

MySQL High Availability

MySQL High Availability

Charles Bell, Mats Kindahl, and Lars Thalmann

O’REILLY"

Beijing - Cambridge + Farnham - KoIn - Sebastopol - Taipei - Tokyo

MySQL High Availability
by Charles Bell, Mats Kindahl, and Lars Thalmann

Copyright © 2010 Charles Bell, Mats Kindahl, and Lars Thalmann. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Lucie Haskins
Production Editor: Teresa Elsey Cover Designer: Karen Montgomery
Copyeditor: Amy Thomson Interior Designer: David Futato
Proofreader: Sada Preisch lllustrator: Robert Romano
Printing History:

July 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. MySQL High Availability, the image of an American robin, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-80730-6
(M]
1277482774

Table of Contents

Forewordooun Xv

Preface ..ot xvii
Partl. Replication

T Introductionoovvvnniiii i e 3

What’s This Replication Stuff Anyway? 5

So, Backups Are Not Needed Then? 6

What’s with All the Monitoring? 7

Is There Anything Else I Can Read? 8

Conclusion 8

2. MySQL Replication Fundamentalsccoviiiiiiiiiiiiinnnnn... 1

Basic Steps in Replication 12

Configuring the Master 13

Configuring the Slave 15

Connecting the Master and Slave 15

A Brief Introduction to the Binary Log 17

What’s Recorded in the Binary Log 17

Watching Replication in Action 18

The Binary Log’s Structure and Content 20

Python Support for Managing Replication 23

Basic Classes and Functions 25

Operating System 26

Server Class 26

Server Roles 28

Creating New Slaves 30

Cloning the Master 31

Cloning the Slave 33

Scripting the Clone Operation 35

Performing Common Tasks with Replication 36
Reporting 37
Conclusion 43
3. TheBinaryLlogvvnviiiiiiiiiiiiiiiiiiiii i ennrnnsnnrnnsensensens 45
Structure of the Binary Log 46
Binlog Event Structure 48
Logging Statements 50
Logging Data Manipulation Language Statements 50
Logging Data Definition Language Statements 51
Logging Queries 51
LOAD DATA INFILE Statements 57
Binary Log Filters 59
Triggers, Events, and Stored Routines 61
Stored Procedures 66
Stored Functions 69
Events 71
Special Constructions 71
Nontransactional Changes and Error Handling 72
Logging Transactions 75
Transaction Cache 76
Distributed Transaction Processing Using XA 79
Binary Log Management 81
The Binary Log and Crash Safety 82
Binlog File Rotation 83
Incidents 85
Purging the Binlog File 86
The mysqglbinlog Utility 87
Basic Usage 88
Interpreting Events 94
Binary Log Options and Variables 98
Conclusion 100
4. Replication for High Availabilitycccooviiiiiiiiiiia.n, 103
Redundancy 104
Planning 106
Slave Failures 106
Master Failures 106
Relay Failures 107
Disaster Recovery 107
Procedures 107
Hot Standby 111

vi | Table of Contents

Dual Masters 115
Semisynchronous Replication 124
Slave Promotion 127
Circular Replication 142
Conclusion 146
MySQL Replication for Scale-Outc.coovvviiiiiiinriinrennennnen 147
Scaling Out Reads, Not Writes 149
The Value of Asynchronous Replication 150
Managing the Replication Topology 152
Example of an Application-Level Load Balancer 155
Hierarchal Replication 159
Setting Up a Relay Server 160
Adding a Relay in Python 161
Specialized Slaves 162
Filtering Replication Events 162
Using Filtering to Partition Events to Slaves 164
Data Sharding 165
Shard Representation 168
Partitioning the Data 170
Balancing the Shards 171
A Sharding Example 173
Managing Consistency of Data 184
Consistency in a Nonhierarchal Deployment 185
Consistency in a Hierarchal Deployment 187
Conclusion 193
Advanced Replicationcccoiiiiiiiiiiiiii it 195
Replication Architecture Basics 196
The Structure of the Relay Log 196
The Replication Threads 200
Starting and Stopping the Slave Threads 201
Running Replication over the Internet 202
Setting Up Secure Replication Using Built-in Support 204
Setting Up Secure Replication Using Stunnel 204
Finer-Grained Control over Replication 206
Information About Replication Status 206
Options for Handling Broken Connections 214
How the Slave Processes Events 215
Housekeeping in the I/O Thread 216
SQL Thread Processing 217
Slave Safety and Recovery 222
Syncing, Transactions, and Problems with Database Crashes 222

Table of Contents | vii

Rules for Protecting Nontransactional Statements 225
Multisource Replication 226
Row-Based Replication 229

Options for Row-Based Replication 230

Mixed-Mode Replication 231

Events for Handling Row-Based Replication 232

Event Execution 236

Events and Triggers 238

Filtering 240
Conclusion 241

Partll. Monitoring and Disaster Recovery
7. Getting Started with Monitoringccoovviiiiiiiiiiiiiiiin., 245
Ways of Monitoring 246
Benefits of Monitoring 247
System Components to Monitor 247

Processor 248

Memory 249

Disk 250

Network Subsystem 251
Monitoring Solutions 252
Linux and Unix Monitoring 253

Process Activity 253

Memory Usage 259

Disk Usage 261

Network Activity 265

General System Statistics 266

Automated Monitoring with cron 268
Mac OS X Monitoring 268

System Profiler 268

Console 271

Activity Monitor 273
Microsoft Windows Monitoring 276

The Windows Experience 277

The System Health Report 278

The Event Viewer 281

The Reliability Monitor 283

The Task Manager 285

The Performance Monitor 285
Monitoring as Preventive Maintenance 288
Conclusion 288

viii | Table of Contents

8. Monitoring MySQLvvuiiiiiiiii ittt i e ii i ieiaaaes 291

What Is Performance? 292
MySQL Server Monitoring 292
How MySQL Communicates Performance 293
Performance Monitoring 293
SQL Commands 294
The mysgladmin Utility 300
MySQL GUI Tools 302
MySQL Administrator 302
MySQL Query Browser 312
Server Logs 313
Third-Party Tools 316
The MySQL Benchmark Suite 318
Database Performance 319
Measuring Database Performance 320
Database Optimization Best Practices 331
Best Practices for Improving Performance 339
Everything Is Slow 340
Slow Queries 340
Slow Applications 340
Slow Replication 341
Conclusion 341
9. StorageEngine Monitoringcccviiiiiiiiiiiiiiiiiiiiiiineninnes 343
MyISAM 344
Optimizing Disk Storage 344
Tuning Your Tables for Performance 345
Using the MyISAM Ultilities 345
Storing a Table in Index Order 347
Compressing Tables 347
Defragmenting Tables 348
Monitoring the Key Cache 348
Preloading Key Caches 349
Using Multiple Key Caches 350
Other Parameters to Consider 351
InnoDB 352
Using the SHOW ENGINE Command 354
Using InnoDB Monitors 357
Monitoring Logfiles 359
Monitoring the Buffer Pool 360
Monitoring Tablespaces 363
Using INFORMATION_SCHEMA Tables 363
Other Parameters to Consider 365

Table of Contents | ix

Conclusion 366

10. Replication Monitoringccoviiiiniiiiiiiii it iiiieeianaenas 367
Getting Started 367
Server Setup 368
Inclusive and Exclusive Replication 368
Replication Threads 371
Monitoring the Master 372

Monitoring Commands for the Master 373
Master Status Variables 376
Monitoring Slaves 376
Monitoring Commands for the Slave 377
Slave Status Variables 380
Replication Monitoring with MySQL Administrator 381
Other Items to Consider 383
Networking 383
Monitor and Manage Slave Lag 383
Causes and Cures for Slave Lag 384
Conclusion 386

11. Replication Troubleshootingcocoviiiiiiiiiiiiiiiiiiiiiinenne. 387

What Can Go Wrong 388
Problems on the Master 388
Problems on the Slave 393
Advanced Replication Problems 398

Tools for Troubleshooting Replication 399

Best Practices 401
Know Your Topology 401
Check the Status of All of Your Servers 403
Check Your Logs 404
Check Your Configuration 404
Conduct Orderly Shutdowns 404
Conduct Orderly Restarts After a Failure 405
Manually Execute Failed Queries 405
Common Procedures 406

Reporting Replication Bugs 407

Conclusion 407

12. ProtectingYourInvestmentcccoviiiiiiiiiiiiiiiiiineninenenenns 409

What Is Information Assurance? 410
The Three Practices of Information Assurance 410
Why Is Information Assurance Important? 411

Information Integrity, Disaster Recovery, and the Role of Backups 411

x | Table of Contents

High Availability Versus Disaster Recovery 412

Disaster Recovery 413
The Importance of Data Recovery 419
Backup and Restore 420
Backup Utilities and OS-Level Solutions 424
The InnoDB Hot Backup Application 425
Physical File Copy 428
The mysqgldump Utility 430
XtraBackup 432
Logical Volume Manager Snapshots 432
Comparison of Backup Methods 437
Backup and MySQL Replication 438
Backup and Recovery with Replication 438
PITR 439
Automating Backups 446
Conclusion 449
13, MySQLENTErprise ...cvvuniniiiiiiiiiii ittt it eiieniennsnnenns 451
Getting Started with MySQL Enterprise 452
Subscription Levels 453
Installation Overview 454
MySQL Enterprise Components 456
MySQL Enterprise Server 456
MEM 456
MySQL Production Support 459
Using MySQL Enterprise 460
Installation 460
Fixing Monitoring Agent Problems 462
Monitoring 463
Query Analyzer 470
Further Information 473
Conclusion 473

Partlll. High Availability Environments

14. Cloud Computing Solutionsccovviiiiiiiiiiiiiiiiiiiniennnens 477
What Is Cloud Computing? 478
Cloud Architectures 480

Is Cloud Computing an Economical Choice? 483

Cloud Computing Use Cases 484
Cloud Computing Benefits 485
Cloud Computing Vendors 486

Table of Contents | xi

AWS
A Brief Overview of Technologies
How Does It All Work?
Amazon Cloud Tools
Getting Started
Working with Disk
Where to Go from Here
MySQL in the Cloud
MySQL Replication and EC2
Best Practices for Using MySQL in EC2
Open Source Cloud Computing
Conclusion

T A 11 -]

What Is MySQL Cluster?

Terminology and Components

How Does MySQL Cluster Differ from MySQL?

Typical Configuration

Features of MySQL Cluster

Local and Global Redundancy

Log Handling

Redundancy and Distributed Data
Architecture of MySQL Cluster

How Data Is Stored

Partitioning

Transaction Management

Online Operations
Example Configuration

Getting Started

Starting a MySQL Cluster

Testing the Cluster

Shutting Down the Cluster
Achieving High Availability

System Recovery

Node Recovery

Replication
Achieving High Performance

Considerations for High Performance

High Performance Best Practices
Conclusion

Appendix: Replication Tipsand Tricksccoeiiniiiiiiiiiiiiiiiiinennnns

487
488
492
492
496
511
516
517
517
520
522
523

525
526
526
527
527
528
530
531
531
532
533
536
537
537
539
539
541
546
546
547
550
551
552
557
557
558
561

xii | Table of Contents

1110 (= RPN ¥ 1o

Table of Contents | xiii

Foreword

A lot of research has been done on replication, but most of the resulting concepts are
never put into production. In contrast, MySQL replication is widely deployed but has
never been adequately explained. This book changes that. Things are explained here
that were previously limited to people willing to read a lot of source code and spend a
lot of time debugging it in production, including a few late-night sessions.

Replication enables you to provide highly available data services while enduring the
inevitable failures. There are an amazing number of ways for things to fail, including
the loss of a disk, server, or data center. Even when hardware is perfect or fully redun-
dant, people are not. Database tables will be dropped by mistake. Applications will
write incorrect data. Occasional failure is assured. But with reasonable preparation,
recovery from failure can also be assured. The keys to survival are redundancy and
backups. Replication in MySQL supports both.

But MySQL replication is not limited to supporting failure recovery. It is frequently
used to support read scale-out. MySQL can efficiently replicate to a large number of
servers. For applications that are read-mostly, this is a cost-effective strategy for sup-
porting a large number of queries on commodity hardware.

And there are other interesting uses for MySQL replication. Online DDL is a very com-
plex feature to implement in an relational database management system. MySQL does
not support online DDL, but through the use of replication you can implement some-
thing that is frequently good enough. You can get a lot done with replication if you are
willing to be creative.

Replication is one of the features that made MySQL wildly popular. It is also the feature
that allows you to convert a popular MySQL prototype into a successful business-
critical deployment. Like most of MySQL, replication favors simplicity and ease of use.
As a consequence, it is occasionally less than perfect when running in production. This
book explains what you need to know to successfully use MySQL replication. It will
help you to understand how replication has been implemented, what can go wrong,
how to prevent problems, and how to fix them when they crop up despite your best
attempts at prevention.

