple parameters. Through these parameters,
the procedure is capable of communicating with the outside world. Three types of
parameters are supported. With input parameters, data can be passed to a stored
procedure. For example, the procedure in Example 31.1 contained one input param-
eter: The player number of the matches that must be removed. The stored procedure
uses output parameters when an answer or result must be returned. For example, we
could create a stored procedure that finds the name of a player. That name is the out-
put parameter then. The third type is the input/output parameter. As the name sug-
gests, this parameter can act as an input as well as an output parameter.

706 SQL for MySQL Developers

D E F I N I T I O N
<create procedure statement> ::=

CREATE PROCEDURE <procedure name> ([<parameter list>])
<routine body>

<parameter list> ::=
<parameter specification> [, <parameter specification>]...

<parameter specification> ::=
[IN | OUT | INOUT] <parameter> <data type>

A stored procedure does not need parameters, but opening and closing brackets
are still required.

Make sure that the names of parameters are not equal to the names of columns.
If we want to change P_PLAYERNO in the previous example to PLAYERNO, MySQL
will not return an error message; the DELETE statement will consider the second
PLAYERNO as the name of the column, not of the parameter. As a result, with
every call, the stored procedure will remove all the players.

31.4 THE BODY OF A STORED PROCEDURE

The body of a stored procedure contains all the statements that must be executed
when the procedure is called. The body always begins with BEGIN and ends with
END. In between, all statement types can be specified. These can be the well-known
SQL statements from the previous chapters (thus, all DDL, DCL, and DML state-
ments), but procedural statements are allowed as well. These are other versions of
statements that we see in all procedural programming languages, such as IF-THEN-
ELSE and WHILE-DO. Additionally, special statements can fetch the results of SELECT
statement into a stored procedure, local variables can be declared, and you can
assign values to them.

707CHAPTER 31 Stored Procedures

D E F I N I T I O N
<create procedure statement> ::=

CREATE PROCEDURE <procedure name> ([<parameter list>])
<routine body>

<routine body> ::= <begin-end block>

<begin-end block> ::=
[<label> :] BEGIN <statement list> END [<label>]

<statement list> ::= { <body statement> ; }...

<statement in body> ::=
<declarative statement> |
<procedural statement>

<declarative statement> ::=
<ddl statement> |
<dml statement> |
<dcl statement>

<procedural statement> ::=
<begin-end block> |
<call statement> |
<close statement> |
<declare condition statement> |
<declare cursor statement> |
<declare handler statement> |
<declare variable statement> |
<fetch cursor statement> |
<flow control statement> |
<open cursor statement> |
<set statement>

With a begin-end block, statements can be grouped into one statement. Some-
times such a block is called a compound statement. In fact, the body of a stored pro-
cedure is a begin-end block. Blocks may be nested. In other words, you can define
subblocks within begin-end blocks, so this is a legal body of a stored procedure:

BEGIN
BEGIN

BEGIN
END;

END;
END

708 SQL for MySQL Developers

Note that each statement, including each begin-end block, must end with a
semicolon. However, this is not required for the begin-end block that indicates the
end of the procedure body.

You may assign a label to a begin-end block. In fact, the block is named with it:

BLOCK1 : BEGIN
BLOCK2 : BEGIN

BLOCK3 : BEGIN
END BLOCK1;

END BLOCK2;
END BLOCK3

Labeling blocks has two advantages. First, labeling makes it easier to deter-
mine which BEGIN belongs to which END, especially when many blocks exist within
a stored procedure. Second, certain SQL statements, such as LEAVE and ITERATE,
need these names. Section 31.7 returns to this topic.

A closing label behind END is not necessary. However, if it is used, it must refer
to a label that stands in front of a BEGIN. The following code is not allowed, for
example:

BLOCK1 : BEGIN
SET VAR1 = 1;

END BLOCK2

The following statement is not correct, either. The name of the closing label
BLOCK2 does exist, but it belongs to the wrong BEGIN.

BLOCK1 : BEGIN
BLOCK2 : BEGIN

SET VAR1 = 1;
END

END BLOCK2

31.5 LOCAL VARIABLES

Within a stored procedure, local variables can be declared. They can be used to
store temporary intermediate results. If we need a local variable within a stored pro-
cedure, we must introduce it first with a DECLARE VARIABLE statement. MySQL thus
differs from similar languages such as PHP, in which a variable is declared implic-
itly if it is used.

With a declaration, the data type of the variable is determined, and an initial
value can be specified. The supported data types are those that may be used in
CREATE TABLE statements; see Section 20.3.

709CHAPTER 31 Stored Procedures

D E F I N I T I O N
<declare variable statement> ::=

DECLARE <local variable list> <data type>
[DEFAULT <scalar expression>]

<local variable list> ::=
<local variable> [, <local variable>]...

Example 31.3: Declare a numeric and an alphanumeric variable.

DECLARE NUM1 DECIMAL(7,2);
DECLARE ALPHA1 VARCHAR(20);

Multiple variables carrying the same data type can be declared with one
DECLARE VARIABLE statement.

Example 31.4: Declare two integer variables.

DECLARE NUMBER1, NUMBER2 INTEGER;

Adding a default expression gives variables an initial value.

Example 31.5: Create a stored procedure in which an initial value is assigned to
a local variable. Next, call this stored procedure.

CREATE PROCEDURE TEST
(OUT NUMBER1 INTEGER)

BEGIN
DECLARE NUMBER2 INTEGER DEFAULT 100;
SET NUMBER1 = NUMBER2;

END

CALL TEST (@NUMBER)

SELECT @NUMBER

The result is:

@NUMBER

100

710 SQL for MySQL Developers

Explanation: If DECLARE VARIABLE statements are used, they must be included as
the first statements of a begin-end block.

The expression for the default value is not limited to literals, but may consist of
compound expressions, including scalar subqueries.

Example 31.6: Create a stored procedure in which a local variable is initiated
with the number of players in the PLAYERS table.

CREATE PROCEDURE TEST
(OUT NUMBER1 INTEGER)

BEGIN
DECLARE NUMBER2 INTEGER

DEFAULT (SELECT COUNT(*) FROM PLAYERS);
SET NUMBER1 = NUMBER2;

END

Local variables can be declared within each begin-end block. After the decla-
ration, the variables can be used in the relevant block, including all subblocks of
that block. Those variables are unknown in the other blocks. In the following con-
struct, the variable V1 may be used in all blocks. V2, on the other hand, can be used
only in the first subblock, called B2. In the second subblock B3, this variable is
unknown, so the SET statement will not be accepted. The last SET statement will also
not be accepted.

B1 : BEGIN
DECLARE V1 INTEGER;
B2 : BEGIN

DECLARE V2 INTEGER;
SET V2 = 1;
SET V1 = V2;

END B2;
B3 : BEGIN

SET V1 = V2;
END B3;
SET V2 = 100;

END B1

Do not confuse local variables with user variables; see Chapter 15, “The User
Variable and the SET Statement.” The first difference is that no @ symbol is used in
front of local variables. Another difference is that user variables exist during the

711CHAPTER 31 Stored Procedures

entire session. Local variables disappear immediately after the processing of the
begin-end block in which they have been declared is finished. User variables can
be used within and outside a stored procedure, whereas local variables have no
meaning outside a procedure.

Also note that MySQL does not support arrays as local variables.

31.6 THE SET STATEMENT

The SET statement is part of SQL itself. Section 15.2 describes how a value can be
assigned to user variables with the SET statement. The same statement can assign a
value to a local variable. You can use any random expression here as well.

D E F I N I T I O N
<set statement> ::=

SET <local variable definition>
[, <local variable definition>]...

<local variable definition> ::=
<local variable> { = | := } <scalar expression>

The previous sections showed several examples of the SET statement. The fol-
lowing examples are also correct:

SET VAR1 = 1;
SET VAR1 := 1;
SET VAR1 = 1, VAR2 = VAR1;

In the last example, a value is assigned to VAR1 first, and that value is next
assigned to VAR2 via VAR1.

31.7 FLOW-CONTROL STATEMENTS

The well-known procedural statements can be used within the body of a stored pro-
cedure. Consider their definitions:

712 SQL for MySQL Developers

713CHAPTER 31 Stored Procedures

D E F I N I T I O N
<flow control statement> ::=

<if statement> |
<case statement> |
<while statement> |
<repeat statement> |
<loop statement> |
<leave statement> |
<iterate statement>

<if statement> ::=
IF <condition> THEN <statement list>

[ELSEIF <condition> THEN <statement list>]...
[ELSE <statement list>]

END IF

<case statement> ::=
{ CASE <scalar expression>

WHEN <scalar expression> THEN <statement list>
[WHEN <scalar expression> THEN <statement list>]...
[ELSE <statement list>]

END CASE } |
{ CASE

WHEN <condition> THEN <statement list>
[WHEN <condition> THEN <statement list>]...
[ELSE <statement list>

END CASE }

<while statement> ::=
[<label> : WHILE <condition> DO <statement list>
END WHILE [<label>]

<repeat statement> ::=
[<label> :] REPEAT <statement list>
UNTIL <condition>
END REPEAT <label>

<loop statement> ::=
[<label> :] LOOP <statement list>
END LOOP [<label>]

<leave statement> ::= LEAVE <label>

<iterate statement> ::= ITERATE <label>

<statement list> ::= { <statement in body> ; }...

<begin-end block> ::=
[<label> :] BEGIN <statement list> END [<label>]

<label> ::= <name>

We begin with examples of the IF statement.

Example 31.7: Create a stored procedure that determines which of the two input
parameters is highest.

CREATE PROCEDURE DIFFERENCE
(IN P1 INTEGER,
IN P2 INTEGER,
OUT P3 INTEGER)

BEGIN
IF P1 > P2 THEN

SET P3 = 1;
ELSEIF P1 = P2 THEN

SET P3 = 2;
ELSE

SET P3 = 3;
END IF;

END

Explanation: The ELSE clause is not mandatory, and you may specify many
ELSEIF clauses.

Example 31.8: Create a stored procedure that generates numbers according to
the Fibonacci algorithm.

A Fibonacci algorithm generates numbers as follows. You start with two num-
bers, such as 16 and 27. The first generated number is the sum of those two, which
is 43. Then the second generated number is the sum of the number that was gener-
ated last (43), plus the number in front of that: 27, result 70. The third number is 70
plus 43, giving 113. The fourth number is 113 plus 70, and so on. If the sum exceeds
a specific maximum, that maximum is subtracted. In the following examples, we
assume that the maximum equals 10,000. If this problem is to be solved with stored
procedures, the calling program must remember the two previous numbers because
a stored procedure does not have a memory. For every call, these two numbers must
be included. The procedure itself looks as follows:

CREATE PROCEDURE FIBONACCI
(INOUT NUMBER1 INTEGER,
INOUT NUMBER2 INTEGER,
INOUT NUMBER3 INTEGER)

BEGIN
SET NUMBER3 = NUMBER1 + NUMBER2;
IF NUMBER3 > 10000 THEN

SET NUMBER3 = NUMBER3 - 10000;
END IF;
SET NUMBER1 = NUMBER2;
SET NUMBER2 = NUMBER3;

END

714 SQL for MySQL Developers

Call this stored procedure three times, beginning with the values 16 and 27:

SET @A=16, @B=27

CALL FIBONACCI(@A,@B,@C)

SELECT @C

CALL FIBONACCI(@A,@B,@C)

SELECT @C

CALL FIBONACCI(@A,@B,@C)

SELECT @C

The results of the three SELECT statements are, respectively, 43, 70, and 113.
Here we indicate how this procedure can be called from a program (our pseudo lan-
guage is used with this):

number1 := 16;
number2 := 27;

counter := 1;
while counter <= 10 do

CALL FIBONACCI (:number1, :number2, :number3);
print 'The number is ', number3;
counter := counter + 1;

endwhile;

Example 31.9: Create a stored procedure that indicates which table, PLAYERS
or PENALTIES, has the largest number of rows.

CREATE PROCEDURE LARGEST
(OUT T CHAR(10))

BEGIN
IF (SELECT COUNT(*) FROM PLAYERS) >

(SELECT COUNT(*) FROM PENALTIES) THEN
SET T = 'PLAYERS';

ELSEIF (SELECT COUNT(*) FROM PLAYERS) =
(SELECT COUNT(*) FROM PENALTIES) THEN

SET T = 'EQUAL';
ELSE

SET T = 'PENALTIES';
END IF;

END

Explanation: As this example shows, conditions are allowed to contain scalar sub-
queries. However, this stored procedure would be more efficient if the results of the
subqueries were assigned to local variables first and, subsequently, if the values of

715CHAPTER 31 Stored Procedures

the variables were compared in the condition. In the previous example, the sub-
queries are sometimes executed twice.

The CASE statement makes it possible to specify complex IF-THEN-ELSE constructs.
The IF statement in Example 31.7, for example, can be rewritten as follows:

CASE
WHEN P1 > P2 THEN SET P3 = 1;
WHEN P1 = P2 THEN SET P3 = 2;
ELSE SET P3 = 3;

END CASE;

MySQL supports three statements for creating loops: the WHILE, REPEAT, and
LOOP statements.

Example 31.10: Create a stored procedure that calculates the number of years,
months, and days between two dates.

CREATE PROCEDURE AGE
(IN START_DATE DATE,
IN END_DATE DATE,
OUT YEARS INTEGER,
OUT MONTHS INTEGER,
OUT DAYS INTEGER)

BEGIN
DECLARE NEXT_DATE, PREVIOUS_DATE DATE;

SET YEARS = 0;
SET PREVIOUS_DATE = START_DATE;
SET NEXT_DATE = START_DATE + INTERVAL 1 YEAR;
WHILE NEXT_DATE < END_DATE DO

SET YEARS = YEARS + 1;
SET PREVIOUS_DATE = NEXT_DATE;
SET NEXT_DATE = NEXT_DATE + INTERVAL 1 YEAR;

END WHILE;

SET MONTHS = 0;
SET NEXT_DATE = PREVIOUS_DATE + INTERVAL 1 MONTH;
WHILE NEXT_DATE < END_DATE DO

SET MONTHS = MONTHS + 1;
SET PREVIOUS_DATE = NEXT_DATE;
SET NEXT_DATE = NEXT_DATE + INTERVAL 1 MONTH;

END WHILE;

SET DAYS = 0;
SET NEXT_DATE = PREVIOUS_DATE + INTERVAL 1 DAY;
WHILE NEXT_DATE <= END_DATE DO

SET DAYS = DAYS + 1;
SET PREVIOUS_DATE = NEXT_DATE;
SET NEXT_DATE = NEXT_DATE + INTERVAL 1 DAY;

END WHILE;
END

716 SQL for MySQL Developers

This stored procedure works as follows:

SET @START = '1991-01-12'

SET @END = '1999-07-09'

CALL AGE (@START, @END, @YEAR, @MONTH, @DAY)

SELECT @START, @END, @YEAR, @MONTH, @DAY

Explanation: The first loop determines the number of intervening years, the sec-
ond indicates the number of months, and the last indicates the number of days. Of
course, scalar functions can achieve the same in a more simple way; we used this
method only to illustrate the WHILE statement.

With a WHILE statement, a check is done first to see whether the specified condition
is true; only then the statement is executed. With the REPEAT statement, the state-
ments are executed first; then a check is done to see whether the condition is true.
The first WHILE statement from Example 31.10 can be rewritten as follows:

SET YEARS = -1;
SET NEXT_DATE = START_DATE;
REPEAT

SET PREVIOUS_DATE = NEXT_DATE;
SET NEXT_DATE = PREVIOUS_DATE + INTERVAL 1 YEAR;
SET YEARS = YEARS + 1;

UNTIL NEXT_DATE > END_DATE END REPEAT;

Before we explain the LOOP statement, we describe the LEAVE statement, which
can stop the processing of a begin-end block early. However, the relevant block
must have a label.

Example 31.11: Create a stored procedure in which a block is ended prematurely.

CREATE PROCEDURE SMALL_EXIT
(OUT P1 INTEGER, OUT P2 INTEGER)

BEGIN
SET P1 = 1;
SET P2 = 1;
BLOCK1 : BEGIN

LEAVE BLOCK1;
SET P2 = 3;

END;
SET P1 = 4;

END

717CHAPTER 31 Stored Procedures

If we call this stored procedure, the value of the second parameter is equal to 1,
and the value of P1 is equal to 4. The SET statement that comes immediately after
the LEAVE statement is not executed, contrary to the SET statement specified after
BLOCK1 that is actually executed.

With the LOOP statement, we do not use a condition; we use a LEAVE statement to
end the loop.

The first WHILE statement from Example 31.10 can be rewritten as follows:

SET YEARS = 0;
SET PREVIOUS_DATE = START_DATE;
SET NEXT_DATE = START_DATE + INTERVAL 1 YEAR;
YEARS_LOOP: LOOP

IF NEXT_DATE > END_DATE THEN
LEAVE YEARS_LOOP;

END IF;
SET YEARS = YEARS + 1;
SET PREVIOUS_DATE = NEXT_DATE;
SET NEXT_DATE = NEXT_DATE + INTERVAL 1 YEAR;

END LOOP YEARS_LOOP;

Example 31.12: Create a stored procedure that does not respond for a certain
number of seconds.

CREATE PROCEDURE WAIT
(IN WAIT_SECONDS INTEGER)

BEGIN
DECLARE END_TIME INTEGER

DEFAULT NOW() + INTERVAL WAIT_SECONDS SECOND;
WAIT_LOOP: LOOP

IF NOW() > END_TIME THEN
LEAVE WAIT_LOOP;

END IF;
END LOOP WAIT_LOOP;

END

Explanation: If we call this stored procedure with CALL(5), MySQL checks
whether the 5 seconds have passed. If so, we leave the loop with the LEAVE
statement.

The ITERATE statement is the counterpart of the LEAVE statement. The difference
between the two is that, with the LEAVE statement, we leave a loop early, whereas we
restart the loop with ITERATE.

718 SQL for MySQL Developers

Example 31.13: Create a stored procedure with an ITERATE statement.

CREATE PROCEDURE AGAIN
(OUT RESULT INTEGER)

BEGIN
DECLARE COUNTER INTEGER DEFAULT 1;
SET RESULT = 0;
LOOP1: WHILE COUNTER <= 1000 DO

SET COUNTER = COUNTER + 1;
IF COUNTER > 100 THEN

LEAVE LOOP1;
ELSE

ITERATE LOOP1;
END IF;
SET RESULT = COUNTER * 10;

END WHILE LOOP1;
END

Explanation: The value of the parameter RESULT is always equal to 0. The stored
procedure will never come at the statement SET RESULT = COUNTER * 10. The rea-
son is that the IF statement leads to the processing of the LEAVE statement (and then
we leave the loop) or to the processing of the ITERATE statement. In that case, the
processing jumps again to the loop with the name LOOP1.

31.8 CALLING STORED PROCEDURES

A procedure can be called from a program, from interactive SQL, and from stored
procedures. In all three cases, the CALL statement is used.

D E F I N I T I O N
<call statement> ::=

CALL [<database name> .] <stored procedure name>
([<scalar expression> [, <scalar expression>]...])

In spite of the fact that the statement is not complex, certain rules apply. The
number of expressions in the expression list must always equal the number of
parameters of the stored procedure. The name of a database may be specified in
front of the procedure name. MySQL automatically places that same database name
in the DML statements in front of each table name. This does not apply when a
database name is explicitly specified in front of a table name, of course.

719CHAPTER 31 Stored Procedures

Any scalar expression may be used as an input parameter of a stored procedure.
MySQL calculates the value of that expression before the value is passed on to the
procedure.

Example 31.14: Call the stored procedure called WAIT from Example 31.12 and
wait just as many seconds as there are rows in the PENALTIES table.

CALL WAIT ((SELECT COUNT(*) FROM PENALTIES))

Stored procedures can call themselves recursively. This is illustrated next with
an example that uses a special version of the PLAYERS table, called the
PLAYERS_WITH_PARENTS table. Most columns from the original PLAYERS
table have been removed, and two columns have been added instead: FATHER_
PLAYERNO and MOTHER_PLAYERNO. These two columns contain player num-
bers and are filled if the father and/or mother of the player concerned also plays at
the tennis club. See Figure 31.2 for an overview of the family relationships among
several players.

720 SQL for MySQL Developers

father

8

father

4

mother

5

father

6

father

2

child

1

mother

3

mother

7

mother

9

FIGURE 31.2 The family relationships among several players

CREATE TABLE PLAYERS_WITH_PARENTS
(PLAYERNO INTEGER NOT NULL PRIMARY KEY,
FATHER_PLAYERNO INTEGER,
MOTHER_PLAYERNO INTEGER)

ALTER TABLE PLAYERS_WITH_PARENTS ADD
FOREIGN KEY (FATHER_PLAYERNO)

REFERENCES PLAYERS_WITH_PARENTS (PLAYERNO)

ALTER TABLE PLAYERS_WITH_PARENTS ADD
FOREIGN KEY (MOTHER_PLAYERNO)

REFERENCES PLAYERS_WITH_PARENTS (PLAYERNO)

INSERT INTO PLAYERS_WITH_PARENTS VALUES
(9,NULL,NULL), (8,NULL,NULL), (7,NULL,NULL), (6,NULL,NULL),
(5,NULL,NULL), (4,8,9), (3,6,7), (2,4,5), (1,2,3)

Example 31.15: Develop a stored procedure that calculates for a specific player
the number of parents, grandparents, great-grandparents, and so on, who also play
for the club. After that, call the stored procedure for the players.

CREATE PROCEDURE TOTAL_NUMBER_OF_PARENTS
(IN P_PLAYERNO INTEGER,
INOUT NUMBER INTEGER)

BEGIN
DECLARE V_FATHER, V_MOTHER INTEGER;
SET V_FATHER =

(SELECT FATHER_PLAYERNO
FROM PLAYERS_WITH_PARENTS
WHERE PLAYERNO = P_PLAYERNO);

SET V_MOTHER =
(SELECT MOTHER_PLAYERNO
FROM PLAYERS_WITH_PARENTS
WHERE PLAYERNO = P_PLAYERNO);

IF V_FATHER IS NOT NULL THEN
CALL TOTAL_NUMBER_OF_PARENTS (V_FATHER, NUMBER);
SET NUMBER = NUMBER + 1;

END IF;

IF V_MOTHER IS NOT NULL THEN
CALL TOTAL_NUMBER_OF_PARENTS (V_MOTHER, NUMBER);
SET NUMBER = NUMBER + 1;

END IF;
END

SET @NUMBER = 0

CALL TOTAL_NUMBER_OF_PARENTS (1, @NUMBER)

SELECT @NUMBER

Explanation: The result of the last SELECT statement is 8. Apart from the way this
procedure works, you can clearly see the recursive style of calling procedures. But
how does it work, precisely? We assume that the procedure is called with the num-
ber of a player—for example, 27—as the first parameter and a variable in which the
number of ancestors is recorded as the second parameter. However, this variable
first must be initialized and set to 0; otherwise, the procedure will not work

721CHAPTER 31 Stored Procedures

correctly. The first SELECT statement determines the player numbers of the father
and mother. If the father is indeed a member of the club, the procedure TOTAL_
NUMBER_OF_PARENTS is again called (recursively), this time with the player number
of the father as the input parameter. When this procedure has finished, the number
of ancestors of the father is shown. Next, we add 1 because the father himself must
also be counted as the ancestor of the child. Thus, it is possible that, for the father,
TOTAL_NUMBER_OF_PARENTS is activated for the third time because he, in turn, has a
father or mother who is still a member of the club. After the number of ancestors
has been determined for the father, the same is done for the mother.

In practice, the need to walk through a hierarchy from top to bottom, or vice versa,
and perform calculations occurs often. For example, a production company records
which products are a part of other products. A car consists of, among other things, a
chassis and an engine. The engine itself contains spark plugs, a battery, and other
parts, and this hierarchy goes on and on. Another example involves departments in
large companies. Departments consist of smaller departments, which, in turn, con-
sist of even smaller departments. No doubt you can think of many more examples.

31.9 QUERYING DATA WITH SELECT INTO
Quite often we want to retrieve data from the tables into the stored procedure. We
can fetch data in two ways. First, if only one row with data must be fetched, we can
easily do this with a special version of the SELECT statement: the SELECT INTO state-
ment. Second, to fetch multiple rows, the concept of a cursor has been added. This
section describes the SELECT INTO statement; Section 31.11 explains the cursor.

D E F I N I T I O N
<select into statement> ::=

<select clause>
<into clause>

[<from clause>
[<where clause>]
[<group by clause>]
[<having clause>]
[<select block tail>]]

<select block tail> ::=
<order by clause> |
<limit clause> |
<order by clause> <limit clause>

<into clause> ::=
INTO <local variable> [, <local variable>]...

722 SQL for MySQL Developers

Special to the SELECT INTO statement is the new clause, called INTO. Here, we
specify the names of variables. For each expression in the SELECT clause, a variable
must be specified. After processing the SELECT INTO statement, the values of that
expression are assigned to the variables.

Example 31.16: Create a stored procedure that calculates the total amount of all
the penalties of a certain player. After that, call the procedure for player 27.

CREATE PROCEDURE TOTAL_PENALTIES_PLAYER
(IN P_PLAYERNO INTEGER,
OUT TOTAL_PENALTIES DECIMAL(8,2))

BEGIN
SELECT SUM(AMOUNT)
INTO TOTAL_PENALTIES
FROM PENALTIES
WHERE PLAYERNO = P_PLAYERNO;

END

CALL TOTAL_PENALTIES_PLAYER (27, @TOTAL)

SELECT @TOTAL

Explanation: The result of the SELECT INTO statement is assigned to the output
parameter TOTAL_PENALTIES.

Example 31.15 shows another example in which the SELECT INTO statement can be
used. One SELECT INTO statement can replace the first two SET statements with sub-
queries (to improve the processing speed):

SELECT FATHER_PLAYERNO, MOTHER_PLAYERNO
INTO V_FATHER, V_MOTHER
FROM PLAYERS_WITH_PARENTS
WHERE PLAYERNO = P_PLAYERNO

Example 31.17: Create a stored procedure that retrieves the address of a player.

CREATE PROCEDURE GIVE_ADDRESS
(IN P_PLAYERNO SMALLINT,
OUT P_STREET VARCHAR(30),
OUT P_HOUSENO CHAR(4),
OUT P_TOWN VARCHAR(30),
OUT P_POSTCODE CHAR(6))

BEGIN
SELECT TOWN, STREET, HOUSENO, POSTCODE
INTO P_TOWN, P_STREET, P_HOUSENO, P_POSTCODE
FROM PLAYERS
WHERE PLAYERNO = P_PLAYERNO;

END

723CHAPTER 31 Stored Procedures

Example 31.18: Example 31.8 shows how the next value of a Fibonacci series
can be calculated with a stored procedure. The disadvantage of this solution is that
the stored procedure has three parameters, of which only one is relevant to the call-
ing program: the third parameter. It would be better if we could remember the two
first parameters within the stored procedure, but then the stored procedure would
need a memory, which is kept between two calls. No such memory exists, but we
can simulate it by storing the values of these variables in a table. For this, we can
use the following table:

CREATE TABLE FIBON
(NUMBER1 INTEGER NOT NULL PRIMARY KEY,
NUMBER2 INTEGER NOT NULL)

We need a stored procedure to assign an initial value to the two columns; see
the next example. The DELETE statement is used to empty the table in case it con-
tains remnants of a previous exercise. Next, we use an INSERT statement to give the
columns an initial value:

CREATE PROCEDURE FIBONACCI_START()
BEGIN

DELETE FROM FIBON;
INSERT INTO FIBON (NUMBER, NUMBER2) VALUES (16, 27);

END

The original procedure, called FIBONACCI, now looks as follows:

CREATE PROCEDURE FIBONACCI_GIVE
(INOUT NUMBER INTEGER)

BEGIN
DECLARE N1, N2 INTEGER;
SELECT NUMBER1, NUMBER2
INTO N1, N2
FROM FIBON;
SET NUMBER = N1 + N2;
IF NUMBER > 10000 THEN

SET NUMBER = NUMBER - 10000;
END IF;
SET N1 = N2;
SET N2 = NUMBER;
UPDATE FIBON
SET NUMBER1 = N1,

NUMBER2 = N2;
END

A SELECT INTO statement retrieves the last two values. The procedure is proba-
bly obvious. The part of a program in which the procedures are called might look
like this:

724 SQL for MySQL Developers

CALL FIBONACCI_START()

CALL FIBONACCI_GIVE(@C)

SELECT @C

CALL FIBONACCI_GIVE(@C)

SELECT @C

CALL FIBONACCI_GIVE(@C)

SELECT @C

The first advantage of the previous solution is that when a procedure is called,
only one parameter must be passed. The second advantage has to do with the way
the Fibonacci algorithm works: In the second solution, the internal workings are
more hidden from the calling program.

Example 31.19: Create a stored procedure that removes a player. Imagine that
the following rule applies: A player can be removed only if he or she has incurred
no penalty and only if he or she is not a captain of a team. We also assume that no
foreign keys have been defined.

CREATE PROCEDURE DELETE_PLAYER
(IN P_PLAYERNO INTEGER)

BEGIN
DECLARE NUMBER_OF_ PENALTIES INTEGER;
DECLARE NUMBER_OF_TEAMS INTEGER;
SELECT COUNT(*)
INTO NUMBER_OF_PENALTIES
FROM PENALTIES
WHERE PLAYERNO = P_PLAYERNO;

SELECT COUNT(*)
INTO NUMBER_OF_TEAMS
FROM TEAMS
WHERE PLAYERNO = P_PLAYERNO_;

IF NUMBER_OF_PENALTIES = 0 AND NUMBER_OF_TEAMS = 0 THEN
CALL DELETE_MATCHES (P_PLAYERNO);
DELETE FROM PLAYERS
WHERE PLAYERNO = P_PLAYERNO;

END IF;
END

This stored procedure can be optimized by checking, after the first SELECT
statement, whether the number of penalties is not equal to zero. If this is the case,
the procedure can be interrupted because the second SELECT statement is no longer
necessary.

725CHAPTER 31 Stored Procedures

31.10 ERROR MESSAGES, HANDLERS, AND

CONDITIONS

All the error messages MySQL supports have a unique code, called the MySQL
error code, a piece of describing text, and a code called SQLSTATE. SQLSTATE has
been added to comply with the SQL standard. The SQLSTATE codes are not unique;
several error codes can have the same SQLSTATE. For example, SQLSTATE 23000

belongs to, among other things, the following error codes:

Error 1022, “Can’t write; duplicate key in table”

Error 1048, “Column cannot be null”

Error 1052, “Column is ambiguous”

Error 1062, “Duplicate entry for key”

The manuals of MySQL list all the error messages and their respective codes.

Processing SQL statements in stored procedures can lead to error messages.
For example, when a new row is added but the value in the primary key already
exists, or when an index is removed that does not exist, MySQL stops the process-
ing of the stored procedure. We illustrate this with an example.

Example 31.20: Create a stored procedure with which an existing team number
is entered.

CREATE PROCEDURE DUPLICATE
(OUT P_PROCESSED SMALLINT)

BEGIN
SET P_PROCESSED = 1;
INSERT INTO TEAMS VALUES (2,27,'third');
SET P_PROCESSED = 2;

END

CALL DUPLICATE(PROCESSED)

Explanation: Because team 2 already exists, the INSERT statement results in an
error message. MySQL immediately stops the processing of the stored procedure.
The last SET statement is no longer processed, and the parameter PROCESSED is not
set to 2.

With a special version of the DECLARE statement, the DECLARE HANDLER statement, we
can prevent MySQL from stopping the processing:

726 SQL for MySQL Developers

D E F I N I T I O N
<declare handler statement> ::=

DECLARE <handler type> HANDLER FOR <condition value list>
<procedural statement>

<handler type> ::=
CONTINUE |
EXIT |
UNDO

<condition value list> ::=
<condition value> [, <condition value>]...

<condition value> ::=
SQLSTATE [VALUE] <sqlstate value> |
<mysql error code> |
SQLWARNING |
NOT FOUND |
SQLEXCEPTION |
<condition name>

The DECLARE HANDLER statement defines a so-called handler. that indicates what
should happen if the processing of an SQL statement leads to a certain error mes-
sage. The definition of a handler consists of three parts: the type of handler, the
condition, and the action.

Three types of handlers exist: CONTINUE, EXIT, and UNDO. When we specify a
CONTINUE handler, MySQL does not interrupt the processing of the stored proce-
dure, whereas an EXIT handler does stop the processing.

Example 31.21: Create a stored procedure with which a team number is
entered. If that number already exists, the processing of the procedure should con-
tinue. When the processing finishes, the output parameter then contains the
SQLSTATE code of the possible error message.

CREATE PROCEDURE SMALL_MISTAKE1
(OUT ERROR CHAR(5))

BEGIN
DECLARE CONTINUE HANDLER FOR SQLSTATE '23000'

SET ERROR = '23000';
SET ERROR = '00000';
INSERT INTO TEAMS VALUES (2,27,'third');

END

Explanation: After the call of this stored procedure, the ERROR parameter has the
value 23000. But how does it work? Obviously, the INSERT statement leads to an

727CHAPTER 31 Stored Procedures

error message of which the SQLSTATE code is 23000. When an error occurs, MySQL
checks whether a handler has been defined for this code, which happens to be the
case in this example. Next, MySQL executes the additional statement belonging to
the DECLARE statement (SET ERROR = '23000'). After that, MySQL checks what kind
of handler it is; in this case, it is a CONTINUE handler. Because of this, the process-
ing of the stored procedure continues. If the INSERT statement could have been exe-
cuted without mistakes, the ERROR parameter would have had the value 00000.

You may define several handlers within a stored procedure, as long as they apply to
different error messages.

Example 31.22: Create a special version of the previous example.

CREATE PROCEDURE SMALL_MISTAKE2
(OUT ERROR CHAR(5))

BEGIN
DECLARE CONTINUE HANDLER FOR SQLSTATE '23000'

SET ERROR = '23000';
DECLARE CONTINUE HANDLER FOR SQLSTATE '21S01'

SET ERROR = '21S01';
SET ERROR = '00000';
INSERT INTO TEAMS VALUES (2,27,'third',5);

END

Explanation: The error message with SQLSTATE code 21S01 returns if the number
of values in the INSERT statement does not comply with the number of columns in
the table. In this example, the output parameter will have the value 21S01 when the
procedure is processed.

Instead of using an SQLSTATE code, you can define an error code. The handlers in
the previous example could have been defined as follows:

DECLARE CONTINUE HANDLER FOR 1062 SET ERROR = '23000';
DECLARE CONTINUE HANDLER FOR 1136 SET ERROR = '21S01';

The SQLWARNING handler is activated for all SQLSTATE codes beginning with 01,
the NOT FOUND handler for all codes beginning with 02, and the SQLEXCEPTION handler
for all codes that do not begin with 01 or 02. The three handlers can be used when
you do not want to define a separate handler for every error message possible.

Example 31.23: Create a stored procedure with which a team number can be
entered. If something goes wrong with the processing of the INSERT statement, the
procedure has to continue.

728 SQL for MySQL Developers

CREATE PROCEDURE SMALL_MISTAKE3
(OUT ERROR CHAR(5))

BEGIN
DECLARE CONTINUE HANDLER FOR SQLWARNING, NOT FOUND,

SQLEXCEPTION SET ERROR = 'XXXXX';
SET ERROR = '00000';
INSERT INTO TEAMS VALUES (2,27,'third');

END

To improve the readability, we can give certain SQLSTATE and error codes a
name and use this name later with the declaration of a handler. A DECLARE
CONDITION statement can define a condition.

D E F I N I T I O N
<declare condition statement> ::=

DECLARE <condition name> CONDITION FOR
{ SQLSTATE [VALUE] <sqlstate value> } | <mysql error code>

Example 31.24: Change the stored procedure SMALL_MISTAKE1 and use condi-
tions instead of handlers.

CREATE PROCEDURE SMALL_MISTAKE4
(OUT ERROR CHAR(5))

BEGIN
DECLARE NON_UNIQUE CONDITION FOR SQLSTATE '23000';
DECLARE CONTINUE HANDLER FOR NON_UNIQUE

SET ERROR = '23000';
SET ERROR = '00000';
INSERT INTO TEAMS VALUES (2,27,'third');

END

Explanation: The condition NON_UNIQUE can be used instead of the SQLSTATE
code.

Handlers and conditions can be defined within each begin-end block. A handler is
relevant for all SQL statements that belong to the same block, plus all its sub-
blocks.

729CHAPTER 31 Stored Procedures

Example 31.25: Develop a stored procedure called SMALL_MISTAKE5.

CREATE PROCEDURE SMALL_MISTAKE5
(OUT ERROR CHAR(5))

BEGIN
DECLARE NON_UNIQUE CONDITION FOR SQLSTATE '23000';
DECLARE CONTINUE HANDLER FOR NON_UNIQUE

SET ERROR = '23000';
BEGIN

DECLARE CONTINUE HANDLER FOR NON_UNIQUE
SET ERROR = '23000';

END;
BEGIN

DECLARE CONTINUE HANDLER FOR NON_UNIQUE
SET ERROR = '00000';

INSERT INTO TEAMS VALUES (2,27,'third');
END;

END

Explanation: In this procedure, the parameter ERROR will have the value 00000
when something goes wrong with the INSERT statement.

In fact, the rules for the range of handlers are equivalent to those of declared
variables.

Two or more handlers cannot be defined for the same error message and within
the same begin-end block. For example, the following two statements in the same
stored procedure are not allowed:

DECLARE CONTINUE HANDLER FOR SQLSTATE '23000'
SET ERROR = '23000';

DECLARE EXIT HANDLER FOR SQLSTATE '23000'
SET ERROR = '24000';

However, the same handler can be defined in a subblock; see the following
example:

CREATE PROCEDURE SMALL_MISTAKE6 ()
BEGIN

DECLARE CONTINUE HANDLER FOR SQLSTATE '23000'
SET @PROCESSED = 100;

BEGIN
DECLARE CONTINUE HANDLER FOR SQLSTATE '23000'

SET @PROCESSED = 200;
INSERT INTO TEAMS VALUES (2,27,'third');

END;
END

730 SQL for MySQL Developers

If the processing of the INSERT statement goes wrong, MySQL checks whether a
relevant DECLARE HANDLER statement appears within that same begin-end block. If
so, it is activated; otherwise, MySQL tries to find a relevant handler in the sur-
rounding begin-end block.

31.11 RETRIEVING DATA WITH A CURSOR

SELECT INTO statements return one row with values only. Because of this, they can
easily be fetched into a stored procedure. Normal SELECT statements, which can
return more than one row, are more complex to deal with. A special concept, called
the cursor, has been added to handle this. Four special SQL statements are required
to work with a cursor: DECLARE CURSOR, OPEN CURSOR, FETCH CURSOR, and CLOSE
CURSOR.

If we declare a cursor with the DECLARE CURSOR statement, we link it to a table
expression. With the special OPEN CURSOR statement, we can instruct MySQL to
process the table expression of the cursor. Next, we can use FETCH CURSOR state-
ments to retrieve the created result row by row into the stored procedure. At a cer-
tain moment, only one row from the result is visible: the current row. It is as if an
arrow points to one row from the result—hence the name cursor. With the FETCH
CURSOR statement, we move this cursor to the next row. When all rows have been
processed, we can remove the result with a CLOSE CURSOR statement.

D E F I N I T I O N
<declare cursor statement> ::=

DECLARE <cursor name> CURSOR FOR <table expression>

<open statement> ::=
OPEN <cursor name>

<fetch statement> ::=
FETCH <cursor name>

INTO <local variable> [, <local variable>]...

<close statement> ::=
CLOSE <cursor name>

731CHAPTER 31 Stored Procedures

We begin with a simple example and explain the cursor in detail.

Example 31.26: Create a stored procedure that counts the number of rows in the
PLAYERS table.

CREATE PROCEDURE NUMBER_OF_PLAYERS
(OUT NUMBER INTEGER)

BEGIN
DECLARE A_PLAYERNO INTEGER;
DECLARE FOUND BOOLEAN DEFAULT TRUE;
DECLARE C_PLAYERS CURSOR FOR

SELECT PLAYERNO FROM PLAYERS;
DECLARE CONTINUE HANDLER FOR NOT FOUND

SET FOUND = FALSE;
SET NUMBER = 0;
OPEN C_PLAYERS;
FETCH C_PLAYERS INTO A_PLAYERNO;
WHILE FOUND DO

SET NUMBER = NUMBER + 1;
FETCH C_PLAYERS INTO A_PLAYERNO;

END WHILE;
CLOSE C_PLAYERS;

END

Explanation: Obviously, we could have solved this problem with a COUNT func-
tion, but we used this solution to illustrate how a cursor works. A cursor is declared
with the DECLARE CURSOR statement. This can be compared somewhat to the declara-
tion of local variables. Informally, the table expression SELECT PLAYERNO FROM

PLAYERS receives the name C_PLAYERS in this example. Through the name of the cur-
sor, we can refer to the table expression in other statements. Note, however, that at
the declaration of the cursor, the table expression is not processed yet.

The name of the cursor must satisfy the same rules that apply to table names; see
Chapter 20, “Creating Tables.” Two different cursors within one stored procedure
may have the same name.

A DECLARE CURSOR statement does nothing itself; it is a typical declaration. Only
by using an OPEN CURSOR statement does a cursor become active and are the result
of the table expression determined. In the previous example, the cursor with the
name C_PLAYERS is opened. The result of the table expression is available after the
OPEN CURSOR statement has been processed. Where MySQL stores the result is not
important to us. Within a program, a cursor may be opened several times. Each
time, the result might contain other rows because other users or the program itself
has updated the tables.

732 SQL for MySQL Developers

After the OPEN CURSOR statement, the result of the table expression is deter-
mined, but it is still unknown to the stored procedure. With the FETCH CURSOR state-
ment, we can look at the rows in the result of the table expression by browsing them
one by one and, if necessary, update them. In other words, the FETCH CURSOR state-
ment fetches the result into the stored procedure. The first FETCH CURSOR statement
that is executed fetches the first row, the second FETCH CURSOR statement the second
row, and so on. The values of the fetched row are assigned to the variables. In this
example, only one variable exists, called A_PLAYERNO. Note, however, that a FETCH
CURSOR statement can be used only after the cursor has been opened (with an OPEN
CURSOR statement).

In the stored procedure, we browse all the rows of the result with a WHILE state-
ment. If the FETCH statement fetches the last row, the variable FOUND becomes equal
to true, and the WHILE statement stops.

The FETCH CURSOR statement has an INTO clause that has the same meaning as
the INTO clause in the SELECT-INTO clause. The number of variables in the INTO
clause in the FETCH CURSOR statement also must be equal to the number of expres-
sions in the SELECT clause of the DECLARE CURSOR statement. A table expression in a
DECLARE CURSOR statement may not contain an INTO clause. The FETCH CURSOR state-
ment takes over this function. Figure 31.3 indicates the position of the cursor after
certain SQL statements.

733CHAPTER 31 Stored Procedures

(a) after the
OPEN statement

(b) after the first
FETCH statement

(c) after the last
FETCH statement

cursor

row 1

row 2

row n

...

...

row 1

row 2

row n

...

...

row 1

row 2

row n

...

...

cursor

cursor

FIGURE 31.3 The position of the cursor after specific SQL statements

The CLOSE CURSOR statement closes a cursor so that the result of the table
expression is no longer available. It is not necessary to fetch rows until the last row
before closing the cursor; you should close a cursor as soon as possible because
keeping the result of the cursor costs computer resources. We recommend that you
close a cursor before it is opened again and before a stored procedure is completed.

Example 31.27: Create a stored procedure that removes all the penalties of the
players who are older than 30 years.

CREATE PROCEDURE DELETE_OLDER_THAN_30()
BEGIN

DECLARE V_AGE, V_PLAYERNO,V_YEARS,
V_MONTHS, V_DAYS INTEGER;

DECLARE V_BIRTH_DATE DATE;
DECLARE FOUND BOOLEAN DEFAULT TRUE;
DECLARE C_PLAYERS CURSOR FOR

SELECT PLAYERNO, BIRTH_DATE
FROM PLAYERS;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET FOUND = FALSE;

OPEN C_PLAYERS;
FETCH C_PLAYERS INTO V_PLAYERNO, V_BIRTH_DATE;
WHILE FOUND DO

CALL AGE (V_BIRTH_DATE, NOW(), V_YEARS,
V_MONTHS, V_DAYS);

IF V_YEARS > 30 THEN
DELETE FROM PENALTIES WHERE PLAYERNO = V_PLAYERNO;

END IF;
FETCH C_PLAYERS INTO V_PLAYERNO, V_BIRTH_DATE;

END WHILE;
CLOSE C_PLAYERS;

END

Explanation: With the cursor C_PLAYERS, we walk through the PLAYERS table. If
the age of a player concerned is greater than 30, we remove that player’s penalties.

Example 31.28: Develop a stored procedure to determine whether a player
belongs to the top three players of the club. In this example, “top three” is defined
as the three players who have won the most total sets.

CREATE PROCEDURE TOP_THREE
(IN P_PLAYERNO INTEGER,
OUT OK BOOLEAN)

BEGIN
DECLARE A_PLAYERNO, BALANCE, SEQNO INTEGER;
DECLARE FOUND BOOLEAN;
DECLARE BALANCE_PLAYERS CURSOR FOR

SELECT PLAYERNO, SUM(WON) - SUM(LOST)
FROM MATCHES
GROUP BY PLAYERNO
ORDER BY 2;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET FOUND = FALSE;

SET SEQNO = 0;
SET FOUND = TRUE;

734 SQL for MySQL Developers

SET OK = FALSE;
OPEN BALANCE_PLAYERS;
FETCH BALANCE_PLAYERS INTO A_PLAYERNO, BALANCE;
WHILE FOUND AND SEQNO < 3 AND OK = FALSE DO

SET SEQNO = SEQNO + 1;
IF A_PLAYERNO = P_PLAYERNO THEN

SET OK = TRUE;
END IF;
FETCH BALANCE_PLAYERS INTO A_PLAYERNO, BALANCE;

END WHILE;
CLOSE BALANCE_PLAYERS;

END

Explanation: The stored procedure uses a cursor to determine for each player the
difference between the total number of sets won and the total number of sets lost
(the balance). These players are ordered by balance: the player with the largest dif-
ference first and the one with the smallest last. With the WHILE statement, we
browse the first three rows of this result. The parameter OK has the value true if the
entered player number is equal to one of the first three players.

SELECT INTO statements and cursors may contain variables. By changing the value
of a variable before opening a cursor, we can get different results.

Example 31.29: Create a stored procedure that counts the number of penalties of
a certain player in the PENALTIES table.

CREATE PROCEDURE NUMBER_PENALTIES
(IN V_PLAYERNO INTEGER,
OUT NUMBER INTEGER)

BEGIN
DECLARE A_PLAYERNO INTEGER;
DECLARE FOUND BOOLEAN DEFAULT TRUE;
DECLARE C_PLAYERS CURSOR FOR

SELECT PLAYERNO
FROM PENALTIES
WHERE PLAYERNO = V_PLAYERNO;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET FOUND = FALSE;

SET NUMBER = 0;
OPEN C_PLAYERS;
FETCH C_PLAYERS INTO A_PLAYERNO;
WHILE FOUND DO

SET NUMBER = NUMBER + 1;
FETCH C_PLAYERS INTO A_PLAYERNO;

END WHILE;
CLOSE C_PLAYERS;

END

735CHAPTER 31 Stored Procedures

Explanation: This stored procedure could have been formulated more simply, of
course, but it shows the use of variables (in this case, V_PLAYERNO) in the table
expressions of cursors. If we change the value of the variable after the OPEN CURSOR
statement, it has no effect on the cursor. The value of the variable is queried only
when the cursor is opened again.

31.12 INCLUDING SELECT STATEMENTS WITHOUT

CURSORS

You may include SELECT statements that return more than one row within a stored
procedure without using cursors. The result of the SELECT statement is sent directly
to the calling program; the stored procedure itself cannot do anything with this
result.

Example 31.30: Create a stored procedure that shows all the rows from the
TEAMS table.

CREATE PROCEDURE ALL_TEAMS()
BEGIN

SELECT * FROM TEAMS;
END

Next, call this stored procedure with a CALL statement:

CALL ALL_TEAMS()

The result is:

TEAMNO PLAYERNO DIVISION
------ -------- --------

1 6 first
2 27 second

It looks as if the CALL statement was a SELECT statement.

When you work this way, it is important that the calling program be capable of
picking up the results of the SELECT statement. Programs such as Navicat, WinSQL,
and mysql can do this and simply show the table.

A stored procedure may contain multiple SELECT statements.

Example 31.31: Create a stored procedure that shows the number of rows from
the TEAMS table and the number of rows from the PENALTIES table.

736 SQL for MySQL Developers

CREATE PROCEDURE NUMBERS_OF_ROWS()
BEGIN

SELECT COUNT(*) FROM TEAMS;
SELECT COUNT(*) FROM PENALTIES;

END

CALL NUMBER_OF_ROWS()

The result is:

COUNT(*)

2

COUNT(*)

8

31.13 STORED PROCEDURES AND USER VARIABLES

Section 5.6 described user variables. In stored procedures, it is possible to refer to
this group of variables. User variables always have a global character. Even though
they are created within a stored procedure, they remain after the stored procedure
has stopped. User variables that were created outside the stored procedure still
maintain their value within the stored procedure.

Example 31.32: Develop a stored procedure that sets the value of the user vari-
able VAR1 to 1.

CREATE PROCEDURE USER_VARIABLE ()
BEGIN

SET @VAR1 = 1;
END

CALL USER_VARIABLE ()

SELECT @VAR1

Explanation: After calling the procedure, VAR1 will have the value 1.

31.14 CHARACTERISTICS OF STORED PROCEDURES

We can specify characteristics of a stored procedure between the parameters and
the body of a stored procedure. Most characteristics tell MySQL something about
the nature of the procedure. If we specify NO SQL, for example, we indicate that the

737CHAPTER 31 Stored Procedures

738 SQL for MySQL Developers

procedure does not contain SQL statements and, therefore, will not access the
database.

D E F I N I T I O N
<create procedure statement> ::=

CREATE [<definer option>]
PROCEDURE <procedure name> ([<parameter list>])
[<routine characteristic>...]
<routine body>

<definer option> ::=
DEFINER = { <user name> | CURRENT_USER }

<routine characteristic> ::=
LANGUAGE SQL |
[NOT] DETERMINISTIC |
{ CONTAINS SQL | NO SQL | READS SQL DATA |
MODIFIES SQL DATA } |

SQL SECURITY { DEFINER | INVOKE } |
COMMENT <alphanumeric literal>

The definer of the procedure is the user who defined the procedure and has
prompted the processing of a CREATE PROCEDURE. Behind the word CREATE, we can
specify another user name with a definer option. This means that this user is seen
as the definer of the procedure.

Example 31.33: Develop a stored procedure that returns pi2. User CHRIS3
should be the definer.

CREATE DEFINER = 'CHRIS3'@'%' PROCEDURE PIPOWER
(OUT VAR1 DECIMAL(10,5))

BEGIN
SET VAR1 = POWER(PI(),2);

END

Instead using of a specific user name, you may specify CURRENT_USER. This is
the same as when the definer option has not been specified.

With LANGUAGE SQL, we indicate that the body of the procedure consists of state-
ments described in this book. The body is not formulated in Java or PHP. In the
future, we will be able to write the stored procedures in other languages in addition
to using SQL.

The characteristic DETERMINISTIC indicates that the result of the procedure for
specific values for the input parameters is always equal. For example, the proce-
dure from Example 31.28 is not deterministic because when the contents of the

queried tables change, the result of the procedure changes, too. If nothing is speci-
fied, MySQL assumes that the procedure is not deterministic.

Example 31.34: Develop a deterministic stored procedure that calculates the
square of the square of a number.

CREATE PROCEDURE POWERPOWER
(IN P1 INTEGER, OUT P2 INTEGER)
DETERMINISTIC

BEGIN
SET P2 = POWER(POWER(P1,2),2);

END

MySQL can use this characteristic to optimize the processing of a procedure.
Imagine that a procedure is called twice in the same transaction with the same
parameters. If we had indicated that the procedure is deterministic, this procedure
would have to be called just once.

The third characteristic says something about the SQL statements used within
the stored procedure. CONTAINS SQL does not need further explanation. NO SQL

implies that the procedure contains only procedural statements. READS SQL DATA
indicates that the procedure only queries data, and MODIFIES SQL DATA indicates
that the procedure also adds, changes, and removes data. MySQL does not check on
this characteristic; it just accepts the following procedure.

Example 31.35: Develop a stored procedure that has NO SQL as a characteristic
but that does contain SQL statements.

CREATE PROCEDURE CLEANUP ()
NO SQL

BEGIN
DELETE FROM PENALTIES;

END

As its name implies, the characteristic SQL SECURITY relates to security. A
stored procedure can contain all kinds of SQL statements with which data can be
queried and changed. Suppose that the stored procedure P1 adds a row to the
PLAYERS table. If P1 is accessed, should the user responsible for the call have the
privilege to add rows to the PLAYERS table? If SQL SECURITY has not been speci-
fied, the caller does not need that specific of privileges. However, the user who cre-
ates the stored procedure must have the right privileges. When a stored procedure
is called and SQL SECURITY INVOKER has been specified, a check is done to see
whether the caller (the invoker) has sufficient privileges himself. Specifying SQL
SECURITY DEFINER is equivalent to not specifying the SQL SECURITY characteristic.

739CHAPTER 31 Stored Procedures

740 SQL for MySQL Developers

The last characteristic is COMMENT. As with tables, we can store comments in the
catalog.

An ALTER PROCEDURE statement can adjust the characteristics later.

D E F I N I T I O N
<alter procedure statement> ::=

ALTER PROCEDURE [<database name> .] <procedure name>
[<routine characteristic>...]

<routine characteristic> ::=
LANGUAGE SQL |
[NOT] DETERMINISTIC |
{ CONTAINS SQL | NO SQL | READS SQL DATA |
MODIFIES SQL DATA } |

SQL SECURITY { DEFINER | INVOKE } |
COMMENT <alphanumeric literal>

31.15 STORED PROCEDURES AND THE CATALOG

We have not defined a catalog view for stored procedures; you must access the cat-
alog of MySQL directly. This catalog table is called ROUTINES.

Example 31.36: Get the columns of the ROUTINES table.

SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = 'INFORMATION_SCHEMA'
AND TABLE_NAME = 'ROUTINES'
ORDER BY ORDINAL_POSITION

The result is:

COLUMN_NAME

SPECIFIC_NAME
ROUTINE_CATALOG
ROUTINE_SCHEMA
ROUTINE_NAME
ROUTINE_TYPE
DTD_IDENTIFIER
ROUTINE_BODY
ROUTINE_DEFINITION
EXTERNAL_NAME
EXTERNAL_LANGUAGE

PARAMETER_STYLE
IS_DETERMINISTIC
SQL_DATA_ACCESS
SQL_PATH
SECURITY_TYPE
CREATED
LAST_ALTERED
SQL_MODE
ROUTINE_COMMENT
DEFINER

A SHOW statement also exists for retrieving information on stored procedures
from the catalog.

Example 31.37: Get the characteristics of the procedure called FIBONACCI.

SHOW PROCEDURE STATUS LIKE 'FIBONACCI'

Example 31.38: Get the CREATE PROCEDURE statement for the procedure called
FIBONACCI.

SHOW CREATE PROCEDURE FIBONACCI

The result is:

PROCEDURE SQL_MODE CREATE PROCEDURE
--------- -------- -------------------------------------
FIBONACCI CREATE PROCEDURE 'tennis'.'FIBONACCI'

(INOUT NUMBER1 INTEGER,
INOUT NUMBER2 INTEGER,
INOUT NUMBER3 INTEGER)

BEGIN
SET NUMBER3 = NUMBER1 + NUMBER2;
IF NUMBER3 > 10000 THEN

SET NUMBER3 = NUMBER3 - 10000;
END IF;
SET NUMBER1 = NUMBER2;
SET NUMBER2 = NUMBER3;

END

31.16 REMOVING STORED PROCEDURES

As with tables, views, and indexes, you can remove stored procedures from the cat-
alog. For this, MySQL supports the DROP PROCEDURE statement.

741CHAPTER 31 Stored Procedures

742 SQL for MySQL Developers

D E F I N I T I O N
<drop procedure statement> ::=

DROP PROCEDURE [IF EXISTS]
[<database name> .] <procedure name>

Example 31.39: Remove the DELETE_PLAYER procedure.

DROP PROCEDURE DELETE_PLAYER

31.17 SECURITY WITH STORED PROCEDURES

Not every SQL user may call a stored procedure; to access tables and views, privi-
leges must be granted with the GRANT statement. A special privilege, called EXECUTE,
handles this. The definition of this form of the GRANT statement looks as follows:

D E F I N I T I O N
<grant statement> ::=

<grant execute privilege statement>

<grant execute privilege statement> ::=
GRANT EXECUTE
ON PROCEDURE <stored procedure name>
TO <grantees>
[WITH <grant option>...]

<grantees> ::=
<user specification> [, <user specification>]...

<user specification> ::=
<user name> [IDENTIFIED BY [PASSWORD] <password>]

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

<grant option> ::=
GRANT OPTION |
MAX_CONNECTIONS_PER_HOUR <whole number> |
MAX_QUERIES_PER_HOUR <whole number> |
MAX_UPDATES_PER_HOUR <whole number> |
MAX_USER_CONNECTIONS <whole number>

Example 31.40: Give John the privilege to call the DELETE_MATCHES procedure.

GRANT EXECUTE
ON PROCEDURE DELETE_MATCHES
TO JOHN

However, John does not need to have a privilege for the SQL statements exe-
cuted within the procedure. With respect to the DELETE_MATCHES procedure, John
does not need an explicit DELETE privilege for the MATCHES table.

The developer who created the procedure does need this privilege. In other
words, if a user creates a stored procedure, he or she must have privileges for all
SQL statements executed within the procedure.

