

• to tell the differences among many Unix variants

• to tell the difference between Free Software and
commercial software

• the history of Unix, the Free Software Foundation, and
other community projects

• the basics of Unix, including simple commands and
utilities

• to create complex commands using Unix shell syntax

• to use and configure the Unix graphical user environment

• to automate routine tasks using the Bourne Again SHell
(BASH) scripting language

• to use Unix's built-in utilities to schedule jobs for
automatic execution

• to create a functional network using Unix's native
networking tools

• to integrate Windows and Macintosh computers into your
Unix network

• to understand the basics of network security

• to provide service to users and allow them to use your
network

• to identify, obtain, install, and manage Unix software

• to configure and administer various internet servers
including WWW, Usenet News, and email

• to use dozens of useful Unix terms and commands

BECOME A MASTER BY LEARNING

2817cifc.qxd 11/21/00 1:48 PM Page 1

Mastering Unix

2817cfm.qxd 11/20/00 10:03 AM Page i

This page intentionally left blank

MasteringTM Unix

Kate Wrightson and
Joe Merlino

San Francisco • London • Paris • Düsseldorf • Soest

2817cfm.qxd 11/20/00 10:03 AM Page iii

Associate Publisher: Dick Staron
Contracts and Licensing Manager: Kristine O’Callaghan
Acquisitions and Developmental Editor: Diane Lowery
Editor: Ronn Jost
Production Editor: Lorrie Fink
Technical Editor: Patrick Ramseier
Book Designer: Kris Warrenburg
Graphic Illustrator: Richard Whitaker/Seventeenth Street Studios
Electronic Publishing Specialist: Seventeenth Street Studios
Proofreader: Kevin Stoffel/Seventeenth Street Studios
Indexer: Nancy Guenther
CD Technician: Keith McNeil
CD Coordinator: Kara Eve Schwartz
Cover Designer: Design Site
Cover Illustrator: Jack D. Myers

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway,
Alameda, CA 94501. World rights reserved. No part of this pub-
lication may be stored in a retrieval system, transmitted, or
reproduced in any way, including but not limited to photocopy,
photograph, magnetic, or other record, without the prior agree-
ment and written permission of the publisher.

Library of Congress Card Number: 00-106460

ISBN: 0-7821-2817-3

SYBEX and the SYBEX logo are either registered trademarks or
trademarks of SYBEX Inc. in the United States and/or other
countries.

Mastering is a trademark of SYBEX Inc.

Screen reproductions produced with FullShot 99. FullShot 99 ©
1991–1999 Inbit Incorporated. All rights reserved. FullShot is a
trademark of Inbit Incorporated.

Netscape Communications Corporation has not authorized,
sponsored, endorsed, or approved this publication and is not
responsible for its content. Netscape and the Netscape Communi-
cations Corporate Logos are trademarks and trade names of
Netscape Communications Corporation. All other product names
and/or logos are trademarks of their respective owners.

TRADEMARKS: SYBEX has attempted throughout this book to
distinguish proprietary trademarks from descriptive terms by fol-
lowing the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare
this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon
pre-release versions supplied by software manufacturer(s). The
author and the publisher make no representation or warranties of
any kind with regard to the completeness or accuracy of the con-
tents herein and accept no liability of any kind including but not
limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged
to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

2817cfm.qxd 11/20/00 10:03 AM Page iv

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book
that are available now or in the future contain programs and/or
text files (the “Software”) to be used in connection with the book.
SYBEX hereby grants to you a license to use the Software, subject
to the terms that follow. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless oth-
erwise indicated and is protected by copyright to SYBEX or
other copyright owner(s) as indicated in the media files (the
“Owner(s)”). You are hereby granted a single-user license to use
the Software for your personal, noncommercial use only. You
may not reproduce, sell, distribute, publish, circulate, or com-
mercially exploit the Software, or any portion thereof, without
the written consent of SYBEX and the specific copyright
owner(s) of any component software included on this media.

In the event that the Software or components include specific
license requirements or end-user agreements, statements of con-
dition, disclaimers, limitations or warranties (“End-User
License”), those End-User Licenses supersede the terms and con-
ditions herein as to that particular Software component. Your
purchase, acceptance, or use of the Software will constitute your
acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree
to comply with all export laws and regulations of the United
States as such laws and regulations may exist from time to time.

Software Support

Components of the supplemental Software and any offers associ-
ated with them may be supported by the specific Owner(s) of that
material but they are not supported by SYBEX. Information regard-
ing any available support may be obtained from the Owner(s)
using the information provided in the appropriate read.me files or
listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer sup-
port or decline to honor any offer, SYBEX bears no responsibility.
This notice concerning support for the Software is provided for
your information only. SYBEX is not the agent or principal of the
Owner(s), and SYBEX is in no way responsible for providing any
support for the Software, nor is it liable or responsible for any sup-
port provided, or not provided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical defects
for a period of ninety (90) days after purchase. The Software is
not available from SYBEX in any other form or media than that

enclosed herein or posted to www.sybex.com. If you discover a
defect in the media during this warranty period, you may obtain
a replacement of identical format at no charge by sending the
defective media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501
(510) 523-8233
Fax: (510) 523-2373
e-mail: info@sybex.com
WEB: HTTP://WWW.SYBEX.COM

After the 90-day period, you can obtain replacement media of
identical format by sending us the defective disk, proof of pur-
chase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed or
implied, with respect to the Software or its contents, quality, per-
formance, merchantability, or fitness for a particular purpose. In
no event will SYBEX, its distributors, or dealers be liable to you or
any other party for direct, indirect, special, incidental, consequen-
tial, or other damages arising out of the use of or inability to use
the Software or its contents even if advised of the possibility of
such damage. In the event that the Software includes an online
update feature, SYBEX further disclaims any obligation to provide
this feature for any specific duration other than the initial posting.
The exclusion of implied warranties is not permitted by some
states. Therefore, the above exclusion may not apply to you. This
warranty provides you with specific legal rights; there may be
other rights that you may have that vary from state to state. The
pricing of the book with the Software by SYBEX reflects the allo-
cation of risk and limitations on liability contained in this agree-
ment of Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are distributed
as shareware. Copyright laws apply to both shareware and ordi-
nary commercial software, and the copyright Owner(s) retains all
rights. If you try a shareware program and continue using it, you
are expected to register it. Individual programs differ on details
of trial periods, registration, and payment. Please observe the
requirements stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-
protected or encrypted. However, in all cases, reselling or redis-
tributing these files without authorization is expressly forbid-
den except as specifically provided for by the Owner(s) therein.

2817cfm.qxd 11/20/00 10:03 AM Page v

This page intentionally left blank

For TW,
whose world was a different one

but who was proud of us anyway

2817cfm.qxd 11/20/00 10:03 AM Page vii

ACKNOWLEDGMENTS

A large group of people worked to bring this book to you. Although Joe and
Kate get their names on the cover, there are many other folks whose hard work
and effort made this book possible. We appreciate their diligence and patience
with us over a long and bumpy period of time. We’re especially grateful to Sybex
and Seventeenth Street Studios for their understanding; during the last part of
this book’s writing, Kate’s father died unexpectedly. Our team accommodated
our transcontinental travels and made finishing the project as easy as possible
under the circumstances.

In addition to the people whose names follow, we’d like to thank our agent,
David Fugate, and Waterside Productions. David and the Waterside team keep us
going and keep us working, and we love being part of their team. Kate also
thanks the usual suspects, especially Mason Kramer, who won the lucky random
drawing to be named here.

Sybex

Sybex people made the project possible and kept it going, from the first contact to
the final printing. We’d especially like to thank the following people:

• Roger Stewart initially brought us into the project.

• Diane Lowery shepherded the first quarter of the book.

• Colleen Strand managed administrative details of the full project.

Editing Team

We have had good luck in our careers in being able to work with fine editors who
understand what we’re trying to say and who catch all the places where we’ve
said it poorly. This project was no different, and we’d like to thank the two edi-
tors who reviewed each chapter as it came past:

• Ronn Jost fixed our prose and ensured that we made sense, with the greatest
of good humor and friendly e-mail.

2817cfm.qxd 11/20/00 10:03 AM Page viii

• Patrick Ramseier checked the technical validity of our work and kept us
from giving you bad information.

Seventeenth Street Studios

The folks at Seventeenth Street Studios did most of the dirty work involved in
getting the book organized and arranged into a far more attractive package than
the original documents ever promised. In particular, we’d like to thank the fol-
lowing people:

• Lorrie Fink, our production coordinator, kept track of the schedule and
tried valiantly to keep us on target despite our wildly erratic lives over the
past year.

• Kevin Stoffel proofread everything that went into the book and caught all
the errors before they hit the page.

• Richard Whitaker and Bob Giles laid out the pages as they appear here,
composing them into readable and appealing form; Richard also redrew our
extremely amateur line drawings into more professional images.

2817cfm.qxd 11/20/00 10:03 AM Page ix

CONTENTS AT A GLANCE

Introduction xxxvii

PART I Introducing Unix 1

Chapter 1 History and Background of Unix 3

Chapter 2 Which Unix? 13

Chapter 3 Some Basic Unix Concepts 29

PART II Getting Started 39

Chapter 4 Logging In and Looking Around 41

Chapter 5 Navigating the Filesystem 55

PART III Unix Desktop Environments 63

Chapter 6 The X Window System: An Overview 65

Chapter 7 Advanced X Techniques 77

Chapter 8 Window Managers 97

Chapter 9 KDE 121

Chapter 10 Gnome 149

PART IV Using the Shell 175

Chapter 11 Introduction to the Bourne (Again) Shell 177

Chapter 12 Manipulating Files and Directories 189

Chapter 13 Customizing the Shell Environment 201

Chapter 14 Input and Output Redirection 215

Chapter 15 Other Shells 227

2817cfm.qxd 11/20/00 10:03 AM Page x

PART V Using Text Editors 241

Chapter 16 The ed Editor 243

Chapter 17 The vi Editor 255

Chapter 18 GNU Emacs 269

Chapter 19 pico, joe, and jed 285

Chapter 20 Graphical Text Editors 297

PART VI Shell Programming 311

Chapter 21 An Introduction to Shell Programming 313

Chapter 22 Variables 321

Chapter 23 Flow Control, Part I: Conditional Flow Control 333

Chapter 24 Flow Control, Part II: Iterative Flow Control 351

Chapter 25 Regular Expressions 369

Chapter 26 Signals and Status 389

PART VII Basic System Administration 407

Chapter 27 What Is System Administration? 409

Chapter 28 System Programming 417

Chapter 29 Managing Users and Groups 439

Chapter 30 Disks and Filesystem Management 457

Chapter 31 Installing and Managing Software 477

Chapter 32 Getting to Know the Kernel 501

Chapter 33 Managing Print Services 517

PART VIII Network Administration 541

Chapter 34 Introduction to Unix Networking 543

Contents at a Glance xi

2817cfm.qxd 11/20/00 10:03 AM Page xi

xii Contents at a Glance

Chapter 35 Network Interfaces and Routing 563

Chapter 36 The Distributed System 591

Chapter 37 Integrating Unix with Other Platforms 605

Chapter 38 Network Security 631

PART IX Administering Services 655

Chapter 39 Selecting a Suite of Services 657

Chapter 40 Electronic Mail 667

Chapter 41 USENET News 687

Chapter 42 World Wide Web Services 707

Chapter 43 Remote Access (inet) Services 743

Appendices 767

Appendix A Common Unix Commands 767

Appendix B Documentation and Resources 799

Appendix C Other Types of Unix 821

Glossary 832

Index 853

2817cfm.qxd 11/20/00 10:03 AM Page xii

CONTENTS

Introduction xxxvii

PART I Introducing Unix 1

1 History and Background of Unix 3
What Is Unix? 5

All Versions of Unix Are Multiuser 6
All Versions of Unix Are Multitasking 6
All Versions of Unix Can Use the Same Commands 6
What Does This Mean to the End User? 7

Creation and History of Unix 8
The Story of C 8
The Rise of Unix Derivations 9
The Internet and Unix 9
Unix Today 10

The Unix Philosophy 11
Summary 12

2 Which Unix? 13
The Fragmentation of Unix 14
Differences between Unices 16
Unix Versions Used in This Book 17

Linux 17
FreeBSD 18
Solaris 19

We GNU, Do You? 19
Getting to Know GNU 20
The Free Software Foundation 23
If GNU’s Not Unix, What Is It? 23
The Free Software Explosion 24
The Meteoric Rise of Open Source 24
Summary 26

2817cfm.qxd 11/20/00 10:03 AM Page xiii

xiv

3 Some Basic Unix Concepts 29
Structure of a Unix System 30

The Kernel 30
The Shell 31

Which Shell? 32
The File System 33

Files and Directories 34
Users 34

The Superuser 35
Commands 35
Summary 37

PART II Getting Started 39

4 Logging In and Looking Around 41
Getting Access to Unix 42
Logging In for the First Time 45
Changing Your Password 49
What Are These Files? 50
Logging Out 52
Summary 53

5 Navigating the Filesystem 55
Where Are You? 56

Absolute vs. Relative Path Names 57
Moving Around 57
What’s Where? 58

/bin 59
/etc 59
/home 60
/tmp 60
/usr 60
/usr/local 60
/var 61

Summary 61

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xiv

PART III Unix Desktop Environments 63

6 The X Window System: An Overview 65
What Is the X Window System? 66
Desktops and Window Managers 67

Window Managers 68
Desktop Environments 69
Which to Use? 70

The Structure of X 71
How Does X Work? 72

Installing and Configuring X 73
Basic X Configuration 74
X Window System Problems 74

Summary 75

7 Advanced X Techniques 77
Using X Applications over a Network 78

The DISPLAY Variable 79
Fonts 81

Installing Fonts 81
Linux 82
FreeBSD 82
Solaris 83

X Font Servers 83
Building a Font Server 84
Using a Font Server 84

Using International Fonts 85
Colors 86

Default Colors 86
Security 90

Using ssh 91
Securing Ports 91
The /etc/X0.hosts File 92

Using the xhost Client 93
The xauth Program 93

X and Users with Disabilities 95
Summary 96

Contents xv

2817cfm.qxd 11/20/00 10:03 AM Page xv

xvi

8 Window Managers 97
Graphic Interfaces 99
twm 100

Configuring twm 101
IceWM 103

Configuring IceWM 104
BlackBox 107

Configuring BlackBox 107
fvwm 108

Configuring fvwm 109
AfterStep 110

Configuring AfterStep 111
WindowMaker 113

Configuring WindowMaker 114
Enlightenment 116

Configuring Enlightenment 118
Installing Themes 118

Summary 120

9 KDE 121
What Is KDE? 122
Getting and Installing KDE 123

Downloading KDE 124
Base Package Downloads 124
Recommended Package Downloads 125

Unpacking the Source Code 126
Compiling and Installing the Source Code 127
Configuring X for KDE 128

The KDE Panel 129
Virtual Desktops 133

The KDE File Manager 134
The KDE Control Center 137

Desktop 138
Background 138
Borders 138
Display 139
Fonts 139
Desktop Icons 139

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xvi

Language 139
Screensaver 140
Style 140

Information 140
Input Devices 140

International Keyboard 141
Keyboard 141
Mouse 141

Keys 141
Global Keys 142
Standard Keys 142

Network 143
Sound 143
Windows 143

Advanced 143
Buttons 144
Mouse 144
Properties 144
Titlebar 144

Password 144
Date & Time 144
Printers 145

Desktop Themes 145
Summary 147

10 Gnome 149
What Is Gnome? 150
Getting and Installing Gnome 151

Downloading Gnome 152
Base Library Downloads 152
Core Application Downloads 153
Additional Source Downloads 153

Unpacking the Source Code 154
Compiling and Installing the Source Code 155
Configuring X for Gnome 157

Using Gnome 159
The Gnome Panel 159
The Main Menu 160

Contents xvii

2817cfm.qxd 11/20/00 10:03 AM Page xvii

xviii

Application Launchers 165
Applets 167
The File Manager 167
The Gnome Control Center 169
Themes and the Desktop 171

Summary 173

PART IV Using the Shell 175

11 Introduction to the Bourne (Again) Shell 177
Why Bourne Shell? 179

Bourne Shell vs. Bourne Again Shell 180
Some Common Shell Commands 181

ls 182
pwd 184
cd 184
mv 185
cp 185
cat 186
more and less 186
echo 187
grep 187

Summary 188

12 Manipulating Files and Directories 189
Creating and Editing Files 190
Copying Files 193
Moving Files 193
File Ownership and Permissions 195

Who Owns the File? 195
Who Can See the File? 196

Deleting Files 197
Managing Directories 198

Creating Directories 198
Directory Ownership and Permissions 199
Deleting Directories 199

Summary 200

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xviii

13 Customizing the Shell Environment 201
Elements of Shell Configuration 203
Run Control Files 204

.bash_profile 205
Environment Variables 207

Common Environment Variables and What They’re For 209
$USER 209
$MAIL 210
$PS1 210
$HOSTNAME 212
$PATH 212

Summary 213

14 Input and Output Redirection 215
Standard Input and Output 216
Introducing Redirection 217
Redirection Operators 218

Output Redirection Operators 218
Input Redirection Operators 219
Combining Input and Output Redirection Operators 221

Pipes 222
Command Substitution 223
Combining Operators 225
Summary 226

15 Other Shells 227
The Bourne Shell 228
The Korn Shell 229

Korn Shell Run Control Files 230
Environment Variables 231
pdksh 233

The C Shells 233
C Shell Run Control Files 233
Environment Variables 234
What’s the Difference? 236

The Z Shell 237
Other Shells 238

scsh 238

Contents xix

2817cfm.qxd 11/20/00 10:03 AM Page xix

xx

rc and es 238
The Perl Shell 238

Summary 239

PART V Using Text Editors 241

16 The ed Editor 243
What Is ed? 244
Starting ed 245
Reading a File 247
Editing a File 248

Inputting Text 248
Deleting Text 250
Moving Text 250
Joining Lines 250

Saving and Quitting 251
Editing by Content 252

Matching 252
Substitution 253

Summary 254

17 The vi Editor 255
The One True Editor 256
vi’s Modes 257
Basic Editing in Command Mode 258

Moving the Cursor 258
Deleting Text 260
Pattern Matching and Replacing 261

Using the Shell within vi 262
Abbreviations 263
Macros 264
The set Command 265
The .exrc File 266
Saving and Exiting 267
Summary 268

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xx

18 GNU Emacs 269
What Is GNU Emacs? 270
Running emacs 271
emacs Peculiarities 271

Data Structures 272
Key Bindings 273

Getting Started with emacs 274
Dealing with Buffers 275
Dealing with Windows 276
The GNU Emacs Window 278

The Mode Line 279
The Mini Buffer 279

Getting Help 279
Backups and Auto-Save 280
Killing and Yanking Text 281
Searching and Replacing 281
Saving and Exiting 282
Doctor 282
Summary 283

19 pico, joe, and jed 285
pico 286

Starting pico 287
Editing Text in pico 287

joe 289
jed 293

jed’s Run Control Files 293
Running jed 295

Summary 296

20 Graphical Text Editors 297
Why Graphical Editors? 298
NEdit 299
KEdit 305

The KEdit Toolbar 306
The Menu Bar 306

gEdit 307
Summary 309

Contents xxi

2817cfm.qxd 11/20/00 10:03 AM Page xxi

xxii

PART VI Shell Programming 311

21 An Introduction to Shell Programming 313
Why Program the Shell? 314
What Is a Script and What Is a Program? 315
Parts of a Program 316

Statements 317
Operators 317
Regular Expressions 318
Variables 318
Comments 319

Summary 320

22 Variables 321
What Is a Variable? 322

Variable Names 323
Variable Types 324

Arrays 326
Integers 327

The $ Operator 328
Assigning Values to Variables 329

Taking Input from the Keyboard 330
Special Variables 330
Summary 332

23 Flow Control, Part I: Conditional Flow Control 333
The if-then Statement 335
Evaluating Variables 336
Evaluating Non-Variables 338

The test Command 339
Commands 340

Evaluating Multiple Conditions 341
Building an Example 342
Extending the if-then Statement with else 344
The elif Statement 345
The case Statement 347

Taking Arguments from the Command Line 348
Summary 350

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xxii

24 Flow Control, Part II: Iterative Flow Control 351
The for Statement 352

Command-Line Processing 353
Building an Example with for 354

The select Statement 356
The while Loop 360
The until Loop 362
Nesting Loops 363
Summary 367

25 Regular Expressions 369
How Regular Expressions Work 371

Using Metacharacters 372
Alternative grep Syntax 373

More about grep 373
sed 375

Writing sed Scripts 376
Comments 376
Line Addresses 377

sed Commands 377
Substitution Commands 377
Deletion Commands 378
Commands for Appending, Inserting, and Changing 378

A sed Script Example 379
Using sed on the Command Line 380
Using sed in Shell Scripts 381

awk 382
awk Metacharacters 386
Printing in awk 387

Summary 387

26 Signals and Status 389
Exit Status 390
Managing Status 392

Reporting Status 392
Accessing Status 393

The Explicit Method 393
The Implicit Method 394

Building an Example 395

Contents xxiii

2817cfm.qxd 11/20/00 10:03 AM Page xxiii

xxiv

Signals 397
Unique Identifiers 397
Managing Signals 399

Sending Signals 399
Signal Traps 402
Ignoring Signals 404

Summary 405

PART VII Basic System Administration 407

27 What Is System Administration? 409
The Administrator’s Job 410
Administering a Small System 411
Professional System Administration 413
Basic System Administration Tasks 413

System Programming 414
Managing Users 414
Managing Disks and Filesystems 414
Managing Software 415
Managing the Kernel 415
Managing Print Services 416

Summary 416

28 System Programming 417
Automating Common Tasks with Shell Scripts 418
Case Study: A Simple Backup Script 419

Adapting the Script for Multiple Backups 421
Adapting the Script for Future Flexibility 422
Adapting the Script to Include Logs 423

Executing Scripts with cron and at 426
The cron Command 427
crontab Syntax 428
The at Command 428

init Scripts 429
The Initialization Process 431

The System V Initialization Process 432
The BSD Initialization Process 436

Summary 437

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xxiv

29 Managing Users and Groups 439
The Root Account 440

Accessing Superuser Powers 442
Superuser Powers with the Root Password 442
Superuser Powers without the Root Password 443

Adding New Users 445
Creating Accounts with Linux and FreeBSD 448
Creating Accounts with Solaris 449

Alternate Password Schemes 450
Removing Users 451

Removing Users with Linux and FreeBSD 452
Removing Users with Solaris 453

Groups 453
Groups with Solaris 455

Adding a Group 455
Modifying a Group 455
Deleting a Group 456

Summary 456

30 Disks and Filesystem Management 457
What Is a Disk? 458

Hard and Floppy Disks 459
Optical Disks 459
Other Types of Disks 460

Disk Partitions 461
How to Create Disk Partitions 462
Disk Partitions under Linux 463
Disk Partitions under FreeBSD 464
Disk Partitions under Solaris 467

Physical Media vs. Filesystems 468
Mounting Local Partitions 470
Automatic Mounting 471

Automatic Mounting under Linux and FreeBSD 471
Automatic Mounting under Solaris 472

Mounting Remote Partitions 473
Mounting Remote Directories under Linux and FreeBSD 474
Mounting Remote Directories under Solaris 474

Summary 475

Contents xxv

2817cfm.qxd 11/20/00 10:03 AM Page xxv

xxvi

31 Installing and Managing Software 477
Software Formats 478
Compiling Software from Source Code 480

Configuring the Package 482
Building the Package 482
Installing the Package 483

Software Management for Unix Variants 484
Linux 485

dpkg: Debian Package Manager 486
dselect: A Graphical dpkg Interface 487
rpm: Red Hat Package Manager 488

FreeBSD 492
Installing a Port 493
Removing a Port 494
Finding Ports 494

Solaris 495
Installing with pkgadd 495
Removing with pkgrm 496

Keeping Up with Upgrades 497
Summary 498

32 Getting to Know the Kernel 501
What the Kernel Does 502
Kernel Development 503
Modules vs. Static Kernels 504
(Re)Compiling the Kernel under Linux and FreeBSD 506

Recompiling a Linux Kernel 507
Recompiling a FreeBSD Kernel 512

Users of a Nonupgraded Version of FreeBSD 513
Users Who Have Upgraded Their Source Tree 515

Summary 515

33 Managing Print Services 517
Unix and Printers 518
BSD Printing: Linux and FreeBSD 520
System V Printing: Solaris 520
Adding Local Printers 521

Adding a Local Printer with FreeBSD and Linux 522

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xxvi

Adding a Local Printer with Solaris 524
Using admintool 525

Adding Network Printers 525
Adding a Network Printer with FreeBSD 526
Adding a Network Printer with Linux 527

Red Hat’s printtool 528
Adding a Network Printer with Solaris 530

Network Printers with Solaris 2.5 and Earlier 531
Network Printers with Solaris 2.6 and Newer 531
Using admintool 531

Removing a Printer 532
Removing a Printer with BSD 532
Removing a Printer with Linux 532
Removing a Printer with Solaris 533

Maintaining a Print Queue 533
Print Queues with FreeBSD and Linux 534
Print Queues with Solaris 534

Handling PostScript 535
The Common Unix Printing System 538
Summary 540

PART VIII Network Administration 541

34 Introduction to Unix Networking 543
Basic Networking Concepts 545
Basic TCP/IP 547

Internet Protocol 548
Static and Dynamic IP 549

Networking Hardware and Software 550
Common Networking Architectures 552

Local Area Network Topologies 553
Ring Architecture 553
Hub Architecture 554
Bus Architecture 555

Wide Area Network Topologies 557
Common Networking Concerns 559
Summary 561

Contents xxvii

2817cfm.qxd 11/20/00 10:03 AM Page xxvii

xxviii

35 Network Interfaces and Routing 563
Configuring Network Devices 564
Dial-Up Networking 565

Dial-Up Hardware 567
Case Study: Kppp 568

Writing a Login Script 575
Dial-Up and FreeBSD 575
Dial-Up and Solaris 577

Ethernet Networking 577
DHCP and PPPoE 582

Routers and Gateways 582
Small Networks 584
IP Masquerading 585

IP Masquerading with FreeBSD 586
IP Masquerading with Linux 587

Summary 588

36 The Distributed System 591
Clients and Servers 592

Multiple-Service Machines 594
A Multiple-Service Case Study 594

Distributing Services across Multiple Machines 597
Backing Up Multiple Machines 599
The Security Advantage 601

Reinforcing Multiple-Server Security 602
Summary 603

37 Integrating Unix with Other Platforms 605
Integrating One Unix with Other Unices 607

Obtaining and Installing NFS 608
Configuring an NFS Server 609
Mounting Networked File Systems 610
Automatic Mounting with /etc/fstab 611

Integrating Unix and Windows 613
Obtaining and Installing Samba 613
Configuring Samba 614

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xxviii

Starting Samba 616
Print Sharing with Samba 618

Integrating Unix and MacOS 621
Configuring netatalk 622

atalkd.conf 622
apfd.conf 623
AppleVolumes.default 625
AppleVolumes.system 626
config 627

Starting netatalk 628
Solaris and netatalk 628
Linux and netatalk 629

Summary 630

38 Network Security 631
How Important Is Security to You? 633

Eternal Vigilance 634
The Security Mindset 635

Physical Security 636
Internal Security 636
External Security 637

Internal Security 637
File Permissions 638
Passwords 640
Malicious Users 641

External Security 642
Shutting Down All Unnecessary Services 642
Using ssh 644
Keeping Your Software Up-to-Date 645

Intrusion Detection 645
Logs 647
Intrusion Detection Software 648
PortSentry 651
Port Scanners 651

Firewalls and Proxies 652
Proxies 653

Summary 654

Contents xxix

2817cfm.qxd 11/20/00 10:03 AM Page xxix

xxx

PART IX Administering Services 655

39 Selecting a Suite of Services 657
What Is a Service? 658
Why Not Run All of Them? 658
What Are Your Needs? 660

The Hobbyist 660
The Worker 660
The Specialist 661

A Word about Security 662
Managing Services 663

Turning Off Services: FreeBSD and Linux 664
Turning Off Services: Solaris 664

Summary 665

40 Electronic Mail 667
How Electronic Mail Works 669

The Software Components 669
The Process 670

An Overview of Mail Services 672
sendmail 674

Installing and Configuring sendmail 675
Postfix 675

Installing and Configuring Postfix 676
Starting Postfix 677

Exim 678
Obtaining and Installing Exim 678
Testing and Monitoring Exim 679

qmail 680
Installing and Configuring qmail 681

smail 682
Setting Up POP and IMAP Services 683
Summary 684

41 USENET News 687
How USENET Works 688

The Process 692
Retaining Posts 695

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xxx

Creating Newsgroups 696
Administering a Sound USENET Site 697

Arranging a Newsfeed 698
User Policies 699

INN 700
Obtaining and Installing INN 700

Installing INN on Linux 701
Installing INN on Solaris 701
Installing INN on FreeBSD 701

Configuring and Running INN 702
Managing Newsfeeds 702
Setting Expirations 703
Managing Groups 704

Summary 705

42 World Wide Web Services 707
Getting and Installing Apache 709
Configuring Apache 711
Other Web Servers 735

boa 736
dhttpd 736
fhttpd 738
Jigsaw 738
kHTTPd 739
WN 740

Summary 741

43 Remote Access (inet) Services 743
inetd: The Internet Supervisor 744
Configuring inetd 745

/etc/inetd.conf 746
/etc/services 749

xinetd: An inet Alternative 754
Running Services from inetd 756
Connection-Based Services 757

telnet 757
rlogin 758
rsh 759

Contents xxxi

2817cfm.qxd 11/20/00 10:03 AM Page xxxi

xxxii

Data Transfer Services 760
Information Services 761

finger 761
netstat 762

Miscellaneous Services 763
Summary 764

Appendices 767

A Common Unix Commands 767
adduser 768
apropos 769
at 769
bash 769
cat 770
cd 770
cfdisk 770
chmod 770
chown 771
cp 772
crontab 772
date 772
dd 773
declare 773
diff 773
du 774
echo 774
exit 774
export 775
exportfs 775
expr 775
fdisk 775
fsck 776
grep 776
groups 777
gzip and gunzip 777
head and tail 777
ifconfig 778

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xxxii

init 778
insmod 778
kill 779
less 779
ln 779
locate 779
logout 780
lpc 780
lpq 780
lpr 781
lprm 781
ls 782
make 782
man 782
mkdir 783
mke2fs 783
more 783
mount 783
mv 784
netstat 784
passwd 784
ping 785
ps 785
pwd 785
read 786
rm 786
rmdir 787
route 787
rsync 788
set 789
setenv 789
sh 789
shutdown 790
sort 790
ssh 790
startx 791
su 791
tar 791

Contents xxxiii

2817cfm.qxd 11/20/00 10:03 AM Page xxxiii

xxxiv

test 792
top 792
touch 793
traceroute 793
ulimit 793
umask 794
umount 794
useradd 795
userdel 795
w 796
wc 796
whereis 796
which 797

B Documentation and Resources 799
Introducing Unix 800

History of Unix 800
Unix Variants 801
Free Software and Open Source 802

Getting Started 803
Unix Desktop Environments 803

X Window System 804
Window Managers 805
KDE 806
Gnome 807

Using the Shell 807
bash 808
Other Shells 808

Using Text Editors 809
ed 809
vi 810
GNU Emacs 810
Other Text Editors 811
Graphical Editors 811

Shell Programming 812
Basic System Administration 813

Contents

2817cfm.qxd 11/20/00 10:03 AM Page xxxiv

Network Administration 814
Heterogeneous Networks 814
Security 815

Administering Services 816
Electronic Mail 816
USENET News 817
World Wide Web 817
Remote Access Services 818

On the CD 819

C Other Types of Unix 821
AIX 822
BSD 824

BSD/OS 824
NetBSD 824
OpenBSD 825

HP-UX 826
IRIX 827
OSF/1 828
SCO Unix 829
SunOS 830
System V 831
Xenix 831

Glossary 832

Index 853

Table of Contents xxxv

2817cfm.qxd 11/20/00 10:03 AM Page xxxv

This page intentionally left blank

INTRODUCTION

Call us evangelists, street corner preachers, radical partisans, or just plain
junkies: We love Unix and all its derivatives. When we were offered the chance to
write this book, we thought it was a tremendous opportunity to showcase this fine
operating system and help those new to the OS learn how to use it to its fullest.
Unix is a powerful and robust operating system that rarely fails and that offers
even the most casual users the ability to manage individual accounts at a level far
surpassing the options offered by other operating systems.