XV

MySQL replication is also a work in progress. Change, like failure, is also assured.
MySQL is responding to that change and replication continues to get more efficient,
more robust, and more interesting. For instance, row-based replication is new in
MySQL 5.1.

While MySQL deployments come in all shapes and sizes, I care most about data services
for Internet applications and am excited about the potential to replicate from MySQL
to distributed storage systems like HBase and Hadoop. This will make MySQL better
at sharing the data center.

[have been on teams that support important MySQL deployments at Facebook and
Google. T have had the opportunity, problems, and time to learn much of what is cov-
ered in this book. The authors of this book are also experts on MySQL replication, and
by reading this book you can share their expertise.

—Mark Callaghan

xvi | Foreword

Preface

The authors of this book have been creating parts of MySQL and working with it for
many years. Charles Bell is a senior developer working on replication and backup. His
interests include all things MySQL, database theory, software engineering, and agile
development practices. Dr. Mats Kindahl is the lead developer for replication and a
member of the MySQL Backup and Replication team. He is the main architect and
implementor of the MySQL row-based replication and has also developed the unit
testing framework used by MySQL. Dr. Lars Thalmann is the development manager
and technical lead of the MySQL Replication and Backup team and has designed many
of the replication and backup features. He has worked with development of MySQL
clustering, replication, and backup technologies.

We wrote this book to fill a gap we noticed among the many books on MySQL. There
are many excellent books on MySQL, but few that concentrate on its advanced features
and its applications, such as high availability, reliability, and maintainability. In this
book, you will find all of these topics and more.

We also wanted to make the reading a bit more interesting by including a running
narrative about a MySQL professional who encounters common requests made by his
boss. In the narrative, you will meet Joel Thomas, who recently decided to take a job
working for a company that has just started using MySQL. You will observe Joel as he
learns his way around MySQL and tackles some of the toughest problems facing
MySQL professionals. We hope you find this aspect of the book entertaining.

Audience

This book is for MySQL professionals. We expect you to have a basic background in
SQL, administering MySQL, and the operating system you are running. We will try to
fill in background information about replication, disaster recovery, system monitoring,
and other key topics of high availability. See Chapter 1 for other books that offer useful
background.

Xvii

Organization of This Book

This book is written in three parts. Part [encompasses MySQL replication, including
high availability and scale-out. Part Il examines monitoring and performance concerns
for building robust data centers. Part Il examines some additional areas of MySQL,
including cloud computing and MySQL clusters.

Part |, Replication

Chapter 1, Introduction, explains how this book can help you and gives you a context
for reading it.

Chapter 2, MySQL Replication Fundamentals, discusses both manual and automated
procedures for setting up basic replication.

Chapter 3, The Binary Log, explains the critical file that ties together replication and
helps in disaster recovery, troubleshooting, and other administrative tasks.

Chapter 4, Replication for High Availability, shows a number of ways to recover from
server failure, including the use of automated scripts.

Chapter 5, MySQL Replication for Scale-Out, shows a number of techniques and top-
ologies for improving response time and handling large data sets.

Chapter 6, Advanced Replication, addresses a number of topics, such as secure data
transfer and row-based replication.

Part Il, Monitoring and Disaster Recovery

Chapter 7, Getting Started with Monitoring, presents the main operating system pa-
rameters you have to be aware of, and tools for monitoring them.

Chapter 8, Monitoring MySQL, presents several tools for monitoring database activity
and performance.

Chapter 9, Storage Engine Monitoring, explains some of the parameters you need to
monitor on a more detailed level, focusing on issues specific to MyISAM or InnoDB.

Chapter 10, Replication Monitoring, offers details about how to keep track of what
masters and slaves are doing.

Chapter 11, Replication Troubleshooting, shows how to deal with failures and restarts,
corruption, and other incidents.

Chapter 12, Protecting Your Investment, explains the use of backups and disaster re-
covery techniques.

Chapter 13, MySQL Enterprise, introduces a suite of tools that simplifies many of the
tasks presented in earlier chapters.

xviii | Preface

Part llI, High Availability Environments

Chapter 14, Cloud Computing Solutions, introduces the most popular cloud computing
service, the Amazon.com AWS, and offers techniques for using MySQL in such vir-
tualized environments.

Chapter 15, MySQL Cluster, shows how to use this tool to achieve high availability.

The Appendix, Replication Tips and Tricks, offers a grab bag of procedures that are
useful in certain situations.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, options, and buttons.

Italic
Indicates new terms, table and database names, URLs, email addresses, filenames,
and Unix utilities.

Constant width
Indicates command-line options, variables and other code elements, the contents
of files, and the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

W
& This icon signifies a tip, suggestion, or general note.

a)
[N I
15

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

Preface | xix

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “MySQL High Availability, by Charles Bell,
Mats Kindahl, and Lars Thalmann. Copyright 2010 Charles Bell, Mats Kindahl, and
Lars Thalmann, 9780596807306.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

We'd Like to Hear from You

Every example in this book has been tested on various platforms. The information in
this book has also been verified at each step of the production process. However, mis-
takes and oversights can occur and we will gratefully receive details of any you find, as
well as any suggestions you would like to make for future editions. You can contact the
author and editors at:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596807306

To comment or ask technical questions about this book, send email to the following
quoting the book’s ISBN number (9780596807306):

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

xx | Preface

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

Safari

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments

The authors would like to thank our technical reviewers, Mark Callaghan, Luis Soares,
and Morgan Tocker. Your attention to detail and insightful suggestions were invalua-
ble. We could not have delivered a quality book without your help.

We also want to thank our extremely talented colleagues on the MySQL replication
team, including Alfranio Correia, Andrei Elkin, Zhen-Xing He, Serge Kozlov, Sven
Sandberg, Luis Soares, Rafal Somla, Li-Bing Song, Ingo Striitwing, and Dao-Gang Qu
for their tireless dedication to making MySQL replication the robust and powerful
feature set it is today. We especially would like to thank our MySQL customer support
professionals, who help us bridge the gap between our customers’ needs and our own
desires to improve the product. We would also like to thank the many community
members who so selflessly devote time and effort to improve MySQL for everyone.

Finally, and most importantly, we would like to thank our editor, Andy Oram, who
helped us shape this work, for putting up with our sometimes cerebral and sometimes
over-the-top enthusiasm for all things MySQL.

Charles would like to thank his loving wife, Annette, for her patience and understand-
ing when he was spending time away from family priorities to work on this book. You
are the love of his life and his inspiration. Charles would also like to thank his many
colleagues on the MySQL team at Oracle who contribute their wisdom freely to every-
one on a daily basis. Finally, Charles would like to thank all of his brothers and sisters
in Christ who both challenge and support him daily.

Preface | xxi

Mats would like to thank his wife, Lill, and two sons, Jon and Hannes, for their un-
conditional love and understanding in difficult times. You are the love of his life and
he cannot imagine a life without you. Mats would also like to thank his MySQL
colleagues inside and outside Sun/Oracle for all the interesting, amusing, and inspiring
times together: you are truly some of the sharpest minds in the trade.

Lars would like to thank all his colleagues, current and past, who have made MySQL
such an interesting place to work. In fact, it is not even a place. The distributed nature
of the MySQL development team and the open-mindedness of its many dedicated de-
velopers are truly extraordinary. The MySQL community has a special spirit that makes
working with MySQL an honorable task. What we have created together is remarkable.
It is amazing that we started with such a small group of people and managed to build
a product that services so many of the Fortune 500 companies today.

xxii | Preface

PART I
Replication

Your first task in providing a robust MySQL environment is to set up replication. What

you learn along the way will help you later when you configure and manage other
aspects of high availability.

CHAPTER1

Introduction

Joel looked through the classified ads for a new job. His current job was a good one,
and the company had been very good to him while he attended college. But it had been
several years since he graduated, and he wanted to do more with his career.

“This looks promising,” he said and circled an advertisement for a computer science
specialist working with MySQL. He had experience with MySQL and certainly met the
academic requirements for the job. After reading through several other ads, he decided
to call about the MySQL job. After a brief set of cursory questions, the human resources
manager granted him an interview in two days’ time.

Two days and three interviews later, he was introduced to the company’s president and
chief executive officer, Robert Summerson, for his final technical interview. He waited
while Mr. Summerson paused during the questions and referred to his notes. So far,
they were mostly mundane questions about information technology, but Joel knew the
hard questions about MySQL were coming next.

Finally, the interviewer said, “I am impressed with your answers, Mr. Thomas. May [
call you Joel?”

“Yes, sir,” Joel said as he endured another uncomfortable period while the interviewer
read over his notes for the third time.

“Tell me what you know about MySQL,” Mr. Summerson said and placed his hands
on his desk, giving Joel a very penetrating stare.

Joel began explaining what he knew about MySQL, tossing in a generous amount of
the material he had read the night before. After about 10 minutes he ran out of things
to talk about.

Mr. Summerson waited a couple of minutes, then stood and offered Joel his hand. As
Joel rose and shook Mr. Summerson’s hand, Summerson said, “That’s all I need to
hear, Joel. The job is yours.”

“Thank you, sir.”

Mr. Summerson motioned for Joel to follow him out of his office. “I'll take you back
to the HR people so we can get you on the payroll. Can you start two weeks from
Monday?”

Joel was elated and couldn’t help but smile. “Yes, sir.”

“Excellent.” Mr. Summerson shook Joel’s hand again and said, “I want you to come
prepared to evaluate the configuration of our MySQL servers. I want a complete report
on their configuration and health.”

Joel’s elation waned as he drove out of the parking lot. He didn’t go home right away.
Instead, he drove to the nearest bookstore. “I'm going to need a good book on MySQL,”
he thought.

So, you have decided to take on a large installation and take care of its operation. Well,
you are up for some very interesting—as well as rewarding—times.

Compared to running a small site, supporting a large venture requires planning, fore-
sight, experience, and even more planning. As a database administrator for a large
venture you are required to—or will be required to—do things like the following;:

* Provide plans for recovery of business-essential data in the event of a disaster. It is
also likely that you will have to execute the procedure at least once.

* Provide plans for handling a large customer/user base and monitoring the load of
each node in the site in order to optimize it.

* Plan for rapid scale-out in the event the user base grows rapidly.

For all these cases, it is critical to plan for the events in advance and be prepared to act
quickly when necessary.

Since not all applications using big sets of servers are websites, we prefer to use the
term deployment—rather than the term site or website—to refer to the server that you
are using to support some kind of application. This could be a website, but could just
as well be a CRM (customer relationship management) system or an online game. The
book focuses on the database layer of such a system, but there are some examples that
demonstrate how the application layer and the database layer integrate.

There are two things that you need in order to keep a site responsive and available:
backups of data and redundancy in the system. The backups can restore a node to the
state it was in before a crash, and redundancy allows the site to continue to operate
even if one or more of the nodes stops functioning.

There are many ways to do backups, and the method you choose will depend on your
needs. Do you need to recover to an exact point in time? In that case, you have to ensure
that you have all that is necessary for performing a point-in-time recovery (PITR). Do
you want to keep the servers up while making a backup? If so, you need to ensure that
you are using some form of online backup method.

4 | Chapter1: Introduction

Redundancy is handled by duplicating hardware, keeping several instances running in
parallel, and using replication to keep multiple copies of the same data available on
several machines. If one of the machines fails, it is possible to switch over to another
machine that has a copy of the same data.

Together with replication, backup also plays an important role in scaling your system
and adding new nodes when needed. If done right, it is even possible to automatically
add new slaves at the press of a button, at least figuratively speaking.

What's This Replication Stuff Anyway?

If you’re reading this book, you probably have a pretty good idea of what replication
is about. It is nevertheless a good idea to introduce the concepts and ideas.

Replication is used to replicate all changes made on a server—called the master
server or just master—to another server, which is called the slave server or just slave.
This is normally used to create a faithful copy of the master server, but replication can
be used for other purposes as well.

The two most common uses of replication are to create a backup of the main server to
avoid losing any data if the master crashes and to have a copy of the main server to
perform reporting and analysis work without disturbing the rest of the business.

For a small business, this makes a lot of things simpler, but it is possible to do a lot
more with replication, including the following;:

Supporting several offices
It is possible to maintain servers at each location and replicate changes to the other
offices so that the information is available everywhere. This may be necessary to
protect the data and also to satisfy legal requirements to keep information about
the business available for auditing purposes.

Ensuring the business stays operational even if one of the servers goes down
An extra server can be used to handle all the traffic if the original server goes down.

Ensuring the business can operate even in the presence of a disaster
Replication can be used to send changes to an alternative data center at a different
geographic location.

Protecting against mistakes (“oopses”)
It is possible to create a delayed slave by connecting a slave to a master such that
the slave is always a fixed period—for example, an hour—behind the master. If a
mistake is made on the master, it is possible to find the offending statement and
remove it before it is executed by the slave.

What's This Replication Stuff Anyway? | 5

One of the two most important uses of replication in many modern applications is
that of scaling out. Modern applications are typically very read-intensive; they have a
high proportion of reads compared to writes. To reduce the load on the master, you
can set up a slave with the sole purpose of answering read queries. By connecting a load
balancer, it is possible to direct read queries to a suitable slave, while write queries go
to the master.