For most products, it also holds that a procedure will not be executed if the
owner of a stored procedure loses several privileges after the procedure has been
created correctly. SQL sends an error message when the procedure is called.

31.18 ADVANTAGES OF STORED PROCEDURES

Several examples have shown the features of stored procedures. This section covers
the advantages of stored procedures, including maintenance, performance, security,
and centralization.

The first advantage, maintenance, has to do with the way applications can be
set up with stored procedures. If a specific set of updates on the database logically
forms a unit, and if this set of updates is used in multiple applications, it is better to
put them in one procedure. Examples include removing all player data (at least five
statements) and calculating the number of ancestors of a player. For this, you sim-
ply activate the procedure in the programs. This improves the productivity, of
course, and prevents a programmer from implementing the set of updates incor-
rectly in his or her program.

The second advantage of stored procedures relates to performance. If an appli-
cation activates a procedure and waits for completion, the amount of communica-
tion between the application and the database server is minimal. This contrasts
with the application sending each SQL statement separately to the database server.
Especially now that more applications access the database server through a net-
work, it is important to minimize the amount of communication and reduce the pos-
sibility that the network will get overloaded. Briefly, stored procedures can
minimize network traffic.

743CHAPTER 31 Stored Procedures

Stored procedures do not depend on a particular host language; they can be
called from different host languages. This means that if multiple languages are used
for development, certain common code does not have to be duplicated (for each lan-
guage). For example, a specific stored procedure can be called from an online Java
application, from a batch application written in C, or from a PHP program operating
in an Internet environment.

744 SQL for MySQL Developers

745

Stored Functions
C H A P T E R 3 2

32.1 INTRODUCTION

Stored functions show a strong resemblance to stored procedures: They are pieces
of code consisting of SQL and procedural statements that are stored in the catalog
and can be called from applications and SQL statements. However, a few differ-
ences exist:

■ A stored function can have input parameters but does not have output
parameters. The stored function itself is the output parameter. The next sec-
tions illustrate this with examples.

■ After stored functions have been created, all kinds of expressions can invoke
them in the same way they invoke the familiar scalar functions. Therefore,
we do not call stored functions using a CALL statement.

■ Stored functions must contain a RETURN statement. This special SQL state-
ment is not allowed in stored procedures.

The definition of the CREATE FUNCTION procedure looks very much like that of
the stored procedure. The definition also starts with a name followed by parameters,
and it ends with a body, but a few small differences exist. Because a stored function
can have only input parameters, you cannot specify IN, OUT, and INOUT. The RETURNS
specification follows the parameters and indicates the data type of the value that the
stored function returns.

746 SQL for MySQL Developers

D E F I N I T I O N
<create function statement> ::=

CREATE FUNCTION <function name>
([<parameter list>])
RETURNS <data type>
<routine body>

<parameter list> ::=
<parameter specification>

[, <parameter specification>]...

<parameter specification> ::= <parameter> <data type>

<routine body> ::= <begin-end block>

<begin-end block> ::=
[<label> :] BEGIN <statement list> END [<label>]

<statement list> ::= { <statement in body> ; }...

<statement in body> ::=
<declarative statement> |
<procedural statement>

<procedural statement> ::=
<begin-end block> |
<call statement> |
<close statement> |
<declare condition statement> |
<declare cursor statement> |
<declare handler statement> |
<declare variable statement> |
<fetch cursor statement> |
<flow control statement> |
<open cursor statement> |
<set statement> |
<return statement>

<return statement> ::= RETURN <scalar expression>

32.2 EXAMPLES OF STORED FUNCTIONS

We begin with several examples.

Example 32.1: Create a stored function that returns the American dollar value of
the penalty amounts. After that, for each penalty with a number less than 4, get the
payment number and euro and dollar value of each penalty amount.

CREATE FUNCTION DOLLARS(AMOUNT DECIMAL(7,2))
RETURNS DECIMAL(7,2)

BEGIN
RETURN AMOUNT * (1 / 0.8);

END

SELECT PAYMENTNO, AMOUNT, DOLLARS(AMOUNT)
FROM PENALTIES
WHERE PAYMENTNO <= 3

The result is:

PAYMENTNO AMOUNT DOLLARS(AMOUNT)
--------- ------ ---------------

1 100.00 125.00
2 75.00 93.75
3 100.00 125.00

Explanation: The fact that the result of the stored function has a decimal data
type is specified after RETURNS. With the special RETURN statement, we give the
stored function a value. Each stored function must contain at least one RETURN
statement.

You can see that this new stored function can be called as if it is a scalar function
supplied by MySQL. No visible difference exists between calling a scalar function,
such as SUBSTR and COS, and calling a stored function.

Example 32.2: Create a stored function that returns the number of players in the
PLAYERS table as a result. After that, call this stored function.

CREATE FUNCTION NUMBER_OF_PLAYERS()
RETURNS INTEGER

BEGIN
RETURN (SELECT COUNT(*) FROM PLAYERS);

END

SELECT NUMBER_OF_PLAYERS()

Explanation: This example shows first that SQL statements are allowed within
stored functions and, second, that the RETURN statement may contain complex com-
pound expressions.

747CHAPTER 32 Stored Functions

Example 32.3: Create two stored functions that determine, respectively, the
number of penalties and the number of matches of a certain player. After that, get
the numbers, names, and initials of those players whose number of penalties is
greater than the number of matches.

CREATE FUNCTION NUMBER_OF_PENALTIES
(P_PLAYERNO INTEGER)
RETURNS INTEGER

BEGIN
RETURN (SELECT COUNT(*)

FROM PENALTIES
WHERE PLAYERNO = P_PLAYERNO);

END

CREATE FUNCTION NUMBER_OF_MATCHES
(P_PLAYERNO INTEGER)
RETURNS INTEGER

BEGIN
RETURN (SELECT COUNT(*)

FROM MATCHES
WHERE PLAYERNO = P_PLAYERNO);

END

SELECT PLAYERNO, NAME, INITIALS
FROM PLAYERS
WHERE NUMBER_OF_PENALTIES(PLAYERNO) >

NUMBER_OF_MATCHES(PLAYERNO)

The result is:

PLAYERNO NAME INITIALS
-------- ------- --------

27 Collins DD
44 Baker E

Example 32.4: Create a stored function that makes the SELECT statement in
Example 23.12 easier to read. The statement is:

SELECT TEAMNO, DIVISION
FROM TEAMS_NEW
WHERE DIVISION & POWER(2,3-1) = POWER(2,3-1)

748 SQL for MySQL Developers

We create the following stored function:

CREATE FUNCTION POSITION_IN_SET
(P_COLUMN BIGINT, POSITION SMALLINT)
RETURNS BOOLEAN

BEGIN
RETURN (P_COLUMN & POWER(2, POSITION-1) =

POWER(2,POSITION-1));
END

The SELECT statement then looks as follows:

SELECT TEAMNO, DIVISION
FROM TEAMS_NEW
WHERE POSITION_IN_SET(DIVISION, 3)

Example 32.5: Create a stored function that calculates the number of days
between two dates, using the same arithmetic method as in Example 31.10.

CREATE FUNCTION NUMBER_OF_DAYS
(START_DATE DATE,
END_DATE DATE)
RETURNS INTEGER

BEGIN
DECLARE DAYS INTEGER;
DECLARE NEXT_DATE, PREVIOUS_DATE DATE;
SET DAYS = 0;
SET NEXT_DATE = START_DATE + INTERVAL 1 DAY;
WHILE NEXT_DATE <= END_DATE DO

SET DAYS = DAYS + 1;
SET PREVIOUS_DATE = NEXT_DATE;
SET NEXT_DATE = NEXT_DATE + INTERVAL 1 DAY;

END WHILE;
RETURN DAYS;

END

Explanation: All statements, such as DECLARE, SET, and WHILE, may be used.

Example 32.6: Create a stored function for removing a player, with the same
functionality as the stored procedure in Example 31.19. Imagine that the rule
applies that a player can be removed only if he or she has not incurred a penalty
and if he or she is not a captain. We also assume that no foreign keys have been
defined.

749CHAPTER 32 Stored Functions

CREATE FUNCTION DELETE_PLAYER
(P_PLAYERNO INTEGER)
RETURNS BOOLEAN

BEGIN
DECLARE NUMBER_OF_PENALTIES INTEGER;
DECLARE NUMBER_OF_TEAMS INTEGER;
DECLARE EXIT HANDLER FOR SQLWARNING RETURN FALSE;
DECLARE EXIT HANDLER FOR SQLEXCEPTION RETURN FALSE;

SELECT COUNT(*)
INTO NUMBER_OF_PENALTIES
FROM PENALTIES
WHERE PLAYERNO = P_PLAYERNO;

SELECT COUNT(*)
INTO NUMBER_OF_TEAMS
FROM TEAMS
WHERE PLAYERNO = P_PLAYERNO;

IF NUMBER_OF_PENALTIES = 0 AND NUMBER_OF_TEAMS = 0 THEN
DELETE FROM MATCHES
WHERE PLAYERNO = P_PLAYERNO;
DELETE FROM PLAYERS
WHERE PLAYERNO = P_PLAYERNO;

END IF;
RETURN TRUE;

END

Explanation: If the stored function is processed correctly, this function returns 0
as result; otherwise, the value is 1.

Example 32.7: Create a stored function that does not do anything but call the
stored procedure NUMBER_OF_PLAYERS that we created in Example 31.26.

CREATE FUNCTION GET_NUMBER_OF_PLAYERS()
RETURNS INTEGER

BEGIN
DECLARE NUMBER INTEGER;
CALL NUMBER_OF_PLAYERS(NUMBER);
RETURN NUMBER;

END

Explanation: Stored functions and stored procedures cannot have identical
names. Therefore, the name of the function has been changed somewhat. The exam-
ple proofs that stored procedures can be called from stored functions.

750 SQL for MySQL Developers

Example 32.8: Create a stored function that determines whether two periods
overlap in time.

CREATE FUNCTION OVERLAP_BETWEEN_PERIODS
(PERIOD1_START DATETIME,
PERIOD1_END DATETIME,
PERIOD2_START DATETIME,
PERIOD2_END DATETIME)
RETURNS BOOLEAN

BEGIN
DECLARE TEMPORARY_DATE DATETIME;
IF PERIOD1_START > PERIOD1_END THEN

SET TEMPORARY_DATE = PERIOD1_START;
SET PERIOD1_START = PERIOD1_END;
SET PERIOD1_END = TEMPORARY_DATE;

END IF;
IF PERIOD2_START > PERIOD2_END THEN

SET TEMPORARY_DATE = PERIOD2_START;
SET PERIOD2_START = PERIOD2_END;
SET PERIOD2_END = TEMPORARY_DATE;

END IF;
RETURN NOT(PERIOD1_END < PERIOD2_START OR

PERIOD2_END < PERIOD1_START);
END

Explanation: The stored function has four parameters. The first two represent the
begin date and end date of the first period, and the next two represent the begin
date and end date of the second parameter. The value of this stored function is true
(1) or false (0). The first IF statement determines whether the start date of the
first period is older than the begin date. If not, the values of these two variables are
switched. With the second IF statement, we do the same thing for the start and end
dates of the second period. Next, we determine whether the two functions overlap.
They do not overlap when the first period ends before the second period begins or
when the second period ends before the first begins.

You can use this stored function to formulate certain queries more elegantly; see
following the example.

Example 32.9: Get the data of those players who were committee members in the
period of June 30, 1991, until June 30, 1992.

SELECT *
FROM COMMITTEE_MEMBERS
WHERE OVERLAP_BETWEEN_PERIODS(BEGIN_DATE,END_DATE,

'1991-06-30','1992-06-30')
ORDER BY 1, 2

751CHAPTER 32 Stored Functions

The result is:

PLAYERNO BEGIN_DATE END_DATE FUNCTION
-------- ---------- ---------- ---------

2 1990-01-01 1992-12-31 Chairman
6 1991-01-01 1992-12-31 Member
6 1992-01-01 1993-12-31 Treasurer
8 1991-01-01 1991-12-31 Secretary
27 1991-01-01 1991-12-31 Treasurer
57 1992-01-01 1992-12-31 Secretary
112 1992-01-01 1992-12-31 Member

32.3 MORE ON STORED FUNCTIONS

As mentioned, stored functions and stored procedures have much in common. The
stored functions are also stored in the ROUTINES catalog table. You can retrieve
information about them with SELECT and SHOW statements.

For a stored function, you can specify a definer and the same set of characteris-
tics as for a stored procedure. Refer to Section 31.14 for a detailed description of
the definer option and the characteristics. The ALTER FUNCTION statement can
change those characteristics.

D E F I N I T I O N
<create function statement> ::=

CREATE [<definer option>]
FUNCTION [<database name> .] <function name>
([<parameter list>])
RETURNS <data type>
[<routine characteristic>...]
<routine body>

<definer option> ::=
DEFINER = { <user name> | CURRENT_USER }

<alter function statement> ::=
ALTER FUNCTION [<database name> .] <function name>

[<routine characteristic>...]

<routine characteristic> ::=
LANGUAGE SQL |
[NOT] DETERMINISTIC |
{ CONTAINS SQL | NO SQL | READS SQL DATA |
MODIFIES SQL DATA } |

SQL SECURITY { DEFINER | INVOKE } |
COMMENT <alphanumeric literal>

752 SQL for MySQL Developers

To be able to call stored functions, you must assign privileges with GRANT
statements.

D E F I N I T I O N
<grant statement> ::=

<grant execute privilege statement>

<grant execute privilege statement> ::=
GRANT EXECUTE
ON FUNCTION <stored procedure name>
TO <grantees>
[WITH <grant option>...]

<grantees> ::=
<user specification> [, <user specification>]...

<user specification> ::=
<user name> [IDENTIFIED BY [PASSWORD] <password>]

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

<grant option> ::=
GRANT OPTION |
MAX_CONNECTIONS_PER_HOUR <whole number> |
MAX_QUERIES_PER_HOUR <whole number> |
MAX_UPDATES_PER_HOUR <whole number> |
MAX_USER_CONNECTIONS <whole number>

32.4 REMOVING STORED FUNCTIONS

A DROP statement also exists for the stored function.

D E F I N I T I O N
<drop function statement> ::=

DROP FUNCTION [IF EXISTS]
[<database name> .] <function name>

Example 32.10: Remove the PLACE_IN_SET stored function.

DROP FUNCTION PLACE_IN_SET

753CHAPTER 32 Stored Functions

This page intentionally left blank This page intentionally left blank

755

Triggers
C H A P T E R 3 3

33.1 INTRODUCTION

A database server is passive by nature. It performs an action only if we explicitly
ask for it with, for example, an SQL statement. This chapter describes the database
concept that turns a passive database server into an active one. This concept is
called a trigger. As with stored procedures, we start by giving a definition:

A trigger is a piece of code consisting of procedural and declarative state-
ments stored in the catalog and activated by the database server if a spe-
cific operation is executed on the database—and only then when a certain
condition holds.

A trigger shows many similarities to a stored procedure. First, the trigger is also
a procedural database object stored in the catalog. Second, the code itself consists
of declarative and procedural SQL statements. Therefore, UPDATE, SELECT, CREATE,
IF-THEN-ELSE, and WHILE-DO statements can occur within a trigger.

However, one important difference exists between the two concepts. The way in
which triggers are called deviates from that of stored procedures. Triggers cannot be
called explicitly either from a program or from a stored procedure. No CALL or
EXECUTE TRIGGER statement or similar statement is available. MySQL itself calls
triggers transparently, without the programs or users being aware of it.

But how and when are triggers called? MySQL calls a trigger when a program,
interactive user, or stored procedure executes a specific database operation, such
as adding a new row to a table or removing all rows. So MySQL executes triggers
automatically, and it is impossible to either activate triggers or switch them off from
a program.

Note that this book describes Version 5.0.7 of MySQL. Triggers were already
supported, but still in a limited way. Therefore, some of the statements in this book
will not work yet. During the writing of the book, we found that the possibilities of
triggers in Version 5.0.10 had already improved. This will surely continue to
improve in later versions.

33.2 AN EXAMPLE OF A TRIGGER

Most examples in this section and the next section use a new table in the database
of the tennis club: the CHANGES table. Imagine that this table records which users
have updated the PLAYERS table and at what moment.

Example 33.1: Create the CHANGES table.

CREATE TABLE CHANGES
(USER CHAR(30) NOT NULL,
CHA_TIME TIMESTAMP NOT NULL,
CHA_PLAYERNO SMALLINT NOT NULL,
CHA_TYPE CHAR(1) NOT NULL,
CHA_PLAYERNO_NEW INTEGER,
PRIMARY KEY (USER, CHA_TIME,

CHA_PLAYERNO, CHA_TYPE))

Explanation: The meaning of the first two columns is obvious. The third column,
CHA_PLAYERNO, records the player number of the player who was added or
removed, or whose column value was changed. If the player number of a player is
changed, the new player number is recorded in the CHA_PLAYERNO_NEW
column. Therefore, this column is used only when the player number is updated;
otherwise, a null value is stored. The CHA_TYPE column stores the type of change:
I(nsert), U(pdate), or D(elete). The columns USER, CHA_TIME, CHA_PLAYERNO,
and CHA_TYPE form the primary key of this table. In other words, if a user executes
two changes of the same type on the same player at the same moment, this needs to
be recorded only once.

The definition of the CREATE TRIGGER statement follows. Triggers consist of three
main elements: the trigger moment, the trigger event, and the trigger action. These
elements appear clearly in the definition. For a description of the concept of state-
ment, refer to Section 31.4.

756 SQL for MySQL Developers

D E F I N I T I O N
<create trigger statement> ::=

CREATE [<definer option>]
TRIGGER <trigger name>
<trigger moment>
<trigger event>
<trigger action>

<definer option> ::=
DEFINER = { <user name> | CURRENT_USER }

<trigger moment> ::= BEFORE | AFTER

<trigger event> ::=
{ INSERT | DELETE | UPDATE }
ON <table specification> FOR EACH ROW

<trigger action> ::= <statement>

We begin with a simple example that uses a minimal set of specifications.

Example 33.2: Create the trigger that updates the CHANGES table automati-
cally as new rows are added to the PLAYERS table.

CREATE TRIGGER INSERT_PLAYERS
AFTER
INSERT ON PLAYERS FOR EACH ROW
BEGIN

INSERT INTO CHANGES
(USER, CHA_TIME, CHA_PLAYERNO,
CHA_TYPE, CHA_PLAYERNO_NEW)

VALUES (USER, CURDATE(), NEW.PLAYERNO, 'I', NULL);
END

Explanation: As with every SQL statement for creating a database object, the
statement begins by assigning a name to the trigger: INSERT_PLAYER. All the other
specifications follow.

The second line contains the trigger moment (AFTER). This element specifies when
the trigger must be started. In this case it happens after the INSERT statement on the
PLAYERS table has been processed.

The third line contains the trigger event. This element specifies the operations
for which the trigger must be activated—in this case, at an INSERT statement on the

757CHAPTER 33 Triggers

PLAYERS table. Sometimes this is called the triggering statement, and the
PLAYERS table is called the triggering table. If the triggering statement has
occurred, the body of the trigger, or the trigger action, must be executed. The trig-
ger action usually consists of a number of statements that are executed. We focus on
the trigger action in more detail shortly.

The word AFTER as a trigger moment is important. If we use a SELECT statement
in the trigger action to query the number of rows of the PLAYERS table, the row
added is actually counted. This is because the trigger action starts after the trigger-
ing statement has been processed. If we had specified BEFORE, the row would not
have been included because the trigger action would have been executed first.
AFTER is usually used if we want to execute several more changes after the trigger-
ing statement and BEFORE if we want to verify whether the new data satisfies the con-
straints applied.

The trigger event contains the specification FOR EACH ROW. This is used to spec-
ify that, for each individual row inserted into the PLAYERS table, the trigger action
must be activated. So if we add a set of rows to the PLAYERS table with one INSERT
SELECT statement in one operation, the trigger still is executed for each row (see
Section 17.3 for a description of this statement). The counterpart of FOR EACH ROW is
FOR EACH STATEMENT. However, MySQL does not support this option yet. If we had
been able to specify this, the trigger would have been activated only once for each
triggering statement. This means that if we inserted a thousand rows with one
INSERT SELECT statement, the trigger would still be executed only once. Alterna-
tively, if we remove a million rows with one DELETE statement, and if the triggering
statement is a DELETE, the trigger is still executed only once if FOR EACH STATEMENT
is specified.

A trigger action can be as simple or as complex as the body of a stored proce-
dure. The trigger action in our example is very simple because it consists of only
one INSERT statement. This additional INSERT statement inserts one row into the
CHANGES table that consists of four values: the value of the system variable USER,
the system date and time, the player number of the new player, and the literal 'I' to
indicate that it is an INSERT.

NEW is specified in front of the column name PLAYERNO. This is an important
specification. If a row is inserted, it looks as if there is a table called NEW. The col-
umn names of this NEW table are equal to those of the triggering table (those in
which the new row appears). As a result of specifying NEW in front of PLAYERNO,
the player number that is added to the PLAYERS table is used. Its use will be obvi-
ous when we change rows in the PLAYERS table.

Triggers may also call stored procedures. Therefore, we can divide the previous
CREATE TRIGGER statement into two parts. First, we create a stored procedure:

758 SQL for MySQL Developers

CREATE PROCEDURE INSERT_CHANGE
(IN CPNO INTEGER,
IN CTYPE CHAR(1),
IN CPNO_NEW INTEGER)

BEGIN
INSERT INTO CHANGES (USER, CHA_TIME, CHA_PLAYERNO,

CHA_TYPE, CHA_PLAYERNO_NEW)
VALUES (USER, CURDATE(), CPNO, CTYPE, CPNO_NEW);

END

Next, we create the trigger:

CREATE TRIGGER INSERT_PLAYER
AFTER INSERT ON PLAYERS FOR EACH ROW
BEGIN

CALL INSERT_CHANGE(NEW.PLAYERNO, 'I', NULL);
END

Two triggers cannot have the same trigger moment and the same trigger event
for one table. We cannot define two BEFORE DELETE or two AFTER INSERT triggers on
a table. Thus, if we want to invoke two pieces of code for a specific table, we must
combine those pieces of code into one trigger.

For each trigger, a definer option can be defined, as for a stored procedure. If a
user name is specified, this user becomes the owner of the trigger.

33.3 MORE COMPLEX EXAMPLES

The previous section contained one example of a trigger. This section gives some
other examples.

Example 33.3: Create the trigger that updates the CHANGES table automatically
when rows from the PLAYERS table are removed.

CREATE TRIGGER DELETE_PLAYER
AFTER DELETE ON PLAYERS FOR EACH ROW
BEGIN

CALL INSERT_CHANGE (OLD.PLAYERNO, 'D', NULL);
END

Explanation: This trigger is almost the same as the one in Example 33.2. How-
ever, two differences exist. In the first place, the triggering statement is, of course,
a DELETE. Second—and this is an important difference—the keyword OLD is now
specified instead of NEW. After we remove a row, a table called OLD exists with col-
umn names that are equal to those of the triggering table, in which the removed row
occurs.

759CHAPTER 33 Triggers

When you update rows, the NEW and the OLD tables both exist. The row with the
old values appears in the OLD table, and the new row appears in the NEW table.

Example 33.4: Create the trigger that updates the CHANGES table automatically
when rows in the PLAYERS table change.

CREATE TRIGGER UPDATE_PLAYER
AFTER UPDATE ON PLAYERS FOR EACH ROW
BEGIN

CALL INSERT_CHANGES
(NEW.PLAYERNO, 'U', OLD.PLAYERNO);

END

After the UPDATE specification, you can specify which update of which columns
the trigger must be activated for.

These examples demonstrate one of the advantages of stored procedures: Code
that has already been developed can be reused. This is an advantage in terms of
both productivity and maintenance.

Triggers can also be used efficiently to record redundant data.

For the following example, we use a new table called PLAYERS_MAT that
stores the player number and the number of matches for each player.

Example 33.5: Create the PLAYERS_MAT table and fill it with relevant data
from the PLAYERS and MATCHES tables.

CREATE TABLE PLAYERS_MAT
(PLAYERNO INTEGER NOT NULL PRIMARY KEY,
NUMBER_OF_MATCHES INTEGER NOT NULL)

INSERT INTO PLAYERS_MAT (PLAYERNO, NUMBER_OF_MATCHES)
SELECT PLAYERNO,

(SELECT COUNT(*)
FROM MATCHES AS M
WHERE P.PLAYERNO = M.PLAYERNO)

FROM PLAYERS AS P

Example 33.6: Create a trigger on the PLAYERS table that ensures that if a new
player is added, he or she is also added to the PLAYERS_MAT table.

CREATE TRIGGER INSERT_PLAYERS
AFTER INSERT ON PLAYERS FOR EACH ROW
BEGIN

INSERT INTO PLAYERS_MAT
VALUES(NEW.PLAYERNO, 0);

END

760 SQL for MySQL Developers

Explanation: A new player cannot have matches yet, which is why the number is
set to 0.

Example 33.7: Create a trigger on the PLAYERS table that ensures that if a new
player is removed, he or she is also removed from the PLAYERS_MAT table.

CREATE TRIGGER DELETE_PLAYERS
AFTER DELETE ON PLAYERS FOR EACH ROW
BEGIN

DELETE FROM PLAYERS_MAT
WHERE PLAYERNO = OLD.PLAYERNO;

END

Explanation: This can also be done with a foreign key.

Example 33.8: Create a trigger on the MATCHES table that ensures that if a new
match is added for a player, this information is also passed on to the
PLAYERS_MAT table.

CREATE TRIGGER INSERT_MATCHES
AFTER INSERT ON MATCHES FOR EACH ROW
BEGIN

UPDATE PLAYERS_MAT
SET NUMBER_OF_MATCHES = NUMBER_OF_MATCHES + 1
WHERE PLAYERNO = NEW.PLAYERNO;

END

Example 33.9: Create a trigger on the MATCHES table that ensures that if an
existing match for a player is removed, this information is also passed on to the
PLAYERS_MAT table.

CREATE TRIGGER DELETE_MATCHES
AFTER DELETE ON MATCHES FOR EACH ROW
BEGIN

UPDATE PLAYERS_MAT
SET NUMBER_OF_MATCHES = NUMBER_OF_MATCHES - 1
WHERE PLAYERNO = OLD.PLAYERNO;

END

Several other triggers are needed, but these examples give an idea of what is
required. The main advantage of all these triggers is that no program has to worry
about updating the PLAYERS_MAT table. As long as the triggers exist, the con-
tents of this table are equal to the contents of the PLAYERS and MATCHES tables.

761CHAPTER 33 Triggers

Example 33.10: Imagine that the PLAYERS table contains a column called
SUM_PENALTIES. This column contains, for each player, the sum of his or her
penalties. Now we want to create triggers that automatically record the values in
this column. For this, we must create two triggers.

CREATE TRIGGER SUM_PENALTIES_INSERT
AFTER INSERT ON PENALTIES FOR EACH ROW
BEGIN

DECLARE TOTAL DECIMAL(8,2);

SELECT SUM(AMOUNT)
INTO TOTAL
FROM PENALTIES
WHERE PLAYERNO = NEW.PLAYERNO;

UPDATE PLAYERS
SET SUM_PENALTIES = TOTAL
WHERE PLAYERNO = NEW.PLAYERNO

END

CREATE TRIGGER SUM_PENALTIES_DELETE
AFTER DELETE, UPDATE ON PENALTIES FOR EACH ROW
BEGIN

DECLARE TOTAL DECIMAL(8,2);

SELECT SUM(AMOUNT)
INTO TOTAL
FROM PENALTIES
WHERE PLAYERNO = OLD.PLAYERNO;

UPDATE PLAYERS
SET SUM_PENALTIES = TOTAL
WHERE PLAYERNO = OLD.PLAYERNO

END

Explanation: The first trigger is activated when a new penalty is added; the second
is activated when a penalty is deleted or when a penalty amount changes. If a player
is added, the new sum of the penalty amounts of that new player (NEW.PLAYERNO) is
determined. Next, an UPDATE statement updates the PLAYERS table. We use the
local variable TOTAL.

Of course, we also can combine the UPDATE and SELECT statements. Then the trigger
action consists of only one statement:

UPDATE PLAYERS
SET SUM_PENALTIES = (SELECT SUM(AMOUNT)

FROM PENALTIES
WHERE PLAYERNO = NEW.PLAYERNO)

WHERE PLAYERNO = NEW.PLAYERNO

762 SQL for MySQL Developers

The structure of the second trigger equals that of the first. The only difference
is that we must specify OLD.PLAYERNO now.

Exercise 33.1: What is the most important difference between a stored proce-
dure and a trigger?

Exercise 33.2: Create a trigger guaranteeing that at any time only one treasurer,
one secretary, and one chairman exist.

Exercise 33.3: Create a trigger guaranteeing that the sum of all penalties of one
player is not greater than $250.

Exercise 33.4: Imagine that the TEAMS table contains a column called
NUMBER_OF_MATCHES. For each team, this column contains the number of
matches played by that team. Create the trigger(s) required to update the values in
this column automatically.

33.4 TRIGGERS AS INTEGRITY CONSTRAINTS

Triggers can be used for many purposes, including updating redundant data and
securing the integrity of the data. Chapter 21, “Specifying Integrity Constraints,”
discussed integrity constraints and their possibilities. With triggers, a wide range of
integrity constraints can be specified. To give more examples of triggers, we show
how specific integrity constraints can be written as triggers.

All check integrity constraints (see Section 21.6) are easy to implement with
triggers.

Example 33.11: Make sure that a player’s year of birth is at least smaller than
the year he or she joined the club (this integrity constraint is in line with Example
21.15).

CREATE TRIGGER BORN_VS_JOINED
BEFORE INSERT, UPDATE ON PLAYERS FOR EACH ROW
BEGIN

IF YEAR(NEW.BIRTH_DATE) >= NEW.JOINED) THEN
ROLLBACK WORK;

END IF;
END

Explanation: The trigger is simple and needs to be activated only for INSERT and
UPDATE statements, not for DELETE statements. If the new data is incorrect, the
running transaction is rolled back.

763CHAPTER 33 Triggers

Example 33.12: The PENALTIES.PLAYERNO column is a foreign key pointing
to PLAYERS.PLAYERNO; redefine this foreign key as a trigger.

We need two triggers, one for changes in the PENALTIES table and one for
changes in the PLAYERS table.

CREATE TRIGGER FOREIGN_KEY1
BEFORE INSERT, UPDATE ON PENALTIES FOR EACH ROW
BEGIN

IF (SELECT COUNT(*) FROM PLAYERS
WHERE PLAYERNO = NEW.PLAYERNO) = 0 THEN
ROLLBACK WORK;

END IF;
END

Explanation: With the SELECT statement, we determine whether the player num-
ber of the newly inserted or updated player appears in the PLAYERS table. If not,
the variable NUMBER has a value greater than 0 and the transaction is rolled back.

The trigger on the PLAYERS table with MySQL follows:

CREATE TRIGGER FOREIGN_KEY2
BEFORE DELETE, UPDATE ON PLAYERS FOR EACH ROW
BEGIN

DELETE
FROM PENALTIES
WHERE PLAYERNO = OLD.PLAYERNO;

END

Explanation: The method chosen corresponds to the triggers, ON DELETE CASCADE
and ON UPDATE CASCADE. If the player number is removed from the PLAYERS table,
the related penalties are fully removed.

Of course, it is not the intention for you to implement all the integrity constraints with
triggers. Indeed, doing so would not help performance. The rule is that if you can
implement the integrity constraint with a CHECK or FOREIGN KEY, you should do so.

So why do we keep talking about implementing integrity constraints with trig-
gers? This is because the functionality of triggers goes further than what is possible
with the integrity constraints discussed in Chapter 21. For example, it is not possi-
ble to use one of the keys or the check integrity constraint to specify that if the
penalty amounts are changed, the new amount should always be greater than the
last one. Triggers, however, can do this.

764 SQL for MySQL Developers

33.5 REMOVING TRIGGERS

As with any other database object, a DROP statement can remove triggers from the
catalog.

D E F I N I T I O N
<drop trigger statement> ::=

DROP TRIGGER [<table name> .] <trigger name>

Example 33.13: Remove the BORN_VS_JOINED trigger.

DROP TRIGGER BORN_VS_JOINED

Removing triggers has no further influence, except that the trigger will no
longer be activated.

The first versions of MySQL supported specifying a table name in front of the
trigger name. From Version 5.10, it is possible to specify the database name (no
longer the table name).

33.6 TRIGGERS AND THE CATALOG

In the INFORMATION_SCHEMA catalog, data on triggers is stored in the
TRIGGERS table.

33.7 ANSWERS

33.1 The most important difference between a stored procedure and a trigger is
that programs and other stored procedures cannot call triggers directly.

33.2 CREATE TRIGGER MAX1
AFTER INSERT, UPDATE(POSITION) OF COMMITTEE_MEMBERS

FOR EACH ROW
BEGIN

SELECT COUNT(*)
INTO NUMBER_MEMBERS
FROM COMMITTEE_MEMBERS
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM COMMITTEE_MEMBERS
WHERE CURRENT DATE BETWEEN

BEGIN_DATE AND END_DATE
GROUP BY POSITION
HAVING COUNT(*) > 1)

765CHAPTER 33 Triggers

IF NUMBER_MEMBERS > 0 THEN
ROLLBACK WORK;

ENDIF;
END

33.3 CREATE TRIGGER SUM_PENALTIES_250
AFTER INSERT, UPDATE(AMOUNT) OF PENALTIES

FOR EACH ROW
BEGIN

SELECT COUNT(*)
INTO NUMBER_PENALTIES
FROM PENALTIES
WHERE PLAYERNO IN

(SELECT PLAYERNO
FROM PENALTIES
GROUP BY PLAYERNO
HAVING SUM(AMOUNT) > 250);

IF NUMBER_PENALTIES > 0 THEN
ROLLBACK WORK;

ENDIF;
END

33.4 CREATE TRIGGER NUMBER_MATCHES_INSERT
AFTER INSERT OF MATCHES FOR EACH ROW
BEGIN

UPDATE TEAMS
SET NUMBER_MATCHES =

(SELECT COUNT(*)
FROM MATCHES
WHERE PLAYERNO = NEW.PLAYERNO)

WHERE PLAYERNO = NEW.PLAYERNO
END

CREATE TRIGGER NUMBER_MATCHES_DELETE
AFTER DELETE, UPDATE OF MATCHES FOR EACH ROW
BEGIN

UPDATE TEAMS
SET NUMBER_MATCHES =

(SELECT COUNT(*)
FROM MATCHES
WHERE PLAYERNO = OLD.PLAYERNO)

WHERE PLAYERNO = OLD.PLAYERNO
END

766 SQL for MySQL Developers

767

Events
C H A P T E R 3 4

34.1 WHAT IS AN EVENT?
The MySQL database server never executes actions on the database by itself or exe-
cutes a SELECT or UPDATE statement suddenly. Applications ask MySQL to execute
an SQL statement or to start a stored procedure. Triggers are also started indirectly
by an application; MySQL does not start the trigger on its own.

When using events, MySQL appears to directly access the database without the
request of an application. Events are procedural database objects that MySQL
invokes at the appropriate time. An event can be invoked only once—for example,
on January 6, 2010, at 2 p.m. An event can also be started periodically—for exam-
ple, every Sunday at 4 a.m. When events are scheduled, MySQL keeps a schedule
that tells when events must be started.

Events resemble triggers—both start if something happens. Triggers start when a
statement is fired on the database, and events start according to the scheduled time.
Because they resemble each other, events are sometimes called temporal triggers.

For what purposes can we use events? Several application areas exist:

■ Events can close accounts. At the end of each month or each year, for exam-
ple, many accounting departments need to close their accounts. You could use
an event to do this.

■ Events can turn database indicators on or off. For example, consider an air-
line company. When a flight has departed, no more reservations can be made
for that flight. The column CLOSED in the FLIGHTS table must be set to
YES. You could schedule an event to automatically start 20 minutes after the
flight’s planned departure time to complete this task.

■ Data in data warehouses is refreshed at certain intervals; for example, every
Sunday or at the end of each day, data is copied from one table to another.

This periodic updating of the data warehouse tables could be done with the
help of events.

■ Applications do not always perform complex checks of incoming data. You could
schedule these checks—for example, at the end of a day or on the weekend.

768 SQL for MySQL Developers

N O T E
Events have been added to MySQL in version 5.1.6. This chapter describes
the features available in this version. If you are using a different version,
these features might deviate.

34.2 CREATING EVENTS

A CREATE EVENT statement creates a new event. Each event consists of two main
components. The first is the event schedule that indicates when and how often the
event must be started and with which frequency. The second component is the event
action. This is the code that is executed when the event is started. The event action
consists of one SQL statement. This can be a simple SQL statement, such as an
INSERT or UPDATE statement. It can also be the call of a stored procedure or a begin-
end block—both of these allow us to execute multiple SQL statements.

In addition, with a CREATE EVENT statement you can assign certain properties to
an event. We return to this topic in Section 34.3.

D E F I N I T I O N
<create event statement> ::=

CREATE EVENT [IF NOT EXISTS]
[<database name> .] <event name>
ON SCHEDULE <event schedule>
[ON COMPLETION [NOT] PRESERVE]
[ENABLE | DISABLE]
[COMMENT <alphanumeric literal>]
DO <event action>

<event schedule> ::=
<single schedule> | <recurring schedule>

<single schedule> ::=
AT <timestamp expression>

<periodical schedule> ::=
EVERY <number> <time unit>
[STARTS <timestamp literal>]
[ENDS <timestamp literal>]

<event action> ::=
<declarative sql statement> |
<begin-end block>

An event can be active (enabled) or inactive (disabled). Active means that the
scheduler checks whether the event action must be invoked. Inactive means that
the specifications of the event are stored in the catalog, but the scheduler does not
check whether it should be invoked. Immediately after an event is created, it
becomes active.

An active event can be executed one or more times. Execution of an event is
called invoking the event. Each time an event is invoked, MySQL processes the
event action.

The MySQL event scheduler is responsible for invoking the events. This module
is part of the MySQL database server. This scheduler continuously monitors
whether an event needs to be invoked. The scheduler must be turned on to create
events. For this, we use the system variable EVENT_SCHEDULER, which is turned on
with the following statement:

SET GLOBAL EVENT_SCHEDULER = TRUE

It is turned off like this:

SET GLOBAL EVENT_SCHEDULER = FALSE

When the MySQL database server starts up, the scheduler can also be turned
on immediately:

mysqld ... -event_scheduler=1

To illustrate when an event is invoked, we use an additional table in the follow-
ing examples. In this table, the different events write rows to the event action.

Example 34.1: Create the EVENTS_INVOKED table to register the name and
timestamp of each event invocation.

CREATE TABLE EVENTS_INVOKED
(EVENT_NAME VARCHAR(20) NOT NULL,
EVENT_STARTED TIMESTAMP NOT NULL)

We begin with examples of events that have a single schedule—events that are
invoked only once.

Example 34.2: Create an event that starts immediately.

CREATE EVENT DIRECT
ON SCHEDULE AT NOW()
DO INSERT INTO EVENTS_INVOKED VALUES ('DIRECT', NOW())

769CHAPTER 34 Events

Explanation: The single schedule is listed behind the specification ON SCHEDULE
AT. This event is invoked only once, immediately after the event is created. So after
the event has been registered, the MySQL event scheduler checks whether the event
must be invoked. You can show the result of this event with a SELECT statement:

SELECT *
FROM EVENTS_INVOKED
WHERE EVENT_NAME = 'DIRECT'

The result is:

EVENT_NAME EVENT_STARTED
---------- -------------------
DIRECT 2006-06-27 15:36:15

Events are stored in the current database. We may qualify the names of events
with a database name. The previous CREATE EVENT statement could have been for-
mulated as follows:

CREATE EVENT TENNIS.DIRECT
ON SCHEDULE AT NOW()
DO INSERT INTO EVENTS_INVOKED VALUES ('DIRECT', NOW())

Example 34.3: Create an event that starts on December 31, 2010, at 11:00 a.m.

CREATE EVENT END2010
ON SCHEDULE AT '2010-12-31 11:00:00'
DO INSERT INTO EVENTS_INVOKED VALUES ('END2010', NOW())

The effect on the EVENTS_INVOKED table looks like this:

EVENT_NAME EVENT_STARTED
---------- -------------------
END2010 2008-12-31 11:00:00

In the schedule of the END2010 event, a precise timestamp is specified. Any
timestamp or date expression may be used here.

Example 34.4: Create an event that starts in exactly three days.

CREATE EVENT THREEDAYS
ON SCHEDULE AT NOW() + INTERVAL 3 DAY
DO INSERT INTO EVENTS_INVOKED VALUES ('THREEDAYS', NOW())

The effect on the EVENTS_INVOKED table looks like this:

EVENT_NAME EVENT_STARTED
---------- -------------------
THREEDAYS 2006-06-30 15:50:15

770 SQL for MySQL Developers

Explanation: The value of the timestamp expression in the schedule is calculated
and stored in the catalog. Instead of using the NOW function, we can also use the CUR-
DATE function. Note that the event is invoked on the day indicated right after
midnight.

Example 34.5: Create an event that starts next Sunday.

CREATE EVENT NEXT_SUNDAY
ON SCHEDULE AT

CASE DAYNAME(NOW())
WHEN 'Sunday' THEN NOW() + INTERVAL 7 DAY
WHEN 'Monday' THEN NOW() + INTERVAL 6 DAY
WHEN 'Tuesday' THEN NOW() + INTERVAL 5 DAY
WHEN 'Wednesday' THEN NOW() + INTERVAL 4 DAY
WHEN 'Thursday' THEN NOW() + INTERVAL 3 DAY
WHEN 'Friday' THEN NOW() + INTERVAL 2 DAY
WHEN 'Saturday' THEN NOW() + INTERVAL 1 DAY

END
DO INSERT INTO EVENTS_INVOKED

VALUES ('NEXT_SUNDAY',NOW())

The effect on the EVENTS_INVOKED table looks like this:

EVENT_NAME EVENT_STARTED
---------- ------------------
NEXT_SUNDAY 006-07-02 11:26:12

Explanation: With the case expression and the DAYNAME function, we can deter-
mine the current day. If it is a Monday, for example, we add six days to the current
date. The result is the date of the following Sunday. This example shows that the
timestamp expression can be very complex—even scalar subqueries are allowed.

We can simplify the expression used in the previous example; however, it leads to
an expression that is a little harder to understand:

CREATE EVENT NEXT_SUNDAY
ON SCHEDULE AT

NOW() + INTERVAL (8 - DAYOFWEEK(NOW())) DAY
DO INSERT INTO EVENTS_INVOKED

VALUES ('NEXT_SUNDAY',NOW())

771CHAPTER 34 Events

Example 34.6: Create an event that starts tomorrow at 11:00 a.m.

CREATE EVENT MORNING11
ON SCHEDULE AT TIMESTAMP(CURDATE() +

INTERVAL 1 DAY, '11:00:00')
DO INSERT INTO EVENTS_INVOKED VALUES ('MORNING11', NOW())

The effect on the EVENTS_INVOKED table looks like this:

EVENT_NAME EVENT_STARTED
---------- -------------
MORNING11 2006-06-29 11:00:00

Explanation: The TIMESTAMP function concatenates today’s date with the time the
event must be invoked.

The previous examples are all based on a nonrecurring schedule. Next we have exam-
ples that do use a recurring schedule. These are all events with one or more invocations.

Example 34.7: Create an event that starts directly and that is invoked every two
hours until 11:00 p.m.

CREATE EVENT EVERY2HOUR
ON SCHEDULE EVERY 2 HOUR

STARTS NOW() + INTERVAL 3 HOUR
ENDS CURDATE() + INTERVAL 23 HOUR

DO INSERT INTO EVENTS_INVOKED VALUES ('EVERY2HOUR', NOW())

Explanation: The EVERY2HOUR event is first invoked three hours after the
event was created (STARTS NOW() + INTERVAL 3 HOUR). Then it is invoked again
every two hours (EVERY 2 HOUR) until it is one hour before midnight of the current
day (ENDS '23:00:00').

If this event was created at exactly 3:00 p.m., it is invoked at 6:00 p.m., 8:00 p.m.,
and 10:00 p.m. After that, the event is inactive. If this event was created after 8:30
p.m., it would not be invoked at all. If the event was created at exactly 5:00 p.m., it
would be invoked three times: at 5:00 p.m., 8:00 p.m., and 11:00 p.m. If an event
was created at exactly the same time as the timestamp of the ENDS specification, this
event would be invoked but only once.

772 SQL for MySQL Developers

Example 34.8: Create an event that starts tomorrow at 12:00 p.m. and is invoked
every minute for six times.

CREATE EVENT SIXTIMES
ON SCHEDULE EVERY 1 MINUTE

STARTS TIMESTAMP(CURDATE() + INTERVAL 1 DAY,'12:00:00')
ENDS TIMESTAMP(CURDATE() + INTERVAL 1 DAY,'12:00:00')

+ INTERVAL 5 MINUTE
DO INSERT INTO EVENTS_INVOKED

VALUES ('SIXTIMES', NOW())

Explanation: This event is invoked six times: at 12:00 p.m., 12:01 p.m., 12:02
p.m., 12:03 p.m., 12:04 p.m., and 12:05 p.m. The sixth time, the event is invoked
because the timestamp belonging to the last invocation is equal to the value of the
ENDS specification—12:05 p.m. (on the same day).

Example 34.9: Create an event that starts on Sunday and continues the four fol-
lowing Sundays.

CREATE EVENT FIVESUNDAYS
ON SCHEDULE EVERY 1 WEEK

STARTS CASE DAYNAME(NOW())
WHEN 'Sunday' THEN NOW()
WHEN 'Monday' THEN NOW() + INTERVAL 6 DAY
WHEN 'Tuesday' THEN NOW() + INTERVAL 5 DAY
WHEN 'Wednesday' THEN NOW() + INTERVAL 4 DAY
WHEN 'Thursday' THEN NOW() + INTERVAL 3 DAY
WHEN 'Friday' THEN NOW() + INTERVAL 2 DAY
WHEN 'Saturday' THEN NOW() + INTERVAL 1 DAY

END
ENDS CASE DAYNAME(NOW())

WHEN 'Sunday' THEN NOW()
WHEN 'Monday' THEN NOW() + INTERVAL 6 DAY
WHEN 'Tuesday' THEN NOW() + INTERVAL 5 DAY
WHEN 'Wednesday' THEN NOW() + INTERVAL 4 DAY
WHEN 'Thursday' THEN NOW() + INTERVAL 3 DAY
WHEN 'Friday' THEN NOW() + INTERVAL 2 DAY
WHEN 'Saturday' THEN NOW() + INTERVAL 1 DAY

END + INTERVAL 4 WEEK
DO INSERT INTO EVENTS_INVOKED

VALUES ('FIVESUNDAYS',NOW())

Explanation: Make sure that the end date is four weeks later, not five; otherwise,
the event will be invoked six times.

773CHAPTER 34 Events

Example 34.10: Create an event that is invoked every Sunday at 3:00 p.m., start-
ing next Sunday and ending on the last Sunday of the current year.

CREATE EVENT SUNDAYS
ON SCHEDULE EVERY 1 WEEK

STARTS TIMESTAMP(CASE DAYNAME(NOW())
WHEN 'Sunday' THEN NOW()
WHEN 'Monday' THEN NOW() + INTERVAL 6 DAY
WHEN 'Tuesday' THEN NOW() + INTERVAL 5 DAY
WHEN 'Wednesday' THEN NOW() + INTERVAL 4 DAY
WHEN 'Thursday' THEN NOW() + INTERVAL 3 DAY
WHEN 'Friday' THEN NOW() + INTERVAL 2 DAY
WHEN 'Saturday' THEN NOW() + INTERVAL 1 DAY

END, '15:00:00')
ENDS TIMESTAMP(

CASE DAYNAME(CONCAT(YEAR(CURDATE()),'-12-31'))
WHEN 'Sunday' THEN

CONCAT(YEAR(CURDATE()),'-12-31')
WHEN 'Monday' THEN

CONCAT(YEAR(CURDATE()),'-12-31') - INTERVAL 1 DAY
WHEN 'Tuesday' THEN

CONCAT(YEAR(CURDATE()),'-12-31') - INTERVAL 2 DAY
WHEN 'Wednesday' THEN

CONCAT(YEAR(CURDATE()),'-12-31') - INTERVAL 3 DAY
WHEN 'Thursday' THEN

CONCAT(YEAR(CURDATE()),'-12-31') - INTERVAL 4 DAY
WHEN 'Friday' THEN

CONCAT(YEAR(CURDATE()),'-12-31') - INTERVAL 5 DAY
WHEN 'Saturday' THEN

CONCAT(YEAR(CURDATE()),'-12-31') - INTERVAL 6 DAY
END, '15:00:00')

DO INSERT INTO EVENTS_INVOKED VALUES ('SUNDAYS', NOW())

Example 34.11: Create an event that starts the first day of every month, begin-
ning next month and ending on the last month of the current year.

CREATE EVENT STARTMONTH
ON SCHEDULE EVERY 1 MONTH

STARTS CURDATE() + INTERVAL 1 MONTH -
INTERVAL (DAYOFMONTH(CURDATE()) - 1) DAY

ENDS TIMESTAMP(CONCAT(YEAR(CURDATE()),'-12-31'))
DO INSERT INTO EVENTS_INVOKED

VALUES ('STARTMONTH', NOW())

774 SQL for MySQL Developers

Example 34.12: Create an event that starts the first day of each quarter.

CREATE EVENT QUARTERS
ON SCHEDULE EVERY 3 MONTH

STARTS (CURDATE() - INTERVAL (DAYOFMONTH(CURDATE())
- 1) DAY) - INTERVAL (MOD(MONTH(CURDATE()
- INTERVAL (DAYOFMONTH(CURDATE()) - 1) DAY)+2,3)) MONTH
+ INTERVAL 3 MONTH

DO INSERT INTO EVENTS_INVOKED VALUES ('QUARTERS', NOW())

Explanation: The rather complex timestamp expression determines the first day of
the coming quarter. An ENDS specification is missing, so the event continues to be
invoked until it is dropped.

Example 34.13: Create an event that starts on the last day of the year, beginning
with the current year through the year 2025.

CREATE EVENT END_OF_YEAR
ON SCHEDULE EVERY 1 YEAR

STARTS ((NOW() - INTERVAL (DAYOFYEAR(NOW()) - 1) DAY)
+ INTERVAL 1 YEAR)
- INTERVAL 1 DAY

ENDS '2025-12-31'
DO INSERT INTO EVENTS_INVOKED VALUES ('END_OF_YEAR', NOW())

We can build a check into the body of an event. For example, a certain event may be
invoked only if the number of rows in a table is less than 100 or if it is not a Monday.

Example 34.14: Create an event that is invoked on the last day of the year,
beginning with the current year through the year 2025 (this is the same as in the
previous example). However, the year 2020 must be skipped.

CREATE EVENT NOT2020
ON SCHEDULE EVERY 1 YEAR

STARTS ((NOW() - INTERVAL (DAYOFYEAR(NOW()) - 1) DAY)
+ INTERVAL 1 YEAR)
- INTERVAL 1 DAY

ENDS '2025-12-31'
DO BEGIN

IF YEAR(CURDATE()) <> 2020 THEN
INSERT INTO EVENTS_INVOKED

VALUES ('NOT2020', NOW());
END IF;

END

775CHAPTER 34 Events

Explanation: This event is invoked every year, including the year 2020, but in
that year, the INSERT statement is not executed.

Suppose that the tennis club has an additional table that records the number of
matches that a player has played each year.

Example 34.15: Create the table to store this data.

CREATE TABLE MATCHES_ANNUALREPORT
(PLAYERNO INTEGER NOT NULL,
YEAR INTEGER NOT NULL,
NUMBER INTEGER NOT NULL,
PRIMARY KEY (PLAYERNO, YEAR),
FOREIGN KEY (PLAYERNO) REFERENCES PLAYERS (PLAYERNO))

Example 34.16: Create the event that updates the MATCHES_ANNUALREPORT
table every year.

CREATE EVENT YEARBALANCING
ON SCHEDULE EVERY 1 YEAR

STARTS ((NOW() - INTERVAL (DAYOFYEAR(NOW()) - 1) DAY)
+ INTERVAL 1 YEAR)
- INTERVAL 1 DAY

DO INSERT INTO MATCHES_ANNUALREPORT
SELECT PLAYERNO, YEAR, COUNT(*)
FROM MATCHES
WHERE YEAR(DATE) = YEAR(CURDATE())
GROUP BY PLAYERNO, YEAR

Several rules apply when defining events:

■ If two events need to be invoked at the same time, MySQL determines the
order in which they are invoked. So we cannot make any assumptions con-
cerning which event is invoked first. If you want to determine the order, you
should ensure that one of the events is invoked one second later.

■ For events with recurring schedules, the end date should not fall before the
start date. MySQL will not accept that.

■ The start time of an event with a recurring schedule and the invocation time
of a nonrecurring event must always be in the present or in the future. If
these times are in the past, MySQL will not accept the event.

■ SELECT statements can be included in an event body. However, the results of
these statements disappear, as if they have never been executed.

776 SQL for MySQL Developers

34.3 PROPERTIES OF EVENTS

For each event, several additional properties can be defined. The first property
defines what happens to an event when it has been invoked for the last time. If
nothing is specified, MySQL automatically removes the event. We can set this
explicitly by specifying ON COMPLETION NOT PRESERVE. If we specify ON COMPLETION
PRESERVE, MySQL will not remove the event after the last invocation.

Example 34.17: Create the event from Example 34.2 again; however, this time it
should not be removed after the last invocation.

CREATE EVENT DIRECT
ON SCHEDULE AT NOW()
ON COMPLETION PRESERVE
DO INSERT INTO EVENTS_INVOKED VALUES ('DIRECT', NOW())

Explanation: This event remains until the PRESERVE property is changed or until it
is removed explicitly.

As with tables, an event definition can include a comment that is registered in the
catalog.

Example 34.18: Create the event from Example 34.17, but now include a com-
ment and then show the stored comment.

CREATE EVENT DIRECT_WITH_COMMENT
ON SCHEDULE AT NOW()
ON COMPLETION PRESERVE
COMMENT 'This event starts directly'
DO INSERT INTO EVENTS_INVOKED

VALUES ('DIRECT_WITH_COMMENT', NOW())

After an event has been created, it is immediately active (or enabled). We can
disable an event during its creation.

Example 34.19: Create the following event and make it inactive.

CREATE EVENT DIRECT_INACTIVE
ON SCHEDULE AT NOW()
ON COMPLETION PRESERVE
DISABLE
COMMENT 'This event is inactive'
DO INSERT INTO EVENTS_INVOKED

VALUES ('DIRECT_INACTIVE', NOW())

777CHAPTER 34 Events

778 SQL for MySQL Developers

Explanation: This event will not be invoked. In fact, the scheduler completely
skips the inactive events when deciding whether an event must be invoked. The
event can become active again by using an ALTER EVENT statement.

34.4 CHANGING EVENTS

An ALTER EVENT statement can change the definitions and properties of an event.

D E F I N I T I O N
<alter event statement> ::=

ALTER EVENT [<database name> .] <event name>
ON SCHEDULE <event schedule>
[RENAME TO <event name>]
[ON COMPLETION [NOT] PRESERVE]
[ENABLE | DISABLE]
[COMMENT <alphanumeric literal>]
DO <sql statement>

<event schedule> ::=
<single schedule> | <recurring schedule>

<single schedule> ::=
AT <timestamp expression>

<recurring schedule> ::=
EVERY <number> <time unit>
[STARTS <timestamp literal>]
[ENDS <timestamp literal>]

For example, by using an ALTER EVENT statement, we can make an event inac-
tive and then active again. We can also change the name of an existing event or the
entire schedule. However, when an event that has been defined with the property ON
COMPLETION NOT PRESERVE is invoked for the last time, the event can no longer be
changed—it simply does not exist anymore.

Example 34.20: Change the event from Example 34.11 to end on December 31,
2025.

ALTER EVENT STARTMONTH
ON SCHEDULE EVERY 1 MONTH

STARTS CURDATE() + INTERVAL 1 MONTH -
INTERVAL (DAYOFMONTH(CURDATE()) - 1) DAY

ENDS TIMESTAMP('2025-12-31')

779CHAPTER 34 Events

Example 34.21: Change the name of this event to FIRST_OF_THE_MONTH.

ALTER EVENT STARTMONTH
RENAME TO FIRST_OF_THE_MONTH

Example 34.22: Make the event from Example 34.19 active again.

ALTER EVENT DIRECT_INACTIVE
ENABLE

34.5 REMOVING EVENTS

If an event is no longer needed, you can remove it with a DROP EVENT statement.
With this statement, you do not have to wait until the last event invocation.

D E F I N I T I O N
<drop event statement> ::=

DROP EVENT [IF EXISTS] [<database name> .] <event name>

Example 34.23: Remove the event called FIRST_OF_THE_MONTH.

DROP EVENT FIRST_OF_THE_MONTH

If the specification IF EXISTS is added and the event does not exist, MySQL
does not return an error message.

34.6 EVENTS AND PRIVILEGES

To create, change, or remove an event, an SQL user should have the proper privileges.
A special privilege on the database and user level has been introduced for this.

780 SQL for MySQL Developers

D E F I N I T I O N
<grant statement> ::=

<grant event privilege statement>

<grant event privilege statement> ::=
GRANT EVENT
ON [<database name> . | * .] *
TO <grantees>
[WITH GRANT OPTION]

<grantees> ::=
<user specification> [, <user specification>]...

<user specification> ::=
<user name> [IDENTIFIED BY [PASSWORD] <password>]

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

Example 34.24: Give SAM the privilege to create events in the TENNIS
database.