Recently, we saw a Web banner that proclaimed Unix to be “The Original Alter-
native.” This isn’t quite right: Unix is much closer to being the Original Operating
System than it is to being an alternative of any sort. In fact, Microsoft Windows
and the Macintosh Operating System (MacOS) were initially designed as alterna-
tives to Unix, not the other way around! Unfortunately, the marketing and PR for
the personal operating systems such as Windows and MacOS has been successful,
and now most computer users either don’t know Unix exists or think that they are
too stupid to use it because “Unix is for geeks and computer science majors.”

That’s where this book comes in. Neither of us were computer science majors
(English and economics), and we’ve learned most of what we know about Unix in
a hands-on fashion—or, in the traditional manner, by pestering our more knowl-
edgeable friends until they taught us what we needed to know. We used books
like this one to lay the base for further experimentation, and we still refer to those
old friends when we need a jogged memory. If we can do it, you can do it, too.

Unix doesn’t have to be expensive; in many cases, you can get free copies of
Unix variants from the Internet or pay just the cost of the CD and shipping to get
a Unix variant on a disc. Unix doesn’t have to be hard; you don’t start out with
programming, and with graphical user interfaces, Unix is eerily similar to those
other operating systems you’ve used. Unix doesn’t have to be an either/or
choice; we use a variety of operating systems in our daily work and recreation.

We hope that after you have read this book, you will feel comfortable and
capable when confronted with a Unix machine. Whether or not you delve into
the world of administering your own Unix-variant system—and we hope you
do—you will have the skills necessary to work with Unix at your school or

2817cfm.qxd 11/20/00 10:03 AM Page xxxvii

xxxviii

workplace. If you decide to run your own system, you’ll be able to manage your
users, your files, and any services you choose to run. Unlike the users of other
operating systems, you won’t be shielded from the actual operation of your com-
puter; we hope this gives you a sense of power and accomplishment that is hard
to equal in the computing world.

Learn Unix, and new worlds open to you.

What the Book Contains
Because we wrote this book intending it to be useful for a wide variety of readers,
there is a lot of information here. Some of it is quite basic, while other chapters con-
tain complex and advanced material. However, there should be nothing here that is
beyond the average reader’s understanding, even if you never plan to use Unix.

The book is divided into nine major parts, with 43 chapters distributed among
those parts. We begin with a basic introduction to Unix and its history, move into
basic Unix commands and concepts, and then move into discussion of the vari-
ous components of a working Unix-based system. You’ll find separate sections
devoted to graphical user interfaces, text editors, basic and advanced system
administration, networking, and the various services used by networks across
the Internet.

TIP You can find a complete listing of the chapters and their contents in the expanded
table of contents, which precedes this introduction.

In each chapter, you’ll find real-world examples and sample output from a vari-
ety of Unix commands. We show you how things work and give you the tools to
try each concept out on your own system. Where pictures would be helpful, we’ve
included them; however, because so much of this book is written about text-mode
work, we thought you’d prefer to see the output in the main text, instead of in a
shot of a terminal window containing some tiny text that’s barely readable.

Whom the Book Is For
We’ve written the book so that absolute beginners and longtime system admin-
istrators should both find some use in it, though the latter will probably also
need more-specific books designed to answer hardcore questions. If you have

Introduction

2817cfm.qxd 11/20/00 10:03 AM Page xxxviii

xxxix

never seen Unix before, you will learn most of what you need to get going in
the early chapters of the book. If you’ve worked with Unix, but don’t quite
understand how it does what it does, you’ll find the information you need here
as well. If you’re comfortable as a user, but find yourself in possession of a new
Unix system (or you’ve just been hired as a system administrator), we show
you what to do, too.

We do make some assumptions about you, dear readers. We have based the
book on the following “typical reader,” so if you don’t actually meet one of our
assumptions, you’ll need to make adjustments for your own circumstances. Here
are the basic assumptions we’ve made:

• We assume that you have access to a computer running some variant of
Unix. It can be one of the three Unices covered in the book (Linux, Solaris,
or FreeBSD) or another variant, but you should know that we have targeted
our discussion of how Unix works to those three Unices.

• We assume that, on that computer, you have a valid user account and access
to shell functions. If your system administrator has devised a menu system,
you should be able to break out of the menu and get to the regular shell
prompt; if you use a graphical user interface, you should be able to open a
terminal window.

• We assume that you do not have any restrictions on what you can do in
your user account, within reason. By restrictions, we mean the ability to exe-
cute shell commands, write basic shell scripts, change file permissions, and
the like. We do not mean file size limitations, connection time restrictions, or
other user-policy functions.

• We assume that, if you are interested in running your own Unix variant sys-
tem, you have obtained a suitable computer and have installed your pre-
ferred Unix variant already. Whatever Unix-based operating system you
buy should have clear installation directions and, in most cases, an auto-
installation program.

• We assume that you are interested in maintaining a secure system and that
you will take the appropriate precautions to keep your system secure, espe-
cially if you have other users or if you connect to the Internet from the system.

Introduction

2817cfm.qxd 11/20/00 10:03 AM Page xxxix

xl

How to Use the Book
You can read straight through or find each chapter as you need it, but regardless
of how you use the information in the book, you’ll find consistent formatting to
help you identify particular kinds of information. We use special conventions to
highlight commands you need to type at a shell prompt, commands that are
accessed with a mouse, lines of code, and key combinations. We also use margin
icons to identify bits of information that might be dire warnings, helpful material
beyond what’s in the text, or unique pieces of knowledge that should either give
you a chuckle or help you understand more about the Unix world.

Formatting in the Text

As you read along, you’ll see that the text on each page is not necessarily all the
same. Those different fonts and the layout indicate a particular type of informa-
tion. Most frequently, you’ll see text conventions that indicate something you
should type, as written, at a shell prompt to perform a particular task. For exam-
ple, if we ask you to issue the command that brings up the documentation for the
ls command, you’ll see the sentence “Type man ls at the shell prompt.” Note
that man ls is in a different typeface, indicating it is the actual command to be
typed. The same typeface is used for directory paths, the way in which file loca-
tions are noted in Unix. If you’re looking for a log file, we’ll tell you that logs are
usually located in /var/log. Individual filenames also use this font.

However, if we’re showing you a particularly long command (or if we think the
command is important enough not to be buried in a block of text), we’ll use a dif-
ferent convention. So, you’ll sometimes see the command set off on its own line,
using a monospace font, like this:

man ls

or

cp /var/log/mail maillog

This convention is also used for excerpts from files, or for complete files, as well
as for shell scripts and other programming examples.

TIP If you see a line that ends in an arrow, that arrow indicates that the line was so
long it had to be broken up into two lines. The arrow will look like this: ➥.

Introduction

2817cfm.qxd 11/20/00 10:03 AM Page xl

xli

Words in italics are new terms, which are usually defined in the next sentence.
You can also find italicized terms in the Glossary. We’ve added other important
terms to the Glossary, but it also contains all the important new concepts from the
main text of the book. Commands introduced throughout the book are also listed
in Appendix A, a Unix command compendium. In that appendix, we’ve shown
you the command, its syntax, and some of the most important options or flags it
can use.

If we describe a process that uses mouse clicks instead of text commands, the
command is written using arrows like this: ➣. That is, we might say, “From the
menu at the top of the screen, select File ➣ Save.” This convention saves time
and space, because we can use the arrow instead of saying, “Select the File
menu. In the drop-down list that appears, click the Save option.”

Finally, we show you some key combinations in various places throughout the
book. A key combination requires that you press two or more keys simultane-
ously. Usually, one of those keys is a metakey: Ctrl, Alt, or Esc. When you see the
command “Press Ctrl+c” you need to press the Ctrl key and the c key at the same
time. Key combinations are usually found in graphical programs, though the
Ctrl+c combination will stop any active process in a Unix shell, and the Ctrl+z
combination will suspend the active process so that you can perform another
action at the prompt without ending the initial process. (Resume the process by
typing fg at the prompt.)

Margin Icons

You’ll see many special icons in the outer margins of this book’s pages. These icons
are used to indicate particular pieces of information we felt were so important they
should be flagged. There are three types of icons used in the following chapters:

WARNING A Warning is the most important thing to read on any page where it appears. We
use Warnings to flag security risks and tell you about commands or habits that
might damage your hardware or cause you to lose files and data. If you read noth-
ing else in the book, at least read the Warnings.

Introduction

2817cfm.qxd 11/20/00 10:03 AM Page xli

xlii

NOTE Notes are extra information that didn’t quite fit into the main text. We use Notes to
provide commands or concepts that are a bit more advanced, or that point out some
feature of Unix history or the Unix community that might be useful to readers.

TIP Tips are shortcuts or handy hints that will speed up some of the work you need to
do when you use Unix. We also use Tips to tell you about programs or Web pages
that will make your Unix life easier or that will shed some light on a difficult concept.

Introduction

2817cfm.qxd 11/20/00 10:03 AM Page xlii

P A R T I
Introducing Unix

� Chapter 1: History and Background of Unix

� Chapter 2: Which Unix?

� Chapter 3: Some Basic Unix Concepts

2817c01.qxd 11/13/00 11:27 AM Page 1

This page intentionally left blank

C H A P T E R
O N E

History and Background
of Unix

� What Is Unix?

� Creation and History of Unix

� The Unix Philosophy

� Summary

1

2817c01.qxd 11/13/00 11:27 AM Page 3

4

Welcome to Mastering Unix! As we explained in the introduction, we’ve writ-
ten this book with a variety of users in mind. You might be an old hand at using
Unix systems and you’ve picked this book up (heavy, isn’t it?) to serve as a refer-
ence guide. You could be an intermediate user of Unix or Unix-based operating
systems who’s looking for that extra information that will take you to the next
skill level. You may be someone who knows enough about Unix to get around
your shell Internet account, reading mail and news, but not doing much else. You
might even be completely new to Unix and its derivatives, and have picked this
book up out of idle curiosity. No matter who you are, you’ll find something of use
in this book. Both of us have been using Unix or Unix-based operating systems
for over a decade now, and we learn something new about this magnificent beast
almost every day.

If you’re reading this book because you’ve been told, or have decided, that you
need to learn how to use a Unix system, odds are that you already know at least a
little bit about Unix. If you picked up this book because of its striking cover or
size, or because you’ve heard the term Unix and you’re wondering what it’s all
about, it’s possible that you might not have any idea whatsoever what Unix actu-
ally is—and how it’s different from the other operating systems you’re probably
familiar with.

One position that we hold strongly is that computer users should know the
background of the software they are using. In many cases, all that’s really neces-
sary is a bit of basic history; everyone seems to know that Microsoft Windows is
the brainchild of the Microsoft Corporation. Microsoft is in the news so frequently
that even people who don’t use computers know about Windows. The Macintosh
is slightly less well-known, but it has a reputation of being user-friendly, easy to
learn, and the challenger to Microsoft and the personal computer (PC).

So, you might ask, what’s the point of knowing all that? Well, there are several
points. If you know that Microsoft is responsible for your operating system, your
integrated office suite, and your Internet Web browser, you have some idea of
where that software came from. There’s a company you can point to. With Unix,
it’s a little different—and with all the operating systems that have grown out of
the original Unix, it’s even more different.

To give you an understanding of Unix and where it fits into the world of com-
puting, we’ve decided to start the book with Part I: “Introducing Unix.” This part
of the book contains information about Unix: the history of the operating system,

Chapter 1 • History and Background of Unix

2817c01.qxd 11/13/00 11:27 AM Page 4

5

the various Unix variants, an introduction to the concept of Free Software, and
some basic Unix concepts that you should know before reading further.

In this chapter, we provide a brief introduction to what Unix is and explain a
little bit about its development, history, and philosophy. Chapter 2: “Which
Unix?” introduces the wide variety of Unix variants now available and covers in
more detail the three variants we’ve selected for this book: Linux, FreeBSD, and
Sun Solaris. In addition, we will present a brief history of the Free Software
movement, which affects Unix users in a significant manner. Finally, we give the
opportunity to start building your Unix skills in Chapter 3: “Some Basic Unix
Concepts.” We’ve designed this part of the book to help you to understand why
Unix is what it is and how that affects the concepts, skills, and programs that we
describe in the rest of the book.

What Is Unix?
In the simplest terms, Unix is an operating system. An operating system is the soft-
ware that runs behind the scenes and allows the user to operate the machine’s
hardware, start and stop programs, and set the parameters under which the com-
puter operates. Modern operating systems also do a lot of other things, such as
controlling network connections, but in the strictest sense, these can be thought of
as extra capabilities. The most basic requirement of an operating system is that it
permits the user to operate the computer.

Anyone who has used a computer in the past 10 or 15 years has used an operat-
ing system. The most common personal operating systems in use today are
Microsoft’s Windows family (Windows 95 and Windows 98) and Apple’s MacOS.
These systems were developed for use with the new generations of low-cost, per-
sonal-use computers that became available in the 1980s. As these desktop com-
puters became more powerful and more popular, these personal operating
systems saw a commensurate increase in popularity.

However, the popularity of personal operating systems such as Apple’s and
Microsoft’s is only part of the operating-system story. Well before these systems
existed, academics and computing professionals were using a variety of operat-
ing systems. Most of these are now extinct, but a few—especially Unix—survived
and continued to evolve.

What Is Unix?

2817c01.qxd 11/13/00 11:27 AM Page 5

6

What we now know as Unix is actually an entire family of operating systems.
From IBM’s AIX, Xerox’s Xenix, and Hewlett Packard’s HP-UX to the publicly
licensed Linux and FreeBSD, versions of Unix are produced by a variety of com-
panies and organizations. All of these versions have slight differences, but it is
what they have in common that makes them important.

All Versions of Unix Are Multiuser
Unix was originally designed to be used on large mainframe computers with
many users. Consequently, Unix has support for user accounts and varying levels
of file security, allowing users to keep their files private from one another. Even if
you install a Unix-based operating system on a standalone computer and you are
the only person who will ever use the computer, you will still create at least two
accounts: the root account and a personal user account. Many administrators set
up accounts for nonexistent people so that they can test configurations or pro-
grams under different account settings.

All Versions of Unix Are Multitasking
Unix systems can perform many tasks at once. Unix does this by means of time
slicing (also called true multitasking), which means that each running process gets
to use the computer for a specific period of time. This behavior is in contrast to
task switching, which is the “multitasking” system used by personal operating
systems. Task switching means that each running process gets to use the com-
puter until it has completed a particular task; it’s not really multitasking in the
true sense of the term, so we’ve put quotation marks around it. When we talk
about multitasking in this book, we are talking about time slicing, the true form
of multitasking.

All Versions of Unix Can Use the Same Commands
It doesn’t matter what kind of Unix-based operating system you’re using,
whether it’s Linux, FreeBSD, Solaris, or some commercial Unix. When using a
Unix-derived operating system, users can issue commands to the system by
means of a command shell. The command shell is separate from the operating sys-
tem; in fact, the shell acts as a translator between the commands you enter with
the keyboard and the operating system itself. A multitude of shells is available to
the Unix user. These shells can be run on any version of Unix, so that the same

Chapter 1 • History and Background of Unix

2817c01.qxd 11/13/00 11:27 AM Page 6

7

commands will work on any machine using that shell. We’ve devoted an entire
part of this book to the bash shell, which is one of the most commonly used com-
mand shells.

What Does This Mean to the End User?
To the user, then, all versions of Unix look pretty much alike. With only some
minor differences, a user will use one given Unix machine in the exact same way
as she would use any other Unix machine. The display might be a bit different,
and the exact syntax of commands might be altered (if a command shell different
from her regular shell is installed), but she can still perform her regular tasks with
the same commands. The differences between the various Unices (the plural of
Unix) come into play when you reach the level of programmers and system
administrators. These are the people to whom the nuts and bolts of different sys-
tems become critically important.

If you are wondering whether it’s better to use Unix A or Unix B, or if you’re
caught in the Linux vs. FreeBSD dilemma, don’t worry. Pick one and get to know
it. When you’re comfortable with that one, you might want to explore another.
However, you will never find that learning one particular Unix makes all other
Unices incomprehensible; Unix just doesn’t work that way.

When non-Unix people hear Unix people talking about command languages,
shell environments, and so on, they often get the idea that Unix is an obscure and
old-fashioned operating system that makes computing difficult by requiring the
user to memorize complicated command syntaxes. Although it is true that Unix
can be operated entirely from a command-line interface, it may come as a sur-
prise to some of these folks to learn that Unix has a windowing system that is
both older and more sophisticated than the ones that form the basis of the per-
sonal operating systems. Hundreds of graphical applications, including word
processors, spreadsheets, image manipulation software, and others, can be run on
Unix machines. With the continuing development of applications for Unix plat-
forms and the transfer of popular Windows-based programs to Unix, the popu-
larity (and ease-of-use) of this powerful operating system is bound to blossom.

So what is Unix? Unix is a powerful multiuser, multitasking family of operating
systems. Unix is mature technology, having its genesis in the late 1960s, but it is
thoroughly modern—it runs on just about any computing hardware you can
think of.

What Is Unix?

2817c01.qxd 11/13/00 11:27 AM Page 7

8

Creation and History of Unix
Once upon a time, every computer came with its own operating system and cost
thousands of dollars. The idea that an operating system could be independent of
the hardware had not been developed. How is that different from today? Today,
the computer you buy at Best Buy has an operating system preinstalled, but you
can change that operating system if you want. For example, the Windows operat-
ing system is not integrated into the hardware of your new Compaq.

In the very earliest days of computing, of course, there were no operating sys-
tems. Computing was done by human operators on bare machines. This meant that
for every computing task that needed to be done, the computer would have to be
configured for that specific task. This was a very cumbersome way to do comput-
ing tasks, and computer scientists were always looking for ways that the machine
itself could take over more of the work of processing data.

As hardware got more powerful, and the computers’ internal switches were fur-
ther automated, programmers began writing programs that could reconfigure the
machine on the fly. Each computer manufacturer would write operating programs
that were specific to the particular hardware they’d designed. This was more or
less the state of affairs until the late 1970s and early 1980s, when the popular per-
sonal operating systems were first conceived and developed. Apple, for example,
wrote its operating systems specifically for the hardware they’d designed, while
Microsoft developed its system specifically for Intel’s processors.

The Story of C
Meanwhile, others were looking for ways to use operating-system software to get
the same behaviors from different types of hardware, so that a new operating sys-
tem didn’t need to be written for each new computer. In 1965, two computer scien-
tists at Bell Labs, now known as Lucent Technologies, wrote the first incarnation of
Unix, which ran on a Digital Equipment Corporation (DEC) PDP-7. When they
acquired a PDP-11/20, the scientists (Dennis Ritchie and Ken Thompson) decided
to port Unix to the new computer. (To port a piece of software is to rewrite it for a
different platform.) The experience they gained in this exercise resulted in Ritchie’s
conception and design of the C programming language, still one of the most useful
programming languages for Unix users.

Chapter 1 • History and Background of Unix

2817c01.qxd 11/13/00 11:27 AM Page 8

9

The idea behind C was to create a programming language suitable for creating
an operating system. Once C was usable, programmers could then create compil-
ers for the various hardware devices; the compilers would translate C instructions
into the machine’s native command language, no matter what that language was.
C turned out to be very successful, because it filled a need that everyone had. In
fact, it was so successful that in 1973, Ritchie and Thompson completely rewrote
Unix in C.

In the meantime, Bell Labs’ parent company, AT&T, had been declared a mono-
poly by the United States Federal Trade Commission. As a result of this declara-
tion, AT&T was subject to certain restrictions on its behavior. Partly because of
these new requirements, Bell Labs began making Unix available to universities,
free of charge. This was quite popular, and Unix became widely used in the acad-
emic environment. It subsequently began to propagate into the private sector
when students began to graduate or leave school, taking their knowledge and
affection for Unix with them.

The Rise of Unix Derivations
In 1978, AT&T announced that they would begin charging everyone, including
academic institutions, for the Unix source code. In response, computer scientists
at the University of California at Berkeley announced that they would create their
own Unix-like system, to be called BSD (Berkeley Software Distribution) Unix.
BSD was released under a very permissive license and has gone on to form the
basis of many other Unix variants.

In 1987, around the same time that version 4.3 of BSD was being released,
AT&T and Sun Microsystems agreed to cooperate on a plan to reintegrate the
AT&T and BSD versions of Unix. Other vendors who had created their own
Unices in the intervening years, such as IBM and Hewlett Packard, felt threatened
by this plan and formed an organization called the Open Software Foundation.
Although OSF-1, the Foundation’s 1991 version of Unix, was never a major hit,
parts of it managed to find their way into other distributions.

The Internet and Unix
In the mid to late 1980s, other events were occurring that would affect the growth
and development of Unix. The Internet began to establish a real presence in uni-
versities and research labs. This rapid access to information and colleagues made

Creation and History of Unix

2817c01.qxd 11/13/00 11:27 AM Page 9

10

possible a new type of software development. In previous years, programmers
and developers worked in laboratories together. The physical proximity of other
team members and the computers fueled innovation and hard work; this method
of development was typified by MIT’s Research Lab, home of many of the inven-
tions we take for granted today.

However, the Internet changed everything. Programmers were no longer
required to be in the same building or city. With instant communication via e-
mail and the ability to share code files with negligible cost, programmers soon
realized that they could work on software projects with colleagues thousands of
miles away or on different continents. The result of this realization was that Unix
variants began appearing that were free for the downloading. Anyone with a yen
to hone their programming skills could work on these distributions and con-
tribute their work back to the project.

These free Unices had the effect of reenergizing enthusiasm for Unix on college
campuses, because students could download them for free and install them on
their personal computers. The result was that computer science students now had
the same programming environment in their dorm rooms or apartments as they
used in their classes—no more fighting for time on a mainframe computer or
waiting in line for a computer in the campus-research laboratory. The additional
time has meant that college students are now as involved in the Unix community
as those who are professional Unix administrators or programmers.

Unix Today
All the developments of the last 40 years have brought us to the vibrant Unix
community of today. Linux and FreeBSD, two free Unices, are very popular on
college campuses, and Linux is beginning to make inroads into business and the
popular consciousness. CNN’s online news site, http://www.cnn.com, even runs
regular columns on Linux in their Technology section.

Although nowhere near as popular as Microsoft’s operating systems, Linux
and FreeBSD are beginning to establish a toehold in the personal-computer
market, as consumers are beginning to learn that they can have a full-power,
industrial-strength operating system at low cost. Businesses are beginning to take
advantage of Linux and FreeBSD to save money on small servers for their inter-
nal use.

Chapter 1 • History and Background of Unix

2817c01.qxd 11/13/00 11:27 AM Page 10

11

Meanwhile, Unix and Unix-derived operating systems are the de facto standard
for large servers. AIX, HP-UX, and Sun’s Solaris are extremely popular for serv-
ing large Internet sites and databases. We’ve heard several reports from system
administrators at large corporations who use a Unix-derived operating system on
their Web and e-mail servers to provide reliability and lengthy up-times, even if
the majority of the company’s computers are managed with Windows NT so that
Windows software programs can be used.

The Unix Philosophy
We’ve covered the history of Unix, but is that what makes Unix special? Not com-
pletely. From the very beginning, a number of assumptions have been built into
the design of Unix. Over time, these ideas have proven themselves as valid and
have taken on the quality of an entire philosophy. Some of the main ideas of this
Unix philosophy are explained below; you’d probably get quite a few suggestions
for other main components of the concept, were you to ask around, but these
seem to be the core of everyone’s idea of Unix.

Keep things small: Each component of the system should be as small and
simple as possible. Each component may not be especially powerful by
itself, but small components can be combined into powerful and flexible
complex objects. Small programs are easy to understand and maintain,
and simple programs can often be adapted to unforeseen uses. Small mod-
ules can be used to affect the kernel’s behavior, so that only one action or
setting is controlled by each module.

Everything is configurable: The behavior of any particular program or
command can be configured in as many different ways as imaginable.
Users can configure their individual accounts as they like, while adminis-
trators can configure general system settings or regular routines to save
time and effort. If you find a Unix program that isn’t configurable, it’s an
anomaly.

Everything is consistent: Every aspect of a Unix system is represented as
a file. Text documents, executable programs, system features, hardware
devices, and just about anything else you can think of are represented by
the system as a file. A set of consistent ways of dealing with system features

The Unix Philosophy

2817c01.qxd 11/13/00 11:27 AM Page 11

12

has been developed based on this idea. We explain this concept in more
detail in Chapter 3: “Some Basic Unix Concepts.”

Captive user interfaces are avoided: The more popular personal operat-
ing systems, such as MacOS and Windows, are based on the assumption
that the user of a program is always a human. This ignores the fact that the
user of a program might be another program. In those operating systems,
the user interface is therefore captive to the human user; if you don’t click
the button in a dialog box, the operating system patiently waits until you
do. This can take hours or days. Unix avoids this problem wherever possi-
ble by allowing programs to function in noninteractive modes. These
modes allow programs to be chained together to perform complex tasks
without any intervention from the user.

Automation is possible: Many aspects of the Unix interface allow for
automation. The Unix shells, in addition to being simple command inter-
preters, are also program interpreters. Anything that can be done from the
keyboard can also be done from within a program. This means that you
can write scripts that will call certain programs automatically at a given
time or system state. Most system administrators automate routine tasks,
such as backups, to avoid having to do such jobs by hand. Unix is power-
ful enough to handle most of its administration tasks by itself, with the
only human intervention required being a check of the results.

Summary
Unix is an operating system with a long and rich history, as computer history
goes. Since Unix’s roots are found in mainframe computers, the operating system
includes support for multiple users, wise allocation of system resources through
multitasking, configurability and flexibility for user and administrator prefer-
ences, and the ability to use the same commands regardless of the Unix variant
being used.

The underlying Unix philosophy keeps the operating system flexible. Unix is
small and modular, effectively organized, responsive to user needs yet able to run
multiple automatic processes, and consistent in its operation and output. With
Unix, you can perform simple tasks or complicated programming operations.
Whatever you choose to do with a Unix computer, Unix will be able to keep up.

Chapter 1 • History and Background of Unix

2817c01.qxd 11/13/00 11:27 AM Page 12

C H A P T E R
T W O

Which Unix?

� The Fragmentation of Unix

� Differences between Unices

� Unix Versions Used in This Book

� We GNU, Do You?

� Getting to know GNU

� The Free Software Foundation

� If GNU’s Not Unix, What Is It?

� The Free Software Explosion

� The Meteoric Rise of Open Source

� Summary

2

2817c02.qxd 11/13/00 11:48 AM Page 13

14

As we mentioned in the previous chapter, Unix can be thought of as a family
of operating systems. When AT&T Unix and BSD Unix diverged, that event set
into motion a chain of subsequent events that led to the genus Unix diverging
into multiple species. Although each retains the essential nature that makes Unix
Unix, each also has its own idiosyncrasies. These peculiarities might not affect the
user much, but they have important consequences for the system administrator
and the programmer. People with such responsibilities must make sure they
understand how things operate when they move to a version of Unix with which
they’ve never worked.