When using replication in a scale-out scenario, it is important to understand that
MySQL replication is asynchronous in the sense that transactions are committed at the
master server first, then replicated to the slave and applied there. This means that the
master and slave may not be consistent, and if replication is running continuously, the
slave will lag behind the master.

The advantage of using asynchronous replication is that it is faster and scales better
than synchronous replication, but in cases where it is important to have current data,
the asynchrony must be handled to ensure the information is actually up-to-date.

Another important application of replication is ensuring high availability by adding
redundancy. The most common technique is to use a dual-master setup, that is, using
replication to keep a pair of masters available all the time, where each master mirrors
the other. If one of the masters goes down, the other one is ready to take over
immediately.

In addition to the dual-master setup, there are other techniques for achieving high
availability that do not involve replication, such as using shared or replicated disks.
Although they are not specifically tied to MySQL, these techniques are important tools
for ensuring high availability.

So, Backups Are Not Needed Then?

A backup strategy is a critical component of keeping a system available. Regular back-
ups of the servers provide safety against crashes and disasters, which, to some extent,
can be handled by replication. Even when replication is used correctly and efficiently,
however, there are some things that replication cannot handle. You’ll need to have a
working backup strategy for the following cases:

Protection against mistakes
If a mistake is discovered, potentially a long time after it actually occurred, repli-
cation will not help. In this case, it is necessary to roll back the system to a time
before the mistake was introduced and fix the problem. This requires a working
backup schedule.

Replication provides some protection against mistakes if you are using a time-
delayed slave, but if the mistake is discovered after the delay period, the change
will have already taken effect on the slave as well. So, in general, it is not possible
to protect against mistakes using replication only—backups are required as well.

6 | Chapter1: Introduction

Creating new servers
When creating new servers—either slaves for scale-out purposes or new masters
to act as standbys—it is necessary to make a backup of an existing server and restore
that backup image on the new server. This requires a quick and efficient backup
method to minimize the downtime and keep the load on the system atan acceptable
level.

Legal reasons
In addition to pure business reasons for data preservation, you may have legal
requirements to keep data safe, even in the event of a disaster. Not complying with
these requirements can pose significant problems to operating the business.

In short, a backup strategy is necessary for operating the business, regardless of any
other precautions you have in place to ensure that the data is safe.

What's with All the Monitoring?

Even if you have replication set up correctly, it is necessary to understand the load on
your system and to keep a keen eye on any problems that surface. As business require-
ments change due to changed customer usage patterns, it is necessary to balance the
system to use resources as efficiently as possible and to reduce the risk of losing avail-
ability due to sudden changes in resource utilization.

There are a number of different things that you can monitor, measure, and plan for to
handle these types of changes. Some examples are:

* You can add indexes to tables that are frequently read.

* You can rewrite queries or change the structure of databases to speed up execution
time.

* Iflocksare held for along time, it is an indication that several connections are using
the same table. It might pay off to switch storage engines.

* If some of your scale-out slaves are hot-processing a disproportionate number of
queries, the system might require some rebalancing to ensure that all the scale-out
slaves are hit evenly.

* To handle sudden changes in resource usage, it is necessary to determine the nor-
mal load of each server and understand when the system will start to respond slowly
because of a sudden increase in load.

Without monitoring, you have no way of spotting problematic queries, hot slaves, or
improperly utilized tables.

What's with All the Monitoring? | 7

Is There Anything Else | Can Read?

There is plenty of literature on using MySQL for various jobs, and also a lot of literature
about high-availability systems. Here is a list of books that we strongly recommend if
you are going to work with MySQL.:

MySQL by Paul DuBois (Addison-Wesley)
This is the reference to MySQL and consists of 1,200 pages (really!) packed with
everything you want to know about MySQL (and probably a lot that you don’t
want to know).

High Performance MySQL, Second Edition by Baron Schwartz, et al. (O’Reilly, http://
oreilly.com/catalog/9780596101718/)
This is one of the best books on using MySQL in an enterprise setting. It covers
optimizing queries and ensuring your system is responsive and available.

Scalable Internet Architectures by Theo Schlossnagle (Sams Publishing).
Written by one of the most prominent thinkers in the industry, this is a must for
anybody working with systems of scale.

N
o The book uses a Python library developed by the authors (called the
:‘:‘ . MySQL Python Replicant) for many of the administrative tasks. MySQL

* s Python is available on Launchpad at https://launchpad.net/mysql-repli

cant-python.

Conclusion

In the next chapter, we will start with the basics of setting up replication, so get a
comfortable chair, open your computer, and let’s get started....

Joel was adjusting his chair when a knock sounded from his door.
“Settling in, Joel?” Mr. Summerson asked.

Joel didn’t know what to say. He had been tasked to set up a replication slave on his
first day on the job and while it took him longer than he had expected, he had yet to
hear how his boss felt about the job. Joel spoke the first thing on his mind: “Yes, sir,
I’m still trying to figure out this chair.”

“Nice job with the documentation, Joel. I'd like you to write a report explaining what
you think we should do to improve our management of the database server.”

Joel nodded. “I can do that.”

“Good. T'll give you another day to get your office in order. I expect the report by
Wednesday, close of business.”

Before Joel could reply, Mr. Summerson walked away.

8 | Chapter1: Introduction

Joel sat down and flipped another lever on his chair. He heard a distinct click as the
back gave way, forcing him to fling his arms wide. “Whoa!” He looked toward his door

as he clumsily righted his chair, thankful no one saw his impromptu gymnastics. “OK,
that lever is now off limits,” he said.

Conclusion | 9

CHAPTER 2
MySQL Replication Fundamentals

Joeljumped as a sharp rap on his door announced his boss’s unapologetic interruption.
Before Joel could say “Come in,” the boss stepped into his doorway and said, “Joel,
we're getting complaints that our response time is getting slow. See what you can do
to speed things up. The administrator told me there are too many read operations from
the applications. See what you can do to offload some of that.”

Before Joel could respond, Mr. Summerson was out the door and on his way elsewhere.
“I suppose he means we need a bigger server,” Joel thought.

As if he had read Joel’s mind, Mr. Summerson stuck his head back in the doorway and
said, “Oh, and by the way, the startup we bought all the equipment from had a bunch
of servers we haven’t found any use for yet; can you take a look at those and see what
you can do with them? OK, Joel?” Then he was gone again.

“I wonder if I'll ever get used to this,” Joel thought as he pulled his favorite MySQL
book off the shelf and glanced at the table of contents. He found the chapter on repli-
cation and decided that might fit the bill.

MySQL replication is a very useful tool when used correctly, but it can also be a source
of considerable headaches when it experiences a failure or when it is configured or used
incorrectly. This chapter will cover the fundamentals of using MySQL replication by
beginning with a simple setup to get you started and then introducing some basic tech-
niques to store in your “replication toolkit.”

This chapter covers the following use cases:

Disaster avoidance through hot standby
If a server goes down, everything will stop; it will not be possible to execute (per-
haps critical) transactions, get information about customers, or retrieve other crit-
ical data. This is something that you want to avoid at (almost) any cost since it can
severely disrupt your business. The easiest solution is to configure an extra server
with the sole purpose of acting as a hot standby, ready to take over the job of the
main server if it fails.

n

Report generation

Creating reports from data on a server will degrade the server’s performance, in
some cases significantly. If you’re running lots of background jobs to generate
reports, it’s worth creating an extra server just for this purpose. You can get a
snapshot of the database at a certain time by stopping replication on the report
server and then running large queries on it without disturbing the main business
server. For example, if you stop replication after the last transaction of the day, you
can extract your daily reports while the rest of the business is humming along at
its normal pace.

Debugging and auditing
You can also investigate queries that have been executed on the server—for ex-
ample, to see whether particular queries were executed on servers with perform-
ance problems, or whether a server has gone out of sync because of a bad query.

Basic Steps in Replication

This chapter will introduce several sophisticated techniques for maximizing the effi-
ciency and value of replication, but as a first step we will set up the simple replication
shown in Figure 2-1—a single instance of replication from a master to a slave. This
does not require any knowledge of the internal architecture or execution details of the
replication process (we’ll explore these before we take on more complicated scenarios).

Master

Slave

Figure 2-1. Simple replication

Setting up basic replication can be summarized in three easy steps:

1. Configure one server to be a master.
2. Configure one server to be a slave.

3. Connect the slave to the master.

12 | Chapter2: MySQL Replication Fundamentals

Unless you plan replication from the start and include the right configuration options
in the my.cnf files, you will have to restart each server to carry out steps 1 and 2.

W

To follow the procedures in this section, it is easiest if you have a shell
account on the machine with privileges to change the my.cnf file—which
s usually means mysql privileges—as well as an account on the server with
" ALL privileges granted.

You should be very restrictive in granting privileges in a production en-
vironment. For precise guidelines, consult “Privileges for Configuring
Replication” on page 16.

Configuring the Master

To configure a server so that it can act as master, ensure the server has an active binary
log and a unique server ID. We will examine the binary log in greater detail later, but
for now it is sufficient to say that it keeps a record of all the changes the master has
made so that they can be repeated on the slave. The server ID is used to distinguish two
servers from each other. To set up the binary log and server ID, you have to take the
server down and add the log-bin, log-bin-index, and server-id options to the my.cnf
configuration file as shown in Example 2-1. The added options are in boldface.

Example 2-1. Options added to my.cnf to configure a master

[mysqld]

user = mysql

pid-file = /var/run/mysqld/mysqld.pid
socket = /var/run/mysqld/mysqld.sock
port = 3306

basedir = Jusr

datadir = /var/lib/mysql

tmpdir = /tmp

log-bin = master-bin

log-bin-index = master-bin.index
server-id =1

The log-bin option gives the base name for all the files created by the binary log (as
you will see later, the binary log consists of several files). If you create a filename with
an extension to log-bin, the extension will be ignored and only the file’s base name will
be used (that is, the name without the extension).

The log-bin-index option gives the name of the binary log index file, which keeps a list
of all binlog files.

Strictly speaking, it is not necessary to give a name in the log-bin option. The default
value is hostname-bin. The value for hostname is taken from the option for pid-file,
which by default is the name of the host (as given by the gethostname(2) system call).
If an administrator later changes the machine’s hostname, the binlog files will change
names as well, but they will be tracked correctly in the index file. However, it is a good

Basic Steps in Replication | 13

idea to create a name that is unique for the server and not tied to the machine the server
is running on, since it can be confusing to work with a series of binlog files that suddenly
change name midstream.

If no value is provided for log-bin-index, the default value will be the same base name
as for the binlog files (hostname-bin if you don’t give a default for log-bin). This means
that if you do not provide a value for log-bin-index, the index file is guaranteed to
change its name when you change the name of the host. So, if you change the name of
the host and start the server, it will not find the index file and therefore assume that it
does not exist, and this will give you an empty binary log.

Each server is identified by a unique server ID, so if a slave connects to the master and
has the same server-id as the master, an error will be generated indicating that the
master and the slave have the same server ID.

Once you have added the log-bin and server-id options to the configuration file, start
the server again and finish its configuration by adding a replication user.

After you make the change to the master’s configuration file, restart the master for the
changes to take effect.

The slave initiates a normal client connection to the master and requests the master to
dump all changes to it. For the slave to connect, a user with special replication privileges
is required on the master. Example 2-2 shows a standard mysql client session on the
master server, with commands that add a new user account and give it the proper
privilege.

Example 2-2. Creating a replication user on the master

master> CREATE USER repl_user;
Query OK, 0 rows affected (0.00 sec)
master> GRANT REPLICATION SLAVE ON *.*

-> TO repl_user IDENTIFIED BY 'xyzzy';
Query OK, 0 rows affected (0.00 sec)

LA
)

There is nothing special about the REPLICATION SLAVE privilege except
that the user can get a dump of the binary log from the master. It is
W' perfectly viable to have a normal user account and grant that user the
REPLICATION SLAVE privilege. It is, however, a good idea to keep the rep-
lication slave user separate from the other users. If you do that, you can
remove the user if you need to disallow certain slaves from connecting
later.

14 | Chapter2: MySQL Replication Fundamentals

Configuring the Slave

After configuring the master, you must configure the slave. As with the master server,
you need to assign each slave a unique server ID. You may also want to consider adding
the names of the relay log and the relay log index files to the my.cnf file (we will discuss
the relay log in more detail in “Replication Architecture Basics” on page 196) using
the options relay-log and relay-log-index. The recommended configuration options
are given in Example 2-3, with the added options highlighted.

Example 2-3. Options added to my.cnf to configure a slave

[mysqld]

user = mysql

pid-file = /var/run/mysqld/mysqld.pid
socket = /var/run/mysqld/mysqld.sock
port = 3306

basedir = Jusr

datadir = /var/lib/mysql

tmpdir = /tmp

server-id =2

relay-log-index = slave-relay-bin.index
relay-log = slave-relay-bin

Like the log-bin and log-bin-index options, the defaults for the relay-log and relay-
log-index options depend on the hostname. The default for relay-log is hostname-
relay-bin and the default for relay-1log-index is hostname-relay-bin.index. Using the
default introduces a problem in that if the hostname of the server changes, it will not
find the relay log index file and will assume there is nothing in the relay logfiles.