GRANT EVENT
ON TENNIS.*
TO SAM

As mentioned earlier, the properties and definition of each event is recorded in
the catalog along with the user who created the event. This SQL user should have
sufficient privileges for all SQL statements that are executed by an event call. For
example, if an event action executes a DELETE statement on the PLAYERS table, the
SQL user who creates the event must have the appropriate privileges.

34.7 EVENTS AND THE CATALOG

Event specifications are stored in the catalog table called INFORMATION_
SCHEMA.EVENTS. Table 34.1 describes the columns of this table. A SELECT, SHOW
EVENT, or SHOW CREATE EVENT statement can retrieve information from this catalog
table.

TABLE 34.1 Description of the INFORMATION_SCHEMA.EVENTS Catalog
Table

781CHAPTER 34 Events

COLUMN NAME EXPLANATION

EVENT_CATALOG This column is not in use yet, so the value is always
equal to the null value.

EVENT_SCHEMA The name of the database to which the event belongs.

EVENT_NAME The name of the event.

DEFINER The name of the SQL user who created the event.

EVENT_BODY The SQL statement that must be executed.

EVENT_TYPE This column contains the value ONE_TIME (single
schedule) or RECURRING.

EXECUTE_AT The date and time that indicates when an event with a
single schedule must be invoked.

INTERVAL_VALUE For events with a recurring schedule, the length of the
interval between two invocations is indicated here.

INTERVAL_FIELD For events with a recurring schedule, the unit of the
interval between two invocations is indicated here—for
example SECOND, HOUR, or DAY.

SQL_MODE The value of the system variable SQL_MODE at the
moment the event was created or changed.

STARTS The date and time the event with a recurring schedule is
invoked first.

ENDS The date and time the event with a recurring schedule is
invoked last.

STATUS This column contains the value ENABLED (active) or
DISABLED (inactive).

ON_COMPLETION This column contains the values NOT PRESERVE or
PRESERVE.

CREATED Date and time the event is created.

LAST_ALTERED Date and time the event was changed last with an ALTER
EVENT statement.

LAST_EXECUTED Date and time the event was invoked last.

EVENT_COMMENT The comment of the event.

Example 34.25: Show the statement to create the TOMORROW11 event; see
Example 34.6.

SHOW CREATE EVENT TOMORROW11

The result is:

Event sql_mode Create Event
---------- -------- --
TOMORROW11 ? CREATE EVENT 'TOMORROW11' ON SCHEDULE AT

'2006-06-29 09:00:00' ON COMPLETION NOT
PRESERVE ENABLE DO INSERT INTO
EVENTS_INVOKED VALUES
('TOMORROW11',NOW())

782 SQL for MySQL Developers

Part V
Programming with SQL

SQL can be used in two ways: interactively and preprogrammed. Prepro-
grammed SQL is used primarily in programs developed for end users who
do not have to learn SQL statements, but who work with easy-to-use
menus and screens instead.

Previous chapters have assumed interactive use of the language.
Interactive means that statements are processed as soon as they are
entered; with preprogrammed SQL, statements are included in a program
that has been written in another programming language. Most products
support, among others, the languages C, C++, Java, Visual Basic, PHP,
Perl, and COBOL. These languages are known as host languages. When
using preprogrammed SQL, the user cannot immediately see the results of
the SQL statements; the enveloping program processes them. Most of the
SQL statements discussed in the earlier chapters can be used in prepro-
grammed SQL. Apart from a few minor additions, preprogrammed SQL is
the same as interactive SQL.

As an example of preprogrammed SQL, this part starts with Chapter
35, “MySQL and PHP,” which covers how SQL statements can be
included into PHP programs. Chapter 36, “Dynamic SQL with Prepared
Statement,” discusses dynamic SQL or prepared SQL statements. Chap-
ter 37 then explains the concepts of transactions, savepoints, isolation
levels, and repeatable reads, as well as how to roll back statements.

S Q L F O R M Y S Q L D E V E L O P E R S

783

This page intentionally left blank This page intentionally left blank

785

MySQL and PHP
C H A P T E R 3 5

35.1 INTRODUCTION

This chapter contains examples of programs written in the programming language
PHP, one of the most popular host languages used with MySQL; see, for example,
[ATKI04].

Initially, the abbreviation PHP stood for Personal Home Page. Some prefer to
use the recursive explanation: PHP Hypertext Preprocessor. Whatever it stands for,
essentially PHP is a server-side scripting language to create web pages based upon
HTML.

Rasmus Lerdorf wrote the first version of PHP in fall 1994. Since then, the fea-
tures have been extended considerably, and thousands of web sites have already
been created with this popular language.

A PHP programmer can choose from different call level interfaces (CLIs) to
access a database from a PHP program. This chapter uses a CLI that was created
specifically for MySQL, called MYSQL. Alternatives also exist; for example, one is
an ODBC-like CLI.

We assume that you are familiar with the PHP programming language. We have
made the examples as simple as possible to stress the functions used to access
MySQL. You can embellish the programs yourself. We do not discuss every MYSQL
function; after all, this book is about MySQL, not PHP. For the remaining functions,
we refer to the many books and manuals about PHP.

35.2 LOGGING ON TO MYSQL
Each program must start by logging on to the database server. Therefore, we begin
there as well.

Example 35.1: Develop a PHP program that logs on to MySQL.

<HTML>
<HEAD>
<TITLE>Logging on</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.</p>");
echo "<p>Logging on has succeeded.</p>\n";
mysql_close($conn);
?>
</BODY>
</HTML>

Explanation: This program contains HTML, PHP, and SQL statements. How and
by whom are these statements processed? Or how will this program be processed?
The program does not need to be compiled first. PHP is not a compiler, but an inter-
preter. The program is stored in a file or a page in a certain directory. Specifying the
following URL in a web browser, such as FireFox, Microsoft’s Internet Explorer, or
Opera, requests the PHP page:

http://localhost/01_Logging on.php

The web server receives this URL in which the name of the requested PHP page
occurs. Next, the web server passes the page unchanged to the PHP processor that
starts to process the program. During the processing, PHP comes across function
calls of the CLI, such as MYSQL_CONNECT(). PHP calls these functions that, in turn,
call MySQL. The answers and error messages that MySQL produces are returned to
the PHP processor. Finally, the PHP processor is ready and the obtained HTML
page is returned to the web server as a result. The result of the program is the fol-
lowing HTML page:

786 SQL for MySQL Developers

<HTML>
<HEAD>
<TITLE>Logging on</TITLE>
</HEAD>
<BODY>
<p>Logging on has succeeded.</p>
</BODY>
</HTML>

In turn, the web server passes the HTML page to the browser that renders the
page properly. The final result looks like this:

Logging on has succeeded.

Explanation: The first five lines of code in the program and the last two are pure
HTML code. The PHP processor just passes this code to the web server. After that,
three variables called $host, $user, and $pass are declared, and each is assigned a
value. With the special function MYSQL_CONNECT, we log on to the database server. A
connection is made with the database server. If anything goes wrong, the function
DIE() is called to stop the program. The alphanumeric value of the parameter of the
DIE function is still printed.

If the MYSQL_CONNECT function works, a message is displayed and the connection
with the MYSQL_CLOSE function is closed.

35.3 SELECTING A DATABASE

The program in the previous section does not indicate which database to use
because the program does not work with the database. If we want to access tables,
we must make a database current; see Section 4.5. With interactive SQL, we use the
USE statement to perform this task; with PHP, the MYSQL_SELECT_DB function is
called.

787CHAPTER 35 MySQL and PHP

Example 35.2: Extend the PHP program so that we can work with the TENNIS
database.

<HTML>
<HEAD>
<TITLE>Current database</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
mysql_close($conn);
?>
</BODY>
</HTML>

The result is:

Logging on has succeeded.
TENNIS is the current database now.

Explanation: The call for the MYSQL_SELECT_DB function has been added here.
The name of an existing database is the parameter in this function.

A program may call the MYSQL_SELECT_DB function more than once. Every time that
happens, the current database changes.

35.4 CREATING AN INDEX

Now it is time to let the program do something. We begin by executing the simplest
SQL statements: the DDL and DCL statements.

788 SQL for MySQL Developers

Example 35.3: Develop a PHP program that creates an index on the PLAYERS
table.

<HTML>
<HEAD>
<TITLE>Create Index</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$result = mysql_query("CREATE UNIQUE INDEX PLAY

ON PLAYERS (PLAYERNO)");
if (!$result)
{

echo "
Index PLAY is not created!\n";
}
else
{

echo "
Index PLAY is created!\n";
};
mysql_close($conn);
?>
</BODY>
</HTML>

Explanation: MySQL uses the function MYSQL_QUERY to process the SQL state-
ment. Because the statement has no variables and is not a SELECT statement, the
processing is simple. The only response returned is a message stating whether it
has succeeded. This message is assigned to the variable $RESULT. If this value is
equal to 0, the statement has been processed correctly.

MySQL does return a response when processing some DDL and DCL statements.
For example, this could be the number of rows in the table on which the index is
created. You can use the MYSQL_INFO function to retrieve the response.

789CHAPTER 35 MySQL and PHP

Example 35.4: Develop a PHP program that creates an index on the PLAYERS
table and then presents the response of MySQL.

<HTML>
<HEAD>
<TITLE>Create Index plus response</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$result = mysql_query("CREATE UNIQUE INDEX PLAY

ON PLAYERS (PLAYERNO)");
if (!$result)
{

echo "
Index PLAY is not created!\n";
}
else
{

echo "
Index PLAY is created!\n";
};
echo "
mysql_info=".mysql_info($conn);
mysql_close($conn);
?>
</BODY>
</HTML>

The result is:

Logging on has succeeded.
TENNIS is the current database now.
Index PLAY is created!
mysql_info=Records: 14 Duplicates: 0 Warnings: 0

35.5 RETRIEVING ERROR MESSAGES

If an SQL statement has not been processed correctly, it is often useful to know
what went wrong. Has the statement been formulated incorrectly, or does the table
not exist? The functions MYSQL_ERRNO and MYSQL_ERROR can retrieve this type of
information.

Example 35.5: Develop a PHP program that reports the problem if something
goes wrong when processing the CREATE INDEX statement.

790 SQL for MySQL Developers

<HTML>
<HEAD>
<TITLE>Error messages</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$result = mysql_query("CREATE UNIQUE INDEX PLAY

ON PLAYERS (PLAYERNO)");
if (!$result)
{

echo "
Index PLAY is not created!\n";
$error_number = mysql_errno();
$error_message = mysql_error();
echo "
Fout: $error_number: $error_message\n";

}
else
{

echo "
Index PLAY is created!\n";
}
mysql_close($conn);
?>
</BODY>
</HTML>

If the PLAY index already exists, the following result is presented:

Logging on has succeeded.
TENNIS is the current database now.
Index PLAY is not created!
Fout: 1061: Duplicate key name ‘PLAY'

Explanation: The function MYSQL_ERRNO returns the error number and
MYSQL_ERROR returns the descriptive text.

35.6 MULTIPLE CONNECTIONS WITHIN ONE SESSION

We come across the term session frequently. When a program starts, a so-called ses-
sion is actually started. When a program logs on to MySQL, a connection is made to
MySQL. In many cases, a session consists of one connection, but not always. Pro-
grams can repeatedly close connections and then open others. Within one session,

791CHAPTER 35 MySQL and PHP

792 SQL for MySQL Developers

Session with one connection open

Session with multiple connections open

connection 1

connection 1

MySQL MySQL

connection 2 connection 3

time

connection 2 connection 3

connection 4

MySQL

MySQL MySQLMySQL

time

a switch is made from one connection to another; see the top of Figure 35.1. In this
figure, the gray block at the top indicates a session. The session starts on the left
and ends on the right. In this session, connection 1 is started with MySQL first.
Then it is closed again, and connection 2 is started. Finally, connection 3 is started.
The last two connections access the same database server, but maybe as other SQL
users with other privileges.

Multiple connections can be open within one session simultaneously. In this
case, for each SQL statement that is executed, you have to specify to which connec-
tion it belongs. Figure 35.1 shows how connections can be open simultaneously. In
this example, connection 2 starts even before connection 1 ends.

FIGURE 35.1 Sessions and connections

Example 35.6: Develop a PHP program that starts two connections.

<HTML>
<HEAD>
<TITLE>Two connections</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn1 = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$host = "localhost";
$user = "BOOKSQL";
$pass = "BOOKSQLPW";
$conn2 = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS", $conn1)

or die ("
Database unknown.\n");
echo "
Connection 1 is started.\n";
$db = mysql_select_db("TENNIS", $conn2)

or die ("
Database unknown.\n");
echo "
Connection 2 is started.\n";
mysql_close($conn1);
mysql_close($conn2);
?>
</BODY>
</HTML>

Explanation: Two connections are made with the database server in this program.
The first connection is for the user called root, and the second is for the user
BOOKSQL. The host variables $CONN1 and $CONN2 contain identifiers of these con-
nections. Because two connections are open now, we need to specify the connection
for every MYSQL function, which is the last parameter for most functions. This is
why we give the MYSQL_SELECT_DB function one of the host variables as a parameter.

35.7 SQL STATEMENTS WITH PARAMETERS

Many SQL statements need parameters. Because PHP works with dynamic SQL, we
could let PHP process the parameters itself, and MySQL would not be involved.

Example 35.7: Develop a PHP program that increases by 1 the number of sets
won for a certain match.

793CHAPTER 35 MySQL and PHP

<HTML>
<HEAD>
<TITLE>Parameters</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$wnr = 22;
$result = mysql_query("UPDATE MATCHES

SET WON = WON + 1 WHERE MATCHNO = $mno");
if (!$result)
{

echo "
Update not executed!\n";
$error_number = mysql_errno();
$error_message = mysql_error();
echo "
Error: $error_number: $error_message\n";

}
else
{

echo "
WON column has increased for match $mno.\n";
}
mysql_close($conn);
?>
</BODY>
</HTML>

Explanation: The value 22 is assigned to the variable $MNO. PHP replaces the vari-
able $MNO with that value. As a result, a complete SQL statement without host vari-
ables is delivered to MySQL.

35.8 SELECT STATEMENT WITH ONE ROW

When processing SELECT statements that return only one row, we use the function
MYSQL_QUERY to process the statement, followed by the function MYSQL_FETCH_ASSOC
to retrieve the row.

Example 35.8: Develop a PHP program that presents the number of players in
the PLAYERS table.

794 SQL for MySQL Developers

<HTML>
<HEAD>
<TITLE>Query with a row</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$query = "SELECT COUNT(*) AS NUMBER FROM PLAYERS";
$result = mysql_query($query)

or die ("
Query is incorrect.\n");
$row = mysql_fetch_assoc($result)

or die ("
Query had no result.\n");
echo "
The number of players ".$row[‘NUMBER'].".\n";
mysql_close($conn);
?>
</BODY>
</HTML>

Explanation: After processing the MYSQL_QUERY function, MySQL stores the result
of the SELECT statement somewhere. With the MYSQL_FETCH_ASSOC function, we can
walk through that result row by row. The result is assigned to the variable $ROW.
When we compare this process with stored procedures, the MYSQL_QUERY function is
equal to the declaration and opening of a cursor. And with the MYSQL_FETCH_ASSOC
function, we browse the cursor.

Because the result of a SELECT statement can contain multiple values, $ROW can
have multiple values, too. $ROW is an associative array consisting of one element in
which only the column name of the SELECT statement is used as the key value of the
array. So to retrieve the number of players, we use the expression $row[‘NUMBER’].
NUMBER is the name of the column; see the SELECT statement.

With the following piece of program, we create an associative array called $ROW
consisting of three elements. The three elements are identified with the names
NAME, TOWN, and STREET:

$result = mysql_query("SELECT NAME, TOWN, STREET
FROM PLAYERS WHERE PLAYERNO = 1");

$row = mysql_fetch_assoc($result)

795CHAPTER 35 MySQL and PHP

35.9 SELECT STATEMENT WITH MULTIPLE ROWS

If a SELECT statement can return multiple rows, we need to do a little more work to
walk through the result row by row. We need cursors to browse the result row by row.
A few different functions can be used here.

Example 35.9: Develop a PHP program that presents all player numbers sorted
in descending order.

<HTML>
<HEAD>
<TITLE>SELECT statement with multiple rows</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has not succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$query = "SELECT PLAYERNO FROM PLAYERS ORDER BY 1 DESC";
$result = mysql_query($query)

or die ("
Query is incorrect.\n");
if (mysql_num_rows($result) > 0)
{

while ($row=mysql_fetch_assoc($result))
{

echo "
Player number ".$row['PLAYERNO'].".\n";
}

}
else
{

echo "
No players found.\n";
}
mysql_free_result($result);
mysql_close($conn);
?>
</BODY>
</HTML>

796 SQL for MySQL Developers

Explanation: After the SELECT statement has been executed, we check whether
the result contains rows. We use the MYSQL_NUM_ROWS function for this. This function
has the host variable $RESULT as a parameter that determines the number of rows
returned by the statement that are linked to that $QUERY variable. As long as rows
are found, we use MYSQL_FETCH_ASSOC to walk through the result row by row. When
no more rows exist, the WHILE statement stops along with the program.

As long as the PHP program runs, the result of the SELECT statement is kept in memory.
If this result is no longer necessary, the MYSQL_FREE_RESULT function can release the
occupied space; see the penultimate statement of the program. This is not required, but
it is efficient, especially when many SELECT statements must be processed.

The function MYSQL_FETCH_ARRAY can replace MYSQL_FETCH_ASSOC, but then an
additional parameter must be specified. If we specify MYSQL_ASSOC as an additional
parameter, we get exactly the same result as with the MYSQL_FETCH_ASSOC function.
On the other hand, if we use MYSQL_NUM, we can refer to the different values with
sequence numbers. With MYSQL_BOTH, we can work with the column names and the
sequence numbers.

So the following statement returns the same result as the one in the previous
program:

while ($row=mysql_fetch_array($result, MYSQL_ASSOC))

The entire WHILE construct can also be written as follows:

while ($row=mysql_fetch_array($result, MYSQL_NUM))
{

echo "
Player number ".$row[0].".\n";
}

Instead of using the MYSQL_FETCH_ARRAY function, you may use MYSQL_

FETCH_ROW.

797CHAPTER 35 MySQL and PHP

Example 35.10: Develop a PHP program that presents all player numbers
sorted in descending order. Use the MYSQL_FETCH_ROW function.

<HTML>
<HEAD>
<TITLE>MYSQL_FETCH_ROW function</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$query = "SELECT PLAYERNO FROM PLAYERS ORDER BY 1 DESC";
$result = mysql_query($query)

or die ("
Query is incorrect.\n");
while ($row=mysql_fetch_row($result))
{

echo "
Player number ".$row[0].".\n";
};
mysql_free_result($result);
mysql_close($conn);
?>
</BODY>
</HTML>

As with the MYSQL_FETCH_ARRAY function, we use sequence numbers (beginning
at 0) to refer to the different column values. The advantage of the MYSQL_FETCH_ROW
function is that we can use the MYSQL_DATA_SEEK function to jump directly to a cer-
tain row.

Example 35.11: Develop a PHP program that sorts all player numbers in
descending order and presents only the fourth row.

<HTML>
<HEAD>
<TITLE>MYSQL_DATA_SEEK function</TITLE></HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";

798 SQL for MySQL Developers

$db = mysql_select_db("TENNIS")
or die ("
Database unknown.\n");

echo "
TENNIS is the current database now.\n";
$query = "SELECT PLAYERNO FROM PLAYERS ORDER BY 1 DESC";
$result = mysql_query($query)

or die ("
Query is incorrect.\n");
mysql_data_seek($result, 3);
$row=mysql_fetch_row($result);
echo "
Player number ".$row[0].".\n";
mysql_close($conn);
?>
</BODY>
</HTML>

Explanation: We invoke the MYSQL_DATA_SEEK function before the MYSQL_FETCH_
ROW function. The first row contains the number 0, and the fourth row contains the
number 3. If no fourth row exists, an error message is given.

The result of a SELECT statement can also be transformed to objects. In that case, we
use the MYSQL_FETCH_OBJECT function.

Example 35.12: Develop a PHP program that presents all player numbers
sorted in descending order. Use the MYSQL_FETCH_OBJECT function.

<HTML>
<HEAD>
<TITLE>Working with objects</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$query = "SELECT PLAYERNO FROM PLAYERS ORDER BY 1 DESC";
$result = mysql_query($query)

or die ("
Query is incorrect.\n");
while ($row=mysql_fetch_object($result))
{

echo "
Player number ".$row->PLAYERNO.".\n";
};
mysql_free_result($result);
mysql_close($conn);
?>
</BODY>
</HTML>

799CHAPTER 35 MySQL and PHP

35.10 SELECT STATEMENT WITH NULL VALUES

A SELECT statement can also return null values. We need to handle these null values
in the PHP program separately. First, we check whether the result is a null value.

Example 35.13: Develop a PHP program that prints all league numbers and
reports when a league number is equal to the null value.

<HTML>
<HEAD>
<TITLE>Query with null values</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$query = "SELECT LEAGUENO FROM PLAYERS";
$result = mysql_query($query)

or die ("
Query is incorrect.\n");
if (mysql_num_rows($result) > 0)
{

while ($row=mysql_fetch_assoc($result))
{

if ($row['LEAGUENO'] === NULL)
{

echo "
Player number is unknown.\n";
}
else
{

echo "
Player number ".$row['LEAGUENO'].".\n";
}

}
}
else
{

echo "
No players found.\n";
}
mysql_close($conn);
?>
</BODY>
</HTML>

800 SQL for MySQL Developers

Explanation: The condition ($row['LEAGUENO'] === NULL) determines whether the
value of the LEAGUENO column is equal to the null value. The result looks like this:

Logging on has succeeded.
TENNIS is the current database now.
Player number 2411.
Player number 8467.
Player number is unknown.
Player number 2983.
Player number 2513.
Player number is unknown.
Player number is unknown.
Player number 1124.
Player number 6409.
Player number 1608.
Player number is unknown.
Player number 6524.
Player number 7060.
Player number 1319.

35.11 QUERYING DATA ABOUT EXPRESSIONS

You can use the MYSQL_FETCH_FIELDS function to query the characteristics of each
expression in the SELECT clause of a SELECT statement.

Example 35.14: Develop a PHP program that retrieves the following information
for each expression of a SELECT statement: name, data type, length, and an indica-
tion of whether the expression is a primary key.

<HTML>
<HEAD>
<TITLE>Characteristics of expressions</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$query = "SELECT * FROM PLAYERS WHERE PLAYERNO = 27";
$result = mysql_query($query)

or die ("
Query is incorrect.\n");
while ($field=mysql_fetch_field($result))

801CHAPTER 35 MySQL and PHP

{
echo "
".$field->name." ".$field->type." ".

$field->max_length." ".$field->primary_key."\n";
}
mysql_close($conn);
?>
</BODY>
</HTML>

Explanation: The variable $FIELD is an object with certain characteristics. In this
example, some of these characteristics are queried; the result follows:

Logging on has succeeded.
TENNIS is the current database now.
PLAYERNO int 2 1
NAME string 5 0
INITIALS string 2 0
BRITH_DATE date 10 0
SEX string 1 0
JOINED int 4 0
STREET string 7 0
HOUSENO string 3 0
POSTCODE string 6 0
TOWN string 10 0
PHONENO string 10 0
LEAGUENO string 4 0

Special MySQL functions also can retrieve some of these characteristics.

Example 35.15: Develop a PHP program that retrieves the following information
for each expression of a SELECT statement: name, data type, length, and table name.

<HTML>
<HEAD>
<TITLE>Characteristics of expressions</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$query = "SELECT * FROM PLAYERS WHERE PLAYERNO = 27";

802 SQL for MySQL Developers

$result = mysql_query($query)
or die ("
Query is incorrect.\n");

$exp = 0;
while ($field=mysql_fetch_field($result))
{

echo "
Name=".mysql_field_name($result, $exp)."\n";
echo "
Data type=".mysql_field_type($result, $exp)."\n";
echo "
Length=".mysql_field_len($result, $exp)."\n";
echo "
Table=".mysql_field_table($result, $exp)."\n";
$exp += 1;

}
mysql_close($conn);
?>
</BODY>
</HTML>

Explanation: The MYSQL_FIELD_NAME function returns the name of an expression in
a result, the MYSQL_FIELD_TYPE function gives the data type, the MYSQL_FIELD_LEN
function supplies the maximum number of characters, and MYSQL_FIELD_NAME returns
the table name. If the SELECT statement is a join, it can be useful to invoke this last
function. For all these functions, the numbering of the expressions begins at 0.

35.12 QUERYING THE CATALOG

You can access catalog tables from PHP and link this data again to normal data.

Example 35.16: Develop a PHP program that returns the following information
for each column of all tables from the sample database: number of different values,
minimum value, and maximum value.

<HTML>
<HEAD>
<TITLE>Catalog tables</TITLE>
</HEAD>
<BODY>
<?php
$host = "localhost";
$user = "root";
$pass = "root";
$conn = mysql_connect($host, $user, $pass)

or die ("<p>Logging on has not succeeded.\n");
echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";

803CHAPTER 35 MySQL and PHP

804 SQL for MySQL Developers

$query1 = "SELECT TABLE_NAME, COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME IN

('COMMITTEE_MEMBERS','PENALTIES','PLAYERS',
'TEAMS','MATCHES')

ORDER BY TABLE_NAME, ORDINAL_POSITION";
$tables = mysql_query($query1)

or die ("
Query1 is incorrect.\n");
while ($tablerow=mysql_fetch_assoc($tables))
{

$query2 = "SELECT COUNT(DISTINCT ";
$query2 .= $tablerow['COLUMN_NAME'].") AS A, ";
$query2 .= "MIN(".$tablerow['COLUMN_NAME'].") AS B, ";
$query2 .= "MAX(".$tablerow['COLUMN_NAME'].") AS C ";
$query2 .= "FROM ".$tablerow['TABLE_NAME'];
$columns = mysql_query($query2)

or die ("
Query2 is incorrect.\n");
$columnrow=mysql_fetch_assoc($columns);
echo "
".$tablerow['TABLE_NAME'].".".

$tablerow['COLUMN_NAME'].
" Different=".$columnrow['A'].
" Minimum=".$columnrow['B'].
" Maximum=".$columnrow['C']."\n";

mysql_free_result($columns);
};
mysql_free_result($tables);
mysql_close($conn);
?>
</BODY>
</HTML>

The result is shown here:

Logging on has succeeded.
TENNIS is the current database now.
COMMITTEE_MEMBERS.PLAYERNO Different=7 Minimum=2 Maximum=112
COMMITTEE_MEMBERS.BEGIN_DATE Different=5 Minimum=1990-01-01 Maximum=1994-01-01

COMMITTEE_MEMBERS.END_DATE Different=4 Minimum=1990-12-31 Maximum=1993-12-31
COMMITTEE_MEMBERS.POSITION Different=4 Minimum=Chairman Maximum=Treasurer
PENALTIES.PAYMENTNO Different=8 Minimum=1 Maximum=8
PENALTIES.PLAYERNO Different=5 Minimum=6 Maximum=104
PENALTIES.PAYMENT_DATE Different=6 Minimum=1980-12-08 Maximum=1984-12-08
PENALTIES.AMOUNT Different=5 Minimum=25.00 Maximum=100.00
PLAYERS.PLAYERNO Different=14 Minimum=2 Maximum=112
PLAYERS.NAME Different=12 Minimum=Bailey Maximum=Wise
:

35.13 REMAINING MYSQL FUNCTIONS

Next we provide the descriptions of a few more MYSQL functions. Some contain
pieces of code to show how they can be processed in the program.

integer mysql_affected_rows(resource connectiON): This function returns the
number of rows processed with the last SQL statement belonging to the specified
connection. If this is an UPDATE statement, for example, this function returns the
number of rows updated.

$conn = mysql_connect($host, $user, $pass)
or die ("<p>Logging on has not succeeded.\n");

echo "<p>Logging on has succeeded.\n";
$db = mysql_select_db("TENNIS")

or die ("
Database unknown.\n");
echo "
TENNIS is the current database now.\n";
$result = mysql_query("UPDATE PENALTIES SET AMOUNT = AMOUNT + 10");
echo "
Number of updated rows is ".mysql_affected_rows($conn);

String mysql_client_encoding(resource connectiON): This function returns the
character set that applies to the specified connection:

echo "
Character set=".mysql_client_encoding($conn)."\n";

The result is:

Character set=latin1_swedish_ci

Boolean mysql_field_seek(resource result, integer SEQUENCE NUMBER): This
function makes a certain expression in the result of a SELECT statement current. It is
the counterpart of the mysql_data_seek function. Next, the function mysql_fetch_
field can be used to query the value of this expression.

STRING MYSQL_GET_CLIENT_INFO(): This function returns the version of the client
library that is compiled to PHP:

echo "
Client info=".mysql_get_client_info()."\n";

The result is:

Client info=4.1.

STRING MYSQL_GET_HOST_INFO(resource connectiON): This function returns a
description of the connection:

echo "
Client info=".mysql_get_host_info()."\n";

805CHAPTER 35 MySQL and PHP

The result is:

Client info=localhost via TCP/IP

STRING MYSQL_GET_PROTO_INFO(resource connectiON): This function returns the
version number of the protocol of the specified connection:

echo "
Protocol version=".mysql_get_proto_info()."\n";

The result is:

Protocol versie=10

STRING MYSQL_GET_SERVER_INFO(resource connectiON): This function returns the
version number of the MySQL database server:

echo "
MySQL Version=".mysql_get_server_info()."\n";

The result is:

MySQL Version=5.0.7-beta-nt

INTEGER MYSQL_NUM_FIELDS(RESOURCE RESULT): This function returns the number
of expressions in the result of a SELECT statement.

INTEGER MYSQL_NUM_ROWS(RESOURCE RESULT): This function returns the number of
rows in the result of a SELECT statement.

806 SQL for MySQL Developers

807

Dynamic SQL with Prepared
Statement

C H A P T E R 3 6

36.1 INTRODUCTION

Since version 5.0, MySQL has supported prepared SQL statements (prepared SQL),
sometimes called dynamic SQL. The opposite of dynamic SQL is, as might be
expected, static SQL. This book has described static SQL so far. Each SQL state-
ment is included in its entirety in a program or in a stored procedure or function or
is entered with query tools such MySQL Query Browser, SQLyog, and WinSQL. The
SQL statements are not built dynamically. For example, if we want to develop a
stored procedure that has a table name as an input parameter and removes the
specified table when the procedure is called, this is difficult to solve with static
SQL. Of course, we could include a long and extensive IF-THEN-ELSE statement in
the stored procedure that contains a separate DROP TABLE statement for each exist-
ing table, but the code of that stored procedure must be changed every time a new
table is created. With dynamic SQL, we can build an SQL statement step by step,
which offers new possibilities.

Three SQL statements together form dynamic SQL: PREPARE, EXECUTE, and
DEALLOCATE PREPARE. In other words, with these statements, we can prepare SQL
statements. The next sections cover their respective features.

36.2 WORKING WITH PREPARED SQL STATEMENTS

If we process a static SQL statement, such as a SELECT statement, the following
actions are performed in succession:

1. The grammar of the statement is checked for correctness.

2. The catalog is queried to check whether all the databases, tables, views,
columns, and other database objects mentioned in the statement really exist.

3. Next, a check is performed to determine whether the SQL user has sufficient
privileges to have the statement processed.

4. With statements such as SELECT and UPDATE, the optimizer is asked to deter-
mine the best processing strategy.

5. Finally, the SQL statement is processed.

With static SQL, these five actions form one big step. With dynamic SQL, this
process can be split into two steps. With the PREPARE statement, we can execute
actions 1, 2, 3, and 4. This is the preparation of the statement. Next, we use the
EXECUTE statement to execute action 5; with this step, the statement is processed.

D E F I N I T I O N
<prepare statement> ::=

PREPARE <statement name>
FROM { <alphanumeric literal> | <user variable> }

<execute statement> ::=
EXECUTE <statement name>
[USING <user variable> [, <user variable>]...]

<deallocate prepare statement> ::=
{ DEALLOCATE | DROP } PREPARE <statement name>

Consider a simple example to illustrate this.

Example 36.1: Process the statement SELECT * FROM TEAMS in two steps.

PREPARE S1 FROM 'SELECT * FROM TEAMS'

Explanation: After this PREPARE statement, the SELECT statement is checked for
grammar, MySQL checks whether the table TEAMS exists, and the optimizer is
called to determine an efficient processing strategy. So the statement is prepared
and ready to be processed. MySQL keeps all data required for that internally.
Therefore, this PREPARE statement has no result. If we want to see the result of the
SELECT statement, we must use an EXECUTE statement:

EXECUTE S1

808 SQL for MySQL Developers

The result is:

TEAMNO PLAYERNO DIVISION
------ -------- --------

1 6 first
2 27 second

Explanation: Multiple statements in a program or stored procedures can be pre-
pared. For that reason, each prepared statement receives a unique name to distin-
guish it. To execute the final step, we only have to specify the name of the statement
in the EXECUTE statement—in this case, S1.

An advantage of the two-step processing strategy is that if we want to execute a cer-
tain statement more than once, we have to execute the first four steps only once,
which saves time.

The previous example used an alphanumeric literal to specify an SQL state-
ment for the PREPARE statement. We can also specify a user variable. The previous
PREPARE statement then can be built as follows:

SET @SQL_STATEMENT = 'SELECT * FROM TEAMS'

PREPARE S1 FROM @SQL_STATEMENT

This example prepared a SELECT statement, but most SQL statements may be
prepared, including CREATE TABLE, DELETE, DROP INDEX, and UPDATE.

If a prepared statement will no longer be processed, it is better to remove it with
a DEALLOCATE PREPARE statement.

Example 36.2: Remove the prepared statement S1.

DEALLOCATE PREPARE S1

Explanation: After this statement, the prepared statement S1 no longer can be
processed.

Instead of using the term DEALLOCATE, you may use the term DROP to achieve the
same result.

809CHAPTER 36 Dynamic SQL with Prepared Statement

36.3 PREPARED STATEMENTS WITH USER VARIABLES

Every time we execute the statement from Example 36.1, the same statement is
processed. We can include user variables in a statement that needs to be prepared.
This enables us to change the statements a little every time.

Example 36.3: Process the statement SELECT * FROM TEAMS WHERE TEAMNO =
@TNO in two steps.

PREPARE S2 FROM 'SELECT * FROM TEAMS WHERE TEAMNO = @TNO'

SET @TNO = 1

EXECUTE S2

The result is:

TEAMNO PLAYERNO DIVISION
------ -------- --------

1 6 first

In this example, if we change the value of the variable TNO before we use the
EXECUTE statement, the result is different.

SET @TNO = 2

EXECUTE S2

The result is:

TEAMNO PLAYERNO DIVISION
------ -------- --------

2 27 second

Of course, user variables may be used only where static SQL allows them. For
example, the statement DROP TABLE @TABLENAME is not allowed.

36.4 PREPARED STATEMENTS WITH PARAMETERS

Another way to change a statement a little during the EXECUTE statement is to use
parameters. Instead of user variables, we specify question marks, generally called
placeholders.

810 SQL for MySQL Developers

Example 36.4: Process the statement SELECT * FROM TEAMS WHERE TEAMNO

BETWEEN ? AND ? in two steps.

PREPARE S3 FROM
'SELECT * FROM TEAMS WHERE TEAMNO BETWEEN ? AND ?'

SET @FROM_TNO = 1, @TO_TNO = 4

EXECUTE S3 USING @FROM_TNO, @TO_TNO

DEALLOCATE PREPARE S3

Explanation: MySQL prepares the SELECT statement first and then remembers that
two parameters must be entered during the processing step. The EXECUTE statement
has been extended with a USING clause in which the two user variables can be spec-
ified. To process the SELECT statement, the values of the user variables are filled in
on the positions of the placeholders.

When you are working with parameters, it is important to remember that the num-
ber of question marks (or the number of placeholders) in the prepared statement
must equal the number of user variables specified in the USING clause of the
EXECUTE statement.

This method of working does not offer additional features over the method dis-
cussed in the previous section. However, more SQL products support this method
than the one with the user variables.

36.5 PREPARED STATEMENTS IN STORED PROCEDURES

As mentioned, prepared SQL statements may be used within stored procedures,
stored functions, and events. Because of this, any SQL statement can be built
dynamically within a stored procedure. SQL statements can even be passed as
parameters. Consider examples of both.

Example 36.5: Develop a stored procedure that removes a certain table. The
name of the table to remove must be passed as a parameter.

CREATE PROCEDURE DROP_TABLE
(IN TABLENAME VARCHAR(64))

BEGIN
SET @SQL_STATEMENT = CONCAT('DROP TABLE ', TABLENAME);
PREPARE S1 FROM @SQL_STATEMENT;
EXECUTE S1;
DEALLOCATE PREPARE S1;

END

811CHAPTER 36 Dynamic SQL with Prepared Statement

Explanation: In the SET statement, the desired DROP TABLE statement is built, the
PREPARE statement is used to prepare the DROP TABLE, and the DROP TABLE is run
with the EXECUTE statement. Without using prepared SQL, this stored procedure
would not have been possible.

With the present implementation of prepared SQL, however, the results of prepared
SELECT statements cannot be fetched row by row with a cursor. We can prepare and
process a SELECT statement, but the result is sent directly to the calling program; we
cannot pick it up within the stored procedure. Nevertheless, you can get around this
limitation to a certain extent by using temporary tables.

Example 36.6: Develop a stored procedure that has a SELECT statement as
parameter and uses a cursor to count the number of rows in the result of that SELECT
statement.

CREATE PROCEDURE DYNAMIC_SELECT
(IN SELECT_STATEMENT VARCHAR(64),
OUT NUMBER_OF_ROWS INTEGER)

BEGIN
DECLARE FOUND BOOLEAN DEFAULT TRUE;
DECLARE VAR1,VAR2,VAR3 VARCHAR(100);
DECLARE C_RESULT CURSOR FOR

SELECT * FROM SELECT_TABLE;
DECLARE CONTINUE HANDLER FOR NOT FOUND

SET FOUND = FALSE;
SET @CREATE_STATEMENT =

CONCAT('CREATE TEMPORARY TABLE SELECT_TABLE AS (',
SELECT_STATEMENT, ')');

PREPARE S1 FROM @CREATE_STATEMENT;
EXECUTE S1;
DEALLOCATE PREPARE S1;
SET NUMBER_OF_ROWS = 0;
OPEN C_RESULT;
FETCH C_RESULT INTO VAR1, VAR2, VAR3;
WHILE FOUND DO

SET NUMBER_OF_ROWS = NUMBER_OF_ROWS + 1;
FETCH C_RESULT INTO VAR1, VAR2, VAR3;

END WHILE;
CLOSE C_RESULT;
DROP TEMPORARY TABLE SELECT_TABLE;

END

CALL DYNAMIC_SELECT('SELECT PAYMENTNO, PAYMENT_DATE, PLAYERNO
FROM PENALTIES', @NUMBER_OF_ROWS)

SELECT @NUMBER_OF_ROWS

812 SQL for MySQL Developers

Explanation: The first SET statement converts the SELECT statement into a CREATE
TEMPORARY TABLE statement. With the PREPARE and EXECUTE statements, the new
CREATE statement is processed. The result of the SELECT statement thus is assigned
to the created, temporary table. Next, we have a cursor with which we can browse
the rows of the temporary table. A limitation of this stored procedure is that the
number of expressions in the SELECT clause of the SELECT statement must be equal
to three. The reason is that three variables have been defined in the FETCH
statement.

Obviously, we do not really need a cursor in this stored procedure; we could have
added a COUNT function to the SELECT clause. Still, the example shows that it is pos-
sible to work with prepared statements in combination with cursors.

Prepared or dynamic SQL statements in combination with stored procedures
form an interesting addition to SQL: They make it possible to develop very general
stored procedures that will simplify repetitive activities. In short, prepared SQL
statements are an enrichment of SQL.

813CHAPTER 36 Dynamic SQL with Prepared Statement

This page intentionally left blank This page intentionally left blank

815

Transactions and Multiuser
Usage

C H A P T E R 3 7

37.1 INTRODUCTION

So far in this book, we have assumed that you are the only user of the database. If
you do the examples and exercises at home, that assumption is probably correct.
But if you work with MySQL in your company, for example, the odds are good that
you share the database with many other users. We call this multiuser usage as
opposed to single-user usage. In a multiuser environment, you should not be aware
that other users are accessing the database concurrently because MySQL hides this
from you as much as possible.

The following question might arise: What happens if I access a row that is
already in use by someone else? This chapter answers that question. We start with
a concept that forms the basis of multiuser usage: the transaction (also called unit of
work). We also discuss the concepts savepoint, lock, deadlock, and isolation level,
and we consider the LOCK TABLE statement.

Not all storage engines support transactions; for example, InnoDB and BDB do,
but MyISAM and MEMORY do not. Therefore, this chapter assumes that you created the
tables with one of the storage engines that does support transactions.

This chapter looks inside MySQL. If that does not interest you, you can skip
this chapter. For those who will develop real-life applications with MySQL, we rec-
ommend studying this chapter carefully.

37.2 WHAT IS A TRANSACTION?
What exactly is a transaction? This book defines a transaction as a set of SQL state-
ments that are entered by one user and ended by specifying whether all changes are

to be made permanent or rolled back (or undone). By “change,” we mean each
UPDATE, DELETE, and INSERT statement. SQL statements entered by different users
cannot belong to the same transaction. The end of this section explains why we
might want to undo changes.

Many products for interactive SQL are set up so that each SQL statement is
seen as a complete transaction and each transaction (that is, individual update) is
automatically made permanent. This mode of working is called autocommit. The
user can undo changes only if he or she executes compensating changes. For exam-
ple, if rows are added with an INSERT statement, this change can be undone only by
executing one or more DELETE statements. However, we can turn off this automatic
committing of transactions.

As an illustration, if you use WinSQL as a product for interactive SQL, you can
turn off automatic commit as follows. When a new connection is created, the check
mark in the Autocommit Transactions box must be removed; see Figure 37.1. The
user is now responsible for ending the transactions. In other products, autocommit
must be turned off in another way.

816 SQL for MySQL Developers

FIGURE 37.1 Turning off autocommit

However, MySQL does not settle for that. When a session is started in MySQL,
the AUTOCOMMIT system variable is normally turned on. An SQL statement must be
used to turn it off. The following statement turns off autocommit:

SET @@AUTOCOMMIT = 0

When autocommit must be turned on again, you issue this statement:

SET @@AUTOCOMMIT = 1

After autocommit has been turned off, a transaction can consist of multiple SQL
statements, and you must indicate the end of each transaction. Two separate SQL
statements accomplish this. In the next example, we illustrate how this works.

Example 37.1: Delete all penalties of player 44.

DELETE
FROM PENALTIES
WHERE PLAYERNO = 44

The effect of this statement becomes apparent when you issue the following
SELECT statement:

SELECT *
FROM PENALTIES

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
6 8 1980-12-08 25.00
8 27 1984-11-12 75.00

Three rows have been deleted from the table. However, the change is not yet
permanent (even though it looks that way) because autocommit has been turned off.
The user (or application) has a choice now: The change can be undone with the SQL
statement ROLLBACK or made permanent with the COMMIT statement.

D E F I N I T I O N
<commit statement> ::=

COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

<rollback statement> ::=
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

Let us choose the first option and use the following statement:

ROLLBACK WORK

817CHAPTER 37 Transactions and Multiuser Usage

Explanation: If we repeat the SELECT statement used previously, it returns the
entire PENALTIES table. The three deleted rows appear in the result again. If we
wanted to make the change permanent, we should have used the COMMIT statement:

COMMIT WORK

This statement permanently deletes the three rows from the table. We can omit
the word WORK because it does not affect the processing.

COMMIT statements make the changes permanent, and ROLLBACK statements
undo them. Now the question is, which changes are rolled back? Is it only the last
change or everything from the moment you started the application? To answer this,
we return to the concept of a transaction. As previously mentioned, a transaction is
a set of SQL statements. For example, the earlier DELETE and SELECT statements
form a (small) transaction. COMMIT and ROLLBACK statements always relate to the
so-called current transaction. In other words, these statements relate to all SQL
statements executed during the current transaction. Now the question is, how do we
mark the beginning and end of a transaction? For now, we assume that the begin-
ning of a transaction cannot be marked explicitly (we return to this subject in Sec-
tion 37.10). The first SQL statement executed in an application is considered to be
the beginning of the first transaction. The end of a transaction is marked by using a
COMMIT or ROLLBACK statement. Therefore, an SQL statement that follows a COMMIT
or ROLLBACK statement is the first statement of the new current transaction.

Example 37.2: To illustrate these concepts, see the following series of state-
ments that are entered consecutively. It is not important whether these statements
are entered interactively (with MySQL, for example) or are embedded within a host
language program:

1. INSERT ...

2. DELETE ...

3. ROLLBACK WORK

4. UPDATE ...

5. ROLLBACK WORK

6. INSERT ...

7. DELETE ...

8. COMMIT WORK

9. UPDATE ...

10. end of program

818 SQL for MySQL Developers

Explanation of the previous statements:

Lines 1–2 These two changes are not yet permanent.

Line 3 A ROLLBACK statement is executed. All changes of the current
transaction (lines 1–2) are undone.

Line 4 This change is not yet permanent. Because this statement
follows a ROLLBACK statement, a new transaction is started.

Line 5 A ROLLBACK statement is executed. All changes of the current
transaction (line 4) are undone.

Lines 6–7 These two changes are not yet permanent. Because the state-
ment on line 6 follows a ROLLBACK statement, a new trans-
action is started.

Line 8 A COMMIT statement is executed. All changes of the current
transaction (lines 6–7) become permanent.

Line 9 This change is not yet permanent. Because this statement
follows a COMMIT statement, a new transaction is started.

Line 10 Here the program is ended. All changes of the current trans-
action are undone—in this case, the change on line 9.

When a program stops without marking the end of a transaction, MySQL automati-
cally executes a ROLLBACK statement. However, we advise that you always make the
last SQL statement executed by a program a COMMIT or ROLLBACK statement.

Why would we want to undo transactions? This question can be formulated in
another way: Why not always execute a COMMIT statement immediately after each
change? Two main reasons exist. First, something can go wrong while processing
SQL statements. For example, when you add new data, the database might become
full, the computer may break down during the processing of an SQL statement, or a
division by zero might occur during a calculation. Imagine that one of these prob-
lems occurs when you process one of the statements in the next example.

Example 37.3: Delete all data for player 6. We assume that no foreign keys have
been defined.

DELETE FROM PLAYERS WHERE PLAYERNO = 6

DELETE FROM PENALTIES WHERE PLAYERNO = 6

DELETE FROM MATCHES WHERE PLAYERNO = 6

DELETE FROM COMMITTEE_MEMBERS WHERE PLAYERNO = 6

UPDATE TEAMS SET PLAYERNO = 83 WHERE PLAYERNO = 6

819CHAPTER 37 Transactions and Multiuser Usage

Five statements are required to remove all the information about a particular
player: four DELETE statements and one UPDATE statement. In the last statement,
player 6 is not removed from the TEAMS table, but is instead replaced by player 83
because player 6 can no longer be captain (because he no longer occurs in the
PLAYERS table). A new captain must be registered as well because the
PLAYERNO column in the TEAMS table is defined as NOT NULL. If you use a
DELETE statement instead of an UPDATE statement, data about the team captained by
player 6 will also be deleted, and that is not what you intended. These five changes
together form a unit and must be handled as one transaction. Imagine that the third
DELETE statement goes wrong. At that moment, two changes of the transaction have
been executed and three have not. The first two changes cannot be undone. In other
words, the MATCHES and TEAMS tables contain data about a player who does not
exist in the PLAYERS table, which is an unwanted situation. Either all five changes
must be executed or none must be. Therefore, we must be able to undo the changes
that have already been carried out.

The second reason concerns the user’s own mistakes. Imagine that a user
changes a large amount of data in different tables about a particular player and dis-
covers later that he chose the wrong player. He must be able to roll back these
changes. Here the ROLLBACK statement can be useful.

In MySQL, statements that change the catalog, such as CREATE TABLE, ALTER
FUNCTION, GRANT, and DROP INDEX, cannot be undone. Before and after processing
such a statement, MySQL automatically executes a COMMIT statement. This type of
statement therefore ends any current transaction. Turning autocommit on or off has
no effect.

The COMMIT and ROLLBACK statements may end with the term RELEASE. This ends
the transaction and also the connection with MySQL. As a result, the application
can no longer access the database—a new connection must be established. Speci-
fying NO RELEASE guarantees that the connection remains.

The system variable called COMPLETION_TYPE plays an important role here. This
variable indicates how transactions must be ended. If its value is equal to 2, MySQL
converts every COMMIT and ROLLBACK to COMMIT RELEASE and ROLLBACK RELEASE,
respectively. If we do not want that, we need to add NO RELEASE to these statements.
If COMPLETION_TYPE is equal to 0, then NO RELEASE is taken by default.

You can use the following SHOW statement to query the value of this system
variable:

SHOW GLOBAL VARIABLES LIKE 'COMPLETION_TYPE'

As mentioned earlier, if a transaction is ended, a new transaction starts only at
the next SQL statement. However, if you add AND CHAIN, the new transaction starts

820 SQL for MySQL Developers

immediately. The new transaction also receives all the properties of the ended
transaction (this is especially relevant for the isolation level; see Section 37.10).
But this does not hold true for AND NO CHAIN. If the COMPLETION_TYPE system param-
eter is equal to 1, then AND NO CHAIN is the standard. When the value is equal to 1,
then AND CHAIN is the standard.

Exercise 37.1: For the following series of statements, determine which will
become permanent.

1. SELECT ...

2. INSERT ...

3. COMMIT WORK

4. ROLLBACK WORK

5. DELETE ...

6. DELETE ...

7. ROLLBACK WORK

8. INSERT ...

9. COMMIT WORK

10. end of program

37.3 STARTING TRANSACTIONS

The first SQL statement of an application or the first SQL statement after a COMMIT
or ROLLBACK starts a new transaction. This is called an implicit start of a transaction.
However, it is possible to start a transaction explicitly with the START TRANSACTION
statement.

D E F I N I T I O N
<start transaction statement> ::=

START TRANSACTION

Example 37.4: Rewrite Example 37.2 to explicitly start transactions.

1. START TRANSACTION

2. INSERT ...

3. DELETE ...

4. ROLLBACK WORK

821CHAPTER 37 Transactions and Multiuser Usage

5. START TRANSACTION

6. UPDATE ...

7. ROLLBACK WORK

8. START TRANSACTION

9. INSERT ...

10. DELETE ...

11. COMMIT WORK

12. START TRANSACTION

13. UPDATE ...

14. end of program

A START TRANSACTION statement automatically leads to a COMMIT of the changes
that are not permanent yet. In addition, the autocommit is turned off. The SET
AUTOCOMMIT statement is therefore not required. If the transaction is ended, the
value of the AUTOCOMMIT variable is reset to the old value, regardless of what it was.

The statement BEGIN WORK may also be used in place of START TRANSACTION.
However, the START TRANSACTION statement is preferable because many other SQL
products support it.

D E F I N I T I O N
<begin work statement> ::=

BEGIN WORK

37.4 SAVEPOINTS

In the previous sections, we discussed how to undo complete transactions. It is also
possible to undo only a part of a current transaction by using savepoints.

D E F I N I T I O N
<savepoint statement> ::=

SAVEPOINT <savepoint name>

822 SQL for MySQL Developers

823CHAPTER 37 Transactions and Multiuser Usage

To use savepoints, we must extend the definition of the ROLLBACK statement:

D E F I N I T I O N
<rollback statement> ::=

ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
[TO SAVEPOINT <savepoint name>]

See the next example to illustrate this functionality.

1. UPDATE ...

2. INSERT ...

3. SAVEPOINT S1

4. INSERT ...

5. SAVEPOINT S2

6. DELETE ...

7. ROLLBACK WORK TO SAVEPOINT S2

8. UPDATE ...

9. ROLLBACK WORK TO SAVEPOINT S1

10. UPDATE ...

11. DELETE ...

12. COMMIT WORK

Explanation of the previous statements:

Lines 1–2 These two changes are not yet permanent.

Line 3 A savepoint is defined with the name S1.

Line 4 This change is not yet permanent.

Line 5 A savepoint is defined with the name S2.

Line 6 This change is not yet permanent.

Line 7 A ROLLBACK is issued. However, not all changes are
undone—only those performed after savepoint S2 (the
change on line 6). The changes on lines 1 and 2 are not yet
permanent but are still present.

Line 8 This change is not yet permanent.

Line 9 A ROLLBACK to savepoint S1 is entered. All changes per-
formed after savepoint S1 are undone—these are the
changes on lines 4 and 8.

Lines 10–11 These two changes are not yet permanent.

Line 12 All nonpermanent changes are made permanent—these are
the changes on lines 1, 2, 10, and 11.

When a change is undone to a certain savepoint, only the last changes of the cur-
rent transaction can be undone.

Exercise 37.2: For the following series of statements, determine which will
become permanent.

1. SELECT ...

2. SAVEPOINT S1

3. INSERT ...

4. COMMIT WORK

5. INSERT ...

6. SAVEPOINT S1

7. DELETE ...

8. ROLLBACK WORK TO SAVEPOINT S1

9. DELETE ...

10. SAVEPOINT S2

11. DELETE ...

12. ROLLBACK WORK TO SAVEPOINT S1

13. COMMIT WORK

14. end of program

37.5 STORED PROCEDURES AND TRANSACTIONS

Within stored procedures, all the well-known transaction-oriented statements can
be used, such as COMMIT, ROLLBACK, and START TRANSACTION. A transaction does not
begin with the start of a stored procedure, nor does it stop with the end of it. For
transactions, MySQL does not see the difference between SQL statements delivered
by the applications and those delivered by the stored procedures. This means, for
example, that when certain changes of an application are not permanent yet and a

824 SQL for MySQL Developers

stored procedure is called that also executes some changes, all changes are consid-
ered part of the current transaction. It also means that if a stored procedure sends
a COMMIT statement and there are still nonpermanent changes, they also are made
permanent.

Example 37.5: Develop a stored procedure that adds a new team.

CREATE PROCEDURE NEW_TEAM ()
BEGIN

INSERT INTO TEAMS VALUES (100,27,'first');
END

Imagine that the application executes the following statements:

SET AUTOCOMMIT = 1

START TRANSACTION

INSERT INTO TEAMS VALUES (200,27,'first')

CALL NEW_TEAM()

ROLLBACK WORK

The ROLLBACK statement is now responsible for removing the row entered
with the INSERT statement and also for removing the row added by the stored
procedures.

37.6 PROBLEMS WITH MULTIUSER USAGE

Imagine that you have removed all rows from the PENALTIES table in a transac-
tion, but you have not yet ended the transaction. What will the other users see if
they query the PENALTIES table? Will they see an empty table, or will they still
see all the original rows? Are they allowed to see the changes that you have not yet
made permanent? These problems are comparable to the problems of a policeman
at a crossing. Whatever the policeman does and however he moves his arms, he
must ensure that two cars do not use the crossing at the same time at the same
place. MySQL (the policeman) must ensure that two users (the cars) do not access
the same data (the crossing) simultaneously in the wrong way.

The problem described here is just one of the possible problems due to the
effects of multiuser usage, but there are more. This section highlights four of the
best-known problems. For more detailed descriptions and other problems, we refer
to [BERN97] and [GRAY93].

825CHAPTER 37 Transactions and Multiuser Usage

37.6.1 Dirty Read or Uncommitted Read
The problem when one SQL users sees data that another user has not yet committed
is called a dirty read or uncommitted read.

Example 37.6: Assume the following series of events that are entered con-
secutively.

1. User U1 wants to increase the amount of the penalty with payment number 4
by $25. For this, he uses the following UPDATE statement:
UPDATE PENALTIES
SET AMOUNT = AMOUNT + 25
WHERE PAYMENTNO = 4

2. Before U1 ends the transaction with a COMMIT statement, user U2 accesses the
same penalty with the following SELECT statement and sees the updated
amount:
SELECT *
FROM PENALTIES
WHERE PAYMENTNO = 4

3. U1 rolls back the UPDATE statement with a ROLLBACK statement.

The result is that U2 has seen data that was never “committed.” In other words,
he saw data that never even existed. The SELECT statement that U2 executed is
called a dirty read. User U2 has seen “dirty” data.

37.6.2 Nonrepeatable Read or Nonreproducible Read
A special version of the dirty read is the nonrepeatable read, nonreproducible read,
or inconsistent read. Here a user reads partly dirty and partly clean data and com-
bines it. The user is not aware of the fact that this result is based upon data that is
only partly clean.

Example 37.7: The following events are entered consecutively.

1. With the following SELECT statement, user U1 retrieves all players resident in
Stratford and writes their player numbers on a piece of paper:
SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford'

The result is 6, 83, 2, 7, 57, 39, and 100. Then U1 starts a new transaction.

826 SQL for MySQL Developers

2. A few seconds later, user U2 changes the address of player 7 (who lives in
Stratford) with the following UPDATE statement:

UPDATE PLAYERS
SET TOWN = 'Eltham'
WHERE PLAYERNO = 7

3. Next, user U2 ends the transaction with a COMMIT statement.

4. Now user U1 queries one by one the addresses of the players that were writ-
ten on the piece of paper, using the following SELECT statement, and prints
them on labels:
SELECT PLAYERNO, NAME, INITIALS,

STREET, HOUSENO, POSTCODE, TOWN
FROM PLAYERS
WHERE PLAYERNO IN (6, 83, 2, 7, 57, 39, 100)

The result of these two changes is that user U1 also prints a label for player 7
because he assumed that player 7 still lived in Stratford. The second SELECT state-
ment in the same transaction does not give the same picture of the database. The
result of the first SELECT statement cannot be reproduced, which is not desirable, of
course.

37.6.3 Phantom Read
The following problem is known as a phantom read.

Example 37.8: The following events are again entered consecutively.