The Fragmentation of Unix
Historically speaking, the granddaddy of all current Unix versions is the Sixth
Edition of the original AT&T Unix. This version was released around 1975 and
was the first Unix widely available outside of AT&T. (The Sixth is the Unix ver-
sion that first found favor in universities.) It was this edition that formed the
basis for the first BSD release as well as for several other variants. Two of these
variations, PWB (Programmers’ Workbench) and UNIX/TS, were the ancestors
of System III, which would turn out to be the beginning of a very influential
line. The Sixth Edition eventually became the Seventh Edition, which itself
formed the basis of Xenix, one of the first versions of Unix to run on an Intel
x86-series processor.

If all of this seems a little complicated, that’s because it is. The diagram in Fig-
ure 2.1 shows a somewhat simplified version of the Unix family tree.

For most purposes, we can think of almost all Unix variants as being the
descendants of either some version of BSD or System V (a descendant itself of
System III), or some combination of the two. Solaris, for example, was origi-
nally a descendant of 4.1BSD, but eventually inherited some features from the
fourth release of System V (usually abbreviated SysVR4). Even if a particular
version can’t trace its lineage directly to either family, the influence of these two
branches is such that it probably has significant features drawn from one or the
other or both.

Chapter 2 • Which Unix?

2817c02.qxd 11/13/00 11:48 AM Page 14

15

NOTE Linux is something of a special case. Although it does draw features from both
SysV and BSD, Linus Torvalds did not use any existing Unix code when he began to
write the first Linux kernel.

An unfortunate consequence of this fragmentation was that Unix’s position in
the marketplace began to suffer. Although Unix continued to dominate in univer-
sities and research laboratories, corporate information technology managers
faced a bewildering assortment of hardware and software choices, and Unix was
not always their first selection. As Microsoft emerged as a real force in the 1990s,
its Windows NT operating system began to challenge Unix. Windows NT had the

Bell Labs Research
Unix First Edition

PWB UNIX/TS

System III

System V

SysVR3

SysVR4

Novell UnixWare

SCO Unix

Sixth Ed.

Seventh Ed.

Xenix

Xenix 3

Xenix 5

1 BSD

2 BSD

4.1 BSD

4.1c BSD

4.2 BSD

4.3 BSD

FreeBSD

SunOS

SunOS 3

SunOS 5

Solaris

Solaris 2

Solaris 7, 8

F I G U R E 2 . 1 :

The Unix family tree is a
dense and bushy one.

The Fragmentation of Unix

2817c02.qxd 11/13/00 11:48 AM Page 15

16

advantage of being the monolithic product of a single company, and it ran on
inexpensive Intel hardware. Although Unix was still widely used, the general
public grew to believe that computers meant personal computers (PCs) and operating
system meant Microsoft Windows.

Differences between Unices
As we mentioned in Chapter 1, different versions of Unix have a lot of similari-
ties. This doesn’t mean they’re the same—far from it. Although the commands,
shell environments, and basic design may be similar, there are significant differ-
ences in such crucial elements as the start-up procedure, the directory structure,
the names of devices, the installation procedure, and so on. Versions of Unix also
differ in how they handle the internal functions involved in moment-to-moment
operation. This can include such decisions as how network functions are imple-
mented, how data is moved, how the filesystem works, and how processor tasks
are scheduled. Many of these low-level functions depend on the hardware upon
which a particular version of Unix is designed to run.

NOTE Although Unix was designed to be portable, there is a limit to exactly how portable
something can be. This is especially critical in regard to an operating system, where
the software needs to interact with the processor and memory in a very finicky,
low-level sort of way. In theory, anything written in C is completely portable, pro-
vided you have a compiler for the new system. In practice, a good deal of work is
required to port an operating system from one type of hardware to another.

To the user, most of these differences go unnoticed. To the administrator or pro-
grammer, though, differences in directory structure or device names can become
very important. Imagine trying to maintain a large number of heterogeneous
machines, meaning that your network is composed of computers running differ-
ent versions of Unix. You need to install a piece of software on all of them, but the
files that configure and run the software need to go into different directories on
each machine. It’s easy to see how such differences can cause major headaches.
Fortunately, most versions of Unix are similar enough that an experienced admin-
istrator can pick up the differences fairly quickly.

Chapter 2 • Which Unix?

2817c02.qxd 11/13/00 11:48 AM Page 16

17

This book, naturally enough, tends to focus on the common features of the vari-
ous Unices. Although Unices is the usual plural of Unix, it’s not clear whether this
is grammatically correct—but it is certainly common usage. We used three differ-
ent versions of Unix as we wrote this book. In those places where procedures or
descriptions diverge between the three, we make a note of it. These mentions are
not a suitable substitute for reading documentation specific to those operating
systems. We hope, though, that by the time you reach the end of this book, you
will be familiar enough with the Unix way of doing things that any idiosyncrasies
in the particular version of Unix you use will seem less troubling.

Unix Versions Used in This Book
As we said above, three Unices were used in the writing of this book. They were
chosen because they are the most popular versions of Unix available for the PC
platform. In this context, when we say PC, we mean Intel x86-series processors
and those compatible with the x86 architecture. The Unices we selected are
described below; although we personally use Linux for most of our daily work,
we don’t recommend it over either FreeBSD or Solaris if you find one of those to
be more suitable for your tastes.

Linux
The bulk of our recent Unix experience is with Linux. Linux is a rather unique
beast in the annals of operating-system history, because it is the first one that was
developed openly. What does that mean? It means that Linux exists because of a
group effort. When he began to develop the Linux kernel, Linus Torvalds (the
originator of Linux) made the source code for it available on the Internet. He
invited anyone interested in the project to contribute code or fix code that had
already been contributed. Although there is now a central core of Linux develop-
ers, they regularly evaluate volunteer contributions for inclusion in the formal
releases. Even those who aren’t interested in contributing to kernel releases can
write, maintain, and distribute a patch that fixes a known problem or adds a new
bit of functionality to the operating system. The Linux license requires public
release of all source code for patches written to the operating system, making it
an Open Source project.

Unix Versions Used in This Book

2817c02.qxd 11/13/00 11:48 AM Page 17

18

Linux is not the first or only such Open Source software project, but it is the one
that has attracted the most attention. We discuss Open Source software in more
detail in the section “We GNU, Do You?” In a way, the Open Source methodology
shares quite a bit with the academic and scientific way of doing things. Work is
done by diverse individuals and evaluated by the community. If it works, it’s
accepted. If someone comes up with a better way of doing it, the better way will
be adopted. Readers who are familiar with academic behavior will find an ana-
logue in the concept of peer review.

Because no one owns Linux in the way that AT&T owns Unix, anyone is free to
package and distribute the source code. A number of companies and organiza-
tions have done just that. The version of Linux used in the creation of this book is
distributed by the Red Hat Corporation, a publicly traded company headquar-
tered in Durham, North Carolina. Another popular distribution is produced by
the Corel Corporation of Ottawa, Canada. Both of these are for-profit corpora-
tions who derive revenue from the sale of packaged versions of Linux. Because of
Linux’s license, however, it is also possible to download these distributions from
the Internet or purchase them at a discount from independent distributors.

Another popular distributor is not a company, but an organization. Software in
the Public Interest produces the popular Debian GNU/Linux distribution. Their
goal in creating their distribution was to maintain a 100-percent public-domain
operating system, and the Debian distribution has proved to be popular. In addi-
tion to the distributions listed here, there are a number of other distributions—
some for general use and some for niche uses. The last time we counted, there were
over 100 Linux distributions available. In addition to PC platforms, Linux has also
been ported to Sun’s Sparc platform, DEC’s Alpha, and Apple’s Macintosh.

FreeBSD
FreeBSD is a direct derivative of the original BSD Unix. Like Linux, it is available
for download over the Internet, complete with source code. Unlike Linux,
FreeBSD is developed and maintained by a formal group of developers (although
it is possible to contribute code if you want to). The license under which FreeBSD
is distributed differs from Linux’s in that it does not require redistributors to
make their changes public.

FreeBSD is known as a very fast and reliable operating system and is often
preferred by hardcore computer science types. There is some friendly rivalry

Chapter 2 • Which Unix?

2817c02.qxd 11/13/00 11:48 AM Page 18

19

between adherents of FreeBSD and Linux, though both are united in their prefer-
ence for a Unix-derived operating system and the flexibility it gives to the user.
FreeBSD runs on Intel or Intel-compatible processors as well as the DEC Alpha
platform.

Solaris
In contrast to both Linux and FreeBSD, Solaris is a fully proprietary system. It is
produced by Sun Microsystems and was originally developed for use on Sun’s
Sparc line of processors. As Intel’s x86 chips became more popular for use on
higher-end systems (instead of running solely on consumer-level computers),
Sun ported Solaris to that platform, as well. While Sun does provide downloads
of Solaris, the software license limits use of the software to personal use, and
redistribution is not permitted. Solaris has the most restrictive license of the three
Unices we used in this book.

Solaris became a popular platform based on the power and performance of the
Sparc platform. Many businesses like to use Sparcs as a relatively low-cost server
solution, and some academic environments have adopted Sparcs as desktop
machines for researchers who run statistical software that produces significant
system loads. Sparcs are compact, yet powerful, machines. Solaris has gained
some popularity among the Intel-hardware crowd, but its limited license has kept
it from becoming as widely used as Linux or FreeBSD.

We GNU, Do You?
No discussion of Unix would be complete without mention of the Free Software
Foundation and the GNU project. GNU stands for GNU’s Not Unix and is pro-
nounced like the name of the animal. The Free Software Foundation and the
GNU project have been two of the major forces in Unix and Unix-based operating-
system development over the past 30 years, and their contributions are critical
components of the Unices that we all use today.

In this chapter, we explain the background of the Free Software movement and
its founder, Richard Stallman. We also describe the Open Source revolution of the
late 1990s, which shared many of the characteristics of the earlier Free Software

We GNU, Do You?

2817c02.qxd 11/13/00 11:48 AM Page 19

20

movement, yet was targeted more at corporate adoption of Open Source software
than the earlier wave’s reliance on personal users and their adoption of Free Soft-
ware packages.

Getting to Know GNU
The story of the GNU project begins in the Artificial Intelligence Laboratory at
the Massachusetts Institute of Technology in 1971. A young computer scientist
named Richard Stallman was working there at the time, and he and the rest of
the lab’s programmers had hacked together an operating system for the PDP-10
computer they were using. This was a routine task; as we described in Chapter 1,
computers each had an individualized operating system that allowed them to
run, but the operating systems weren’t interchangeable.

At this point in history, nobody thought of software as a possession. When oth-
ers asked how a certain task had been accomplished, the programmers told them
and even shared the software they had written to do the job. To programmers of
this era, code was just a set of instructions, and it had never occurred to anyone
that instructions should be considered property. True to the academic environ-
ments in which many programmers were working, code was shared with col-
leagues just as any other research findings were shared. This attitude began to
change in the 1980s. As a new generation of more powerful computers was mak-
ing the PDP-10 and its like obsolete, the manufacturers began to require nondis-
closure agreements before they would provide licenses for their operating
systems to users.

To Stallman, the idea of a nondisclosure agreement was abhorrent. It meant that
the first step in using technology was to agree not to help others. As proprietary
software became the rule, Stallman found himself at a crossroads. On the one
hand, he could wave the white flag and join the crowd. This would likely mean a
well-paid job in the software industry. On the other hand, he could use his skills
to write and distribute software that could be redistributed freely. To Stallman,
this was nothing less than a “stark moral choice”; he believed that he had an ethi-
cal duty to help stem the tide of proprietary software.

Stallman decided that the first thing he should write was an operating system,
because without an operating system, other software would be useless. He

Chapter 2 • Which Unix?

2817c02.qxd 11/13/00 11:48 AM Page 20

21

decided to pattern his operating system after Unix, which was growing in popu-
larity. Showing his wry sense of humor, he called his operating system GNU
(GNU’s Not Unix). (Such acronyms, called recursive acronyms because they con-
tain the acronym in the definition, are common in the software world.)

Creating an entire operating system is a huge job. Stallman felt that the first
thing he needed was a good text editor, because that would make the rest of the
coding process easier. The editor that he wrote is called GNU Emacs and is still in
use today. In fact, it is the subject of Chapter 18: “GNU Emacs.” Before he could
distribute it, though, he had to come up with a way to make sure that Emacs
would remain free.

NOTE When Stallman (and others following his lead) use the word free, they do so in a
very specific way. Free for Stallman means that anyone may use, distribute, or
modify the software, that the producer or distributor must provide the source
code, and that all derivative products must also be free. Free in this context does
not necessarily mean free of charge. Nothing in this definition prohibits charging
for the software. (However, given the freedom for anyone to redistribute it, the
net effect is often that the price will soon drop to the cost of distribution.) Stall-
man likes to say that, when he says free, he means it in the sense of free speech
rather than free beer.

Stallman crafted a license that would codify this free status and called it the GNU
General Public License (GPL). Emacs and all subsequent products of the GNU pro-
ject are licensed under the GPL, and most Open Source software released today
uses some variation of the GPL, if not the GPL itself.

The GNU General Public License
Because we refer to the GNU General Public License, or GPL, throughout this book, we
thought it would be a good idea to acquaint you with the terms of the GPL before we go
much further. You can read the full text of the license in Appendix F, which contains all the
software licenses for the CD-ROM; many of the programs contained on the CD are
released under the GPL. However, we reprint the Preamble of the license here, so that you

Continued on next page

Getting to Know GNU

2817c02.qxd 11/13/00 11:48 AM Page 21

22

can get a quick overview of the GPL terms and conditions, which will help as you read on
through the book and learn more about Free Software.

Preamble to the GNU General Public License:

“The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your free-
dom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

“When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs, and that you know you can do these things.

“To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsi-
bilities for you if you distribute copies of the software or if you modify it.

“For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

“We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute, and/or modify the software.

“Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not
the original, so that any problems introduced by others will not reflect on the original
authors’ reputations.

“Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.”

Chapter 2 • Which Unix?

2817c02.qxd 11/13/00 11:48 AM Page 22

23

The Free Software Foundation
As the GNU project began to pick up steam and people began using its products,
it began to attract other programmers. Since the source code for any item was
freely available, it was easy for programmers to browse the code and suggest
improvements, extensions, or even complete revisions. This was, of course, exactly
what Stallman had in mind when he created the GPL: a community of program-
mers who could create better software together and share it with the world.

In 1985, issues of funding and project management had become sufficiently
complex that it was evident some sort of formal structure was needed to handle
the management of the GNU project. Stallman and his co-conspirators created an
organization called the Free Software Foundation as a tax-exempt charity, using
the U.S. Internal Revenue Service definition. The Free Software Foundation can
now raise money through donations or the sale of packaged distributions of Free
Software, and can employ people to work full time on creating more Free Soft-
ware for distribution.

If GNU’s Not Unix, What Is It?
The GNU operating system was originally intended to be an alternative to com-
mercial versions of Unix. Stallman’s idea was that GNU would comprise a com-
plete system from top to bottom that could completely replace proprietary
operating systems. (This hasn’t happened—yet—although Stallman and others
continue to work on it.) Ironically, however, the GNU project’s first successes
were as adjuncts to proprietary Unices. GNU components, such as GNU Emacs,
GCC (the GNU C Compiler), and bash (a free replacement for the Bourne Shell),
began to be included in commercial Unices.

These days, it’s unusual to run across a Unix system that doesn’t include GNU
Emacs, bash, or some chunk of GNU software. If GNU components aren’t
installed by default on a particular Unix or Unix-derived system, fans of the pro-
grams often install them directly. The rather perverse fact is that GNU is Unix or
at least part of it.

If GNU’s Not Unix, What Is It?

2817c02.qxd 11/13/00 11:48 AM Page 23

24

The Free Software Explosion
The people of the Free Software Foundation, of course, were not the only people
doing this sort of work. The BSD people were working on their own Unix variant,
and once the GNU General Public License began to become better known, a num-
ber of independent projects also began using it. Such projects really began to take
off as the Internet came into widespread use in the late 1980s and early 1990s. The
Internet made it possible for people who might be separated by thousands of
miles, oceans, or national borders to collaborate on projects in a way that was
impossible only a few years earlier.

Not surprisingly, some of the most successful Free Software projects have been
Internet tools. sendmail, an e-mail server, and Apache, a World Wide Web server,
are two of the most frequently used programs of their type, and both are licensed
under the GNU GPL. We cover both sendmail and Apache later in this book.

Free Software really took off, however, when Linus Torvalds made the early
versions of his Linux operating system available under the GNU GPL. Once
Linux was developed to the point where it was a completely usable system, it
was possible for the first time to build a complete system using nothing but Free
Software. The addition of the Linux kernel (the operating system’s core compo-
nent) to the suite of existing GNU tools completed the system. In fact, what most
people refer to as Linux is more properly referred to as GNU/Linux, because the
Linux part is actually only the kernel.

Stallman continues to work on his own kernel, called the Hurd, but it will prob-
ably be some years before the Hurd is ready for widespread adoption. Unlike
Torvalds, who patterned his kernel after existing Unix kernels, Stallman’s design
is based on some rather advanced theory. Consequently, the progress on Linux
has been much faster than on the Hurd.

The Meteoric Rise of Open Source
In this chronological tale, we’ve now reached 1997. By this point, Linux had
become a very advanced system and was a reasonable alternative to commercial
Unix systems. It was also arguably superior to the Microsoft Windows NT sys-
tems that had come to dominate the corporate world. Apache and sendmail were
firmly established in their niches, and a growing number of users were becoming

Chapter 2 • Which Unix?

2817c02.qxd 11/13/00 11:48 AM Page 24

25

curious about Linux, whether because of irritation with Microsoft’s software or
because of the low cost of the Linux operating system. Companies, such as Red
Hat, and organizations, such as Debian, were busily producing Linux distribu-
tions that contained the Linux kernel and a variety of useful software. These dis-
tributions were also easy to install.

Nevertheless, Free Software was getting little respect in the marketplace.
Despite its robustness and stability, Linux was regarded as something of a
hacker’s toy by information technology professionals, and Free Software advo-
cates were having a difficult time making their case. The gulf between the pro-
gramming community and the corporate world seemed unbridgeable, and there
was some concern that it might never be crossed.

One Free Software advocate, Eric Raymond, wrote a monograph called “The
Cathedral and the Bazaar” in an attempt to explain the concept of Free Software
more clearly. In the essay, he contrasted the process of developing Free Software
with that of its proprietary counterpart. He wrote that commercial software was
developed in a cathedral style, insulated from the vast majority of users and
independent developers, while Free Software was developed in a bazaar style,
providing a meeting place for anyone who wanted to be there. Raymond argued
that the bazaar model was superior because a large number of users and pro-
grammers would tend to produce better code faster. With anyone who wanted to
contribute code to the project being allowed to do so, code would be produced
quickly, and the best code would tend to stick to the project.

As support for his argument, Raymond offered a case study. He had written a
program called fetchmail, which would download e-mail from a server and
deliver it to Linux computers. He recounted the development process of fetch-
mail and how contributions from others had helped the program develop
quickly in a classic example of bazaar-style development.

“The Cathedral and the Bazaar” turned out to be a very influential document. It
prompted officials at Netscape to release the source code for their popular Web
browser, Netscape Navigator, in the hopes that independent developers would
help to improve it. Netscape even went as far as to consult with Raymond about
the best way to go about bringing their code into the Free Software mainstream.

In early 1998, buoyed by the Netscape announcement, Raymond met with a few
other Free Software advocates to discuss what they could do to encourage this sort
of behavior among other software companies. They decided that part of what was
holding Free Software back was an implied confrontational attitude inherent in the

The Meteoric Rise of Open Source

2817c02.qxd 11/13/00 11:48 AM Page 25

26

term Free Software. Whether the implication was intentional or not, they felt that
the term sounded antibusiness, and they decided to introduce the term Open
Source as a replacement. Netscape used the term open software in their press release
announcing the release of their source code; O’Reilly and Associates, a computer
book publisher, adopted the term for use in their promotional materials. With
these two major players on board, the Open Source term got a huge boost.

Although the extent of the Open Source initiative’s influence is debatable, 1998
was a banner year for Free Software. The Linux user base increased by 212 per-
cent, and major software companies such as Corel and Oracle announced support
for Linux. Torvalds, Raymond, and Stallman were in demand as the subjects for
interviews and magazine articles. This trend continued well into 1999, with Red
Hat and VA Linux Systems successfully going public and other Linux-based cor-
porations not far behind.

At the time we wrote this book, in the spring of 2000, Linux was being credited
with a resurgence of interest in Unix. Although Richard Stallman might not be
happy about Open Source replacing Free Software, the repercussions of the GNU
project are being felt in a big way. Everyone using Linux or a Unix-derived sys-
tem is probably using some components that were created on the Free Software
model and released under the GPL or one of its derivatives. In this book, we focus
on a variety of programs that use Open Source licenses or are released under the
GPL; we believe strongly in the power of community software development and
hope that you’ll share our opinion—as well as both Richard Stallman’s and Eric
Raymond’s opinions—that many eyes and minds make stronger software.

Summary
The thought of selecting a particular Unix variant can be overwhelming because
there are so many variants available. No matter which Unix variant you choose,
though, the core of the operating system will be shared, and you can use most
familiar commands or programs on any Unix variant. Unices differ because
they’ve been ported to different hardware platforms, because they were released
under different licenses, or because they’ve been adapted for particular needs.
Still, different Unices are pretty similar when you get down to the business of
working with them.

Chapter 2 • Which Unix?

2817c02.qxd 11/13/00 11:48 AM Page 26

27

In this book, we focus on three Unix variants: Linux, FreeBSD, and Sun Solaris.
These three versions are extremely popular and are available for a very low price
(or for free if you download the code from the Internet).

The Free Software movement has been extremely influential upon Unix and its
development over the last 20 years. With their unlimited and completely open
attitude toward code sharing, Free Software advocates have built a number of
robust and useful programs and tools that have bolstered Unix’s usability for a
variety of purposes. The development of the GNU General Public License has left
these programs open to the programming community, so there is no danger that
Free Software will somehow become proprietary software as it evolves.

Although Free Software is still the guiding force behind the movement, an
alternative name for the concept has risen in the past few years: Open Source. The
term was developed to make Free Software a more palatable option for busi-
nesses, who don’t necessarily see profit as a bad thing. We use the terms inter-
changeably in this book, because we are hard-line adherents of neither Stallman
nor Raymond. We think both are visionaries and have done a great deal to further
the cause of Unix and its variants.

Summary

2817c02.qxd 11/13/00 11:48 AM Page 27

This page intentionally left blank

C H A P T E R
T H R E E

Some Basic Unix Concepts

� Structure of a Unix System

� Files and Directories

� Users

� Commands

� Summary

3

2817c03.qxd 11/13/00 11:47 AM Page 29

30

So far in this part of the book, we’ve talked a lot about the background and
development of Unix, but we haven’t talked much about Unix systems them-
selves. In this chapter, we provide a basic introduction to the parts of a typical
Unix system and how they work together to provide the operating functions that
make a Unix computer run. Although this may seem simplistic if you’ve had
some Unix experience before, those of you without much time spent on Unix sys-
tems will find this to be a useful overview of the remainder of the book. In the
rest of the book, we will assume that you have this knowledge and build on it to
explain more complicated concepts.

Structure of a Unix System
One of the basic ideas behind Unix is that of modularity. By keeping functions
separate, a great degree of flexibility can be achieved. Also, improvements and
additional functions can be added incrementally, just by replacing a small mod-
ule or adding a new module, without having to revamp the entire system. The
modular structure of Unix means that problems are usually contained within a
sector of the system, but won’t necessarily shut down the system completely
because of one small error. The computer’s administrator can then do whatever
is necessary to that particular process or sector, without affecting the entire sys-
tem more than needed.

The major modular components of Unix are the kernel and the command shell.
The command shell interprets user commands for the kernel, which executes the
desired process. Although you could probably run a computer with just those
two elements, it would be neither simple nor interesting. To keep track of every-
thing, Unix uses a precise filesystem structure. When you combine the filesystem
with your choice of command shells, you’re starting to configure your Unix sys-
tem to your own tastes.

The Kernel
The kernel is a set of functions that constitute the guts of the operating system. It
comprises a number of extremely low-level functions that control many aspects
of the way in which the computer operates: the way data moves around the sys-
tem, the way tasks are scheduled in the processor, the way memory is allocated,

Chapter 3 • Some Basic Unix Concepts

2817c03.qxd 11/13/00 11:47 AM Page 30

31

and so forth. In a sense, the biggest task of the kernel is to direct traffic within the
operating system. When a new version of a Unix variant is released, it is usually a
new version of that variant’s kernel.

Most Unix users will not have any direct experience of the kernel. Rather, the
user tends to interact with the shell or desktop environment. It is the kernel’s job
to interpret the things that happen in those environments and translate them into
instructions to the hardware. The kernel operates very much behind the scenes.
Although it is a program like any other, it’s not something a user can run, and it
won’t show up in any list of running processes.

In fact, the notions of users, running, and processes are abstractions that don’t
mean anything to the hardware. These are purely conceptual constructs that exist
for the convenience of humans. (Remember that the computer itself is just a big
collection of interconnected switches.) It is the function of the kernel to make
these concepts meaningful to the computer. For this reason, it is necessary for the
kernel to exist outside of these ideas.

To understand the role of the kernel more clearly, it helps to know what hap-
pens when you run a program on your computer. When you decide to fire up
your word processor, for example, a complex chain of events is set into motion.
The requested program needs to be identified, and the particular file containing
the program needs to be found on the system’s storage medium (usually a hard-
disk drive). A space must be made in the system memory to contain the program,
and then the program has to be read off the disk and loaded into memory. Then,
time must be scheduled in the processor to actually run the program. Finally,
input to and output from the program must be directed and managed.

If the program operates peripheral devices such as printers or network devices,
input and output to those devices must also be managed and formatted in a way
that the device can understand. It is the kernel’s job to direct and coordinate all of
this activity. Keep in mind that, on a Unix system, there may be dozens of users,
each running multiple programs. Managing all these processes is no trivial
undertaking; luckily, Unix systems are designed to handle these kinds of loads
without problems.

The Shell
If the user has no direct communication with the kernel, how does the kernel
know what it needs to do for the user? Communicating with the user is the job of

Structure of a Unix System

2817c03.qxd 11/13/00 11:47 AM Page 31

32

the shell. When you first log into a Unix machine, you automatically start a shell.
The shell then translates the commands you give it into system calls, commands
that the kernel understands. System calls are not directly available to the user,
because they are a programming construct. That is, the system calls are a set of
functions designed to be integrated into programs. They are not designed to be
used interactively by users. This layer of abstraction, in addition to reflecting the
modular construction of Unix, prevents users from having direct access to the
kernel in ways that could be destructive to the system.

The shell serves as a command interpreter; whatever command is given to the
shell is interpreted by the shell into the proper system action. For example, if you
open a file for editing, the shell tells the kernel to start the editor, find and load
the file into memory, and set up communication between the editor and the file.
Then, the kernel handles the nuts and bolts of actually doing these things.

The shell is more than just a command interpreter, though. Shell commands
comprise an entire programming language. You can write programs, often called
scripts, composed of multiple shell commands. You’re then able to run the entire
script as a single unit. In fact, shell scripts are used to control most of the opera-
tions of the system, from start-up to shut-down. Anything that can be configured
or customized is usually handled with shell scripts. The shell also handles certain
aspects of the user environment, such as identifying the user and keeping track of
the location of certain files, among other functions. We teach you how to write
scripts in Part VI: “Shell Programming.”

Which Shell?

Although it is common to talk about the shell as if it were a singular entity, there
are, in fact, a variety of shells, each slightly different from each other. The most
common shell is called the Bourne Shell, named after its creator. The Bourne Shell,
known as sh to the system, is the mainstay of interactive shells. It is basic but rea-
sonably flexible and powerful. As an alternative to the Bourne Shell, there is the
Bourne Again Shell, or bash. bash is a replacement for the Bourne Shell that was
developed as part of the GNU project. Some minor differences exist between sh
and bash, but for most practical purposes, the two are interchangeable. We con-
centrate on the bash shell in this book.

Two other shells, the Korn Shell (ksh) and the Z Shell (zsh) are popular alterna-
tives to sh and bash. Although quite similar in their command syntax, ksh and

Chapter 3 • Some Basic Unix Concepts

2817c03.qxd 11/13/00 11:47 AM Page 32

33

zsh have attempted to make up for some of the Bourne Shell’s known weak-
nesses, particularly in the way they handle mathematical functions and variables.
Most users should not need these extended functions, though people doing com-
plex shell programming often find them useful.

The C Shell (csh or tcsh depending on the operating system being used) is a
shell that imitates the C programming language. People who are used to writing
programs in C can write shell scripts using a syntax that is familiar to them. A
similar project has been undertaken to create a shell based on the Perl program-
ming language. Although still in its infancy, the Perl Shell (you guessed it—psh)
shows great promise.

The File System
It may seem surprising to think of the set of files stored on the computer as part
of the operating system, but this is the case. In addition to being the home of the
programs that make up the operating system, the filesystem itself provides
important functions. This is especially true of Unix systems, because Unix repre-
sents every part of the system as a file: Every program is a file, every directory is
a file, every piece of hardware is represented as a file. Because Unix views every-
thing as a file, the structure and format of the filesystem are integral to the opera-
tion of the computer.