After editing the my.cnf file, restart the slave server for the changes to take effect.

Connecting the Master and Slave

Now you can perform the final step in setting up basic replication: directing the slave
to the master so that it knows where to replicate from. To do this you need four pieces
of information about the master:

* A hostname

* A port number

* A user account on the master with replication slave privileges

* A password for the user account
You already created a user account with the right privileges and a password when
configuring the master. The hostname is given by the operating system and can’t be
configured in the my.cnf file, but the port number can be assigned in my.cnf (if you do
not supply a port number, the default value of 3306 will be used). The final two steps

necessary to get replication up and running are to direct the slave to the master using
the CHANGE MASTER TO command and then start replication using START SLAVE.

Basic Steps in Replication | 15

slave> CHANGE MASTER TO

-> MASTER_HOST = 'master-1',
-> MASTER_PORT = 3306,
-> MASTER_USER = 'repl_user',

-> MASTER_PASSWORD = 'xyzzy';
Query OK, 0 rows affected (0.00 sec)

slave> START SLAVE;
Query OK, 0 rows affected (0.15 sec)

Congratulations! You have now set up your first replication between a master and a
slave! If you make some changes to the database on the master, such as adding new
tables and filling them in, you will find that they are replicated to the slave. Try it out!
Create a test database (if you do not already have one), create some tables, and add
some data to the tables to see that the changes replicate over to the slave.

Observe that either a hostname or an IP address can be given to the MASTER_HOST pa-
rameter. If a hostname is given, the IP address for the hostname is retrieved by calling
gethostname(3), which, depending on your configuration, could mean resolving the
hostname using a DNS lookup. The steps for configuring such lookups are beyond the
scope of this book.

Privileges for Configuring Replication

To connect the slave to the master for replication, it is necessary to have an account
with certain privileges, in addition to a shell account with access to critical files. For
security reasons, it is usually a good idea to restrict the account used for configuring
the master and slave to just the necessary privileges.

* To create and drop users, the account needs to have the CREATE USER privilege.

* To grant the REPLICATION SLAVE to the replication account, it is necessary to have
the REPLICATION SLAVE privilege with the GRANT OPTION.

To perform further replication-related procedures (shown later in this chapter), you
need a few more options:

* Toexecutethe FLUSH LOGS command (or any FLUSH command), you need the RELOAD
privilege.

* Toexecute SHOW MASTER STATUS and SHOW SLAVE STATUS, you need either the SUPER or
REPLICATION CLIENT privilege.

* To execute CHANGE MASTER TO, you need the SUPER privilege.

For example, to give mats sufficient privileges for all the procedures in this chapter,
issue the following:

server> GRANT REPLICATION SLAVE, RELOAD, CREATE USER, SUPER
-> ON *.*
-> TO mats@'192.168.2.%"
-> WITH GRANT OPTION;

16 | Chapter2: MySQL Replication Fundamentals

A Brief Introduction to the Binary Log

What makes replication work is the binary log (or just binlog), which is a record of all
changes made to the database on a server. You need to understand how the binary log
works in order to have control over replication or to fix any problems that arise, so
we’ll give you a bit of background in this section.

Figure 2-2 shows a schematic view of the replication architecture, containing a master
with a binary log and a slave that receives changes from the master via the binary log.
We will cover the replication architecture in detail in Chapter 6. When a statement is
about to finish executing, it writes an entry to the end of the binary log and sends the
statement parser a notification that it has completed the statement. Usually only the
statement that is about to finish executing is written to the binary log, but there are
some special cases where other information is written—either in addition to the state-
ment or instead of the statement. It will soon be clear why this is so, but for the time
being, you can pretend that only the statements that are being executed are being writ-
ten to the binary log.

Master Slave

v

w7

Figure 2-2. Role of the binary log in replication

What's Recorded in the Binary Log

The purpose of the binary log is to record changes made to the tables in the database.
The binary log can then be used for replication, as well as for PITR (discussed in
Chapter 12) and in some limited cases for auditing.

Note that the binary log contains only changes made to the database, so for statements
that do not change any data in the database, no entry is written to the binary log.

Traditionally, MySQL replication records changes by preserving the SQL statement
that made the change. This is called statement-based replication. Statement-based rep-
lication runs into constraints that prevent it from replicating all statements correctly,
so as of version 5.1, MySQL also offers row-based replication. In contrast to

A Brief Introduction to the Binary Log | 17

statement-based replication, row-based replication individually records each change to
a row in the binary log. In addition to being more convenient, row-based replication
can offer some speed advantages in certain situations.

To imagine the difference, consider a complex update that uses a lot of joins or WHERE
clauses. Instead of reexecuting all the logic on the slave in statement-based replication,
all you really need to know is the state of the row after the change. On the other hand,
if a single update changes 10,000 rows, you’d rather record just the statement instead
of 10,000 separate changes as row-based replication does.

We will cover row-based replication in Chapter 6, explaining its implementation and
its use. In the examples that follow, we’ll focus on statement-based replication because
it’s easier to understand in respect to activities executed against the database.

Watching Replication in Action

Using the replication example from the previous section, let’s take a look at the binlog
events for some simple statements. Let’s start by connecting a command-line client to
the master and executing a few commands to get a binary log:

master> CREATE TABLE tbl (text TEXT);
Query OK, 0 rows affected (0.04 sec)

master> INSERT INTO tbl VALUES ("Yeah! Replication!");
Query OK, 1 row affected (0.00 sec)

master> SELECT * FROM tbl;

B Rt e +
| text |
B Rt e +
| Yeah! Replication! |
B R T e +

1 row in set (0.00 sec)

master> FLUSH LOGS;
Query OK, 0 rows affected (0.28 sec)

The FLUSH LOGS command forces the binary log to rotate, which will allow us to see a
“complete” binlog file in all its glory. To take a closer look at this file, use the SHOW
BINLOG EVENTS command, as shown in Example 2-4.

Example 2-4. Checking what events are in the binary log

master> SHOW BINLOG EVENTS\G
1. row
Log name: master-bin.000001
Pos: 4
Event_type: Format_desc
Server _id: 1
End log pos: 106
Info: Server ver: 5.1.33, Binlog ver: 4

18 | Chapter2: MySQL Replication Fundamentals

krskctokskstokokskkskokkskfokkskokokkskkokkk 9 g Rokkskskokkk

Log _name: master-bin.000001
Pos: 106
Event_type: Query
Server_id: 1
End_log pos: 197

Info: use “test’; CREATE TABLE tbl (text TEXT)
sk skskokokok k 3. row skokokokokok sk kkkok

Log_name: master-bin.000001
Pos: 197
Event_type: Query
Server_id: 1
End log pos: 305
Info: use “test’; INSERT INTO tbl VALUES ("Yeah! Replication!")
4. rTow
Log name: master-bin.000001
Pos: 305
Event_type: Rotate
Server _id: 1
End_log pos: 349
Info: master-bin.000002;pos=4
4 rows in set (0.02 sec)

In this binary log, we can now see four events: a format description event, two query
events, and a rotate event. The query event is how statements executed against the
database are normally written to the binary log, whereas the format description and
rotate events are used by the server internally to manage the binary log. We will discuss
these events in more detail in Chapter 6, but for now, let’s take a closer look at the
columns given for each event:

Event_type
This is the type of the event. We have seen three different types here, but there are
many more. The type of the event is the basic way that we can transport information
to the slave. Currently—in MySQL 5.1.18 to 5.1.39—there are 27 events (several
of them are not used, but they are retained for backward compatibility), but this
is an extensible range and new events are added if later versions require additional
events.

Server_id
This is the server ID of the server that created the event.

Log_name
This is the name of the file that stores the event. An event is always contained in a
single file and will never span two files.

Pos
This is the position of the file where the event starts; that is, it’s the first byte of the
event.

A Brief Introduction to the Binary Log | 19

End_log pos
This gives the position in the file where the event ends and the next event starts.
This is one higher than the last byte of the event, so the bytes in the range Pos to
End_log pos - 1 are the bytes containing the event and the length of the event can
be computed as End_log_pos - Pos.

Info
This is human-readable text with information about the event. Different informa-
tion is printed for different events, but you can at least count on the query event
to print the statement that it contains.

The first two columns, Log_name and Pos, make up the binlog position of the event and
will be used to indicate the location or position of an event. In addition to what is shown
here, each event contains a lot of other information—for example, a timestamp, which
is the number of seconds since the epoch (a classic Unix moment in time, such as
1970-01-01 00:00:00 UTC).

The Binary Log’s Structure and Content

As we explained, the binary log is not actually a single file, but a set of files that allow
for easier management (such as removing old logs without disturbing recent ones). The
binary log consists of a set of binlog files with the real contents as well as a binlog index
file, which keeps track of which binlog files exist. Figure 2-3 shows how a binary log is
organized.

Figure 2-3. Structure of the binary log

One binlog file is the active binlog file. This is the file that is currently being written to
(and usually read from as well).

Each binlog file starts with a format description event and ends with a rotate event. The
format description log event contains, among other things, the version of the server
that produced the file and general information about the server and binary log. The

20 | Chapter2: MySQL Replication Fundamentals

rotate event tells where the binary log continues by giving the filename of the next file
in the sequence.

Each file is organized into binary log events, where each event makes a standalone,
atomic piece of the binary log. The format description log event contains a flag that
marks the file as properly closed. While a binlog file is being written, the flag is set, and
when the file is closed, the flag is cleared. This way, it is possible to detect corrupt binlog
files in the event of a crash and allow replication to recover.

If you try to execute additional statements at the master, you will observe something
strange: no changes are seen in the binary log:

master> INSERT INTO tbl VALUES ("What's up?");

Query OK, 1 row affected (0.00 sec)

master> SELECT * FROM tbl;

B e talatalats +
| text |
B alatalats +
| Yeah! Replication! |
| What's up? |
B e talats +

1 row in set (0.00 sec)

master> SHOW BINLOG EVENTS\G
same as before

What happened to the new event? Well, as you already know, the binary log consists
of several files, and the SHOW BINLOG EVENTS statement shows only the contents of the
first binlog file. This is contrary to what most users expect, which is to see the contents
of the active binlog file. If the name of the first binlog file is master-bin.000001 (con-
taining the events shown previously), you can take a look at the events in the next binlog
file, in this case named master-bin.000002, using the following:

master> SHOW BINLOG EVENTS IN 'master-bin.000002'\G
** 1. row
Log _name: master-bin.000002
Pos: 4
Event_type: Format_desc
Server_id: 1
End_log pos: 106
Info: Server ver: 5.1.30-log, Binlog ver: 4
krskokoksktokokskokskokskskotokskokokokskokskokkk 9 gy Rkskkokskkokokskokokok
Log _name: master-bin.000002
Pos: 106
Event_type: Query
Server_id: 1
End_log pos: 205
Info: use “test’; INSERT INTO tbl VALUES("What's up?")
2 rows in set (0.00 sec)

A Brief Introduction to the Binary Log | 21

You might have noticed in Example 2-4 that the binary log ends with a rotate event
and that the Info field contains the name of the next binlog file and position where the
events start. To see which binlog file is currently being written, you can use the SHOW
MASTER STATUS command:

master> SHOW MASTER STATUS\G
*RREE 1, Tow **
File: master-bin.000002
Position: 205
Binlog Do DB:
Binlog Ignore DB:
1 row in set (0.00 sec)

Now that you’ve finished taking a look at the binary log, stop and reset the slave and
drop the table:

master> DROP TABLE tbl;

Query OK, 0 rows affected (0.00 sec)

slave> STOP SLAVE;
Query OK, 0 rows affected (0.08 sec)

slave> RESET SLAVE;
Query OK, 0 rows affected (0.00 sec)
After that, you can drop the table and reset the master to start fresh:
master> DROP TABLE tbl;
Query OK, 0 rows affected (0.00 sec)

master> RESET MASTER;
Query OK, 0 rows affected (0.04 sec)

The RESET MASTER command removes all the binlog files and clears the binlog index file.
The RESET SLAVE statement removes all files used by replication on the slave to get a
clean start.

Neither the RESET MASTER nor the RESET SLAVE command is designed to
work when replication is active, so:
* When executing the RESET MASTER command (on the master), make
sure that no slaves are attached.

* When executing the RESET SLAVE command (on the slave), make
sure that the slave does not have replication active by issuing a STOP
SLAVE command.

We will cover the most basic events in this chapter, but for the complete list with all
its gory details, please refer to the MySQL Internals Manual.