1. With the following SELECT statement, user U1 looks for all players residing in
Stratford:
SELECT PLAYERNO
FROM PLAYERS
WHERE TOWN = 'Stratford'

The result is 6, 83, 2, 7, 57, 39, and 100. However, user U1 does not end the
transaction.

2. Sometime later, user U2 adds a new player who lives in Stratford and ends
the transaction with a COMMIT statement.

3. User U1 sees one more row when he executes the same SELECT statement: the
row user U2 entered.

This means that the second SELECT statement in the same transaction (similar to
the last example) does not present the same picture of the database. The difference
between a phantom read and a nonrepeatable read is that, with the former, new data
becomes available, and with the latter, data is changed.

827CHAPTER 37 Transactions and Multiuser Usage

37.6.4 Lost Update
The final problem that we discuss is called a lost update, in which the change of one
user overwrites that of another.

Example 37.9: The following events are entered consecutively again.

1. User U1 wants to increase the amount of the penalty with payment number
4 by $25. First, he queries the penalty amount with a SELECT statement (a
transaction starts). The penalty appears to be $50.

2. A few seconds later, user U2 wants to increase the amount of the penalty with
payment number 4 by $30. He also queries the current value with a SELECT
statement and sees $50. A second transaction begins here.

3. User U1 executes the following UPDATE statement (notice the SET clause):

UPDATE PENALTIES
SET AMOUNT = AMOUNT + 25
WHERE PAYMENTNO = 4

4. Next, user U1 ends his transaction with a COMMIT statement.

5. User U2 executes his UPDATE statement (notice the SET clause):

UPDATE PENALTIES
SET AMOUNT = AMOUNT + 30
WHERE PAYMENTNO = 4

6. User U2 also ends his transaction with a COMMIT statement.

The result of these two changes is that both users think their changes have been
executed (“committed”). However, the change of user U1 has disappeared. His
change of $25 is overwritten by the change of user U2. Losing changes, of course, is
not desirable. MySQL must ensure that once changes have been “committed,” they
really are permanent.

All the problems described here can be solved easily by not allowing two users
to run a transaction simultaneously. If the transaction of U2 can start only if that of
U1 has ended, nothing will go wrong. In other words, the transactions are processed
serially. However, imagine that you share the database with more than a hundred
users. If you end a transaction, it will probably be a long time before it is your turn
again. We describe the level of concurrency as low: No two users can work simulta-
neously. Therefore, it is necessary to process transactions simultaneously, or in par-
allel. But to do this, MySQL needs a mechanism to prevent the previously
mentioned problems from occurring. This is the subject of the remaining part of the
chapter.

828 SQL for MySQL Developers

37.7 LOCKING

A number of different mechanisms exist to keep the level of concurrency high and
still prevent problems. This section discusses the mechanism implemented in
MySQL: locking.

The basic principle of locking is simple. If a user accesses a certain piece of
data, such as a row from the PLAYERS table, the row is locked and other users can-
not access that row. Only the user who has locked the row can access it. Locks are
released when the transaction ends. In other words, the life of a lock is never longer
than that of the transaction in which the lock is created.

Let us see what happens with two of the problems discussed in the previous
section. For the problem of the lost update (see Example 37.9), user U1 accesses
penalty number 4 first. MySQL automatically places a lock on that row. Then user
U2 tries to do the same. However, this user receives a message indicating that the
row is not available. He must wait until U1 has finished. This means that the final
penalty amount is $105 (work it out for yourself). In this case, the transactions of U1
and U2 are processed not in parallel, but serially. Other users who are working with
another penalty number are processed concurrently.

For the problem of the nonrepeatable read (see Example 37.7), we now have a
comparable situation. Only after user U1 has printed the labels can user U2 change
the address, which no longer causes problems.

A locking mechanism works correctly if it meets the serializability criterion. If
the contents of the database after (concurrently) processing a set of transactions are
the same as the contents of the database after processing the same set of transac-
tions serially (order is irrelevant), the mechanism works correctly. The state of the
database after problem 1 shows that the penalty amount of penalty number 4 is $80.
You will never manage to get the same amount by processing the two transactions of
users U1 and U2 serially. Whether you execute user U1’s transaction first and then
user U2’s, or vice versa, the result is $105, not $80.

Where does the database store all those locks? The internal memory of the
computer maintains the lock administration. Usually, a large part of the internal
memory is reserved for this function. This space is called the buffer. Therefore,
locks are not stored in the database, and users do not see locks.

We stated that the transactions of users U1 and U2 are processed serially after
locks have been placed. This is not ideal, of course. To increase the level of concur-
rency, most products support two types of locks: share and exclusive (sometimes
these locks are called read and write, respectively). If a user has a share lock on a
row, other users can read that row but cannot change it. The advantage is that users

829CHAPTER 37 Transactions and Multiuser Usage

who execute only SELECT statements in their transactions do not hold each other up.
If a user has an exclusive lock, other users cannot reach the row, even to read it.
The previous sections assumed that each lock was exclusive.

No separate SQL statement exists to indicate that you want to work with share
locks, for example. MySQL determines the type of lock from the SQL statement. For
example, if a SELECT statement is executed, a share lock is implemented. On the
other hand, when you use an UPDATE statement, an exclusive lock is set.

37.8 DEADLOCKS

A well-known phenomenon that can occur if many users access the database simul-
taneously is a deadlock. Simply put, a deadlock arises if two users wait for each
other’s data. Imagine that user U1 has a lock on row R1 and that he or she wants to
place one on row R2. Assume also that user U2 is the “owner” of the lock on row R2
and wants to place a lock on R1. These two users are waiting for each other. If we go
back to the analogy of a road crossing, have you ever been at a crossroads when four
cars approach at the same time? Who can drive on first? This is also deadlock.

If a deadlock arises, MySQL will not discover it. You must design your pro-
grams to minimize the chances of deadlocks. This requires a detailed knowledge
about how MySQL handles transactions and locks. Therefore, read this chapter
intently and also seek additional information about this subject.

37.9 THE LOCK TABLE AND UNLOCK TABLE
STATEMENTS

As previously mentioned, all the data in use during a transaction is locked against
other users. To keep track of which data has been locked by which application,
MySQL must keep some internal administration. It is possible for a user to execute
many changes on a particular table within one transaction. For example, the user
might have a program that changes a column value of all rows of a table. These
changes create a huge amount of internal administrative work. To avoid this, you
can lock the entire table in one process at the beginning of a transaction using the
LOCK TABLE statement.

830 SQL for MySQL Developers

D E F I N I T I O N
<lock table statement> ::=

LOCK { TABLE | TABLES } <lock table> [, <lock table>]...

<lock table> ::=
<table specification> [AS <pseudonym>] <lock type>

<lock type> ::= READ | READ LOCAL | WRITE | LOW_PRIORITY WRITE

Only base tables (tables that have been created with a CREATE TABLE statement)
can be locked. At the end of a transaction, a lock is released automatically.

Example 37.10: Lock the entire PLAYERS table.

LOCK TABLE PLAYERS READ

MySQL supports the following lock types:

■ READ—A lock of this type ensures that the application can read the table;
other applications are also allowed to read the table, but they cannot
change it.

■ READ LOCAL—A lock of this type works only for tables created with the
MyISAM storage engine. With this lock type, multiple users can simultane-
ously add rows to the table under certain conditions.

■ WRITE— A lock of this type ensures that the application can change the
table. Other applications cannot gain access to the table; they can neither
read it nor change it.

■ LOW_PRIORITY WRITE—A lock of this type ensures that the applica-
tion can read the table; other applications are also allowed to read the table,
but they cannot change it. An SQL user receives this lock only when all other
users are finished.

With the UNLOCK TABLE statement, all locks that an SQL user owns are released—
not just those that were created with a LOCK TABLE statement, but all of them. This is
not the same as ending a transaction.

D E F I N I T I O N
<unlock table statement> ::=

UNLOCK { TABLE | TABLES }

831CHAPTER 37 Transactions and Multiuser Usage

37.10 THE ISOLATION LEVEL

One further complication exists. Each transaction has a so-called isolation level,
which defines the extent to which the users are isolated from or interfere with each
other. So far, we have assumed only one isolation level. In MySQL, we find the fol-
lowing levels:

■ Serializable—If the isolation level is serializable, the users are the most
separated from each other.

■ Repeatable read—If the isolation level is a repeatable read (also called
read repeatability), share locks are set on all data that a user reads and
exclusive locks are placed on data that is changed. These locks exist as long
as the transaction runs. This means that if a user executes the same SELECT
statement several times within the same transaction, the result will always be
the same. In previous sections, we assumed that this isolation level was
desirable.

■ Cursor stability or read committed—With cursor stability, the same
locks are placed as for a repeatable read. The difference is that share locks
are released if the SELECT statement is processed. In other words, after the
SELECT statement has been processed but before the transaction ends, data
becomes available for other users. This does not apply to changes, of course.
An exclusive lock is set on data that has been changed and remains there
until the end of the transaction.

■ Dirty read or read uncommitted—For reading data, a dirty read is equal
to cursor stability. However, with a dirty read, a user can see the changes
another user has made before that user makes them permanent with a COMMIT
statement. In other words, the exclusive lock is released immediately after a
change but before the transaction ends. This means that if you work with a
dirty read, the locking mechanism does not meet the serializability criterion.

In summary, with the isolation level called serializable, users have the greatest
isolation from each other, but the level of concurrency is the lowest. This is the
opposite of a dirty read, in which users will definitely notice that they are not alone
in using the system; they can read data that does not exist a few seconds later. How-
ever, the level of concurrency is the highest. A user will rarely need to wait for
another user. Table 37.1 indicates whether each type of problem described in Sec-
tion 37.6 can occur for a specific isolation level.

832 SQL for MySQL Developers

TABLE 37.1 Overview of Isolation Levels

833CHAPTER 37 Transactions and Multiuser Usage

ISOLATION DIRTY INCONSISTENT NONREPEATABLE PHANTOM LOST

LEVEL READ READ READ READ UPDATE

Dirty read/
read uncommitted Yes Yes Yes Yes Yes

Cursor stability/
read committed No No Yes Yes Yes

Repeatable read No No No No Yes

Serializable No No No No No

Only with storage engines that support transactions, such as InnoDB and BDB,
can an isolation level be defined. The following statements can determine the
actual isolation level:

SHOW GLOBAL VARIABLES LIKE 'TX_ISOLATION'

SELECT @@GLOBAL.TX_ISOLATION

In both cases, the result is REPEATABLE-READ if this variable still has the stan-
dard default value.

The SET TRANSACTION statement can change the default. However, this state-
ment affects not the running transaction, but the next one started.

D E F I N I T I O N
<set transaction statement> ::=

SET [GLOBAL | SESSION] TRANSACTION
ISOLATION LEVEL <isolation level>

<isolation level> ::=
READ UNCOMMITTED |
READ COMMITTED |
REPEATABLE READ |
SERIALIZABLE

If we specify SESSION, the new isolation level applies only to the running session
and connections. Other SQL users still have the same isolation level. When we spec-
ify GLOBAL, we change the system variable TX_ISOLATION, and that affects all SQL
users. Of course, GLOBAL may be used only if the SQL user has enough authority.

In Section 37.3, we mentioned that you can explicitly define the beginning of a
transaction with a START TRANSACTION statement. The SET TRANSACTION statement
can also perform this function.

37.11 WAITING FOR A LOCK

If a user asks for a lock on a row or table, it is possible that another user has already
locked it. The former application will keep waiting until the existing lock is
released. But how long will the application wait? When MySQL starts, it queries the
system variable INNODB_LOCK_WAIT_TIMEOUT. The value of this variable holds the
standard waiting time in seconds. It is not possible to adjust this variable with the
SET statement—this must be done when the MySQL database server starts.

This variable is relevant only for table locks that were made with the storage
engine InnoDB.

37.12 MOMENT OF PROCESSING STATEMENTS

We always a assume that UPDATE, INSERT, DELETE, REPLACE, and SELECT statements
are processed immediately when there are no locks in the way. This quick way of
processing can be adjusted by specifying a processing option in the statements. Pos-
sible processing options exist for the first four statements:

■ Delayed—With the delayed option, the change is placed on a waiting list.
The application receives the message that the statement has been processed
correctly and can go on processing other statements. MySQL determines for
itself, based upon the activity on the system, when the change will actually
be executed.

■ Low priority—If low priority is used, the change is performed only when
no other SQL users need to read the data.

■ High priority—MySQL ensures that no other SELECT statements are exe-
cuted simultaneously because that could negatively affect the speed of the
change. The application can temporarily use the data exclusively.

We next specify how this processing option can be included in the different
SQL statements and which options can be used with which statements:

834 SQL for MySQL Developers

D E F I N I T I O N
<delete statement> ::=

DELETE [LOW_PRIORITY] [IGNORE] ...

<insert statement> ::=
INSERT [DELAYED | LOW_PRIORITY | HIGH_PRIORITY] [IGNORE] ...

<replace statement> ::=
REPLACE [DELAYED | LOW_PRIORITY] [IGNORE] ...

<update statement> ::=
UPDATE [LOW_PRIORITY] [IGNORE] ...

We can extend the SELECT statement with a processing option in the form of a
select option; see also Section 9.6. By specifying HIGH_PRIORITY in the SELECT
clause of a SELECT statement, we assign this statement a higher priority. This
increases the chance that this statement is processed faster. This has no effect in a
single-user environment; however, it can make an impact when multiple users
access the same database server concurrently. Suppose that MySQL is busy pro-
cessing a SELECT statement and simultaneously other users are executing INSERT,
UPDATE, or DELETE statements on the same table. Because the SELECT statement is
still being processed, these updates wait in a queue. Usually, a new SELECT state-
ment is placed at the end of this queue. By specifying HIGH_PRIORITY, this state-
ment is placed before all other updates in the queue. This does not improve the
processing speed, but the statement processing starts sooner.

37.13 WORKING WITH APPLICATION LOCKS

This chapter discussed only locks on rows. MySQL also supports application locks.
These locks receive a name and are not related to a set of rows or a table. To work
with these locks, four functions have been introduced: GET_LOCK, RELEASE_LOCK,
IS_FREE_LOCK, and IS_USED_LOCK.

With the function GET_LOCK, we create an application lock called a named lock.
This function has two parameters. The first is the name of the lock. If the lock is
created successfully, the result of this function is equal to 1. If a lock with the name
stated already exists, the system waits for the number of seconds that is specified in
the second parameter. If after this number of seconds the lock is still not available,
the function returns the value 0. To call this function, we use the DO statement; see
Section 15.6.

835CHAPTER 37 Transactions and Multiuser Usage

Example 37.11: Create an application lock called LOCK1.

DO GET_LOCK('lock1',0)

Explanation: If the lock called LOCK1 does not exist yet, the DO statement creates
it. If other applications try to create the same lock next, they will not succeed.

A SELECT statement could have achieved the same result. The difference is that the
DO statement indicates whether we succeeded to call the lock.

SELECT GET_LOCK('lock1',0)

The result is:

GET_LOCK('lock1',0)

0

With the IS_FREE_LOCK function, we can query whether a certain application
lock already exists. If this lock is still available, the result is equal to 1; otherwise,
it equals 0.

Example 37.12: Determine whether the application lock called LOCK1 is in use.

SELECT IS_FREE_LOCK('lock1')

The result is:

IS_FREE_LOCK('lock1')

0

If an application lock is requested, we can ask for the connection identifier that
has created the application lock. We use the IS_USED_LOCK function to do this.

Example 37.13: Determine which connection has created LOCK1.

SELECT IS_USED_LOCK('lock1')

The result is:

IS_USED_LOCK('lock1')

2

The RELEASE_LOCK function can remove an application lock. When the function
is processed correctly, the result equals 1; otherwise, it equals 0.

836 SQL for MySQL Developers

Example 37.14: Remove the application lock called LOCK1.

SELECT RELEASE_LOCK('lock1')

The result is:

RELEASE_LOCK('lock1')

1

37.14 ANSWERS

37.1 Line 1 A SELECT statement does not change the contents of tables; it
starts a transaction.

Line 2 This change is not yet permanent.

Line 3 A COMMIT statement is executed. All changes of the current
transaction become permanent. This is the change of line 2.

Line 4 A ROLLBACK statement is executed. Because this is the first
SQL statement following the previous COMMIT, a new transac-
tion starts and ends here. No changes have been executed, so
no changes need to be rolled back.

Lines 5–6 These two changes are not yet permanent.

Line 7 A ROLLBACK statement is executed. All changes of the actual
transaction are undone. These are the changes of lines 5
and 6.

Line 8 This change is not yet permanent.

Line 9 A COMMIT statement is executed. All changes of the current
transaction become permanent. This is the change of line 8.

Line 10 Here the program is terminated. There is no current transac-
tion, so the program can be terminated without problems.

37.2 Line 1 A SELECT statement does not change the contents of tables; it
starts a transaction.

Line 2 A savepoint is defined with the name S1.

Line 3 This change is not yet permanent.

Line 4 A COMMIT statement is executed. All changes of the current
transaction become permanent. This is the change of line 3.

837CHAPTER 37 Transactions and Multiuser Usage

Line 5 This change is not yet permanent.

Line 6 A savepoint is defined with the name S1.

Line 7 This change is not yet permanent.

Line 8 A ROLLBACK statement is executed. Only the change of line 7
is undone. The change of line 5 is not yet permanent.

Line 9 This change is not yet permanent.

Line 10 A savepoint is defined with the name S2.

Line 11 This change is not yet permanent.

Line 12 A ROLLBACK statement is executed. Only the changes of lines
7, 9, and 11 are undone. The change of line 5 is (still) not yet
permanent.

Line 13 A COMMIT statement is executed. All changes of the current
transaction become permanent. This is the change of line 5.

Line 14 Here the program is terminated. There is no current transac-
tion, so the program can be terminated without problems.

838 SQL for MySQL Developers

839

Syntax of SQL
A P P E N D I X A

A.1 INTRODUCTION

In this appendix, we explain the notation method we have used to define the state-
ments, present the definitions of the SQL statements discussed in this book, and
show the list of reserved words.

The definitions in this appendix can differ from those in the previous chapters.
The main reason for this is that, in the chapters, we explained the statements and
concepts step by step. To avoid too much detail, we sometimes used simple versions
of the definitions. This appendix contains the complete definitions.

A.2 THE BNF NOTATION

In this appendix and throughout the book, we have used a formal notation method to
describe the syntax of all SQL statements and the common elements. This notation
is a derivative of the so-called Backus Naur Form (BNF), which is named after John
Backus and Peter Naur. The meaning of the metasymbols that we use is based on
that of the metasymbols in the SQL standard.

BNF adopts a language of substitution rules or production rules, consisting of a
series of symbols. Each production rule defines one symbol. A symbol could be, for
example, an SQL statement, a table name, or a colon. A terminal symbol is a special
type of symbol. All symbols, apart from the terminal symbols, are defined in terms
of other symbols in a production rule. Examples of terminal symbols are the word
CLOSE and the semicolon.

You can compare a production rule with the definition of an element, in which
the definition of that element uses elements defined elsewhere. In this case, an ele-
ment equates to a symbol.

The following metasymbols do not form part of the SQL language, but belong to
the notation technique:
< >

::=

|

[]

...

{ }

;

"

We now explain each of these symbols.

The Symbols < and >
Nonterminal symbols are presented in brackets (< >). A production rule exists for
every nonterminal symbol. We show the names of the nonterminal symbols in low-
ercase letters. Two examples of nonterminal symbols are <select statement> and
<table reference>.

The ::= Symbol
The ::= symbol is used in a production rule to separate the nonterminal symbol that
is defined (left) from its definition (right). The ::= symbol should be read as “is
defined as.” See the following example of the production rule for the CLOSE CURSOR
statement:

<close cursor statement> ::= CLOSE <cursor name>

Explanation: The CLOSE CURSOR statement consists of the terminal symbol CLOSE
followed by the nonterminal symbol cursor name. A production rule also should
exist for <cursor name>.

The | Symbol
Alternatives are represented by the | symbol. Here we give an example of the pro-
duction rule for the element <character>:

<character> ::= <digit> | <letter> | <special symbol> | ''

840 SQL for MySQL Developers

Explanation: We can conclude from this that a character is a digit, a letter, a spe-
cial symbol, or two quotation marks; it must be one of the four.

The Symbols [and]
Whatever is placed between square brackets ([]) may be used. This is the produc-
tion rule for the ROLLBACK statement:

<rollback statement> ::= ROLLBACK [WORK]

Explanation: A ROLLBACK statement always consists of the word ROLLBACK and can
optionally be followed by the word WORK.

The ... Symbol
The three dots indicate what may be repeated one or more times. Here our example
is the production rule for an integer:

<whole number> ::= <digit>...

Explanation: An integer consists of a series of digits (with a minimum of one).

Combining the three points with square brackets enables us to indicate that a cer-
tain element can appear zero, one, or more times:

<from clause> ::=
FROM <table reference> [, <table reference>]...

Explanation: A FROM clause begins with the terminal symbol FROM and is followed
by at least one table reference. It is possible to follow this table reference with a list
of elements, with each element consisting of a comma followed by a table reference.
Do not forget that the comma is part of SQL and not part of the notation.

The Symbols { and }
All symbols between braces ({ }) form a group. For example, braces used with the
| symbol show precisely what the alternatives are. The following example is part of
the production rule for the float literal:

<float literal> ::=
<mantissa> { E | e } <exponent>

841APPENDIX A Syntax of SQL

Explanation: A float literal starts with a mantissa and ends with an exponent. In
between, we can use the capital letter E or the small letter e; one must be used.

If we combine the braces with three points, we can indicate that an element should
appear one or more times. This means that in the production rule A { B }..., we
first have to use the element A, and it should be followed by one or more B elements.

The ; Symbol
Some symbols have the same definition. Instead of repeating them, we can use the
semicolon to shorten the definitions. The following definition

<character literal> ;
<varchar literal> ;
<long varchar literal> ::= <character string>

is equivalent to these three definitions:

<character literal> ::= <character string>
<varchar literal> ::= <character string>
<long varchar literal> ::= <character string>

The " Symbol
A small number of metasymbols, such as the " symbol, are part of particular SQL
statements themselves. To avoid misunderstanding, these symbols are enclosed by
double quotation marks. Among other things, this means that the symbol " that is
used within SQL is represented in the production rules as """.

Additional Remarks

■ Whatever is presented in capital letters, along as the symbols that are not
part of the notation method, must be adopted unaltered.

■ The sequence of the symbols in the right part of the production rule is fixed.

■ Blanks in production rules have no significance. Generally, they have been
added to make the rules more readable. Therefore, the two following produc-
tion rules mean the same:

<alphanumeric literal> ::= ' [<character>...] '

and

<alphanumeric literal> ::= '[<character>...]'

842 SQL for MySQL Developers

A.3 RESERVED WORDS IN SQL
MySQL supports so-called reserved words or keywords, such as SELECT and CREATE.
In MySQL, these reserved words may not be used as names for database objects
such as tables, columns, views, and users. The following list contains reserved
words as defined in the SQL3 standard, followed by the list of reserved words of
MySQL itself.

■ ABSOLUTE, ACTION, ADD, ALL, ALLOCATE, ALTER, AND, ANY, ARE, AS, ASC,

ASSERTION, AT, AUTHORIZATION, AVG

■ BEGIN, BETWEEN, BIT, BIT_LENGTH, BOTH, BY

■ CASCADE, CASCADED, CASE, CAST, CATALOG, CHAR, CHARACTER,

CHAR_LENGTH, CHARACTER_LENGTH, CHECK, CLOSE, COALESCE, COLLATE,

COLLATION, COLUMN, COMMIT, CONNECT, CONNECTION, CONSTRAINT,

CONSTRAINTS, CONTINUE, CONVERT, CORRESPONDING, COUNT, CREATE,

CROSS, CURRENT, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,

CURRENT_USER, CURSOR

■ DATE, DAY, DEALLOCATE, DEC, DECIMAL, DECLARE, DEFAULT, DEFERRABLE,

DEFERRED, DELETE, DESC, DESCRIBE, DESCRIPTOR, DIAGNOSTICS,

DISCONNECT, DISTINCT, DOMAIN, DOUBLE, DROP

■ ELSE, END, END-EXEC, ESCAPE, EXCEPT, EXCEPTION, EXEC, EXECUTE,

EXISTS, EXTERNAL, EXTRACT

■ FALSE, FETCH, FIRST, FLOAT, FOR, FOREIGN, FOUND, FROM, FULL

■ GET, GLOBAL, GO, GOTO, GRANT, GROUP

■ HAVING, HOUR

■ IDENTITY, IMMEDIATE, IN, INDICATOR, INITIALLY, INNER, INPUT,

INSENSITIVE, INSERT, INT, INTEGER, INTERSECT, INTERVAL, INTO, IS,

ISOLATION

■ JOIN

■ KEY

■ LANGUAGE, LAST, LEADING, LEFT, LEVEL, LIKE, LOCAL, LOWER

■ MATCH, MAX, MIN, MINUTE, MODULE, MONTH

■ NAMES, NATIONAL, NATURAL, NCHAR, NEXT, NO, NOT, NULL, NULLIF,

NUMERIC

■ OCTET_LENGTH, OF, ON, ONLY, OPEN, OPTION, OR, ORDER, OUTER, OUTPUT,

OVERLAPS

■ PARTIAL, POSITION, PRECISION, PREPARE, PRESERVE, PRIMARY, PRIOR,

PRIVILEGES, PROCEDURE, PUBLIC

843APPENDIX A Syntax of SQL

■ READ, REAL, REFERENCES, RELATIVE, RESTRICT, REVOKE, RIGHT, ROLLBACK,

ROWS

■ SCHEMA, SCROLL, SECOND, SECTION, SELECT, SESSION, SESSION_USER, SET,

SIZE, SMALLINT, SOME, SQL, SQLCODE, SQLERROR, SQLSTATE, SUBSTRING,

SUM, SYSTEM_USER

■ TABLE, TEMPORARY, THEN, TIME, TIMESTAMP, TIMEZONE_HOUR,

TIMEZONE_MINUTE, TO, TRAILING, TRANSACTION, TRANSLATE, TRANSLATION,

TRIM, TRUE

■ UNION, UNIQUE, UNKNOWN, UPDATE, UPPER, USAGE, USER, USING

■ VALUE, VALUES, VARCHAR, VARYING, VIEW

■ WHEN, WHENEVER, WHERE, WITH, WORK, WRITE

■ YEAR

■ ZONE

This is the list of reserved words in MySQL. The words that already appear in
the previous list have been omitted.

■ ANALYZE, ASENSITIVE

■ BEFORE, BIGINT, BINARY, BLOB

■ CALL, CHANGE, CONDITION

■ DATABASE, DATABASES, DAY_HOUR, DAY_MICROSECOND, DAY_MINUTE,

DAY_SECOND, DELAYED, DETERMINISTIC, DISTINCTROW, DIV, DUAL

■ EACH, ELSEIF, ENCLOSED, ESCAPED, EXIT, EXPLAIN

■ FLOAT4, FLOAT8, FORCE, FULLTEXT

■ HIGH_PRIORITY, HOUR_MICROSECOND, HOUR_MINUTE, HOUR_SECOND

■ IF, IGNORE, INDEX, INFILE, INOUT, INT1, INT2, INT3, INT4, INT8,

ITERATE

■ KEYS, KILL

■ LABEL, LEAVE, LIMIT, LINES, LOAD, LOCALTIME, LOCALTIMESTAMP, LOCK,

LONG, LONGBLOB, LONGTEXT, LOOP, LOW_PRIORITY

■ MEDIUMBLOB, MEDIUMINT, MEDIUMTEXT, MIDDLEINT, MINUTE_MICROSECOND,

MINUTE_SECOND, MOD, MODIFIES

■ NO_WRITE_TO_BINLOG

■ OPTIMIZE, OPTIONALLY, OUT, OUTFILE

■ PURGE

844 SQL for MySQL Developers

■ RAID0, READS, REGEXP, RELEASE, RENAME, REPEAT, REPLACE, REQUIRE,

RETURN, RLIKE

■ SCHEMAS, SECOND_MICROSECOND, SENSITIVE, SEPARATOR, SHOW, SONAME,

SPATIAL, SPECIFIC, SQLEXCEPTION, SQLWARNING, SQL_BIG_RESULT,

SQL_CALC_FOUND_ROWS, SQL_SMALL_RESULT, SSL, STARTING, STRAIGHT_JOIN

■ TERMINATED, TINYBLOB, TINYINT, TINYTEXT, TRIGGER

■ UNDO, UNLOCK, UNSIGNED, USE, UTC_DATE, UTC_TIME, UTC_TIMESTAMP

■ VARBINARY, VARCHARACTER

■ WHILE

■ X509, XOR

■ YEAR_MONTH

■ ZEROFILL

We strongly advise that you follow these recommendations when choosing the
names of database objects:

■ Avoid one-letter words, even if they do not occur in the list.

■ Avoid words that could be seen as abbreviations of words in the list; for
example, do not use DATA because the word DATABASE appears in the list.

■ Avoid derivations of words in the list, such as plural and verbal forms. There-
fore, do not use CURSORS (plural of CURSOR) or ORDERING (present participle of
the verb ORDER).

A.4 SYNTAX DEFINITIONS OF SQL STATEMENTS

This section contains the definitions of all the SQL statements as they are described
in this book. Several statements use certain common elements, such as condition
and column list. If an element belongs to only one statement, it is included in Sec-
tion A.4.2 together with its statement. All others are explained in Section A.4.3. We
begin with the different groups of SQL statements.

A.4.1 Groups of SQL Statements
Section 4.15 indicated that the set of SQL statements can be divided into groups,
such as DDL, DML, and DCL statements. In this section, we indicate which group
each statement belongs to.

845APPENDIX A Syntax of SQL

SQL Statement

846 SQL for MySQL Developers

<sql statement> ::=
<declarative statement> |
<procedural statement> |
<informative statement> |
<table maintenance statement>

Declarative Statement

<declarative statement> ::=
<ddl statement> |
<dml statement> |
<dcl statement>

<ddl statement> ::=
<alter database statement> |
<alter event statement> |
<alter function statement> |
<alter procedure statement> |
<alter table statement> |
<create database statement> |
<create event statement> |
<create function statement> |
<create index statement> |
<create procedure statement> |
<create sequence statement> |
<create table statement> |
<create trigger statement> |
<create view statement> |
<drop database statement> |
<drop event statement> |
<drop function statement> |
<drop index statement> |
<drop procedure statement> |
<drop table statement> |
<drop trigger statement> |
<drop view statement> |
<rename table statement>

DDL Statement

DML Statement

847APPENDIX A Syntax of SQL

<dml statement> ::=
<begin work statement> |
<call statement> |
<close cursor statement> |
<commit statement> |
<deallocate prepare statement> |
<delete statement> |
<do statement> |
<execute statement> |
<fetch cursor statement> |
<handler close statement> |
<handler open statement> |
<handler read statement> |
<insert statement> |
<load statement> |
<lock table statement> |
<open cursor statement> |
<prepare statement> |
<replace statement> |
<rollback statement> |
<savepoint statement> |
<select statement> |
<select into statement> |
<set statement> |
<set transaction statement> |
<start transaction statement> |
<truncate table statement> |
<unlock table statement> |
<update statement>

DCL Statement

<dcl statement> ::=
<alter user statement> |
<create user statement> |
<drop user statement> |
<grant statement> |
<rename user statement> |
<set password statement> |
<revoke statement>

Procedural Statement

848 SQL for MySQL Developers

<procedural statement> ::=
<begin-end block> |
<call statement> |
<declare condition statement> |
<declare cursor statement> |
<declare handler statement> |
<declare variable statement> |
<flow control statement> |
<return statement>

Flow-Control Statement

<flow control statement> ::=
<case statement> |
<if statement> |
<iterate statement> |
<leave statement> |
<loop statement> |
<repeat statement> |
<while statement>

Informative Statement

<informative statement> ::=
<describe statement> |
<help statement> |
<show statement>

Table Maintenance Statement

<table maintenance statement> ::=
<analyze table statement> |
<backup table statement> |
<checksum table statement> |
<check table statement> |
<optimize table statement> |
<repair table statement> |
<restore table statement>

A.4.2 Definitions of SQL Statements

Alter Database Statement

849APPENDIX A Syntax of SQL

<alter database statement> ::=
ALTER DATABASE [<database name>]

[<database option>...]

Alter Event Statement

<alter event statement> ::=
ALTER EVENT [<database name> .] <event name>

ON SCHEDULE <event schedule>
[RENAME TO <event name>]
[ON COMPLETION [NOT] PRESERVE]
[ENABLE | DISABLE]
[COMMENT <alphanumeric literal>]
DO <sql statement>

Alter Function Statement

<alter function statement> ::=
ALTER FUNCTION [<database name> .] <stored function name>

[<routine characteristic>...]

Alter Procedure Statement

<alter procedure statement> ::=
ALTER PROCEDURE [<database name> .] <stored procedure name>

[<routine characteristic>...]

Alter Table Statement

<alter table statement> ::=
ALTER [IGNORE] TABLE <table specification>

<table structure change>

Alter View Statement

850 SQL for MySQL Developers

<alter view statement> ::=
ALTER

[<definer option>]
[<sql security option>]
[ALGORITHM = { MERGE | TEMPTABLE | UNDEFINED }]
VIEW <view name> [<column list>] AS <table expression>
[WITH [CASCADED | LOCAL] CHECK OPTION]

Analyze Table Statement

<analyze table statement> ::=
ANALYZE [<analyze option>]

TABLE <table specification> [, <table specification>]...

<analyze option> ::= NO_WRITE_TO_BINLOG | LOCAL

Backup Table Statement

<backup table statement> ::=
BACKUP TABLE <table specification>

[, <table specification>]...
TO <directory>

Begin Work Statement

<begin work statement> ::=
BEGIN WORK

Call Statement

<call statement> ::=
CALL [<database name> .] <stored procedure name>
([<scalar expression> [, <scalar expression>]...])

Case Statement

851APPENDIX A Syntax of SQL

<case statement> ::=
{ CASE <scalar expression>

WHEN <scalar expression> THEN <statement list>
[WHEN <scalar expression> THEN <statement list>]...
[ELSE <statement list>]

END CASE } |
{ CASE

WHEN <condition> THEN <statement list>
[WHEN <condition> THEN <statement list>]...
[ELSE <statement list>

END CASE }

Checksum Table Statement

<checksum table statement> ::=
CHECKSUM TABLE <table specification>

[, <table specification>]...
[<checksum option>]

<checksum option> ::= QUICK | EXTENDED

Check Table Statement

<check table statement> ::=
CHECK TABLE <table specification> [, <tablespecification>]...

[<check option>]...

<check option> ::=
FOR UPGRADE | QUICK | FAST | MEDIUM | EXTENDED | CHANGED

Close Cursor Statement

<close cursor statement> ::=
CLOSE <cursor name>

Commit Statement

852 SQL for MySQL Developers

<commit statement> ::=
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

Create Database Statement

<create database statement> ::=
CREATE DATABASE [IF NOT EXISTS] <database name>

[<database option>...]

Create Event Statement

<create event statement> ::=
CREATE EVENT [IF NOT EXISTS]

[<database name> .] <event name>
ON SCHEDULE <event schedule>
[ON COMPLETION [NOT] PRESERVE]
[ENABLE | DISABLE]
[COMMENT <alphanumeric literal>]
DO <event action>

<event action> ::=
<declarative sql statement> |
<begin-end block>

Create Function Statement

<create function statement> ::=
CREATE [<definer option>]

FUNCTION [<database name> .] <stored function name>
([<parameter list>])
RETURNS <data type>
[<routine characteristic>...]
<routine body>

853APPENDIX A Syntax of SQL

Create Index Statement

<create index statement> ::=
CREATE [<index type>] INDEX <index name>
[USING { BTREE | HASH }]
ON <table specification>
(<column in index> [, <column in index>]...)

<create procedure statement> ::=
CREATE [<definer option>]

PROCEDURE <stored procedure name> ([<parameter list>])
[<routine characteristic>...]
<routine body>

Create Procedure Statement

Create Table Statement

<create table statement> ::=
CREATE [TEMPORARY] TABLE [IF NOT EXISTS]

<table specification>
<table structure>
[<table option>...]

Create Trigger Statement

<create trigger statement> ::=
CREATE [<definer option>]

TRIGGER <trigger name>
<trigger moment>
<trigger event>
<trigger action>

<trigger moment> ::= BEFORE | AFTER

<trigger event> ::=
{ INSERT | DELETE | UPDATE }

ON <table specification>
FOR EACH ROW

<trigger action> ::= <sql statement>

Create User Statement

854 SQL for MySQL Developers

<create user statement> ::=
CREATE USER <user specification>

[, <user specification>]...

<user specification> ::=
<user name> [IDENTIFIED BY [PASSWORD] <password>]

Create View Statement

<create view statement> ::=
CREATE [OR REPLACE]

[<definer option>]
[<sql security option>]
[ALGORITHM = { MERGE | TEMPTABLE | UNDEFINED }]
VIEW <view name> [<column list>] AS <table expression>
[WITH [CASCADED | LOCAL] CHECK OPTION]

Deallocate Prepare Statement

<deallocate prepare statement> ::=
{ DEALLOCATE | DROP } PREPARE <statement name>

Declare Condition Statement

<declare condition statement> ::=
DECLARE <condition name> CONDITION FOR
{ SQLSTATE [VALUE] <sqlstate value> } | <mysql error code>

Declare Handler Statement

855APPENDIX A Syntax of SQL

Declare Cursor Statement

<declare cursor statement> ::=
DECLARE <cursor name> CURSOR FOR <table expression>

Declare Variable Statement

<declare handler statement> ::=
DECLARE <handler type> HANDLER FOR <condition value list>

<procedural statement>

<handler type> ::=
CONTINUE |
EXIT |
UNDO

<condition value list> ::=
<condition value> [, <condition value>]...

<condition value> ::=
SQLSTATE [VALUE] <sqlstate value> |
<mysql error code> |
SQLWARNING |
NOT FOUND |
SQLEXCEPTION |
<condition name>

<declare variable statement> ::=
DECLARE <variable list> <data type>

[DEFAULT <scalar expression>]

856 SQL for MySQL Developers

<delete statement> ::=
DELETE [IGNORE]
FROM <table reference>
[<where clause>]
[<order by clause>]
[<limit clause>]

<delete statement> ::=
{ DELETE [LOW_PRIORITY] [IGNORE]
<table reference> [, <table reference>]...
FROM <table reference> [, <table reference>]...
[<where clause>] } |

{ DELETE [LOW_PRIORITY] [IGNORE]
FROM <table reference> [, <table reference>]...
USING <table reference> [, <table reference>]...
[<where clause>] }

Describe Statement

<describe statement> ::=
{ DESCRIBE | DESC } <table specification>

[<column name> | <alphanumeric literal>]

Do Statement

<do statement> ::=
DO <scalar expression>

[, <scalar expression>]...

Drop Database Statement

<drop database statement> ::=
DROP DATABASE [IF NOT EXISTS] <database name>

Delete Statement
To avoid making the definition unnecessary complicated, two definitions of the
DELETE statement are given here. The first deletes rows from one table; the second
removes rows from multiple tables at the same time.

Drop Event Statement

857APPENDIX A Syntax of SQL

<drop event statement> ::=
DROP EVENT [IF EXISTS] [<database name> .] <event name>

Drop Function Statement

<drop function statement> ::=
DROP FUNCTION [IF EXISTS]

[<database name> .] <stored function name>

Drop Index Statement

<drop index statement> ::=
DROP INDEX <index name> ON <table specification>

Drop Procedure Statement

<drop procedure statement> ::=
DROP PROCEDURE [IF EXISTS]

[<database name> .] <stored procedure name>

Drop Table Statement

<drop table statement> ::=
DROP [TEMPORARY] { TABLE | TABLES } [IF EXISTS]

<table specification> [, <table specification>]...
[CASCADE | RESTRICT]

Drop Trigger Statement

<drop trigger statement> ::=
DROP TRIGGER [<table name> .] <trigger name>

Drop View Statement

858 SQL for MySQL Developers

<drop view statement> ::=
DROP VIEW [IF EXISTS] <table specification>

[, <table specification>]...
[RESTRICT | CASCADE]

Execute Statement

<execute statement> ::=
EXECUTE <statement name>

[USING <user variable> [, <user variable>]...]

Fetch Cursor Statement

<fetch cursor statement> ::=
FETCH <cursor name>

INTO <local variable> [, <local variable>]...

Grant Statement

<grant statement> ::=
<grant table privilege statement> |
<grant database privilege statement> |
<grant user privilege statement> |
<grant execute privilege statement>

<grant table privilege statement> ::=
GRANT <table privileges>
ON <table specification>
TO <grantees>
[WITH <grant option>...]

Drop User Statement

<drop user statement> ::=
DROP USER <user name> [, <user name>]...

continues

859APPENDIX A Syntax of SQL

<grant database privilege statement> ::=
GRANT <database privileges>
ON [<database name> .] *
TO <grantees>
[WITH <grant option>...]

<grant user privilege statement> ::=
GRANT <user privileges>
ON *.*
TO <grantees>
[WITH <grant option>...]

<grant execute privilege statement> ::=
GRANT EXECUTE
ON { PROCEDURE <stored procedure name> |

FUNCTION <stored function name> }
TO <grantees>
[WITH <grant option>...]

Handler Close Statement

<handler close statement> ::=
HANDLER <handler name> CLOSE

Handler Open Statement

<handler open statement> ::=
HANDLER <table specification> OPEN [AS <handler name>]

Handler Read Statement

<handler read statement> ::=
HANDLER <handler name> READ <read specification>

[<where clause>]
[<limit clause>]

<read specification> ::=
FIRST |
NEXT |
{ <index name> { FIRST | NEXT | PREV | LAST } } |
{ <index name> { = | > | >= | <= | < }

<scalar expression list> }

Help Statement

860 SQL for MySQL Developers

<help statement> ::=
HELP <alphanumeric literal>

If Statement

<if statement> ::=
IF <condition> THEN <statement list>

[ELSEIF <condition> THEN <statement list>]...
[ELSE <statement list>]

END IF

Insert Statement

<insert statement> ::=
INSERT [DELAYED | LOW_PRIORITY | HIGH_PRIORITY]

[IGNORE] [INTO] <table specification>
<insert specification> [<on duplicate key specification>]

<on duplicate key specification> ::=
ON DUPLICATE KEY UPDATE <column assignment>

[, <column assignment>]...

Iterate Statement

<iterate statement> ::=
ITERATE <label>

Leave Statement

<leave statement> ::=
LEAVE <label>

Load Statement

861APPENDIX A Syntax of SQL

<load statement> ::=
LOAD DATA [LOW_PRIORITY] [CONCURRENT] [LOCAL]

INFILE '<file name>'
[REPLACE | IGNORE]
INTO TABLE <table specification>
[<fields specification>]
[<lines specification>]
[IGNORE <whole number> LINES]
[{ <column name> | <user variable> }

[, { <column name> | <user variable> }]...]
[<set statement>]

<fields specification> ::=
FIELDS [TERMINATED BY <alphanumeric literal>]

[[OPTIONALLY] ENCLOSED BY <alphanumeric literal>]
[ESCAPED BY <alphanumeric literal>]

<lines specification> ::=
LINES [TERMINATED BY <alphanumeric literal>]

[STARTING BY <alphanumeric literal>]

Lock Table Statement

<lock table statement> ::=
LOCK { TABLE | TABLES } <lock table> [, <lock table>]...

<lock table> ::=
<table specification> [AS <pseudonym>] <lock type>

<lock type> ::= READ | READ LOCAL | WRITE | LOW_PRIORITY WRITE

Loop Statement

<loop statement> ::=
[<label> :] LOOP <statement list>
END LOOP [<label>]

Open Cursor Statement

862 SQL for MySQL Developers

<open cursor statement> ::=
OPEN <cursor name>

Optimize Table Statement

<optimize table statement> ::=
OPTIMIZE [<optimize option>]

TABLE <table specification> [, <table specification>]...

<optimize option> ::= NO_WRITE_TO_BINLOG | LOCAL

Prepare Statement

<prepare statement> ::=
PREPARE <statement name>

FROM { <alphanumeric literal> | <user variable> }

Rename Table Statement

<rename table statement> ::=
RENAME { TABLE | TABLES } <table name change>

[, <table name change>]...

<table name change> ::= <table name> TO <table name>

Rename User Statement

<rename user statement> ::=
RENAME USER <user name> TO <user name>

[, <user name> TO <user name>]...

863APPENDIX A Syntax of SQL

Repair Table Statement

<repair table statement> ::=
REPAIR [<repair option>]

TABLE <table specification> [, <table specification>]...
[QUICK] [EXTENDED] [USE_FRM]

<repair option> ::= NO_WRITE_TO_BINLOG | LOCAL

Repeat Statement

<repeat statement> ::=
[<label> :] REPEAT <statement list>
UNTIL <condition>
END REPEAT <label>

Replace Statement

<replace statement> ::=
REPLACE [DELAYED | LOW_PRIORITY] [IGNORE]
[IGNORE] [INTO] <table specification>
<insert specification>

Restore Table Statement

<restore table statement> ::=
RESTORE TABLE <table specification>

[, <table specification>]...
FROM <directory>

Return Statement

<return statement> ::=
RETURN <scalar expression>

Savepoint Statement

864 SQL for MySQL Developers

Revoke Statement

<revoke statement> ::=
<revoke table privilege statement> |
<revoke database privilege statement> |
<revoke user privilege statement> |
<revoke execute privilege statement> |
<revoke event privilege statement>

<revoke table privilege statement> ::=
REVOKE [<table privileges>] [GRANT OPTION]
ON <table specification>
FROM <user name> [, <user name>]...

<revoke database privilege statement> ::=
REVOKE [<database privileges>] [GRANT OPTION]
ON [<database name> .] *
FROM <user name> [, <user name>]...

<revoke user privilege statement> ::=
REVOKE [<user privileges>] [GRANT OPTION]
ON *.*
FROM <user name> [, <user name>]...

<revoke execute privilege statement> ::=
REVOKE EXECUTE
ON { PROCEDURE <stored procedure name> |

FUNCTION <stored function name> }
FROM <grantees>

<revoke event privilege statement> ::=
REVOKE EVENT
ON [<database name> . | * .] *
FROM <grantees>

Rollback Statement

<rollback statement> ::=
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
[TO SAVEPOINT <savepoint name>]

<savepoint statement> ::=
SAVEPOINT <savepoint name>

Set Statement
To avoid making the definition unnecessary complicated, two definitions of the SET
statement are given here. The first assigns values to user variables; the second
assigns values to local variables of stored procedures and stored functions.

865APPENDIX A Syntax of SQL

Select Statement

<select statement> ::=
<table expression>

[<into file clause>]
[FOR UPDATE | LOCK IN SHARE MODE]

Select Into Statement

<select into statement> ::=
<select clause>
<into clause>

[<from clause>
[<where clause>]
[<group by clause>]
[<having clause>]
[<select block tail>]]

<into clause> ::=
INTO <local variable> [, <local variable>]...

<set statement> ::=
SET <user variable definition>

[, <user variable definition>]...

<set statement> ::=
SET <local variable definition>

[, <local variable definition>]...

<user variable definition> ::=
<user variable> { = | := } <scalar expression>

<local variable definition> ::=
<local variable> { = | := } <scalar expression>

Set Password Statement

866 SQL for MySQL Developers

<set password statement> ::=
SET PASSWORD [FOR <user name>]

= PASSWORD(<password>)

Set Transaction Statement

<set transaction statement> ::=
SET [GLOBAL | SESSION] TRANSACTION

ISOLATION LEVEL <isolation level>

<isolation level> ::=
READ UNCOMMITTED |
READ COMMITTED |
REPEATABLE READ |
SERIALIZABLE

Show Character Set Statement

<show character set statement> ::=
SHOW CHARACTER SET [LIKE <alphanumeric literal>]

Show Collation Statement

<show collation statement> ::=
SHOW COLLATION [LIKE <alphanumeric literal>]

Show Column Types Statement

<show column types statement> ::=
SHOW COLUMN TYPES

Show Create Table Statement

867APPENDIX A Syntax of SQL

Show Columns Statement

<show columns statement> ::=
SHOW [FULL] COLUMNS { FROM | IN } <table specification>
[{ FROM | IN } <database name>]
[LIKE <alphanumeric literal>]

Show Create Database Statement

<show create database statement> ::=
SHOW CREATE DATABASE [IF NOT EXISTS] <database name>

Show Create Event Statement

<show create event statement> ::=
SHOW CREATE EVENT [<database name> .] <event name>

Show Create Function Statement

<show create function statement> ::=
SHOW CREATE FUNCTION

[<database name> .] <stored function name>

Show Create Procedure Statement

<show create procedure statement> ::=
SHOW CREATE PROCEDURE

[<database name> .] <stored procedure name>

<show create table statement> ::=
SHOW CREATE TABLE <table specification>

Show Events Statement

868 SQL for MySQL Developers

Show Create View Statement

<show create view statement> ::=
SHOW CREATE VIEW <table specification>

Show Databases Statement

<show databases statement> ::=
SHOW DATABASES [LIKE <alphanumeric literal>]

Show Engine Statement

<show engine statement> ::=
SHOW ENGINE <engine name> { LOGS | STATUS }

Show Engines Statement

<show engines statement> ::=
SHOW [STORAGE] ENGINES

Show Errors Statement

<show errors statement> ::=
SHOW ERRORS

[LIMIT [<fetch offset> ,] <fetch number of rows>] |
SHOW [COUNT(*)] ERRORS

<show events statement> ::=
SHOW EVENTS [FROM <database name>]

[LIKE <alphanumeric literal>]

Show Function Statement

869APPENDIX A Syntax of SQL

<show function status statement> ::=
SHOW FUNCTION STATUS [LIKE <alphanumeric literal>]

<show grants statement> ::=
SHOW ACCOUNTS [FOR <user name>]

Show Grants Statement

Show Index Statement

<show index statement> ::=
SHOW { INDEX | KEY } { FROM | IN }

<table specification> [{ FROM | IN } <database name>]

Show Privileges Statement

<show privileges statement> ::=
SHOW PRIVILEGES

Show Procedure Status Statement

<show procedure status statement> ::=
SHOW PROCEDURE STATUS [LIKE <alphanumeric literal>]

Show Table Types Statement

<show table types statement> ::=
SHOW TABLE TYPES

870 SQL for MySQL Developers

Show Triggers Statement

<show triggers statement> ::=
SHOW TRIGGERS [FROM <database name>]

[LIKE <alphanumeric literal>]

Show Variables Statement

<show variables statement> ::=
SHOW [GLOBAL | SESSION] VARIABLES

[LIKE <alphanumeric literal>]

Show Warnings Statement

<show warnings statement> ::=
SHOW WARNINGS

[LIMIT [<fetch offset> ,] <fetch number of rows>] |
SHOW [COUNT(*)] WARNINGS

Start Transaction Statement

<start transaction statement> ::=
START TRANSACTION

Truncate Table Statement

<truncate statement> ::=
TRUNCATE TABLE <table specification>

Show Tables Statement

<show tables statement> ::=
SHOW [FULL] TABLES [{ FROM | IN } <database name>]

[LIKE <alphanumeric literal>]

Unlock Table Statement

871APPENDIX A Syntax of SQL

<unlock table statement> ::=
UNLOCK { TABLE | TABLES }

Update Statement
To avoid making the definition unnecessary complicated, two definitions of the
UPDATE statement are given. The first changes rows in one table; the second changes
rows in multiple tables at the same time.

<update statement> ::=
UPDATE [LOW_PRIORITY] [IGNORE] <table reference>
SET <column assignment> [, <column assignment>]...
[<where clause>]
[<order by clause>]
[<limit clause>]

<update statement> ::=
UPDATE [LOW_PRIORITY] [IGNORE] <table reference>

[, <table reference>]...
SET <column assignment> [, <column assignment>]...
[<where clause>]
[<order by clause>]
[<limit clause>]

While Statement

<WHILE statement> ::=
[<label> : WHILE <condition> DO <statement list>
END WHILE [<label>]

872 SQL for MySQL Developers

<aggregation function> ::=
COUNT ([DISTINCT | ALL] { * | <expression> }) |
MIN ([DISTINCT | ALL] <expression>) |
MAX ([DISTINCT | ALL] <expression>) |
SUM ([DISTINCT | ALL] <expression>) |
AVG ([DISTINCT | ALL] <expression>) |
STDDEV ([DISTINCT | ALL] <expression>) |
STD ([DISTINCT | ALL] <expression>) |
VARIANCE ([DISTINCT | ALL] <expression>) |
BIT_AND ([DISTINCT | ALL] <expression>) |
BIT_OR ([DISTINCT | ALL] <expression>) |
BIT_XOR ([DISTINCT | ALL] <expression>) |
GROUP_CONCAT ([DISTINCT | ALL] <expression>)

<alphanumeric data type> ::=
[NATIONAL] CHAR [(<length>)] |
[NATIONAL] CHARACTER [(<length>)] |
NCHAR [(<length>)] |
[NATIONAL] VARCHAR (<length>) |
[NATIONAL] CHAR VARYING (<length>) |
[NATIONAL] CHARACTER VARYING (<length>) |
NCHAR VARYING (<length>) |
TINYTEXT |
TEXT (<length>) |
MEDIUM TEXT |
LONG VARCHAR |
LONGTEXT

<alphanumeric data type option> ::=
CHARACTER SET <character set name> |
COLLATE <collation name>

<alphanumeric expression list> ::=
<alphanumeric scalar expression>

[, <alphanumeric scalar expression>]...

A.4.3 Common Elements
This section contains the general common elements used in various SQL statements.
The elements that are defined as a name are all grouped at the end of this section.

873APPENDIX A Syntax of SQL

<alphanumeric literal> ::= <character string>

<alternate key> ::=
[CONSTRAINT [< constraint name >]]
UNIQUE [INDEX | KEY] [<index name>]
[{ USING | TYPE } <index type>] <column list>

<any all operator> ::=
<comparison operator> { ALL | ANY | SOME }

<begin-end block> ::=
[<label> :] BEGIN <statement list> END [<label>]

<bit data type> ::=
BIT [(<length>)]

<bit literal> ::=
{ b | B } ' { 0 | 1 }... '

<bit operator> ::= "|" | & | ^ | << | >>

874 SQL for MySQL Developers

<boolean literal> ::= TRUE | true | FALSE | false

<case expression> ::=
CASE <when definition> [ELSE <scalar expression>] END

<character> ::= <digit> | <letter> | <special symbol> | ''

<character string> ::= ' [<character>...]'

<check integrity constraint> ::=
[CONSTRAINT [< constraint name >]] CHECK (<condition>)

<column assignment> ::=
<column name> = <scalar expression>

<blob data type> ::=
BINARY [(<length>)] |
VARBINARY (<length>) |
TINYBLOB |
BLOB (<length>) |
MEDIUMBLOB |
LONG VARBINARY |
LONGBLOB

875APPENDIX A Syntax of SQL

<column change> ::=
ADD [COLUMN] <column definition>

[FIRST | AFTER <column name>] |
ADD [COLUMN] <table schema> |
DROP [COLUMN] <column name> [RESTRICT | CASCADE] |
CHANGE [COLUMN] <column name> <column definition>

[FIRST | AFTER <column name>] |
MODIFY [COLUMN] <column definition>

[FIRST | AFTER <column name>] |
ALTER [COLUMN] { SET DEFAULT <expression> | DROP DEFAULT }

<column definition> ::=
<column name> <data type> [<null specification>]

[<column integrity constraint>] [<column option>...]

<column in index> ::= <column name> [ASC | DESC]

<column integrity constraint> ::=
PRIMARY KEY |
UNIQUE [KEY] |
<check integrity constraint>

<column list> ::=
(<column name> [, <column name>]...)

<column option> ::=
DEFAULT <literal> |
COMMENT <alphanumeric literal>

876 SQL for MySQL Developers

<column specification> ::=
[<table specification> .] <column name>

<column subquery> ::= (<table expression>)

<comparison operator> ::=
= | <=> | < | > | <= | >= | <> | !=

<complex data type> ::=
ENUM (<alphanumeric expression list>) |
SET (<alphanumeric expression list>)

<compound alphanumeric expression> ::=
<scalar alphanumeric expression> "||"

<scalar alphanumeric expression>

<compound boolean expression> ::=
<scalar boolean expression> |
<condition>

<compound date expression> ::=
<scalar date expression> [+ | -] <date interval>

877APPENDIX A Syntax of SQL

<compound datetime expression> ::=
<scalar datetime expression> [+ | -] <timestamp interval>

<compound numeric expression> ::=
[+ | -] <scalar numeric expression> |
(<scalar numeric expression>) |
<scalar numeric expression>

<mathematical operator> <scalar numeric expression> |
~ <scalar numeric expression> |
<scalar numeric expression>

<bit operator> <scalar numeric expression>

<compound scalar expression> ::=
<compound numeric expression> |
<compound alphanumeric expression> |
<compound date expression> |
<compound time expression> |
<compound timestamp expression> |
<compound datetime expression> |
<compound boolean expression> |
<compound hexadecimal expression>

<compound table expression> ::=
<table expression> <set operator> <table expression>

<compound time expression> ::=
ADDTIME(<time expression> , <time interval>)

<compound timestamp expression> ::=
<scalar timestamp expression> [+ | -] <timestamp interval>

878 SQL for MySQL Developers

<condition> ::=
<predicate> |
<predicate> OR <predicate> |
<predicate> AND <predicate> |
(<condition>) |
NOT <condition>

<database privilege> ::=
SELECT |
INSERT |
DELETE |
UPDATE |
REFERENCES |
CREATE |
ALTER |
DROP |
INDEX |
CREATE TEMPORARY TABLES |
CREATE VIEW |
SHOW VIEW |
CREATE ROUTINE |
ALTER ROUTINE |
EXECUTE ROUTINE |
LOCK TABLES |
EVENT

<database privileges> ::=
ALL [PRIVILEGES] |
<database privilege> [, <database privilege>]...