Some files are program files. In the case of programs such as the kernel and the
shell, these files are clearly part of the operating system. Other system files are
less obvious. For example, there are a large number of configuration files. These
are nothing more than text files that are read by programs and used to control
certain aspects of the program’s behavior. Other file constructs, such as links and
pipes, are used to provide basic operating functions by connecting the various
system files in the proper way.

The kernel, shells, and filesystem together make up the major components of
a Unix system. It should be noted that a system made up of just these things
wouldn’t be terribly useful. There are a huge number of additional programs
that, although not actually part of the operating system, are so closely associ-
ated with it that most people would find a system without them to be practi-
cally unusable. We will describe many of these programs throughout the book,
and quite a few of them are included on the CD-ROM.

Structure of a Unix System

2817c03.qxd 11/13/00 11:47 AM Page 33

34

Files and Directories
Now that you have a basic understanding of the structure of the Unix system
itself, it’s time to talk about some of the practical aspects of running and using a
Unix system. The bread-and-butter of a Unix system is its files and directories. As
a user, the data you store on your computer will be kept in files, and the vast bulk
of the work you do will consist of editing and manipulating files in one way or
another.

Unix files are contained within directories. A directory is just a file that has the
ability to contain other files. On popular personal operating systems, directories
are represented as folders, briefcases, or something similar. Directories can also con-
tain other directories, called subdirectories. The Unix filesystem is arranged like an
upside-down tree. At the top of the hierarchy is the root directory. All other direc-
tories are subdirectories of the root directory. We explain the directory structure
further in Chapter 5: “Navigating the File System.”

Users
Unix is, and always has been, a multiuser operating system. That is, it is designed
to be used by more than one person. This is one of the main things that distin-
guishes it from the personal operating systems such as Windows and MacOS.
Not only is Unix designed to be used by more than one person, it is designed to
be used by more than one person at the same time. Using multiple terminals or net-
work connections, any number of users can be connected to a single Unix
machine, all happily working without being much affected by the others.

To achieve this happy situation, Unix uses the concept of user accounts. Each
user is assigned a username, a password, and some personal directory space, and
each user has access to certain system resources and has direct control over the
files that he or she creates. The operating system manages the distribution of such
resources as memory and processor time between users and systems processes.
We explain the concepts behind user accounts in Chapter 29: “Managing Users
And Groups.”

Chapter 3 • Some Basic Unix Concepts

2817c03.qxd 11/13/00 11:47 AM Page 34

35

The Superuser
With a multiplicity of users comes a need for some type of governance and man-
agement. Unix solves this problem in the most efficient way possible: dictator-
ship. On every Unix system, there is one user who has absolute power over the
system. This user is called the superuser. The superuser has access to every file,
function, and process on the system—even those owned by other users. The rea-
son for this is twofold. First, the superuser needs to be able to manage the user
base. This means that the superuser needs to have this power to enforce the poli-
cies set in place for the users. Second, if something goes wrong with the system,
the superuser needs to have total access to the system to fix the problem and
make the system usable again.

The superuser is also known as root because the superuser’s login name is
always root. We will discuss superuser functions in depth throughout the rest of
this book, particularly in Part VII: “Basic System Administration.”

Commands
Although it is becoming possible to use Unix entirely with graphical tools, most
serious Unix users would agree that it would be foolish to do so. One of the
great strengths of Unix is a powerful and flexible command syntax, only a small
subset of which is available through graphical tools. Consider the following
command line:

ls /etc > /home/phil/etc-list | mail john

(This may look arcane, but trust us, by the end of this book, you’ll be rattling
things like this off without thinking about it.)

This is actually a combination of three commands. What this line says is, “list
the contents of the directory named /etc, dump the list into a file called etc-
list in the user phil’s home directory, and mail a copy of it to the user john.”
Using graphical tools, this command would involve at least three programs and
probably take 10 times as long to accomplish. The other advantage to the com-
mand line is that it is available even if graphic functions are not functioning
because of a problem with the X Window Server. You can always get to a com-
mand line, but you may not always be able to get to a graphical environment.

Commands

2817c03.qxd 11/13/00 11:47 AM Page 35

36

Because each Unix command is a program, each command can have its own
syntax. In practice, however, the great majority of commands follows the same
general format:

command [flags] [options] source destination

Here’s how this works. For purposes of this example, we will deconstruct this
command:

cp -i /home/phil/etc-list /home/john

This breaks down as follows:

cp

This is the command. cp is the command that launches the copy function. In other
words, you’re going to make a copy of a file.

-i

This is a flag. It will control some aspect of the command’s behavior. In this case,
the -i flag means that cp should run interactively. The computer will prompt you
to confirm your decision if this command would replace another file.

/home/phil/etc-list

This is the source, or the file, that is to be copied.

/home/john

This is the destination, or the location, of the copy to be made.

So, we could translate this command into English like this: “Make a copy of
the file /home/phil/etc-list in the /home/john directory. If a file called etc-
list already exists in /home/john, alert me, and give me the option of whether
to proceed.”

At this point, don’t worry about memorizing all of this. We just want to get you
used to the types of things you’ll be seeing later in this book. We also include a
large appendix of common Unix commands at the back of the book. One of the
most comforting things we’ve ever heard was years ago, when someone told
Kate, “Don’t worry about learning all the commands. No two Unix people know
the exact same set of commands, and everyone performs common tasks using
slightly different methods.”

Chapter 3 • Some Basic Unix Concepts

2817c03.qxd 11/13/00 11:47 AM Page 36

37

Summary
Unix works differently from other operating systems you may have used that are
targeted at the individual user. Unix systems are designed with a modular
approach, so that each component of the operating system is self-contained and
interacts with other components as a unique module. Modularity leads to flexibil-
ity and an easier way to solve system problems. Part of that modularity is dis-
played within the kernel, the set of code instructions that control the behavior of
the computer; the kernel is constructed with modules. In addition, you can select
various modules to run at the kernel level if you desire.

Unix is organized modularly as well. Each item—whether a file, a program, or
a piece of hardware—is represented as a single file in the larger filesystem. Vari-
ous directories store the files so that they are easily accessible for modification, if
necessary. Because Unix permits machine use by multiple users at the same time,
the superuser can use the filesystem to determine what belongs to each user and
monitor the system demands that each user’s processes are generating.

Summary

2817c03.qxd 11/13/00 11:47 AM Page 37

This page intentionally left blank

P A R T I I
Getting Started

� Chapter 4: Logging In and Looking Around

� Chapter 5: Navigating the Filesystem

2817c04.qxd 11/17/00 3:49 PM Page 39

This page intentionally left blank

C H A P T E R
F O U R

Logging In and
Looking Around

� Getting Access to Unix

� Logging In for the First Time

� Changing Your Password

� What Are These Files

� Logging Out

� Summary

4

2817c04.qxd 11/17/00 3:49 PM Page 41

42

This part of the book is intended for readers who have never used a Unix
machine. Readers who already have Unix accounts or who can get around their
account with some basic skill can skip ahead to the next part of the book. Rest
assured, we will reach a more advanced level soon enough.

In this chapter, we explain the basic process used to log into a Unix account and
log out after you’ve finished your work. If you haven’t used this kind of system
before, the login procedure may be quite different from that of other operating
systems you’ve used. Navigating through your files may be even more mystify-
ing. In this chapter, we’ll walk you through some of the basic things you’ll experi-
ence and see as a beginning Unix user.

Getting Access to Unix
The very first thing you need to do is to get an account on a Unix machine. There
are a number of ways to go about this:

• You can install Linux, FreeBSD, Solaris, or some other personal-computer
version of Unix on a PC and have your own system.

• You can find a friend who has installed a Unix variant on a personal com-
puter and who will give you an account on that machine.

• You can obtain a shell account with an Internet service provider (ISP). Shell
accounts are rare these days, because most people don’t want text-based
access to the Internet. You’ll have the best luck finding a shell account with a
local ISP rather than with one of the huge, megalithic ISPs such as Earthlink
or America Online.

TIP If you already have one, you can use a PPP account with your Unix computer as
well. In the next part of the book, “Unix Desktop Environments,” we explain how
to set up a graphical interface. Once you have a graphical user interface (GUI), you
can use a PPP account to serve your Web needs as well as other functions made
easier with a PPP account.

Chapter 4 • Logging In and Looking Around

2817c04.qxd 11/17/00 3:49 PM Page 42

43Getting Access to Unix

• You can find a public-access system. These are no longer as common as they
used to be, but you may have a local library that offers Unix accounts to
local residents.

• You can get access through your school or work. We assume that people
new to Unix without a system of their own have been confronted by a Unix
system at work or have enrolled in a school that uses Unix for its campus
computing needs.

For the remainder of this chapter and most other chapters not relating specifi-
cally to administering a system, we will assume that you have access to a machine
that you do not administer. When we talk about the system administrator, we mean
the person who actually controls the computer: the person who “has root,” as we
explained in Chapter 3. If you run your own Unix system, you will be the system
administrator.

Every business, school, organization, or other entity that runs a Unix system
has a different procedure for granting accounts. You need to find out who’s in
charge of doing this and contact that person or department to see what you need
to do. If you’re trying to get a shell account with an ISP, you’ll need to contact the
ISP and sign up. (Search the Web—the last time we checked, there were still some
free shell accounts available.)

When you do this, you will probably be asked to read, and possibly sign, the
organization’s Acceptable Use Policy (AUP); this may also be called the Terms of
Service. This is a document that sets out exactly what kind of behavior is expected
of users on the system. Read this document carefully because you are using a
shared resource, and you need to know the rules for doing so. In general, AUPs
require users to behave politely, not to abuse resources, and to refrain from run-
ning programs that may damage the system. Some sample AUP terms are pro-
vided in the sidebar, “What’s Acceptable Use?”

What’s Acceptable Use?
Acceptable Use Policies state the terms under which subscribers may use the Internet via a
given Internet service provider. Although the terminology changes from ISP to ISP, the pro-
hibited actions are usually the same. We read through more than 50 AUPs while writing
this chapter and provide here the most commonly stated parts of an AUP. If you plan to do

Continued on next page

2817c04.qxd 11/17/00 3:49 PM Page 43

44 Chapter 4 • Logging In and Looking Around

any of these things while on the Internet, you’ll be acting against the “gentlemen’s agree-
ment,” which keeps the Internet functioning without undue interference, so please don’t!

Illegal use of the system: Using the ISP’s computers to pass material that violates
any known law, regulation, or rule, whether local, national, or international.

Threatening behavior: Using the ISP’s computer to pass materials that threaten or
encourage destruction of property or bodily harm. This clause usually includes stalking.

Harassing behavior: Related to the previous point, using the ISP’s computer to
pass materials that harass another individual (as defined by the laws governing
harassment).

Fraud: Using the ISP’s system to pass materials with the intent of fraud. This clause
covers pyramid schemes, chain letters (even if not financial), and other fraudulent
offers to sell or buy products, services, or items.

Forgery: Using the ISP’s system to pass materials with an intentionally false return
address or other tracing mechanism.

UCE/UBE: Using the ISP’s system to send Unsolicited Commercial E-Mail or Unso-
licited Bulk E-Mail. This is usually called the spam clause.

Cracking: Using the ISP’s system to gain illegal or unauthorized access into another
computer system. May include prohibitions on unfriendly activity such as Denial of
Service attacks.

Copyright infringement: Using the ISP’s system to pass material that violates the
author’s or creator’s legal copyright. This includes digitized images and sound files.

Other clauses may include a ban on multiple logins at the same time, long connections
with no activity, or using the ISP to cause harm to minors.

Whatever the AUP stipulates at your particular service provider, workplace, or school,
please adhere to it. We do not knowingly provide any information in this book that will
cause you to violate a specific AUP, but it is your responsibility to know the terms of your
particular agreement with your service provider.

When your account is created, you will usually choose (or be assigned) a login
ID, or username, and a password. On many large systems, the initial passwords
are randomly generated and appear to be gibberish. You can—and should—
change your password to something that is easier to remember. We explain how
to change your password later in this chapter.

2817c04.qxd 11/17/00 3:49 PM Page 44

45

Logging In for the First Time
Armed with your new username and password, it’s now time to log in. We
assume that you are either logging in at a terminal directly connected to the Unix
system or using a terminal emulator program from a PC to log in over the Inter-
net. If the latter is the case, you will need to open the terminal program and enter
the name of the machine you’re logging into. Once you have successfully con-
nected to the system, you should see a prompt that looks something like the one
shown in Figure 4.1.

To enter the system, make sure that the cursor is blinking right after the line
that reads

Login:

(If the cursor isn’t blinking, it may not be set to do so on this screen. Just follow
directions and don’t worry.)

F I G U R E 4 . 1 :

Most Unix shell accounts
will have a login screen
resembling this one.

Logging In for the First Time

2817c04.qxd 11/17/00 3:49 PM Page 45

46

Type your username after the colon and press the Enter key. You should then
see a prompt that says

Password:

Enter the password that was given to you when the account was created. You will
not see your password printed on the screen.

WARNING When you enter your password, depending on the system configuration, you will
see either a row of asterisks or nothing at all. For this reason, it’s important that
you type your password exactly as it was given to you. You won’t get any visual
feedback when you type it.

Remember that Unix is case sensitive. This means that whether a letter is typed
in uppercase or lowercase characters makes a difference. If you type John instead
of john, your login will fail.

If your login does fail, it’s no big deal—just start again. Some systems have a
security feature that disconnects you if you make bad login attempts more than a
certain number of times. This is designed to prevent people from trying to crack
into a system by just guessing at passwords. If this happens, just reconnect and
try again.

Once you’ve logged in successfully, you should see some sort of message, as
shown in Figure 4.2. This is often a welcome message, but in many cases, it is a
news item. This message is called the MOTD, which stands for Message of the
Day. If the system’s administrators need to communicate something to all users,
they will usually put the information in the MOTD. Typically, this might be a
notice that the system won’t be available for a certain period of time or a reminder
to delete your unneeded files to free up disk space. Whatever it is, don’t ignore the
MOTD. Read it when you log in and, if necessary, make a note of the news.

After the MOTD, you will see a shell prompt. This is an indication that you
have logged in and a shell process has started to handle your commands. The
shell prompt can be configured to appear in any number of ways, so we can’t tell
you exactly what it will look like. It may contain the current date and time, it may
contain the name of the machine you’re logged into, or it may contain your user-
name. It will, however, almost always end with one of the following characters: $,
>, %, or #.

Chapter 4 • Logging In and Looking Around

2817c04.qxd 11/17/00 3:49 PM Page 46

47

For example, when Joe logs into our Linux machine, the shell prompt looks
like this:

[joe@fugu joe]$

You can see this in Figure 4.2, just under the MOTD. This prompt shows his user-
name, joe, the name of the machine, fugu, and the current directory, /home/joe.
The prompt shows only the last few segments of the full directory path so that
you have the maximum space available on each command line.

Once you’re at this prompt, nothing else will happen until you give a com-
mand. The prompt is the shell’s way of saying, “Okay, I’m ready to do something
for you.” At this point, you’re ready for just about anything, but take the time
instead to look around a little.

Try typing ls at the prompt. ls is the command that lists the files in a directory.
You may or may not see any files, depending on how your system administrator
has the system configured. Now, type pwd. This command prints out the name of

F I G U R E 4 . 2 :

Read the Message of the
Day for important informa-
tion about the system.

Logging In for the First Time

2817c04.qxd 11/17/00 3:49 PM Page 47

48

the current directory. It will probably print something like /home/harry, if your
login name is harry. Next, type echo $SHELL. This will output the name of the
shell you’re using, probably /bin/bash or /bin/sh. Figure 4.3 shows the screen
after these three commands have been given.

NOTE If you’re using a shell different than bash, you’ll need to find documentation for
that shell. We cover only bash in this book. However, most basic shell commands
are usable regardless of the specific shell being used.

These are just a few of the commands that you can use to get information about
your working environment. Again, don’t worry about memorizing them now; we
just want you to get a feel for what you’re doing. You can always consult Appen-
dix A of this book, which contains a variety of shell commands, if you forget the
one you need.

F I G U R E 4 . 3 :

Your screen should resem-
ble this one after you’ve
issued the ls, pwd, and
echo $SHELL commands.

Chapter 4 • Logging In and Looking Around

2817c04.qxd 11/17/00 3:49 PM Page 48

49

Changing Your Password
Now that you’ve gotten your feet wet, it’s time to do something useful. Remem-
ber that awful, gibberish-like password you got assigned? You’re never going to
remember that, and it’s a terrible security risk to write down your password and
leave it lying around. So, it’s time to change your password to something a little
more memorable.

Choosing a password is something you should think about before you do it.
There is something of an art to good passwords. A good password needs to be
both easy to remember and hard to guess, and a good password is not a word
found in the dictionary. One of the ways that crackers try to gain illegal access to
systems is by using software that tries word after word until it gets one right. This
is not a particularly elegant method of gaining access, but thanks to the poor
security habits of many users, it remains effective. A good password should also
not be any part of your name.

Here are some password do’s and don’ts:

Do:

• Choose a password that you can remember. About the only thing worse
than having a password that’s easy to guess is having a password that is so
hard to remember you end up taping it to your monitor.

• Mix up the case and type of characters that you use. Use capital letters and
lowercase letters, and throw in a few numbers for good measure: m0TH3r is
a better password than mother.

• Make a habit of changing your password periodically.

Don’t:

• Choose a password that might be easily guessed by someone who knows
you. Your spouse’s name, your dog’s name, or your birthday are all obvious
choices that should be avoided.

• Tell anyone your password. Ever. Not even your spouse. Really. We mean it.

• Use a password that you’ve used on another system. Those of us who seem
to accumulate Unix accounts are often tempted to use the same password
on all our accounts to limit the amount of remembering we have to do. This
is a bad idea, because once one of your passwords is known, the others are
immediately known, as well.

Changing Your Password

2817c04.qxd 11/17/00 3:49 PM Page 49

50

When you’ve decided what your new password is going to be, type passwd at
the shell prompt. You will be prompted to enter your old password; do so. Then,
you will be prompted to enter your new password. Type in your new password
exactly as you want it. Remember that you won’t be able to see it, so type carefully.

When you’re done, hit the Enter key. You will be prompted to enter your new
password again, so be sure to type it exactly the same way you typed it the first
time. The two instances of the new password must match, or your password
won’t be changed. If they do match, your password will be changed. The next
time you log in, you will have to use the new password. You can see the full
sequence of prompts—though not the passwords we entered—in Figure 4.4.

What Are These Files?
Earlier in this chapter, we told you to type ls to see whether there were any files
in your home directory. Now, you’re going to do that again, only this time you’ll
do it a little differently. This time, type ls -a. You will almost certainly see some

F I G U R E 4 . 4 :

Changing your password is
easy enough to be done on
a regular basis for secu-
rity’s sake.

Chapter 4 • Logging In and Looking Around

2817c04.qxd 11/17/00 3:49 PM Page 50

51

files listed this time, and if you did see files before, you will see more of them
now. Some sample ls –a output is shown in Figure 4.5.

What happened? The -a flag is a directive to the ls command to show all files,
including hidden files. The astute reader will have noticed that all of the files not
visible before have filenames that begin with a leading dot. This dot means that
the file will not normally be seen by the ls command. Why? The ls command
assumes that the reader doesn’t want to see these files. These are almost all some
sort of configuration file and are not normally of interest for the purposes of day-
to-day work.

However, we’re interested in them, because these dot files are the files that deter-
mine how information is presented to you and what it feels like to work in your
account. So what are these mysterious files? Here are some of the most common:

.bashrc: This is a configuration file for bash, the Bourne Again Shell. You
may also see .bash-profile and .bash-logout. These files control vari-
ous aspects of bash’s behavior, such as what the prompt looks like, where

F I G U R E 4 . 5 :

List the files in your current
directory with the ls –a
command.

What Are These Files?

2817c04.qxd 11/17/00 3:49 PM Page 51

52

it looks for your mail, what happens when you log out, and other basic
operations.

.emacs: This is a configuration file for the GNU Emacs text editor.

.Xdefaults: This file is a configuration file for the X Window System,
Unix’s graphical user interface.

If you check this listing periodically, you may notice that these dot files tend to
accumulate. As you use various programs, configuration options are usually
stored in a new dot file for each program. That way, when you start a program
you use frequently, the program can remember certain things about you, such as
your display preferences. By placing these files in the user’s home directory, each
user can have a different configuration.

Most of the time, you shouldn’t have to bother with these files. Sometimes,
however, the best way to elicit a particular behavior from a program is by editing
a dot file. This is usually fairly simple, and we explain the art of configuration
files in later chapters.

Logging Out
When your Unix session has come to an end, it’s time to log out. This is done,
simply enough, by typing logout at the shell prompt. However, not all Unix sys-
tems have a logout command, so if logout doesn’t work, try exit or Ctrl+d.
The successful command will close your session and return the machine to the
Login: prompt.

WARNING Under no circumstances should you turn off the power to a Unix machine after
you log out. Unix machines do not need to be turned off except by intention. If
you turn the power off to a Unix machine without running the proper shut-down
procedures, you run the risk of damaging data.

Chapter 4 • Logging In and Looking Around

2817c04.qxd 11/17/00 3:49 PM Page 52

53

Summary
Although it may look very different from other operating systems you’ve used
before, Unix becomes more familiar with practice. You may already have access
to a Unix computer through your school, work, or a friend. You may have to
locate a system where you can purchase an account or install a Unix variant
yourself, if you can’t find one that’s a free alternative.

Once you have obtained an account, logging into the system is straightforward.
You’ll need to change the password you were given when the account was cre-
ated, using the passwd command. With a few other simple commands, you can
view your files and learn a bit more about the directory and shell you’re using. In
many cases, once you know the command that launches a program, the program
itself will prompt you for the required information; the password program,
passwd, is a good example.

Summary

2817c04.qxd 11/17/00 3:49 PM Page 53

This page intentionally left blank

C H A P T E R
F I V E

Navigating the Filesystem

� Where Are You?

� Moving Around

� What’s Where?

� Summary

5

2817c05.qxd 11/13/00 11:51 AM Page 55

56

To work effectively with Unix, it’s important to have a good conceptual
grasp of the filesystem so that you will be able to navigate through it more easily.
As in other operating systems, Unix uses directories to organize files. The ability
to know what directory you’re using is an important skill, and it’s also impor-
tant to know what directories hold what types of files.

To explain the Unix directory concept, we—and many others who talk about
Unix—use a location metaphor. That is, we think of the filesystem as being a place
and various directories as being unique locations within that place.

NOTE This idea did not originate with us. It’s something that we’ve picked up from years
of working with Unix and from dealing with other Unix users and administrators.
The idea of a filesystem as a space is so fully ingrained into Unix culture that it
goes almost unnoticed.

This may seem a bit high-concept at first, but as you become used to it, you’ll
find that you really can visualize the filesystem space and move from directory to
directory with the same familiarity with which you move from room to room in
your house.

Where Are You?
When you first log into your Unix system, you will be in your home directory.
You can think of this as home base. This directory has been specifically desig-
nated for your personal use. If you worked through the previous chapter, you
typed pwd at the command prompt to get the computer to tell you the current
directory. (pwd is the command for print working directory.) If you do this when
you first log in, you should see /home/melinda, /usr/home/melinda, or some-
thing similar—assuming your username is melinda. This line of text is called the
path, and it’s worth taking a moment to examine.

In common Unix notation, directory names end with a slash (/) character.
When you see a path name (e.g., /usr/home/harry), you can interpret it as mean-
ing that the directory on the far right—harry—is a subdirectory of the directory
home/, which is a subdirectory of the directory usr/, which, in turn, is a subdirec-

Chapter 5 • Navigating the Filesystem

2817c05.qxd 11/13/00 11:51 AM Page 56

57

tory of the root directory /. In other words, / contains usr/, which contains
home/, which contains harry.

NOTE Astute readers will probably be wondering whether the harry directory should
have a slash after it, as well. The answer is yes, it should. /usr/home/harry/ is an
equally valid (and probably more semantically correct) way of representing that
directory. It is a common convention, though, that the slash for the term on the
far right may be omitted.

The term path name, then, is quite apt. The path name shows the path from the
root directory to the current directory. If you’re trying to invoke a program that
you don’t use very often or that’s in a new directory, you may need to type the
full path name to start the program or find the file. In Chapter 13: “Customizing
the Shell Environment,” we show you how to create shortcuts for frequently
used directories, so that you don’t have to remember and type full path names
all the time.

Absolute vs. Relative Path Names
A path name like /home/harry is an absolute path name, because it shows the full
path from the root directory to the current directory. It is also possible to specify a
relative path name. Assume that you are in the /home directory. (We’ll show you
how to get there in a moment.) If you want to specify the harry directory, you can
simply type harry. The specification harry is assumed to be relative to the cur-
rent directory. Now, suppose that there is a subdirectory in harry called mail. If
you are in /home, you can specify that subdirectory as harry/mail.

Moving Around
Now that you know how to find out where you are, how do you move between
directories? It’s a simple task. Moving is done with the cd command; cd stands
for change directory. If you are in /home/harry and you want to change to the /
(root) directory, you can issue the command cd /. If you wanted to move into the
/usr directory, you would type the command cd /usr. Arguments given with cd

Moving Around

2817c05.qxd 11/13/00 11:51 AM Page 57

58

can also be relative path names. If you are in /usr and you want to move to
/usr/home/linda, you can give the command cd home/linda.

Now that you know how to move around the directory structure, we suggest
that you take a few minutes to explore your system. Move to the root directory by
typing cd / and look at a directory listing by issuing the ls command. Note the
subdirectories. Move to one of them and do another listing. A few sample direc-
tory listings are shown in Figure 5.1. Use this process to get an idea of the layout
of your system.

What’s Where?
Now that you’re comfortable with changing directories, it’s time to take a look at
what other directories are out there in your filesystem. As we mentioned earlier,
the Unix filesystem is arranged like an upside-down tree, with the root directory
at the top, and all other directories branching out toward the bottom. A represen-
tation of this arrangement is shown in Figure 5.2.

F I G U R E 5 . 1 :

Learn more about your
filesystem by moving
through the directories and
issuing an ls command in
each.

Chapter 5 • Navigating the Filesystem

2817c05.qxd 11/13/00 11:51 AM Page 58

59

In the remainder of this chapter, we explain the function of the major system
directories. Chapter 12: “Manipulating Files and Directories” and Chapter 30:
“Disks and Filesystem Management” contain further discussions of system direc-
tories and the Unix filesystem in general.

TIP Different Unix systems have slightly different filesystem arrangements, but certain
conventions are followed fairly closely from one system to another. If the directo-
ries on your system don’t quite seem to match up with what we describe here,
don’t worry. Simply move around the structure until you find the directory that
contains the kinds of files described and pencil that directory name on the page.
(You may run other Unices later, so crossing out the printed directory names may
be annoying to you when you need this chapter again.)

/bin
The /bin directory contains the program files for the various system commands,
such as the ls and cd commands you’ve already used, that are routinely used in
the course of a typical Unix session. This is also the directory that contains the
program files for the various shells and common Unix utilities. Originally, the
/bin directory was intended to house all of the system’s program files, but even-
tually there got to be so many different program files that some sort of additional
organization was needed. Now, only system commands go in /bin, and regular
applications go in other directories.

/etc
The /etc directory contains system configuration files. A good number of the
programs that run on a typical Unix system require some sort of configuration

bin etc

sbin

local

usr

bin

sbin

home

kate
joe

harry

F I G U R E 5 . 2 :

A Unix filesystem resem-
bles an upside-down tree
or plant.

What’s Where?

2817c05.qxd 11/13/00 11:51 AM Page 59

60

file to direct their behavior. Most programs will put these files in the /etc direc-
tory. We will cover the files in /etc in great detail later in the book, in Part VII:
“Basic System Administration.”

/home
/home is the repository for users’ home directories. /home is occasionally put
under a different directory or subdivided to organize groups of users (this is
especially true on large systems with many users), but as a rule, if you can find a
directory named home, you should be able to find users’ home directories. Some
varieties of Unix use users instead of home, so if you’re having trouble finding the
/home directory, try looking for /users instead.

/tmp
As the name implies, /tmp is a place for temporary storage. Some programs cre-
ate temporary files as a byproduct of their operation, and these files are usually
dumped into the /tmp directory. This is also a convenient place for users to put
files temporarily if they don’t have enough room in their home directories,
though they need to exercise some caution when they do this.

TIP Many system administrators delete everything in the /tmp directory at regular
intervals, and no one should get the impression that /tmp is a convenient solu-
tion for long-term storage. If you administer your own system and have other
users, we suggest that you implement a site policy against using /tmp as extra
storage space.

/usr
The /usr directory contains program files for software applications. Any pro-
gram that is not a Unix system utility will go in /usr. Despite its name, the /usr
directory is not designed for individual user directories. Those all go in /home.

/usr/local
A subdirectory of /usr, /usr/local contains application programs that are
intended to be protected from any upgrades or changes to the system. By making

Chapter 5 • Navigating the Filesystem

2817c05.qxd 11/13/00 11:51 AM Page 60

61

a program local, it is taken out of the way of any systemwide changes. This is
important primarily for computers that are attached to a network, but it’s still a
good habit to establish even if you’re running a standalone machine.

/var
/var is intended as a holding area for files that may vary in size or number. /var
is usually the home of mailbox files, log files, and anything else that appears and
disappears or grows and shrinks. If you administer your own system, you may
want to check /var regularly to prune outdated files and logs.

All of these directories may (and usually do) have subdirectories that serve spe-
cific purposes. For example, on Linux systems, the /etc directory usually contains
a subdirectory called X11 that contains various configuration files for the X Win-
dow System. In addition, there may be other directories under /. On our machine,
for example, there are a couple of large storage directories called /stor0 and
/stor1 that Joe created when he added a second hard drive. Despite being on the
first level of the directory tree, these are not the sort of directories that one would
find on any other system; they’re just an example of the enormous configurability
of Unix. Your system may have similar quirks depending on your or your organiza-
tion’s needs.