22 | Chapter2: MySQL Replication Fundamentals

Python Support for Managing Replication

The ability to automate administrative procedures is critical to handling large deploy-
ments, so you might be asking yourself, “Wouldn’t it be neat if we could automate the
procedures?” In this case, you’ll be happy to hear that you can. Using the descriptions
from the previous sections, we will start here to design a simple library for managing
replication. The library will be extended with new functionality in the coming chapters.

The project is available at Launchpad, where you can find information and download
the source code and documentation.

First, you have to create a model of how your servers are connected via replication.
There are innumerable ways to connect a large number of servers, but when connecting
them, you set them up in a certain configuration, called the topology. We will cover
topologies in Chapter 5, but the basic topologies are the simple one shown in Fig-
ure 2-4, a tree topology, and dual masters (used for providing high availability).

The basic idea is to have a model of how the servers are connected on a computer (any
computer, such as your laptop), as in Figure 2-4, and design the library so you can
manage the connections by changing the model. For example, to reconnect a slave to
another master, just reconnect the slave in the model, and the library will send the
appropriate commands for doing the job.

Figure 2-4. A replication topology with a model

A Brief Introduction to the Binary Log | 23

To make the library useful on a wide variety of platforms and for a wide variety of
deployments, keep the following in mind:

The servers are likely to run on a variety of operating systems, such as Windows,
Linux, and flavors of Unix such as Solaris or Mac OS X. Procedures for starting
and stopping servers, as well as the names of configuration files, differ depending
on the operating system. The library should therefore support different operating
systems and it should be possible to extend it with new operating systems that are
not in the library.

The deployment is likely to consist of servers running different versions of MySQL.
For example, while you are upgrading a deployment to use new versions of the
server, it will consist of a mixture of old and new versions. The library should be
able to handle such a deployment.

A deployment consists of servers with many different roles, so it should be possible
to specify different roles for the servers. In addition, it should be possible to create
new roles that weren’t anticipated at the beginning.

It is necessary to be able to execute SQL queries on each server. This is needed for
configuration as well as for extracting information necessary to manage the
deployment.

It is necessary to be able to execute shell commands on each machine. This is
needed to perform some administrative tasks that cannot be done using the SQL
interface.

Itshould be possible to add and remove options from the server’s configuration file.
The library should support a deployment with multiple servers on a machine. This

requires the ability to recognize different configuration files and database files used
by different MySQL servers on a single machine.

There should be a set of utilities for performing common tasks such as setting up
replication, but it should also be possible to extend the library with new utility
functions that were not anticipated at the beginning.

The interface hides these complexities as much as possible and presents a simple in-
terface in Python. Python was chosen by the authors because it is concise, easy to read,
available on all operating systems that run MySQL, and increasingly popular for gen-
eral-purpose scripting. Example 2-5 illustrates how you can use the library, offering a
short example for redirecting all slaves to use a new master.

Note that this code is just an example of how you can use the library. As the code stands,
it stops replication in its tracks and is likely to lose transactions if executed on an active
server. You will see how to change masters properly in Chapter 4.

Example 2-5. Using the library to redirect slaves

import MyDeployment

for slave in MyDeployment.slaves:

24 | Chapter2: MySQL Replication Fundamentals

slave.stop()
change_master(slave, MyDeployment.master[1])
slave.start()

The following sections show the code that makes such applications possible. To avoid
cluttering the code more than necessary, we have removed some error checking and
other defensive measures needed to have a stable and safe library. You will find the
complete code for the library at http://launchpad.net/mysql-replicant-python.

Basic Classes and Functions

The first things you need in order to use the library are some basic definitions for
frequently used parameters.

The first classes are exceptions that will be used by functions in the library.

Error
This is the base class for all exceptions in the library.

EmptyRowError
This exception is thrown when an attempt is made to select a field from a query
that did not return any rows.

NoOptionError
This exception is raised when ConfigManager does not find the option.

SlaveNotRunningError
This exception is raised when the slave is not running but was expected to run.

NotMasterError
This exception is raised when the server is not a master and the operation is there-
fore illegal.

NotSlaveError
This exception is raised when the server is not a slave and the operation is therefore
illegal.

Position
This class represents a binlog position consisting of a filename and a byte offset
within the file. A representation method prints out a parsable representation of the
binlog positions (e.g., to store them in secondary storage or just to look at them).

To compare and order the positions, the class defines a comparison operator that

lets the library put binlog positions in order. Note that positions can be different

on different servers, so it is not useful to compare positions from different servers.
User

This class represents a user with a name and a password. It is used for many types

of accounts: a MySQL user account, a shell user account, and the replication user

(which we will introduce later).

A Brief Introduction to the Binary Log | 25

Operating System

To work with different operating systems, you can use a set of classes that abstract
away the differences. The idea is to give each class methods for each of the required
tasks that are implemented differently by different operating systems. At this time, all
we need are methods to stop and start the server.

Machine
This class is the base class for a machine and holds all the information that is
common to this kind of machine. It is expected that a machine instance has at least
the following members:

Machine.defaults file
The default location of the my.cnf file on this machine

Machine.start server(server)
Method to start the server

Machine.stop_server(server)
Method to stop the server

Linux
This class handles a server running on a Linux machine. This class uses the
init(8) scripts stored under /etc/init.d to start and stop the server.

Solaris
This class handles servers running on a Solaris machine and uses the svadm(1M)
command to start and stop the server.

Server Class

The Server class defines all the primitive functions that implement the higher-level
functions we want to expose in the interface:

Server.Server(name, ...)
The Server class represents a server in the system; there is one object for each
running server in the entire system. Only the most important parameters are de-
scribed here; for a full list, please consult the project page on Launchpad.

name
This is the name of the server, and is used to create values for the pid-file,
log-bin, and log-bin-index options. If no name parameter is provided, it will
be deduced from the pid-file option, the log-bin option, the log-bin-index
option, or as a last resort, using the default.

host, port, and socket
The host where the server resides, the port for connecting to the server as a
MySQL client, and—when on the same host—the socket through which to
connect.

26 | Chapter2: MySQL Replication Fundamentals

ssh_user
A combination of user and password that can be used for connecting to the
machine that is running the server. Use this to execute administrative com-
mands such as starting and stopping the server and reading and writing the
configuration file.

sql user
A combination of user and password for connecting to the server as a MySQL
user account to execute SQL commands.

machine
An object that holds operating system—specific primitives. We chose the name
to avoid a name conflict with the standard library os module. This parameter
lets you use different techniques for starting and stopping the server as well as
other tasks and operating system—specific parameters. The parameters will be
covered later.

server id
An optional parameter to hold the server’s ID, as defined in each server’s con-
figuration file. If this option is omitted, the server ID will be read from the
configuration file of the server. If there is no server ID in the configuration file
either, the serveris a vagabond and does not participate in replication as master
or slave.

config manager
An optional parameter to hold a reference to a configuration manager that can
be queried for information about the configuration for the server.

Server.connect() and Server.disconnect()
Use the connect and disconnect methods to establish a connection to the server
before executing commands in a session and disconnect from the server after fin-
ishing the session, respectively.

These methods are useful because in some situations it is critical to keep the con-
nection to the server open even after an SQL command has been executed. Oth-
erwise, for example, when doing a FLUSH TABLES WITH READ LOCK, the lock will
automatically be released when the connection is dropped.

Server.ssh(command) and Server.sql(command, args)
Use these to execute a shell command or an SQL command on the server.

The ssh and sql methods both return an iterable. ssh returns a list of the lines of
output from the executed command, whereas sql returns a list of objects of an
internal class named Row. The Row class defines the _iter and next methods so
that you iterate over the returned lines or rows, for example:

for row in server.sql("SHOW DATABASES"):
print row["Database"]

A Brief Introduction to the Binary Log | 27

To handle statements that return a single row, the class also defines a
__getitem_ method, which will fetch a field from the single row or raise an
exception if there is no row. This means that when you know your return value
has only one row (which is guaranteed for many SQL statements), you can avoid
the loop shown in the previous example and write something like:

print server.sql("SHOW MASTER STATUS")["Position"]

Server.fetch_config() and Server.replace config()
The methods fetch_config and replace config fetch the configuration file into
memory from the remote server to allow the user to add or remove options as well
as change the values of some options. For example, to add a value to the log-bin
and log-bin-index options, you can use the module as follows:
config = master.fetch_config()
config.set('log-bin', 'capulet-bin')
config.set('log-bin-index', 'capulet-bin.index")
master.replace_config(config)
Server.start() and Server.stop()
The methods start and stop forward information to the machine object to do their
jobs, which depend on the operating system the server is using. The methods will
either start the server or shut down the server, respectively.

Server Roles

Servers work slightly differently depending on their roles. For example, masters require
a replication user for slaves to use when connecting, but slaves don’t require that user
account unless they act as a master and have other slaves connecting. To capture the
configuration of the servers in a flexible manner, classes are introduced for representing
different roles.

When you use the imbue method on a server, the appropriate commands are sent to the
server to configure it correctly for that role. Note that a server might change roles in
the lifetime of a deployment, so the roles given here just serve to configure the initial
deployment. However, a server always has a designated role in the deployment and
therefore also has an associated role.

When a server changes roles, it might be necessary to remove some of the configuration
information from the server, so therefore an unimbue method is also defined for a role
and used when switching roles for a server.

In this example, only three roles are defined. Later in the book you will see more roles

defined.

Role
This is the base class of all the roles. Each derived class needs to define the methods
imbue and (optionally) unimbue to accept a single server to imbue with the role. To

28 | Chapter2: MySQL Replication Fundamentals

aid derived classes with some common tasks, the Role class defines a number of
helper functions.

Role.imbue(server)
This method imbues the server with the new role by executing the appropriate
code.

Role.unimbue(server)
This method allows a role to perform cleanup actions before another role is
imbued.

Role. set server id(server, config)
If there is no server ID in the configuration, this method sets it to
server.server_id. If the configuration has a server ID, it will be used to set the
value of server.server_id.

Role. create repl user(server, user)
This method creates a replication user on the server and grants it the necessary
rights to act as a replication slave.

Role. enable binlog(server, config)
This method enables the binary log on the server by setting the log-bin and
log-bin-index options to appropriate values. If the server already has a value
for log-bin, this method does nothing.

Role. disable binlog(server, config)
This method disables the binary log by clearing the log-bin and log-bin-
index options in the configuration file.

Vagabond
This is the default role assigned to any server that does not participate in the rep-
lication deployment. As such, the server is a “vagabond” and does not have any
responsibilities whatsoever.

Master
This role is for a server that acts as a master. The role will set the server ID, enable
the binary log, and create a replication user for the slaves. The name and password
of the replication user will be stored in the server so that when slaves are connected,
the class can look up the replication username.

Final
This is the role for a (final) slave—that is, a slave that does not have a binary log
of its own. When a server is imbued with this role, it will be given a server ID, the
binary log will be disabled, and a CHANGE MASTER command will be issued to connect
the slave to a master.

Note that we stop the server before we write the configuration file back to it, and restart
the server after we have written the configuration file. The configuration file is read
only when starting the server and closed after the reading is done, but we play it safe
and stop the server before modifying the file.

A Brief Introduction to the Binary Log | 29

One of the critical design decisions here is to not store any state information about the
servers that roles apply to. It might be tempting to keep a list of all the masters by adding
them to the role object, but since roles of the servers change over the lifetime of the
deployment, the roles are used only to set up the system. Because we allow a role to
contain parameters, you can use them to configure several servers with the same
information.

slave_role = Final(master=MyDeployment.master)

for slave in MyDeployment.slaves:
slave_role.imbue(slave)

Creating New Slaves

Now that you know a little about the binary log, we are ready to tackle one of the basic
problems with the way we created a slave earlier. When we configured the slave, we
provided no information about where to start replication, so the slave will start reading
the binary logs on the master from the beginning. That’s clearly not a very good idea
if the master has been running for some time: in addition to making the slave replay
quite a lot of events just to ramp up, you might not be able to obtain the necessary logs,
because they might have been stored somewhere else for safekeeping and removed from
the master (we’ll discuss that more in Chapter 12 when we talk about backups and
PITR). So we need another way to create new slaves—called bootstrapping a slave—
without starting replication from the beginning.

The CHANGE MASTER TO command has two parameters that will help us here:
MASTER_LOG_FILE and MASTER_LOG_POS. You can use these to specify the binlog position
at which the master should start sending events instead of starting from the beginning.

Using these parameters to CHANGE MASTER TO, we can bootstrap a slave using the fol-
lowing steps:
1. Configure the new slave.

2. Make a backup of the master (or of a slave that has been replicating the master).
See Chapter 12 for common backup techniques.

3. Write down the binlog position that corresponds to this backup (in other words,
the position following the last event leading up to the master’s current state).

4. Restore the backup on the new slave. See Chapter 12 for common restore
techniques.

5. Configure the slave to start replication from this position.

Depending on whether you use the master or a slave as a baseline in step 2, the proce-
dure differs slightly, so we will start by describing how to bootstrap a new slave when
you only have a single server running that you want to use as master—this is called
cloning the master.