<database option> ::=
[DEFAULT] CHARACTER SET <character set name> |
[DEFAULT] COLLATE <collation name>

879APPENDIX A Syntax of SQL

<data type> ::=
<numeric data type> [<numeric data type option>...] |
<alphanumeric data type>

[<alphanumeric data type option>...] |
<temporal data type> |
<blob data type> |
<geometric data type> |
<complex data type>

<date interval> ::=
INTERVAL <interval length> <date interval unit>

<date interval unit> ::=
DAY | WEEK | MONTH | QUARTER | YEAR | YEAR_MONTH

<date literal> ::=
{ ' <years> - <months> - <days> ' } |
{ <years> <months> <days> }

<datetime literal> :=
{ ' <years> - <months> - <days> <space>
[<hours> [: <minutes> [: <seconds>

[. <microseconds>]]]] ' } |
{ <years> <months> <days> <hours> <minutes> <seconds> }

<days> ::= <digit> [<digit>]

880 SQL for MySQL Developers

<decimal data type> ::=
DEC [(<precision> [, <scale>])] |
DECIMAL [(<precision> [, <scale>])] |
NUMERIC [(<precision> [, <scale>])] |
FIXED [(<precision> [, <scale>])]

<decimal literal> ::=
[+ | -] <whole number> [.<whole number>] |
[+ | -] <whole number>. |
[+ | -] .<whole number>

<definer option> ::=
DEFINER = { <user name> | CURRENT_USER }

<directory> ::= Valid specification of a directory according to
the rules of the operating system that is used.

<event schedule> ::=
<single schedule>
<recurring schedule>

<exponent> ::= <integer literal>

<export option> ::=
FIELDS [TERMINATED BY <alphanumeric literal>]

[[OPTIONALLY] ENCLOSED BY <alphanumeric literal>]
[ESCAPED BY <alphanumeric literal>] |

LINES TERMINATED BY <alphanumeric literal>

881APPENDIX A Syntax of SQL

For each data type, a version of this expression follows.

<expression> ::=
<scalar expression> |
<row expression> |
<table expression>

<expression list> ::= <expression> [, <expression>]...

<fetch number of rows> ::= <whole number>

<fetch offset> ::= <whole number>

<float data type> ::=
FLOAT [(<length>) | (<presentation width> , <scale>)] |
FLOAT4 [(<presentation width> , <scale>)] |
REAL [(<presentation width> , <scale>)] |
DOUBLE [PRECISION] [(<presentation width> , <scale>)]

<float literal> ::=
<mantissa> { E | e } <exponent>

882 SQL for MySQL Developers

<foreign key> ::=
[CONSTRAINT [<constraint name>]]
FOREIGN KEY [<index name>] <column list>
<referencing specification>

<from clause> ::=
FROM <table reference> [, <table reference>]...

<geometric data type> ::=
GEOMETRY |
GEOMETRYCOLLECTION |
LINESTRING |
MULTILIMESTRING |
MULTIPOINT |
MULTIPOLYGON |
POINT |
POLYGON

<grantees> ::=
<user specification> [, <user specification>]...

<grant option> ::=
GRANT OPTION |
MAX_CONNECTIONS_PER_HOUR <whole number> |
MAX_QUERIES_PER_HOUR <whole number> |
MAX_UPDATES_PER_HOUR <whole number> |
MAX_USER_CONNECTIONS <whole number>

<group by clause> ::=
GROUP BY <group by specification list> [WITH ROLLUP]

883APPENDIX A Syntax of SQL

<group by expression> ::= <scalar expression>

<group by specification> ::=
<group by expression> [<sort direction>]

<group by specification list> ::=
<group by specification> [, <group by specification>]...

<having clause> ::= HAVING <condition>

<hexadecimal character> ::=
<digit> | A | B | C | D | E | F | a | b | c | d | e | f

<hexadecimal literal> ::=
{ X | x } <hexadecimal character>... |
0x <hexadecimal character>...

<hours> ::= <digit> [<digit>]

<index change> ::=
ADD [<index type>] INDEX <index name>

[USING { BTREE | HASH }]
(<column in index> [, <column in index>]...) |

DROP { INDEX | KEY } <index name>

884 SQL for MySQL Developers

<index definition> ::=
<index type> { INDEX | KEY } [<index name>]
[USING { BTREE | HASH }]
(<column in index> [, <column in index>]...)

<index type> ::= UNIQUE | FULLTEXT | SPATIAL

<insert specification> ::=
[<column list>] <values clause> |
[<column list>] <table expression> |
[<table specification> SET <column assignment>

[, <column assignment>]...

<integer data type> ::=
TINYINT [(<presentation width>)] |
INT1 [(<presentation width>)] |
BOOLEAN |
BIT |
SMALLINT [(<presentation width>)] |
INT2 [(<presentation width>)] |
MEDIUMINT [(<presentation width>)] |
INT3 [(<presentation width>)] |
MIDDLEINT [(<presentation width>)] |
INT [(<presentation width>)] |
INTEGER [(<presentation width>)] |
INT4 [(<presentation width>)] |
BIGINT [(<presentation width>)] |
INT8 [(<presentation width>)]

<integer literal> ::= [+ | -] <whole number

885APPENDIX A Syntax of SQL

<integrity constraint change> ::=
ADD <primary key> |
DROP PRIMARY KEY |
ADD <alternate key> |
DROP FOREIGN KEY <index name> |
ADD <foreign key> |
ADD <check integrity constraint> |
DROP CONSTRAINT <constraint name>

<interval length> ::= <scalar expression>

<into file clause> ::=
INTO OUTFILE '<file name>' <export option>... |
INTO DUMPFILE '<file name>' |
INTO <user variable> [, <user variable>]...

<join condition> ::=
ON <condition> | USING <column list>

<join specification> ::=
<table reference> <join type> <table reference>

[<join condition>]

<join type> ::=
[INNER] JOIN |
LEFT [OUTER] JOIN |
RIGHT [OUTER] JOIN |
NATURAL [LEFT | RIGHT] [OUTER] JOIN |
CROSS JOIN

886 SQL for MySQL Developers

<length> ::= <whole number>

<like pattern> ::= <scalar alphanumeric expression>

<limit clause> ::=
LIMIT [<fetch offset> ,] <fetch number of rows> |
LIMIT <fetch number of rows> [OFFSET <fetch offset>]

<literal> ::=
<numeric literal> |
<alphanumeric literal> |
<temporal literal> |
<Boolean literal> |
<hexadecimal literal>

<local variable> ::= <variable name>

<local variable list> ::=
<local variable> [, <local variable>]...

<mantissa> ::= <decimal literal>

<mathematical operator> ::= * | / | + | - | % | DIV

887APPENDIX A Syntax of SQL

<microseconds> ::= <whole number>

<minutes> ::= <digit> [<digit>]

<months> ::= <digit> [<digit>]

<null specification> ::= [NOT] NULL

<numeric data type> ::=
<integer data type> |
<decimal data type> |
<float data type> |
<bit data type>

<numeric data type option> ::=
UNSIGNED |
ZEROFILL |
AUTO_INCREMENT |
SERIAL DEFAULT VALUE

<numeric literal> ::=
<integer literal> |
<decimal literal> |
<float literal> |
<bit literal>

Following are two definitions of parameter specification. The first applies to
stored procedures; the second applies to stored functions.

888 SQL for MySQL Developers

<order by clause> ::=
ORDER BY <sort specification> [, <sort specification>]...

<parameter> ::= <local variable>

<parameter list> ::=
<parameter specification>

[, <parameter specification>]...

<parameter specification> ::=
[IN | OUT | INOUT] <parameter> <data type>

<parameter specification> ::= <parameter> <data type>

<password> ::= <alphanumeric literal>

<precision> ::= <whole number>

889APPENDIX A Syntax of SQL

<predicate> ::=
<predicate with comparison> |
<predicate without comparison> |
<predicate with in> |
<predicate with between> |
<predicate with like> |
<predicate with regexp> |
<predicate with match> |
<predicate with null> |
<predicate with exists> |
<predicate with any all>

<predicate with any all> ::=
<scalar expression> <any all operator> <column subquery>

<predicate with between> ::=
<scalar expression> [NOT] BETWEEN <scalar expression>

AND <scalar expression>

<predicate with comparison> ::=
<scalar expression> <comparison operator>

<scalar expression> |
<row expression> <comparison operator> <row expression>

<predicate with exists> ::= EXISTS <table subquery>

<predicate with in> ::=
<scalar expression> [NOT] IN <scalar expression list> |
<scalar expression> [NOT] IN <column subquery> |
<row expression> [NOT] IN <row expression list> |
<row expression> [NOT] IN <table subquery>

890 SQL for MySQL Developers

<predicate with like> ::=
<scalar expression> [NOT] LIKE <like pattern>

[ESCAPE <character>]

<predicate with match> ::=
MATCH (<column specification>

[, <column specification>]...)
AGAINST (<scalar expression> [<search style>])

<predicate with null> ::=
<scalar expression> IS [NOT] NULL

<predicate without comparison> ::= <scalar expression>

<predicate with regexp> ::=
<scalar expression> [NOT] [REGEXP | RLIKE]

<regexp pattern>

<presentation width> ::= <whole number>

<primary key> ::=
[CONSTRAINT [<constraint name>]]
PRIMARY KEY [<index name>]
[{ USING | TYPE } <index type>] <column list>

891APPENDIX A Syntax of SQL

<recurring schedule> ::=
EVERY <number> <time unit>
[STARTS <timestamp literal>]
[ENDS <timestamp literal>]

<referencing action> ::=
ON { UPDATE | DELETE }

{ CASCADE | RESTRICT | SET NULL |
NO ACTION | SET DEFAULT } |

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

<referencing specification> ::=
REFERENCES <table specification> <column list>

[<referencing action>...]

<regexp pattern> ::= <scalar expression>

<routine body> ::= <begin-end block>

<routine characteristic> ::=
LANGUAGE SQL |
[NOT] DETERMINISTIC |
{ CONTAINS SQL | NO SQL | READS SQL DATA |
MODIFIES SQL DATA } |

<sql security-option> |
COMMENT <alphanumeric literal>

892 SQL for MySQL Developers

<row expression list> ::=
(<scalar expression list>

[, <scalar expression list>]...)

<scalar expression> ::=
<singular scalar expression> |
<compound scalar expression>

For each data type, a version of the scalar expression follows.

<scalar expression list> ::=
(<scalar expression> [, <scalar expression>]...)

<scalar function> ::=
<scalar function name>

(<scalar expression> [, <scalar expression>]...)

<scale> ::= <whole number>

<search style> ::=
IN NATURAL LANGUAGE MODE |
IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION |
IN BOOLEAN MODE |
WITH QUERY EXPANSION

<row expression> ::=
<singular row expression> |
<row subquery>

893APPENDIX A Syntax of SQL

<seconds> ::= <digit> [<digit>]

<select block head> ::=
<select clause>

[<from clause>
[<where clause>]
[<group by clause>]
[<having clause>]]
<limit clause>

<select block tail> ::=
<order by clause> |
<limit clause> |
<order by clause> <limit clause>

<select clause> ::=
SELECT <select option>... <select element list>

<select element> ::=
<scalar expression> [[AS] <column name>] |
<table specification>.* |
<pseudonym>.*

<select element list> ::=
<select element> [, <select element>]... |
*

894 SQL for MySQL Developers

<set operator> ::= UNION | UNION DISTINCT | UNION ALL

<single schedule> ::=
AT <timestamp expression>

<singular row expression> ::=
(<scalar expression> [, <scalar expression>]...) |
<row subquery>

For each data type, a version of the singular scalar expression follows. In addi-
tion, in a singular scalar expression, a collation may be specified only if the data
type of the expression is alphanumeric.

<singular scalar expression> ::=
{ <literal> |
_ <character set name> <alphanumeric literal> |
<column specification> |
<user variable> |
<system variable> |
<locale variable> |
<cast expression> |
<case expression> |
NULL |
(<scalar expression>) |
<scalar function> |
<aggregation function> |
<stored function> |
<scalar subquery> }

[COLLATE <collating_sequence_name>]

<select option> ::=
DISTINCT | DISTINCTROW | ALL | HIGH_PRIORITY |
SQL_BUFFER_RESULT | SQL_CACHE | SQL_NO_CACHE |
SQL_CALC_FOUND_ROWS | SQL_SMALL_RESULT | SQL BIG_RESULT |
STRAIGHT_JOIN

895APPENDIX A Syntax of SQL

<singular table expression> ::= <select block head>

<sort direction> ::= ASC | DESC

<sort specification> ::=
<scalar expression> [<sort direction>] |
<sequence number> [<sort direction>] |
<column name> [<sort direction>]

<special symbol> ::=
{ \ { 0 | ' | " | b | n | r | t | z | \ | % } } |
<any other symbol>

<sql security option> ::=
SQL SECURITY { DEFINER | INVOKER }

<statement in body> ::=
<declarative statement> |
<procedural statement>

<statement list> ::= { <statement in body> ; }...

<stored function> ::=
<stored function name>

(<scalar expression> [, <scalar expression>]...)

896 SQL for MySQL Developers

<subquery> ::= (<table expression>)

<system variable> ::=
[@@] [<variable type> .] <variable name>

<table change> ::=
RENAME [TO | AS] <table name> |
<table options>... |
CONVERT TO CHARACTER SET { <character set name> | DEFAULT }

[COLLATE <collation name>] |
ORDER BY <sort specification>

[, <sort specification>]... |
{ ENABLE | DISABLE } KEYS

<table contents> ::=
[IGNORE | REPLACE] [AS] <table expression>

<table element> ::=
<column definition> |
<table integrity constraint> |
<index definition>

<table expression> ::=
{ <singular table expression > |
(<table expression>) |
<compound table expression> }|

[<select block tail>]

897APPENDIX A Syntax of SQL

<table integrity constraint> ::=
[CONSTRAINT [<constraint name>]]
{ <primary key> |
<alternate key> |
<foreign key> |
<check integrity constraint> }

<table option> ::=
ENGINE = <engine name> |
TYPE = <engine name> |
UNION = (<table name> [, <table name>]...) |
INSERT_METHOD = { NO | FIRST | LAST } |
AUTO_INCREMENT = <whole number> |
COMMENT = <alphanumeric literal> |
AVG_ROW_LENGTH = <whole number> |
MAX_ROWS = <whole number> |
MIN_ROWS = <whole number> |
[DEFAULT] CHARACTER SET

{ <character set name> | DEFAULT } |
[DEFAULT] COLLATE

{ <collation name> | DEFAULT } |
DATA DIRECTORY = <directory > |
INDEX DIRECTORY = <directory > |
CHECK_SUM = { 0 | 1 } |
DELAY_KEY_WRITE = { 0 | 1 } |
PACK_KEYS = { 0 | 1 | DEFAULT } |
PASSWORD = <alphanumeric literal> |
RAID_TYPE = { 1 | STRIPED | RAID0 } |
RAID_CHUNKS = <whole number> |
RAID_CHUNKSIZE = <whole number> |
ROW_FORMAT = { DEFAULT | DYNAMIC | FIXED | COMPRESSED }

<table privilege> ::=
SELECT |
INSERT |
DELETE [<column list>] |
UPDATE [<column list>] |
REFERENCES [<column list>] |
CREATE |
ALTER |
INDEX [<column list>] |
DROP

898 SQL for MySQL Developers

<table privileges> ::=
ALL [PRIVILEGES] |
<table privilege> [, <table privilege>]...

<table reference> ::=
{ <table specification> |
<join specification> |
<table subquery> }

[[AS] <pseudonym>]

<table schema> ::=
(<table element> [, <table element>]...)

<table specification> ::= [<database name> .] <table name>

<table structure> ::=
LIKE <table specification> |
(LIKE <table specification>) |
<table contents |
<table schema> [<table contents>]

<table structure change> ::=
<table change> |
<column change> |
<integrity constraint change> |
<index change>

<table subquery> ::= (<table expression>)

899APPENDIX A Syntax of SQL

<temporal data type> ::=
DATE |
DATETIME |
TIME |
TIMESTAMP |
YEAR [(2) | (4)]

<temporal literal> ::=
<date literal> |
<time literal> |
<datetime literal> |
<timestamp literal> |
<year literal>

<time interval> ::= <scalar time expression>

<timestamp interval> ::=
INTERVAL <interval length> <timestamp interval unit>

<time literal> ::=
{ ' <hours> : <minutes> [: <seconds>

[. <microseconds>]] ' } |
{ ' [<hours> : <minutes> :] <seconds> ' } |
{ <hours> <minutes> <seconds> } |
{ [[<hours>] <minutes>] <seconds> }

<timestamp interval unit> ::=
MICROSECOND | SECOND | MINUTE | HOUR |
DAY | WEEK | MONTH | QUARTER | YEAR |
SECOND_MICROSECOND | MINUTE_MICROSECOND | MINUTE_SECOND |
HOUR_MICROSECOND | HOUR_SECOND | HOUR_MINUTE |
DAY_MICROSECOND | DAY_SECOND | DAY_MINUTE | DAY_HOUR |
YEAR_MONTH

900 SQL for MySQL Developers

<timestamp literal> ::=
{ ' <years> - <months> - <days> <spacing>
[<hours> [: <minutes> [: <seconds>

[. <microseconds>]]]] ' } |
{ <years> <months> <days> <hours> <minutes> <seconds> }

<user name> ::=
<name> | '<name>' | '<name>'@'<host name>'

<user privilege> ::=
SELECT |
INSERT |
DELETE |
UPDATE |
REFERENCES |
CREATE |
ALTER |
DROP |
INDEX |
CREATE TEMPORARY TABLES |
CREATE VIEW |
SHOW VIEW |
CREATE ROUTINE |
ALTER ROUTINE |
EXECUTE ROUTINE |
LOCK TABLES |
EVENT |
CREATE USER |
SHOW DATABASES |
FILE |
PROCESS |
RELOAD |
REPLICATION CLIENT |
REPLICATION SLAVE |
SHUTDOWN |
SUPER |
USAGE

901APPENDIX A Syntax of SQL

<user privileges> ::=
ALL [PRIVILEGES] |
<user privilege> [, <user privilege>]...

<user specification> ::=
<user name> [IDENTIFIED BY [PASSWORD] <password>]

<user variable> ::= @ <variable name>

<values clause> ::=
VALUES <row expression> [, <row expression>]...

<variable type> ::= SESSION | GLOBAL | LOCAL

<when definition> ::= <when definition-1> | <when definition-2>

<when definition-1> ::=
<scalar expression>
WHEN <scalar expression> THEN <scalar expression>
[WHEN <scalar expression> THEN <scalar expression>]...

<when definition-2> ::=
WHEN <condition> THEN <scalar expression>
[WHEN <condition> THEN <scalar expression>]...

902 SQL for MySQL Developers

<where clause> ::= WHERE <condition>

<whole number> ::= <digit>...

<year> ::= <whole number

<year literal> ::= <year>

<years> ::= <whole number

<character set name> ;
<collation name> ;
<column name> ;
<condition name> ;
<constraint name> ;
<cursor name> ;
<database name> ;
<engine name> ;
<handler name> ;
<host name> ;
<index name> ;
<label> ;
<local variable> ;
<pseudonym> ;
<savepoint name> ;
<scalar function name> ;
<statement name> ;
<stored function name> ;
<stored procedure name> ;
<table name> ;
<trigger name> ;
<variable name> ;
<view name> ::= <object name>

<object name> ::= <letter> [<letter> | <digit> | _]...

903

Scalar Functions
A P P E N D I X B

MySQL supports many scalar functions. For all functions, this appendix presents
the name, a description, the data type of the result of the function, and a few exam-
ples. The functions are sorted by name.

Some functions have more than one name. To make the search easier, we have
included them all, but we refer to the functions with the same name.

Note that MySQL has two data types that form a combination of a date and a
time: the datetime and timestamp. If a function can work with timestamps, it can
usually work with datetimes, too, and the other way round. For the sake of conven-
ience, this appendix considers these data types to be synonyms. If you come across
“timestamp” somewhere in the appendix, you actually must read “timestamp and
datetime” (unless otherwise mentioned).

ABS(par1)
Description: This function returns the absolute value of a numeric expression.

Data type: Numeric

ABS(-25) → 25
ABS(-25.89) → 25.89

ACOS(par1)
Description: This function returns, in radians, the angle size for any given arc
cosine value. The value of the parameter must lie between -1 and 1 inclusive.

Data type: Numeric

ACOS(0) → 1.5707963267949
ACOS(-1) - PI() → 0
ACOS(1) → 0
ACOS(2) → NULL

ADDDATE(par1, par2)
Description: This function adds an interval (the second parameter) to a datetime
or timestamp expression (the first parameter). See Section 5.13.3 for specifying
intervals. If the second parameter is not an interval but is a numeric value, MySQL
assumes that this value represents a number of days.

Data type: Date or timestamp

ADDDATE('2004-01-01', INTERVAL 5 MONTH) → '2004-06-01'
ADDDATE(TIMESTAMP('2004-01-01'), INTERVAL 5 MONTH)

→ '2004-06-01 00:00:00'
ADDDATE('2004-01-01 12:00:00', INTERVAL 5 DAY)

→ '2004-01-06 12:00:00'
ADDDATE('2004-01-01', 5) → '2004-01-06'

AES_DECRYPT(par1, par2)
Description: This function decodes (encryption) the first parameter based upon a
certain key (the second parameter); see the AES_ENCRYPT function for a description.
That same AES_ENCRYPT function encodes the value.

Data type: Blob

AES_ENCRYPT('database','xyz') → ' ?ñ_--ZG›rN4?_ËŽš'
AES_DECRYPT(AES_ENCRYPT('database','xyz'),'xyz') → 'database'

AES_ENCRYPT(par1, par2)
Description: This function decodes the encoded value of the first parameter back,
based upon a certain key (the second parameter). The abbreviation AES stands for
Advanced Encryption Standard. Encoding is done with the help of a key that is 128
bits long; the key can be extended to 256 bits by increasing its value. Both param-
eters may have a numeric or alphanumeric data type. The length of the created
value can be calculated as follows: 16 * (TRUNC(par1/16) + 1). With the
AES_DECRYPT function, the encoded value is converted back to the original value.

Data type: Alphanumeric

AES_ENCRYPT('database','xyz') → ' ?ñ_--ZG›rN4?_ËŽš'
AES_ENCRYPT('database',12) → 'Cn ú6•ìlí¥Ž©áÿM*'
AES_DECRYPT(AES_ENCRYPT('database','xyz'),'xyz') → 'database'
AES_DECRYPT(AES_ENCRYPT('database','xyz'),'abc') → ' à'

ADDTIME(par1, par2)
Description: This function adds two time expressions. The result is an interval
consisting of a number of hours, minutes, and seconds. Therefore, the number of
hours can be greater than 24.

904 SQL for MySQL Developers

Data type: Time

ADDTIME('12:59:00', '0:59:00') → '13:58:00'
ADDTIME('12:00:00', '0:00:00.001') → '12:00:00.001000'
ADDTIME('100:00:00', '900:00:00') → '1000:00:00'

ASCII(par1)
Description: This function returns the ASCII value of the first character of an
alphanumeric expression.

Data type: Numeric

ASCII('Database') → 68
ASCII('database') → 100
ASCII('') → 0
ASCII(NULL) → NULL

ASIN(par1)
Description: This function returns, in radians, the angle size for any given arc
sine value. The value of the parameter must lie between -1 and 1 inclusive; other-
wise, the result is equal to the null value.

Data type: Numeric

ASIN(1) → 1.5707963267949
ASIN(0) → 0
ASIN(NULL) → NULL

ATAN(par1)
Description: This function returns, in radians, the angle size for any given arc tan-
gent value.

Data type: Numeric

ATAN(0) → 0
ATAN(100) → 1.56079666010823
ATAN(1) → 0.78539816339745

ATAN(par1, par2)
Description: This function returns, in radians, the angle size for any given arc tan-
gent value. If the ATAN function has two parameters, it is a synonym of the ATAN2
function.

Data type: Numeric

ATAN(30,30) → 0.78539816339745
ATAN(8,4) - ATAN(2) → 0

905APPENDIX B Scalar Functions

ATAN2(par1, par2)
Description: This function returns, in radians, the angle size for any given arc tan-
gent value.

Data type: Numeric

ATAN2(30,30) → 0.78539816339745
ATAN2(-1,-1) → -2.3561944901923

ATANH(par1)
Description: This function returns the hyperbolic arc tangent value of the param-
eter; it must be specified in radians.

Data type: Numeric

ATANH(0.4) → 0.255412811882995

BENCHMARK(par1, par2)
Description: This function evaluates a certain expression (the second parameter)
several times (the first parameter). The result of this function is always equal to 0.
This function can be used to determine the speed of a certain expression.

Data type: Numeric

BENCHMARK(100, SQRT(8)) → 0

BIN(par1)
Description: This function transforms the numeric value of the parameter into a
binary value that consists of ones and zeroes, and has the alphanumeric data type.

Data type: Alphanumeric

BIN(7) → '111'
BIN(1000000) → '11110100001001000000'

BIT_COUNT(par1)
Description: This function shows the number of bits needed to present the value
of the parameter. Here, 64-bits integers are used.

Data type: Numeric

BIT_COUNT(3) → 2
BIT_COUNT(-1) → 64

906 SQL for MySQL Developers

BIT_LENGTH(par1)
Description: This function returns the length in bits of an alphanumeric value.

Data type: Numeric

BIT_LENGTH('database') → 64
BIT_LENGTH(BIN(2)) → 16

CEILING(par1)
Description: This function returns the highest whole number that is greater than
or equal to the value of the parameter.

Data type: Numeric

CEILING(13.43) → 14
CEILING(-13.43) → -13
CEILING(13) → 13

CHAR(par1, par2, par3, …)
Description: This function returns the alphanumeric character of each of the
numeric parameters. Next, the alphanumeric characters are combined into one
alphanumeric literal.

Data type: Alphanumeric

CHAR(80) → 'P'
CHAR(82) + CHAR(105) + CHAR(99) + CHAR(107) → 'Rick'
CHAR(82, 105, 99, 107) → 'Rick'

CHARACTER_LENGTH(par1)
Description: This function returns the length of an alphanumeric expression.

Data type: Numeric

CHARACTER_LENGTH('database') → 8
CHARACTER_LENGTH((SELECT MAX(NAME) FROM PLAYERS)) → 6
CHARACTER_LENGTH('') → 0
CHARACTER_LENGTH(NULL) → NULL
CHARACTER_LENGTH(BIN(8)) → 4

CHARSET(par1)
Description: This function returns the name of the character set of the alphanu-
meric parameter.

907APPENDIX B Scalar Functions

Data type: Alphanumeric

CHARSET('database') → 'latin1'
CHARSET((SELECT MAX(NAME) FROM PLAYERS)) → 'latin1'
CHARSET((SELECT MAX(TABLE_NAME)

FROM INFORMATION_SCHEMA.TABLES)) → 'utf8'

CHAR_LENGTH(par1)
Description: This function returns the length of an alphanumeric expression. See
the CHARACTER_LENGTH function.

Data type: Numeric

CHAR_LENGTH('database') → 8
CHAR_LENGTH((SELECT MAX(NAME) FROM PLAYERS)) → 6
CHAR_LENGTH('') → 0
CHAR_LENGTH(NULL) → NULL
CHAR_LENGTH(BIN(8)) → 4

COALESCE(par1, par2, par3, …)
Description: This function can have a variable number of parameters. The value
of the function is equal to the value of the first parameter that is not equal to null.

If E1, E2, and E3 are three expressions, the specification

COALESCE(E1, E2, E3)

is equivalent to the following case expression:

CASE
WHEN E1 IS NOT NULL THEN E1
WHEN E2 IS NOT NULL THEN E2
WHEN E3 IS NOT NULL THEN E3
ELSE NULL

END

Data type: Depends on the parameters

COALESCE('John', 'Jim', NULL) → 'John'
COALESCE(NULL, NULL, NULL, 'John', 'Jim') → 'John'

COERCIBILITY(par1)
Description: This function determines the coercibility value of an expression.

Data type: Numeric

COERCIBILITY(NULL) → 5
COERCIBILITY('Database') → 4

908 SQL for MySQL Developers

COLLATION (par1)
Description: This function gets the name of the collation of the alphanumeric
parameter.

Data type: Alphanumeric

COLLATION('database')
→ 'latin1_swedish_ci'

COLLATION((SELECT MAX(NAME) FROM PLAYERS))
→ 'latin1_swedish_ci'

COLLATION((SELECT MAX(TABLE_NAME)
FROM INFORMATION_SCHEMA.TABLES))

→ 'utf8_general_ci'

COMPRESS(par1)
Description: This function compresses the value of the parameter. The UNCOM-
PRESS function can be used to return the original value.

Data type: Alphanumeric

LENGTH(COMPRESS('byeeeeeeeeeeeeeeeeeee')) → 16
LENGTH('byeeeeeeeeeeeeeeeeeee')) → 21
UNCOMPRESS(COMPRESS('database')) → 'database'

CONCAT(par1, part2, par3, …)
Description: This function combines one, two, or more alphanumeric values. You
can achieve the same effect with the || operator.

Data type: Alphanumeric

CONCAT('Data','base') → 'Database'
CONCAT('MySQL ','data','base','server') → 'MySQL databaseserver'
CONCAT('MySQL',NULL,' server') → NULL

CONCAT_WS(par1, part2, par3, …)
Description: This function combines one, two, or more alphanumeric values; how-
ever, the value of the first parameter is placed between all the others.

Data type: Alphanumeric

CONCAT_WS('-','a','b','c','d') → 'a-b-c-d'
CONCAT_WS(', ','Hello','world') → 'Hello, world'

909APPENDIX B Scalar Functions

CONNECTION_ID()
Description: This function returns the numeric identifier of the connection.

Data type: Numeric

CONNECTION_ID() → 4

CONV(par1, part2, par3)
Description: This function converts the value (first parameter) of one number base
(second parameter) to another (third parameter). The value of the two last parame-
ters must be between 2 and 36; otherwise, the result is equal to null. Furthermore,
the value of the first parameter should fit into the number base of the first parame-
ter; otherwise, the result is 0.

Data type: Alphanumeric

CONV(1110, 2, 10) → '14'
CONV(1110, 10, 2) → '10001010110'
CONV(1110, 10, 8) → '2126'
CONV(1110, 10, 16) → '456'
CONV(35, 10, 36) → 'Z'
CONV(35, 10, 37) → NULL
CONV(8, 2, 10) → '0'

CONVERT(par1, par2)
Description: This function converts the data type of the first parameter. The sec-
ond parameter must be equal to one of the well-known data types, including BINARY,
CHAR, DATE, DATETIME, TIME, SIGNED, SIGNED INTEGER, UNSIGNED, UNSIGNED INTEGER,
or VARCHAR. This specification

CONVERT(par1, type1)

is equal to:

CAST(par1 AS type1)

The following formulation may also be used:

CONVERT(par1 USING type1)

Data type: Depends on the second parameter

CONVERT(45, CHAR(2)) → '45'
CONVERT('2000-01-42', DATE) → '2000-01-01'
CONVERT(12.56, UNSIGNED INTEGER) → 13
CONVERT(-12.56, UNSIGNED INTEGER) → 18446744073709551603

910 SQL for MySQL Developers

CONVERT_TZ(par1, part2, par3)
Description: This function determines what the timestamp value of a timestamp
expression (first parameter) is when the time zone is changed. The second parame-
ter indicates the current time zone, and the third parameter indicates the new time
zone.

Date type: Timestamp

CONVERT_TZ('2005-05-20 09:30:40', '+00:00', '+9:00')
→ 2005-05-20 18:30:40

COS(par1)
Description: This function returns, in radians, the cosine value for any angle size.

Data type: Numeric

COS(0) → 1
COS(PI()/2) → 0
COS(PI()) → –1

COT(par1)
Description: This function returns, in radians, the cotangent value for any angle
size.

Data type: Numeric

COT(10) → 1.54235
COT(PI()/2) → 0
COT(NULL) → NULL

CRC32(par1)
Description: This function calculates a cyclic redundancy check beginning at the
parameter.

Date type: Numeric

CRC32(0) → 4108050209
CRC32(1) → 2212294583

CURDATE()
Description: This function returns the system date with the format YYYY-MM-DD. If
the function is regarded as a numeric expression, the system date is presented as a
numeric value with the format YYYYMMDD. See the CURRENT_DATE function.

911APPENDIX B Scalar Functions

Data type: Date or double

CURDATE() → '2005-02-20'
CURDATE() + 0 → 20050220

CURRENT_DATE()
Description: This function returns the system date with the format YYYY-MM-DD. If
the function is regarded as a numeric expression, the system date is presented as a
numeric value with the format YYYYMMDD. If the brackets are left out, the function
changes into the system variable CURRENT_DATE. See the CURDATE function.

Data type: Date or double

CURRENT_DATE() → '2005-02-20'
CURRENT_DATE() + 0 → 20050220
CURRENT_DATE → '2005-02-20'

CURRENT_TIME()
Description: This function returns the system time with the format: HH:MM:SS. The
abbreviation HH stands for the hours, MM for minutes, and SS for seconds. If the func-
tion is regarded as a numeric expression, the system time is presented as a numeric
value with the format HHMMSS. If the brackets are left out, the function changes into
the system variable CURRENT_TIME. See the CURTIME function.

Data type: Time or double

CURRENT_TIME() → '16:42:24'
CURRENT_TIME() + 0 → 164224
CURRENT_TIME → '16:42:24'

CURRENT_TIMESTAMP()
Description: This function returns the system date and time with the format: YYYY-
MM-DD HH:MM:SS. The abbreviation YYYY stands for years, the first MM for months, DD
for days, HH for hours, the second MM for minutes, and SS for seconds. If the function
is regarded as a numeric expression, the system date and time are presented as a
numeric value with the format YYYYMMDDHHMMSS. If the brackets are left out, the
function changes into the system variable CURRENT_TIMESTAMP.

Data type: Timestamp or double

CURRENT_TIMESTAMP() → '2005-10-16 20:53:45'
CURRENT_TIMESTAMP() + 0 → 20051016205345
CURRENT_TIMESTAMP → '2005-10-16 20:53:45'

912 SQL for MySQL Developers

CURRENT_USER()
Description: This function returns the name of the SQL user.

Data type: Alphanumeric

CURRENT_USER() → 'root@localhost'

CURTIME()
Description: This function returns the system time with the following format:
HH:MM:SS. The abbreviation HH stands for the hours, MM for minutes, and SS for sec-
onds. If the function is regarded as a numeric expression, the system time is pre-
sented as a numeric value with the format HHMMSS. See the CURRENT_TIME function.

Data type: Time or interval

CURTIME() → '16:42:24'
CURTIME() + 0 → 164224

DATABASE()
Description: This function shows the name of the current database.

Data type: Alphanumeric

DATABASE() → 'TENNIS'

DATE(par1)
Description: This function transforms the parameter into a date value. The param-
eter should have the format of a correct date or timestamp.

Data type: Date

DATE('2005-12-01') → '2005-12-01'
DATE('2005-12-01 12:13:14') → '2005-12-01'

DATE_ADD(par1, par2)
Description: This function adds an interval (the second parameter) to a date or
timestamp expression (the first parameter). See Section 5.13.3 for specifying inter-
vals. See the ADDDATE function.

Date type: Date or timestamp

DATE_ADD('2004-01-01', INTERVAL 5 MONTH) → '2004-06-01'
DATE_ADD('2004-01-01 12:00:00', INTERVAL 5 DAY)

→ '2004-01-06 12:00:00'

913APPENDIX B Scalar Functions

DATEDIFF(par1, par2)
Description: This function calculates the number of days between two date or
timestamp expressions.

Date type: Numeric

DATEDIFF('2004-01-12', '2004-01-01') → 11
DATEDIFF('2004-01-01', '2004-01-12') → -11
DATEDIFF('2004-01-12 19:00:00', '2004-01-01')) → 11
DATEDIFF('2004-01-12 19:00:00', '2004-01-01 01:00:00') → 11
DATEDIFF('2004-01-12', CURDATE()) → -643

DATE_FORMAT(par1, par2)
Description: This function transforms a date or timestamp expression (the first
parameter) to an alphanumeric value. The second parameter describes the format of
that alphanumeric value. Several special format strings can be used; see the follow-
ing table.

914 SQL for MySQL Developers

FORMAT STRING EXPLANATION

%a Three-letter English abbreviation of the weekday (for example, Sun,
Mon, or Sat)

%b Three-letter English abbreviation of the month (for example, Jan, Feb,
or Mar)

%c Numeric code for the month (0 up to and including 12)
%D Day of the month with an English suffix, such as 0th, 1st, and 2nd
%d Two-digit numeric code for the day of the month (00 up to and

including 31)
%e One- or two-digit numeric code for the day of the month (0 up to and

including 31)
%f Six-digit numeric code for the number of microseconds (000000 up to

and including 999999)
%H Two-digit numeric code for the hour (00 up to and including 23)
%h Two-digit numeric code for the hour (01 up to and including 12)
%I Two-digit numeric code for the hour (01 up to and including 12)
%i Two-digit numeric code for the number of minutes (00 up to and

including 59)
%j Three-digit numeric code for the day of the year (001 up to and

including 366)
%k One- or two-digit numeric code for the hour (0 up to and including 23)
%l One- or two-digit numeric code for the hour (1 up to and including 12)

continues

915APPENDIX B Scalar Functions

FORMAT STRING EXPLANATION

%M English indication of the month (for example, January, February,
or December)

%m Two-digit numeric code for the month (00 up to and including 12)
%p Indication of AM or PM
%r Indication of the time (in 12 hours) with the format HH:MM:SS,

followed by AM or PM
%S Two-digit numeric code for the number of seconds (00 up to and

including 59)
%s Two-digit numeric code for the number of seconds (00 up to and

including 59)
%T Indication of the time (in 24 hours) with the format HH:MM:SS,

followed by AM or PM
%U Two-digit numeric code for the week in the year (00 up to and includ-

ing 53), for which Sunday is considered to be the first day of the week
%u Two-digit numeric code for the week in the year (00 up to and includ-

ing 53), for which Monday is considered to be the first day of the week
%V Two-digit numeric code for the week in the year (01 up to and includ-

ing 53), for which Sunday is considered to be the first day of the week
%v Two-digit numeric code for the week in the year (01 up to and includ-

ing 53), for which Monday is considered to be the first day of the week
%W English indication of the day in the week (for example, Sunday,

Monday, or Saturday)
%w One-digit code for the day in the week (0 up to and including 6), for

which Sunday is considered to be the first day of the week
%X Four-digit numeric code that indicates the year in which the week

starts belonging to the specified date, for which Sunday is the first day
of the week

%x Four-digit numeric code that indicates the year in which the week
starts belonging to the specified date, for which Monday is the first
day of the week

%Y Four-digit numeric code for the year
%y Two-digit numeric code for the year
%% Returns the percentage sign

Data type: Alphanumeric

DATE_FORMAT('2005-10-16', '%a %c %b') → 'Sun 10 Oct'
DATE_FORMAT('2005-10-06', '%d %e %D') → '06 6 6th'
DATE_FORMAT('2005-01-16', '%j %M %m') → '016 January 01'
DATE_FORMAT('2005-01-09', '%U %u %V %v') → '02 01 02 01'
DATE_FORMAT('2005-12-31', '%U %u %V %v') → '52 52 52 52'

DATE_FORMAT('2005-01-09', '%W %w') → 'Sunday 0'
DATE_FORMAT('2005-01-02', '%X %x') → '2005 2004'
DATE_FORMAT('2005-01-09', '%Y %y') → '2005 05'
DATE_FORMAT('2005-01-01 12:13:14.012345', '%f') → '012345'
DATE_FORMAT('2005-01-01 12:13:14', '%H %h %I %i')

→ '13 01 01 14'
DATE_FORMAT('2005-01-01 12:13:14', '%k %l %p') → '12 12 PM'
DATE_FORMAT('2005-01-01 12:13:14', '%S %s %T')

→ '14 12 12:13:14'
DATE_FORMAT('2005-01-09', 'Database') → 'Database'
DATE_FORMAT('2005-01-09', 'It is this day %W')

→ 'This day is Sunday'

DATE_SUB(par1, par2)
Description: This function subtracts an interval (the second parameter) from a
date or timestamp expression (the first parameter). See Section 5.13.3 for specifying
intervals. See the SUBDATE function.

Data type: Date or Timestamp

DATE_SUB('2004-01-01', INTERVAL 5 MONTH) → '2003-08-01'
DATE_SUB('2004-01-01 12:00:00', INTERVAL 5 DAY)

→ '2003-12-27 12:00:00'

DAY(par1)
Description: This function returns the number of the day of the month from a date
or timestamp expression. The value of the result is always a whole number between
1 and 31 inclusive. See the DAYOFMONTH function.

Date type: Numeric

DAY('2004-01-01') → 1
DAY('2004-01-01 09:11:11') → 1
DAY(CURRENT_DATE()) → 17
DAY(CURRENT_TIMESTAMP()) → 17

DAYNAME(par1)
Description: This function returns the name of the day of the week from a date or
timestamp expression.

Data type: Alphanumeric

DAYNAME('2005-01-01')→ 'Saturday'

916 SQL for MySQL Developers

DAYOFMONTH(par1)
Description: This function returns the number of the day of the month from a date
or timestamp expression. The value of the result is always a whole number between
1 and 31 inclusive. See the DAY function.

Data type: Numeric

DAYOFMONTH('2004-01-01') → 1
DAYOFMONTH('2004-01-01 09:11:11') → 1
DAYOFMONTH(CURRENT_DATE()) → 17
DAYOFMONTH(CURRENT_TIMESTAMP()) → 17

DAYOFWEEK(par1)
Description: This function returns the number of the day of the week from a date
or timestamp expression. The value of the result is always a whole number between
1 and 7 inclusive.

Data type: Numeric

DAYOFWEEK('1005-07-29') → 2
DAYOFWEEK(CURRENT_TIMESTAMP()) → 3

DAYOFYEAR(par1)
Description: This function returns the number of the day of the year from a date or
timestamp expression. The value of the result is always a whole number between 1
and 366 inclusive.

Data type: Numeric

DAYOFYEAR('2005-07-29') → 210
DAYOFYEAR('2005-07-29 12:00:00') → 210
DAYOFYEAR(CURDATE()) → 291

DECODE(par1, par2)
Description: This function decodes (encryption) the first parameter based upon a
certain key (the second parameter); see the DES_ENCODE function for an explanation.
The value is encoded with that same ENCODE function.

Data type: Blob

DECODE('database','xyz') → '?2_?4b@™'
DECODE(ENCODE('database','xyz'),'xyz') → 'database'

917APPENDIX B Scalar Functions

DEFAULT()
Description: This function returns the default value of a certain column. See also
Example 20.26.

Data type: Depends on the column

DEFAULT(DATE) → '1990-01-01'
DEFAULT(AMOUNT) → 50.00

DEGREES(par1)
Description: This function converts a number of degrees to a value in radians.

Data type: Numeric

DEGREES(1.570796) → 90
DEGREES(PI()) → 180

DES_DECRYPT(par1, par2)
Description: This function decodes (encryption) the first parameter based upon a
certain key. If a second parameter is specified, it is used as the key; otherwise, the
DES key file of the server is used. See the DES_ENCRYPT function for an explanation.
The value is encoded with that same DES_ENCRYPT function.

Data type: Blob

DES_ENCRYPT('database','xyz') → ' ?ñ_--ZG›rN4?_ËŽš'
DES_DECRYPT(AES_ENCRYPT('database','xyz'),'xyz') → 'database'

DES_ENCRYPT(par1, par2)
Description: This function encodes the value of the first parameter back based
upon a certain key. If a second parameter is specified, it is used as the key; other-
wise, the DES key file of the server is used. The abbreviation DES stands for Data
Encryption Standard. Encoding is done with the help of the triple DES algorithm.
The DES_DECRYPT function converts the encoded value to the original value.

Data type: Alphanumeric

DES_ENCRYPT('database','xyz') → 'ÿ«eµH_”Ú%__ Cûä'k'
DES_DECRYPT(DES_ENCRYPT('database','xyz'),'xyz') → 'database'
DES_DECRYPT(DES_ENCRYPT('database','xyz'),'abc') → NULL

918 SQL for MySQL Developers

ELT(par1, part2, par3, …)
Description: This function returns the nth element (first parameter) from a series
of values (the other parameters). If the nth element does not exist, the result of the
function is equal to the null value.

Data type: Depends on the parameters

ELT(3,0,1,2,3,4) → 2
ELT(4,'a','b','c','d','e','f','g','i') → 'd'
ELT(10,'a','b','c','d','e','f','g','i') → NULL

ENCODE(par1, par2)
Description: This function encodes the value of the first parameter based upon a
certain key (the second parameter). The DECODE function decodes the coded value to
its original value.

Data type: Alphanumeric

DECODE('database','xyz') → '?2_?4b@™'
DECODE(ENCODE('database','xyz'),'xyz') → 'database'
DECODE(ENCODE('database','xyz'),'abc') → 'Ì?_áç'Ge'

EXP(par1)
Description: This function returns the result of the number e to the power of x,
where x is the value of the parameter and e the basis of natural logarithms.

Data type: Numeric

EXP(1) → 2.718281828459
EXP(2) → 7.3890560989307

EXPORT_SET(par1, part2, par3, par4, par5)
Description: This function returns an alphanumeric value. The first parameter is
converted to its binary representation. After that, every 1 is replaced by the value of
the second parameter, and every 0 is replaced by the value of the third parameter. If
a fourth parameter is specified, this value is placed between each 0 and 1. Omitting
this parameter is equal to specifying a comma. If the fifth parameter is specified, it
represents the maximum length of the number of values. Omitting this parameter is
equal to specifying 64.

919APPENDIX B Scalar Functions

Data type: Alphanumeric

EXPORT_SET(9,'Y','N','', 10) → 'YNNYNNNNNN'
EXPORT_SET(9,'Y','N','', 2) → 'YN'
EXPORT_SET(9,'Y','N','-', 8) → 'Y-N-N-Y-N-N-N-N'
EXPORT_SET(CONV(111,2,10),'Y','N','-', 3) → 'Y-Y-Y'
CHAR_LENGTH(EXPORT_SET(9,'Y','N','')) → 64

EXTRACT(par1 FROM par2)
Description: This function returns a component from a date or timestamp expres-
sion (the second parameter). The first parameter indicates which component. This
must be one of the following values: MICROSECOND, SECOND, MINUTE, HOUR, DAY, WEEK,
MONTH, QUARTER, YEAR, SECOND_MICROSECOND, MINUTE_MICROSECOND, MINUTE_SECOND,
HOUR_MICROSECOND, HOUR_SECOND, HOUR_MINUTE, DAY_MICROSECOND, DAY_SECOND,
DAY_MINUTE, DAY_HOUR, or YEAR_MONTH.

Data type: Numeric

EXTRACT(MICROSECOND FROM '2005-07-29 12:13:14.012345') → 12345
EXTRACT(SECOND FROM '2005-07-29 12:13:14.012345') → 14
EXTRACT(YEAR FROM '2005-07-29 12:13:14.012345') → 2005
EXTRACT(MINUTE_SECOND FROM '2005-07-29 12:13:14.012345') → 1314
EXTRACT(DAY_HOUR FROM '2005-07-29 12:13:14.012345') → 2912

FIELD(par1, par2, par3, …)
Description: This function looks for the position of the first parameter in the
series of other parameters.

Data type: Numeric

FIELD('e','a','b','c','d','e','f','g','i') → 5
FIELD('k','a','b','c','d','e','f','g','i') → 0
FIELD(NULL,'a','b','c','d','e','f','g','i') → 0

FIND_IN_SET(par1, par2)
Description: This function looks for the position of the first parameter in the sec-
ond parameter. This second parameter should have an alphanumeric value in which
commas separate individual values.

Data type: numeric

FIND_IN_SET('e','a,b,c,d,e,f,g,i') → 5
FIND_IN_SET('44',(SELECT GROUP_CONCAT(PLAYERNO)

FROM PLAYERS
WHERE TOWN = 'Inglewood'
GROUP BY TOWN)) → 2

920 SQL for MySQL Developers

FLOOR(par1)
Description: This function returns the smallest whole number that is less than or
equal to the value of the parameter.

Data type: Numeric

FLOOR(13.9) → 13
FLOOR(-13.9) → -14

FORMAT(par1, par2)
Description: This function formats a numeric value to the pattern
nn,nnn,nnn.nnn. The second parameter represents the number of decimals behind
the comma and must be greater than or equal to 0.

Data type: Alphanumeric

FORMAT(123456789.123, 2) → '123,456,789.12'
FORMAT(123456789.123, 0) → '123,456,789'

FOUND_ROWS()
Description: This function returns the number of rows in the result of the previous
SELECT statement.

Data type: Numeric

FOUND_ROWS() → 14

FROM_DAYS(par1)
Description: This function determines the date belonging to a number of days that
have elapsed since the year 0. The parameter forms the number of days and must be
between 366 and 3,652,424.

Data type: Date

FROM_DAYS(366) → '0001-01-01'
FROM_DAYS(366*2000) → '2004-02-24'
FROM_DAYS(3652424) → '9999-12-31'
FROM_DAYS(3652500) → '0000-00-00'
FROM_DAYS(3652424) – INTERVAL 5 DAY → '9999-12-26'

FROM_UNIXTIME(par1, par2)
Description: This function returns the date or timestamp value belonging to a
UNIX timestamp that is created with the UNIX_TIMESTAMP function. If a second
parameter is specified, the same format string can be specified here as in the
DATE_FORMAT function.

921APPENDIX B Scalar Functions

Data type: Date, timestamp, or alphanumeric

FROM_UNIXTIME(UNIX_TIMESTAMP()) → '2005-12-08 10:16:41'
FROM_UNIXTIME(UNIX_TIMESTAMP(), '%Y %U') → '2005 49'

GET_FORMAT(par1, par2)
Description: This function returns a format that can be used in other functions,
such as DATE_FORMAT, TIME_FORMAT, and STR_TO_DATE. The first parameter repre-
sents the data type. This must be equal to DATE, TIME, or DATETIME. The second
parameter represents the format type. Possible values are 'EUR', 'INTERNAL',
'ISO', 'JIS', and 'USA'. The following examples reflect all the possibilities.

Data type: Alphanumeric

GET_FORMAT(DATE, 'EUR') → '%d.%m.%Y'
GET_FORMAT(DATE, 'INTERNAL') → '%Y%m%d'
GET_FORMAT(DATE, 'ISO') → '%Y-%m-%d'
GET_FORMAT(DATE, 'JIS') → '%Y-%m-%d'
GET_FORMAT(DATE, 'USA') → '%m.%d.%Y'
GET_FORMAT(TIME, 'EUR') → '%H.%i.%s'
GET_FORMAT(TIME, 'INTERNAL') → '%H%i%s'
GET_FORMAT(TIME, 'ISO') → '%H:%i:%s'
GET_FORMAT(TIME, 'JIS') → '%H:%i:%s'
GET_FORMAT(TIME, 'USA') → '%h:%i:%s %p'
GET_FORMAT(DATETIME, 'EUR') → '%Y-%m-%d %H.%i.%s'
GET_FORMAT(DATETIME, 'INTERNAL') → '%Y%m%d%H%i%s'
GET_FORMAT(DATETIME, 'ISO') → '%Y-%m-%d %H:%i:%s'
GET_FORMAT(DATETIME, 'JIS') → '%Y-%m-%d %H:%i:%s'
GET_FORMAT(DATETIME, 'USA') → '%Y-%m-%d %H.%i.%s'

DATE_FORMAT('2005-01-01', GET_FORMAT(DATE, 'EUR'))
→ '01.01.2005'

DATE_FORMAT('2005-01-01', GET_FORMAT(DATE, 'ISO'))
→ '2005-01-01'

GET_LOCK(par1, par2)
Description: This function creates a named lock, of which the first parameter rep-
resents the name. If this succeeds, the result of this function is equal to 1. If a lock
with that name has already been created, a few seconds of waiting time is observed.
The second parameter represents that number of seconds. If the lock is still
unavailable after this time period, the function returns the result 0.

Data type: Numeric

GET_LOCK('lock1',0) → 1
GET_LOCK('lock1',10) → 0

922 SQL for MySQL Developers

GREATEST(par1, par2, …)
Description: This function returns the greatest value from a series of parameters.

Data type: Depends on the parameters

GREATEST(100, 4, 80) → 100
GREATEST(DATE('2005-01-01'), DATE('2005-06-12')) → '2005-06-12'

HEX(par1)
Description: If the parameter is numeric, this function returns the hexadecimal
representation of the parameter. If the parameter is alphanumeric, this function
returns a two-digit code for each character.

Data type: Alphanumeric

HEX(11) → 'B'
HEX(16) → '10'
HEX(100) → '64'
HEX(1000) → '3E8'
HEX('3E8') → '334538'
HEX('ç') → 'E7'

HOUR(par1)
Description: This function returns the number of the hour from a time or time-
stamp expression. The value of the result is always a whole number between 0 and
23 inclusive.

Data type: Numeric

HOUR('2005-01-01 12:13:14') → 12
HOUR('12:13:14') → 12
HOUR(CURTIME()) → 19

IF(par1, par2, par3)
Description: If the value of the first parameter is true, the result of the function is
equal to the value of the second parameter; otherwise, it is equal to the value of the
third parameter. The specification

IF(E1, E2, E3)

in which E1, E2, and E3 are expressions, is equal to the following case expression:

CASE
WHEN E1 = TRUE THEN E2
ELSE E3

END

923APPENDIX B Scalar Functions

Data type: Depends on the last two parameters

IF((5>8), 'Jim', 'John') → 'John'
IF((SELECT COUNT(*) FROM PLAYERS) =

(SELECT COUNT(*) FROM PENALTIES), TRUE, FALSE) → 0

IFNULL(par1, par2)
Description: If the value of the first parameter is equal to the null value, the result
of the function is equal to the value of the second parameter; otherwise, it is equal
to the value of the first parameter. The specification

IFNULL(E1, E2)

in which E1, and E2 are expressions, is equal to the following case expression:

CASE E1
WHEN NULL THEN E2
ELSE E1

END

Data type: Depends on the parameters

IFNULL(NULL, 'John') → 'John'
IFNULL('John', 'Jim') → 'John'

INET_ATON(par1)
Description: This function returns the integer representation of an IP address.

Data type: Numeric

INET_ATON('127.0.0.0') → 2130706432
INET_ATON('WWW.R20.NL') → NULL

INET_NTOA(par1)
Description: This function returns the IP address belonging to an integer repre-
sentation.

Data type: Numeric

INET_NTOA(2130706432) → '127.0.0.0'
INET_NTOA(INET_ATON('255.255.255.255')) → '255.255.255.255'

924 SQL for MySQL Developers

INSERT(par1, par2, par3, par4)
Description: The value of the fourth parameter is placed on the part of the first
parameter that starts with the position indicated with the second parameter and that
is a number of characters long (the third parameter).

Data type: Alphanumeric

INSERT('abcdefgh',4,3,'zzz') → 'abczzzgh'
INSERT('abcdefgh',4,2,'zzz') → 'abczzzfgh'
INSERT('abcdefgh',4,0,'zzz') → 'abczzzdefgh'
INSERT('abcdefgh',4,-1,'zzz') → 'abczzz'
INSERT('abcdefgh',1,5,'zzz') → 'zzzfgh'

INSTR(par1, par2)
Description: This function returns the starting position of the second alphanu-
meric value within the first alphanumeric value. The INSTR function has the value 0
if the second alphanumeric value does not appear within the first.

Data type: Numeric

INSTR('database','bas') → 5
INSTR('system','bas') → 0

INTERVAL(par, par2, par3, …)
Description: This function determines between which two values in a list the first
parameter appears. After the first parameter, the values must be specified in
ascending order.

Data type: Depends on the last two parameters

INTERVAL(3,0,1,2,3,4,5,6,7) → 4
INTERVAL(7,0,6,11,16,21) → 2

IS_FREE_LOCK(par1)
Description: This function evaluates the status of a named lock. If this lock is still
available, the result is equal to 1; otherwise, it is equal to 0. See also the GET_LOCK
function.

Data type: Numeric

IS_FREE_LOCK('lock1') → 1

925APPENDIX B Scalar Functions

ISNULL(par1)
Description: The value of this function is equal to 1 if the first parameter is equal
to the null value; otherwise, it is equal to 0. The specification

ISNULL(E1)

in which E1 is an expression, is equal to the following case expression:

CASE E1
WHEN NULL THEN 1
ELSE 0

END

Data type: Depends on the parameters

ISNULL((SELECT LEAGUENO FROM PLAYERS WHERE PLAYERNO=27)) → 0
ISNULL((SELECT LEAGUENO FROM PLAYERS WHERE PLAYERNO=7)) → 1

IS_USED_LOCK(par1)
Description: This function returns the identifier of the connection that is the
owner of a named lock. If the lock does not exist, this function returns the null
value. See also the GET_LOCK function.

Data type: Numeric

IS_USED_LOCK('lock1') → 4

LAST_DAY(par1)
Description: This function returns the last day of the month belonging to a date or
timestamp expression.

Data type: Date

LAST_DAY('2004-02-01') → '2005-02-29'
LAST_DAY('2005-02-01') → '2005-02-28'

LAST_INSERT_ID(par1)
Description: This function returns the number that was generated last with
AUTOINCREMENT.

Data type: Numeric

LAST_INSERT_ID() → 25

926 SQL for MySQL Developers

LEAST(par1, par2, …)
Description: This function returns the smallest value from a series of parameters.

Data type: Depends on the parameters

LEAST(100, 4, 80) → 4
LEAST(DATE('2005-01-01'), DATE('2005-06-12')) → 2005-01-01

LCASE(par1)
Description: This function converts all uppercase letters of the value of the
parameter to lowercase letters.

Data type: Alphanumeric

LCASE('RICK') → 'rick'

LEFT(par1, par2)
Description: This function returns the left part of an alphanumeric value (the first
parameter). The second parameter indicates the length of the part used.