Summary
Once you have logged into your Unix account, you can use the cd command to
move around the directories contained in the filesystem. All your personal files
will be kept in your personal home directory, called something like /usr/home/
yourusername, depending on your system configuration. There may be subdirec-
tories in that directory, especially the subdirectories used for e-mail or USENET
news, but the main files you create will be stored in your home directory until
you move them somewhere else.

If you start to explore the directories outside of your home directory, you’ll
find a variety of system directories in the overall filesystem. The most important
of these system directories are /bin, /etc, /home, /tmp, /usr, /usr/local, and
/var. Your computer may have some additional directories as well, which were
installed by the system administrator or by certain programs that create their
own directories upon installation.

Summary

2817c05.qxd 11/13/00 11:51 AM Page 61

This page intentionally left blank

P A R T I I I
Unix Desktop
Environments

� Chapter 6: The X Window System: An Overview

� Chapter 7: Advanced X Techniques

� Chapter 8: Window Managers

� Chapter 9: KDE

� Chapter 10: GNOME

2817c06.qxd 11/17/00 3:48 PM Page 63

This page intentionally left blank

C H A P T E R
S I X

The X Window System:
An Overview

� What Is the X Window System?

� Desktops and Window Managers

� The Structure of X

� Installing and Configuring X

� Summary

6

2817c06.qxd 11/17/00 3:48 PM Page 65

66

If you are new to Unix or have not used it in many years, you may have the
idea that Unix is limited to the command-line interface and that you need to
know a plethora of weird commands to accomplish anything on the Unix com-
puter. Although this is certainly true for some people, you do not have to rely on
the command line if you do not want to. Most current Unix distributions, includ-
ing the ones we cover in this book, ship with a graphical interface called the X Win-
dow System.

The X Window System, sometimes called X Windows or just X, makes it possi-
ble for Unix computers to use the same kind of windowed interface that is famil-
iar to you from Macintosh and Windows computers. In fact, the X Window
System is as old as both of those operating systems, having been developed in
1984 (the year the first Macintosh was sold, and several years before the Windows
operating system was released). The three windowed systems share quite a few
similarities, which is not surprising, because they were all built around a concept
first developed at the Xerox Palo Alto Research Center in the 1970s.

What Is the X Window System?
The X Window System is not something that you work with directly. If you log
into a Unix computer and see windows and fancy backgrounds, you’re not look-
ing at X—you’re looking at a window manager or integrated desktop. We explain
both those terms later in this chapter. Rather than being a user-level program, the
X Window System is a sort of middle manager. In the most concise terms, the X
Window System provides the basic graphic capabilities that your computer needs
to produce graphical displays on the monitor.

Think of your computer like this: At the heart of its operation lie the operating
system and its kernel. What you see when you interact with the computer is the
user interface, and we’re going to assume that you have a graphical interface
because most users do have one available. X Windows lies between the operating
system and the user interface. X Windows is the mechanism through which the
operating system can construct the graphical images that you work with on the
desktop, even though Unix itself does not “do graphics.” We’ve used the term
GUI sandwich to describe this before—where Unix and the user interface are the
pieces of bread, X is the peanut butter.

Chapter 6 • The X Window System: An Overview

2817c06.qxd 11/17/00 3:48 PM Page 66

67

We should clarify something here. We have used the term X Window System
somewhat imprecisely. The X Window System is not a program. X is, instead, a
standard. This means the X Window System is actually a set of rules, administered
by a neutral body called the X Consortium, which all graphical display functions
must obey and incorporate if they are to work smoothly with Unix. X has gone
through many changes over the years; the current version is X11R6, meaning that
it is the 6th revision of the 11th version. Any particular program that implements
the X standard is referred to, somewhat confusingly, as an X Window System. One
of the more familiar X implementations is XFree86, discussed later in this chapter.
There are also commercial X implementations, such as MetroX and AcceleratedX.
Most X implementations run on Unix, but a few run on Windows as well.

Desktops and Window Managers
Because X is a standard and not a single program, you can run any kind of win-
dow manager or desktop environment on top of it. These terms seem interchange-
able, and to a certain extent, they are. In general terms, a window manager is
simply a set of functions that controls how windows appear on the monitor, how
various items such as icons or menu bars are shown, and how the mouse works
with all the items on the monitor screen. X makes these things possible, but the
window manager handles the specifics of each action.

NOTE Regardless of whether you select a desktop or window manager, it will work
closely with the display manager. The display manager is the program that actu-
ally handles data transmission between the X Window System and the graphical
user interface. The default X display manager is called xdm (logically enough, for
X Display Manager). You may find that your desktop or window manager uses a
specialized display manager instead of xdm; KDE, for example, uses kdm (KDE Dis-
play Manager).

You may hear people express strong affinity for, or objection to, particular win-
dow managers or desktops. This is probably not because of any particular flaw or
function of the program in question, but because of the unique feeling that pro-
gram generates from its blend of graphical elements, peripheral behavior, file
management, and so on. Even if you don’t think much about how your computer

Desktops and Window Managers

2817c06.qxd 11/17/00 3:48 PM Page 67

68

handles these functions, they are an integral part of your computing experience.
If you try a window manager or desktop and it just doesn’t feel right, try another
one. You’ll eventually find something that works for you and that you’re comfort-
able configuring until it’s just perfect.

Window Managers
A wide variety of window managers is available for the Unix platform, some
designed specifically for certain Unix-derived distributions and some globally
available for all the various versions of Unix. For example, some of the window
managers available for Linux include fvwm, BlackBox, AfterStep, and Enlighten-
ment. Each window manager has a slightly different feel, and the choice of a
window manager is an extremely personal one. Once you’ve selected a window
manager program, you can configure it to your heart’s desire with wallpaper,
unique icons, and so on, at least as much as the window manager will let you.
(Some let you change anything you want, while others—such as BlackBox—let
you configure only very basic options.)

The thing to remember about window managers is that their name is literal.
You can run multiple windows at the same time, with a different shell session or
program running in each, but you can’t drag and drop from one window to
another (or any other integrative function). Window managers simply make it
easier to run multiple sessions at once and provide an attractive backdrop while
doing so. You can see a sample window manager in Figure 6.1.

This is where it gets confusing. In a global sense, any program that handles
multiple sessions in a graphical environment is a window manager. However, in
recent years, the Unix community has begun to produce integrated desktop environ-
ments, which function like Windows or MacOS. These environments may look
like window managers, but they are fully integrated and have additional func-
tions that X Windows simply doesn’t provide (and thus won’t be found in plain
window managers). So, when we talk about desktops vs. window managers, we
are talking about integrated environments such as KDE or Gnome vs. simple
multiple-session interfaces such as Enlightenment or fvwm.

NOTE We go into greater detail about several popular window managers in Chapter 8.

Chapter 6 • The X Window System: An Overview

2817c06.qxd 11/17/00 3:48 PM Page 68

69

Desktop Environments
Desktop environments are like window managers on steroids. Not only do desk-
top environments allow you to run multiple sessions, they also integrate those
sessions. This means that you can drag and drop elements from one session to
another, click and drag files from one folder of a directory manager to another,
and so on. You can’t work between windows in a regular window manager
because X doesn’t offer those functions.

The other major appeal of a desktop environment is that it incorporates a com-
plete set of programs that make your computing life easier. The two main desk-
top environments, KDE and Gnome, both offer a panel that contains icons for
frequently used programs such as a terminal window, Netscape, and a graphical
file manager. Integrated desktops also let you start programs from an applica-
tions manager, which bears an uncanny resemblance to the Start menu in Win-
dows 95/98. Figure 6.2 shows the Gnome integrated desktop. Note that it

F I G U R E 6 . 1 :

The window manager
called twm manages
multiple sessions in a
pleasing graphical manner.

Desktops and Window Managers

2817c06.qxd 11/17/00 3:48 PM Page 69

70

resembles the twm window manager shown in Figure 6.1. The differences
between window managers and desktops are quite small at the cosmetic level—
it’s the actual operation of the programs that makes the difference.

NOTE We cover KDE in Chapter 9 and Gnome in Chapter 10.

Which to Use?
If you’re confused at this point, don’t worry. It’s a confusing topic, complicated
by a lot of similar terms that are often used imprecisely. We recommend that you
concentrate on integrated desktop environments, where available. That is, we
suggest that you choose between KDE and Gnome. Read Chapters 9 and 10 to
learn more about each environment, but don’t feel that you’ll lose too much if
you pick one over the other. The two programs are moving closer together in
terms of integration and available functions, and there’s no real reason to prefer
one over the other.

F I G U R E 6 . 2 :

The Gnome integrated
desktop offers both multi-
ple sessions and a com-
plete suite of user-interface
programs.

Chapter 6 • The X Window System: An Overview

2817c06.qxd 11/17/00 3:48 PM Page 70

71

That said, if you have a fairly slow computer or are concerned about system
resources, you might find a window manager more to your liking. They place less
strain on your computer because they don’t have the overhead of a complete array
of user-assistance programs; X places enough of a load on system memory—
adding an integrated desktop can bring less robust systems to a crawl. If you
decide to go with a window manager, read Chapter 8 to learn more about your
options. We prefer the more feature-laden managers such as Enlightenment and
AfterStep, but it all depends on how much of your system resources you want to
devote to graphical interfaces and how much you want to save for programs.

TIP Remember that you don’t have to use a graphical interface at all. You’ll lose out
on graphical programs, including Netscape, but you’ll gain a lot in terms of system
speed and power. Many people, including us, often log directly into the shell
instead of loading the graphical interface. You can choose to do the same, loading
Gnome or Enlightenment only when necessary. This may be easier for you than
purchasing more RAM or a faster chip.

The Structure of X
As described earlier in this chapter, the X Window System is part of neither the
operating system nor the user interface. X has several unique characteristics that
make it quite different from the MacOS and Windows interfaces.

• The X Window System stands apart from the operating system, which
means that if you don’t need a graphical interface, you don’t need to run X.
Machines that operate as servers, for example, can save the system over-
head of X and apply that overhead to faster turnaround of service requests.

• The X Window System is designed for networks, not for standalone com-
puters. You can use X to display graphical applications, running on Com-
puter A, on the monitor of Computer B. Other operating systems, such as
Windows NT, are starting to do this, but X has done it all along.

• The X Window System is not actually part of the user interface. As described
in the previous section, X makes it possible for window managers and desk-
tops to work, but you do not interact directly with X. This generic approach
means that you can customize the actual appearance of your screen, without
having to settle for some components that are part of X itself.

The Structure of X

2817c06.qxd 11/17/00 3:48 PM Page 71

72

Because X is a standard instead of a single program, you may find different
versions of X on different Unix computers. For example, a computer running
Linux or FreeBSD will probably be using XFree86. XFree86 is an implementation
of the X standard designed for Intel x86-series hardware (386, 486, and Pentium-
class chips) and is usually used by people working with Free and Open Source
software. Sun Solaris, in contrast, uses a proprietary X server that also meets the
X Consortium’s requirements. Most commercial Unices use their own X servers;
as long as the server matches the requirements of the X Window System stan-
dard, it’s fine.

How Does X Work?
The X Window System utilizes a client-server architecture. This is a common way
of handling traffic across a network or even within a single computer. When you
look at a Web page, for example, your computer requests the page data from a
Web server; in this case, your computer is the client. Servers usually handle
incoming requests from a large number of clients. Popular Web sites may receive
as many as 12 or 15 client requests per second. Figure 6.3 shows a basic image of
the client-server architecture.

When it comes to X, though, things seem a little different—even though they’re
not. When you installed X on your computer (or when it was installed while you
installed a Unix variant), X was installed as a server. So, when you use a program
that requires X, such as a desktop or window manager, you are actually running a
small X Window System server within your computer. The desktop or window
manager acts as a client, requesting particular operations from the server, which
feeds back that data and allows the client to draw a particular graphic image on
your monitor. No matter what program you’re running—a user interface,
Netscape, or a game—they all act as clients to the X server.

Client Client Client

Server
F I G U R E 6 . 3 :

A client-server architecture
is useful for a variety of
services, including the X
Window System.

Chapter 6 • The X Window System: An Overview

2817c06.qxd 11/17/00 3:48 PM Page 72

73

It may seem odd that you would need a client-server setup within a stand-
alone computer. Indeed, it is a bit strange, but it works very well for a couple of
reasons. First, it mirrors the way an actual network would operate, if you were
using X on a larger network. Because X is designed as a networked program, it
makes sense to treat the local machine and its applications as clients, just as they
would be clients if they requested X services from a different computer. Second,
it brings an immense amount of stability to the system. If X crashes, your Unix
operating system probably won’t. This means that you can go in and fix what’s
wrong with X without having to reboot, which could possibly cause even more
damage. The client-server architecture lets X work separately from both your
client applications and the operating system itself, which is the most secure
and reliable method.

Installing and Configuring X
In the vast majority of cases, the X Window System was installed when you
installed your Unix-based operating system. Most new distributions have a
graphical installation program, which requires the use of X during installation
itself. It used to be the case that installing and configuring X was one of the worst
parts of using Unix; there is a lot that can go wrong, and the X configuration
process is quite arcane. However, due to a lot of hard work on the part of pro-
grammers and developers over the years, much of the troublesome work has
been automated.

For example, most X Window System installations now auto-detect your video
hardware. This is important because X must be installed with the components
that match your hardware exactly. If the wrong components are installed, X will
not work.

WARNING If X does not start when you start your computer, especially if you have just
installed the server, the likely culprit is your video card. Although most implemen-
tations of the X standard provide specific drivers for the vast majority of video
cards on the market, it’s possible that you have one of the few that isn’t sup-
ported. This is especially likely if you bought a cheap card online that isn’t from a
major manufacturer. Unfortunately, there’s not a lot you can do if your card isn’t
supported under X. You will need to buy a new card or possibly shell out the cash
to buy a commercial implementation of X (buying a new card is cheaper).

Installing and Configuring X

2817c06.qxd 11/17/00 3:48 PM Page 73

74

TIP If you’re using Linux, you can save yourself some headaches by checking the Linux
Hardware Compatibility FAQ at http://www.linuxdoc.org/HOWTO/Hardware-
HOWTO-6.html. If you’re using XFree86 with either Linux or FreeBSD, check the
XFree86 FAQ at http://www.xfree86.org/FAQ for important compatibility
information.

Basic X Configuration
If your Unix-variant installation went smoothly, your X server should be working
fine. Basically, if you can see graphical images such as login screens or a colorful
desktop, you probably don’t have a problem with X. If your keyboard and mouse
are working properly, you’re home free.

You should check your monitor, though. Be sure that you’ve selected the appro-
priate screen resolution for the monitor. Sometimes a bad display is blamed on X
when it’s actually the hardware causing the problem. We also suggest that you
use the positioning wheels to pull the display all the way to the edges of the mon-
itor glass. For some reason, we see a lot of monitors where the users leave a black
band around the display that’s an inch or more in width, and this is one of our
pet peeves. Why waste monitor real estate that you paid for? Monitors are
designed so that you should get no image distortion if you go to the edge of the
glass. If you do get distortion, you’re due for an upgrade to a classier monitor.

If X appears to freeze up once in a while or leaves you hanging without a way
to continue your work, this is not unusual. It’s caused by a wide range of reasons,
none of which is particularly critical. If you get stuck, try pressing Ctrl+Alt+Back-
space. This command stops and restarts the X server, and usually clears up what-
ever was bothering X and causing it to hang.

X Window System Problems
Apart from the infrequent freeze, you shouldn’t have too much trouble with X.
If you do experience significant trouble with the X Window System, the answer
is probably neither simple nor quick. X is so complex that it requires a series of
manuals more than 10 volumes long, so you can imagine how complicated it is
to fix significant problems.

Chapter 6 • The X Window System: An Overview

2817c06.qxd 11/17/00 3:48 PM Page 74

75

WARNING The single most common cause of X problems is something that the user did. Do
not mess around with X configuration files unless you know what you are doing or
were told explicitly what to do by someone who is a guaranteed expert. In particu-
lar, do not install configuration files that were given to you by someone trying to be
helpful. These files are probably incorrect for your particular hardware situation and
may cause physical damage to your computer. Seek expert help for X woes.

For those people using XFree86, we suggest that you check out the resources
available through the XFree86 Web site at http://www.xfree86.org. There are
several critical FAQs there, including a Configuration FAQ that is quite helpful.
Those using other X servers, including proprietary servers such as the one used
by Sun Solaris, should consult their manuals or the developers of the X server
in question.

Remember that, unlike almost any other part of your operating system, the X
Window System can harm the hardware of your machine if something goes
wrong. We believe that the average user can fix Unix problems with a bit of
thought, but we do not think this is true about X. You could cost yourself a lot of
money if you dive into X repair without assistance.

Summary
The X Window System is the intermediary between the operating system and
the graphical user interface. X provides the information needed to translate
graphical actions, such as using check boxes or a mouse, into commands under-
stood by the operating system and the computer itself. Although the X Window
System is referred to as a single entity, it is actually a collection of rules, or a
standard, that have been used to build multiple versions of X server software.
Those using Linux or FreeBSD are probably using the X server called XFree86,
while those using Solaris or another commercial Unix are likely using a propri-
etary X server written specifically for that operating system.

Summary

2817c06.qxd 11/17/00 3:48 PM Page 75

76

The X Window System makes it possible to use graphical user interfaces, such
as window managers and integrated desktop environments. Regardless of what
interface a user selects, X will work with the interface using a client-server archi-
tecture to handle requests for data. Because X runs independently of both the
operating system and the user interface, X is stable and fast. Other operating sys-
tems integrate their windowing software directly with the operating system,
causing a greater opportunity for crashes or other malfunctions.

Chapter 6 • The X Window System: An Overview

2817c06.qxd 11/17/00 3:48 PM Page 76

C H A P T E R
S E V E N

Advanced X Techniques

� Using X Applications over a Network

� Fonts

� Colors

� Security

� X and Users with Disabilities

� Summary

7

2817c07.qxd 11/13/00 11:56 AM Page 77

78

In Chapter 6: “The X Window System: An Overview,” we covered the basics of
X. We also alluded to the fact that the X Window System is a flexible and easily
networked system. In this chapter, we show you some of the other things that X
can do, with a focus on the visual components, such as font and color, that make
some graphic displays preferable to others. We also address the security issues of
running the X server.

NOTE Some of the topics that we cover in this chapter assume basic knowledge of
material that we haven’t covered yet, such as networking. If you see something
in this chapter that doesn’t make sense, odds are that it’s covered in another part
of the book. In particular, we suggest that you read Part VIII: “Network Adminis-
tration,” especially Chapter 34: “Introduction to Unix Networking.” Once you
have a feel for basic networking theory, the specific details of networking with X
will make more sense.

Using X Applications over a Network
From its earliest development, the X Window System was designed to be network-
able. In practical terms, this means that it is possible to run a program on one com-
puter in a network and have the program display on a second computer’s monitor.
Indeed, some computers are even sold as X Terminals, which are simply a processor,
some memory, and a network connection; no hard drive is needed because the
machine is designed to do nothing other than make connections to a central user
host. Once the connection is made, the remote host’s filesystem can be mounted via
the network, and applications are displayed on the X Terminal’s monitor using net-
worked X functions.

X via the Internet?
Although it may seem like a conundrum, it is possible to open an X Window System ses-
sion over the Internet, through a Web browser. (Yes, those people running Web browsers
on a Unix system already have open X sessions.) This is especially interesting for those who

Continued on next page

Chapter 7 • Advanced X Techniques

2817c07.qxd 11/13/00 11:56 AM Page 78

79

use Windows or Macintosh computers, but need or want to use X-dependent programs,
hosted on Unix machines, on their remote computers.

This new concept is handled by the Broadway project. Broadway was the initial nickname
for the project, which has now been incorporated into the latest release of X (6.11). You’ll
hear Web-based X session technology referred to by the Broadway name or as X Web.
The protocol includes a low-bandwidth option for those users with limited-speed connec-
tions (such as dial-ups). This protocol integrates the X Window System protocol and the
HTTP protocol to take advantage of both protocols’ strengths. The alternative is Java,
which offers lower-quality transmissions and requires that any program delivered over the
Internet be rewritten in Java; with X Web, programs don’t need to be rewritten because
they’re being delivered in their original format.

One of the best things about the Broadway project is that it has focused on security issues
as part of the general development. If you run X Web, you can choose to implement a
variety of security features. For example, you can distinguish between secure and insecure
applications; determine individual client configurations and watch those clients as they
make requests of the X server; and implement firewall compatibility. You can even specify
that applications must run remotely without any host access. These new options override
some of the troubles inherent in the X protocol that make it insecure.

Learn more about Broadway at the project’s site, http://www.broadwayinfo.com.

As we explained in Chapter 6: “The X Window System: An Overview,” when
you run the X Window System on your computer, you’re actually running an X
server (also called a display server). Any X-based program that you run, whether
it’s running on the same computer or on another machine in your network, acts
as a client to the X server. The client takes advantage of the various services
offered by the server to draw program elements on the screen of the client com-
puter. Other than some slight delay caused by the transfer of signals between the
local and remote machines, it’s usually not possible to tell which programs are
running locally and which are running from the remote machine. If you’re using
high-speed networking hardware, you probably won’t get enough delay to be
noticeable.

The DISPLAY Variable
One of the ways in which Unix controls the user environment is through the use of
environment variables, which are tags that programs use to make decisions about

Using X Applications over a Network

2817c07.qxd 11/13/00 11:56 AM Page 79

80

how to perform certain tasks. To use an X-based program over a network, the DIS-
PLAY variable must be set properly on both the server and the client computer.

NOTE We cover environment variables in Chapter 13: “Customizing the Shell Environ-
ment.” If you’re unfamiliar with the concept, we suggest that you review that
chapter before continuing with this section.

To see the current value of DISPLAY, type the following line at the shell prompt
of the client machine:

echo $DISPLAY

The output should resemble one of these two lines:

:0

or

localhost:0

If the output on the client computer is fine, you can then check the server’s set-
tings. Log into the remote server computer using telnet, rlogin, or ssh (see
Chapter 43: “Remote Access (inet) Services” for more information on these pro-
grams). When you’ve reached the remote machine’s shell prompt, type the fol-
lowing command:

export $DISPLAY=”/local machine\:0

This command causes the remote machine’s output to be displayed on the local
machine’s monitor. Once the command is executed, you can run the X-based pro-
gram that you want to work with, and the data from the server computer will
show up on your client computer’s screen.

If you get an error message after the previous command, you may need to make
an additional adjustment. The error most commonly seen is output like this:

cannot connect to X-server

If you see this, log out of your connection to the server. On the client computer,
issue the command

xhost +<remote machine>

You can use either the machine’s IP address or its name. Now, log back into the
server computer and reissue the command

Chapter 7 • Advanced X Techniques

2817c07.qxd 11/13/00 11:56 AM Page 80

81

export $DISPLAY=”/local machine\:0”

It should work properly.

Fonts
One of the joys of working with a graphical interface is the ability to use different
fonts for different purposes. A font can be as simple as regular Courier, a graceful
handwriting style, or a set of pictographs. Regardless of the kind of font you
want, somebody has probably created it as an X-friendly font.

Installing fonts on Unix, however, is more complicated than installing fonts on
Windows or MacOS. We cover the basic process of installing single fonts for the
X Window System here, but nothing replaces reading material intended for your
specific operating system. X configuration can be tricky, and it’s easy to miss a
step. Be careful whenever you’re working with X configuration files, and don’t
delete anything that you didn’t put there yourself and know to be a mistake.

Installing Fonts
The first step in installing new fonts is to locate new fonts to install, of course.
You can find a wide variety of X fonts on the Web; try your favorite search engine
to see what the latest releases are. Once you have obtained a font package or two,
installing them is quite simple. Just unzip the packaged fonts into the correct
directory, adjust the format, compress the fonts, and restart the X server.

The basic font process is shown here, with addenda for various Unices below:

1. Once the font is downloaded, uncompress and untar it using the tar –xvfm
packagename command.

2. Convert the format. Fonts are usually distributed in the BDF (Binary Distri-
bution Format), but X cannot use this format. Use the bdftopcf program,
included with the X Window System, to convert the format by issuing the
command bdftopcf –o packagename.bdf packagename.pcf.

3. Change to the appropriate directory; the usual location is /usr/libs/
X11/fonts.

Fonts

2817c07.qxd 11/13/00 11:56 AM Page 81

82

4. Create a subdirectory for the font type you’re working with. The font types
currently available are 75dpi, 100dpi, Type 1, Speedo, and Cyrillic.

5. (Optional) If disk space is a concern—and fonts can be large files—you can
now compress the font. You will notice some drag on system resources as X
unpacks fonts on the fly, but the drag is more than compensated by the
saved disk space.

6. Build the fonts directory, fonts.dir, which tells X how to relate a given font
name to the associated font properties. You will need a separate fonts.dir
file in each subdirectory of /usr/lib/X11/fonts/. Create the file by issuing
the command mkfontdir.

From this point, follow the specific directions for your Unix variant.

Linux

For Linux installations, follow the six steps above and then perform these two
steps.

1. Set the font path using the xset command, used to configure X preferences.
Issue the following commands:

xset +fp /usr/lib/X11/fonts/newsubdirectory/
xset fp rehash

2. Configure XFree86 to recognize the new font path. Locate the configuration
file, which is usually stored as /usr/X11/lib/X11/XF86config, and open it
in a text editor. Find the FontPath variable in the configuration file and add
a new line (don’t delete anything):

FontPath “/usr/lib/X11/fonts/newsubdirectory/”

The next time you run the X Window System, the new paths will be loaded.
If you need the new fonts right away, kill the X server process and restart it.

FreeBSD

FreeBSD users should use the six steps given above, substituting the path
/usr/X11R6/lib/X11/fonts/ for the directory named in step 3. Create new
subdirectories in this directory. Then, follow the additional steps listed under
Linux. Because FreeBSD users usually run the XFree86 X server, the steps are
the same.

Chapter 7 • Advanced X Techniques

2817c07.qxd 11/13/00 11:56 AM Page 82

83

Solaris

Solaris users should follow the six steps given above, substituting the path
/usr/openwin/lib/X11/fonts for the directory named in step 3. Create your
subdirectories in this directory. Then, perform the following additional steps to
complete the font installation and ensure that the new paths will be added each
time X is started:

1. Copy the configuration file at /usr/dt/config/Xconfig to the file
/etc/dt/config/Xconfig.

2. Open the /etc/dt/config/Xconfig file in a text editor and add the follow-
ing line:

Dtlogin.fontPathTail: /usr/openwin/lib/X11/fonts/newsubdirectory

3. (Optional but recommended) Add this line as a comment before the line
inserted in the previous step:

Add fontname font directory
/usr/openwin/lib/X11/fonts/newsubdirectory to FontPath.

4. Save and exit the file.

5. Restart your current X session by issuing the command /etc/init.d/
dtlogin reset. The new configuration file will be read during the start-up
process, and the new path will be included.

X Font Servers
A new development in X font technology for Linux-based operating systems is
the X Font Server (xfs). The server divorces font management from general X
Window System functions, which means that you could have X installed on every
computer in your network, essentially as a standalone installation. However,
even if each computer has X, you don’t have to give a complete set of fonts to
each computer. Rather, you can install a font server, and each client computer can
connect to the font server when the client needs a new font for its display.

The problem with xfs is that it doesn’t quite have all the bugs shaken out of it
yet. If you’re using only a few fonts, you might prefer to install them on each
machine as single fonts. However, if people on your network require a variety of
fonts for their daily business, a font server might be the most efficient solution. It
certainly saves disk space on individual machines.

Fonts

2817c07.qxd 11/13/00 11:56 AM Page 83

84

NOTE If you run a network where several people use non-English fonts, such as those
used for Russian, Chinese, Korean, or similar Cyrillic or ideographic languages, a
font server is an ideal solution. These fonts are generally very large and would
swamp a workstation’s hard drive. Placing them on a separate machine used as a
font server is an elegant and economical solution.

Building a Font Server

This is the general process for installing a font server under Linux. Note that this
may not work for every Linux distribution; it is best to check your documentation
and the Web to see whether there is something specific you need to do, depend-
ing on the distribution you run. In addition, before you decide to run a font
server, we suggest that you spend some time reading through current informa-
tion on xfs. There are known bugs and problems, so you should be aware of
them before you attempt this process.

To establish an X Font Server, use this simple procedure:

1. Create a new file called /etc/conf.xfs.

2. Open the new file in a text editor and enter the following text:

catalogue=/usr/X11R6/lib/X11/fonts/misc,
/usr/X11R6/lib/X11/fonts/75dpi,
/usr/X11R6/lib/X11/fonts/100dpi,
/usr/X11R6/lib/X11/fonts/Speedo,
/usr/X11R6/lib/X11/fonts/Type1,
/usr/X11R6/lib/X11/fonts/cyrillic

3. Save and exit the file.

4. Start the font server by issuing the command
/usr/X11R6/bin/xfs -config/etc/conf.xfs &

The server will now run until you kill the process. You can check to see whether
the server is running by looking at your ports; the font server usually listens for
requests on port 7100.

Using a Font Server

To use the font server, make sure that the server is listed in your font paths. You
can configure this on Linux and FreeBSD with the xset command:

xset +fp fontserver:port

Chapter 7 • Advanced X Techniques

2817c07.qxd 11/13/00 11:56 AM Page 84

85

To speed up font access, you may want to check the font paths by hand and make
sure that the font server entry comes before any hard-coded font paths. If the font
server entry comes first, X will always check the server for the most updated files; if
the desired font isn’t there, X will then check the other font path entries.

