
MySQL HA Solutions
Keeping it simple, kinda!

By: Chris Schneider
MySQL Architect

Ning.com

Saturday, 11 September 2010

What we’ll cover today
 High Availability Terms and Concepts

 Levels of High Availability

 What technologies are there for MySQL High
Availability

 Example of how to implement High Availability

 How we leverage High Availability

Saturday, 11 September 2010

HA terms
 High Availability is the availability of a system or service despite

hardware failures
 When you think of HA you think of five nines (99.999%)
 A lot of companies are ok with three nines (99.9%)

 Two ways to gain High Availability
 Redundant hardware and software
 Commercial software

 Continuous Availability
 No disruption of service during failover

 Single point of failure
 Can one part of a system bring the whole system down

 Failover and or Failover Situations

Saturday, 11 September 2010

Scaling Up
 Vertically scaling your hardware

 Bigger, better, faster, stronger!

 Cost of Scaling up
 e25K

 Maintaining Vertical Scale

 Two Example Companies who
specialize in Vertical Scale
 Schooner - http://

www.schoonerinfotech.com/
 Fusion I/O - http://

www.fusionio.com/

B
i

gg
e
r

 H
a
r
d
w
a
r
e

Saturday, 11 September 2010

http://www.schoonerinfotech.com/
http://www.schoonerinfotech.com/
http://www.schoonerinfotech.com/
http://www.schoonerinfotech.com/
http://www.schoonerinfotech.com/
http://www.schoonerinfotech.com/
http://www.schoonerinfotech.com/
http://www.schoonerinfotech.com/
http://www.fusionio.com/
http://www.fusionio.com/
http://www.fusionio.com/
http://www.fusionio.com/
http://www.fusionio.com/
http://www.fusionio.com/

Scaling Out
 Scaling out Horizontally is what

you see in most Web 2.0
companies today

 Commodity hardware
 Dell, HP, SUN – 1U – 4U servers

 Open source software
 CentOS
 MySQL
 DRBD + Heartbeat
 MySQL Cluster

 Add servers or shard for increase
capacity and or performance

n1

n2

…

nX

Saturday, 11 September 2010

Synchronous vs.
Asynchronous Replication

 Synchronous

 Both Nodes at the same time

 Asynchronous

 Node1 first, then Node2

Node1

Node2

Node1

Node2

WWW

Saturday, 11 September 2010

Levels of Availability
 Levels of MySQL Availability

 Availability – Unmanaged Replication
 More Availability – Managed Replication with possible third-party

software
 Even More Availability – Managed Multi-Master/Hot Standby

Replication with custom and or third party software
 High Availability – DRBD
 High Availability – MySQL Cluster

 The NINES in Downtime
 9% = 35 Days
 99% = 4 Days
 99.9% = 8 Hours
 99.99% = 50 Minutes
 99.999% = 5 Minutes

Saturday, 11 September 2010

Unmanaged Replication
 Where most Web 2.0 companies start

 A lot of risk
 Low end, non-redundant hardware

 Asynchronous One Way Replication
 One Master server

 Write and Reads

 One Slave server
 Just sits there

 No automated Break-Fix
 Manual intervention for everything

Master

Slave

Saturday, 11 September 2010

Managed Replication
 Production Ready but not the best

 Less risk
 Higher end, redundant hardware

 Asynchronous One Way Replication

 One Master server
 Writes and Read

 One Slave server
 Possible reads
 Backups
 ETL Processes

 Automated Break-Fix

 Fully Monitored

Master

Slave

Saturday, 11 September 2010

Failovers
 Unmanaged Replication

 Excessive Customer Downtime
 Manual process that involves multiple teams or

individuals
 Rebuilding the old master server after failover
 Hard to keep everything straight at 3am

 Managed Replication
 Excessive Customer Downtime
 Rebuilding the old master server after failover
 Hard to keep straight at 3am

Saturday, 11 September 2010

Multi-Master/Hot Standby
 Production ready

 Redundant hot swappable hardware
 NICs
 Disks
 Power Supply

 Asynchronous Two Way Replication
 One Master server (Rack 1)

 Reads and writes
 Possible backups
 Mk-query-digest

 One Slave server (Rack 2)
 Read activity
 Backups
 ETL

 Automated Break-Fix
 Semi-Automated or Fully Automated Fail-Over

 Keepalived with a floating IP (VIP)

Master

Slave

Saturday, 11 September 2010

What’s important in
Multi-Master/Hot Standby

 Bidirectional Replication
 Read-only is set on slave server

 Mk-query-digest (http://www.maatkit.org/doc/mk-query-digest.html)
 Takes read activity on the Master server and runs it on the Slave server
 This keeps the caches on the Slave server hot

 Mk-table-checksum
 Perform an online replication consistency check, or checksum MySQL tables efficiently on one or

many servers
 Be sure to use the –replicate flag

 Mk-table-sync
 Synchronize MySQL tables efficiently
 This tool changes data, so for maximum safety, you should back up your data before you use it

 Keepalived
 VIP is attached to the Master server
 The application talks to the VIP for WRITES

Saturday, 11 September 2010

http://www.maatkit.org/doc/mk-query-digest.html
http://www.maatkit.org/doc/mk-query-digest.html
http://www.maatkit.org/doc/mk-query-digest.html
http://www.maatkit.org/doc/mk-query-digest.html

Keepalived
 Not the only solution but works great
 You can use this to handle just hardware failures and kernel panics or run a

custom monitoring script to detect InnoDB corruption or other MySQL problems
 Priority of servers

