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What we’ll cover today
 High Availability Terms and Concepts 

 Levels of High Availability

 What technologies are there for MySQL High 
Availability

 Example of how to implement High Availability

 How we leverage High Availability
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HA terms
 High Availability is the availability of a system or service despite 

hardware failures
 When you think of HA you think of five nines (99.999%)
 A lot of companies are ok with three nines (99.9%)

 Two ways to gain High Availability
 Redundant hardware and software 
 Commercial software 

 Continuous Availability
 No disruption of service during failover

 Single point of failure
 Can one part of a system bring the whole system down

 Failover and or Failover Situations
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Scaling Up
 Vertically scaling your hardware

 Bigger, better, faster, stronger!

 Cost of Scaling up
 e25K

 Maintaining Vertical Scale 

 Two Example Companies who 
specialize in Vertical Scale
 Schooner - http://

www.schoonerinfotech.com/
 Fusion I/O - http://

www.fusionio.com/
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Scaling Out
 Scaling out Horizontally is what 

you see in most Web 2.0 
companies today

 Commodity hardware
 Dell, HP, SUN – 1U – 4U servers

 Open source software
 CentOS 
 MySQL
 DRBD + Heartbeat
 MySQL Cluster

 Add servers or shard for increase 
capacity and or performance

n1

n2

…

nX
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Synchronous vs. 
Asynchronous Replication

 Synchronous

 Both Nodes at the same time

 Asynchronous

 Node1 first, then Node2

Node1

Node2

Node1

Node2

WWW
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Levels of Availability
 Levels of MySQL Availability

 Availability – Unmanaged Replication 
 More Availability – Managed Replication with possible third-party 

software
 Even More Availability – Managed Multi-Master/Hot Standby 

Replication with custom and or third party software
 High Availability – DRBD
 High Availability – MySQL Cluster

 The NINES in Downtime
 9% = 35 Days
 99% = 4 Days
 99.9% = 8 Hours
 99.99% = 50 Minutes
 99.999% = 5 Minutes 
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Unmanaged Replication
 Where most Web 2.0 companies start

 A lot of risk
 Low end, non-redundant hardware

 Asynchronous One Way Replication  
 One Master server

 Write and Reads 

 One Slave server
 Just sits there

 No automated Break-Fix
 Manual intervention for everything

Master

Slave
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Managed Replication
 Production Ready but not the best

 Less risk
 Higher end, redundant hardware

 Asynchronous One Way Replication

 One Master server
 Writes and Read 

 One Slave server
 Possible reads
 Backups
 ETL Processes

 Automated Break-Fix

 Fully Monitored

Master

Slave
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Failovers
 Unmanaged Replication

 Excessive Customer Downtime
 Manual process that involves multiple teams or 

individuals
 Rebuilding the old master server after failover 
 Hard to keep everything straight at 3am

 Managed Replication
 Excessive Customer Downtime
 Rebuilding the old master server after failover
 Hard to keep straight at 3am 
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Multi-Master/Hot Standby
 Production ready

 Redundant hot swappable hardware
 NICs
 Disks
 Power Supply

 Asynchronous Two Way Replication  
 One Master server (Rack 1)

 Reads and writes
 Possible backups
 Mk-query-digest

 One Slave server (Rack 2) 
 Read activity
 Backups
 ETL

 Automated Break-Fix
 Semi-Automated or Fully Automated Fail-Over

 Keepalived with a floating IP (VIP)

Master

Slave
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What’s important in 
Multi-Master/Hot Standby  

 Bidirectional Replication
 Read-only is set on slave server

 Mk-query-digest (http://www.maatkit.org/doc/mk-query-digest.html)
 Takes read activity on the Master server and runs it on the Slave server
 This keeps the caches on the Slave server hot

 Mk-table-checksum
 Perform an online replication consistency check, or checksum MySQL tables efficiently on one or 

many servers
 Be sure to use the –replicate flag

 Mk-table-sync
 Synchronize MySQL tables efficiently
 This tool changes data, so for maximum safety, you should back up your data before you use it

 Keepalived 
 VIP is attached to the Master server
 The application talks to the VIP for WRITES
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Keepalived
 Not the only solution but works great
 You can use this to handle just hardware failures and kernel panics or run a 

custom monitoring script to detect InnoDB corruption or other MySQL problems
 Priority of servers

 Both nodes are set up with the same priority in the keepalived.conf file for ONE way 
failover

 Master
 state BACKUP
 priority 100

 Slave
 state BACKUP
 priority 100

 Priority could cause problems when in a Master / Backup configuration 
 We want single, one way failover to prevent VIP flapping (happens in odd cases) 

and to maintain data integrity
 Plus, the probability of both servers experiencing a catastrophic failure are 

remote
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Multi-Master Replication 
Manager for MySQL 