Using International Fonts
We mentioned non-English fonts in the previous discussion of font servers. One
of the main font concerns for many X administrators is the administration and
use of fonts for languages that do not use the standard Roman alphabet, or for
characters in certain Romance or European languages that are not used in Eng-
lish. For example, French and German use specialized characters that are not
always found in the normal character sets installed with X.

To use an international font, the term used for all non-English sets of characters,
the administrator must install the font as any other font would be added to the
system. The problem comes in using the font. Each item in a particular font is
identified by a particular number, defined by the ISO standard for that language’s
fonts. These numbers are then mapped to the keyboard, which may or may not
have key mappings for that particular language’s characters. The identification
numbers are also used for programs such as word processors or the toolkits that
draw windows and provide icon labels on the desktop.

The font needs to be specified in the X configuration files if it is to be used as
the default for a particular X-based program. For the font to be made available
as the default font for X terminal windows, for example, the administrator must
configure the .Xresources file with this line:

xterm*font: font-identification

Thus, if you wanted your Xterms to start with a small-point-size Arabic font, for
example, you’d use the entry

xterm*font: yarb20

NOTE If you use a specialized or international font as your default font, you may need to
use different hardware. There is a wide variety of international keyboards that
support different character sets; if you plan to use an international font, you may
want to have an appropriate keyboard on hand.

Fonts

2817c07.qxd 11/13/00 11:56 AM Page 85

86

NOTE Ideographic languages, such as Chinese, Japanese, and Korean, face a particular
problem with their fonts. Although the ASCII standard defines a character as 7
bits, these languages use 8-bit encoding for their characters. Some programs,
mostly older ones, don’t recognize 8-bit characters and thus cannot display these
fonts. Luckily, there are patches and revised versions of most of these programs
(one of the most notorious offenders was the mail server sendmail). An adminis-
trator whose users need to use Asian language fonts should research the available
fonts; there are a number of fonts for each language, in various formats.

Colors
One of the advantages of using the window managers or integrated desktops
that we discuss in the remainder of this part of the book is that you don’t have
to deal with color at the X Window System level. Window managers and inte-
grated desktops handle display colors in a much friendlier manner, though their
sophistication varies, with the integrated desktops KDE and Gnome having the
most sophisticated color management. With these interfaces between the user
and the graphic display, you can select color themes, suites of colors selected to
work well together, or you can tailor specific colors for specific items. Using a
window manager or desktop to handle X display colors is much like using the
Control Panel in Windows.

With that said, you may not want to use a window manager or an integrated
desktop all the time, or you may have chosen a display program that doesn’t han-
dle colors particularly well. In such cases, it’s good to know how X handles colors
itself, without the intermediary of a windowing program.

Default Colors
The X Window System defines default colors for the various components of the
graphic display. For example, there’s a default color for window title bars, a
default color for icon labels, and a default color for text within a terminal win-
dow. The defaults are contained within a file called .Xdefaults, which is stored
in your home directory.

Chapter 7 • Advanced X Techniques

2817c07.qxd 11/13/00 11:56 AM Page 86

87

TIP You may not have such a file if you’ve never changed X’s default colors. You can
find a template in the file /etc/skel/.Xdefaults, which should have been
installed when you installed X. Copy this file to your home directory and use it as
the basis for your own set of X color defaults.

Various programs have different resources available for X to manage. You can
see which resources are available for configuration by issuing the command
appres programname at the command prompt. The output, shown in Figure 7.1
as the output for the xterm program, will show all the configurable resources and
their current settings. In general, such output is easy to read, and you can get a
pretty good idea of the default color from its name.

F I G U R E 7 . 1 :

Using the appres com-
mand will show you the var-
ious X resources associated
with the named program.

Colors

2817c07.qxd 11/13/00 11:56 AM Page 87

88

NOTE If you administer a network, you can set color defaults systemwide by configuring
another file. Look in your X directories for a subdirectory named app-defaults.
In this file, you can store individual files for each program that you want to config-
ure; name the file with the program’s name and use the syntax of the .Xre-
sources file to define the colors. These will become the new default colors for
every user on your system. (Of course, the users can override your settings by cre-
ating their own individual .Xresources files in their home directories.)

Once you’ve established an .Xresources file, you can edit it to change your
default settings. All you need to do is to open the .Xresources file in a text editor
and change the values that need to be changed. However, don’t change the set-
tings randomly. The entries in .Xresources use the syntax

programname*settingColor: colorname

which results in entries that look like this:

netscape*textColor: blue

The values in the colorname section of the entry are usually written as actual
color names. These names vary from the prosaic, such as red, to the fanciful, such
as papayawhip. You can’t just make up color names, because the names are preas-
signed, but chances are good that a basic color name will produce a color value.

Color names are used as nicknames for the more complex RGB value, a number
that represents the actual mixture of red, green, and blue in the resulting color.
You can fill the colorname variable in three ways: color text name, RGB value, or
hex value. See the sidebar “RGB and Hex Value Color Naming” for more infor-
mation on computerized colors. Just determine the color you want to use, insert it
in the proper line in .Xresources, and save the file. The next time you start the
affected program, it will read from the file and use the new default colors.

RGB and Hex Value Color Naming
The X Window System relies on RGB values as the method it uses to produce screen col-
ors. RGB stands for Red-Green-Blue, and the value represents the combination of three
separate values for each of those colors. That is, the RGB value rgb:FF/FF/FF equals
white. The individual values can range from 00 (no presence of that color at all) to FF (the
highest possible value).

Continued on next page

Chapter 7 • Advanced X Techniques

2817c07.qxd 11/13/00 11:56 AM Page 88

89

Once you understand that on a computer screen all colors are an RGB mixture, it
becomes easier to figure out RGB values. Of course, most people can’t visualize an exact
color from an RGB value. It’s easy enough, though, to look at a value and figure out its
general place on the spectrum. For example, consider the value rgb:00/104/139. Just
from its construction, you can tell that this color is primarily blue, with an almost equal
value of green, and that there is no red. You might guess aqua or some other shade of
light blue (the actual color name is SkyBlue4), but you’d be on the right track even if you
didn’t guess sky blue.

If you’ve ever worked on Web page design, you may think that these values look familiar.
Web designers use hexadecimal notation for color values. Because values produced from
such notation are always six characters long, it’s a convenient standardization. Some RGB
values transfer directly into hex; for example, rgb:00/00/00 is the same thing as
#000000 (black). Other RGB values, when converted to hex, don’t look anything like their
original values. Purple is rgb:160/32/240, but its hex value is #A020F0. X understands
both hex and RGB, so it’s your choice.

We suggest using hex, mostly because it’s useful to be familiar with hex values if you ever
plan to work with Web design software, which relies on hex values instead of RGB values.
However, you can stick with RGB—or even with X color names—as long as you have a
handy cheat sheet with all the correlating values listed. Our favorite site for this is
http://users.rcn.com/giant.interport/COLOR/1ColorSpecifier.html. This site
contains a large table that shows the X color name, the actual color, the RGB value, and
the hex value. It is an invaluable resource. There are many similar charts on the Web, but
most focus only on hex value for Web designers. If you don’t like the site listed above, you
can find others with a quick search-engine check.

Because we encourage the use of integrated desktops or window managers,
we suggest that you use those tools to handle display colors. Individual pro-
grams often have color configuration options as well, though you may need to
search through several layers of menus to find them. However, understanding
how X addresses colors is an important part of comprehending how graphical
displays work, and it’s also a good way to figure out what colors you can have
on your monitor.

Colors

2817c07.qxd 11/13/00 11:56 AM Page 89

90

TIP Make a note of any default settings before you change them. You may find your-
self with a truly horrendous setting and, if you don’t remember what it was
before, some time ahead of you spent setting it right. Also, try to avoid tonal dis-
plays where you might have lavender text on an orchid background against a pur-
ple desktop. If your monitor isn’t up to the task, or the colors are too close
together, you may not be able to see the individual elements on the screen; this
can make it really hard to make any changes if you don’t know where the cursor is
or which line to change in .Xresources.

Security
The X Window System is not a secure system, and X’s own documentation
acknowledges that. Although the chance of X exploitation is less than that of, say,
an open SMTP port, it is still important for users and administrators to be aware
of X’s vulnerability. You can take some simple steps to ensure that X is as secure
as possible. For obvious reasons, in this section of the chapter, we address those
readers who are their own system administrators.

We recommend treating the X Window System as any other service accessed
remotely, even though X is usually accessed only within a local network. How-
ever, X was not originally designed as a secure server, so it is quite easily cracked.
Unauthorized access to X can lead to several malicious activities:

• Viewing screen content, including passwords

• Viewing and altering content of the Clipboard or buffer

• Changing X Window System settings, sometimes with scripts that cause
system damage when X is invoked from a remote client

• Destroying active X windows while they are being used by other clients

How can you deal with the issue of X security? The remainder of this section
offers some suggestions on securing your X server. We don’t recommend deleting
it altogether, which would be overkill in the worst way. Because X is critical for
most currently popular software, it’s best to make some adjustments to the server
and then run it normally. Keep an eye out for odd happenings; if you follow our

Chapter 7 • Advanced X Techniques

2817c07.qxd 11/13/00 11:56 AM Page 90

91

suggestions, though, you probably won’t have a problem unless it’s coming from
within your network. (Another good reason to know your users.)

Using ssh
As security exploitations become more and more sophisticated, many system
administrators have decided to stop permitting the use of telnet and rlogin
connections to their machines. telnet and rlogin have some well-known weak-
nesses that make them suitable targets for crackers. In place of these programs,
administrators now recommend or require the use of ssh.

NOTE We cover the use and administration of ssh in Chapters 38: “Network Security”
and 43: “Remote Access (inet) Services.”

Fortunately, ssh forwards X connections, so there is relatively little work neces-
sary to make ssh and X coexist nicely. To invoke an X-based program from a
remote server, simply issue this command at a shell prompt:

ssh <remote server machine> <command>

If X forwarding is properly configured, you will be prompted for your pass-
word on the server machine. Once the password is verified, the remote X-based
program will display on your client computer’s monitor. If this process doesn’t
work for you, it’s possible that your system administrator has turned off X for-
warding for security reasons. Check with this person to see whether that’s the
case, or whether you need to use a different command or syntax.

Securing Ports
The easiest way to secure the X Window Server is to make it accessible only from
within your network. This limits the number of people who can connect to the
server, whether for routine use or for malicious reasons. If you run a very large
network, you may still be dealing with more people than you can actually know,
but it’s still easier to trace attacks from inside the network than it is to track down
users from other parts of the world who are targeting your computers.

X is primarily associated with port 6000, but can use ports ranging from 6000
to 6063. If you restrict access to these ports so that they are open only to comput-

Security

2817c07.qxd 11/13/00 11:56 AM Page 91

92

ers within a specified IP number range, you will limit potential abuse with a
simple block.

TIP To learn how to restrict access to these ports, see Chapter 38: “Network Security.”

You can then double up the security by using the Xhosts file to restrict access to
domain names within your network, as described in the next section. The combi-
nation of the Xhosts file and restricted port access should be enough to stop most
external attacks.

The /etc/X0.hosts File
Located in the /etc directory, the /etc/X0.hosts file contains the domain names
of the systems that are allowed to access the X Window Server in your network.
This file is not created by default when you install X, so you need to build it your-
self. Use a regular text editor to create the file.

NOTE We use the zero character in the filename because most people will run only one
local X Window System server. If you use more than one, and you want to allow
different sets of machines to contact different X servers, you must replace the zero
with the appropriate number for the local server.

Once you’ve created /etc/X0.hosts, enter the names of the machines that will
be able to access the X server. Although you don’t need to use complete domain
names for machines on the local network (and, if you followed the directions in
the previous section, no other machines should be requesting access), it’s a good
habit to develop. If your network’s domain name is funkbands.com, for example,
your /etc/X0.hosts file might look like this:

commodores.funkbands.com
parliament.funkbands.com
earthwindfire.funkbands.com

Any machine not explicitly listed in the /etc/X0.hosts file will receive the fol-
lowing error message if the machine tries to connect to the X server:

Xlib: connection to “machinename:0.0” refused by server
Xlib: Client is not authorized to connect to Server
Error: Can’t Open display

Chapter 7 • Advanced X Techniques

2817c07.qxd 11/13/00 11:56 AM Page 92

93

WARNING Using this file does not make your X server secure. Although it does limit access to
the machines named in the /etc/X0.hosts file, it permits access by any user on
one of those machines. You are still vulnerable to attacks from within your net-
work. We suggest that you combine this method with some sort of user-based
authentication, such as the xauth program described a little later in this chapter.

Using the xhost Client

X ships with a client called xhost that makes editing the /etc/X0.hosts file a bit
simpler. However, xhost requires that you be sitting at the server machine itself, as
a security precaution. If you issue the command xhost +machine.domain.name,
the named domain will be added to the /etc/X0.hosts file. You can also remove
names from the file by issuing the command xhost –machine.domain.name.
Learn what names are currently in the file by simply typing xhost at the prompt.

In general, we don’t recommend using this client to add and subtract machine
names from the /etc/X0.hosts file. It’s just as simple to work with the file
directly, using a text editor; because you can’t run xhost remotely, but you can
access a text file remotely, xhost has limited usability in a large network. It’s best
suited for use in shell scripts, where you might want to grant access to a certain
machine name, wait a given amount of time, and then deny access to that machine.
The machine will still be able to use the server as long as that initial connection is
maintained, but won’t be able to set up additional server connections.

The xauth Program
User-based authentication with X is based on a unique identifier called MIT-
MAGIC-COOKIE-1. The cookie is generated when a user logs into the server
using the xdm command (to open the X display manager). The cookie is a string of
characters that is stored in a file in your home directory, named .Xauthority.
Once you have established a connection and obtained a cookie, you will be able
to access the server from that account as long as the .Xauthority file is retained.

If everyone in your network uses a shared home directory, nothing further
needs to be done with the cookie. However, many networks are made up of com-
puters with their own home directories that do not share common files across the
network. This is where the xauth program comes into play.

Security

2817c07.qxd 11/13/00 11:56 AM Page 93

94

xauth is a program that copies the cookie from one user machine to another.
xauth locates the authorization on the initial user machine, copies the authoriza-
tion to the new user host, and builds a new .Xauthority file containing the
cookie. The user can then access the X server from the new host without having to
request a new permission code. Note that you are working from user machine
to user machine here; xauth never contacts the X server itself. Therefore, you
need to run xauth against a machine from which you have already successfully
contacted the X server, because a cookie will be stored in your account on that
user host for xauth to obtain.

The syntax of xauth is a bit complicated, though you shouldn’t need to run it
too often unless you must access the X server from a variety of computers
throughout your network. xauth uses two major functions, extract and merge.
The extract function searches the remote host for the X cookie, and the merge
function takes the cookie and places it into the .Xauthority file on the local
machine. Issue the xauth command like this:

xauth extract - $DISPLAY | ssh machine.domain xauth merge -

This complex command must be issued on the machine from which you have
successfully logged into the server; here, we’ll call the machine User1. The com-
mand extracts the value of the $DISPLAY variable, or your MIT-MAGIC-COOKIE-
1, and sends it to the standard output (signified by the dash). In the second
component of the command, an ssh connection is made to the remote machine
from which you wish to access the X server (User2). You will probably be
prompted for your ssh password at this point. Once access has been granted,
xauth takes the value of $DISPLAY from the standard output and merges it into
the .Xauthority file on User2. Once the command has completed successfully,
you will be able to access the server from User2.

Why does copying the cookie matter? After all, you could just log in from User2
and obtain a new cookie. In some cases, it doesn’t matter at all. However, in large
networks, administrators often allocate resources or access to particular programs
to certain users, while other users have access to different programs and
resources. Using xauth to copy the cookie means that you will retain access to
your particular profile, regardless of the machine you’re working on.

WARNING xauth and xhosts are attempts to solve known security problems with the X
Window System. They are better than nothing, though they do not make X wholly
secure. The best solution is to limit access to the X server and track down any
untoward activity from your own user base.

Chapter 7 • Advanced X Techniques

2817c07.qxd 11/13/00 11:56 AM Page 94

95

X and Users with Disabilities
The advent of X was of some concern to disabled Unix users. The original text-
only appearance of Unix was easily piped through various adaptive programs
that made commands and output accessible to people regardless of their ability to
see the screen. However, with the invention of a graphical interface, many of
these earlier adaptive programs were no longer usable under X. (Many of these
same concerns have risen again with the popularity explosion of the Web.)

What can be done to make X more accessible to users? Several adaptations
have been built into the X standard, as well as programs written to take advan-
tage of those adaptations. Users can install adaptive programs on their individual
machines, and administrators can develop a systemwide policy that makes sys-
tem resources available to all users regardless of their abilities.

There are three major areas in which X accessibility efforts have been concen-
trated. First, users with low vision need adaptive mechanisms such as screen
magnification. Second, blind users need to use screen readers, programs that trans-
late the screen contents into either Braille or spoken output. Regardless of the
level of visual impairment, such users need keyboard-based input instead of
mouse input, because mouse use depends heavily on the ability to track a small
and rapidly moving screen image. Finally, users with limited mobility need dif-
ferent options for using the keyboard and mouse.

Mobility issues have been addressed not only in X, but in many of the window
managers and desktops built for Unix users. For example, in Gnome and KDE,
you can configure the keyboard so that it prints a given character only once, no
matter how long the key is held down. Users who cannot release keys quickly
enough often struggle with deleting unwanted characters, so this function solves
a persistent problem. In other cases, those who must use a pointer held in the
mouth or attached to a headband cannot press simultaneous key combinations,
such as Ctrl+s. The StickyKeys X option allows these users to press the keys in
sequence, not at the same time.

Visual issues are not as easily handled as mobility issues, which often center on
time needed to complete a task or the difference between gross motor ability and
fine motor ability. In contrast, users with visual disabilities use a wide array of
adaptive technologies that each have particular requirements concerning how
data is passed to the adapter and through to the user. How a Braille interpreter
parses a particular window display may be quite different on the data level than
how a speech recognition interpreter parses that display. The response has been

X and Users with Disabilities

2817c07.qxd 11/13/00 11:56 AM Page 95

96

to incorporate particular hooks into the X protocol, so that screen interpreters can
be written that use those hooks as a predictable way to interpret particular screen
images or events.

It is surprising to realize an advance that is so useful to so many users can be
immensely frustrating to others. The traditional text-based Unix interface was
much more accessible than the more advanced graphic interface made possible
by the X Window System. If you have a visual or motor impairment, or if you
administer a system whose users have such disabilities, it’s worth the time to do
some research. There are programs available, based on adaptive strategies imple-
mented in the X protocol, that can make it easier for you to use an X display
regardless of your disability.

NOTE A visually impaired user may find it easiest to use a shell interface as her primary
interaction with a Unix computer. Plain text can be parsed through one of several
text interpreters more easily than a graphic display can. Though it is one of the
major reasons for using a graphic display, the World Wide Web can be accessed
through a text Web browser such as lynx without the need for X.

Summary
Those who administer their own Unix machines or networks should have some
understanding of the X Window System’s complexity. X can be used either on a
standalone computer or over a network. If you intend to serve X-based applica-
tions to remote machines, you’ll need to work with the value of the DISPLAY envi-
ronment variable to display the graphic application on the remote screen. Those
users who plan to use X over a network should pay special attention to security
issues, and implement both host-based and user-based security precautions.

Among the most widely used and configured functions of X are fonts, screen col-
ors, and security issues. X permits the use of a wide variety of fonts, including True-
Type and Cyrillic fonts, as long as their directory paths are known to X. You can
also use a font server, which will feed fonts to individual machines from a central
location. Colors are controlled by setting individual or networkwide configurations
and can be determined through RGB value, hexadecimal value, or color name.
Finally, anyone using X should be aware that it is not a secure system and that cer-
tain precautions should be taken to lessen the chances of unauthorized access.

Chapter 7 • Advanced X Techniques

2817c07.qxd 11/13/00 11:56 AM Page 96

C H A P T E R
E I G H T

Window Managers

� Graphic Interfaces

� twm

� IceWM

� BlackBox

� fvwm

� AfterStep

� WindowMaker

� Enlightenment

� Summary

8

2817c08.qxd 11/13/00 12:11 PM Page 97

98

Choosing a window manager is usually a matter of deciding which manager
feels right to you. You may want a basic window manager that doesn’t offer a
great number of features, but runs quickly and uses a small slice of system
resources. Someone else might want a manager that permits the use of desktop
themes or that has a particularly elegant menu system. Some window managers
meet both extremes; others occupy various plots of the middle ground. We cover
the more basic window managers first in this chapter, including twm, IceWM, and
BlackBox. We end the chapter with a discussion of the more configurable man-
agers: fvwm, AfterStep, WindowMaker, and Enlightenment. Because of their high
level of functional integration and configurability, these latter window managers
are a good transition to the integrated desktops covered in Chapters 9 and 10:
“KDE” and “Gnome.”

If you’re used to the integrated desktops such as KDE or Gnome (or Windows
98 and MacOS), you may find window managers a bit frustrating. They are not as
fully featured, and some tasks that are common in an integrated desktop can’t be
performed in a window manager. The most common example is probably drag-
and-drop between open windows; although you can cut and paste text between
windows in most window managers, you can’t select text in one window and
drag the text into another. You can do that in KDE and Gnome, however.

NOTE Both KDE and Gnome have window managers. Users don’t work with the win-
dow managers directly, though, because the desktops are set up so that the user
works directly with the desktop itself. Still, both KDE and Gnome use a regular
window manager to handle the various parameters for windows, icons, and other
graphic elements. These window managers, though, are not designed for inde-
pendent use. Sure, you could use KWM or Sawfish as a window manager, but
why not use a program specifically designed as an independent manager instead
of an ancillary program for an integrated desktop?

TIP If you don’t like the default window manager for your integrated desktop, most
of the managers described in this chapter can be used as a replacement with
minimal fuss.

In this chapter, we review seven of the most popular window managers for
Unix operating systems. Some are still being developed, while others are drifting
into the past because nobody is coding for the projects. None of them are obso-

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 98

99

lete, though; all of them are being run on large systems throughout the world,
and all have unique features that make them desirable for one type of installation
or another.

Graphic Interfaces
In the previous two chapters: “ The X Window System: An Overview” and
“Advanced X Techniques,” we explained the X Window System and its various
features. Although you must run X to get a graphical display on the monitor, X
itself does not create or manage that display. X is merely a program that makes
such displays possible.

The display that you see on your screen is built and controlled by some sort of
graphic interface. There are two basic types of graphic interfaces: window man-
agers and integrated desktops. This chapter covers the various window managers
available for use with Unix, while Chapters 9 and 10 cover the two dominant
integrated desktops available at the time this book was written.

As we explained in Chapter 6, a window manager is a set of functions that con-
trol how various elements of a graphical interface appear on the monitor. Win-
dow features, icons, menu bars, colors, fonts, and other such components are all
controlled by the window manager, which works in conjunction with the display
manager. The display manager is the conduit between the X Window System and
the window manager, but users don’t generally work directly with the display
manager, especially if a window manager or integrated desktop is being used.

Most graphic interfaces are quite configurable. You can choose the colors, the
window behavior, the fonts, and many other items that contribute to the inter-
face’s look and feel. Some managers are designed to feel like other operating sys-
tems, especially Windows; the most significant Windows-like configuration has
to do with window behavior. In Windows, you must click a window to make it
active; in many window managers, the default action is to make a window active
when the mouse pointer is over that window. This can get confusing if you like to
leave many windows open and move your mouse around a lot. However, you
can change this easily in your window manager’s configuration files (look for an
item called ClickToFocus or something similar).

At its most basic, a window manager simply helps you keep a series of terminal
windows organized. Most window managers are capable of far more, however.

Graphic Interfaces

2817c08.qxd 11/13/00 12:11 PM Page 99

100

We suggest that you try several window managers and desktops before you set-
tle on one; we’ve included one window manager, WindowMaker, on the CD-
ROM included with this book. Resources for downloading other window
managers described in this chapter are listed in Appendix B: “Documentation
and Resources.”

NOTE Most of the window managers described in this chapter (as well as the integrated
desktops KDE and Gnome) support the use of themes. A theme is a collection of
display configurations and image files that provide a coherent and consistent
visual appearance for your display; themes range from abstract geometrical and
color concepts to themes built around photographs of popular actresses or
scenes from video games. The biggest archive of window manager and desktop
themes for Unix operating systems can be found at http://www.themes.org; if
you enjoy creating your own themes, you can upload them to themes.org and
share your creations with other users.

twm
twm has been around for years. It used to be one of the most widely available win-
dow managers, especially in a distributed X Window System environment that
used X Terminals (monitor-and-keyboard-only systems connected to a central
server, as described in Chapters 6 and 7). twm is a simple window manager that
offers a basic windowing system and a minimal menu configuration, as shown in
Figure 8.1. twm is especially useful in situations where there is relatively little sys-
tem memory, because it has a reasonably small memory footprint. Other window
managers and desktops with more features will commandeer a significant portion
of system resources, making them unavailable for other programs.

twm has been supplanted on many systems by flashier window managers,
which are both more configurable and more fully featured. However, it’s possible
that you’ll run across twm if you use Unix in an environment that’s been around
for 5 or 10 years. We know of several universities that still use twm as a default or
an optional window manager.

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 100

101

TIP twm is useful for those who prefer not to use a mouse. Because twm’s roots are in
an earlier Unix world, its developers did not assume that everyone had a mouse.
You can use keyboard shortcuts in twm to perform any functions that you might
otherwise use a mouse to perform. However, some system administrators may
have configured twm to work primarily with mouse commands; the keyboard
shortcuts won’t be disabled, but you might find that the documentation refers to
mouse buttons, pointers, and clicks where you need information about control
keys and key combinations. Consult your system administrator if you’re having
trouble figuring out key combinations.

Configuring twm
Configure twm by creating a file in your home directory called .twmrc. This is the
usual location for user configuration files and is where twm will look at start-up.

F I G U R E 8 . 1 :

twm is a good basic win-
dow manager without
many additional features.

twm

2817c08.qxd 11/13/00 12:11 PM Page 101

102

If you place configuration data in another home directory file, it’s unlikely that
the data will be found by twm.

The .twmrc file handles a variety of variables that are either defined by default
or defined by the user. If you open the .twmrc file in a text editor, as in Figure 8.2,
you’ll see variables at the top of the file. There are nearly 100 valid variables for
.twmrc, including color options, window movement and management options,
and general appearance options. The syntax varies according to the variable;
where some variables simply need to be uncommented or commented out to be
activated or deactivated, other variables require an additional string of data or
other specific information.

TIP The twm manual page contains a full list of .twmrc variables and their required
syntax. Open the manual page by issuing the command man twm at a shell
prompt. The manual page is quite long, so you may wish to pipe it to a text file for
printing if you anticipate doing a lot of twm configuration.

F I G U R E 8 . 2 :

Configure twm with the
.twmrc file, which offers
many variables.

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 102

103

After all the variables are listed, the .twmrc file also contains a set of functions
that determine how windows are drawn and a set of instructions that create the
menu system. (twm menus are invoked by pressing mouse buttons instead of click-
ing a toolbar button.) The window function variables take the form f.variable,
as in f.beep. As with the display variables, some of the window functions take
specific arguments, detailed in the twm manual page. The menu variable syntax is
somewhat complicated, and includes configurations for foreground and back-
ground colors as well as the names of programs to be contained in the menus.

NOTE We don’t recommend that you tinker with the window functions. If you make an
error in these variables, you may freeze twm because it can’t perform the actions
you required or your changes conflict with other X functions.

IceWM
One of the newer window managers is called IceWM. This manager is especially
useful for those who have minimal system resources, because Ice works very well
with a minimal amount of RAM. It also integrates keyboard shortcuts into every
feature and is completely usable without a mouse.

If you’re trying to migrate from Windows, or you are migrating a full network
of users to Unix, IceWM may be the best solution for you, because its default
appearance and feel is quite similar to that of the Windows desktop. Figure 8.3
shows the default IceWM interface. If you don’t like the default, IceWM also han-
dles themes quite nicely; we suggest that you try Gnome themes first, because the
manager is more compliant with Gnome than with KDE at this point.

Many IceWM users feel that the manager’s limited configurability is a positive
feature. With a limited set of options, the user does not have to spend a great deal
of time configuring every aspect of the interface before using the manager. Others
find this to be limiting and may prefer more completely configurable managers
such as Enlightenment. However, we do not want to imply that IceWM is diffi-
cult to configure or that it has few configurable items. In fact, there are multiple
configuration options for the manager; the preferences file (one of four configu-
ration files) has 300 configuration settings alone. If you’re looking for a window
manager that is streamlined while still permitting you to manage its look and
feel, IceWM is worth a try.

IceWM

2817c08.qxd 11/13/00 12:11 PM Page 103

104

Configuring IceWM
IceWM can be configured by editing the various configuration files related to the
manager. Though there are at least two graphic interfaces to the manager’s con-
figuration files, the interfaces are still under development and may not incorpo-
rate all the features of the current release version of IceWM (1.0 at the time we
wrote this chapter). You can learn more about these graphic interfaces at the
IceWM site, http://www.icewm.org.

NOTE Look for the IceWM configuration files in the directory /usr/local/lib/X11/icewm/.
Note, though, that individual variants may place these configuration files, and the
IceWM directory, in different locations. Check through the various X Window Sys-
tem directories on your machine if you can’t find the files in
/usr/local/lib/X11/icewm. However, changing the files in this directory will affect all
IceWM users systemwide. If you want to configure only your own IceWM prefer-
ences, copy the configuration files to an .icewm subdirectory in your home direc-
tory before you edit them.