Data type: Alphanumeric

LEFT('database', 4) → 'data'
LEFT('database', 0) → ''
LEFT('database', 10) → 'database'
LEFT('database', NULL) → ''
LENGTH(LEFT('database', 0)) → 0
LENGTH(LEFT('database', 10)) → 8
LENGTH(LEFT('database', NULL)) → 0

LENGTH(par1)
Description: This function returns the length in bytes of an alphanumeric value.

Data type: Numeric

LENGTH('database') → 8
LENGTH('data ') → 8
LENGTH(RTRIM('abcd ')) → 4
LENGTH('') → 0
LENGTH(NULL) → NULL
LENGTH(CONVERT('database' USING ucs2)) → 16

927APPENDIX B Scalar Functions

LN(par1)
Description: This function returns the logarithm to the base value e of the param-
eter. See the LOG function.

Data type: Numeric

LN(50) → 3.9120230054281
LN(EXP(3)) → 3
LN(0) → NULL
LN(1) → 0

LOCALTIME()
Description: This function returns the system date and system time. If the func-
tion is used within a numeric expression, the result is numeric. The brackets may
be omitted. See the NOW and LOCALTIMESTAMP functions.

Data type: Timestamp or double

LOCALTIME() → '2005-02-20 12:26:52'
LOCALTIME() + 0 → 20050220122652

LOCALTIMESTAMP()
Description: This function returns the system date and system time. If the func-
tion is used within a numeric expression, the result is numeric. The brackets may
be omitted. See the NOW and LOCALTIME functions.

Data type: Timestamp or double

LOCALTIMESTAMP() → '2005-02-20 12:26:52'
LOCALTIMESTAMP() + 0 → 20050220122652

LOCATE(par1, par2, par3)
Description: This function returns the starting position of the first alphanumeric
value within the second alphanumeric value. The LOCATE function has the value 0 if
the first alphanumeric value does not occur within the second. A third parameter
may be included to indicate a position from which the search may be started.

Data type: Numeric

LOCATE('bas','database') → 5
LOCATE('bas','database',6) → 0
LOCATE('bas','system') → 0

928 SQL for MySQL Developers

LOG(par1)
Description: This function returns the logarithm to the base value e of the parameter.

Data type: Numeric

LOG(50) → 3.9120230054281
LOG(EXP(3)) → 3
LOG(0) → NULL
LOG(1) → 0

LOG(par1, par2)
Description: This function returns the logarithm of the second parameter where
the first parameter forms the base value.

Data type: Numeric

LOG(10,1000) → 3
LOG(2,64) → 6

LOG10(par1)
Description: This function returns the logarithm to the base value 10 of the
parameter.

Data type: Numeric

LOG10(1000) → 3
LOG10(POWER(10,5)) → 5

LOG2(par1)
Description: This function returns the logarithm to the base value 2 of the
parameter.

Data type: Numeric

LOG2(2) → 1
LOG2(64) → 6
LOG2(POWER(2,10) → 10

LOWER(par1)
Description: This function converts all uppercase letters of the value of the
parameter to lowercase letters. See the LCASE function.

Data type: Alphanumeric

LOWER('RICK') → 'rick'

929APPENDIX B Scalar Functions

LPAD(par1, par2, par3)
Description: The value of the first parameter is filled in the front (the left side)
with the value of the third parameter just until the total length of the value is equal
to that of the second parameter. If the maximum length is smaller than that of the
first parameter, the first parameter is shortened on the left side.

Data type: Alphanumeric

LPAD('data', 16, 'base') → 'basebasebasedata'
LPAD('data', 6, 'base') → 'badata'
LPAD('data', 2, 'base') → 'da'

LTRIM(par1)
Description: This function removes all blanks that appear at the beginning of the
parameter.

Data type: Alphanumeric

LTRIM(' database') → 'database'

MAKEDATE(par1, par2)
Description: The second parameter represents a number of days, and those are
added to the second parameter. This second parameter must be a numeric, date, or
timestamp expression.

Data type: Date

MAKEDATE(2005, 1) → '2005-01-01'
MAKEDATE(2005, 10) → '2005-01-10'
MAKEDATE('2005-01-01', 1) → '2005-01-01'
MAKEDATE('2005-01-01 12:26:52', 1) → '2005-01-01'

MAKETIME(par1, par2, par3)
Description: This function creates a time from a number of hours (the first param-
eter), a number of minutes (the second parameter), and a number of seconds (the
third parameter). The number of minutes and the number of seconds must be
between 0 and 59 inclusive; otherwise, the function returns the null value as result.

Data type: Time

MAKETIME(12,13,14) → '12:13:14'
MAKETIME(12,90,14) → NULL
MAKETIME(120,13,14) → '120:13:14'

930 SQL for MySQL Developers

MAKE_SET(par1, par2, par3, …)
Description: This function creates a value of the SET data type. The first parame-
ter indicates how many values belong to the set. Parameters two and higher contain
the values from which the set is created.

Data type: Alphanumeric

MAKE_SET(1,'a','b','c','d','e','f','g','i') → 'a'
MAKE_SET(8,'a','b','c','d','e','f','g','i') → 'd'
MAKE_SET(7,'a','b','c','d','e','f','g','i') → 'a,b,c'
MAKE_SET(CONV(111000,2,10),'a','b','c','d','e','f','g','i')

→ 'd,e,f'

MD5(par1)
Description: This function calculates the 128-bits checksum belonging to the
value of the parameter. The result is a binary string consisting of 32 hexadecimal
characters. MD5 stands for Message-Digest Algorithm.

Data type: Binary

MD5('database') → '11e0eed8d3696c0a632f822df385ab3c'

MICROSECOND(par1)
Description: This function returns the number of microseconds from a time or
timestamp expression. The value of the result is always a whole number between 0
and 999999 inclusive.

Data type: Numeric

MICROSECOND('2005-01-01 12:13:14.123456') → 123456
MICROSECOND('12:13:14.1') → 100000

MID(par1, par2, par3)
Description: This function extracts part of the alphanumeric value of the first
parameter. The second parameter identifies the start position, and the third param-
eter identifies the number of characters. See the SUBSTRING function.

Data type: Alphanumeric

MID('database',5) → 'base'
MID('database',10) → ''
MID('database',5,2) → 'ba'
MID('database',5,10) → 'base'
MID('database',-6) → 'tabase'

931APPENDIX B Scalar Functions

MINUTE(par1)
Description: This function returns the number of minutes from a time or time-
stamp expression. The value of the result is always a whole number between 0 and
59 inclusive.

Data type: Numeric

MINUTE(CURTIME()) → 52
MINUTE('12:40:33') → 40

MOD(par1)
Description: This function returns the remainder from the division of two parame-
ters.

Data type: Numeric

MOD(15,4) → 3
MOD(15.4, 4.4) → 2.2

MONTH(par1)
Description: This function returns the number of the month from a date or time-
stamp expression. The value of the result is always a whole number between 1 and
12 inclusive.

Data type: Numeric

MONTH('1988-07-29') → 7

MONTHNAME
Description: This function returns the name of the month from a date or time-
stamp expression.

Data type: Alphanumeric

MONTHNAME('1988-05-20') → 'May'
MONTHNAME('1988-06-20') → 'June'

NOW()
Description: This function returns the system date and system time. If the func-
tion is used within a numeric expression, the result is numeric. See the LOCALTIME
and LOCALTIMESTAMP functions.

Data type: Timestamp or numeric

NOW() → '2005-02-20 12:26:52'
NOW() + 0 → 20050220122652

932 SQL for MySQL Developers

NULLIF(par1, par2)
Description: If the value of the first parameter is not equal to that of the second
parameter, the result of the function is equal to the null value; otherwise, it is equal
to the first parameter. The specification

NULLIF(E1, E2)

in which E1 and E2 are two expressions, is equal to the following case expression:

CASE
WHEN E1 = E2 THEN NULL
ELSE E1

END

Data type: Depends on the parameters

NULLIF(NULL, 'John') → NULL
NULLIF('John', 'Jim') → 'John'
NULLIF('John', 'John') → NULL

OCT(par1)
Description: This function returns the decimal of the first parameter. This param-
eter has an octal value.

Data type: Alphanumeric

OCT(8) → '10'
OCT(64) → '100'
OCT(100) → '144'

OCTET_LENGTH(par1)
Description: This function returns the length in bytes of an octal value.

Data type: Numeric

OCTET_LENGTH('100') → 3
OCTET_LENGTH(OCT(64)) → 3

OLD_PASSWORD(par1)
Description: This function encrypts the parameter the same way as a password of
a user that is stored in the catalog tables. This was the PASSWORD function as imple-
mented for Version 4.1.1 of MySQL.

Data type: Alphanumeric

OLD_PASSWORD('database') → '30599f1725b9f8a2'

933APPENDIX B Scalar Functions

ORD(par1)
Description: This function returns the (ordinal) character set position of the first
character of an alphanumeric expression.

Data type: Numeric

ORD('Database') → 68
ORD('database') → 100
ORD('') → 0
ORD(NULL) → NULL

PASSWORD(par1)
Description: This function encrypts the parameter the same way as a password of
a user that is stored in the catalog tables.

Data type: Alphanumeric

PASSWORD('database')
→ 'A9D467528C52CF9DD63A2168DBE51A8241160241'

PERIOD_ADD(par1, par2)
Description: This function adds a number of months to a specific date. The date
must have the format YYYYMM or YYMM. The format of the result is YYYYMM. Therefore,
this function does not work with traditional dates.

Data type: Alphanumeric

PERIOD_ADD('200508', 2) → '200510'
PERIOD_ADD('200508', -2) → '200506'
PERIOD_ADD('200508', 12) → '200608'

PERIOD_DIFF(par1, par2)
Description: This function determines the number of months between two dates.
Both dates must have the format YYYYMM or YYMM. Therefore, this function does not
work with values with the date data type.

Data type: Numeric

PERIOD_DIFF('200508', '200510') → -2
PERIOD_DIFF('200508', '200506') → 2
PERIOD_DIFF('200508', '200608') → -12

934 SQL for MySQL Developers

PI()
Description: This function returns the well-known number, pi.

Data type: Numeric

PI() → 3.141593
PI()*100000 → 314159.265359

POSITION(par1 IN par2)
Description: This function returns the starting position of the first alphanumeric
value within the second alphanumeric value. The LOCATE function has the value 0 if
the first alphanumeric value does not appear within the second. Note that the word
IN must be specified between the two parameters.

Data type: Numeric

POSITION('bas' IN 'database') → 5
POSITION('bas' IN 'system') → 0

POW(par1, par2)
Description: The value of the first expression is raised to a specific power. The
second parameter indicates the power. See the POWER function.

Data type: Numeric

POW(4,3) → 64
POW(2.5,3) → 15.625

POWER(par1, par2)
Description: The value of the first expression is raised to a specific power. The
second parameter indicates the power.

Data type: Numeric

POWER(4,3) → 64
POWER(2.5,3) → 15.625
POWER(4, 0.3) → 1.5157165665104
POWER(4, -2) → 0.0625

935APPENDIX B Scalar Functions

QUARTER
Description: This function returns the quarter from a date or timestamp expres-
sion. The value of the result is always a whole number between 1 and 4 inclusive.

Data type: Numeric

QUARTER('1988-07-29') → 3
QUARTER(CURDATE()) → 1

QUOTE(par1)
Description: This function returns the value of an alphanumeric expression as a
correct alphanumeric literal enclosed by quotation marks; if the value contains a
quotation mark itself, it is also processed. The quotation marks are added to the lit-
eral itself.

Data type: Alphanumeric

QUOTE((SELECT MAX(NAME) FROM PLAYERS)) → 'Wise'
QUOTE('database') → 'database'
QUOTE(“'“) → '\''

RADIANS(par1)
Description: This function converts a number in degrees to a value in radians.

Data type: Numeric

RADIANS(90) → 1.5707963267949
RADIANS(180) – PI() → 0
RADIANS(-360) → -6.2831853071796

RAND(par1)
Description: This function returns a random number (with a float data type)
between 0.0 and 1.0. The parameter indicates the starting point for the calculation
of the next random value. The result is the same when this function is called repeat-
edly with the same parameter value. If no parameter has been specified, the next
random value is calculated.

Data type: Numeric

RAND() → 0.42908766346899
RAND(5) → 0.40613597483014
CAST(RAND() * 10000 AS UNSIGNED INTEGER) → 8057

936 SQL for MySQL Developers

RELEASE_LOCK(par1)
Description: This function removes a named lock. If the function is processed cor-
rectly, the result is equal to 1; otherwise, it is equal to 0. See also the GET_LOCK
function.

Data type: Numeric
RELEASE_LOCK('lock1') → 4

REPEAT(par1, par2)
Description: This function repeats an alphanumeric value (the first parameter) a
specified number of times. The second parameter indicates the number of times.

Data type: Alphanumeric
REPEAT('bla',4) → 'blablablabla'
REPEAT('X',10) → 'XXXXXXXXXX'

REPLACE(par1, par2, par3)
Description: This function replaces parts of the value of an alphanumeric expres-
sion with another value.

Data type: Alphanumeric
REPLACE('database','a','e') → 'detebese'
REPLACE('database','ba','warehou') → 'datawarehouse'
REPLACE('data base',' ','') → 'database'

REVERSE(par1)
Description: This function reverses the characters in an alphanumeric value.

Data type: Alphanumeric
REVERSE('database') → 'esabatad'

RIGHT(par1, par2)
Description: This function returns the right part of an alphanumeric value (the
first parameter). The second parameter indicates the length of the part used.

Data type: Alphanumeric
RIGHT('database', 4) → 'base'
RIGHT('database', 0) → ''
RIGHT('database', 10) → 'database'
RIGHT('database', NULL) → ''
LENGTH(RIGHT('database', 0)) → 0
LENGTH(RIGHT('database', 10)) → 8
LENGTH(RIGHT('database', NULL)) → 0

937APPENDIX B Scalar Functions

ROUND(par1, par2)
Description: This function rounds numbers to a specified number of decimal
places. If the second parameter has not been specified, it is equal to the specifica-
tion of 0.

Data type: Numeric

ROUND(123.456,2) → 123.46
ROUND(123.456,1) → 123.5
ROUND(123.456,0) → 123
ROUND(123.456,-1) → 120
ROUND(123.456,-2) → 100
ROUND(123.456) → 123

ROW_COUNT()
Description: This function returns the number of rows that the previous SQL
statement updated—for example, the number of rows deleted or updated. If the pre-
vious statement was a SELECT statement, the result of this function is equal to -1.

Data type: Numeric

ROW_COUNT() → 38

RPAD(par1, par2, par3)
Description: The value of the first parameter is filled in the front (the right side)
with the value of the third parameter just until the total length of the value is equal
to that of the second parameter. If the maximum length is smaller than that of the
first parameter, the first parameter is shortened on the right side.

Data type: Alphanumeric

RPAD('data', 16, 'base') → 'databasebasebase'
RPAD('data', 6, 'base') → 'databa'
RPAD('data', 2, 'base') → 'da'

RTRIM(par1)
Description: This function removes all blanks from the end of the value of the
parameter.

Data type: Alphanumeric

RTRIM('database ') → 'database'
CONCAT(RTRIM('data '), 'base') → 'database'

938 SQL for MySQL Developers

SECOND(par1)
Description: This function returns the number of seconds from a time or time-
stamp expression. The value of the result is always a whole number between 0 and
59 inclusive.

Data type: Numeric

SECOND(CURTIME()) → 6
SECOND('12:40:33') → 33

SEC_TO_TIME(par1)
Description: This function transforms a number of seconds in a time.

Data type: Time

SEC_TO_TIME(1) → '00:00:01'
SEC_TO_TIME(1000) → '00:16:40'
SEC_TO_TIME((24*60*60)-1) → '23:59:59'
SEC_TO_TIME(24*60*60*2) → '48:00:00'

SESSION_USER()
Description: This function returns the name of the SQL user.

Data type: Alphanumeric

SESSION_USER() → 'root@localhost'

SHA(par1)
Description: This function is a synonym of the SHA1 function. For an explanation,
see the SHA1 function.

Data type: Binary

SHA1(par1)
Description: This function calculates the 160-bit checksum belonging to the
value of the parameter. For this, the Secure Hash Algorithm is used. The result is a
binary string consisting of 40 hexadecimal characters.

Data type: Binary

SHA1('database') → '6d613a1ee01eec4c0f8ca66df0db71dca0c6e1cf'
SHA1(NULL) → NULL

939APPENDIX B Scalar Functions

SIGN(par1)
Description: This function returns the character of a numeric value.

Data type: Numeric

SIGN(50) → 1
SIGN(0) → 0
SIGN(-50) → –1

SIN(par1)
Description: This function returns, in radians, the sine value of any angle size.

Data type: Numeric

SIN(0) → 0
SIN(PI()/2) → 1
SIN(PI()) → 0

SOUNDEX(par1)
Description: This function returns the SOUNDEX code of the alphanumeric parame-
ter. A SOUNDEX code consists of four characters. Alphanumeric values that sound
roughly the same are converted to identical SOUNDEX codes. The SOUNDEX code is
specified according to the following rules:

■ All blanks at the beginning of the parameter are removed.

■ All the following letters are removed from the parameter, provided that they
do not appear on the first position: a e h i o u w y.

■ The following values are assigned to the remaining letters:
b f p v = 1
c g j k q s x z = 2
d t = 3
l = 4
m n = 5
r = 6

■ If two linked letters have the same value, the second is removed.

■ The code is broken after the fourth character.

■ If the remaining code consists of less than four characters, it is filled with
zeroes.

■ Characters appearing behind a blank are skipped.

■ If the value of the parameter does not begin with a letter, the result is equal
to 0000.

940 SQL for MySQL Developers

Data type: Alphanumeric

SOUNDEX('Smith') → 'S530'
SOUNDEX('Smythe') → 'S530'
SOUNDEX('Bill') → 'B400'
SOUNDEX(' Bill') → 'B400'
SOUNDEX('Billy') → 'B400'

SPACE(par1)
Description: This function generates a row with blanks. The number of blanks is
equal to the value of the numeric parameter.

Data type: Alphanumeric
SPACE(1) → ' '
SPACE(5) → ' '
LENGTH(SPACE(8)) → 8

SQRT(par1)
Description: This function returns the square root of the value of the parameter.

Data type: Numeric
SQRT(225) → 15
SQRT(200) → 14.14
SQRT(-5) → NULL

STRCMP(par1, par2)
Description: This function compares the values of two alphanumeric expressions.
The result is 0 if the values of the parameters are equal, -1 if the value of the first
parameter is smaller, and 1 if the value of the right one is smaller.

Data type: Numeric
STRCMP(1,1) → 0
STRCMP(1,2) → -1
STRCMP(2,1) → 1

STR_TO_DATE(par1, par2)
Description: This function is the opposite of the DATE_FORMAT function. A certain
alphanumeric value is converted to a date or timestamp value through a number of
format strings. If the format strings do not fit in the first parameter, the function
returns a null value as result.

Data type: Date or timestamp
STR_TO_DATE('2005 Sun Oct 1st', '%Y %a %b %D')→ '2005-10-01'
STR_TO_DATE('2005/11/10', '%Y/%c/%d') → '2005-11-10'

941APPENDIX B Scalar Functions

SUBDATE(par1, par2)
Description: This function subtracts an interval (the second parameter) from a
date or timestamp expression (the first parameter). See Section 5.13.3 for the spec-
ification of intervals. If the second parameter is not an interval, but a numeric num-
ber, MySQL assumes that this value represents a number of days.

Data type: Date or timestamp

SUBDATE('2004-01-01', INTERVAL 5 MONTH) → '2003-08-01'
SUBDATE('2004-01-01 12:00:00', INTERVAL 5 DAY)

→ '2003-12-27 12:00:00'
SUBDATE('2004-01-01', 5) → '2003-12-27'

SUBTIME(par1, par2)
Description: This function subtracts two time expressions and returns a new time.

Data type: Time

SUBTIME('12:59:00', '0:59:00') → '12:00:00'
SUBTIME('12:00:00', '0:00:00.001') → '11:59:59.999000'
SUBTIME('100:00:00', '900:00:00') → '-800:00:00'

SUBSTRING(par1, par2, par3)
Description: This function extracts part of the alphanumeric value of the first
parameter. The second parameter identifies the starting position, and the third
identifies its number of characters. If the third parameter is not specified, up to the
last character is included.

Data type: Alphanumeric

SUBSTRING('database',5) → 'base'
SUBSTRING('database',10) → ''
SUBSTRING('database',5,2) → 'ba'
SUBSTRING('database',5,10) → 'base'
SUBSTRING('database',-6) → 'tabase'

SUBSTRING(par1 FROM par2 FOR par3)
Description: This function extracts part of the alphanumeric value of the first
parameter. The second parameter identifies the starting position, and the third
identifies its number of characters. If the third parameter is not specified, up to the
last character is included.

942 SQL for MySQL Developers

Data type: Alphanumeric

SUBSTRING('database' FROM 5) → 'base'
SUBSTRING('database' FROM 10) → ''
SUBSTRING('database' FROM 5 FOR 2) → 'ba'
SUBSTRING('database' FROM 5 FOR 10) → 'base'
SUBSTRING('database' FROM -6) → 'tabase'

SUBSTRING_INDEX(par1, par2, par3)
Description: This function looks for the nth appearance of an alphanumeric value
in the value of the first parameter. The second parameter shows which value must
be looked for, and the third parameter returns the number n. If the third parameter
is positive, the function looks for the nth appearance from the left side and returns
everything that is found left from that appearance. If the third parameter is nega-
tive, the function looks for the nth appearance from the right and returns everything
that is found right from that appearance.

Data type: Alphanumeric

SUBSTRING_INDEX('database', 'a', 3) → 'datab'
SUBSTRING_INDEX('database', 'a', -3) → 'tabase'
SUBSTRING_INDEX('database', 'data', 1) → ''
SUBSTRING_INDEX('database', 'data', -1) → 'base'

SYSDATE()
Description: This function returns the system date and system time. If the func-
tion is used within a numeric expression, the result is numeric. See the LOCALTIME
and LOCALTIMESTAMP functions.

Data type: Timestamp or numeric

SYSDATE() → '2005-02-20 12:26:52'
SYSDATE() + 0 → 20050220122652

SYSTEM_USER()
Description: This function returns the name of the SQL user.

Data type: Alphanumeric

SYSTEM_USER() → 'root@localhost'

943APPENDIX B Scalar Functions

TAN(par1)
Description: This function returns, in radians, the tangent value of any angle size.

Data type: Numeric

TAN(0) → 0
TAN(PI()) → 0
TAN(PI()/4 → 1
TAN(1) → 1.5574077246549

TIME()
Description: This function returns the time part of a time or timestamp
expression.

Data type: Time

TIME('2005-12-08 12:00:00') → '12:00:00'
TIME('12:13') → '12:13:00'

TIMEDIFF(par1, par2)
Description: This function returns the amount of time that has elapsed between
two time expressions.

Data type: Time

TIMEDIFF('12:00:01','12:00:00') → '00:00:01'
TIMEDIFF('12:00:00','12:00:01') → '-00:00:01'
TIMEDIFF('23:01:01','22:00:59') → '01:00:02'

TIME_FORMAT(par1, par2)
Description: This function transforms a time, date, or timestamp expression (the
first parameter) to an alphanumeric value. The second parameter indicates the for-
mat of that alphanumeric value; several special format strings can be used here—
see the following table. This function looks like the DATE_FORMAT function; however,
all time-related format strings may be used now.

944 SQL for MySQL Developers

FORMAT STRING EXPLANATION

%f Six-digit numeric code for the number of microseconds (000000 up
to and including 999999)

%H Two-digit numeric code for the hour (00 up to and including 23)
%h Two-digit numeric code for the hour (01 up to and including 12)
%I Two-digit numeric code for the hour (01 up to and including 12)

continues

Data type: Alphanumeric

TIME_FORMAT('11:12:13','%h') → '11'
TIME_FORMAT('11:12:13','%f') → '000000'
TIME_FORMAT('12:00:00', 'It is now %h o''clock')

→ 'It is now 12 o'clock'

TIMESTAMP(par1, par2)
Description: This function transforms the first parameter into a timestamp value.
If a second parameter is specified, it should be a time expression; that is added to
the value of the first parameter.

Data type: Timestamp

TIMESTAMP('2005-12-08') → '2005-12-08 00:00:00'
TIMESTAMP('2005-12-08 12:00:00') → '2005-12-08 12:00:00'
TIMESTAMP('2005-12-08 12:00:00', '11:12:13')

→ '2005-12-08 23:12:13'
TIMESTAMP('2005-12-08 12:00:00', '-11:12:00')

→ '2005-12-08 00:48:00'
TIMESTAMP('2005-12-08 12:00:00', '-48:00')

→ '2005-12-06 12:00:00'

945APPENDIX B Scalar Functions

FORMAT STRING EXPLANATION

%i Two-digit numeric code for the number of minutes (00 up to
and including 59)

%k One- or two-digit numeric code for the hour (0 up to and
including 23)

%l One- or two-digit numeric code for the hour (1 up to and
including 12)

%p Indication of AM or PM
%r Indication of the time (in 12 hours) with the format HH:MM:SS,

followed by AM or PM
%S Two-digit numeric code for the number of seconds (00 up to and

including 59)
%s Two-digit numeric code for the number of seconds (00 up to and

including 59)
%T Indication of the time (in 24 hours) in the format hh:mm:ss,

followed by AM or PM
%% Returns the percentage sign

TIMESTAMPADD(par1, par2, par3)
Description: This function adds a certain interval to a date or timestamp expres-
sion. The first parameter indicates the unit of the interval, such as days, months, or
years; the second parameter indicates the number of days or months. The third
parameter is the expression to which the interval is added. Supported interval units
are YEAR, QUARTER, MONTH, WEEK, DAY, HOUR, MINUTE, SECOND, and FRAC_SECOND.

Data type: Date or timestamp

TIMESTAMPADD(DAY, 2, '2005-12-08') → '2005-12-10'
TIMESTAMPADD(MONTH, 2, '2005-12-08') → '2006-02-08'
TIMESTAMPADD(YEAR, -2, '2005-12-08') → '2003-12-08'
TIMESTAMPADD(MINUTE, 3, '2005-12-08 12:00:00')

→ '2005-12-08 12:03:00'
TIMESTAMPADD(FRAC_SECOND, 3, '2005-12-08 12:00:00')

→ '2005-12-08 12:00:00.000003'

TIMESTAMPDIFF(par1, par2, par3)
Description: This function calculates the time between two date or timestamp
expressions. The first parameter indicates the unit of the interval, such as days,
months, or years; the second and third parameters form the two expressions. Sup-
ported interval units are YEAR, QUARTER, MONTH, WEEK, DAY, HOUR, MINUTE, SECOND, and
FRAC_SECOND.

Data type: Numeric

TIMESTAMPDIFF(DAY, '2005-12-04', '2005-12-08') → 4
TIMESTAMPDIFF(DAY, '2005-12-08', '2005-12-04') → -4
TIMESTAMPDIFF(YEAR, '1960-12-08', NOW()) → 45
TIMESTAMPDIFF(MINUTE, '2005-12-08 12:00:00',

'2005-12-08 12:03:00') → 3
TIMESTAMPDIFF(FRAC_SECOND, '2005-12-08',

'2005-12-08 12:00:00.000003') → 43200000003

TIME_TO_SEC(par1)
Description: This function transforms a time into a number of seconds.

Data type: Numeric

TIME_TO_SEC('00:00:01') → 1
TIME_TO_SEC('00:16:40') → 1000
TIME_TO_SEC('23:59:59') → 83399
TIME_TO_SEC('48:00:00') → 172800

946 SQL for MySQL Developers

TO_DAYS(par1)
Description: This function determines how many days have elapsed between the
specified date (the parameter) and the year 0.

Data type: Numeric

TO_DAYS('2005-12-08') → 732653

TRIM(par1)
Description: This function removes all blanks from the start and end of an
alphanumeric value (the parameter). Blanks in the middle are not removed.

Data type: Alphanumeric

TRIM('database ') → 'database'
TRIM(' da ta ') → 'da ta'

TRIM(par1 FROM par2)
Description: If an alphanumeric value (the first parameter) appears at the start or
end of another alphanumeric value (the second parameter), it is removed. Before
the first parameter, you may specify the terms LEADING, TRAILING, or BOTH can be
specified. Adding BOTH has no effect on the result. If LEADING is specified, only val-
ues at the start are removed; with TRAILING, only the values at the end are removed.

Data type: Alphanumeric

TRIM(' ' FROM ' data base ') → 'data base'
TRIM('a' FROM 'database') → 'database'
TRIM('da' FROM 'database') → 'tabase'
TRIM('da' FROM 'dadadatabase') → 'tabase'
TRIM('da' FROM 'dadadatabasedada') → 'tabase'
TRIM(LEADING ' ' FROM ' data base ') → 'data base '
TRIM(TRAILING 'da' FROM 'dadadatabasedada') → 'dadadatabase'

TRUNCATE(par1, par2)
Description: This function truncates numbers to a specified number of decimal
places.

Data type: Numeric

TRUNCATE(123.567, -1) → 120
TRUNCATE(123.567, 1) → 123.5
TRUNCATE(123.567, 5) → 123.56700

947APPENDIX B Scalar Functions

UCASE(par1)
Description: This function converts all lowercase letters of the value of the param-
eter to uppercase letters. See the UPPER function.

Data type: Alphanumeric

UCASE('Database') → 'DATABASE'

UNCOMPRESS(par1)
Description: This function restores the original value belonging to the compressed
value of the parameter. The COMPRESS function compresses the value.

Data type: Alphanumeric

UNCOMPRESS(COMPRESS('database')) → 'database'

UNCOMPRESS_LENGTH(par1)
Description: This function returns the length of the compressed value that has
been created with the COMPRESS function.

Data type: Numeric

UNCOMPRESSED_LENGTH(COMPRESS('database')) → 8

UNHEX(par1)
Description: This function returns the hexadecimal representation of the parame-
ter. Each pair of characters is converted to the corresponding character.

Data type: Alphanumeric

UNHEX('334538') → '3E8'
UNHEX('E7') → 'ç'
UNHEX(HEX('SQL')) → 'SQL'

UPPER(par1)
Description: This function converts all lowercase letters of the value of the param-
eter to uppercase letters.

Data type: Alphanumeric

UPPER ('Database') → 'DATABASE'

948 SQL for MySQL Developers

UNIX_TIMESTAMP(par1)
Description: This function returns the number of seconds since the UNIX epoch
(1 January 1970 at 00:00:00). If this function has a parameter, it should be a date
expression.

Data type: Numeric

UNIX_TIMESTAMP() → 1134135565
UNIX_TIMESTAMP('2000-01-01') → 946681200

USER()
Description: This function returns the name of the SQL user.

Data type: Alphanumeric

USER() → 'root@localhost'

UTC_DATE()
Description: This function returns the actual UTC date. UTC stands for Coordi-
nated Universal Time, or Zulu time, or Greenwich Mean Time (GMT). If the function
is part of a numeric expression, the result of the function also is numeric.

Data type: Date of numeric

UTC_DATE() → '2005-01-01'
UTC_DATE() + 0 → 20050101

UTC_TIME()
Description: This function returns the actual UTC date; see the UTC_DATE func-
tion. If the function is part of a numeric expression, the result of the function is also
numeric.

Data type: Date or numeric

UTC_TIME() → '2005-01-01'
HOUR(TIMEDIFF(UTC_TIME(), TIME(NOW()))) → 1

UTC_TIMESTAMP()
Description: This function returns the actual UTC date and time; see the
UTC_DATE function. If the function is part of a numeric expression, the result of the
function is also numeric.

Data type: Date or numeric

UTC_TIMESTAMP() → '2005-01-01 13:56:12'

949APPENDIX B Scalar Functions

UUID()
Description: This function generates an 18-byte-wide unique code. The abbrevi-
ation UUID stands for Universal Unique Identifier. The first three parts of this code
are derived from the system time. The fourth part must make sure that the codes are
unique, in case duplicate values arise because of time zones. The fifth part identi-
fies the server in a certain way. Generating unique values is not guaranteed but is
likely.

Data type: Alphanumeric

UUID() → '2bf2aaec-bc90-1028-b6bf-cc62846e9cc5'
UUID() → '390341e3-bc90-1028-b6bf-cc62846e9cc5'

VERSION()
Description: This function returns an identification of the version number of
MySQL.

Data type: Alphanumeric

VERSION() → '5.0.7-beta-nt'
VERSION() → '5.0.3-alpha-log'

WEEK(par1, par2)
Description: This function returns the week from a date or timestamp expression.
The value of the result is always a whole number between 1 and 53 inclusive. The
second parameter shows how to determine the week number; see the following table.

950 SQL for MySQL Developers

FIRST DAY RANGE OF

CODE OF THE WEEK RESULT MEANING

0 Sunday 0..53 Week 1 begins on the first Sunday of the year.
1 Monday 0..53 Week 1 is the first week with more than three

days.
2 Sunday 1..53 Week 1 begins on the first Sunday of the year.
3 Monday 1..53 Week 1 is the first week with more than three

days.
4 Sunday 0..53 Week 1 is the first week with more than three

days.
5 Monday 0..53 Week 1 begins on the first Monday of the year.
6 Sunday 1..53 Week 1 is the first week with more than three

days.
7 Monday 1..53 Week 1 begins on the first Monday of the year.

Data type: Numeric

DATE_FORMAT('2005-01-01','%W') → 'Saturday'
WEEK('2005-01-01',0) → 0
WEEK('2005-01-01',1) → 0
WEEK('2005-01-01',2) → 52
WEEK('2005-01-01',3) → 53
WEEK('2005-01-01',4) → 0
WEEK('2005-01-01',5) → 0
WEEK('2005-01-01',6) → 52
WEEK('2005-01-01',7) → 52
WEEK('2005-01-02',0) → 1
WEEK('2005-01-02',1) → 0
WEEK('2005-01-02',2) → 1
WEEK('2005-01-02',3) → 53
WEEK('2005-01-02',4) → 1
WEEK('2005-01-02',5) → 0
WEEK('2005-01-02',6) → 1
WEEK('2005-01-02',7) → 52
WEEK('2005-01-03',0) → 1
WEEK('2005-01-03',1) → 1
WEEK('2005-01-03',2) → 1
WEEK('2005-01-03',3) → 1
WEEK('2005-01-03',4) → 1
WEEK('2005-01-03',5) → 1
WEEK('2005-01-03',6) → 1
WEEK('2005-01-03',7) → 1

The second parameter may be omitted. In that case, MySQL uses the value of the
system variable DEFAULT_WEEK_FORMAT. By default, the value is 0, but you may use a
SET statement to change it to one of the previous codes.

WEEKDAY(par1)
Description: This function returns the number of the days in the week. The result
is a number between 0 (Monday) and 6 (Sunday).

Data type: Numeric

WEEKDAY('2005-01-01') → 5

WEEKOFYEAR(par1)
Description: This function returns the week number belonging to a certain date
expression. The result is a number between 1 and 53.

Data type: Numeric

WEEKOFYEAR('2005-01-01') → 53
WEEKOFYEAR('2005-01-03') → 1

951APPENDIX B Scalar Functions

YEAR(par1)
Description: This function returns the number of the year from a date or time-
stamp expression. The result is always a number greater than 1.

Data type: Numeric

YEAR(NOW()) → 2005
YEAR('2005-12-03') → 2005
YEAR(20051203) → 2005

YEARWEEK(par1, par2)
Description: If only one parameter is specified, this function returns the year fol-
lowed by the week number in the format YYYYWW from a date or timestamp expres-
sion. The week number goes from 01 to 53 inclusive. It is assumed that a week
starts on Sunday. If a second parameter is specified, it must be the same code as the
one used in the WEEK function.

Data type: Numeric

YEARWEEK('2005-12-03') → 200548
YEARWEEK('2005-12-03',0) → 200548
YEARWEEK('2005-01-02',0) → 200501
YEARWEEK('2005-01-02',1) → 200453

952 SQL for MySQL Developers

953

System Variables
A P P E N D I X C

This appendix contains an alphabetical listing of the system variables that relate to
the functioning of SQL statements; see Sections 4.14 and 5.7 for descriptions of
system variables and how to change the values of system variables. For all system
variables, we give the allowed values and the default value, describe the type of the
system variable, and give a short description.

Autocommit
Type: Session

Values: 0 (OFF) or 1 (ON)

Default value: 0 (OFF)

Description: If this system variable is turned on (value 1), a COMMIT statement is
executed after each SQL statement. Assigning the value 0 to this variable turns off
this automatic committing; see Section 37.2.

Auto_increment_increment
Type: Global, session

Values: All values greater than 1

Default value: 1
Description: The number that is used to increase the values in a numeric column
that is defined with the AUTO_INCREMENT option; see Section 20.4.3.

Auto_increment_offset
Type: Global, session

Values: All values greater than 1

Default value: 1
Description: The starting value of a numeric column that has been defined with
the AUTO_INCREMENT option; see Section 20.4.3.

Character_set_client
Type: Global, session

Values: Alls supported character sets

Default value: latin1
Description: The character set of the statements that are sent from the client to
the server; see Section 22.8.

Character_set_connection
Type: Global, session

Values: All supported character sets

Default value: latin1
Description: The character set of the client/server connection; see Section 22.8.

Character_set_database
Type: Global, session

Values: All supported character sets

Default value: latin1
Description: The default character set of the current database. The value of this
variable can change every time the USE statement is used to “jump” to another data-
base. If no current database exists, this variable has the value of the
CHARACTER_SET_SERVER variable; see Section 22.8.

Character_set_results
Type: Global, session

Values: All supported character sets

Default value: latin1
Description: The character set of the end results of SELECT statements that are
sent from the server to the client; see Section 22.8.

Character_set_server
Type: Global, session

Values: All supported character sets

954 SQL for MySQL Developers

Default value: latin1
Description: The default character set of the server; see Section 22.8.

Character_set_system
Type: Global, Session

Values: utf8
Default value: utf8
Description: The character set of the system. This character set is used for the
names of database objects, such as tables and columns, but also for the names of
functions that are stored in the catalog tables. The value of this variable is always
equal to utf8; see Section 22.8.

Character_sets_dir
Type: Global, session

Values: All valid directories

Default value: C:\?\share\charactersets\. Here, the question mark stands for
the directory in which MySQL has been installed itself.

Description: The name of the directory in which the files with all character sets
have been recorded; see Section 22.8.

Collation_connection
Type: Global, session

Values: All supported collations

Default value: latin1_swedish_ci
Description: The character set of the current connection; see Section 22.8.

Collation_database
Type: Global, session

Values: All supported collations

Default value: latin1_swedish_ci
Description: The default collation of the current database. The value of this vari-
able can change every time the USE statement is used to “jump” to another data-
base. If no current database exists, this variable has the value of the
COLLATION_SERVER variable; see Section 22.8.

955APPENDIX C System Variables

Collation_server
Type: Global, session

Values: All supported collations

Default value: latin1_swedish_ci
Description: The default collation of the server; see Section 22.8.

Default_week_format
Type: Global, session

Values: 0 up to and including 7

Default value: 0
Description: The default mode for the WEEK function; see also the description of
the WEEK function in Appendix B, “Scalar Functions.”

Foreign_key_checks
Type: Session

Values: 0 (OFF) or 1 (ON)

Default value: 1 (ON)

Description: If this system variable has the value 0, the foreign keys are not
checked. This applies only to the InnoDB storage engine.

Ft_boolean_syntax
Type: Global, session

Default value: + -><()~*:””&|
Description: The list of operators supported by full-text searches; see Section
8.12.

Ft_max_word_len
Type: Global, session

Default value: 84

Description: The maximum length of a word that can be included within a
FULLTEXT index; see Section 8.12.

956 SQL for MySQL Developers

Ft_min_word_len
Type: Global, session

Default value: 4
Description: The minimum length of a word that can be included within a FULL-
TEXT index; see Section 8.12.

Ft_query_expansion_limit
Type: Global, session

Default value: 20
Description: The number of top matches that is used for searches with WITH QUERY
EXPANSION; see Section 8.12.

Skip_show_database
Type: Global, session

Values: 0 (OFF) or 1 (ON)

Default value: OFF
Description: If this variable is turned ON, only users who are granted the SHOW
DATABASE privilege may execute a SHOW DATABASE statement. Otherwise, anyone can.

Sql_auto_is_null
Type: Session

Values: 0 or 1

Default value: 1
Description: If the value of this variable is 1, the next WHERE clause WHERE C1 IS

NULL can be used to retrieve the latest generated value for C1, provided that C1 has
the AUTO_INCREMENT option.

Sql_mode
Type: Global, session

Default value: Empty alphanumeric string

Description: The SQL_MODE variable is a complex system variable. This variable
can have zero, one, or more settings. When more than one setting exists, commas
must separate the settings. Table C.1 contains the allowed settings. Basically, all
these settings are turned off, but they can be turned on.

957APPENDIX C System Variables

958 SQL for MySQL Developers

ALLOWED SETTINGS FOR THE

SQL_MODE SYSTEM VARIABLE MEANING

ALLOW_INVALID_DATES See Section 5.2.5.

ANSI_QUOTES See Section 20.8.

ERROR_FOR_DIVISION_BY_ZERO If this setting is turned on, MySQL returns an error
message if, in an INSERT or UPDATE statement, a
division by zero is taking place. If this statement
has the IGNORE option, only a warning is given.

HIGH_NOT_PRECEDENCE The condition NOT E1 BETWEEN E2 AND E3 is
processed as NOT (E1 BETWEEN E2 AND E3). In
older versions of MySQL, this was processed as
(NOT E1) BETWEEN E2 AND E3. This setting simu-
lates this old situation.

IGNORE_SPACE Normally, it is not allowed to specify a blank
between the name of a function and the opening
bracket. This setting enables you to add spaces.
In this case, the names of the functions are
regarded as reserved words.

NO_AUTO_CREATE_USER If privileges are assigned and the receiving user
does not exist yet, he is automatically created. With
this setting, you can turn off this automatic creation
of new users. After that, every user must be explic-
itly created first.

NO_AUTO_VALUE_ON_ZERO For a column with the AUTO_INCREMENT option, a
new value is created if a 0 or a null value is
entered. With this setting, this works for null
values only.

NO_BACKSLASH_ESCAPES The backslash (\) is seen as an escape symbol.
This setting turns it off.

NO_DIR_IN_CREATE If a table is created, the INDEX DIRECTORY and
DATA DIRECTORY specifications are ignored if this
setting is turned on.

NO_ENGINE_SUBSTITUTION If a table is created that specifies a nonactive
storage engine, the default storage engine is used.
This setting turned switches off this behavior.

TABLE C.1 Overview of the SQL_MODE Settings

continues

Because certain combinations of settings are used regularly, a combined setting
can be used. In fact, these are shortened notations for writing out all the individual
settings. Table C.2 contains the combined settings and their respective meanings.
For example, if we give the SQL_MODE system variable the value MYSQL40 and then
retrieve the value of SQL_MODE, the result is equal to NO_FIELD_OPTIONS,

HIGH_NOT_PRECEDENCE.

959APPENDIX C System Variables

ALLOWED SETTINGS FOR THE

SQL_MODE SYSTEM VARIABLE MEANING

NO_FIELD_OPTIONS The SHOW CREATE TABLE statement shows the CREATE
TABLE statement of a certain table. The column
options, such as DEFAULT and COMMENT, are presented
as well. Turning this setting on means these column
options will not be included.

NO_KEY_OPTIONS The SHOW CREATE TABLE statement shows the CREATE
TABLE statement of a certain table. The index options
are presented as well. Turning this setting on means
these index options will not be included.

NO_TABLE_OPTIONS The SHOW CREATE TABLE statement shows the CREATE
TABLE statement of a certain table. The table options,
such as the storage engine, are presented as well.
Turning this setting on means these table options will
not be included.

NO_UNSIGNED_SUBTRACTION If this setting is turned on, the result of the subtrac-
tion of two integers is regarded as UNSIGNED.

NO_ZERO_DATE See Section 5.2.5.

NO_ZERO_IN_DATE See Section 5.2.5.

ONLY_FULL_GROUP_BY If this setting is turned on, all nonaggregated columns
appearing in the SELECT clause should also appear in
the GROUP BY clause.

PIPES_AS_CONCAT See Section 4.14.

REAL_AS_FLOAT If this setting is turned on, REAL is seen as a synonym
for FLOAT; otherwise, it is a synonym for DOUBLE.

STRICT_ALL_TABLES If this setting is turned on, incorrect dates are not
accepted; see Section 5.2.5.

STRICT_TRANS_TABLES If this setting is turned on, incorrect dates are not
accepted in tables that are created with storage
engines that support transactions, such as InnoDB.

TABLE C.1 Continued

TABLE C.2 Overview of the Combined SQL_MODE Settings

960 SQL for MySQL Developers

COMBINED SETTING MEANING

ANSI REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES,
IGNORE_SPACE

DB2 PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE,
NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS

MAXDB PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE,
NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER

MSSQL PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE,
NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS

MYSQL323 NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE

MYSQL40 NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE

ORACLE PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE,
NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER

POSTGRESQL PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE,
NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS

TRADITIONAL STRICT_TRANS_TABLES, STRICT_ALL_TABLES,
NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_
DIVISION_BY_ZERO, NO_AUTO_CREATE_USER

Sql_select_limit
Type: Session

Values: All positive numeric values

Default value: Null

Description: Giving this system variable a value limits the maximum number of
rows in the result of every SELECT statement.

Sql_quote_show_create
Type: Session

Values: 0 (OFF) or 1 (ON)

Default value: 1 (ON)

Description: Because the names of tables, columns, and other database objects
may be equal to reserved words, MySQL places quotation marks before and after
each name in the result of a SHOW CREATE TABLE and SHOW CREATE DATABASE state-
ment. Turning off the system variable SQL_QUOTE_SHOW_CREATE omits these quota-
tion marks.

Storage_engine
Type: Global, session

Values: Any supported storage engine

Default value: MyISAM
Description: This system variable contains the value of the default storage engine.

System_time_zone
Type: Global, session

Default value: W. Europe Daylight Time
Description: This is the actual time zone of the operating system; see also Sec-
tion 5.2.7.

Time_zone
Type: Global, session

Default value: SYSTEM
Description: This is the actual time zone; see also Section 5.2.7.

Unique_checks
Type: Session

Values: 0 (OFF) or 1 (ON)

Default value: 1 (ON)

Description: If the system variable has the value 0, the uniqueness of columns, on
which a unique index has been defined, is not checked. This does not apply to the
primary key, of course.

961APPENDIX C System Variables

This page intentionally left blank This page intentionally left blank

963

Bibliography
A P P E N D I X D

[ASTR80] Astrahan, M. M., et al. “A History and Evaluation of System R.”
IBM RJ 2843 (June 1980).

[ATKI04] Atkinson, L., and Suraski, Z. Core PHP Programming, Third Edi-
tion. Prentice Hall, 2004.

[BENZ03] Benz, B., Durant, J., and Durant, J. XML Programming Bible. John
Wiley & Sons, 2003.

[BERN97] Bernstein, P. A., and Newcomer, E. Principles of Transaction Pro-
cessing. Morgan Kaufmann Publishers, 1997.

[BOYC73a] Boyce, R. F., et al. “Specifying Queries as Relational Expressions:
SQUARE.” IBM RJ 1291 (October 1973).

[BOYC73b] Boyce, R. F., and Chamberlin, D. D. “Using a Structured English
Query Language as a Data Definition Facility.” IBM RJ 1318
(December 1973).

[CATT97] Cattell, R. G. G., et al. The Object Database Standard: ODMG 2.0.
Morgan Kaufmann Publishers, 1997.

[CHAM76] Chamberlin, D. D., et al., “SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control.” IBM R&D (November
1976).

[CHAM80] Chamberlin, D. D. “A Summary of User Experience with the SQL
Data Sublanguage.” IBM RJ 2767 (March 1980).

[CODD70] Codd, E. F. “A Relational Model of Data for Large Shared Data
Banks.” Communications of the ACM 13, no. 6 (June 1970).

[CODD79] Codd, E. F. “Extending the Database Relational Model to Capture
More Meaning.” ACM Transactions on Database Systems 4, no. 4
(December 1979).

[CODD82] Codd, E. F. “Relational Database: A Practical Foundation for Pro-
ductivity.” Turing Award Lecture in Communications of the ACM
25, no. 2 (February 1982).

[CODD90] Codd, E. F. The Relational Model for Database Management, Ver-
sion 2. Addison-Wesley, 1990.

[COOP97] Cooper, R. Object Databases, an ODMG Approach. International
Thomson Computer Press, 1997.

[DARW98] Darwen, H., and Date, C. J. The Third Manifesto: Foundation for
Object/Relational Databases. Addison-Wesley, 1998.

[DATE95] Date, C. J. An Introduction to Database Systems Volume I, Sixth
Edition. Addison-Wesley, 1995.

[DATE97] Date, C. J., and Darwen, H. A Guide to the SQL Standard, Fourth
Edition. Addison-Wesley, 1997.

[DELO95] Delobel, C., Lécluse, C., and Richard, P. Databases: From Rela-
tional to Object-Oriented Systems. International Thomson Publish-
ing, 1995.

[ELMA06] Elmasri, R., and Navathe, S. B. Fundamentals of Database Systems,
Fifth Edition. Addison-Wesley, 2006.

[GEIG95] Geiger, K. Inside ODBC. Microsoft Press, 1995.

[GILL96] Gill, H. S., and Rao, P. C. The Official Client/Server Computing
Guide to Data Warehousing. Que, 1996.

[GRAY93] Gray, J. and Reuter, A. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers, 1993.

[GULU99] Gulutzan, P., and Pelzer, T. SQL-99 Complete, Really. Miller
Freeman, 1999.

[HARO04] Harold, E. R., and Means, W. S., XML in a Nutshell, Third Edition.
O’Reilly, 2004.

[ISO87] ISO TC97/SC21/WG3 and ANSI X3H2. ISO 9075 Database Lan-
guage SQL. International Organisation for Standardisation, 1987.

[ISO92] ISO/IEC JTC1/SC21. ISO 9075:1992 (E) Database Language SQL.
International Organisation for Standardisation, 1992.

[KAY04] Kay, M. Xpath 2.0 Programmer’s Reference. Wrox, 2004.

964 SQL for MySQL Developers

[KIM85] Kim, W., Reiner, D. S., and Batory D. S. (eds). Query Processing in
Database Systems. Springer-Verlag, 1985.

[LANS92] van der Lans, R. F. The SQL Guide to Oracle. Addison-Wesley,
1992.

[LARO04] Larose, D. T. Discovering Knowledge in Data: An Introduction to
Data Mining. Wiley-Interscience, 2004.

[MELT01] Melton, J., and Simon, A. R. SQL:1999: Understanding Relational
Language Components. Morgan Kaufmann Publishers, 2001.

[MELT03] Melton, J., and Simon, A. R. SQL:1999: Understanding Object-
Relational and Other Advanced Features. Morgan Kaufmann
Publishers, 2003.

[SIMS04] Simsion, G. C., and Witt, G. C. Data Modeling Essentials, Third
Edition. Morgan Kaufmann Publishers, 2004.

[STON86] Stonebraker, M. The INGRES Papers: Anatomy of a Relational
Database System. Addison-Wesley, 1986.

[STON99] Stonebraker, M., Moore, D., and Brown, P. Object-Relational Data-
base Servers, the Next Great Wave. Morgan Kaufmann Publishers,
1999.

[THOM02] Thomsen, E. OLAP Solutions, Building Multidimensional Informa-
tion Systems, Second Edition. John Wiley & Sons, 2002.

[WIDO96] Widom, J., and Ceri, S. Active Database Systems, Triggers and Rules
for Advanced Database Processing. Morgan Kaufmann Publishers,
1996.

[ZLOO77] Zloof, M. M. Query By Example. Proceedings of the NCC 44,
Anaheim, Calif., May 1975 (AFIPS Press, 1977).