30 | Chapter2: MySQL Replication Fundamentals

Cloning a master means taking a snapshot of the server, which is usually accomplished
by creating a backup. There are various techniques for backing up the server, but in
this chapter, we have decided to use one of the simpler techniques: running mysql
dump to create a logical backup. Other options are to create a physical backup by copying
the database files, online backup techniques such as InnoDB Hot Backup, or even
volume snapshots using Linux LVM (Logical Volume Manager). The various techni-
ques will be described fully in Chapter 12, along with a discussion of their relative
merits.

Cloning the Master

The mysqldump utility has options that allow you to perform all the steps in this section
in a single step, but to explain the necessary operations, we will perform all the steps
here individually. You will see a more compact version later in this section.

To clone the master, as shown in Figure 2-5, start by creating a backup of the master.
Since the master is probably running and has a lot of tables in the cache, it is necessary
to flush all tables and lock the database to prevent changes before checking the binlog
position. You can do this using the FLUSH TABLES WITH READ LOCK command:

master> FLUSH TABLES WITH READ LOCK;
Query OK, 0 rows affected (0.02 sec)

Cloning

Figure 2-5. Cloning a master to create a new slave

Once the database is locked, you are ready to create a backup and note the binlog
position. Since no changes are occurring on the master, the SHOW MASTER STATUS com-
mand will correctly reveal the current file and position in the binary log. We will go
through the details of the SHOW MASTER STATUS and the SHOW MASTER LOGS commands in
Chapter 6.

master> SHOW MASTER STATUS\G

1. row
File: master-bin.000042
Position: 456552
Binlog Do DB:

A Brief Introduction to the Binary Log | 31

Binlog Ignore DB:
1 row in set (0.00 sec)

The position of the next event to write is master-bin.000042, 456552, which is where
replication should start, since everything before this point will be in the backup. Once
you have jotted down the binlog position, you can create your backup. The easiest way
to create a backup of the database is to use mysqldump:

$ mysqldump --all-databases --host=master-1 >backup.sql

Since you now have a faithful copy of the master, you can unlock the tables of the
database on the master and allow it to continue processing queries.

master> UNLOCK TABLES;
Query OK, 0 rows affected (0.23 sec)

Next, restore the backup on the slave using the mysql utility:
$ mysql --host=slave-1 <backup.sql

You have now restored the backup of the master on the slave and can start the slave.
Recalling the binlog position of the master that you wrote down previously, configure
the slave using CHANGE MASTER TO and start the slave:

slave> CHANGE MASTER TO
-> MASTER_HOST = 'master-1',
-> MASTER_PORT = 3306,
-> MASTER_USER = 'slave-1',
-> MASTER_PASSWORD = 'xyzzy',
-> MASTER_LOG_FILE = 'master-bin.000042',
-> MASTER_LOG_POS = 456552;
Query OK, 0 rows affected (0.00 sec)

slave> START SLAVE;
Query OK, 0 rows affected (0.25 sec)

It is possible to have mysqldump perform many of the previous steps au-
tomatically. To make a logical backup of all databases on a server called
master, enter:

$ mysqldump --host=master -all-databases \
> --master-data=1 >backup-source.sql

The --master-data=1 option makes mysqldump write a CHANGE MASTER
TO statement with the file and position in the binary log, as given by SHOW
MASTER STATUS.

You can then restore the backup on a slave using;:
$ mysql --host=slave-1 <backup-source.sql

Note that you can only use --master-data=1 to get a CHANGE MASTER TO
statement for the master. When cloning the slave later, it is necessary
to perform all the steps given in the following section.

32 | Chapter2: MySQL Replication Fundamentals

Congratulations! You have now cloned the master and have a new slave up and running.
Depending on the load of the master, you might need to allow the slave to catch up
from the position you jotted down, but that requires far less effort than starting from
the beginning.

Depending on how long the backup took, there might be a lot of data to catch up to,
so before bringing the slave online, you might want to read through “Managing Con-
sistency of Data” on page 184.

Cloning the Slave

Once you have a slave connected to the master, you can use the slave instead of the
master to create new slaves. That way, you can create a new slave without bringing the
master offline. If you have a large or high-traffic database, the downtime could be con-
siderable, considering both the time to create the backup and the time for the slaves to
catch up.

The process of cloning a slave is illustrated in Figure 2-6 and is basically the same as
for a master, but it differs in how you find the binlog position. You also need to take
into consideration that the slave you are cloning from is replicating a master.

Master

New Slave

Figure 2-6. Cloning a slave to create a new slave

The first thing you have to do before starting a backup is to stop the slave so that no
more changes occur on it. If replication is running while you create the backup, you
will have an inconsistent backup image if changes are made to the database while it is
being backed up. The exception is if you use some form of online backup method—
such as InnoDB Hot Backup—in which case you do not need to stop the slave before
creating the backup.

original-slave> STOP SLAVE;
Query OK, 0 rows affected (0.20 sec)

A Brief Introduction to the Binary Log | 33

After the slave is stopped, you can flush the tables as before and create the backup.
Since you created a backup of the slave (not the master), use the SHOW SLAVE STATUS
command instead of SHOW MASTER STATUS to determine where to start replication. The
output from this command is considerable, and it will be covered in detail in Chap-
ter 6, but to get the position of the next event in the binary log of the master that the
slave will execute, note the value of the fields Relay Master Log File and Exec_Mas
ter_Log_Pos.

original-slave> SHOW SLAVE STATUS\G
Relay Master Log File: master-bin.000042
Exec_Master_Log Pos: 546632

After creating the backup and restoring it on the new slave, configure replication to
start from this position and start the new slave:

new-slave> CHANGE MASTER TO
-> MASTER_HOST = 'master-1',
-> MASTER_PORT = 3306,
-> MASTER_USER = 'slave-1',
-> MASTER_PASSWORD = 'xyzzy',
-> MASTER_LOG_FILE = 'master-bin.000042',
-> MASTER_LOG_POS = 546632;
Query OK, 0 rows affected (0.19 sec)

new-slave> START SLAVE;
Query OK, 0 rows affected (0.24 sec)

Cloning the master and cloning the slave differ only on some minor points, which
means that our Python library will be able to combine the two into a single procedure
for creating new slaves by creating the backup at a source server and connecting the
new slave to a master.

A common technique for making backups is to call FLUSH TABLES WITH
“ﬁ’@ READ LOCK and then to create an archive of the database files. This is

usually much faster, but FLUSH TABLES WITH READ LOCK is not safe for use
with InnoDB!

FLUSH TABLES WITH READ LOCK does lock the tables, preventing any new
transactions from starting, but there are several activities going on in the
background that FLUSH TABLES WITH READ LOCK does not prevent.

Use the following to create a backup of InnoDB tables safely:

1. Shut down the server and copy the files. This can be an advantage
if the database is big, as restoring data with mysqldump can be slow.

2. Use mysqldump after performing FLUSH TABLES WITH READ LOCK (as
we did earlier).

3. Use a snapshot solution such as LVM (on Linux) or ZFS (Zettabyte
File System) snapshots (on Solaris) after using FLUSH TABLES WITH
READ LOCK.

34 | Chapter2: MySQL Replication Fundamentals

Scripting the Clone Operation

The Python library clones a master simply by copying the database from the master
using the Server object that represents the master. To do this, it uses a clone function,
which you will see in Example 2-7.

Cloning a slave is similar, but the backup is taken from one server, while the new slave
connects to another server to perform replication. It is easy to support cloning both a
master and a slave by using two different parameters: a source parameter that specifies
where the backup should be created and a use_master parameter that indicates where
the slave should connect after the backup is restored. A call to the clone method looks

like:

clone(slave = slave[1], source = slave[0], use_master = master)

The next step is to write some utility functions to implement the cloning function,
which will also come in handy for other activities. Example 2-6 shows the following
functions:

fetch_master pos
Fetches the binlog position from a master (that is, the position of the next event
the master will write to the binary log).

fetch_slave pos
Fetches the binlog position from a slave (that is, the position of the next event to
read from the master).

replicate from
Accepts as arguments a slave, a master, and a binlog position, and directs the slave
to replicate from the master starting with the given position.

The replicate_from function reads the field repl user from the master to get the name
and password of the replication user. If you look at the definition of the Server class,
you’ll find that there is no such field. It is added by the Master role when the server is
imbued.

Example 2-6. Utility functions to fetch the master and slave positions of a server

_CHANGE_MASTER TO = """CHANGE MASTER TO
MASTER_HOST=%s, MASTER PORT=%s,
MASTER_USER=%s, MASTER PASSWORD=%s,
MASTER_LOG_FILE=%s, MASTER LOG_P0S=%s"""

def replicate from(slave, master, position):
slave.sql(_CHANGE_MASTER TO, (master.host, master.port,
master.repl_user.name,
master.repl user.passwd,
position.file, position.pos))

def fetch_master pos(server):
result = server.sql("SHOW MASTER STATUS")
return mysqlrep.Position(server.server id, result["File"], result["Position"])

A Brief Introduction to the Binary Log | 35

def fetch_slave pos(server):
result = server.sql("SHOW SLAVE STATUS")
return mysqlrep.Position(server.server_id, result["Relay Master Log File"],
result["Exec_Master_Log Pos"])

These are all the functions needed to create the clone function. To clone a slave, the
calling application passes a separate use_master argument, causing clone to direct the
new slave to that master for replication. To clone a master, the calling application omits
the separate use_master argument, causing the function to use the “source” server as a
master.

Since there are many ways to create a backup of a server, Example 2-7 restricts the
method to one choice, using mysqldump to create a logical backup of the server. Later,
we will demonstrate how to generalize the backup procedure so that you can use the
same basic code to bootstrap new slaves using arbitrary backup methods.

Example 2-7. Function to clone either the master or the slave

def clone(slave, source, use master = None):
from subprocess import call
backup_file = open(server.host + "-backup.sql",
if master is not None:
stop_slave(source)
lock database(source)
if master is None:
position = fetch master position(source)
else:
position = fetch slave position(source)
call(["mysqldump", "--all-databases", "--host='%s'" % source.host],
stdout=backup_file)
if master is not None:
start_slave(source)
backup_file.seek() # Rewind to beginning
call(["mysql", "--host="%s'" % slave.host], stdin=backup file)
if master is None:
replicate from(slave, source, position)
else:
replicate from(slave, master, position)
start_slave(slave)

"'w")

Performing Common Tasks with Replication

Each of the common scale-out strategies—hot standbys and so forth—involve their
own implementation details and possible pitfalls. We’ll show you how to perform some
of these tasks and how to enhance the Python library to support them.

36 | Chapter2: MySQL Replication Fundamentals

Passwords are omitted from the examples in this section. When con-
figuring the accounts to control the servers, you can either allow access
%s only from certain hosts that control the deployment (by creating ac-
" counts such asmats@'192.168.2.136"), or you can supply passwords to
the commands.

Reporting

Most businesses need a lot of routine reports: weekly reports on the items sold, monthly
reports on expenses and revenues, and various kinds of heavy data mining to spot trends
or identify focus groups for the marketing department.

Running these queries on the master can prove to be troublesome. Data-mining queries
can require a lot of computing resources and can slow down normal operations only
to find out that, say, a focus group for left-handed scissors might not be worthwhile to
conduct. In addition, these reports are typically not very urgent (compared to process-
ing normal transactions), so there is no need to create them as quickly as possible. In
other words, because these reports are not time-critical, it does not matter much if they
take two hours to complete instead of one.

Reporting often needs to cover a precise interval, such as a summary of all sales for the
day, so it is necessary to stop replication at the right moment so you don’t get any sales
for the following day in the report. Since there is no way to stop the slave when it sees
an event with a certain date or time, it has to be done some other way.

A better idea is to dust off a spare server (or two, if you have enough reporting require-
ments) and set it up to replicate from the master. When you need to do the reporting,
you can stop replication, run your reporting applications, then start replication again,
all without disturbing the master.

Let’s pretend that reports are needed once each day, and that all transactions from
midnight to midnight shall be included. It is necessary to stop the reporting slave at
midnight so that no events from after midnight are executed on the slave and all events
from before midnight are executed on the slave. The intention is not to do this manually,
so let’s consider how we can automate the procedure. The following steps will accom-
plish what we want:

1. Just before midnight, perhaps five minutes before midnight, stop the reporting
slave so that no events come from the master.

2. After midnight, check the binary log on the master and find the last event that was
recorded before midnight. Obviously, if you do this before midnight, you might
not have seen all events for the day yet.

3. Record the binlog position of this event and start the slave to run until this position.

4. Wait until the slave has reached this position and stopped.

Performing Common Tasks with Replication | 37

The firstissue is how to schedule the jobs correctly. There are different ways to do this,
depending on the operating system. While we won’t go into all the details here, you
can see how to schedule tasks for Unix-like operating systems, such as Linux, in
“Scheduling tasks on Unix” on page 42.