F I G U R E 8 . 3 :

IceWM is a newer alterna-
tive to basic window man-
agers and has a friendly
interface.

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 104

105

The four configuration files are named menu, preferences, toolbar, and
winoptions. Their functions are fairly obvious: menu contains information about
the Start menu’s contents; preferences controls the general user experience;
toolbar determines the various icons in the Taskbar; and winoptions handles
specific application behaviors. Open the desired configuration file in a text editor
to make changes.

The syntax of the IceWM configuration files is reasonably self-explanatory.
There are more than 300 configuration options in the preferences file (shown in
Figure 8.4), for example, using the syntax

Setting description
SettingName=1 # 0/1

The first line is usually just an explanation of the setting, while the second line
of the pair is the actual command. To activate a particular command, remove the
hashmark at the beginning of the line. Then, set the command to the value you
want to use. As with other Unix scripts we’ve covered elsewhere in this book, 0
equals false, and 1 equals true. Thus, to set a setting’s value to 0 means that the
setting definition is false, while using the value 1 means that the setting definition
is true and will be used.

You can also define keyboard shortcuts in the IceWM preferences file. There
are several predefined shortcuts already in place at the end of the file, but you can
add your own. However, make sure that you select keys that aren’t already set to
other functions; if you try to define the Ctrl+Esc combination as the command to
close an active window, for example, you might crash IceWM, because that key
combination is already assigned to opening the menu system.

TIP The Alt+F4 key combination closes the active window in IceWM.

Although all four configuration files are reasonably easy to edit, you will prob-
ably find the most useful to be the preferences file and the menu file. The menu
configuration file lets you place certain programs and folders into the main menu
(analogous to the Windows Start menu). The menu syntax is

menu <foldername> <icon>(
prog <programname> <icon> <command>
)

You can also add a <separator> element on its own line to display a line
between items in the menu.

IceWM

2817c08.qxd 11/13/00 12:11 PM Page 105

106

In practice, the menu configuration syntax will look like this:

menu <Internet-apps>(
prog Pine tree pine
prog Netscape netscape netscape
)
<separator>

In this example, we’ve created a menu folder labeled Internet-apps. All the
programs between the parentheses will be stored in the Internet-apps folder.
The first application is Pine, the e-mail program. We’ve chosen a generic icon
named tree to represent Pine in the menu, and IceWM will invoke the program
by issuing the command pine when this item is selected from the menu. The sec-
ond item in the folder is Netscape, for which we used an icon named netscape.
The program is started with the command netscape. At the end of this entry, we
used the <separator> element. In the menu itself, there will be a horizontal line
below the Internet-apps folder.

F I G U R E 8 . 4 :

IceWM configuration files
use a simple syntax that
makes configuration easy.

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 106

107

BlackBox
Like IceWM, the BlackBox window manager is designed as a small and efficient
manager without a large amount of extraneous options. It has an unusually
attractive user interface without requiring a lot of work from the user; in fact,
although BlackBox themes are available on the Web, this is one of the window
managers that may feel more attractive without any additional graphic display.

Call up the system menu with a right-click on the desktop. BlackBox defaults to
text for all menus and toolbars, saving resources because icons don’t need to be
drawn. If a program has an icon as part of its own source code (for example,
Netscape), the icon will be displayed, but BlackBox doesn’t create or associate
icons from external icon libraries.

TIP If you prefer a window manager that doesn’t use a lot of keyboard shortcuts, we
suggest BlackBox. You can use keyboard combinations in BlackBox, but very few
are created by default. Define your own for shortcuts that you’ll actually use, or
rely on the shortcuts defined in individual programs.

BlackBox has the advantage of being very small. The source code takes up only
about 50KB of disk space, making it sleek and fast; its memory footprint is simi-
larly small. BlackBox is a great alternative for server machines or for workstations
with limited system resources because it requires so little from the machine. As
Brad Hughes, the creator of BlackBox, has put it, “It’s not meant to be Eye Candy,
nor the most Featureful, nor the most Adorned for emulating the Widely
acclaimed NeXT interface. It is just meant to be fast.”

Configuring BlackBox
As you can probably guess by now, BlackBox configuration is controlled by the
.blackboxrc file kept in your home directory. You can also control menus and
visual styles through files contained in unique subdirectories. BlackBox creates
the .blackboxrc file itself upon the first invocation of the program, and you
probably won’t need to deal directly with this file because there is so little config-
urable material in this window manager.

If you do want to work with .blackboxrc, you’ll find that it uses the same
kind of syntax as other configuration files that we’ve covered in this chapter.

BlackBox

2817c08.qxd 11/13/00 12:11 PM Page 107

108

However, BlackBox configuration entries tend to require additional strings of
data after the option name; the option name is followed by a colon, and then the
value’s definition follows the colon. For example, the entry

session.menuFile: ~/.blackbox/menu

tells BlackBox that the menu configuration file is found in the user directory
~/.blackbox/menu. If you want to keep your files in nonstandard locations,
you’ll need to define those locations in .blackboxrc so that BlackBox can find
them upon boot-up.

The menu and style configuration files are far more complex than the .black-
boxrc file. We don’t recommend going into the menu or style files if you aren’t
sure of what you’re doing; note that these files should be kept in their original
locations unless you explicitly edit the .blackboxrc file to contain the new loca-
tions, lest BlackBox be confused at start-up and not be able to load the requisite
configuration files. BlackBox display styles can be manipulated simply by down-
loading and applying one of the many themes found at http://bb.themes.org;
these themes will edit the style configuration file automatically and ensure that
there are no unforeseen conflicts between individual entries in the file.

Menu configuration is slightly easier, using a simple syntax, though the indi-
vidual components of each entry in the menu configuration file can be somewhat
obscure. Consult the BlackBox manual page (issue the command man blackbox
at a shell prompt) and scroll down to the “Menu File” section for more detailed
information on menu configuration.

fvwm
Because twm is somewhat limited in its scope, fvwm was initially developed as an
expanded version. fvwm demands less memory than twm and offers a more attrac-
tive graphic interface. It also allows the user to manipulate and configure the
window manager with keyboard shortcuts instead of mouse commands. This is
more useful for those coming from a text-only environment, but can be handy for
those who don’t like the mouse or whose hardware setup doesn’t permit mouse
use. Mouse users can work with ease as well, using the features in the fvwm but-
ton bar to manage their windows and desktops.

fvwm was one of the first window managers to work toward a level of extreme
configurability, in which the user can use all sorts of special modules and config-

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 108

109

ure just about every single component of the manager. The integrated desktops
are the natural outcome of this trend, but other window managers besides fvwm
tend to this direction, including AfterStep, WindowMaker, and Enlightenment.
One of the unusual features of fvwm is the large virtual desktop, which occupies
more space than the monitor offers. That is, when using the virtual desktop, you
can scroll up and across the desktop to see additional portions of the desktop that
may contain icons or open windows.

If you find this unappealing or strange, you might prefer the multiple-desktop
option. With this feature, you can have multiple identical desktops that are unre-
lated. You might run a Web browser on one, be logged into a terminal window as
root on another, and play a game on the third. (This is similar to the virtual desk-
tops offered by KDE.) Though the default number of virtual desktops is usually
set at 6 or 8, fvwm permits the default to be set as high as 256.

Other features include a window list, accessed by right-clicking the desktop. This
brings up a small window that contains the titles of all open windows whether mini-
mized or not. Click a particular window title to activate that window. The window
list is especially useful if you like to use multiple virtual desktops, because you can
see whether you’ve left any programs running before you log out.

TIP If you want a window manager that resembles Windows 95, try the fvwm variant
fvwm95. You can find it in most online Unix software archives. It works much like
regular fvwm, but the graphic display is closer to the Windows 95 display.

Configuring fvwm
As with many other window managers and Unix programs, fvwm is configured
with the dot file .fvwm2rc (assuming that you’re using the fvwm2 variant, the cur-
rent version). .fvwm2rc contains configurations for colors, key and mouse-button
bindings, window display options, and other miscellaneous configuration options.
The syntax used in .fvwm2rc is similar to that used by twm; the syntax varies from
variable to variable and may need only the variable name, or may require the vari-
able name plus a defined set of options or flags.

fvwm handles configuration variables and built-in functions identically. That is, if
you want to configure a regular fvwm function, you simply need to add it to the
.fvwm2rc file and make any necessary edits to its default configuration. A variety
of built-in functions can be called in the .fvwm2rc file, and they are all described in

fvwm

2817c08.qxd 11/13/00 12:11 PM Page 109

110

the fvwm manual page, accessible by typing man fvwm or man fvwm2 at a shell
prompt. The fvwm manual page is unusually well-written and provides complete
information about each possible configuration in the section “Built-In Commands.”

NOTE If you feel it necessary to change the default settings of fvwm, we recommend that
you familiarize yourself with the manual page first, because it is a clear and com-
plete reference for fvwm configuration options.

AfterStep
AfterStep is a window manager designed to emulate the display of the late (and
often lamented) NeXT operating system. The NeXT display was clean and easy to
use, and AfterStep has been built to offer the same feeling to its users. AfterStep
falls into the category of highly configurable window managers, with many
options for the user’s personal preferences and configurations.

Unlike most of the window managers described in this chapter, AfterStep is
modular. A modular program is one that has a main program that is quite small
and sleek, while individual characteristics are handled by individual modules.
The main program loads particular modules at start-up, as defined by the user.
This means that unused programs simply don’t get loaded and aren’t available to
the user, and don’t take up system resources even if they’re idle. This can save
quite a bit of strain on system memory and CPU processes, especially if graphics-
intensive modules are not loaded automatically. Thus, AfterStep itself has quite a
small footprint; it’s the various modules that take up a lot of space and resources.
A fully loaded AfterStep with all available modules can be quite bloated, but it’s
fair for the AfterStep developers to call their product streamlined and quick.

AfterStep loads with three modules, by default. These modules provide flexi-
bility and ease of use to the user. The WinList module allows you to see a small
list of the titles of all open windows; the Pager module shows a small graphic
representation of all virtual desktops; and the Wharf module provides a panel
into which various program icons can be docked for quick access. (The Wharf is
equivalent to the panel in both KDE and Gnome.) You can add additional mod-
ules, including those designed to control window behavior. Most users will want
to use a significant number of modules to create a powerful and flexible window
manager that meets their needs.

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 110

111

Configuring AfterStep
Unlike the window managers described so far in this chapter, AfterStep does not
handle its configurations in a single file. Instead, AfterStep configuration files are
divided into a number of smaller files contained in the ~/GNUstep/Library/
AfterStep/directory in your home directory. To get these files into your home
directory, create the directory named above. Then, copy the systemwide configu-
ration files from the /usr/local/share/afterstep directory and edit them as
necessary. If you have files in a personal ~/GNUstep/Library/AfterStep direc-
tory, AfterStep will use those configurations as the default for your account,
regardless of systemwide defaults set by the system administrator.

NOTE Older versions of AfterStep, prior to release version 1.8, used a configuration file
called .steprc. If you have a version of AfterStep that uses .steprc, we suggest that
you upgrade to the newest version (available at http://www.afterstep.org).
You will find a number of changes as of the 1.8 release, including a complete
change in the way that configuration is handled.

There are 18 AfterStep configuration files, listed in Table 8.1. You may never
touch some of these files; you might want to edit others extensively. The syntax is
straightforward, with each entry starting with the variable name, followed by the
particular definition for each variable. Look through the particular file you want
to edit for examples of how individual variables are handled in that file. You can
find a full list of variables for each configuration file in the AfterStep manual
pages, accessible by typing man afterstep at a shell prompt. Note that the man
page for AfterStep is extremely long, but that individual modules have their own
manual pages as well.

TA B L E 8 . 1 : AfterStep Configuration Files

Filename Configuration Effect

animate Defines animation settings used when windows or other programs are minimized
or iconified

asetroot Configures the asetroot module, which controls the background appearance of
AfterStep

asmail Configures the applet asmail, used to handle mail more efficiently

Continued on next page

AfterStep

2817c08.qxd 11/13/00 12:11 PM Page 111

112

TA B L E 8 . 1 C O N T I N U E D : AfterStep Configuration Files

Filename Configuration Effect

audio Configures the audio module so that you can use sound effects with particular
actions or use plug-in modules that require audio enhancement

autoexec Defines what programs and modules are automatically loaded when AfterStep
starts

base.xxbpp Defines the directory path for modules, graphical pixmaps, cursor icons, and
AfterStep script files

clean Manages the Clean module, which automatically closes or minimizes windows
after a defined idle period

compatibility Determines whether AfterStep configuration files from earlier versions of the pro-
gram (i.e., .steprc files) will be used when AfterStep 1.8 and later are started

database Defines the configuration of various applications, including their window behavior
and appearance

feel.name Configures the feel of the window manager, including window behavior and
other mechanical functions (used in consort with look.name, described below)

forms Contains information on any forms used by AfterStep

ident Defines the variables of the Ident module, which controls basic information
about every open window

look.name Configures the look of the window manager, including color and gradient shad-
ing (used in conjunction with feel.name, described above)

pager Defines the variables of the Pager module, used to show the various virtual desk-
tops and their contents

scroll Defines the variables of the Scroll module, which determines how individual
windows on the desktop will scroll from top to bottom or side to side

wharf Defines the variables of the Wharf module, including docked icons and other
applets plugged into the desktop display

winlist Defines the variables of the WinList module, which shows information for all
open windows

zharf Defines the variables of the Zharf module, which is a text version of the Wharf
module

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 112

113

WindowMaker
Like AfterStep, WindowMaker is a window manager based on the NeXT display.
The resulting desktop, shown in Figure 8.5, is a clean and usable interface. Win-
dowMaker is a product of the GNU project, so it is Free Software and is designed
to work well with other GNU programs. We have included WindowMaker on the
CD-ROM provided with this book. WindowMaker offers a sophisticated menu
system, with detachable menus that can be left open by “sticking” them to the
desktop; WindowMaker also has a feature called the Dock, which serves the same
function as the AfterStep Wharf or the KDE and Gnome panels.

WindowMaker is not the fastest window manager available, nor is it the small-
est in terms of system use, nor does it have the most bells and whistles. However,
it has a nice balance of all these components and is a good choice for the user who

F I G U R E 8 . 5 :

WindowMaker, like After-
Step, is based on the NeXT
display, and has a clean
and simple interface.

WindowMaker

2817c08.qxd 11/13/00 12:11 PM Page 113

114

wants a fully featured window manager without the overwhelming system
demand of an integrated desktop and a window manager that handles multiple
tasks easily without the bare-bones appearance of the more basic window man-
agers. WindowMaker has a large number of configurable features, without tip-
ping over into configuration overload as is sometimes the problem with
Enlightenment.

The decision between WindowMaker and AfterStep is difficult, because the two
managers appear almost identical. The major difference between the two is that
WindowMaker integrates more functions into its core binary code than AfterStep
and does not rely on modules to the extent that AfterStep does. This difference
doesn’t matter to the majority of window manager users, though, so you should
try them both out and make your decision based on how they feel to you.

Configuring WindowMaker
Like AfterStep, WindowMaker uses a multiple-configuration-file system instead
of a single file, as with BlackBox or IceWM. WindowMaker configuration files are
divided into a number of smaller files contained in the ~/GNUstep/ directory and
its various subdirectories in your home directory.

NOTE To get these files into your home directory, create the directory named above.
Then, copy the systemwide configuration files from the /usr/local/share/
windowmaker directory and edit them as necessary. If you have WindowMaker
configuration files in a personal ~/GNUstep directory, WindowMaker will use
those configurations as the default for your account, regardless of systemwide
defaults set by the system administrator.

There are five WindowMaker configuration files, listed in Table 8.2. You may
never touch some of these files; you might want to edit others extensively. How-
ever, WindowMaker offers a configuration utility, described below, that handles
some of the editing that you might otherwise do by hand. The syntax in these
configuration files is straightforward, with each entry starting with the variable
name, followed by the particular definition for each variable. Look through the
particular file you want to edit for examples of how individual variables are han-
dled in that file.

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 114

115

TA B L E 8 . 2 : WindowMaker Configuration Files

Filename Configuration Effect

~/GNUStep/WindowMaker Sets the majority of WindowMaker configuration variables, including
/WindowMaker window behavior, fonts, keyboard shortcuts, and other such items.

~/GNUStep/WindowMaker Contains individual configurations for various applications installed on
/WMWindowAttributes the computer. Each program may have a different set of attributes, and

those are all defined in this file.

~/GNUStep/Defaults Contains information for the Dock’s current settings, including graphical
/WMState buttons and program launch information. Do not edit this file; it is auto-

matically generated.

~/GNUStep/Defaults Defines the file that serves the root menu. In versions of WindowMaker
/WMRootMenu newer than 0.19, this file should be replaced by ~GNUStep/Defaults/

plmenu if the configuration application Wprefs.app is to be used for
menu configuration.

~/GNUStep/Library Handles menu configuration for WindowMaker versions older than 0.19.
/WindowMaker/Menu

You can find a full list of variables for each configuration file in the Window-
Maker manual pages, accessible by typing man windowmaker at a shell prompt.
Note that the man page for WindowMaker is extremely long.

NOTE If you are using a newer version of WindowMaker (any version 0.62 and later),
you can sidestep much of the configuration-file process by using Wprefs.app, a
program designed as a graphical interface to the WindowMaker configuration
files. Wprefs.app is shown in Figure 8.6. Along the top of the Wprefs.app win-
dow, there are 16 square icons. Each icon opens a separate window in which you
can set various configuration options for that particular set of variables; for exam-
ple, you might open the Window Preferences tab to define your preferred win-
dow styles or the Appearance Preferences tab to define the overall display.

WindowMaker

2817c08.qxd 11/13/00 12:11 PM Page 115

116

Enlightenment
Of all the window managers covered in this chapter, Enlightenment is the most
configurable. Almost every single element of the display can be altered to meet
the user’s needs. Although some people find this overwhelming, many Enlight-
enment users choose this window manager precisely because of its flexibility
and power. With Enlightenment, shown in Figure 8.7, you aren’t even limited to
the graphical files that are included in downloaded themes; if you have access to
a graphical design program such as The GIMP (included on the book’s CD-
ROM), you can create your own files and add them to the display.

Enlightenment is still very much under development. The programmers on this
project hope that, eventually, Enlightenment will function as a standalone shell
environment with seamless integration of applications and non-Enlightenment
programs already installed on the hard drive. For now, these details are covered
by configuration files, but the dream is to have Enlightenment handle many of

F I G U R E 8 . 6 :

WindowMaker configura-
tion is made simple with
the Wprefs.app program.

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 116

117

these tasks automatically without the need for hand configuration. Some features
most commonly associated with integrated desktops, such as a file manager and
drag-and-drop capability, are also planned for Enlightenment. It’s easy to see,
from the list of features, that Enlightenment started as part of the Gnome project.
Though no longer associated with Gnome (which now uses the Sawfish window
manager), Enlightenment offers—or plans to offer—much of the same functional-
ity found in the desktop.

You can certainly use Enlightenment if you aren’t thrilled by the idea of edit-
ing multiple configuration files. If you prefer a window manager that you can
use out of the box, though, you may prefer BlackBox or even WindowMaker.
For those who love tinkering and want the most cutting-edge window manager,
however, Enlightenment is for you. Readers who want to program for the dis-
play environment will be especially happy with Enlightenment, because the
project’s development philosophy is to accept and integrate most patches sub-
mitted for consideration.

F I G U R E 8 . 7 :

Enlightenment is the most
configurable window man-
ager available.

Enlightenment

2817c08.qxd 11/13/00 12:11 PM Page 117

118

Configuring Enlightenment
Enlightenment configurations are usually grouped by theme. That is, if you want
to configure a particular element of the Enlightenment display or behavior, you
edit the configuration files for the theme that you’re using. These changes don’t
carry over when you change themes. The default theme’s configuration files are
located in /usr/local/enlightenment/config, and configuration files for alter-
nate themes are located in /usr/local/enlightenment/themes. There are three
basic configuration files for each theme:

• usr_main.cfg controls user preferences.

• theme_pre.cfg controls various class definitions for the given theme.

• theme_main.cfg controls the graphical display of windows within the
given theme.

You can change basic user preferences by editing the user_main.cfg file; you
will probably never need to edit theme_pre.cfg or theme_main.cfg. Open the
file in a text editor and change the appropriate setting. There are several user-
preference entries at the top of the file, which are mostly variables for window
behavior. Display variables, such as color, font, and background image, are usu-
ally changed by installing a different desktop theme instead of editing a configu-
ration file. Sound options are also contained in this file.

NOTE The default settings in user_main.cfg should be the same from theme to theme,
though the file is created anew each time a new theme is developed. However,
individual programmers may not want to use the default settings; if you come
across a theme that has an unusual set of button functions or keystroke combina-
tions, chances are that the developer has chosen not to adhere to the general
user-preference standards.

Installing Themes

Because so much of Enlightenment’s power and flexibility is concentrated in
themes, you’ll probably want to download and install a variety of themes to see
what they can do. The largest archive of Enlightenment themes, as with the other
theme-enabled window managers and the integrated desktops, is found at

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 118

119

themes.org: specifically, at http://e.themes.org. The themes are stored as tar-
balls, meaning that you’ll need to unpack them once they’re downloaded.

Download into the /usr/local/enlightenment/themes directory. Unpack the
theme by issuing the command

tar zxf filename

(being sure to include any extensions such as filename.tar.gz). The package
will unpack itself and sort its files into newly created subdirectories. You can then
select the new theme in the Enlightenment configuration tools. If you are running
Enlightenment with the Gnome desktop, for example, click the main Gnome
menu button and select Window Manager ➣ Enlightenment. Click the button
marked Run Configuration Tool for Enlightenment, select the Themes tab, and
pick the new theme from the list, as shown in Figure 8.8. Click OK to set the new
theme on the desktop. Theme selection works in the same way whether you are
using KDE or just straight Enlightenment.

F I G U R E 8 . 8 :

Change themes easily with
Enlightenment’s built-in
configuration tools.

Enlightenment

2817c08.qxd 11/13/00 12:11 PM Page 119

120

Summary
Window managers, at their most basic, offer the Unix user the ability to manage
multiple terminal sessions. However, most window managers now available offer
far more. Window managers may have features such as a complex menu system,
icon-based management tools, or the ability to use graphic themes to control the
display’s appearance and behavior. A multitude of window managers are avail-
able for all Unix variants; as long as you are running the X Window System, you
can use a window manager. Window managers can be used as standalone pro-
grams or in concert with an integrated desktop environment.

Window managers can be divided into two major camps. One camp is focused
on developing window managers that are lean and sleek, requiring relatively little
portions of system resources for their operation. Some window managers in this
category include twm, IceWM, and BlackBox. The other camp is focused on devel-
oping window managers with a high level of configurability, which inevitably
leads to a higher demand on system resources, though the end result is a more
detailed and feature-rich program. Window managers in this category include
fvwm, AfterStep, WindowMaker, and Enlightenment.

Chapter 8 • Window Managers

2817c08.qxd 11/13/00 12:11 PM Page 120

C H A P T E R
N I N E

KDE

� What Is KDE?

� Getting and Installing KDE

� The KDE Panel

� The KDE File Manager

� The KDE Control Center

� Desktop Themes

� Summary

9

2817c09.qxd 11/13/00 12:13 PM Page 121

122

In Chapter 8: “Window Managers,” we described one kind of program that
works with the X Window System to provide a graphical user interface. Although
window managers provide a basic windowing system, permitting you to open
multiple Unix sessions on one desktop, window managers are limited in their
scope. When compared to other operating systems such as Windows or MacOS, the
window managers described in Chapter 8 come up a bit short: no drag-and-drop,
no cutting and pasting between windows, and a somewhat awkward method of
managing programs and monitoring system activity. Window managers are a good
step beyond plain command-line interface sessions, but they’re not the most cur-
rent graphical interface technology, either.

What is the current graphical user interface technology? The integrated desk-
top environment. These desktop environments combine the functions of regular
window managers with a new level of features, including drag-and-drop, better
graphics management, and a suite of integrated features that make normal sys-
tem and account administration easier. For system administrators, integrated
desktop environments even provide an array of graphical administrative tools
that can replace arcane command-line methods.

In this chapter and the next, we describe the two major integrated desktop
environments currently available for Unix and Unix-derived operating systems:
KDE and Gnome. We don’t recommend one over the other. Although we’ve writ-
ten a book about KDE, we use Gnome on many of our machines, and we don’t
see a significant reason to prefer one of the two. Try them both out (we’ve placed
both on the CD) and see which you like best.

What Is KDE?
KDE (the K Desktop Environment) was the first integrated desktop environment
to be released for Unix and Unix-derived platforms. The KDE project is based in
Germany and is one of the most multinational volunteer groups we’ve seen in
Open Source development. (More than 100 people work on the KDE translation
projects alone.)

NOTE Despite any rumors you might have heard, KDE is Open Source software. KDE was
developed with a particular software library called Qt, which used a software
license more restrictive than the GNU Public License. In particular, the Qt license

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 122

123

had a loophole for developers who wanted to write commercial software with Qt
and who did not want to release their code publicly (one of the core tenets of the
GPL). Qt’s developers permitted such use as long as a license fee was paid. The
issue has now been resolved, and KDE is true Open Source software. If this is ethi-
cally problematic for you, flip to the next chapter and learn more about Gnome,
which has been Free Software from the beginning.

KDE is designed to work with the KWM window manager, a manager native to
KDE and integrated tightly with the desktop. As the first integrated desktop to
hit the Unix community, KDE brought Unix users a new level of ease with a com-
plete menu system, integrated help documents, and native graphical administra-
tion and configuration tools. KDE also gave users the ability to design their own
desktops, whether basic or deeply complex, and to share desktop themes with
other KDE users.

Getting and Installing KDE
KDE is easy to find. In fact, we’ve put all the packages you’ll need on the CD that
comes with this book. We do recommend that you check out the KDE home page
at http://www.kde.org, though. We went to press before KDE 2 was ready for
release, but the development team promises some big changes in the new version.
If there’s an upgraded version on the Web site and you’d rather use that, just
download the packages recommended there and install as instructed.

You should experience few, if any, problems when you install KDE. (If you’re
using Corel Linux, you won’t even need this section, because KDE is the default
desktop for that distribution.) KDE should run smoothly on most Unix-derived
operating systems, even the more obscure distributions. Certainly, it will run just
fine on the systems covered in this book.

On its Web site, KDE provides download packages in six different formats, includ-
ing .rpm and .deb files for the Red Hat and Debian Linux package managers; regular
source code tarballs for those not running Linux; and packages for Solaris 2.6 and 2.7.
Regardless of your Unix flavor, you should be able to compile and run the source
code packages; if you can use .rpm or .deb formats, or you run an appropriate ver-
sion of Solaris, try those specialized formats first. We concentrate on the source code
in this chapter and provide the source packages on the CD.

Getting and Installing KDE

2817c09.qxd 11/13/00 12:13 PM Page 123

124

Downloading KDE
In this section of the chapter, you will locate and download the appropriate
packages to install KDE. If you’re using the KDE packages from the book’s CD,
insert the CD into a mounted CD drive and move these packages to the appro-
priate directory, as explained in the “Unpacking the Source Code” section. If
you’re downloading packages from the KDE Web site, point your browser or
FTP client to ftp://ftp.kde.org.

You’ll need to download quite a few packages to get KDE working properly.
We base the lists in this section on KDE 1.1, the current release at the time we
wrote this chapter. These package names are for the source code packages, not for
.rpm, .deb, or Solaris packages.

WARNING If KDE 1.1 is not the current version at the time you are reading this book, see the
KDE Web site to learn which packages you will need to install the desktop.

Base Package Downloads

The first two base packages listed below are required to install and run KDE.

WARNING If you do not already have Qt installed on your system, you must obtain that as
well and install it before you install anything else. Get Qt at http://www.troll.
no/dl and make sure you download version 1.42 or higher. Do not download Qt
2 or higher, because those versions will not work with KDE 1.1. That may be dif-
ferent with KDE 2, but we do not know that for sure.

kdelibs: This package contains the various software libraries that KDE
applications require to run.

kdebase: This package contains the basic KDE applications, such as the
Window Manager, the File Manager, the Panel, and so on.

kdesupport: This package is not technically required to run KDE, but it
certainly doesn’t hurt to install it. It contains various software libraries that
aren’t produced by the KDE team, but are needed to run the software.

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 124

125

NOTE If you are running Debian Linux, you must install the kdesupport package. It is
required for Debian users.

Recommended Package Downloads

These packages are not required for KDE to run, but if you don’t install them, you
won’t get many of the advantages of an integrated desktop. We suggest that you
install them the first time, to see what a complete KDE installation looks like, and
then uninstall anything you don’t need or want.

kdeadmin: This package contains graphical programs for system admin-
istration. The current package contains a graphical user manager and a
runlevel editor.

kdegames: This package contains a variety of games built for the KDE
desktop, including several versions of Tetris, strategy games, and card
games.

kdegraphics: This package contains several viewers for various graphic
formats, including PostScript, .dvi, and others. It also includes a drawing
program.

kdemultimedia: This package contains utilities that help you use the mul-
timedia capabilities of your computer, such as an audio CD player, a
sound mixer, and the like.

kdenetwork: This package contains various KDE-specific Internet appli-
cations, such as Kmail (an electronic mail client) and Krn (a USENET
news client).

korganizer: The korganizer package contains an electronic organizer, sim-
ilar to Microsoft Outlook, that will manage your schedule and contact
information.

kdetoys: This package contains a variety of games and other entertain-
ment programs designed for the KDE desktop.

kdeutils: The kdeutils package contains several basic desktop utilities,
such as a calculator and Knotes, which are electronic versions of sticky
notes. This package also contains KEdit, a graphical text editor covered in
Chapter 20: “Graphical Editors.”