 Great set of scripts if you don’t want to build your own from 
scratch
 No keepalived needed
 No custom monitoring script for MySQL

 Will perform monitoring, failover and management of 
MySQL master-master replication (with only one node 
writable at any time)

 Read balance standard master/slave configurations
 Can handle 1 to many slave servers in a cluster
 Moves VIP around read servers if they are behind

 Requires at least two MySQL hosts and one monitoring host

 Agent Based monitoring
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Leveraging HA Failovers
 A real world example on how multi-master can help

 Altering a table or multiple tables
 Large tables (5GB to over 100GB)
 Limited amount of allotted customer facing downtime, 

less than 5 minutes

 Problems with the above situation
 If you’ve ever tried to run ALTER table on a 100GB table I 

bet it never finished
 Do you have enough disk space
 Table space(s)
 How much customer downtime do you have to play with 
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Schema Change – Large tables
 Process

 Stop replication
 Run an alter or full dump out and reload on the slave server

 With ALTER you may or may not want to specify set sql_log = 0; 
 With a dump out and reload you should use the following two 

features:
 SELECT INTO OUT FILE
 LOAD DATA INFILE
 NOTE: Make sure you dump out by Primary key order

 Fail the VIP over
 Depending on how you ran the schema change you’ll either:

 Start replication
 Run the same change on the FORMER Master server
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Benefits
 The customer will only see seconds of downtime if 

any at all
 The downtime will be during the VIP failover

 If you choose to use the dump out and reload 
method
 Defragmentation 
 Innodb Table Space will not grow out of control
 Disk space could be regained

Saturday, 11 September 2010



Replication Challenges
 Single Threaded

 Asynchronous 

 Can break in a lot of ways
 Duplicate Key
 Max Allowed Packet
 Replication can fall behind

 Can be unreliable 
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DRBD – Overview
 All components

 MySQL, Heartbeat and DRBD

 Distributed Storage

 Synchronous Replication (block level)

 No special networking components like HBA’s

 Great Performance (Block vs Statement)

 Manages inconsistencies of data during a failure

 Streamlines many recovery actions

 Automated IP failover and management of VIPs through Heartbeat
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DRBD – Diagram

Active 
Server

Passive 
Server

Synchronous Block 
Level Replication

Cross-Over

VIP Management Over LAN

NOTE: Heartbeat needs multiple paths to avoid a split brain scenario
NOTE: Two, 2-port gigabit Ethernet cards on each node

WWW
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DRBD Failover

DOWN Active 
Server

VIP Management Over LAN

X

X

WWW
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Re-syncing Data After Failure

Passive
Server

Active 
Server

Data Re-Sync

VIP Management Over LAN

NOTE: No interruption of services during data re-sync

WWW
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Scaling out with DRBD
 Important

 DRBD replicates an entire block device
 This includes Master information 

 binary logs 
 Slaves can attach to the Virtual IP Address managed 

by Heartbeat
 MySQL Replication allows the slaves to continue with 

the new Active machine as their master with no 
intervention needed
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Scaling Out with DRBD

Active 
Server

Passive 
Server

Synchronous Block 
Level Replication

Cross-Over

VIP Management Over LAN

WWW

MySQLMySQLMySQL
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MySQL Cluster Pros
 Redundant nodes provide service when components fail
 Eliminate single points of failure with redundant hardware

 Multiple network connections
 SAN or RAID storage

 Share nothing storage
 Automatic data failover built in
 Synchronous Replication
 Transactional
 Online Backups
 No VIP failover required
 Automatic resynchronization of Data
 Scale up and Scale out made easy
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MySQL Cluster Cons
 Geographical redundancy through MySQL 

replication (Asynchronous) 
 Can be a single point of failure

 In Memory data storage
 Does not work well for large datasets 

 Complex normalized schemas with JOIN don’t do 
well
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Node Group1 Node Group2

MySQL Cluster Diagram

APIAPI

Mgmt

NDB

Management 
Server - 
Arbitrator

SQL Nodes
MySQL Servers/
NDB API Server

Data Nodes NDB NDB NDB

MySQL MySQL

WWW
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When to and when not to 
use MySQL Cluster

 When we can use MySQL Cluster
 High Availability is a MUST have
 Very large amount of update and selects
 Mostly searching on a Clustered Index
 Fast failover and crash recovery is needed
 Geographical redundancy is needed or will be needed

 When we should NOT use MySQL Cluster
 As a replacement for another storage engine, MyISAM or 

Innodb
 When caching would work better (not a replacement for 

Memcached
 When you have complex Schemas with a lot of JOINS
 When you have large data sets
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Questions??
 My Information:

 Chris Schneider
 chris@ning.com
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