Stopping the slave is as simple as executing STOP SLAVE and noting the binlog position
after the slave is stopped.

slave> STOP SLAVE;
Query OK, 0 rows affected (0.25 sec)

slave> SHOW SLAVE STATUS\G
Relay Master Log File: capulet-bin.000004

Exec_Master_Log Pos: 2456
1 row in set (0.00 sec)

The remaining three steps are executed before the actual reporting starts and usually
as part of the script that does the actual reporting. Before outlining the script, let’s
consider how to perform each step.

To read the contents of the binary log, invoke a utility called mysqlbinlog. This will be
introduced in detail later, but this utility is used in the second step. The mysqlbinlog
utility has the two handy options --start-datetime and --stop-datetime, which you
can use to read only a portion of the binary log. So, to get all events from the time that
you stopped the slave to just before midnight, use the following command:

$ mysqlbinlog --force --read-from-remote-server --host=reporting.bigcorp.com \

> --start-datetime="'2009-09-25 23:55:00' --stop-datetime='2009-09-25 23:59:59"' \
> binlog files

The timestamp stored in each event is the timestamp when the state-
ment started executing, not the timestamp when it was written to the

binary log.

Since the --stop-datetime option will stop emitting events on the first
timestamp after the date/time supplied, it is possible that there is an
event that started executing before the date/time but was written to the
binary log after the date/time and is not included in the range given.

Since the master is writing to the binary logs at this time, it is necessary to supply the
--force option. Otherwise, mysqlbinlog will refuse to read the open binary log. To
execute this command, it is necessary to supply a set of binlog files to read. Since the
names of these files are dependent on configuration options, the names of these files
have to be fetched from the server. After that, it is necessary to figure out the range of
binlog files that needs to be supplied to the mysqlbinlog command. Getting the list of
binlog filenames is easy to do with the SHOW BINARY LOGS command:

38 | Chapter2: MySQL Replication Fundamentals

master> SHOW BINARY LOGS;

e . +
| Log_name | File_size |
fommmemmemcae e R +
| capulet-bin.000001 | 24316 |
| capulet-bin.000002 | 1565

| capulet-bin.000003 | 125

| capulet-bin.000004 | 2749 |
fmmmmm e fmmmmmmmmme +

4 rows in set (0.00 sec)

In this case, there are only four files, but there could potentially be quite a lot more.
Scanning a large list of files that were written before the slave was stopped is just a waste
of time, so it is a good idea to try to reduce the number of files to read in order to find
the correct position to stop at. Since you recorded the binlog position in the first step,
when the slave was stopped, it is an easy matter to find the name of the file where the
slave stopped and then take that name and all the following names as input to the
mysqlbinlog utility. Typically, this will only be one file (or two in the event that the
binary log was rotated between stopping the slave and starting the reporting).

When executing the mysqlbinlog command with just a few binlog files, you will get a
textual output for each with some information about the event.

$ mysqlbinlog --force --read-from-remote-server --host=reporting.bigcorp.com \

> --start-datetime="'2009-09-25 23:55:00' --stop-datetime='2009-09-25 23:59:59"' \
> capulet-bin.000004

/*140019 SET @@session.max_insert_delayed threads=0*/;

/*150003 SET @0LD COMPLETION TYPE=@@COMPLETION TYPE,COMPLETION TYPE=0*/;

DELIMITER /*!%*/;

at 4

#090909 22:16:25 server id 1 end_log pos 106 Start: binlog v 4, server v...
ROLLBACK/*1*/;

at 2495

#090929 23:58:36 server id 1 end log pos 2650 Query thread id=27 exe...

SET TIMESTAMP=1254213690/*!1%*/;

SET /*1%/;

INSERT INTO message board(user, message)

VALUES ('mats@sun.com', 'Midnight, and I'm bored')

/*1*/5
The interesting part here is the end_log_pos of the last event in the sequence—in this
case, 2650—since this is where the next event after midnight will be written.

If you were paying attention to the output from the previous command, you saw that
there is no information about which binlog file this byte position is referring to, and it
is necessary to have a file to find the event. If a single file is supplied to the mysqlbin
log command, the filename is obvious, but if two files are supplied, it is necessary to
figure out if the last event for the day is in the first or the second file.

Performing Common Tasks with Replication | 39

If you look at the line containing the end_log_pos, you will also see that the event type
is there. Since every binlog file starts with a format description event—a line for such
an event appears in the previous output—you can check these events to determine the
location of the event you want. If there are two format description events in the output,
the event is in the second file, and if there is just one, it is in the first file.

The final step before starting the reporting work is to start replication and stop it at
exactly the position where the event after midnight will be written (or has already been
written, should that be the case). To do this, you can use the little-known command
START SLAVE UNTIL. This command accepts a master logfile and a master log position
where the slave should stop, and then starts the slave. When the slave reaches the given
position, it will automatically stop.
report> START SLAVE UNTIL
-> MASTER_LOG_POS="capulet-bin.000004",

-> MASTER_LOG_P0S=2650;
Query OK, 0 rows affected (0.18 sec)

Like the STOP SLAVE command (without the UNTIL), the START SLAVE UNTIL command
will return immediately—not, as could be expected, when the slave has reached the
position where it should stop. So, commands issued after STOP SLAVE UNTIL continue
to be executed as long as the slave is running. To wait for the slave to reach the position
you want it to stop at, use the MASTER_POS_WAIT function. This function will block while
waiting for the slave to reach the given position.

report> SELECT MASTER_POS_WAIT('capulet-bin.000004', 2650);
Query OK, 0 rows affected (231.15 sec)

At this point, the slave has stopped at the last event for the day, and the reporting
process can start analyzing the data and generating reports.

Handling reporting in Python
Automating this in Python is quite straightforward.
Example 2-8 shows the code for stopping reporting at the right time.

The fetch_remote_binlog function reads a binary log from a remote server using the
mysqlbinlog command. The contents of the file(s) will be returned as an iterator over
the lines of the file. To optimize the fetches, you can optionally provide a list of files to
scan. You can also pass a start date/time and a stop date/time to limit the date/time
range of the result. These will be passed to the mysqlbinlog program.

The find_datetime position function does the work of scanning the binlog lines to find
the last end_log_pos as well as keeping track of how many start events have been ob-
served. It also contacts the reporting server to find out where it stopped reading the
binlog file and then contacts the master to get the binlog files and find the right one to
start the scan from.

40 | Chapter2: MySQL Replication Fundamentals

Example 2-8. Python code for running replication to a datetime

def fetch_remote_binlog(server, binlog_files=None,
start_datetime=None, stop_datetime=None):
from subprocess import Popen, PIPE
if not binlog_files:
binlog files = [
row["Log_name"] for row in server.sql("SHOW BINARY LOGS")]

command = ["mysqlbinlog",
"--read-from-remote-server",
"--force",
"--host=%s" % (server.host),
"--user=%s" % (server.sql_user.name)]
if server.sql_user.passwd:
command.append("--password=%s" % (server.sql user.passwd))
if start datetime:
command.append("--start-datetime=%s" % (start datetime))
if stop_datetime:
command.append("--stop-datetime=%s" % (stop datetime))
return iter(Popen(command + binlog files, stdout=PIPE).stdout)

def find_datetime position(master, report, start datetime, stop datetime):
from itertools import dropwhile
from mysqlrep import Position
import re

all files = [row["Log _name"] for row in master.sql("SHOW BINARY LOGS")]
stop_file = report.sql("SHOW SLAVE STATUS")["Relay Master Log File"]
files = list(dropwhile(lambda file: file != stop file, all files))
lines = fetch remote_binlog(server, binlog files=files,
start_datetime=start datetime,
stop_datetime=stop datetime)
binlog files = 0
last_epos = None
for line in lines:
m = re.match(r"#\d{6}\s+\d?\d:\d\d:\d\d\s+"
r"server id\s+(?P<sid>\d+)\s+"
r"end_log pos\s+(?P<epos>\d+)\s+"
" (?P<type>\w+)", line)
if m:
if m.group("type") == "Start":
binlog_files += 1
if m.group("type") == "Query":
last_epos = m.group("epos")
return Position(files[binlog files-1], last epos)

You can now use these functions to synchronize the reporting server before the actual
reporting job:

master.connect()

report.connect()

pos = find datetime position(master, report,
start_datetime="2009-09-14 23:55:00",
stop_datetime="2009-09-14 23:59:59")

report.sql("START SLAVE UNTIL MASTER LOG FILE=%s, MASTER_LOG P0S=%s",

Performing Common Tasks with Replication | 41

(pos.file, pos.pos))
report.sql("DO MASTER_POS WAIT(%s,%s)", (pos.file, pos.pos))

code for reporting

As you can see, working with replication is pretty straightforward. This particular ex-
ample introduces several of the critical concepts that we will be using later when talking
about scale-out: how to start and stop the slave at the right time, how to get information
about binlog positions or figure it out using the standard tools, and how to integrate it
all into an automated solution for your particular needs.

Scheduling tasks on Unix

To easiest way ensure the slave is stopped just before midnight and the reporting is
started after midnight is to set up a job for cron(8) that sends a stop slave command to
the slave and starts the reporting script.

For example, the following crontab(5) entries would ensure that the slave is stopped
before midnight, and that the reporting script to roll the slave forward is executed, say,
five minutes after midnight. Here we assume that the stop_slave script will stop the
slave, and the daily report will run the daily report (starting with the synchronization
described above).

stop reporting slave five minutes before midnight, every day
55 23 * * * $HOME/mysql control/stop_slave

Run reporting script five minutes after midnight, every day
5 0 * * * $HOME/mysql_control/daily_report

Assuming that you put this in a crontab file, reporttab, you can install the crontab file
using the command:

$ crontab reporttab

Scheduling tasks on Windows Vista

Scheduling tasks is much easier on Windows Vista than on previous versions of Win-
dows. There have been several major and welcome enhancements to the Task Sched-
uler. The Task Scheduler is now a Microsoft Management Console snap-in and is
integrated with the Event Viewer, which gives you the ability to use events as triggers
for starting tasks. There are also more scheduling and triggering options.

To start the Task Scheduler in Windows Vista, open the Event Scheduler using the
Control Panel, via the Administrator’s Folder on the Start Menu, or by using the run
feature (Windows key + R) and enter taskschd.msc. You will need to respond to the
User Account Control (UAC) dialog box to continue.

42 | Chapter2: MySQL Replication Fundamentals

To create a new task trigger by time, choose Create Basic Task from the Action pane.
This opens the Create Basic Task Wizard, which will guide you through the steps to
create a simple task.

On the first pane of the wizard, name the task and provide an optional description,
then click Next.

The second pane allows you to specify the frequency of the firing of the task. There are
many options here for controlling when the task runs: a single run, daily, weekly, and
even when you log on or when a specific event occurs. Click Next once you’ve made
your choice.

Depending on the frequency you chose, the third pane will allow you to specify the
details (for example, date and time) of when the task fires. Click Next once you have
configured the trigger timing options.

The fourth pane is where you specify the task or action to occur when the task event
occurs (when the task fires). You can choose to start a program, send an email message,
or display a message to the user. Make your selection and click Next to move to the
next pane.

Depending on the action you chose on the previous pane, here you can specify what
happens when the task fires. For example, if you chose to run an application, you enter
the name of the application or script, any arguments, and which folder the task starts in.

Once you have entered all of this information, click Next to review the task on the final
pane. If you’re satisfied all is set correctly, click Finish to schedule the task. You can
click Back to return to any of the previous screens and make changes. Finally, you have
the option to open the properties page after you click Finish; this allows you to make
additional changes to the task.

Conclusion

In this chapter, we have presented an introduction to MySQL replication, including a
look at why replication is used and how to set it up. We also took a quick look into the
binary log. In the next chapter, we examine the binary log in greater detail.

Joel finished giving Mr. Summerson his report on how he was going to balance the load
across four new slaves, along with plans for how the topology could be expanded to
handle future needs.

“That’s fine work, Joel. Now explain to me again what this slave thing is.”

Joel suppressed a sigh and said, “A slave is a copy of the data on the database server
that gets its changes from the original database server called the master....”

Conclusion | 43

CHAPTER 3
The Binary Log

“Joel?”

Joel jumped, nearly banging his head as he crawled out from under his desk. “I was
just rerouting a few cables,” he said by way of an explanation.

Mr. Summerson merely nodded and said in a very authoritative manner, “I need you
to look into a problem the marketing people are having with the new server. They need
to roll back the data to a certain point.”

“Well, that depends...,” Joel started, worried about whether he had snapshots of old
states of the system.

“I told them you’d be right down.”

With that, Mr. Summerson turned and walked away. A moment later one of the de-
velopers, a woman Joel found very attractive, stopped in front of his door and said,
“He’s always like that. Don’t take it personally. Most of us call it a drive-by tasking.”
She laughed and introduced herself. “My name’s Amy.”

Joel walked around his desk and met her at the door. “I'm Joel.”
After a moment of awkward silence Joel said, “I, er, better get on that thing.”
Amy smiled and said, “See you around.”

“Just focus on what you have to do to succeed,” Joel thought as he returned to his desk
to search for that MySQL book he bought last week.