965APPENDIX D Bibliography

This page intentionally left blank This page intentionally left blank

967

Index

Symbols
<> (angle brackets), 840
* (asterisk), 316-317
@ (at symbol), 422
{} (braces), 841
[] (brackets), 841
… (ellipses), 841
= (equal sign), 840
& operator, 121, 586
^ operator, 121
| operator, 120, 840
“ (quotation marks), 842
; (semicolon), 842

A
ABS function, 56, 903
access method, 605
ACOS function, 903
actions

event actions, 768
referencing actions, 550-553

ADDDATE function, 904
ADDTIME function, 130, 904
Advanced Encryption Standard, 904
AES_DECRYPT function, 904
AES_ENCRYPT function, 904
AFTER keyword, 758
AGAIN stored procedure, 719
AGE stored procedure, 716
aggregate functions, 136-137, 349, 872

AVG, 336-340
BIT_AND, 343-344
BIT_OR, 343-344
BIT_XOR, 343-344
COUNT, 327-331

MAX, 332-340
MIN, 332-336
overview, 324-327
STDDEV, 342
STDDEV_SAMP, 343
VARIANCE, 341-342
VAR_SAMP, 343

ALGORITHM option (CREATE VIEW
statement), 639

algorithms, Fibonacci, 714
aliases. See pseudonyms
ALL operator, 281-289, 320

ALL database privilege, 668
ALL table privilege, 664

ALLOW_INVALID_DATES setting
(SQL_MODE system variable), 82, 958

ALL_TEAMS stored procedure, 736
alphanumeric data types, 219, 504-506, 872
alphanumeric expressions, 123-125, 876
alphanumeric literals, 77-79
ALTER DATABASE statement, 655-656, 849
ALTER EVENT statement, 778-779, 849
ALTER FUNCTION statement, 752-753, 849
ALTER privilege

databases, 667
tables, 664

ALTER PROCEDURE statement, 740, 849
ALTER ROUTINE database privilege, 668
ALTER TABLE statement

changing columns, 595-599
changing integrity constraints, 599-602
changing table structure, 593-595
CONVERT option, 595
creating indexes, 616
DISABLE KEYS option, 595
ENABLE KEYS option, 595

ORDER BY option, 595
syntax definition, 849

ALTER USER statement, 639
ALTER VIEW statement, 850
alternate keys, 10, 544-545, 873

in tennis club sample database, 35
indexes, 622

American National Standards Institute
(ANSI), 21

American Standard Code for Information
Interchange (ASCII), 390, 562

ANALYZE TABLE statement, 684-685, 850
analyzing tables, 684-685
AND operator, 121, 231-235, 586
angle brackets (<>), 840
ANSI (American National Standards

Institute), 21
ANSI_QUOTES setting (SQL_MODE system

variable), 521, 958
ANY operator, 281-289
application locks, 835-837
application logic, 19
architecture

client/server, 19
Internet, 19-21
monolithic, 18

arithmetic averages, calculating, 336-339
AS keyword, 178
ASC (ascending), 389
ascending order, sorting with, 389-392
ASCII (American Standard Code for

Information Interchange), 390, 562
ASCII function, 905
ASIN function, 905
assigning

character sets to columns, 564-566
collations to columns, 566-568
names to result columns, 92-94
values to local variables, 712

asterisk (*), 316-317
at symbol (@), 422
ATAN function, 905
ATAN2 function, 906
ATANH function, 906
atomic values, 7
attributes (XML), 472
AUTO_INCREMENT option, 530, 511-513
AUTO_INCREMENT_INCREMENT system

variable, 513, 953
AUTO_INCREMENT_OFFSET system

variable, 513, 953
AUTOCOMMIT system variable, 816-817,

953
averages, calculating, 336-339

AVG function, 137, 336-340
AVG_ROW_LENGTH table option, 531
Axmark, David, 26

B
B-tree indexes, 610
backing up tables, 690-691
BACKUP TABLE statement, 690-691, 850
Backus Naur Form (BNF), 839
Backus, John, 839
base tables, 631
BEFORE keyword, 758
BEGIN WORK statement, 822, 850
BEGIN…END block, 873
BENCHMARK function, 906
BETWEEN operator, 250-252
BIGINT data type, 499
BIN function, 120, 584, 906
BINARY data type, 506
binary representation, 119
binding styles, 14
BIT_AND function, 137, 343-344
BIT_COUNT function, 906
bit data type, 504
BIT_LENGTH function, 907
bit literals, 87-88
bit operators, 119, 873

&, 121
^, 121
|, 120
AND, 121
OR, 120
XOR, 121

BIT_OR function, 137, 343-344
BIT_XOR function, 137, 343-344
blob data types, 506-507, 874
BNF (Backus Naur Form) notation, 839
BOOLEAN data type, 500
Boolean expressions, 134-136, 876
Boolean literals, 87, 874
Boolean searches, 271-274
Boyce, R. F., 16
braces ({}), 841
brackets ([]), 106-107, 841
browsing, 605
buffers, 829

C
calculate subtotal, 414
calculate total, 414
call level interface (CLI), 14-15
CALL statement, 704, 719-722, 850
calling stored procedures, 704-705, 719-722
candidate keys, 10, 623

968 Index

cardinality, 623, 684
Cartesian product of tables, 175, 187
CASCADE option (DROP TABLE

statement), 592
CASCADE referencing action, 551
case expressions, 101-106, 874
CASE statement, 716, 851
cast expression, 111-114
casting, 113
catalog, 60, 653-654

character sets, 576
events, 780
integrity constraints and, 557
privileges, 675
querying, 803-804
showing information in. See informative

statements
tables, 60

advantages of, 60
catalog views, 61-62, 64
CHARACTER_SETS, 563
COLLATIONS, 564
COLUMNS, 534-537
COLUMNS_IN_INDEX, 627-630
COLUMN_CONSTRAINTS, 675
EVENTS, 781
INDEXES, 627-630
KEY_COLUMN_USAGE, 557
queries, 64-68
ROUTINES, 740-741
structure of, 61
TABLE_CONSTRAINTS, 557
TABLES, 534
TABLE_AUTHS, 676-677
TRIGGERS, 765
USERS, 675
VIEWS, 640-641

triggers, 765
views, 61-64

CEILING function, 907
Chamberlin, D. D., 16
CHANGES table, 756
changing. See editing
CHAR data type, 504
CHAR function, 907
CHAR_LENGTH function, 908
CHAR VARYING data type, 506
CHARACTER data type, 506
CHARACTER_LENGTH function, 907
CHARACTER_SET_CLIENT system

variable, 575, 954
CHARACTER_SET_CONNECTION system

variable, 575, 954
CHARACTER_SET_DATABASE system

variable, 575, 954

CHARACTER_SET_DIR system
variable, 575

CHARACTER_SET_RESULTS system
variable, 575, 954

CHARACTER_SET_SERVER system
variable, 575, 954

CHARACTER_SET_SYSTEM system
variable, 575, 955

character sets
ASCII character set, 562
assigning to columns, 564-566
catalog and, 576
collations, 562

assigning character sets to, 566-568
coercibility, 573-574
expressions, 568-571
grouping of rows, 572-573
showing available collations, 563-564
sorting of values, 571-572

EBCDIC character set, 562
encoding schemes, 561
expressions, 568-571
overview, 219, 390, 505, 561
showing available character sets, 563-564
system variables, 574-576
Unicode, 562

Character_sets_dir system variable, 955
CHARACTER VARYING data type, 506
CHARSET function, 571, 907
CHECK constraint, 874
check integrity constraints, 553-556
CHECK TABLE statement, 687-689, 851
checking tables, 687-689
CHECKSUM TABLE statement,

685-686, 851
checksums, 685-686
clauses. See also keywords; statements

FROM (SELECT statement), 882
accessing tables of different

databases, 185
column specifications in, 173
cross joins, 199
examples of joins, 179-182
explicit joins, 185-189
join conditions, 196-199
left outer joins, 189-193
natural joins, 195-196
overview, 171
pseudonyms for table names, 178-179,

183-184
right outer joins, 193-195
table specifications in, 171-178
table subqueries, 200-207
USING keyword, 199-200

969Index

GROUP BY (SELECT statement), 349, 882
examples, 363-369
grouping by sorting, 358-359
grouping of null values, 357-358
grouping on expressions, 356-357
grouping on one column, 350-353
grouping on two or more columns,

353-356
processing, 152
rules for, 359-362

HAVING (SELECT statement),
375-376, 883

column specifications, 379-380
examples, 376-378
grouping on zero expressions, 378-379
processing, 153

INTO, 733, 885
INTO FILE (SELECT statement), 461-465
LIMIT, 886

HANDLER READ statement, 433
SELECT statement, 395-4.6, 886

ORDER BY, 888
ALTER TABLE statement, 595, 886
SELECT statement, 153, 383-392, 886
UPDATE statement, 449

SELECT. See SELECT clause
VALUES (INSERT statement), 438, 901
WHERE (SELECT statement),

213-214, 902
comparison operators, 215-229
conditions, 229-230
logical operators, 231-235
processing, 152

WITH GRANT OPTION (GRANT
statement), 673-674

CLI (call level interface), 14-15
CLI95 standard, 23
client applications, 19
client/server architecture, 19
CLOSE CURSOR statement, 733
CLOSE statement, 851
closing

cursors, 733
handlers, 435

COALESCE function, 109, 908
Codd, E. F., 6
code character sets. See character sets
coercibility, 573-574
COERCIBILITY function, 574, 908
COLLATE keyword, 569, 571
COLLATION_CONNECTION system vari-

able, 575, 955
COLLATION_DATABASE system variable,

575, 955

COLLATION function, 570, 909
COLLATION_SERVER system variable,

575, 956
collations, 561-562

assigning to columns, 566-568
coercibility, 573-574
defined, 216
expressions, 568-571
grouping of rows, 572-573
LIKE operator, 253
showing available collations, 563-564, 694
sorting of values, 571-572
system variables, 574-576

COLUMN_AUTHS table (catalog), 64, 675
column functions. See aggregate functions
columns. See also aggregate functions

adding, 596
assigning character sets to, 564-566
changing, 595-599, 875
changing length of, 598
choosing for indexes, 622-627

candidate keys, 622
columns included in selection

criteria, 623-625
columns used for sorting, 627
combination of columns, 626-627
foreign keys, 623

data types
alphanumeric, 504-506
AUTO_INCREMENT option, 511-513
bit, 504
blob, 506-507
decimal, 500-501
defining, 496-498
float, 501-504
geometric, 507
integer, 499-500
SERIAL DEFAULT VALUE option, 513
temporal, 506
UNSIGNED option, 508-509
ZEROFILL option, 509-510

definitions, 495, 875
grouping on one column, 350-353
grouping on two or more columns, 353-356
headings, 92
integrity constraints, 495, 554
names, sorting on, 383-385
naming, 521-522
NOT NULL columns, 48
null specifications, 495
options, 522-524
overview, 7
population, 7
privileges, 660, 664-667

970 Index

renaming, 598
result columns, assigning names to, 92-94
selecting all columns, 316-317
showing column types, 694
showing information about

DESCRIBE statement, 699
SHOW COLUMNS statement, 694

specifications, 94-95, 173, 876
subqueries, 163, 243, 289-294

COLUMNS catalog view, 64
COLUMNS_IN_INDEX table (catalog), 64,

627-630
COLUMNS table, 534-537
COMMENT characteristic (stored

procedures), 740
COMMENT option

columns, 523
tables, 530-531

COMMIT statement, 818-821, 852
COMMITTEE_MEMBERS table, 32-34
committing transactions, 818-821
comparison operators

overview, 876
WHERE clause, 215-221

correlated subqueries, 227-229
scalar expressions, 217
subqueries, 222-227

competition players, 29
COMPLETION_TYPE, 820
complex data types, 876
composite index, 610
composite primary keys, 542
compound expressions, 90, 115

alphanumeric expressions, 123-125, 876
Boolean expressions, 134-136, 876
date expressions, 125-129, 876
datetime expressions, 132-134, 877
numeric expressions, 116-123, 877
scalar expressions, 877
table expressions, 877

combining with UNION, 410-415
combining with UNION ALL, 416-417
overview, 409

time expressions, 130-132, 877
timestamp expressions, 132-134, 877

compound indexes, 610
compound keys, 246
compound statements, 708
COMPRESS function, 909
CONCAT function, 108, 909
CONCAT_WS function, 909
concurrency, 828

conditions, 134, 214, 878
IN operator

with expression lists, 235-241
with subqueries, 241-250

logical operators, 231-235
with negation, 299-302
without comparison operators, 229-230
XML expressions, 488-489

conjoint populations, 188
CONNECTION_ID function, 910
connections

definition of, 44
multiple connections within one

session, 791-793
consistency of data, 5, 539
constraints. See integrity constraints
CONTAINS SQL characteristic (stored

procedures), 739
CONTINUE handler, 728
CONV function, 120, 910
CONVERT function, 910
CONVERT option (ALTER TABLE

statement), 595
CONVERT_TZ function, 911
Coordinated Universal Time, 949
copying

rows, 442-444
tables, 516-520

correctness of data, 539
correlated subqueries, 227-229, 291, 294-299
COS function, 911
COT function, 911
COUNT function, 137, 327-331
CRC32 function, 911
CREATE DATABASE statement, 45,

653-655, 852
CREATE EVENT statement, 768-776, 852
CREATE FUNCTION statement

RETURNS specification, 745-746
syntax definition, 852

CREATE INDEX statement, 54,
614-617, 853

CREATE privilege
databases, 667
tables, 664

CREATE PROCEDURE statement, 704, 853
CREATE ROUTINE database privilege, 668
CREATE TABLE statement, 46-47

AUTO_INCREMENT option, 530
AVG_ROW_LENGTH option, 531
COMMENT option, 530-531
copying tables, 516-520
creating new tables, 493-496
creating temporary tables, 514-515

971Index

defining indexes, 617-618
ENGINE option, 525-530
IF NOT EXISTS option, 515-516
MAX_ROWS option, 531
MIN_ROWS option, 531
syntax definition, 853

CREATE TEMPORARY TABLE
statement, 514-515

CREATE TEMPORARY TABLES database
privilege, 668

CREATE TRIGGER statement, 756-758
AFTER keyword, 758
BEFORE keyword, 758
NEW keyword, 758
OLD keyword, 759
syntax definition, 853

CREATE USER privilege, 670
CREATE USER statement, 44, 660-662, 854
CREATE VIEW privilege, 668
CREATE VIEW statement, 56, 631-635

ALGORITHM option, 639
DEFINER option, 638
SQL SECURITY option, 638
syntax definition, 854
WITH CASCADED CHECK OPTION, 637
WITH CHECK OPTION, 636-638

creating
cursors, 732
databases, 45, 654-655
integrity constraints, 539-541
local variables, 709-712
stored procedures, 704
tables, 46-48, 493-496
user variables

with SELECT statement, 423-425
with SET statement, 421-423

users, 660-662
views, 55-56, 631-635

cross joins, 199
cross-referential integrity, 601
CSV storage engine, 532-533
CURDATE function, 771, 911
current database, selecting, 45-46
CURRENT_DATE function, 912
CURRENT_DATE system variable, 100
CURRENT_TIME function, 912
CURRENT_TIME system variable, 100
CURRENT_TIMESTAMP function, 912
CURRENT_TIMESTAMP system

variable, 100
CURRENT_USER function, 913
CURRENT_USER system variable, 100
cursor stability isolation level, 832

cursors
closing, 733
declaring, 732
fetching, 733
opening, 732
retrieving data with, 731-736

CURTIME function, 913

D
data

consistency, 5
independence, 5
integrity. See data integrity
loading

definition of, 461
LOAD statement, 465-469

security. See data security
unloading

definition of, 461
INTO FILE clause (SELECT

statement), 461-465
Data Control Language (DCL), 60
Data Definition Language (DDL), 60, 846
Data Encryption Standard, 918
data integrity, 5

cross-referential integrity, 601
definition of, 539
integrity constraints

alternate keys, 544-545
catalog, 557
check integrity constraints, 553-556
defining, 539-541
definition of, 539
deleting, 557
foreign keys, 546-550
naming, 556-557
primary keys, 541-544
referencing actions, 550-553

Data Manipulation Language (DML), 60, 847
data pages, 604-605
data security, 57

overview, 659-660
passwords, changing, 663-664
privileges

database privileges, 667-670
passing on to other users, 673-674
recording in catalog, 675
restricting, 674
revoking, 6770680
table of, 672
table/column privileges, 664-667
user privileges, 670-672
views, 680-681

972 Index

users
creating, 660-662
removing, 662
renaming, 662-663

views, 650, 680-681
data types, 74, 879

alphanumeric, 77-79, 504-506, 872
AUTO_INCREMENT option, 511-513
bit, 87-88, 504
blob, 504-507, 874
Boolean, 87
complex data type, 876
date, 79-82
datestamp, 84-86
decimal, 77, 500-501, 880
defining, 496-498
ENUM

error value, 579
examples, 578-582
overview, 577
permitted values, 578, 581
sorting values, 580-581

expressions, 111-114
float, 77, 501-504, 881
geometric, 507, 882
hexadecimal, 87
integer, 76, 499-500, 884
numeric, 887
options

AUTO_INCREMENT, 511-513
definition of, 508
SERIAL DEFAULT VALUE, 513
UNSIGNED, 508-509
ZEROFILL, 509-510

row expressions, 139
SERIAL DEFAULT VALUE option, 513
SET

adding elements to, 588-589
examples, 582-589
overview, 577
permitted values, 582

temporal, 506, 899
time, 82-83
timestamp, 84-86
year, 86

DATABASE function, 913
database languages, 4-6, 11
database management system (DBMS), 4
database privileges, 660
database procedures. See stored procedures
database servers

data independence, 5
definition of, 4
MySQL. See MySQL

databases
catalog. See catalog
changing, 655-656
creating, 45, 654-655
CSV storage engine, 532-533
current database, selecting, 45-46
data consistency, 5
data integrity, 5
database objects, 27, 57-58
definition of, 4
deleting, 58
dropping, 656-657
events

application areas, 767-768
catalog and, 780
changing, 778-779
creating, 768-776
event actions, 768
event schedule, 768
invoking, 769
overview, 767
privileges, 779-780
properties, 777-778
removing, 779

indexes
B-tree indexes, 610
on candidate keys, 622
changing, 883
choosing columns for, 622-627
COLUMNS_IN_INDEX table

(catalog), 627-630
on columns included in selection

criteria, 623-625
on columns used for sorting, 627
on combination of columns, 626-627
compound indexes, 610
creating, 614-617, 788-790
defining together with tables, 617-618
definitions, 884
deleting, 58, 618-619
on foreign keys, 623
FULLTEXT, 616
hash indexes, 610
INDEXES table (catalog), 627-630
optimizing queries with, 54-55
overview, 605-610
PLAYERS_XXL table, 620-622
primary keys, 619-620
SELECT statements, processing,

610-614
showing, 697
SPATIAL, 616
tree structure, 606
UNIQUE, 615
unique indexes, 55

973Index

integrity constraints
alternate keys, 544-545
catalog, 557
changing, 599-602
check integrity constraints, 553-556
defining, 539-541
definition of, 539
deleting, 557, 601
foreign keys, 546-550
naming, 556-557
primary keys, 541-544
referencing actions, 550-553
specifying, 649-650
triggers as, 763-764

loading data
definition of, 461
LOAD statement, 465-469

locking
application locks, 835-837
deadlocks, 830
exclusive locks, 829
isolation levels, 832-834
LOCK TABLE statement, 830-831
named locks, 835
overview, 829-830
processing options, 834-835
share locks, 829
UNLOCK TABLE statement, 831
waiting for locks, 834

multiuser usage, 815, 825
dirty/uncommitted reads, 826
lost updates, 828
nonrepeatable/nonreproducible reads,

826-827
phantom reads, 827

persistence, 5
privileges, 878

database privileges, 667-670
passing on to other users, 673-674
recording in catalog, 675
restricting, 674
revoking, 677-680
table of, 672
table/column privileges, 664-667
user privileges, 670-672
views, 680-681

querying. See queries
removing, 656-657
selecting, 787-788
showing, 695
single-user usage, 815
tables. See tables

tennis club sample database
COMMITTEE_MEMBERS table,

32-34
contents, 33-34
diagram, 35
general description, 29-32
integrity constraints, 35-36
MATCHES table, 34
PENALTIES table, 34
PLAYERS table, 31-33
TEAMS table, 33

transactions
autocommit, 816-817
committing, 818-821
definition of, 815
isolation levels, 832-834
rolling back, 817-821
savepoints, 822-824
starting, 821-822
stored procedures, 824-825

triggers. See triggers
unloading data

definition of, 461
INTO FILE clause (SELECT

statement), 461-465
valid databases, 539
values, 7-8
views

column names, 635-636
creating, 55-56, 631-635
data integrity, 650
deleting, 58, 639-640
materialization, 644-645
options, 638-639
overview, 631
privileges, 680-681
processing, 642-645
reorganizing tables with, 647-648
restrictions on updates, 641-642
simplifying routine statements with,

645-647
specifying integrity constraints with,

649-650
stepwise development of SELECT

statements, 648-649
substitution, 643-644
updating, 636-638, 641-642
VIEWS table (catalog), 640-641

DATABASE_AUTHS table (catalog), 64, 676
DATE_ADD function, 913
date calculations, 125
DATE data type, 506
date expressions, 125-129, 876
DATE_FORMAT function, 914

974 Index

DATE function, 913
date intervals, 879
date literals, 79-82, 879
DATE_SUB function, 916
Date, Chris J., 4
DATEDIFF function, 111, 914
datestamp literals, 84-86
datetime expressions, 132-134, 877
DAY function, 916
DAYNAME function, 110, 771, 916
DAYOFMONTH function, 917
DAYOFWEEK function, 917
DAYOFYEAR function, 110, 917
DB2, 17
DBMS (database management system), 4
DCL (Data Control Language), 60, 847
DDL (Data Definition Language), 60, 846
deadlocks, 830
DEALLOCATE PREPARE statement,

809, 854
DEC data type, 501
decimal data type, 500-501, 880
decimal literals, 77, 880
declarative languages, 12
declarative statements, 846
DECLARE CONDITION statement, 729, 854
DECLARE CURSOR statement, 732, 855
DECLARE HANDLER statement, 726, 855
DECLARE VARIABLE statement, 855
declaring. See creating
DECODE function, 917
default character sets, changing, 595
DEFAULT column option, 522
DEFAULT function, 523, 918
DEFAULT keyword, 523
default value, 522
DEFAULT_WEEK_FORMAT system

variable, 951, 956
definer option

CREATE VIEW statement, 638
stored procedures, 738, 752
trigger, 759

definers, 638
defining. See creating
definitions of SQL statements, 69
degree of a row expression, 137
degree of a table expression, 140
DEGREES function, 918
delayed processing, 834
DELETE_MATCHES stored procedure, 704
DELETE_OLDER_THAN_30 stored

procedure, 734
DELETE_PLAYER stored procedure,

725, 750

DELETE privilege
databases, 667
tables, 664

DELETE statement, 52-53
deleting rows from multiple tables, 456-457
deleting rows from single table, 454-456
IGNORE keyword, 455
syntax definition, 856

deleting
database objects, 57-58
databases, 58, 656-657
events, 779
foreign keys, 601
indexes, 618-619
integrity constraints, 557, 601
primary keys, 601
rows, 52-54

all rows, 458
from multiple tables, 456-457
from single table, 454-456

stored procedures, 741-742, 753
tables, 591-593
triggers, 765
users, 662
views, 639-640

derived tables. See views
DES_DECRYPT function, 918
DES_ENCRYPT function, 918
DESC (descending), 389
descending order, sorting in, 389-392
DESCRIBE statement, 699, 856
DIFFERENCE stored procedure, 714
dirty read isolation level, 832
dirty reads, 826
DISABLE KEYS option (ALTER TABLE

statement), 595
disjoint populations, 188
DISTINCT keyword, 318-321, 361
DISTINCTROW keyword, 323
distribution, 341, 623
DIV_PRECISION_INCREMENT system

variable, 118
DML (Data Manipulation Language), 60, 847
DO statement, 428, 856
documents (XML)

attributes, 472
changing, 489-490
elements, 472
overview, 471-473
querying

EXTRACTVALUE function, 476-483
with positions, 484-485
XPath, 486-489

replacing, 489

975Index

storing, 473-475
tags, 472

DOLLARS stored function, 747
DOUBLE data type, 504
DOUBLE PRECISION data type, 501, 504
downloading

MySQL, 37
SQL statements, xiii, 38-39

DROP privilege
databases, 667
tables, 664

DROP statement, 57
DROP CONSTRAINT, 601
DROP DATABASE, 58, 656-657, 856
DROP EVENT, 779, 857
DROP FUNCTION, 753, 857
DROP INDEX, 58, 618-619, 857
DROP PRIMARY KEY, 601
DROP PROCEDURE, 741, 857
DROP TABLE, 57, 591-593, 857
DROP TRIGGER, 765, 857
DROP USER, 662, 858
DROP VIEW, 58, 639-640, 858

dropping. See deleting
duplicate rows, removing, 318-321
DUPLICATE stored procedure, 726
duplicate tables, preventing, 515-516
dynamic SQL

DEALLOCATE PREPARE statement, 809
EXECUTE statement, 808-809
overview, 807
parameters, 810-811
placeholders, 810-811
PREPARE statement, 808-809
stored procedures, 811-813
user variables, 810

E
EBCDIC (Extended Binary Coded Decimal

Interchange Code), 390, 562
editing

column names, 598
columns, 595-599
databases, 655-656
default character set, 595
events, 778-779
indexes, 883
integrity constraints, 599-602
passwords, 663-664
stored functions, 752-753
table names, 593
table structure, 593-595
tables, 896

user names, 662-663
XML documents, 489-490

elements (XML), 472
ellipses (…), 841
Elmasri, R., 4
ELT function, 919
embedded SQL, 14
ENABLE KEYS option (ALTER TABLE

statement), 595
ENCODE function, 919
encoding schemes, 561
ENGINE table option, 525-530
engines, showing, 696
entity integrity constraint, 543
entry SQL, 22
ENUM data type

error value, 579
examples, 578-582
overview, 577
permitted values, 578, 581
sorting values, 580-581

equal populations, 188
equal rows, finding, 321-323
ERROR-COUNT system variable, 69
ERROR_FOR_DIVISION_BY_ZERO setting

(SQL_MODE system variable), 958
escape symbol, 255
error messages, 68, 726-731, 790-791
error value (ENUM data type), 579
estimated values, 501
events

actions, 768
application areas, 767-768
catalog and, 780
changing, 778-779
creating, 768-776
event actions, 768
event schedule, 768
invoking, 769
overview, 767
privileges, 779-780
properties, 777-778
removing, 779
showing, 696

EVENTS table, 781
exclusive lock, 829
EXECUTE ROUTINE database privilege,

668
EXECUTE statement, 808-809, 858
execution time, 603
existing dates, 81
EXISTS operator, 278-281
EXP function, 919
explicit casting, 113
explicit joins, 185-189

976 Index

EXPORT_SET function, 919
expressions

case expressions, 101-106, 874
cast expressions, 111-114
with character sets, 568-571
with collations, 568-571
compound expressions, 115

alphanumeric expressions, 876
Boolean expressions, 876
date expressions, 876
datetime expressions, 877
expressions, 90, 115
numeric expressions, 877
scalar expressions, 877
table expressions, 877
time expressions, 877
timestamp expressions, 877

grouping on, 356-357
expression lists, 235-241
null values, 114-115
overview, 88-91
queries, 801-803
row expressions, 89, 137-139, 438,

892-894
scalar expressions, 89, 892

scalar expressions between brackets,
106-107

singular scalar expressions, 894
in SELECT clause, 317-318
singular expressions, 90
sorting on, 385-387
table expressions, 90, 139-140, 895-896
XPath expressions, 488-489

Extended Binary Coded Decimal Interchange
Code (EBCDIC), 390, 562

extended notation of XPath, 486-488
Extensible Markup Language. See XML

documents
EXTRACT function, 920
EXTRACTVALUE function, 476-483

F
FETCH CURSOR statement, 733
FETCH statement, 858
fetching cursors, 733
Fibonacci algorithm, 714
FIBONACCI stored procedure, 714
FIBONACCI_GIVE stored procedure, 724
FIBONACCI_START stored procedure, 724
FIELD function, 920
files

data pages, 604-605
input files, 461
output files, 461

FIND_IN_SET function, 920
FireFox, 786
first integrity constraint, 543
FIXED data type, 501
float data type, 501-504, 881
float literals, 77, 881
FLOAT4 data type, 504
floating point, 77
FLOOR function, 921
flow-control statements

CASE, 716
IF, 714-716
ITERATE, 718-719
LEAVE, 717
list of, 848
LOOP, 718
overview, 712-713
REPEAT, 717
WHILE, 716-717

FLUSH TABLE statement, 533
FOREIGN KEY keyword, 546
Foreign_key_checks system variable, 956
foreign keys, 10, 546-550, 623, 882

deleting, 601
indexes, 623
referencing actions, 550-553
in tennis club sample database, 35

FORMAT function, 921
founders of MySQL, 26
FOUND_ROWS function, 406, 921
FRAC_SECOND, 946
FROM clause (SELECT statement), 882

accessing tables of different databases, 185
column specifications in, 173
cross joins, 199
examples of joins, 179-182
explicit joins, 185-189
join conditions, 196-199
left outer joins, 189-193
natural joins, 195-196
pseudonyms for table names

examples, 178-179
mandatory use of, 183-184

right outer joins, 193-195
table specifications in, 171-178
table subqueries, 200-207
USING keyword, 199-200

FROM_DAYS function, 921
FROM_UNIXTIME function, 921
Ft_boolean_syntax system variable, 276, 956
Ft_max_word_len system variable, 956
Ft_min_word_len system variable, 276, 957
Ft_query_expansion_limit system variable,

276, 957

977Index

FT_STOPWORD_FILE, 276
full SQL, 22
FULLTEXT indexes, 270, 616
functions

aggregate functions, 324-327, 872
AVG, 336-340
BIT_AND, 343-344
BIT_OR, 343-344
BIT_XOR, 343-344
COUNT, 327-331
MAX, 332-336
MIN, 332-336
STDDEV, 342
STDDEV_SAMP, 343
SUM, 336-340
table of, 136-137
VARIANCE, 341-342
VAR_SAMP, 343

MYSQL functions
MYSQL_ FIELD_NAME, 803
MYSQL_AFFECTED_ROWS, 805
MYSQL_CLIENT_ENCODING, 805
MYSQL_CLOSE, 787
MYSQL_CONNECT, 787
MYSQL_DATA_SEEK, 798
MYSQL_ERROR, 790
MYSQL_FETCH_ARRAY, 797
MYSQL_FETCH_ASSOC, 794-795
MYSQL_FETCH_FIELDS, 801
MYSQL_FETCH_OBJECT, 799
MYSQL_FETCH_ROW, 797
MYSQL_FIELD_LEN, 803
MYSQL_FIELD_SEEK, 805
MYSQL_FIELD_TYPE, 803
MYSQL_FREE_RESULT, 797
MYSQL_GET_CLIENT_INFO, 805
MYSQL_GET_HOST_INFO, 805
MYSQL_GET_PROTO_INFO, 806
MYSQL_GET_SERVER_INFO, 806
MYSQL_INFO, 789
MYSQL_NUM_FIELDS, 806
MYSQL_NUM_ROWS, 797, 806
MYSQL_QUERY, 789
MYSQL_SELECT_DB, 787-788

nesting, 108
scalar functions, 107-111

ABS, 56, 903
ACOS, 903
ADDDATE, 904
ADDTIME, 130, 904
AES_DECRYPT, 904
AES_ENCRYPT, 904
ASCII, 905
ASIN, 905
ATAN, 905

ATAN2, 906
ATANH, 906
BENCHMARK, 906
BIN, 120, 906
BIT, 584
BIT_COUNT, 906
BIT_LENGTH, 907
CEILING, 907
CHAR, 907
CHARACTER_LENGTH, 907
CHARSET, 571, 907
CHAR_LENGTH, 908
COALESCE, 109, 908
COERCIBILITY, 574, 908
COLLATION, 570, 909
COMPRESS, 909
CONCAT, 108, 909
CONCAT_WS, 909
CONNECTION_ID, 910
CONV, 120, 910
CONVERT, 910
CONVERT_TZ, 911
COS, 911
COT, 911
CRC32, 911
CURDATE, 771, 911
CURRENT_DATE, 912
CURRENT_TIME, 912
CURRENT_TIMESTAMP, 912
CURRENT_USER, 913
CURTIME, 913
DATABASE, 913
DATE, 913
DATEDIFF, 111, 914
DATE_ADD, 913
DATE_FORMAT, 914
DATE_SUB, 916
DAY, 916
DAYNAME, 110, 771, 916
DAYOFMONTH, 917
DAYOFWEEK, 917
DAYOFYEAR, 110, 917
DECODE, 917
DEFAULT, 523, 918
DEGREES, 918
DES_DECRYPT, 918
DES_ENCRYPT, 918
ELT, 919
ENCODE, 919
EXP, 919
EXPORT_SET, 919
EXTRACT, 920
EXTRACTVALUE, 476-483
FIELD, 920
FIND_IN_SET, 920

978 Index

FLOOR, 921
FORMAT, 921
FOUND_ROWS, 406, 921
FROM_DAYS, 921
FROM_UNIXTIME, 921
GET_FORMAT, 922
GET_LOCK, 835, 922
GREATEST, 923
GROUP_CONCAT, 362-363
HEX, 923
HOUR, 923
IF, 923
IFNULL, 924
INET_ATON, 924
INET_NTOA, 924
INSERT, 925
INSTR, 925
INTERVAL, 925
ISNULL, 926
IS_FREE_LOCK, 836, 925
IS_USED_LOCK, 836, 926
LAST_DAY, 926
LAST_INSERT_ID, 926
LCASE, 927
LEAST, 927
LEFT, 108
LENGTH, 587, 927
LN, 928
LOCALTIME, 928
LOCALTIMESTAMP, 928
LOCATE, 928
LOG, 929
LOG10, 929
LOG2, 929
LOWER, 929
LPAD, 930
LTRIM, 930
MAKEDATE, 930
MAKETIME, 930
MAKE_SET, 931
MD5, 931
MICROSECOND, 931
MID, 931
MINUTE, 932
MOD, 932
MONTH, 932
MONTHNAME, 110, 932
NOW, 771, 932
NULLIF, 933
OCT, 933
OCTET_LENGTH, 933
OLD_PASSWORD, 933
ORD, 934
PASSWORD, 934
PERIOD_ADD, 934

PERIOD_DIFF, 934
PI, 935
POSITION, 935
POW, 935
POWER, 586, 935
QUARTER, 936
QUOTE, 936
RADIANS, 936
RAND, 936
RELEASE_LOCK, 836, 937
REPEAT, 937
REPLACE, 587, 937
REVERSE, 937
RIGHT, 937
ROUND, 938
ROW_COUNT, 938
RPAD, 938
RTRIM, 938
SECOND, 939
SEC_TO_TIME, 939
SESSION_USER, 939
SHA, 939
SHA1, 939
SIGN, 940
SIN, 940
SOUNDEX, 940
SPACE, 941
SQRT, 941
STRCMP, 941
STR_TO_DATE, 941
SUBDATE, 942
SUBSTR, 258
SUBSTRING, 942
SUBSTRING_INDEX, 943
SUBTIME, 942
SYSDATE, 943
SYSTEM_USER, 943
TAN, 944
TIME, 944
TIMEDIFF, 944
TIMESTAMP, 772, 945
TIMESTAMPADD, 946
TIME_FORMAT, 944
TIME_TO_SEC, 946
TO_DAYS, 947
TRIM, 947
TRUNCATE, 947
UCASE, 107, 948
UNCOMPRESS, 948
UNCOMPRESS_LENGTH, 948
UNHEX, 948
UNIX_TIMESTAMP, 949
UPPER, 948
USER, 949
UTC_DATE, 949

979Index

UTC_TIME, 949
UTC_TIMESTAMP, 949
UUID, 950
VERSION, 950
WEEK, 950
WEEKDAY, 951
WEEKOFYEAR, 951
YEAR, 108, 952
YEARWEEK, 952

showing status of, 696
stored functions, 895

compared to stored procedures, 745
creating, 745-746
DELETE_PLAYER, 750
DOLLARS, 747
examples, 746-752
GET_NUMBER_OF_PLAYERS, 750
modifying, 752-753
NUMBER_OF_DAYS, 749
NUMBER_OF_PENALTIES, 748
NUMBER_OF_PLAYERS, 747
OVERLAP_BETWEEN_

PERIODS, 751
POSITION_IN_SET, 749
removing, 753

UPDATEXML, 489-490

G
generate sequence numbers, 511
generate unique numbers, 511
geometric data types, 507, 882
GET_FORMAT function, 922
GET_LOCK function, 835, 922
GET_NUMBER_OF_PLAYERS stored

function, 750
GIVE_ADDRESS stored procedure, 723
global system variables, 98
GPL (GNU General Public License), 25
GRANT option, 882
GRANT statement, 44, 57, 660, 742-743

granting database privileges, 668-669
granting table/column privileges, 665
granting user privileges, 671
syntax definition, 858
WITH GRANT OPTION clause, 673-674

granting privileges, 44
database privileges, 667-670
passing on to other users, 673-674
restrictions, 674
showing grants, 696
table of, 672
table/column privileges, 664-667
user privileges, 670-672

GREATEST function, 923

Greenwich Mean Time, 949
Gregorian calendar, 79, 125, 132
GROUP BY clause (SELECT statement),

349, 882
examples, 363-369
grouping by sorting, 358-359
grouping of null values, 357-358
grouping on expressions, 356-357
grouping on one column, 350-353
grouping on two or more columns, 353-356
processing, 152
rules for, 359-362

GROUP_CONCAT function, 137, 362-363
group functions. See aggregate functions
grouping

collations, 572-573
expressions, 356-357
null values, 357-358
on one column, 350-353
on two or more columns, 353-356
on zero expressions, 378-379
with sorting, 358-359
with WITH ROLLUP, 369-371

H
HANDLER statement

example, 429-430
HANDLER CLOSE, 435, 859
HANDLER OPEN, 430-431, 859
HANDLER READ, 431-435, 859
overview, 429

handlers, 727
browsing rows of, 431-435
closing, 435
declaring, 430
opening, 430-431

hash indexes, 610
HAVING clause (SELECT statement),

375-376, 883
column specifications, 379-380
examples, 376-378
grouping on zero expressions, 378-379
processing, 153

HEAP storage engine, 527
HELP statement, 699-700, 860
Het SQL Leerboek, xiv
HEX function, 923
hexadecimal characters, 883
hexadecimal literals, 87, 883
HIGH_NOT_PRECEDENCE setting

(SQL_MODE system variable), 958
HIGH_PRIORITY option (SELECT

clause), 323
high priority processing, 834

980 Index

history
of MySQL, 26-27
of SQL, 16-18

horizontal comparisons, 322
horizontal subsets, 315
host, 661
HOUR function, 923
Hughes Technologies, 26

I
IBM, 6, 16
IF function, 923
IF NOT EXISTS option (CREATE TABLE

statement), 515-516
IF statement, 714-716, 860
IFNULL function, 924
IGNORE keyword, 441, 519

DELETE statement, 455
UPDATE statement, 449

IGNORE_SPACE setting (SQL_MODE
system variable), 958

implicit casting, 113
IN BOOLEAN MODE, 271
IN operator

with expressions list, 235-241
with subqueries, 241-250

inconsistent reads, 826-827
INDEX pivilege

databases, 667
tables, 664

indexed access method, 606
indexes

B-tree indexes, 610
on candidate keys, 622
changing, 883
choosing columns for, 622-627

candidate keys, 622
columns included in selection criteria,

623-625
columns used for sorting, 627
combination of columns, 626-627
foreign keys, 623

COLUMNS_IN_INDEX table (catalog),
627-630

on columns included in selection criteria,
623-625

on columns used for sorting, 627
on combination of columns, 626-627
compound indexes, 610
creating, 614-617, 788-790
defining together with tables, 617-618
definitions, 884
deleting, 58, 618-619
on foreign keys, 623

FULLTEXT, 616
hash indexes, 610
INDEXES table (catalog), 627-630
optimizing queries with, 54-55
overview, 605-610
PLAYERS_XXL table, 620-622
primary keys, 619-620
SELECT statements, processing, 610-614
showing, 697
SPATIAL, 616
tree structure, 606
UNIQUE, 615
unique indexes, 55

INDEXES table (catalog) 64, 627-630
INET_ATON function, 924
INET_NTOA function, 924
information-bearing names, 521
INFORMATION_SCHEMA catalog. See

catalogs
informative statements, 693

DESCRIBE, 699
HELP, 699-700
list of, 848
SHOW CHARACTER SET, 693
SHOW COLLATION, 694
SHOW COLUMN TYPES, 694
SHOW COLUMNS, 694
SHOW CREATE DATABASE, 694
SHOW CREATE EVENT, 694
SHOW CREATE FUNCTION, 695
SHOW CREATE PROCEDURE, 695
SHOW CREATE TABLE, 695
SHOW CREATE VIEW, 695
SHOW DATABASES, 695
SHOW ENGINE, 696
SHOW ENGINES, 696
SHOW EVENTS, 696
SHOW FUNCTION STATUS, 696
SHOW GRANTS, 696
SHOW INDEX, 697
SHOW PRIVILEGES, 697
SHOW PROCEDURE STATUS, 697
SHOW TABLE TYPES, 697
SHOW TABLES, 697
SHOW TRIGGERS, 698
SHOW VARIABLES, 698

initializing user variables, 96
inner select. See subqueries
InnoDB storage engine, 526
INNODB_LOCK_WAIT_TIMEOUT, 834
input files, 461
input parameters (stored procedures), 706
INSERT function, 925
INSERT_METHOD table option, 529

981Index

INSERT privilege
databases, 667
tables, 664

INSERT statement, 48, 860
DEFAULT keyword, 523
IGNORE keyword, 441
inserting rows, 437-442
ON DUPLICATE KEY specification, 441
populating tables with rows from another

table, 442-444
inserting

columns, 596
rows, 437-442

installing
MySQL, 38
query tools, 38

INSTR function, 925
INT data type, 499
INT1 data type, 499
INT2 data type, 499
INT3 data type, 499
INT4 data type, 499
INT8 data type, 499
integer data type, 499-500, 884
integer literals, 76, 884
integrity constraints, 6-8, 539

alternate keys, 544-545
catalog, 557
changing, 599-602
check integrity constraints, 553-556
defining, 539-541
definition of, 539
deleting, 557
foreign keys, 546-550
naming, 556-557
primary keys, 541-544
referencing actions, 550-553
specifying, 649-650
in tennis club sample database, 35-36
triggers as, 763-764

integrity of data. See data integrity
interactive SQL, 12
intermediate result, 150
intermediate SQL, 22
International Standardization Organization

(ISO), 21
Internet architecture, 19-21
Internet Explorer, 786
interoperability, 24
INTERVAL function, 925
INTERVAL keyword, 126
intervals, 125

date intervals, 879
interval units, 126

length, 126
time intervals, 899
timestamp intervals, 899

INTO clause, 723, 885
FETCH CURSOR statement, 733
SELECT statement, 722-725

INTO FILE clause (SELECT
statement), 461-465

Introduction to SQL, xiv
invoking events, 769
IS_FREE_LOCK function, 836, 925
IS_USED_LOCK function, 836, 926
ISAM storage engine, 526
ISNULL function, 926
ISO (International Standardization

Organization), 21
isolation levels, 832-834
ITERATE statement, 718-719, 860

J-K
joins, 885

accessing tables of different databases, 185
columns, 180
conditions, 180, 196-199
cross joins, 199
examples, 179-182
explicit joins, 185-189
left outer joins, 189-193
natural joins, 195-196
non-equi joins, 368
right outer joins, 193-195
USING keyword, 199-200

keys
alternate keys, 10, 35, 544-545, 873
candidate, 10
compound keys, 246
foreign keys, 10, 546-550, 882

deleting, 601
in tennis club sample database, 35

indexes, 622
primary keys, 9, 495, 541-544, 890

deleting, 601
indexes, 619-620
in tennis club sample database, 35

referencing actions, 550-553
keywords. See also clauses; statements

AFTER, 758
ALL, 320
AS, 178
AUTO_INCREMENT, 530
BEFORE, 758
CASCADE, 592
COLLATE, 569, 571

982 Index

COMMENT, 530-531
CONVERT, 595
DEFAULT, 523
DISABLE KEYS, 595
DISTINCT, 318-321
DISTINCTROW, 323
ENABLE KEYS, 595
ENGINE, 525-530
FOREIGN KEY, 546
GRANT, 882
HIGH_PRIORITY, 323
IGNORE, 441, 519

DELETE statement, 455
UPDATE statement, 449

INTERVAL, 126
INTO, 722-725
list of, 843-845
NEW, 758
OLD, 759
PRIMARY KEY, 541
REFERENCES, 891
REPLACE, 519
RESTRICT, 592
RETURNS, 745-746
SQL_BIG_RESULT, 324
SQL_BUFFER_RESULT, 324
SQL_CACHE, 324
SQL_CALC_FOUND_ROWS, 324
SQL_NO_CACHE, 324
SQL_SMALL_RESULT, 324
TEMPTABLE, 645
UNIQUE, 495, 544
USING, 199-200

L
labels, 709
LANGUAGE SQL characteristic (stored

procedures), 738
LARGEST stored procedure, 715
Larsson, Allan, 26
LAST_DAY function, 926
LAST_INSERT_ID function, 926
LCASE function, 927
leaf pages, 606
league numbers, 30
LEAST function, 927
LEAVE statement, 717, 860
LEFT function, 108
left outer joins, 189-193
length

of alphanumeric data type, 505
of columns, 598
of float data type, 501

LENGTH function, 587, 927

levels of SQL92 standard, 22
life span of user variables, 426-427
LIKE operator, 252-255
LIMIT clause, 886

HANDLER READ statement, 433
SELECT statement, 395-398

getting top values, 398-401
offsets, 404-405
SQL_CALC_FOUND_ROWS, 405-406
subqueries, 402-404

literals, 74-76, 886
alphanumeric literals, 77-79
bit literals, 87-88
Boolean literals, 87, 874
date literals, 79-82, 879
datestamp literals, 84-86
decimal literals, 77, 880
float literals, 77, 881
hexadecimal literals, 87, 883
integer literals, 76, 884
numeric literals, 887
temporal literals, 899
time literals, 82-83, 899
timestamp literals, 84-86, 900
year literals, 86

live checksums, 685
LN function, 928
LOAD statement, 465-469, 861
loading data

definition of, 461
LOAD statement, 465-469

local variables
assigning values to, 712
declaring, 709-712

LOCALTIME function, 928
LOCALTIMESTAMP function, 928
LOCATE function, 928
LOCK TABLE statement, 830-831, 861
LOCK TABLES privilege, 668
locking

application locks, 835-837
deadlocks, 830
exclusive locks, 829
isolation levels, 832, 834
LOCK TABLE statement, 830-831
named locks, 835
overview, 829-830
processing options, 834-835
share locks, 829
UNLOCK TABLE statement, 831
waiting for locks, 834

LOG function, 929
LOG2 function, 929
LOG10 function, 929

983Index

logging onto MySQL, 41-42, 786-787
logical operators

conditions, 231-235
truth table for, 231

LONG VARBINARY data type, 506
LONG VARCHAR data type, 504
LONGTEXT data type, 504
LOOP statement, 718, 861
lost updates, 828
low priority processing, 834
LOWER function, 929
LOW_PRIORITY option (LOAD

statement), 469
LPAD function, 930
LTRIM function, 930

M
MAKE_SET function, 931
MAKEDATE function, 930
MAKETIME function, 930
masks, 253
MATCH operator, 264-267, 276

Boolean search, 271-274
fulltext index, 270
natural language search, 267-269
natural language search with query

expansion, 275
relevance value, 269-270
search styles, 265
system variables, 275

MATCHES table, 34
materialization of views, 644-645
mathematical operators, 116, 886
MAX function, 137, 332-336
MAX_ROWS table option, 531
MD5 function, 931
measure of distribution, 342
MEDIUMBLOB data type, 507
MEDIUMINT data type, 499
MEDIUMTEXT data type, 506
MEMORY storage engine, 527, 610
MERGE storage engine, 528
Message-Digest Algorithm, 931
metasymbols, 840-842
MICROSECOND function, 931
MID function, 931
MIDDLEINT data type, 499
MIN function, 137, 332-336
MIN_ROWS table option, 531
Mini SQL, 26
minimality rule, 543
MINUTE function, 932
MOD function, 932

MODIFIES SQL DATA characteristic (stored
procedures), 739

modifying. See editing
monolithic architecture, 18
MONTH function, 932
MONTHNAME function, 110, 932
mSQL, 26
multiple connections within one

session, 791-793
multiple tables

deleting rows from, 456-457
updating values in, 450-452

multiplication of tables, 175
multiuser usage, 815, 825. See also locking

dirty/uncommitted reads, 826
lost updates, 828
nonrepeatable/nonreproducible

reads, 826-827
phantom reads, 827

MY.INI file, 99
MyISAM storage engine, 527
MySQL

connections, 44
databases. See databases
downloading, 37
errors/warnings, 68, 726
event scheduler, 769
functions

MYSQL_AFFECTED_ROWS, 805
MYSQL_CLIENT_ENCODING, 805
MYSQL_CLOSE, 787
MYSQL_CONNECT, 787
MYSQL_DATA_SEEK, 798
MYSQL_ERROR, 790
MYSQL_FETCH_ARRAY, 797
MYSQL_FETCH_ASSOC, 794-795
MYSQL_FETCH_FIELDS, 801
MYSQL_FETCH_OBJECT, 799
MYSQL_FETCH_ROW, 797
MYSQL_FIELD_LEN, 803
MYSQL_FIELD_NAME, 803
MYSQL_FIELD_SEEK, 805
MYSQL_FIELD_TYPE, 803
MYSQL_FREE_RESULT, 797
MYSQL_GET_CLIENT_INFO, 805
MYSQL_GET_HOST_INFO, 805
MYSQL_GET_PROTO_INFO, 806
MYSQL_GET_SERVER_INFO, 806
MYSQL_INFO, 789
MYSQL_NUM_FIELDS, 806
MYSQL_NUM_ROWS, 797, 806
MYSQL_QUERY, 789
MYSQL_SELECT_DB, 787-788

984 Index

history of, 26-27
installation, 38
logging on, 41-42, 786-787
Query Browser, 13
SQL users

creating, 44
and data security, 57
privileges, 44

system variables
ERROR_COUNT, 69
overview, 58
SQL_MODE, 59
VERSION, 58
WARNING_COUNT, 69

version 5.0.18, xi
website, 37

MYSQL_AFFECTED_ROWS function, 805
MYSQL_CLIENT_ENCODING function, 805
MYSQL_CLOSE function, 787
MYSQL_CONNECT function, 787
MYSQL_DATA_SEEK function, 798
MYSQL_ERROR function, 790
MYSQL_FETCH_ARRAY function, 797
MYSQL_FETCH_ASSOC function, 794-795
MYSQL_FETCH_FIELDS function, 801
MYSQL_FETCH_OBJECT function, 799
MYSQL_FETCH_ROW function, 797
MYSQL_FIELD_LEN function, 803
MYSQL_FIELD_NAME function, 803
MYSQL_FIELD_SEEK function, 805
MYSQL_FIELD_TYPE function, 803
MYSQL_FREE_RESULT function, 797
MYSQL_GET_CLIENT_INFO function, 805
MYSQL_GET_HOST_INFO function, 805
MYSQL_GET_PROTO_INFO function, 806
MYSQL_GET_SERVER_INFO function, 806
MYSQL_INFO function, 789
MYSQL_NUM_FIELDS function, 806
MYSQL_NUM_ROWS function, 797, 806
MYSQL_QUERY function, 789
MYSQL_SELECT_DB function, 787-788

N
named locks, 835, 922
names

assigning to result columns, 92-94
column names, 521-522, 635-636
integrity constraints, 556-557
pseudonyms for table names

examples, 178-179
mandatory use of, 183-184

tables, 521-522
user names, 41

NATIONAL CHAR data type, 506

NATIONAL CHAR VARYING data type, 506
NATIONAL CHARACTER data type, 506
NATIONAL CHARACTER VARYING data

type, 506
NATIONAL VARCHAR data type, 506
natural joins, 195-196
natural language searches, 267-269, 275
Naur, Peter, 839
Navicat, 13
NCHAR data type, 506
negation, conditions with, 299-302
nesting

functions, 108
subqueries, 161-162

NEW keyword, 758
NEW_TEAM stored procedure, 825
NO ACTION referencing action, 551, 553
NO_AUTO_CREATE_USER setting

(SQL_MODE), 958
NO_AUTO_VALUE_ON_ZERO setting

(SQL_MODE), 958
NO_BACKSLASH_ESCAPES setting

(SQL_MODE), 958
NO_DIR_IN_CREATE setting

(SQL_MODE), 958
NO_ENGINE_SUBSTITUTION setting

(SQL_MODE), 958
NO_FIELD_OPTIONS setting

(SQL_MODE), 959
NO_KEY_OPTIONS setting

(SQL_MODE), 959
NO SQL characteristic (stored

procedures), 739
NO_TABLE_OPTIONS setting

(SQL_MODE), 959
NO_UNSIGNED_SUBTRACTION setting

(SQL_MODE), 959
NO_ZERO_DATE setting (SQL_MODE),

81, 959
NO_ZERO_IN_DATE setting (SQL_MODE),

81, 959
nodes in trees, 606
non-equi joins, 368
non-terminal symbols, 839
nonprocedural languages, 12
nonrepeatable reads, 826-827
nonreproducible reads, 826-827
NOT conditions, 231-235
NOT FOUND handler, 728
NOT NULL integrity constraint, 48, 539
NOW function, 771, 932
NULL operator, 276-278
null specifications, 495, 887
null values, 8, 495

985Index

as expressions, 114-115
grouping, 357-358
PHP, 800-801
set operators and, 417
sorting, 392-393

NULLIF function, 933
NUMBER_OF_DAYS stored function, 749
NUMBER_OF_PENALTIES stored

function, 748
NUMBER_OF_PLAYERS stored

function, 747
NUMBER_PENALTIES stored

procedure, 735
NUMBERS_OF_ROWS stored

procedure, 737
numeric data types, 501, 887
numeric expressions, 116-123, 877
numeric literals, 887

alphanumeric literals, 77-79
decimal literals, 77
float literals, 77
integer literals, 76

O
Object Query Language, 24
objects (database), 27, 57-58
OCT function, 933
OCTET_LENGTH function, 933
ODBC, 24
ODMG (Object Database Management

Group), 24
offsets, 404-405
OLB-98 standard, 23
OLD keyword, 759
OLD_PASSWORD function, 933
ON COMPLETION property (events), 777
ON DELETE RESTRICT referencing

action, 551
ON DUPLICATE KEY specification, 441
ON UPDATE RESTRICT referencing

action, 551
ONLY_FULL_GROUP_BY setting

(SQL_MODE system variable), 959
OPEN CURSOR statement, 732
Open DataBase Connectivity, 24
The Open Group, 24
open source software, 25
OPEN statement, 862
opening

cursors, 732
handlers, 430-431

Opera, 786

operators, 122
ALL, 281-289
AND, 586
ANY, 281-289
BETWEEN, 250-252
bit operators, 119, 873
comparison, 876
EXISTS, 278-281
IN operator

with expressions list, 235-241
with subqueries, 241-250

LIKE, 252-255
logical operators

conditions, 231-235
truth table for, 231

MATCH, 264-267, 276
Boolean search, 271-274
fulltext index, 270
natural language search, 267-269
natural language search with query

expansion, 275
relevance value, 269-270
system variables, 275

mathematical operators, 116, 886
NULL, 276-278
REGEXP, 255-264
RLIKE, 256
set, 157
SOME, 281
UNION, 157

combining table expressions with,
410-413

null values, 417
rules for use, 413-415

UNION ALL, 416-417
OPTIMIZE statement, 862
OPTIMIZE TABLE statement, 686-687
optimized strategy, 610
optimizer, 611
optimizing

queries, 611
tables, 686-687

option file, 99
OQL, 24
OR operator, 120, 231-235
Oracle, 18
ORD function, 934
ORDER BY clause, 888

ALTER TABLE statement, 595
SELECT statement, 383

processing, 153
sorting, 383-393

UPDATE statement, 449
order of clauses, 148

986 Index

outer joins
left outer joins, 189-193
overview, 189
right outer joins, 193-195

output files, 461
output parameters (stored procedures), 706
OVERLAP_BETWEEN_PERIODS stored

function, 751

P
pages, 604-605
parameters

parameter specifications, 888
of a scalar function, 107
of stored procedures, 706-707

passing privileges, 673-674
PASSWORD function, 934
passwords

changing, 663-664
MySQL, 41

patterns, 253
PENALTIES table, 34
PERIOD_ADD function, 934
PERIOD_DIFF function, 934
permanent tables, 514
persistence, 5
Persistent Stored Modules, 23
phantom reads, 827
PHP programs

catalog queries, 803-804
data queries about expressions, 801-803
database selection, 787-788
error message retrieval, 790-791
index creation, 788-790
multiple connections within one

session, 791-793
MySQL logon, 786-787
overview, 785
SELECT statement with multiple

rows, 796-799
SELECT statement with null

values, 800-801
SELECT statement with one row, 794-795
SQL statements with parameters, 793-794

phpMyAdmin, 13
PI function, 935
pipe character (|), 840
PIPES_AS_CONCAT setting (SQL_MODE

system variable), 123, 959
placeholders, 810-811
PLAYERS table, 31-33
PLAYERS_XXL table, 620-622
populating tables, 48-49, 442-444

population
of a column, 7
standard deviation, 341
variance, 341

POSITION function, 935
POSITION_IN_SET stored function, 749
POW function, 935
POWER function, 586, 935
precision, 77, 500
predicates, 6, 214, 889-890
PREPARE statement, 808-809, 862
prepared SQL statements. See also

dynamic SQL
DEALLOCATE PREPARE, 809
EXECUTE, 808-809
overview, 807
parameters, 810-811
placeholders, 810-811
PREPARE, 808-809
stored procedures, 811-813
user variables, 810

preprogrammed SQL, 14
prerequisite knowledge, xiv
PRIMARY KEY keywords, 495, 541
primary keys, 9, 495, 541-544, 890

deleting, 601
indexes, 619-622
in tennis club sample database, 35

priorities when calculating, 117
privileges, 57, 878, 900

definition of, 43
events, 779-780
granting, 44
showing, 697
tables, 897

procedural languages, 12
procedural statements, 60

CASE, 716
IF, 714-716
ITERATE, 718-719
LEAVE, 717
list of, 848
LOOP, 718
overview, 712-713
REPEAT, 717
WHILE, 716-717

procedures, stored. See stored procedures
processing

SELECT statement, 150-156
stored procedures, 705-706
views, 642-645

materialization, 644-645
substitution, 643-644

processing options, 610, 834-835

987Index

production rules, 839
proleptic, 125
properties of events, 777-778
pseudonyms, 92, 161

examples, 178-179
mandatory use of, 183-184

PSM-96 standard, 23

Q
qualification

of columns, 95, 173
of tables, 173

QUARTER function, 936
QUEL, 6
queries

catalog tables, 64-68, 803-804
correlated subqueries, 294-299
expressions, 801-803
indexes, 54-55
optimization, 611
Query Browser, 13
query cache, 324
query expansion, 275
query tools, 38
SELECT statement

examples, 49-52, 148-149
GROUP BY clause, 152
HAVING clause, 153
ORDER BY clause, 153
processing, 150-156
select blocks, 146-147
SELECT clause, 153-155
SELECT INTO, 722-725
structure of, 145-149
subqueries, 160-165
table expressions, 145-147, 156-160
WHERE clause, 152

subqueries
scalar subqueries, 136-137
table subqueries, 200-207

XML documents
EXTRACTVALUE function, 476-483
with positions, 484-485
XPath, 486-489

Query Browser, 13
quotation marks ("), 842
QUOTE function, 936

R
RADIANS function, 936
RAND function, 936
ranges of integer data type, 499
read committed isolation level, 832

READ LOCAL lock type, 831
READ lock type, 831
read locks, 829-831
read uncommitted isolation level, 832
reading data

dirty/uncommitted reads, 826
handlers, 431-435
nonrepeatable/nonreproducible

reads, 826-827
phantom reads, 827

READS SQL DATA characteristic (stored
procedures), 739

REAL_AS_FLOAT setting (SQL_MODE
system variable), 959

REAL data type, 504
recreational players, 29
recurring schedules, 772, 891
recursive call of stored procedures, 720
referenced tables, 547
REFERENCES keyword, 891

databases, 667
tables, 664

referencing actions, 550-553
referencing specifications, 891
referencing tables, 547
referential integrity constraints, 546
referential keys. See foreign keys
REGEXP operator, 255-264
relational database languages, 5-6, 11
relational model, 6
relations. See tables
RELEASE_LOCK function, 836, 937
relevance value (MATCH operator), 269-270
remote database servers, 19
removing

application locks, 837
databases, 656-657
duplicate rows from results, 318-321
events, 779
indexes, 618-619
stored functions, 753
stored procedures, 741-742
triggers, 765
users, 662
views, 639-640

RENAME TABLE statement, 593, 862
RENAME USER statement, 662-663, 862
renaming

columns, 598
tables, 593
users, 662-663

reorganizing
indexes, 610
tables, 647-648

988 Index

REPAIR TABLE statement, 689-690, 863
repairing tables, 689-690
REPEAT function, 937
REPEAT statement, 717, 863
repeatable read isolation level, 832
REPLACE function, 587, 937
REPLACE statement, 452-454, 519, 863
replacing XML documents, 489
reserved words. See clauses; keywords;

statements
RESTORE TABLE statement, 691, 863
restoring tables, 691
RESTRICT option (DROP TABLE

statement), 592
RESTRICT referencing action, 551
restricting privileges, 674
results

assigning names to columns, 92-94
removing duplicate rows from, 318-321

retrieving
data with cursor, 731-734, 736
error messages, 790-791

RETURN statement, 863
RETURNS specification (CREATE

FUNCTION statement), 745-746
REVERSE function, 937
REVOKE statement, 677-680, 864
revoking privileges, 677-680
RIGHT function, 937
right outer joins, 193-195
RLIKE operator, 256
ROLLBACK statement, 817-823, 864
rolling back transactions, 817-821
root users, 41
roots of trees, 606
ROUND function, 938
ROUTINES catalog table, 740-741
row expressions, 89, 137-139, 438, 892

singular row expressions, 894
singular scalar expressions, 894
singular table expressions, 895

ROW_COUNT function, 938
rows

copying between tables, 442-444
deleting, 52-54

all rows, 458
from multiple tables, 456-457
from single table, 454-456

determining when rows are equal, 321-323
identification, 605
inserting into tables, 437-442
overview, 7
removing duplicate rows from

results, 318-321

row expressions, 438, 892
row identification, 605
storing in files, 604-605
subqueries, 163
substituting, 452-454
updating, 52-54
updating values, 444-450
values, 89

RPAD function, 938
RTRIM function, 938

S
sample database. See tennis club

sample database
SAVEPOINT statement, 822-824, 864
savepoints, 822-824
scalar expressions, 89, 892

between brackets, 106-107
compound, 877

alphanumeric expressions, 123-125
Boolean expressions, 134-136
date expressions, 125-129
datetime expressions, 132-134
numeric expressions, 116-123
time expressions, 130-132
timestamp expressions, 132-134

WHERE clause, 217
scalar functions, 107-111

ABS, 56, 903
ACOS, 903
ADDDATE, 904
ADDTIME, 130, 904
AES_DECRYPT, 904
AES_ENCRYPT, 904
ASCII, 905
ASIN, 905
ATAN, 905
ATAN2, 906
ATANH, 906
BENCHMARK, 906
BIN, 120, 906
BIT, 584
BIT_COUNT, 906
BIT_LENGTH, 907
CEILING, 907
CHAR, 907
CHARACTER_LENGTH, 907
CHARSET, 571, 907
CHAR_LENGTH, 908
COALESCE, 109, 908
COERCIBILITY, 574, 908
COLLATION, 570, 909
COMPRESS, 909
CONCAT, 108, 909