 Both nodes are set up with the same priority in the keepalived.conf file for ONE way
failover

 Master
 state BACKUP
 priority 100

 Slave
 state BACKUP
 priority 100

 Priority could cause problems when in a Master / Backup configuration
 We want single, one way failover to prevent VIP flapping (happens in odd cases)

and to maintain data integrity
 Plus, the probability of both servers experiencing a catastrophic failure are

remote

Saturday, 11 September 2010

Multi-Master Replication
Manager for MySQL

 Great set of scripts if you don’t want to build your own from
scratch
 No keepalived needed
 No custom monitoring script for MySQL

 Will perform monitoring, failover and management of
MySQL master-master replication (with only one node
writable at any time)

 Read balance standard master/slave configurations
 Can handle 1 to many slave servers in a cluster
 Moves VIP around read servers if they are behind

 Requires at least two MySQL hosts and one monitoring host

 Agent Based monitoring

Saturday, 11 September 2010

Leveraging HA Failovers
 A real world example on how multi-master can help

 Altering a table or multiple tables
 Large tables (5GB to over 100GB)
 Limited amount of allotted customer facing downtime,

less than 5 minutes

 Problems with the above situation
 If you’ve ever tried to run ALTER table on a 100GB table I

bet it never finished
 Do you have enough disk space
 Table space(s)
 How much customer downtime do you have to play with

Saturday, 11 September 2010

Schema Change – Large tables
 Process

 Stop replication
 Run an alter or full dump out and reload on the slave server

 With ALTER you may or may not want to specify set sql_log = 0;
 With a dump out and reload you should use the following two

features:
 SELECT INTO OUT FILE
 LOAD DATA INFILE
 NOTE: Make sure you dump out by Primary key order

 Fail the VIP over
 Depending on how you ran the schema change you’ll either:

 Start replication
 Run the same change on the FORMER Master server

Saturday, 11 September 2010

Benefits
 The customer will only see seconds of downtime if

any at all
 The downtime will be during the VIP failover

 If you choose to use the dump out and reload
method
 Defragmentation
 Innodb Table Space will not grow out of control
 Disk space could be regained

Saturday, 11 September 2010

Replication Challenges
 Single Threaded

 Asynchronous

 Can break in a lot of ways
 Duplicate Key
 Max Allowed Packet
 Replication can fall behind

 Can be unreliable

Saturday, 11 September 2010

DRBD – Overview
 All components

 MySQL, Heartbeat and DRBD

 Distributed Storage

 Synchronous Replication (block level)

 No special networking components like HBA’s

 Great Performance (Block vs Statement)

 Manages inconsistencies of data during a failure

 Streamlines many recovery actions

 Automated IP failover and management of VIPs through Heartbeat

Saturday, 11 September 2010

DRBD – Diagram

Active
Server

Passive
Server

Synchronous Block
Level Replication

Cross-Over

VIP Management Over LAN

NOTE: Heartbeat needs multiple paths to avoid a split brain scenario
NOTE: Two, 2-port gigabit Ethernet cards on each node

WWW

Saturday, 11 September 2010

DRBD Failover

DOWN Active
Server

VIP Management Over LAN

X

X

WWW

Saturday, 11 September 2010

Re-syncing Data After Failure

Passive
Server

Active
Server

Data Re-Sync

VIP Management Over LAN

NOTE: No interruption of services during data re-sync

WWW

Saturday, 11 September 2010

Scaling out with DRBD
 Important

 DRBD replicates an entire block device
 This includes Master information

 binary logs
 Slaves can attach to the Virtual IP Address managed

by Heartbeat
 MySQL Replication allows the slaves to continue with

the new Active machine as their master with no
intervention needed

Saturday, 11 September 2010

Scaling Out with DRBD

Active
Server

Passive
Server

Synchronous Block
Level Replication

Cross-Over

VIP Management Over LAN

WWW

MySQLMySQLMySQL

Saturday, 11 September 2010

MySQL Cluster Pros
 Redundant nodes provide service when components fail
 Eliminate single points of failure with redundant hardware

 Multiple network connections
 SAN or RAID storage

 Share nothing storage
 Automatic data failover built in
 Synchronous Replication
 Transactional
 Online Backups
 No VIP failover required
 Automatic resynchronization of Data
 Scale up and Scale out made easy

Saturday, 11 September 2010

MySQL Cluster Cons
 Geographical redundancy through MySQL

replication (Asynchronous)
 Can be a single point of failure

 In Memory data storage
 Does not work well for large datasets

 Complex normalized schemas with JOIN don’t do
well

Saturday, 11 September 2010

Node Group1 Node Group2

MySQL Cluster Diagram

APIAPI

Mgmt

NDB

Management
Server -
Arbitrator

SQL Nodes
MySQL Servers/
NDB API Server

Data Nodes NDB NDB NDB

MySQL MySQL

WWW

Saturday, 11 September 2010

When to and when not to
use MySQL Cluster

 When we can use MySQL Cluster
 High Availability is a MUST have
 Very large amount of update and selects
 Mostly searching on a Clustered Index
 Fast failover and crash recovery is needed
 Geographical redundancy is needed or will be needed

 When we should NOT use MySQL Cluster
 As a replacement for another storage engine, MyISAM or

Innodb
 When caching would work better (not a replacement for

Memcached
 When you have complex Schemas with a lot of JOINS
 When you have large data sets

Saturday, 11 September 2010

Questions??
 My Information:

 Chris Schneider
 chris@ning.com

Saturday, 11 September 2010

mailto:chris@ning.com
mailto:chris@ning.com