The previous chapter included a very brief introduction to the binary log. In this chap-
ter, we will fill in more details and give a more thorough description of the binary log
structure, the replication event format, and how to use the mysqlbinlog tool to inves-
tigate and work with the contents of binary logs.

The binary log records changes made to the database so that the same changes can be
made on any of the slaves as well. Since the binary log normally keeps a record of all
changes, you can also use it for auditing purposes to see what happened in the database,

45

and for PITR by playing back the binary log to a server, repeating changes that were
recorded in the binary log.

The binary log contains only statements that could change the database. Note that
statements that do not change the database but that could potentially change the da-
tabase are logged. The most notable statements are those that optionally make a change,
such as DROP TABLE IF EXISTS or CREATE TABLE IF NOT EXISTS, along with statements
such as DELETE and UPDATE that have WHERE conditions that don’t happen to match any
rOws.

SELECT statements are not normally logged, since they do not make any changes to any
database. There are, however, exceptions.

Transactions on a server are not normally executed in sequence, one after the other,
but are rather interleaved and executed in parallel. To ensure that two transactions do
not conflict and generate an inconsistent result, the server ensures the transaction ex-
ecution is serializable, meaning the transactions are executed in such a way that the
execution yields the same result as if they were executed in a serial order—that is, in a
fixed order, one transaction after another.

The binary log records each transaction in the order that the commit took place on the
master. Although transactions may be interleaved on the master, each appears as an
uninterrupted sequence in the binary log, the order determined by the time of the
commit.

Structure of the Binary Log

Conceptually, the binary log is a sequence of binary log events (also called binlog
events or even just events when there is no risk of confusion). As you saw in Chap-
ter 2, the binary log actually consists of several files, as shown in Figure 3-1, that together
form the binary log.

Figure 3-1. The structure of the binary log

46 | Chapter3: TheBinaryLog

The actual events are stored in a series of files called binlog files with names in the form
host-bin.000001, accompanied by a binlog index file that is usually named
host-bin.index and keeps track of the existing binlog files. The binlog file that is cur-
rently being written to by the server is called the active binlog file. If all the slaves have
caught up with the master, this is also the file that is being read by the slaves. The names
of the binlog files and the binlog index file can be controlled using the options log-
bin and log-bin-index, which are covered later in the chapter.

The index file keeps track of all the binlog files used by the server so that the server can
correctly create new binlog files when necessary, even after server restarts. Each line in
the index file contains the full name of a binlog file that is part of the binary log. Com-
mands that affect the binlog files, such as PURGE BINARY LOGS, RESET MASTER, and FLUSH
LOGS, also affect the index file by adding or removing lines to match the files that were
added or removed by the command.

As shown in Figure 3-2, each binlog file is made up of binlog events, with the
Format_description event serving as the file’s header and the Rotate event as its footer.
Note that a binlog file might not end with a rotate event if the server was stopped or
crashed.

Binary Log
BEGIN
INSERT....
UPDATE. ...
COMMIT
CREATE. .. Group
@foo=...
INSERT...
GRANT... Group

Group

Group

Figure 3-2. A single binlog file with groups of events

The Format_description event contains information about the server that wrote the
binlog file as well as some critical information about the file’s status. If the server is
stopped and restarted, a new binlog file is created and a new Format_description event
is written to it. This is necessary since changes can potentially occur between bringing
a server down and bringing it up again. For example, the server could be upgraded, in
which case a new Format_description event would have to be written.

Structure of the Binary Log | 47

When the server has finished writing a binlog file, a Rotate event is added to end the
file. The event points to the next binlog file in sequence by giving the name of the file
as well as the position to start reading from.

The Format_description event and the Rotate event will be described in detail in the
next section.

With the exception of the Format_description and Rotate events, the events of a binlog
file are grouped into units called groups. In transactional storage engines, each group
is roughly equivalent to a transaction, but for nontransactional storage engines or
statements that cannot be part of a transaction, such as CREATE or ALTER statements,
each statement is a group by itself. In short, each group of events in the binlog file
contains either a single statement not in a transaction or a transaction consisting of
several statements.

Normally, each group is executed entirely or not at all. If, for some reason, the slave
stops in the middle of a group, replication will start from the beginning of the group
and not from the last statement executed. Chapter 6 describes in detail how the slave
executes events.

Binlog Event Structure

In MySQL 5.0, a new binlog format—binlog format 4—was introduced. The preceding
formats were not easy to extend with additional fields if the need should arise, so binlog
format 4 was designed specifically to be extensible. This is still the event format used
in every server version since 5.0, even though each version of the server has extended
the binlog format with new events and some events with new fields. Binlog format 4 is
the event format described in this chapter.

Each binlog event consists of three parts:

Common header
The common header is—as the name suggests—common to all events in the binlog

file.

The common header contains basic information about the event, the most impor-
tant fields being the event type and the size of the event.

Post header
The post header is specific to each event type; in other words, each event type stores
different information in this field. But the size of this header, just as with the com-
mon header, is the same throughout a given binlog file. The size of each event type
is given by the Format_description event.

Event body
Last in each event comes the event body, which is the variable-sized part of the
event. The size is listed in the common header for the event. The event body stores
the main data of the event, which is different for different event types. For the

48 | Chapter3: TheBinaryLog

Query event, for instance, the body stores the query, and for the User_var event, the
body stores the name and value of a user variable that was just set by a statement.

A complete listing of the formats of all events is beyond the scope of this book, but
since the Format_description and Rotate events are critical to how the other events are
interpreted, we will briefly cover them here.

As already noted, the Format_description event starts every binlog file and contains
common information about the events in the file. The result is that the
Format_description event can be different between different files; this typically occurs
when a server is upgraded and restarted.

Binlog file format version
This is the version of the binlog file, which should not be confused with the version
of the server. MySQL versions 3.23, 4.0, and 4.1 use version 3 of the binary log,
while MySQL versions 5.0 and later use version 4 of the binary log.

The binlog file format version changes when developers make significant changes
in the overall structure of the file or the events. In version 5.0, the start event for a
binlog file was changed to use a different format and the common headers for all
events were also changed, which prompted the change in the binlog file format
version.

Server version
This is a version string denoting the server that created the file. This includes the
version of the server as well as additional information if special builds are made.
The format is normally the three-position version number, followed by a hyphen
and any additional build options. For example, “5.1.40-debug-log” means debug
build version 5.1.40 of the server.

Common header length

This field stores the length of the common header. Since it’s here in the
Format_description, this length can be different for different binlog files. This holds
for all events except the Format_description and Rotate events, which cannot vary.
The length of Format_description is fixed because a server has to read the event
regardless of which version of the server produced it. The reason the Rotate event
has a fixed common header is that the event is used when the slave connects to the
master, before any events from the binlog file have been seen. So for these two
events, the size of the common header is fixed and will never change between server
versions.

Post-header lengths
The post-header length for each event is fixed within a binlog file, and this field
stores an array of the post-header length for each event that can occur in the binlog
file. Since the number of events can vary between servers, the number of events
that the server can produce is stored before this field.

Structure of the Binary Log | 49

Since both the size of the common header and the size of the post header for each event
type are given in the Format_description event, extending the format with new events
or even increasing the size of the post headers by adding new fields will not affect the
high-level format of the binlog file.

With each extension, particular care is taken to ensure that the extension does not affect
interpretation of earlier-version events. For example, the common header can be ex-
tended with an additional field to indicate that the event is compressed and the type of
compression used, but if this field is missing—which would be the case if a slave is
reading events from an old master—the server should still be able to fall back on its
old behavior.

Logging Statements

MySQL has traditionally employed statement-based replication and just recently im-
plemented row-based replication, which we will cover in Chapter 6.

In statement-based replication, the actual executed statement is written to the binary
log together with some execution information, and the statement is reexecuted on the
slave. Since not all statements can be logged as statements, there are some exceptions
that you should be aware of. This section will describe the process of logging statements
as well as the important caveats.

Since the binary log is a common resource—all threads write statements to it—it is
critical to prevent two threads from updating the binary log at the same time. To handle
this, a lock for the binary log—the LOCK_log mutex—is acquired just before the event
is written to the binary log and released just after the event has been written. Because
all session threads for the server log statements to the binary log, it is quite common
for several session threads to block on this lock.

Logging Data Manipulation Language Statements

Data Manipulation Language (DML) statements are usually DELETE, INSERT, and
UPDATE statements. To support safe logging, MySQL writes the binary log while trans-
action-level locks are held, and releases them after the binary log has been written.

To ensure the binary log is updated consistently with the tables that the statement
modifies, the statement is logged to the binary log at the same time that the statement
is being committed, just before the table locks are released. If the logging were not made
as part of the statement, another statement could be “injected” between the changes
that the statement introduces to the database and the logging of the statement to the
binary log. This would mean that the statements would be logged in a different order
than the one in which they took effect in the database, which clearly could lead to
inconsistencies between master and slave. For instance, an UPDATE statement with a

50 | Chapter3: The BinaryLog

WHERE clause could update different rows on the slave because the values in those rows
could change if the statement order changed.

Logging Data Definition Language Statements

Data Definition Language (DDL) statements affect a schema, such as CREATE TABLE and
ALTER TABLE statements. These create or change objects in the filesystem—for example,
table definitions are stored in .frm files and databases are represented as filesystem
directories—so the server keeps information about these available in data structures
internally. To protect the update of the internal data structure, it is necessary to acquire
a lock before altering the table definition.

Since a single lock is used to protect these data structures, the creation, alteration, and
destruction of database objects can be a considerable source of performance problems.
This includes the creation and destruction of temporary tables, which is quite common
as a technique to create an intermediate result set to perform computations on.

If you are creating and destroying a lot of temporary tables, it is often possible to boost
performance by reducing the creation (and subsequent destruction) of temporary
tables.

Logging Queries

For statement-based replication, the most common binlog event is the Query event,
which is used to hold a statement executed on the master. In addition to the actual
statement executed, the event contains some additional information necessary for ex-
ecution of the statement.

Recall that the binary log can be used for many purposes and contains statements in a
potentially different order than that in which they were executed on the master. In some
cases, part of the binary log may be played back to a server to perform PITR, and in
some cases, replication may start in the middle of a sequence of events because a backup
has been restored on a slave before starting replication. Furthermore, a database ad-
ministrator (DBA) might manually tweak the binary log to fix a problem.

In all these cases, the events are executing in different contexts. That is, there is infor-
mation that is implicit when the server executes the statement but that has to be known
to execute the statement correctly. Examples include:

Current database
If the statement refers to a table, function, or procedure without qualifying it with
the database, the current database is implicit for the statement.

Value of user-defined variable
If a statement refers to a user-defined variable, the value of the variable is implicit
for the statement.

Logging Statements | 51

Seed for the RAND function

The RAND function is based on a pseudorandom number function, meaning that it
can generate a sequence of numbers that are reproducible but appear random in
the sense that they are evenly distributed. The function is not really random, but
starts from a seed number and applies a pseudorandom function to generate a
deterministic sequence of numbers. This means that given the same seed, the
RAND function will always return the same number. However, this makes the seed
implicit for the statement.

The current time
Obviously, the time the statement started executing is implicit. Having a correct
time is important when calling functions that are dependent on the current time—
such as NOW and UNIX_TIMESTAMP—because otherwise they will return different re-
sults if there is a delay between the statement execution on the master and on the
slave.

Value used when inserting into an AUTO_INCREMENT column
If a statement inserts a row into a table with a column defined with the
AUTO_INCREMENT attribute, the value used for that row is implicit for the statement
since it depends on the rows inserted before it.

Value returned by a call to LAST_INSERT_ID
If the LAST _INSERT ID function is used in a statement, it depends on the value in-
serted by a previous statement, which makes this value implicit for the statement.

Thread ID
For some statements, the thread ID is implicit. For example, if the statement refers
to a temporary table or uses the CURRENT_ID function, the thread ID is implicit for
the statement.

Since the context for executing the statements cannot be known when they’re
replayed—either on a slave or on the master after a crash and restart—it is necessary
to make the implicit information explicit by adding it to the binary log. This is done in
slightly different ways depending on the kind of information.

In addition to the previous list, some information is implicit to the execution of triggers
and stored routines, but we will cover that separately in the section “Triggers, Events,
and Stored Routines” on page 61.

Let’s consider each of the cases of implicit information individually, demonstrate the
problem with each one, and examine how the server handles it.

Current database

The log records the current database by adding it to a special field of the Query event.
This field also exists for the events used to handle the LOAD DATA INFILE statement,
discussed in the section “LOAD DATA INFILE Statements” on page 57, so the de-
scription here applies to that statement as well. The current database also plays an
important role in filtering on the database and is described later in this chapter.

52 | Chapter3: The BinaryLog

Current time

Five functions use the current time to compute their values: NOW, CURDATE, CURTIME,
UNIX_TIMESTAMP, and SYSDATE. The first four functions return a value based on the time
when the statement started to execute. In contrast, SYSDATE will return the value of
time(2). The difference can best be demonstrated by co