989Index

CONCAT_WS, 909
CONNECTION_ID, 910
CONV, 120, 910
CONVERT, 910
CONVERT_TZ, 911
COS, 911
COT, 911
CRC32, 911
CURDATE, 771, 911
CURRENT_DATE, 912
CURRENT_TIME, 912
CURRENT_TIMESTAMP, 912
CURRENT_USER, 913
CURTIME, 913
DATABASE, 913
DATE, 913
DATEDIFF, 111, 914
DATE_ADD, 913
DATE_FORMAT, 914
DATE_SUB, 916
DAY, 916
DAYNAME, 110, 771, 916
DAYOFMONTH, 917
DAYOFWEEK, 917
DAYOFYEAR, 110, 917
DECODE, 917
DEFAULT, 523, 918
DEGREES, 918
DES_DECRYPT, 918
DES_ENCRYPT, 918
ELT, 919
ENCODE, 919
EXP, 919
EXPORT_SET, 919
EXTRACT, 920
EXTRACTVALUE, 476-483
FIELD, 920
FIND_IN_SET, 920
FLOOR, 921
FORMAT, 921
FOUND_ROWS, 406, 921
FROM_DAYS, 921
FROM_UNIXTIME, 921
GET_FORMAT, 922
GET_LOCK, 835, 922
GREATEST, 923
GROUP_CONCAT, 362-363
HEX, 923
HOUR, 923
IF, 923
IFNULL, 924
INET_ATON, 924
INET_NTOA, 924
INSERT, 925

INSTR, 925
INTERVAL, 925
ISNULL, 926
IS_FREE_LOCK, 836, 925
IS_USED_LOCK, 836, 926
LAST_DAY, 926
LAST_INSERT_ID, 926
LCASE, 927
LEAST, 927
LEFT, 108
LENGTH, 587, 927
LN, 928
LOCALTIME, 928
LOCALTIMESTAMP, 928
LOCATE, 928
LOG, 929
LOG10, 929
LOG2, 929
LOWER, 929
LPAD, 930
LTRIM, 930
MAKEDATE, 930
MAKETIME, 930
MAKE_SET, 931
MD5, 931
MICROSECOND, 931
MID, 931
MINUTE, 932
MOD, 932
MONTH, 932
MONTHNAME, 110, 932
NOW, 771, 932
NULLIF, 933
OCT, 933
OCTET_LENGTH, 933
OLD_PASSWORD, 933
ORD, 934
PASSWORD, 934
PERIOD_ADD, 934
PERIOD_DIFF, 934
PI, 935
POSITION, 935
POW, 935
POWER, 586, 935
QUARTER, 936
QUOTE, 936
RADIANS, 936
RAND, 936
RELEASE_LOCK, 836, 937
REPEAT, 937
REPLACE, 587, 937
REVERSE, 937
RIGHT, 937
ROUND, 938

990 Index

ROW_COUNT, 938
RPAD, 938
RTRIM, 938
SECOND, 939
SEC_TO_TIME, 939
SESSION_USER, 939
SHA, 939
SHA1, 939
SIGN, 940
SIN, 940
SOUNDEX, 940
SPACE, 941
SQRT, 941
STRCMP, 941
STR_TO_DATE, 941
SUBDATE, 942
SUBSTR, 258
SUBSTRING, 942
SUBSTRING_INDEX, 943
SUBTIME, 942
SYSDATE, 943
SYSTEM_USER, 943
TAN, 944
TIME, 944
TIMEDIFF, 944
TIMESTAMP, 772, 945
TIMESTAMPADD, 946
TIME_FORMAT, 944
TIME_TO_SEC, 946
TO_DAYS, 947
TRIM, 947
TRUNCATE, 947
UCASE, 107, 948
UNCOMPRESS, 948
UNCOMPRESS_LENGTH, 948
UNHEX, 948
UNIX_TIMESTAMP, 949
UPPER, 948
USER, 949
UTC_DATE, 949
UTC_TIME, 949
UTC_TIMESTAMP, 949
UUID, 950
VERSION, 950
WEEK, 950
WEEKDAY, 951
WEEKOFYEAR, 951
YEAR, 108, 952
YEARWEEK, 952

scalar subqueries, 136-137, 163-165, 222-227
scalar values, 89
scale, 77

of decimal data type, 500
of float data type, 503

scanning, 605
schedules, recurring, 891
schemas (table), 495
search styles, 265, 892
SEC_TO_TIME function, 939
SECOND function, 939
Secure Hash Algorithm, 939
security, 57

overview, 659-660
passwords, 663-664
privileges

database privileges, 667-670
passing on to other users, 673-674
recording in catalog, 675
restricting, 674
revoking, 677-680
table of, 672
table/column privileges, 664-667
user privileges, 670-672
views, 680-681

stored procedures, 742-743
users

creating, 660-662
removing, 662
renaming, 662-663

views, 650, 680-681
select blocks (SELECT statement),

146-147, 150-156
SELECT clause (SELECT statement)

aggregate functions
AVG, 336-340
BIT_AND, 343-344
BIT_OR, 343-344
BIT_XOR, 343-344
COUNT, 327-331
MAX, 332-336
MIN, 332-336
overview, 324-327
STDDEV, 342
STDDEV_SAMP, 343
SUM, 336-340
VARIANCE, 341-342
VAR_SAMP, 343

ALL keyword, 320
determining when rows are equal, 321-323
DISTINCT keyword, 318-321
DISTINCTROW option, 323
expressions in, 317-318
HIGH_PRIORITY option, 323
overview, 315-316
processing, 153-155
selecting all columns, 316-317
SQL_BIG_RESULT option, 324
SQL_BUFFER_RESULT option, 324

991Index

SQL_CACHE option, 324
SQL_CALC_FOUND_ROWS option, 324
SQL_NO_CACHE option, 324
SQL_SMALL_RESULT option, 324

SELECT privilege
databases, 667
tables, 664

SELECT statement
aggregate functions

AVG, 336-340
BIT_AND, 343-344
BIT_OR, 343-344
BIT_XOR, 343-344
COUNT, 327-331
MAX, 332-336
MIN, 332-336
overview, 324-327
STDDEV, 342
STDDEV_SAMP, 343
SUM, 336-340
table of, 136-137
VARIANCE, 341-342
VAR_SAMP, 343

case expression, 101-106
cast expression, 111-114
column specifications, 94-95
common elements, listing of, 872-902
compound expressions, 90

alphanumeric expressions, 123-125
Boolean expressions, 134-136
date expressions, 125-129
datetime expressions, 132-134
numeric expressions, 116-123
time expressions, 130-132
timestamp expressions, 132-134

examples, 49-52, 148-149
expressions

overview, 88-91
row expressions, 89
scalar expressions, 89
singular expressions, 90
table expressions, 90

FROM clause
accessing tables of different

databases, 185
column specifications in, 173
cross joins, 199
examples of joins, 179-182
explicit joins, 185-189
join conditions, 196-199
left outer joins, 189-193
natural joins, 195-196
overview, 171

pseudonyms for table names,
178-179, 183-184

right outer joins, 193-195
table specifications in, 171-178
table subqueries, 200-207
USING keyword, 199-200

GROUP BY, 349, 882
examples, 363-369
grouping by sorting, 358-359
grouping of null values, 357-358
grouping on expressions, 356-357
grouping on one column, 350-353
grouping on two or more

columns, 353-356
processing, 152
rules for, 359-362

HAVING clause
column specifications, 379-380
examples, 376-378
grouping on zero expressions, 378-379
overview, 375-376
processing, 153

including SELECT statements without
cursors, 736-737

INTO FILE clause, 461-465
LIMIT clause, 395-398

offsets, 404-405
SQL_CALC_FOUND_ROWS, 405-406
subqueries, 402-404

literals
alphanumeric literals, 77-79
bit literals, 87-88
Boolean literals, 87
date literals, 79-82
datestamp literals, 84-86
decimal literals, 77
float literals, 77
hexadecimal literals, 87
integer literals, 76
overview, 74-76
time literals, 82-83
timestamp literals, 84-86
year literals, 86

null values, 114-115, 800-801
ORDER BY clause, 383

processing, 153
sorting, 383-393

processing, 150-156, 610-614
result columns, assigning names to, 92-94
returning multiple rows, 796-799
returning one row, 794-795
row expressions, 137, 139

992 Index

scalar expressions between
brackets, 106-107

scalar functions, 107-111
COALESCE, 109
CONCAT, 108
DATEDIFF, 111
DAYNAME, 110
DAYOFYEAR, 110
LEFT, 108
MONTHNAME, 110
UCASE, 107
YEAR, 108

scalar subqueries, 136-137
select blocks, 146-147
SELECT clause

ALL keyword, 320
determining when rows are

equal, 321-323
DISTINCT keyword, 318-321
DISTINCTROW option, 323
expressions in, 317-318
HIGH_PRIORITY option, 323
overview, 315-316
processing, 153-155
selecting all columns, 316-317
SQL_BIG_RESULT option, 324
SQL_BUFFER_RESULT option, 324
SQL_CACHE option, 324
SQL_CALC_FOUND_ROWS

option, 324
SQL_NO_CACHE option, 324
SQL_SMALL_RESULT option, 324

SELECT INTO, 722-725, 865
stepwise development, 648-649
structure of, 145-149
subqueries, 160-165

column subqueries, 163
in FROM clause, 161
nesting, 161-162
row subqueries, 163
scalar subqueries, 163-165
table subqueries, 163

syntax definition, 865
system variables, 97

examples, 100-101
global, 98
session, 98-99
setting value of, 99

table expressions, 139-140, 145-147
comparison of, 159-160
possible forms of, 156-159

user variables, 95-97, 423-425

WHERE clause, 213-214, 902
comparison operators, 215-229
conditions, 229-230
logical operators, 231-235
processing, 152

selecting
current database, 45-46
databases, 787-788

self referential integrity, 550
semicolon (;), 842
Sequel, 16
sequence numbers, sorting with, 387-389
sequential access method, 605
SERIAL DEFAULT VALUE data type

option, 513
serializable isolation level, 832
serializibility, 829
servers

database servers
data independence, 5
definition of, 4

MySQL database server. See MySQL
remote database servers, 19
server machines, 19
web servers, 20

session system variables, 98-99
SESSION_USER function, 939
sessions, multiple connections

within, 791-793
SET AUTOCOMMIT statement, 816
SET data type

adding elements to, 588
deleting elements from, 589
examples, 582-589
overview, 577
permitted values, 582

SET DEFAULT referencing action, 551-552
set functions. See aggregate functions
SET NULL referencing action, 551-552
set operators, 157, 409, 894

null values, 417
UNION

combining table expressions
with, 410-413

rules for use, 413-415
UNION ALL, 416-417
UNION DISTINCT, 415

SET PASSWORD statement, 663-664, 866
SET statement, 59, 96, 421-423, 712, 865
set theory, 6
SET TRANSACTION statement, 833, 866
SHA function, 939
SHA1 function, 939

993Index

share locks, 829
SHOW ACCOUNTS statement, 869
SHOW CHARACTER SET statement,

563, 693, 866
SHOW COLLATION statement,

564, 694, 866
SHOW COLUMN TYPES

statement, 694, 866
SHOW COLUMNS statement, 694, 867
SHOW CREATE DATABASE

statement, 694, 867
SHOW CREATE EVENT statement,

694, 780, 867
SHOW CREATE FUNCTION

statement, 695, 867
SHOW CREATE PROCEDURE

statement, 695, 867
SHOW CREATE TABLE statement, 695, 867
SHOW CREATE VIEW statement, 695, 868
SHOW DATABASE user privilege, 670
SHOW DATABASES statement, 695, 868
SHOW ENGINE statement, 696, 868
SHOW ENGINES statement, 696
SHOW ERRORS statement, 69, 868
SHOW EVENT statement, 780
SHOW EVENTS statement, 696, 868
SHOW FUNCTION statement, 869
SHOW FUNCTION STATUS statement, 696
SHOW GRANTS statement, 696
SHOW INDEX statement, 629, 684, 697, 869
SHOW PRIVILEGES statement, 697, 869
SHOW PROCEDURE STATUS

statement, 697, 869
SHOW statement, 67, 693
SHOW TABLE TYPES statement, 697, 869
SHOW TABLES statement, 697, 870
SHOW TRIGGERS statement, 698, 870
SHOW VARIABLES statement, 99, 698, 870
SHOW VIEW database privilege, 668
SHOW WARNINGS statement, 68, 870
showing

catalog information. See informative state-
ments

character sets, 563-564
collations, 563-564

SIGN function, 940
simplifying routine statements, 645-647
SIN function, 940
single precision float data type, 77, 501
single schedule, 769
single-user usage, 815

singular expressions, 90
row expressions, 894
scalar expressions, 894
table expressions, 895

SKIP_SHOW_DATABASE system
variable, 696, 957

SMALL_EXIT stored procedure, 717
SMALL_MISTAKE1 stored procedure, 727
SMALL_MISTAKE2 stored procedure, 728
SMALL_MISTAKE3 stored procedure, 729
SMALL_MISTAKE4 stored procedure, 729
SMALL_MISTAKE5 stored procedure, 730
SMALL_MISTAKE6 stored procedure, 730
SMALLINT data type, 499
SOME operator, 281
sorting

in ascending and descending
order, 389-392

collations, 571-572
on column names, 383-385
ENUM values, 580-581
on expressions, 385-387
grouping with, 358-359
null values, 392-393
with sequence numbers, 387-389
sort direction, 359
sort specifications, 895

SOUNDEX function, 940
SPACE function, 941
SPATIAL indexes, 616
SQL (Structured Query Language)

CLI SQL, 14-15
definition of, 4
embedded SQL, 14
history of, 16-18
interactive SQL, 12
overview, 11-15
preprogrammed SQL, 14
relational model, 6
standardization, 21-25

SQL1 standard, 21
SQL2 standard, 22
SQL3 standard, 23
SQL86 standard, 21
SQL89 standard, 22
SQL92 standard, 22
SQL:1999 standard, 23
SQL:2003 standard, 23

statements. See statements
users. See users

SQL Access Group, 24
Sql_auto_is_null system variable, 957

994 Index

SQL_BIG_RESULT option (SELECT
clause), 324

SQL/Bindings, 23
SQL_BUFFER_RESULT option (SELECT

clause), 324
SQL_CACHE options (SELECT clause), 324
SQL_CALC_FOUND_ROWS option

LIMIT clause, 405-406
SELECT clause, 324

SQL/DS, 17
SQL/Foundation, 23
SQL/Framework, 23
SQL/JRT, 23
SQL/MED, 23
SQL/MM, 23
SQL_MODE system variable, 59, 123,

781, 957-960
ALLOW_INVALID_DATES, 82
ANSI_QUOTES, 521
NO_ZERO_DATE, 81
NO_ZERO_IN_DATE, 81
PIPES_AS_CONCAT, 123

SQL_NO_CACHE option (SELECT
clause), 324

SQL/OLAP, 23
SQL/OLB (Object Language Bindings), 23
SQL/PSM, 23
Sql_quote_show_create system variable, 961
SQL/Schemata, 23
SQL SECURITY option (CREATE VIEW

statement), 638, 739, 895
Sql_select_limit system variable, 960
SQL_SMALL_RESULT option (SELECT

clause), 324
SQL/XML, 23
SQL1 standard, 21
SQL2 standard, 22
SQL3 standard, 23
SQL86 standard, 21
SQL89 standard, 22
SQL92 standard, 22
SQL:1999 standard, 23
SQL:2003 standard, 23
SQLEXCEPTION handler, 728
SQLSTATE, 726-731
SQLWARNING handler, 728
SQLyog, 13
SQRT function, 941
SQUARE, 6
standard deviation, 341-342
standardization of SQL, 21-25
START TRANSACTION

statement, 821-822, 870

starting transactions, 821-822
statements (SQL), 846. See also

clauses; keywords
ALTER DATABASE, 655-656, 849
ALTER EVENT, 778-779, 849
ALTER FUNCTION, 752-753, 849
ALTER PROCEDURE, 740, 849
ALTER TABLE, 616

changing columns, 595-599
changing integrity

constraints, 599-602
changing table structure, 593-595
CONVERT option, 595
DISABLE KEYS option, 595
ENABLE KEYS option, 595
ORDER BY option, 595
syntax definition, 849

ALTER USER, 639
ALTER VIEW, 850
ANALYZE TABLE, 684-685, 850
BACKUP TABLE, 690-691, 850
BEGIN WORK, 822, 850
CALL, 704, 719-722, 850
CASE, 716, 851
CHECK TABLE, 687-689, 851
CHECKSUM TABLE, 685-686, 851
CLOSE, 851
CLOSE CURSOR, 733
COMMIT, 818-821
COMMIT, 852
common elements, summary of, 872-901
compound, 708
CREATE DATABASE, 45, 653-655, 852
CREATE EVENT, 768-776, 852
CREATE FUNCTION

RETURNS specification, 745-746
syntax definition, 852

CREATE INDEX, 54, 614-617, 853
CREATE PROCEDURE, 704, 853
CREATE TABLE, 46-47, 617-618

AUTO_INCREMENT option, 530
AVG_ROW_LENGTH option, 531
COMMENT option, 530-531
copying tables, 516-520
creating new tables, 493-496
creating temporary tables, 514-515
ENGINE option, 525-530
IF NOT EXISTS option, 515-516
MAX_ROWS option, 531
MIN_ROWS option, 531
syntax definition, 853

CREATE TEMPORARY TABLE, 514-515

995Index

CREATE TRIGGER, 756-758
AFTER keyword, 758
BEFORE keyword, 758
NEW keyword, 758
OLD keyword, 759
syntax definition, 853

CREATE USER, 44, 660-662, 854
CREATE VIEW, 56, 631-635

ALGORITHM option, 639
DEFINER option, 638
SQL SECURITY option, 638
syntax definition, 854
WITH CASCADED CHECK

OPTION, 637
WITH CHECK OPTION, 636-638

DCL (Data Control Language), 60, 846
DDL (Data Definition Language), 60, 847
DEALLOCATE PREPARE, 809, 854
DECLARE CONDITION, 729, 854
DECLARE CURSOR, 732, 855
DECLARE HANDLER, 726, 855
DECLARE VARIABLE, 855
definitions of, 69
DELETE, 52-53

deleting rows from multiple
tables, 456-457

deleting rows from single
table, 454-456

IGNORE keyword, 455
syntax definition, 856

DESCRIBE, 699, 856
DML (Data Manipulation

Language), 60, 847
DO, 428, 856
downloading, xiii, 38-39
DROP CONSTRAINT, 601
DROP DATABASE, 58, 656-657, 856
DROP EVENT, 779, 857
DROP FUNCTION, 753, 857
DROP INDEX, 58, 618-619, 857
DROP PRIMARY KEY, 601
DROP PROCEDURE, 741, 857
DROP TABLE, 57, 591-593, 857
DROP TRIGGER, 765, 857
DROP USER, 662, 858
DROP VIEW, 58, 639-640, 858
EXECUTE, 808-809, 858
execution time, 603
FETCH, 858
FETCH CURSOR, 733
FLUSH TABLE, 533

GRANT, 44, 57, 660, 742-743
granting database privileges, 668-669
granting table/column privileges, 665
granting user privileges, 671
syntax definition, 858
WITH GRANT OPTION

clause, 673-674
HANDLER

example, 429-430
HANDLER CLOSE, 435, 859
HANDLER OPEN, 430-431, 859
HANDLER READ, 431-435, 859
overview, 429

HELP, 699-700, 860
IF, 714-716, 860
INSERT, 48, 860

DEFAULT keyword, 523
IGNORE keyword, 441
inserting rows, 437-442
ON DUPLICATE KEY

specification, 441
populating tables with rows from

another table, 442-444
ITERATE, 718-719, 860
LEAVE, 717, 860
LOAD, 465-469, 861
LOCK TABLE, 830-831, 861
LOOP, 718, 861
OPEN, 862
OPEN CURSOR, 732
OPTIMIZE, 862
OPTIMIZE TABLE, 686-687
parameters, 793-794
PREPARE, 808-809, 862
prepared SQL statements

DEALLOCATE PREPARE, 809
EXECUTE, 808-809
overview, 807
parameters, 810-811
placeholders, 810-811
PREPARE, 808-809
stored procedures, 811-813
user variables, 810

procedural statements, 60
processing options, 834-835
RENAME TABLE, 593, 862
RENAME USER, 662-663, 862
REPAIR TABLE, 689-690, 863
REPEAT, 717, 863
REPLACE, 452-454, 863
RESTORE TABLE, 691, 863
RETURN, 863
REVOKE, 677-680, 864

996 Index

ROLLBACK, 817-823, 864
SAVEPOINT, 822-824, 864
SELECT. See SELECT statement
SET, 59, 96, 421-423, 712, 865
SET AUTOCOMMIT, 816
SET PASSWORD, 663-664, 866
SET TRANSACTION, 833, 866
SHOW, 67, 693
SHOW ACCOUNTS, 869
SHOW CHARACTER SET, 563, 693, 866
SHOW COLLATION, 564, 694, 866
SHOW COLUMN TYPES, 694, 866
SHOW COLUMNS, 694, 867
SHOW CREATE DATABASE, 867
SHOW CREATE EVENT, 694, 780, 867
SHOW CREATE FUNCTION, 695, 867
SHOW CREATE PROCEDURE, 695, 867
SHOW CREATE TABLE, 695, 867
SHOW CREATE VIEW, 695, 868
SHOW DATABASE, 694
SHOW DATABASES, 695, 868
SHOW ENGINE, 696, 868
SHOW ENGINES, 696
SHOW ERRORS, 69, 868
SHOW EVENT, 780
SHOW EVENTS, 696, 868
SHOW FUNCTION, 869
SHOW FUNCTION STATUS, 696
SHOW GRANTS, 696
SHOW INDEX, 629, 684, 697, 869
SHOW PRIVILEGES, 697, 869
SHOW PROCEDURE STATUS, 697, 869
SHOW TABLE TYPES, 697, 869
SHOW TABLES, 697, 870
SHOW TRIGGERS, 698, 870
SHOW VARIABLES, 99, 698, 870
SHOW WARNINGS, 68, 870
simplifying routine statements, 645-647
START TRANSACTION, 821-822, 870
transactions

autocommit, 816-817
committing, 818-821
definition of, 815
isolation levels, 832-834
rolling back, 817-821
savepoints, 822-824
starting, 821-822
stored procedures, 824-825

TRUNCATE, 458, 947
TRUNCATE TABLE, 870
UNLOCK TABLE, 831, 871

UPDATE, 52-53
IGNORE keyword, 449
ORDER BY clause, 449
syntax definition, 871
updating values in multiple tables,

450-452
updating values in rows, 444-450

USE, 45-46
WHILE, 716-717, 871

statistical functions. See aggregate functions
STD function, 137
STDDEV function, 137, 342
STDDEV_SAMP function, 137, 343
step-by-step MySQL installation, 38
stepwise development of SELECT

statements, 648-649
stopwords, 268
STORAGE_ENGINE system

variable, 529, 961
storage engines

CSV, 532-533
HEAP, 527
InnoDB, 526
ISAM, 526
MEMORY, 527, 610
MERGE, 528
MyISAM, 527
specifying with ENGINE option, 525-530

stored functions, 895
compared to stored procedures, 745
creating, 745-746
DELETE_PLAYER, 750
DOLLARS, 747
examples, 746-752
GET_NUMBER_OF_PLAYERS, 750
modifying, 752-753
NUMBER_OF_DAYS, 749
NUMBER_OF_PENALTIES, 748
NUMBER_OF_PLAYERS, 747
OVERLAP_BETWEEN_PERIODS, 751
POSITION_IN_SET, 749
removing, 753

stored procedures, 12
advantages, 743-744
AGAIN, 719
AGE, 716
ALL_TEAMS, 736
body, 707-709
calling, 704-705, 719-722
characteristics of, 737-740
compared to stored functions, 745
compared to triggers, 755-756

997Index

creating, 704
definer option, 738
definition of, 703
DELETE_MATCHES, 704
DELETE_OLDER_THAN_30, 734
DELETE_PLAYER, 725
DIFFERENCE, 714
DUPLICATE, 726
error messages, 726-731
FIBONACCI, 714
FIBONACCI_GIVE, 724
FIBONACCI_START, 724
flow-control statements

CASE, 716
IF, 714-716
ITERATE, 718-719
LEAVE, 717
LOOP, 718
overview, 712-713
REPEAT, 717
WHILE, 716-717

GIVE_ADDRESS, 723
LARGEST, 715
local variables

assigning values to, 712
declaring, 709-712

NEW_TEAM, 825
NUMBERS_OF_ROWS, 737
NUMBER_PENALTIES, 735
parameters, 706-707
prepared SQL statements, 811-813
processing, 705-706
querying with SELECT INTO, 722-725
removing, 741-742
retrieving data with cursors, 731-736

closing cursors, 733
fetching cursors, 733
opening cursors, 732

ROUTINES catalog table, 740-741
security, 742-743
showing status of, 697
SMALL_EXIT, 717
SMALL_MISTAKE1, 727
SMALL_MISTAKE2, 728
SMALL_MISTAKE3, 729
SMALL_MISTAKE4, 729
SMALL_MISTAKE5, 730
SMALL_MISTAKE6, 730
SQL SECURITY characteristic, 739
TEST, 711
TOP_THREE, 734
TOTAL_NUMBER_OF_PARENTS, 721
TOTAL_PENALTIES_PLAYER, 723

transactions, 824-825
user variables, 737
USER_VARIABLE, 737
WAIT, 718

storing XML documents, 473-475
STR_TO_DATE function, 941
STRCMP function, 941
STRICT_ALL_TABLES setting (SQL_MODE

system variable), 959
STRICT_TRANS_TABLES setting

(SQL_MODE system variable), 959
string data types, 504-506
structure of book, 27-28
Structured Query Language. See SQL
SUBDATE function, 942
subqueries, 160-165

column subqueries, 163, 289-294
comparison operators, 222-227
correlated subqueries, 227-229, 291
in FROM clause, 161
IN operator, 241-250
LIMIT clause (SELECT

statement), 402-404
nesting, 161-162
row subqueries, 163
scalar subqueries, 136-137, 163-165
table subqueries, 163, 200-207, 898

subselects. See subqueries
subsets, 188
substitution

of rows, 452-454
of views, 643-644
substitution rules, 839

SUBSTR function, 258
SUBSTRING function, 942
SUBSTRING_INDEX function, 943
SUBTIME function, 942
subtotal, 414
SUM function, 137, 336-340
symbols, 839

<> (angle brackets), 840
* (asterisk), 316-317
@ (at symbol), 422
{} (braces), 841
[] (brackets), 841
… (ellipses), 841
= (equal sign), 840
& operator, 121, 586
^ operator, 121
| operator, 120, 840
“ (quotation marks), 842
; (semicolon), 842

SYSDATE function, 943

998 Index

System R, 16
system tables. See catalog tables
System_time_zone system variable, 961
SYSTEM_USER function, 943
system variables, 58, 97, 101, 896

AUTOCOMMIT, 816, 953
AUTO_INCREMENT_INCREMENT,

513, 953
AUTO_INCREMENT_OFFSET, 513, 953
CHARACTER_SET_CLIENT, 575, 954
CHARACTER_SET_CONNECTION,

575, 954
CHARACTER_SET_DATABASE, 575, 954
CHARACTER_SET_DIR, 575
CHARACTER_SET_RESULTS, 575, 954
CHARACTER_SET_SERVER, 575, 954
CHARACTER_SET_SYSTEM, 575, 955
Character_sets_dir, 955
COLLATION_CONNECTION, 575, 955
COLLATION_DATABASE, 575, 955
COLLATION_SERVER, 575, 956
COMPLETION_TYPE, 820
Default_week_format, 956
DEFAULT_WEEK_FORMAT, 951
DIV_PRECISION_INCREMENT, 118
ERROR_COUNT, 69
examples, 100-101
Foreign_key_checks, 956
Ft_boolean_syntax, 956
Ft_max_word_len, 956
Ft_min_word_len, 957
Ft_query_expansion_limit, 957
global, 98
INNODB_LOCK_WAIT_TIMEOUT, 834
MATCH operator, 275
session, 98-99
setting value of, 99
SKIP_SHOW_DATABASE, 696, 957
Sql_auto_is_null, 957
SQL_MODE, 59, 123, 957-960

ALLOW_INVALID_DATES, 82
ANSI_QUOTES setting, 521
NO_ZERO_DATE, 81
NO_ZERO_IN_DATE, 81

Sql_quote_show_create, 961
Sql_select_limit, 960
STORAGE_ENGINE, 529, 961
System_time_zone, 961
TIME_ZONE, 85, 961
Unique_checks, 961
VERSION, 58
WARNING_COUNT, 69

T
table expressions, 90, 139-140, 145-147, 896

compared to SELECT statement, 159-160
compound table expressions, 877

combining with UNION, 410, 412-415
combining with UNION ALL, 416-417
overview, 409

possible forms of, 156-159
subqueries, 160-165

column subqueries, 163
in FROM clause, 161
nesting, 161-162
row subqueries, 163
scalar subqueries, 163-165
table subqueries, 163

table-maintenance statements, 683
ANALYZE TABLE, 684-685
BACKUP TABLE, 690-691
CHECK TABLE, 687-689
CHECKSUM TABLE, 685-686
list of, 848
OPTIMIZE TABLE, 686-687
REPAIR TABLE, 689-690
RESTORE TABLE, 691

tables, 7, 437. See also catalogs; views
alternate keys, 10
analyzing, 684-685
backing up, 690-691
base tables, 631
candidate keys, 10
changing, 593-595, 896
checking, 687-689
checksums, 685-686
columns

adding, 596
assigning character sets to, 564-566
changing, 595-599, 875
column definitions, 495
column specifications, 94-95, 173, 876
definitions, 875
integrity constraints, 495
length of, 598
NOT NULL columns, 48
null specifications, 495
options, 522-524
renaming, 598
result columns, assigning

names to, 92-94
selecting all columns, 316-317
showing information about, 694, 699

copying, 516-520
creating, 493-496

999Index

data types
alphanumeric, 504-506
AUTO_INCREMENT option, 511-513
bit, 504
blob, 506-507
decimal, 500-501
defining, 496-498
float, 501-504
geometric, 507
integer, 499-500
SERIAL DEFAULT VALUE option, 513
temporal, 506
UNSIGNED option, 508-509
ZEROFILL option, 509-510

deleting, 57, 591-593
derived tables. See views
duplicate tables, preventing, 515-516
elements, 495
expressions. See table expressions
foreign keys, 10, 601, 882
indexes. See indexes
integrity constraints, 8, 554

alternate keys, 544-545
catalog, 557
changing, 599-602
check integrity constraints, 553-556
defining, 539-541
definition of, 539
deleting, 557, 601
foreign keys, 546-550
naming, 556-557
primary keys, 541-544
referencing actions, 550-553
specifying, 649-650
triggers as, 763-764

integrity rules, 8
joins, 885

accessing tables of different
databases, 185

conditions, 196-199
cross joins, 199
examples, 179-182
explicit joins, 185-189
left outer joins, 189-193
natural joins, 195-196
right outer joins, 193-195
USING keyword, 199-200

locking
application locks, 835-837
deadlocks, 830
exclusive locks, 829
isolation levels, 832-834
LOCK TABLE statement, 830-831
named locks, 835

overview, 829-830
processing options, 834-835
share locks, 829
UNLOCK TABLE statement, 831
waiting for locks, 834

naming, 521-522
optimizing, 686-687
options, 524, 897

AUTO_INCREMENT, 530
AVG_ROW_LENGTH, 531
COMMENT, 530-531
ENGINE, 525-530
MAX_ROWS, 531
MIN_ROWS, 531

permanent tables, 514
populating, 48-49, 442-444
primary keys, 9, 601
privileges, 660, 664-667, 897
tennis club sample database

COMMITTEE_MEMBERS, 32-34
MATCHES, 34
PENALTIES, 34
PLAYERS, 31-33
PLAYERS_XXL, 620-622
TEAMS, 33

pseudonyms for table names
examples, 178-179
mandatory use of, 183-184

references, 171
renaming, 593
reorganizing, 647-648
repairing, 689-690
restoring, 691
rows

deleting, 52-54, 454-458
determining when equal, 321-323
inserting rows into, 437-442
overview, 7
removing duplicate rows from

results, 318-321
row identification, 605
substituting, 452-454
updating, 52-54, 444-450

querying. See queries
schemas, 495, 898
showing information about, 697
specifications, 171-178
subqueries, 163, 898
table maintenance statements, 683

ANALYZE TABLE, 684-685
BACKUP TABLE, 690-691
CHECK TABLE, 687-689
CHECKSUM TABLE, 685-686

1000 Index

list of, 848
OPTIMIZE TABLE, 686-687
REPAIR TABLE, 689-690
RESTORE TABLE, 691

temporary tables, 514-515
triggering tables, 758
updating values in multiple tables, 450-452
values, 7-8, 90
virtual tables. See views

TABLES table (catalog), 64, 534
TABLE_AUTHS table (catalog), 64, 676
tags (XML), 472
TAN function, 944
TEAMS table, 33
temporal data types, 506, 899
temporal literals, 899

date literals, 79-82
datestamp literals, 84-86
time literals, 82-83
timestamp literals, 84-86
year literals, 86

temporal triggers, 767
temporary tables, 514-515
TEMPTABLE keyword, 645
tennis club sample database

contents, 33-34
diagram, 35
general description, 29-32
integrity constraints, 35-36
tables

COMMITTEE_MEMBERS, 32-34
MATCHES, 34
PENALTIES, 34
PLAYERS, 31-33
PLAYERS_XXL, 620-622
TEAMS, 33

terminal symbols, 839
TEST stored procedure, 711
TEXT data type, 506
TIME data type, 506
time expressions, 130-132, 877
TIME function, 944
TIME_FORMAT function, 944
time intervals, 125, 899
time literals, 82-83, 899
TIME_TO_SEC function, 946
time zones, 84-85, 961
TIME_ZONE system variable, 85, 961
TIMEDIFF function, 944
TIMESTAMP data type, 506
timestamp expressions, 132-134, 877
TIMESTAMP function, 772, 945
timestamp intervals, 899

timestamp literals, 84-86, 900
TIMESTAMPADD function, 946
TIMESTAMPDIFF function, 946
TINYBLOB data type, 507
TINYINT data type, 499
TINYTEXT data type, 506
TOP_THREE stored procedure, 734
totals, 414
TOTAL_NUMBER_OF_PARENTS

stored procedure, 721
TOTAL_PENALTIES_PLAYER stored

procedure, 723
TO_DAYS function, 947
transactions

autocommit, 816-817
committing, 818-821
definition of, 815
isolation levels, 832-834
rolling back, 817-821
savepoints, 822-824
starting, 821-822
stored procedures, 824-825

tree structure of indexes, 606
triggering statements, 758
triggers, 12

actions, 756-758
catalog and, 765
compared to stored procedures, 755-756
complex examples, 759-763
creating, 756
definer option, 759
definition of, 755
events, 756
as integrity constraints, 763-764
moments, 756
removing, 765
showing information about, 698
simple example, 756-759
temporal, 767

TRIGGERS table, 765
TRIM function, 947
TRUNCATE statement, 458, 947
TRUNCATE TABLE statement, 870
truth table for logical operators, 231
TYPE table option, 527

U
UCASE function, 107, 948
uncommitted reads, 826
UNCOMPRESS function, 948
UNCOMPRESS_LENGTH function, 948
UNHEX function, 948
Unicode, 390, 562

1001Index

union compatible, 413
UNION operator, 157

combining table expressions
with, 410, 412-413

null values, 417
rules for use, 413-415
UNION ALL, 416-417
UNION DISTINCT, 415

UNION table option, 529
Unique_checks system variable, 961
unique indexes, 55, 615
UNIQUE keyword, 495, 544
uniqueness rule, 543
units of work. See transactions
Universal Coordinated Time (UTC), 84
Universal Unique Identifier, 950
UNIX_TIMESTAMP function, 949
unloading data

definition of, 461
INTO FILE clause (SELECT

statement), 461-465
UNLOCK TABLE statement, 831, 871
UNSIGNED data type option, 508-509
UPDATE privilege

databases, 667
tables, 664

UPDATE statement, 52-53
IGNORE keyword, 449
ORDER BY clause, 449
syntax definition, 871
updating values in multiple tables, 450-452
updating values in rows, 444-450

UPDATEXML function, 489-490
updating

lost updates, 828
tables, 52-54, 437

deleting all rows, 458
deleting rows from multiple

tables, 456-457
deleting rows from single

table, 454-456
inserting rows, 437-442
populating tables with rows from

another table, 442-444
substituting rows, 452-454
updating values in multiple

tables, 450-452
updating values in rows, 444-450

views, 636-638, 641-642
XML documents, 489-490

UPPER function, 948
USE statement, 45-46

USER function, 949
user privileges, 660, 900
user variables, 95-97, 421, 901

application areas, 425-426
defining with SELECT statement, 423-425
defining with SET statement, 421-423
life span, 426-427
prepared statements, 810
in stored procedures, 737

users
compared to human users, 43
creating, 44, 660-662
and data security, 57
deleting, 662
names, 41, 900
passwords, 663-664
privileges

database privileges, 667-670
definition of, 43
granting, 44
passing on to other users, 673-674
recording in catalog, 675
restricting, 674
revoking, 677-680
table of, 672
table/column privileges, 664-667
user privileges, 670-672
views, 680-681

removing, 662
renaming, 662-663
root users, 41
specifications, 901
user names, 41

USERS table (catalog), 64, 675
USER_AUTHS table (catalog), 676-677
USER_VARIABLE stored procedure, 737
UTC (Universal Coordinated Time), 84
UTC_DATE function, 949
UTC_TIME function, 949
UTC_TIMESTAMP function, 949
UTF-8, 562
UTF-16, 562
UTF-32, 562
UUID function, 950

V
valid databases, 539
values, 7
VALUES clause (INSERT

statement), 438, 901
VAR function, 341-342
VAR_POP function, 137

1002 Index

VAR_SAMP function, 137, 343
VARBINARY data type, 506
VARCHAR data type, 504
variables

local variables
assigning values to, 712
declaring, 709-712
showing, 698

system variables, 58, 97, 101, 896
AUTOCOMMIT, 816, 953
AUTO_INCREMENT_INCREMENT,

513, 953
AUTO_INCREMENT_OFFSET,

513, 953
CHARACTER_SET_CLIENT, 575, 954
CHARACTER_SET_CONNECTION,

575, 954
CHARACTER_SET_DATABASE,

575, 954
CHARACTER_SET_DIR, 575
CHARACTER_SET_RESULTS,

575, 954
CHARACTER_SET_SERVER,

575, 954
CHARACTER_SET_SYSTEM,

575, 955
Character_sets_dir, 955
COLLATION_CONNECTION,

575, 955
COLLATION_DATABASE, 575, 955
COLLATION_SERVER, 575, 956
COMPLETION_TYPE, 820
Default_week_format, 956
DEFAULT_WEEK_FORMAT, 951
DIV_PRECISION_INCREMENT, 118
ERROR_COUNT, 69
examples, 100-101
Foreign_key_checks, 956
Ft_boolean_syntax, 956
Ft_max_word_len, 956
Ft_min_word_len, 957
Ft_query_expansion_limit, 957
global, 98
INNODB_LOCK_WAIT_

TIMEOUT, 834
MATCH operator, 275
session, 98-99
setting value of, 99
SKIP_SHOW_DATABASE, 696, 957
Sql_auto_is_null, 957
SQL_MODE, 59, 81-82, 123, 521,

957-960

Sql_quote_show_create, 961
Sql_select_limit, 960
STORAGE_ENGINE, 529, 961
System_time_zone, 961
TIME_ZONE, 85, 961
Unique_checks, 961
VERSION, 58
WARNING_COUNT, 69

user variables
application areas, 425-426
defining with SELECT

statement, 423-425
defining with SET statement, 421-423
in stored procedures, 737
life span, 426-427
overview, 95-97, 421, 901
prepared statements, 810

variance, 341
VARIANCE function, 137, 341-342
VERSION function, 950
VERSION system variable, 58
vertical comparisons, 322, 357
vertical subsets, 315
views

catalog views, 61-64
column names, 635-636
creating, 55-56, 631-635
data integrity, 650
deleting, 58, 639-640
materialization, 644-645
options, 638-639
overview, 631
privileges, 680-681
processing, 642-645

materialization, 644-645
substitution, 643-644

reorganizing tables with, 647-648
restrictions on updates, 641-642
security, 680-681
simplifying routine statements

with, 645-647
specifying integrity constraints

with, 649-650
stepwise development of SELECT

statements, 648-649
substitution, 643-644
updating, 636-638, 641-642
view formula, 631
VIEWS table (catalog), 64, 640-641

VIEWS table (catalog), 64, 640-641
virtual tables. See views

1003Index

W
W3C (World Wide Web Consortium), 472
WAIT stored procedure, 718
waiting for locks, 834
warnings, 68
WARNING-COUNT system variable, 69
web servers, 20
websites

MySQL, 37
SQL for MySQL Developers website, 38
website to download SQL

statements, xiii, 38-39
www.r20.nl, 38, 52, 437, 591

WEEK function, 950
WEEKDAY function, 951
WEEKOFYEAR function, 951
when definition, 102
WHERE clause, 213-214, 902

comparison operators, 215-221
correlated subqueries, 227-229
scalar expressions, 217
subqueries, 222-227

conditions, 229-230
logical operators, 231-235
processing, 152

WHILE statement, 716-717, 871
Widenius, Michael “Monty,” 26
width of float data type, 503
WinSQL, 13
WITH CASCADED CHECK OPTION

(CREATE VIEW statement), 637
WITH CHECK OPTION (CREATE VIEW

statement), 636-638
WITH GRANT OPTION clause (GRANT

statement), 673-674
WITH ROLLUP option, 369-371
World Wide Web Consortium (W3C), 472
WRITE lock type, 831
write locks, 829

X
X/Open Group, 24
XML (Extensible Markup Language)

documents
attributes, 472
changing, 489-490
elements, 472
overview, 471-473
querying

EXTRACTVALUE function, 476-483
with positions, 484-485

replacing, 489
storing, 473-475
tags, 472
XPath, 476, 486-489

XOR operator, 121, 231-235
XPath, 476

expressions with conditions, 488-489
extended notation, 486-488

Y
YEAR data type, 506
YEAR function, 108, 952
year literals, 86
YEARWEEK function, 952

Z
zero-date, 81
ZEROFILL data type option, 509-510

1004 Index

www.r20.nl

	SQL for MySQL developers : a comprehensive tutorial and reference
	Contents
	PART I: Introduction
	CHAPTER 1 Introduction to MySQL
	1.1 Introduction
	1.2 Database, Database Server, and Database Language
	1.3 The Relational Model
	1.4 What Is SQL?
	1.5 The History of SQL
	1.6 From Monolithic via Client/Server to the Internet
	1.7 Standardization of SQL
	1.8 What Is Open Source Software?
	1.9 The History of MySQL
	1.10 The Structure of This Book

	CHAPTER 2 The Tennis Club Sample Database
	2.1 Introduction
	2.2 Description of the Tennis Club
	2.3 The Contents of the Tables
	2.4 Integrity Constraints

	CHAPTER 3 Installing the Software
	3.1 Introduction
	3.2 Downloading MySQL
	3.3 Installation of MySQL
	3.4 Installing a Query Tool
	3.5 Downloading SQL Statements from the Web Site
	3.6 Ready?

	CHAPTER 4 SQL in a Nutshell
	4.1 Introduction
	4.2 Logging On to the MySQL Database Server
	4.3 Creating New SQL Users
	4.4 Creating Databases
	4.5 Selecting the Current Database
	4.6 Creating Tables
	4.7 Populating Tables with Data
	4.8 Querying Tables
	4.9 Updating and Deleting Rows
	4.10 Optimizing Query Processing with Indexes
	4.11 Views
	4.12 Users and Data Security
	4.13 Deleting Database Objects
	4.14 System Variables
	4.15 Grouping of SQL Statements
	4.16 The Catalog Tables
	4.17 Retrieving Errors and Warnings
	4.18 Definitions of SQL Statements

	PART II: Querying and Updating Data
	CHAPTER 5 SELECT Statement: Common Elements
	5.1 Introduction
	5.2 Literals and Their Data Types
	5.3 Expressions
	5.4 Assigning Names to Result Columns
	5.5 The Column Specification
	5.6 The User Variable and the SET Statement
	5.7 The System Variable
	5.8 The Case Expression
	5.9 The Scalar Expression Between Brackets
	5.10 The Scalar Function
	5.11 Casting of Expressions
	5.12 The Null Value as an Expression
	5.13 The Compound Scalar Expression
	5.14 The Aggregation Function and the Scalar Subquery
	5.15 The Row Expression
	5.16 The Table Expression
	5.17 Answers

	CHAPTER 6 SELECT Statements, Table Expressions, and Subqueries
	6.1 Introduction
	6.2 The Definition of the SELECT Statement
	6.3 Processing the Clauses in a Select Block
	6.4 Possible Forms of a Table Expression
	6.5 What Is a SELECT Statement?
	6.6 What Is a Subquery?
	6.7 Answers

	CHAPTER 7 SELECT Statement: The FROM Clause
	7.1 Introduction
	7.2 Table Specifications in the FROM Clause
	7.3 Again, the Column Specification
	7.4 Multiple Table Specifications in the FROM Clause
	7.5 Pseudonyms for Table Names
	7.6 Various Examples of Joins
	7.7 Mandatory Use of Pseudonyms
	7.8 Tables of Different Databases
	7.9 Explicit Joins in the FROM Clause
	7.10 Outer Joins
	7.11 The Natural Join
	7.12 Additional Conditions in the Join Condition
	7.13 The Cross Join
	7.14 Replacing Join Conditions with USING
	7.15 The FROM Clause with Table Expressions
	7.16 Answers

	CHAPTER 8 SELECT Statement: The WHERE Clause
	8.1 Introduction
	8.2 Conditions Using Comparison Operators
	8.3 Comparison Operators with Subqueries
	8.4 Comparison Operators with Correlated Subqueries
	8.5 Conditions Without a Comparison Operator
	8.6 Conditions Coupled with AND, OR, XOR, and NOT
	8.7 The IN Operator with Expression List
	8.8 The IN Operator with Subquery
	8.9 The BETWEEN Operator
	8.10 The LIKE Operator
	8.11 The REGEXP Operator
	8.12 The MATCH Operator
	8.13 The IS NULL Operator
	8.14 The EXISTS Operator
	8.15 The ALL and ANY Operators
	8.16 Scope of Columns in Subqueries
	8.17 More Examples with Correlated Subqueries
	8.18 Conditions with Negation
	8.19 Answers

	CHAPTER 9 SELECT Statement: SELECT Clause and Aggregation Functions
	9.1 Introduction
	9.2 Selecting All Columns (*)
	9.3 Expressions in the SELECT Clause
	9.4 Removing Duplicate Rows with DISTINCT
	9.5 When Are Two Rows Equal?
	9.6 More Select Options
	9.7 An Introduction to Aggregation Functions
	9.8 COUNT Function
	9.9 MAX and MIN Functions
	9.10 The SUM and AVG Function
	9.11 The VARIANCE and STDDEV Functions
	9.12 The VAR_SAMP and STDDEV_SAMP Functions
	9.13 The BIT_AND, BIT_OR, and BIT_XOR Functions
	9.14 Answers

	CHAPTER 10 SELECT Statement: The GROUP BY Clause
	10.1 Introduction
	10.2 Grouping on One Column
	10.3 Grouping on Two or More Columns
	10.4 Grouping on Expressions
	10.5 Grouping of Null Values
	10.6 Grouping with Sorting
	10.7 General Rules for the GROUP BY Clause
	10.8 The GROUP_CONCAT Function
	10.9 Complex Examples with GROUP BY
	10.10 Grouping with WITH ROLLUP
	10.11 Answers

	CHAPTER 11 SELECT Statement: The HAVING Clause
	11.1 Introduction
	11.2 Examples of the HAVING Clause
	11.3 A HAVING Clause but not a GROUP BY Clause
	11.4 General Rule for the HAVING Clause
	11.5 Answers

	CHAPTER 12 SELECT Statement: The ORDER BY Clause
	12.1 Introduction
	12.2 Sorting on Column Names
	12.3 Sorting on Expressions
	12.4 Sorting with Sequence Numbers
	12.5 Sorting in Ascending and Descending Order
	12.6 Sorting Null Values
	12.7 Answers

	CHAPTER 13 SELECT Statement: The LIMIT Clause
	13.1 Introduction
	13.2 Get the Top
	13.3 Subqueries with a LIMIT Clause
	13.4 Limit with an Offset
	13.5 The Select Option SQL_CALC_FOUND_ROWS
	13.6 Answers

	CHAPTER 14 Combining Table Expressions
	14.1 Introduction
	14.2 Combining with UNION
	14.3 Rules for Using UNION
	14.4 Keeping Duplicate Rows
	14.5 Set Operators and the Null Value
	14.6 Answers

	CHAPTER 15 The User Variable and the SET Statement
	15.1 Introduction
	15.2 Defining Variables with the SET Statement
	15.3 Defining Variables with the SELECT Statement
	15.4 Application Areas for User Variables
	15.5 Life Span of User Variables
	15.6 The DO Statement
	15.7 Answers

	CHAPTER 16 The HANDLER Statement
	16.1 Introduction
	16.2 A Simple Example of the HANDLER Statement
	16.3 Opening a Handler
	16.4 Browsing the Rows of a Handler
	16.5 Closing a Handler
	16.6 Answers

	CHAPTER 17 Updating Tables
	17.1 Introduction
	17.2 Inserting New Rows
	17.3 Populating a Table with Rows from Another Table
	17.4 Updating Values in Rows
	17.5 Updating Values in Multiple Tables
	17.6 Substituting Existing Rows
	17.7 Deleting Rows from a Table
	17.8 Deleting Rows from Multiple Tables
	17.9 The TRUNCATE Statement
	17.10 Answers

	CHAPTER 18 Loading and Unloading Data
	18.1 Introduction
	18.2 Unloading Data
	18.3 Loading Data

	CHAPTER 19 Working with XML Documents
	19.1 XML in a Nutshell
	19.2 Storing XML Documents
	19.3 Querying XML Documents
	19.4 Querying Using Positions
	19.5 The Extended Notation of XPath
	19.6 XPath Expressions with Conditions
	19.7 Changing XML Documents

	PART III: Creating Database Objects
	CHAPTER 20 Creating Tables
	20.1 Introduction
	20.2 Creating New Tables
	20.3 Data Types of Columns
	20.4 Adding Data Type Options
	20.5 Creating Temporary Tables
	20.6 What If the Table Already Exists?
	20.7 Copying Tables
	20.8 Naming Tables and Columns
	20.9 Column Options: Default and Comment
	20.10 Table Options
	20.11 The CSV Storage Engine
	20.12 Tables and the Catalog
	20.13 Answers

	CHAPTER 21 Specifying Integrity Constraints
	21.1 Introduction
	21.2 Primary Keys
	21.3 Alternate Keys
	21.4 Foreign Keys
	21.5 The Referencing Action
	21.6 Check Integrity Constraints
	21.7 Naming Integrity Constraints
	21.8 Deleting Integrity Constraints
	21.9 Integrity Constraints and the Catalog
	21.10 Answers

	CHAPTER 22 Character Sets and Collations
	22.1 Introduction
	22.2 Available Character Sets and Collations
	22.3 Assigning Character Sets to Columns
	22.4 Assigning Collations to Columns
	22.5 Expressions with Character Sets and Collations
	22.6 Sorting and Grouping with Collations
	22.7 The Coercibility of Expressions
	22.8 Related System Variables
	22.9 Character Sets and the Catalog
	22.10 Answers

	CHAPTER 23 The ENUM and SET Types
	23.1 Introduction
	23.2 The ENUM Data Type
	23.3 The SET Data Type
	23.4 Answers

	CHAPTER 24 Changing and Dropping Tables
	24.1 Introduction
	24.2 Deleting Entire Tables
	24.3 Renaming Tables
	24.4 Changing the Table Structure
	24.5 Changing Columns
	24.6 Changing Integrity Constraints
	24.7 Answers

	CHAPTER 25 Using Indexes
	25.1 Introduction
	25.2 Rows, Tables, and Files
	25.3 How Does an Index Work?
	25.4 Processing a SELECT Statement: The Steps
	25.5 Creating Indexes
	25.6 Defining Indexes Together with the Tables
	25.7 Dropping Indexes
	25.8 Indexes and Primary Keys
	25.9 The Big PLAYERS_XXL Table
	25.10 Choosing Columns for Indexes
	25.11 Indexes and the Catalog
	25.12 Answers

	CHAPTER 26 Views
	26.1 Introduction
	26.2 Creating Views
	26.3 The Column Names of Views
	26.4 Updating Views: WITH CHECK OPTION
	26.5 Options of Views
	26.6 Deleting Views
	26.7 Views and the Catalog
	26.8 Restrictions on Updating Views
	26.9 Processing View Statements
	26.10 Application Areas for Views
	26.11 Answers

	CHAPTER 27 Creating Databases
	27.1 Introduction
	27.2 Databases and the Catalog
	27.3 Creating Databases
	27.4 Changing Databases
	27.5 Dropping Databases

	CHAPTER 28 Users and Data Security
	28.1 Introduction
	28.2 Adding and Removing Users
	28.3 Changing the Names of Users
	28.4 Changing Passwords
	28.5 Granting Table and Column Privileges
	28.6 Granting Database Privileges
	28.7 Granting User Privileges
	28.8 Passing on Privileges: WITH GRANT OPTION
	28.9 Restricting Privileges
	28.10 Recording Privileges in the Catalog
	28.11 Revoking Privileges
	28.12 Security of and Through Views
	28.13 Answers

	CHAPTER 29 Statements for Table Maintenance
	29.1 Introduction
	29.2 The ANALYZE TABLE Statement
	29.3 The CHECKSUM TABLE Statement
	29.4 The OPTIMIZE TABLE Statement
	29.5 The CHECK TABLE Statement
	29.6 The REPAIR TABLE Statement
	29.7 The BACKUP TABLE Statement
	29.8 The RESTORE TABLE Statement

	CHAPTER 30 The SHOW, DESCRIBE, and HELP Statements
	30.1 Introduction
	30.2 Overview of SHOW Statements
	30.3 Additional SHOW Statements
	30.4 The DESCRIBE Statement
	30.5 The HELP Statement

	PART IV: Procedural Database Objects
	CHAPTER 31 Stored Procedures
	31.1 Introduction
	31.2 An Example of a Stored Procedure
	31.3 The Parameters of a Stored Procedure
	31.4 The Body of a Stored Procedure
	31.5 Local Variables
	31.6 The SET Statement
	31.7 Flow-Control Statements
	31.8 Calling Stored Procedures
	31.9 Querying Data with SELECT INTO
	31.10 Error Messages, Handlers, and Conditions
	31.11 Retrieving Data with a Cursor
	31.12 Including SELECT Statements Without Cursors
	31.13 Stored Procedures and User Variables
	31.14 Characteristics of Stored Procedures
	31.15 Stored Procedures and the Catalog
	31.16 Removing Stored Procedures
	31.17 Security with Stored Procedures
	31.18 Advantages of Stored Procedures

	CHAPTER 32 Stored Functions
	32.1 Introduction
	32.2 Examples of Stored Functions
	32.3 More on Stored Functions
	32.4 Removing Stored Functions

	CHAPTER 33 Triggers
	33.1 Introduction
	33.2 An Example of a Trigger
	33.3 More Complex Examples
	33.4 Triggers as Integrity Constraints
	33.5 Removing Triggers
	33.6 Triggers and the Catalog
	33.7 Answers

	CHAPTER 34 Events
	34.1 What Is an Event?
	34.2 Creating Events
	34.3 Properties of Events
	34.4 Changing Events
	34.5 Removing Events
	34.6 Events and Privileges
	34.7 Events and the Catalog

	PART V: Programming with SQL
	CHAPTER 35 MySQL and PHP
	35.1 Introduction
	35.2 Logging On to MySQL
	35.3 Selecting a Database
	35.4 Creating an Index
	35.5 Retrieving Error Messages
	35.6 Multiple Connections Within One Session
	35.7 SQL Statements with Parameters
	35.8 SELECT Statement with One Row
	35.9 SELECT Statement with Multiple Rows
	35.10 SELECT Statement with Null Values
	35.11 Querying Data About Expressions
	35.12 Querying the Catalog
	35.13 Remaining MYSQL Functions

	CHAPTER 36 Dynamic SQL with Prepared Statement
	36.1 Introduction
	36.2 Working with Prepared SQL Statements
	36.3 Prepared Statements with User Variables
	36.4 Prepared Statements with Parameters
	36.5 Prepared Statements in Stored Procedures

	CHAPTER 37 Transactions and Multiuser Usage
	37.1 Introduction
	37.2 What Is a Transaction?
	37.3 Starting Transactions
	37.4 Savepoints
	37.5 Stored Procedures and Transactions
	37.6 Problems with Multiuser Usage
	37.7 Locking
	37.8 Deadlocks
	37.9 The LOCK TABLE and UNLOCK TABLE Statements
	37.10 The Isolation Level
	37.11 Waiting for a Lock
	37.12 Moment of Processing Statements
	37.13 Working with Application Locks
	37.14 Answers

	APPENDIX A: Syntax of SQL
	A.1 Introduction
	A.2 The BNF Notation
	A.3 Reserved Words in SQL
	A.4 Syntax Definitions of SQL Statements

	APPENDIX B: Scalar Functions
	APPENDIX C: System Variables
	APPENDIX D: Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