Getting and Installing KDE

2817c09.qxd 11/13/00 12:13 PM Page 125

126

Unpacking the Source Code
First, locate the packages that you’ve downloaded. If you’re using the packages
on the CD, copy them to a location on your hard drive; you can’t install directly
from the CD. Unix users generally move packages to the /usr/src or the /tmp
directories before beginning an installation; /tmp is especially good if you’ve
developed the habit of deleting old files from /tmp on a regular basis. We usu-
ally use /usr/src, often creating a new subdirectory such as /usr/src/kde for
KDE packages.

WARNING You need to be logged in as root to install these packages.

Once you have moved the KDE packages to the appropriate directory, you’ll
need to unpack them before they can be installed. You must install the kdesup-
port and kdelibs packages first, because all the other packages depend on the
software libraries contained in those two packages. To unpack kdesupport, issue
the command

tar xvfz kdesupport.tgz

at a shell prompt. As the package unpacks, it will create its own subdirectory in
your current directory. If, for example, you followed our lead and created the
directory /usr/src/kde, this command will create the subdirectory /usr/src/
kde/kdesupport. Next, unpack the kdelibs package by issuing the command

tar xvfz kdelibs.tgz

at the command prompt.

Once you’ve unpacked those two packages, you can continue to unpack the
other packages you downloaded. You will need at least kdebase, which contains
the basic KDE distribution, but we recommend that you install all packages. Con-
tinue to repeat the tar xvfz command, ending it with the specific package name,
until all packages have been unpacked and have their own subdirectories.

NOTE Once you’ve unpacked everything, you can scan the various subdirectories to see
what’s included. Most of it is code, of course, but each package will also have a
README file. You should always read the README files, because they contain
important information about installing the specific files in each package. Some-
times they even include platform-specific help.

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 126

127

Compiling and Installing the Source Code
After all the packages are unpacked, you can begin to install the software. Move
back to the directory containing all the subdirectories, if necessary; then, move
into the subdirectory housing the kdesupport package by issuing the command

cd kdesupport

Configure the kdesupport package by issuing the command

./configure

at the shell prompt. The configure command determines your hardware config-
uration so that KDE can install cleanly.

Next, issue the command

make

at the shell prompt. The make command starts the compiler, which builds the
actual binary package used to execute the KDE program. While make is working,
a number of messages will scroll up your screen. You need not scrutinize these
messages, because a serious error will halt the flow and wait for your response.

When the messages finally stop scrolling, type

make install

at the prompt. This command moves all the newly created binary packages into
their permanent directories of residence.

Return to the previous directory (use the cd .. command) and move into the
kdelibs subdirectory. Repeat the three-step procedure described above—./con-
figure, make, and make install—for this package. When finished, return to the
previous directory and move into the kdebase subdirectory.

NOTE The kdebase package has some special configuration options. Before you begin
the configuration process, issue the command ./configure – help at the
prompt to display the options available for your installation. If you choose to use
one of these options, follow the directions on the screen. Then, continue with the
three-step process described above.

After you have installed kdesupport, kdelibs, and kdebase (in that order), you
can use this process for all the remaining KDE packages. It does not matter

Getting and Installing KDE

2817c09.qxd 11/13/00 12:13 PM Page 127

128

which order you use, as long as those three packages are installed first and in the
proper order.

NOTE If you had a problem that resulted in the shut-down of the configuration or instal-
lation process, the odds are overwhelming that you’re missing a library or required
program somewhere. This is why we recommend that you install the libraries first,
then the base package, and then the optional packages. Scroll back through the
error messages and try to determine what’s missing. Find the package containing
that element, install it, and then try to reinstall the failed package again.

When you have finished installing all the packages, log out of the root account
and log back into your user account.

Configuring X for KDE
Once you’ve logged back into your user account, issue the command

usekde

at the command prompt. You will see a few system messages appear on the
screen as your computer sets KDE to be the default user interface. When the mes-
sages stop, you can test your installation and configuration by typing

startx

at the prompt. The X Window System will boot up—you should see the KDE
splash screen and, eventually, the KDE desktop, as shown in Figure 9.1.

NOTE If you are already running X for some reason (perhaps you are using a window
manager or Gnome as your current graphical interface), you must log out of your
current session before you can test KDE. Exit your session and log back in at the
text prompt. KDE should start as the graphical interface at that point.

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 128

129

The KDE Panel
The heart of KDE’s user interface is the KDE Panel, a long set of icons that runs
along the bottom of the screen, as shown in Figure 9.2. The Panel contains icons
that represent frequently used applications or commands, but it can be configured
to show only the icons for items you use frequently. You can also move the default
position of the Panel, or collapse it and open it only when needed. The remainder
of this section describes each of the Panel’s default items.

NOTE Once you’ve installed KDE, you may see some of the buttons described here, but
not others. If your monitor is too small for the screen resolution you’re using, the
Panel automatically layers icons to fit. We recommend that you remove icons you
don’t use much to get the Panel neatly located on your desktop.

F I G U R E 9 . 1 :

The first time you run KDE,
you will see the default
desktop configuration.

The KDE Panel

2817c09.qxd 11/13/00 12:13 PM Page 129

130

Panel Collapse Bar

Located at the left and right ends of the Panel, these textured bars collapse the
Panel or reopen it to its full size. When you click the bar, the Panel slides behind
the bar and will remain there until you click it again.

TIP Use these bars if you like to work in full-screen mode, so that the Panel doesn’t
obscure what you’re working on.

Application Starter

The Application Starter icon launches a menu, which works like the Windows 95
and Windows 98 Start menu. You can launch programs, navigate files, or execute
commands via this menu. Click the Application Starter icon to open the menu
and then continue with your selections from that point. Figure 9.3 shows the
Application Starter menu and some of its sub-menus.

File Manager

In the “KDE File Manager” section of this chapter, we describe the KDE File
Manager, a graphical interface to your computer’s directory system. Use this
icon to launch the File Manager with a single mouse-click. If you are logged in
as a user, the File Manager will show you the contents of your home directory;
if you’re logged in as root, File Manager will display the computer’s entire
directory structure.

Terminal Emulator

Throughout this book, we ask you to work with a command prompt so that you
can work directly with the shell environment. Although KDE is a graphical inter-
face, you can still launch shell sessions with this icon. Click it to open a window
containing an independent shell session. Figure 9.4 shows a KDE session with an
open shell session on the desktop.

F I G U R E 9 . 2 :

The KDE Panel contains
icons that launch fre-
quently used applications
with a single click.

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 130

131

F I G U R E 9 . 4 :

Even though KDE is a
graphical interface, you can
use KDE tools to work
directly in the shell.

F I G U R E 9 . 3 :

The Application Starter
menu works like the Start
menu in Windows.

The KDE Panel

2817c09.qxd 11/13/00 12:13 PM Page 131

132

Text Editor

Click this button to launch KEdit, a graphical text editor. We cover KEdit in some
detail in Chapter 20: “Graphical Editors.”

Help

Click this icon to launch your default Web browser, which will show the opening
pages of the KDE online help system. KDE help is quite good, though there is not
yet a comprehensive index of help pages. To get the help you need, you’ll need to
move through the various documents until you find the correct help file.

Pager

Although it appears to be a single icon, the Pager icon is actually composed of
four tiny icons that take up the space of a regularly sized icon. The Pager controls
the KDE virtual desktops, which we explain in the “Virtual Desktops” section of
this chapter.

Taskbar and System Tray

The Taskbar’s contents change, depending on what you’re currently doing with
your Unix session. The Taskbar contains an icon for each window that is currently
open, whether or not it is active. (The active window is the window in which you’re
currently working.) The icons are labeled with the window’s name, which is usu-
ally the name of the application running in that window. In some cases, KDE will
label the Taskbar buttons with sequential numbers if it cannot determine the appli-
cation name.

The System Tray is the item in the final section of the Panel. The tray shows
icons for programs that are running in the background. Such programs are active
and consume system resources, but aren’t usually used directly by users. The Sys-
tem Tray also contains the Date and Time icon; when no background programs
are active, you’ll see only date and time information in the System Tray.

Clock/Date

The final item on the Panel shows the date and time, drawn from your system
settings. You should ensure that the operating system has the correct date and
time so that various files get the proper timestamps; that your KDE clock will be
correct is simply a useful side effect.

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 132

133

Virtual Desktops
Virtual desktops are a KDE feature that are somewhat difficult to describe. In
essence, KDE’s virtual desktops provide you with four individual computer
desktops while still requiring you to log in only once. Virtual desktops are a use-
ful way to distribute application windows if you like an uncluttered desktop;
they’re also a good way to divorce your fun applications, such as Netscape or a
session of Tetris, from work applications, such as Corel WordPerfect or a graphi-
cal administration tool.

Virtual desktops are controlled by the Pager. You can use the four tiny icons of
the Pager to move among the desktops, or click the small arrow to the left of the
Pager buttons. This arrow opens a miniature graphical pane that shows all four
desktops at once; then you simply need to click the appropriate pane to open that
desktop. Figure 9.5 shows the Pager’s graphical display.

TIP Those who like virtual desktops can configure up to eight of them; those who dislike
them can configure only two. The minimum is two, so we suggest just ignoring the
second virtual desktop. You can remove the Pager from the panel if it is distracting.

F I G U R E 9 . 5 :

The Pager helps you man-
age up to eight virtual KDE
desktops in the same user
session.

The KDE Panel

2817c09.qxd 11/13/00 12:13 PM Page 133

134

The KDE File Manager
If you have worked with Windows 95 or 98 before starting your Unix experience,
you’re probably familiar with the Windows Explorer. The KDE File Manager
works in much the same way—it’s a graphical interface to the computer’s direc-
tory structure. The KDE File Manager is more than just a visual display, though; it
offers you a number of ways to handle your files without having to memorize
arcane commands. Open the File Manager in one of two ways:

• Click the File Manager icon in the Panel.

• Open the Application Starter menu and select File Manager from the menu
that appears.

Whichever method you use, the File Manager will open. The default mode is
simple view, as shown in Figure 9.6. We prefer to use tree view, which you can turn
on by selecting View ➣ Show Tree from the menu bar. The next time you open
File Manager, it will look like the screen shown in Figure 9.7. Note that, in tree

F I G U R E 9 . 6 :

The KDE File Manager uses
a simple tree display to
show your computer’s
filesystem.

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 134

135

view, the File Manager window is separated into two panes. On the left side, the
computer’s full directory structure is shown. This type of display is commonly
called a file tree, because directories branch out as they become more specific. On
the right side, the selected directory’s contents appear.

NOTE If you come to Linux from Windows 95 or Windows 98, this is all familiar. Feel free
to skip to the next section of this chapter if you have used Windows Explorer con-
fidently in the past.

When File Manager opens, one directory in the left pane is highlighted. By
default, this is your home directory. The right pane shows the files and subdirec-
tories contained in your home directory. If you click another directory in the left
pane, that directory’s contents will appear in the right pane. In other words, the
right pane contains all the files contained in the directory selected in the left pane.

F I G U R E 9 . 7 :

Use tree view to see the
entire directory system at
once, in two panes.

The KDE File Manager

2817c09.qxd 11/13/00 12:13 PM Page 135

136

Note that some directories have small arrows to the left of their names, while
other directories have none. An arrow pointing to the right indicates that the direc-
tory contains subdirectories. Click the arrow to expand the directory tree and
show those subdirectories in the left pane. Just as with the main directories, click a
subdirectory to display its contents in the right pane. When you’ve expanded a
directory tree in this manner, the right arrow changes to a downward-pointing
arrow. Click that arrow to collapse the branch back to the parent directory.
Expanded and collapsed branches are shown in Figure 9.8.

In addition to providing an efficient manner of moving through the filesystem,
File Manager provides a single location for performing a number of basic opera-
tions on your files. In particular, you can use File Manager to copy files from one
directory to another, delete files, rename files, and set file permissions.

F I G U R E 9 . 8 :

File Manager can be col-
lapsed or expanded to
show all directories and
subdirectories, or to limit
the view.

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 136

137

The KDE Control Center
One of the benefits of using KDE as your integrated desktop is that almost every
aspect of KDE is configurable. Most of these changes are done with the KDE Con-
trol Center, a tool that contains configuration options for 10 categories: Desktop,
Information, Input Devices, Keys, Network, Sound, Windows, Password, Date &
Time, and Printers. Most of these categories have sub-options as well.

Open the KDE Control Center by clicking the Application Starter icon and
selecting Control Center from the menu that appears. The Control Center will
open, as shown in Figure 9.9. As you can see in the illustration, the Control Cen-
ter has two panes. The left pane contains a tree structure, similar to the structure
used in File Manager. When an entry is selected in the left pane, a set of controls
for that category is displayed in the right pane.

F I G U R E 9 . 9 :

The KDE Control Center
holds multiple configura-
tion options.

The KDE Control Center

2817c09.qxd 11/13/00 12:13 PM Page 137

138

NOTE You may never use some of these KDE Control Center options. We provide basic
information on each category here, but if you need more specific information, we
suggest consulting the online help or the KDE Web site at http://www.kde.org.
In general, if you want to change something about KDE’s appearance, you’ll start
at the Control Center.

Desktop
The Desktop category of the KDE Control Center contains control sets for most of
the popular desktop configurations. With this category, you can configure the
desktop background, window borders, display options, fonts, desktop icons, lan-
guage, screensavers, and other desktop styles. Many KDE users find that they use
this category most frequently in the Control Center.

Background

In the Background category, you can set the appearance of the desktop itself. Win-
dows and Macintosh users will recognize this as the wallpaper setting. The back-
ground can be a solid or gradient color, or you can use an image file.

NOTE To set a background with matching icons and colors, see the “Desktop Themes”
section of this chapter.

There is a preview window at the bottom right of the Control Center screen,
where you can see how changes will appear on your desktop. Click the Apply
button to make changes on your actual desktop without closing the Control Cen-
ter. Click the OK button when you’re finished, and wish to save your changes
and exit the Control Center.

Borders

The Borders category controls the way in which individual windows behave on
the KDE desktop. There are two types of border control sets: active and magic.

• Active borders are used in conjunction with virtual desktops. With active bor-
ders, you can switch between virtual desktops simply by moving your
mouse to the edge of the screen that borders the desktop you want to switch

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 138

139

to. After a defined period (the default is 5 milliseconds), the desktop will
change. To enable this feature, click the Enable Active Desktop Borders
check box.

• Magic borders activate the desktop’s snap zone, a region around the edge of
the entire desktop. When you drag an application or program window
toward the edge of the screen, and the snap zone is active, the window
will snap to the edge of the screen.

Display

As with the Background option, you can use the Display control set to change the
colors of various KDE desktop components, such as window title bars, text, and
similar items. Select one of the predesigned schemes or create your own; your
selections will be displayed in the preview window. Click the Apply button to see
the new colors on your actual desktop, and click OK to save your changes and
exit the Control Center.

Fonts

The Fonts category allows you to define the various fonts used on the KDE
desktop. You can set font choices for Panel icons, window titles, and other KDE
components, as well as systemwide default preferences for a proportional and a
fixed-width font. To change a font, select the category and the font you want to
use, and click the Apply button. When you are ready to save your changes and
exit the Control Center, click OK.

Desktop Icons

This category affects the way in which icons are displayed on the desktop itself,
rather than in the Panel. You can control the spacing between icons and the man-
ner in which an icon’s text label is displayed. Click the Apply button to see your
changes on the actual desktop, and click OK to save your changes and exit the
Control Center.

Language

By default, KDE uses English for all its actions. If you want to change the language
that KDE uses, select the new language from the drop-down menu. Click OK to
save your changes and exit the Control Center. The new language will apply only

The KDE Control Center

2817c09.qxd 11/13/00 12:13 PM Page 139

140

to programs started after you exit the Control Center; if you want everything to be
shown in the new language, including windows already open, you must log out of
KDE and back in again.

NOTE This setting does not affect the keyboard input. If you want to use a different
(non–American English) keyboard with your computer, you must set it in the Inter-
national Keyboard sub-category of the Input Devices category, described below.

Screensaver

If you want to use a screensaver with your KDE desktop, set it in this category.
The various screensavers are visible in a preview window. You can also configure
certain settings, such as the time idle before the screensaver is activated and
whether to require a screensaver password. Several of the screensavers have indi-
vidual configurations that you can set by clicking the Setup button and making
your selections. Click OK when you’ve finished to save your changes and exit.

Style

The Style category is one that is infrequently used. Choices in this category con-
trol how window elements are drawn on the desktop: select from Windows 95 or
MacOS. You can also determine whether your display choices will be applied to
non-KDE applications as well as KDE programs.

Information
The Information category is not open to configuration. Instead, you can learn a
lot about your hardware setup with the various options in this category. As with
other Control Center options, select an item in the left pane to display its contents
in the right pane. You can see information about input/output devices, DMA
channels, interrupts, I/O ports, memory, partitions, PCI slots, processor data,
SCSI devices, Samba status, sound card data, and your computer’s X Server.

Input Devices
This category contains configuration options for the input devices attached to
your computer: keyboard and mouse. You can define the language used by your

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 140

141

keyboard, and configure several settings for speed of input and how KDE will
react to different types of input.

NOTE If you are using a different kind of input device, such as a graphic tablet or a
joystick, we assume you have a driver for it and know how to use it.

International Keyboard

KDE offers support for a wide variety of keyboards designed for various charac-
ter sets. There are KDE drivers for Cyrillic and ideographic language keyboards,
as well as for accented Roman-alphabet language keyboards or Roman-alphabet
language keyboards that use non-English characters. Select the appropriate dri-
ver in the drop-down box, click the OK button, and attach the new keyboard to
the keyboard port.

Keyboard

In the Keyboard category, you can configure keyboard repeat and volume. Key-
board repeat determines whether a keystroke will print multiple times to the
screen if it is depressed for a period of time, while keyboard volume creates a
clicking noise each time KDE senses a keystroke. Click the OK button to save
your changes and exit this window.

Mouse

The Mouse category controls mouse behavior, which is a very personal choice.
You may need to work with these controls until you find the perfect blend
between physical mouse movement and on-screen behavior. This category con-
tains settings for acceleration, threshold (nearness of mouse pointer to item), and
mouse button mapping. Click the OK button to save your changes and exit the
Control Center.

Keys
The Keys category is where you can define various keystroke combinations that
act as shortcuts for frequently performed actions. For example, the familiar key-
board shortcut Ctrl+O executes the Open command just as if you’d used the
menu system to navigate to the Open command. The Keys category contains

The KDE Control Center

2817c09.qxd 11/13/00 12:13 PM Page 141

142

two types of key patterns: Global Keys (system commands) and Standard Keys
(application commands).

Global Keys

Global Keys combinations perform KDE system functions, such as changing desk-
tops or selecting desktop icons. The various Global Keys combinations already
defined are shown in the right pane; check them out before you duplicate an exist-
ing combination. To define a new Global Keys action, follow these steps:

1. Choose the action you want the combination to perform in the Action win-
dow of the left pane.

2. Select a metakey in the Choose a Key for the Selected Action window at the
bottom of the right pane. A metakey is a key that needs to be pressed as part
of the keystroke combination: KDE metakeys are Shift, Ctrl, and Alt.

3. Press the key on your keyboard that you want to use in combination with
the metakey. The key combination appears in the Action window.

4. Click OK to save your new keystroke combination.

Standard Keys

Standard Keys combinations control the functions used when working with text.
Cut, Paste, Copy, Save, and other familiar functions all have Standard Keys short-
cuts. The various predefined Standard Keys combinations are listed in the right
pane. To define a new Standard Keys combination, follow these steps:

1. Choose the action you want the keystroke combination to perform in the
Action window of the right pane.

2. Select a metakey in the Choose a Key for the Selected Action window at the
bottom of the right pane. A metakey is a key that needs to be pressed as part
of the keystroke combination: KDE metakeys are Shift, Ctrl, and Alt.

3. Press the key on your keyboard that you want to use in combination with
the metakey. The key combination appears in the Action window.

4. Click OK to save your new keystroke combination.

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 142

143

Network
The Network category contains various configuration options for Ethernet and
Samba networking. We cover networking in Part VIII: “Network Administration.”

Sound
In the Sound section, there are two options. The first allows you to control the
properties of the bell. This is the “beep” sound that you hear if, for example, you
try to do something that you’re not allowed to do. Using the sliders, you can con-
trol the volume, pitch, and duration of the sound. We recommend that you pick
something easy on the ears, because this sound has the potential to be really
annoying. Click the Test button to hear the sound.

The second option allows you to enable certain system sounds. These are sound
effects that may be associated with certain events, such as the opening and clos-
ing of windows. These are often “bing” or “whoosh” sounds. Some people enjoy
them, and some do not. These sounds are disabled by default. To enable them,
click the check box marked Enable System Sounds. In the two panes below the
check box, you can associate the events shown in the left pane with sound files in
the right pane. Use the Test button to preview the sound files. When you have
made your selections, click OK.

Windows
In the Windows category, you can configure the appearance and behavior of
desktop windows. There are five sub-categories: Advanced, Buttons, Mouse,
Properties, and Titlebar.

Advanced

The Advanced sub-category lets you define how the Alt+Tab key combination
will affect desktop windows. This sub-category also contains a control set that
defines window styles based on window title or class (window class is an X Win-
dows function that tells the computer the window type and how to display it).
You will probably not need to work with these control sets unless you are doing
specific X Window System configurations.

The KDE Control Center

2817c09.qxd 11/13/00 12:13 PM Page 143

144

Buttons

The Buttons sub-category defines the placement of window control buttons in the
window title bar. These buttons are the familiar minimize, maximize, and close
buttons that usually appear at the right of the window title bar.

Mouse

The Mouse sub-category determines how the mouse buttons affect window
behavior. You can assign any of four window attributes to any of three mouse
buttons: window raise, window lower, window activation, and window opera-
tions menu. Depending on your assignments, a single mouse click can control
desktop window behavior.

Properties

The Properties sub-category contains control sets for several miscellaneous win-
dow behaviors. You can determine whether windows will open at their full vertical
height by default; how content will be displayed in a scrolling or resizing window;
where new windows will be placed on the screen as they are opened; and how win-
dows become the active window.

Titlebar

The Titlebar sub-category determines how any given window’s title bar will
appear and behave. You can configure title alignment, title bar appearance, title
bar animation, and how mouse buttons will affect the window when clicked in
the title bar.

Password
The Password category is a graphical password-change tool. In the Change Pass-
word window, type your old password and your new password. You need to
enter your old password to verify that you are the appropriate account user. (This
window can be used in place of the shell command passwd.)

Date & Time
The Date & Time category displays a clock and calendar that you can use to
adjust your system time. Be sure that you check this regularly, especially if you

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 144

145

live in a country or region that observes seasonal clock changes. It’s also good to
check this category in leap years.

Printers
The Printers category is used to configure and select printers attached to the
computer. Despite its name, this category cannot be used to send documents to
the printer; that must be done from within an application that issues print com-
mands, such as an editor or word processor. Use this category to check whether
your printers are working correctly before you try to print something.

Desktop Themes
Although all the configurations of the KDE Control Center make working with the
KDE desktop easier, most people will focus on another sort of desktop configura-
tion for daily changes. KDE permits the application of various themes to the desk-
top; a theme is a suite of stylistic elements that are designed to work together to
create a certain look and feel. For example, you might choose a theme that applies
various natural woodgrains to different parts of the window: cherry on the win-
dow title bars, beveled blocks of birch for desktop icons, and an expanse of bird’s-
eye maple on the desktop. Other users might prefer one of the dark, moody
themes that use a lot of gray, black, and bright neon to create a different feeling.

Themes are easy to apply with KDE’s Theme Manager, shown in Figure 9.10.
Open the Theme Manager by clicking the Application Manager icon in the Panel
and selecting Control Center ➣ Desktop ➣ Theme Manager. When the Manager
appears, select a theme from the list at the left. The theme will appear in the pre-
view window; when you find one you like, click the Apply button to see how it
appears on your actual desktop. Click OK to save your selected theme and exit
the Theme Manager.

You can also use Theme Manager to select parts of a given theme, even if you
don’t want to use the entire theme. With Theme Manager open, click the Contents
tab. On this tab, shown in Figure 9.11, all the elements that compose the currently
selected theme are displayed. Check the boxes next to the elements you want, and
deselect the boxes next to elements you don’t want on your desktop. Click the OK
button to save your changes and exit.

Desktop Themes

2817c09.qxd 11/13/00 12:13 PM Page 145

146

F I G U R E 9 . 1 1 :

The Theme Manager can
also be used to apply por-
tions of a theme to a differ-
ent desktop.

F I G U R E 9 . 1 0 :

Use the KDE Theme Man-
ager to apply different
graphic themes to your
desktop.

Chapter 9 • KDE

2817c09.qxd 11/13/00 12:13 PM Page 146

147

NOTE If you like playing with themes, we suggest that you check out http://kde.
themes.org, where you will find a frequently updated set of user-created themes.

Summary
The KDE integrated desktop environment offers a variety of tools to make your
Unix experience easier, as well as a high level of configurability. KDE is an Open
Source project and can be downloaded free of charge (or installed from the CD-
ROM included with this book). KDE has a useful graphical file manager and a
menu system that will be familiar to anyone experienced with Windows or MacOS.

The heart of KDE is the Panel, which runs along the bottom of the desktop; var-
ious icons are located on the Panel, providing shortcut access to frequently used
programs. As with almost all other aspects of KDE, you can alter the Panel’s icons
and appearance to fit your needs. Configure KDE in the KDE Control Center, a
set of tools that offers detailed control over the entire KDE environment.

Summary

2817c09.qxd 11/13/00 12:13 PM Page 147

This page intentionally left blank

C H A P T E R
T E N

Gnome

� What Is Gnome?

� Getting and Installing Gnome

� Using Gnome

� Summary

10

2817c10.qxd 11/13/00 12:16 PM Page 149

150

As we explained in Chapter 9: “KDE,” an integrated desktop environment is a
different animal than a window manager (covered in Chapter 8: “Window Man-
agers”). KDE is one of the two major integrated desktops available for Unix-
derived platforms. The other desktop is called GNOME, an acronym standing for
GNU Object Model Environment. Because GNOME is also a regular word in Eng-
lish, the desktop is usually referred to as Gnome, though the fully capitalized ver-
sion is frequently seen as well.

Gnome is part of the GNU project described in Chapter 2: “Which Unix?” One
of the main attractions of Gnome is that all of its components are released under
the GNU Public License. This is not the case with KDE, which was built with a
proprietary software library called Qt. Although the Qt developers recently
changed their license so that the library is essentially Free Software now, many
Free Software advocates have chosen Gnome because it has always been Free.

NOTE Although Gnome and KDE are often cast as competitors in the press and by their
advocates, this isn’t really the case. Developers from both teams have collaborated
in the past, and the two desktops are growing closer in functionality. It is possible,
for example, to run KDE applications under Gnome and vice versa. Sure, it looks
kind of odd, but the programs work. We would not be completely surprised if the
two desktop development teams brought their programs even closer together in
the next few years; although we’re not predicting a merger, we think the line
between KDE and Gnome will become fuzzier still.

The major difference between Gnome and KDE is that Gnome is at an earlier
stage of development than KDE, which means that some of the Gnome compo-
nents may still be somewhat unstable or may have spaces in menus for features
that haven’t been written yet. To get past this problem, we recommend that
Gnome users check frequently for updates and bug fixes, and install them as
needed. In general, Gnome is usable, and most instabilities should not affect the
average user much.

What Is Gnome?
So, what makes Gnome a viable alternative to KDE even though it’s younger and
less developed? Gnome brings a slick, integrated appearance and an extreme

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 150

151

degree of configurability to the Unix desktop. Gnome simply looks great, and
appearance is a large part of the reason many people choose integrated desktops
over window managers.

Gnome is based on a software library called The GIMP ToolKit (GTK). This
library was designed to draw various screen elements, called widgets, in an eas-
ily modifiable manner. The Gnome team took this concept of visual plasticity and
extended it throughout the entire desktop system, so that almost every element
of Gnome can be configured or modified.

TIP The GIMP is a Free Software graphics program that is nearly as fully featured as
Adobe’s PhotoShop or Corel’s CorelPAINT and CorelDRAW. If you are interested in
graphics manipulation or creation and you’re running a Unix-derived operating
system, you owe it to yourself to pick up The GIMP. Try the project Web site at
http://www.gimp.org. You can also find The GIMP on the CD-ROM included
with this book.

In addition, Gnome is usually used in tandem with a window manager that
also supports individual configuration, such as Enlightenment. Recent releases of
Gnome have been issued with the Sawfish window manager, a new program that
has been the focus of much recent development by Red Hat. The final result is an
integrated desktop that can be controlled by the user in almost every aspect of
appearance and function.

Getting and Installing Gnome
Gnome is easy to find and install for almost all Unix-derived operating systems.
Linux users should have no problem at all installing Gnome; in fact, it is the
default desktop on several major Linux distributions, most significantly Red Hat
and Debian. Gnome may be an installation option on other distributions, so check
the installation screens carefully. Those people with Linux distributions without
Gnome can download either *.rpm (Red Hat package format) or *.deb (Debian
package format) files from the Gnome team.

Solaris users who are using Solaris 2.7 on an UltraSparc hardware platform can
also download precompiled binary packages of Gnome.

Getting and Installing Gnome

2817c10.qxd 11/13/00 12:16 PM Page 151

152

WARNING If you are running Solaris on any other platform than an UltraSparc, you cannot
use the precompiled Solaris Gnome packages. You must download and compile
the source code.

Users of any other form of Unix (including FreeBSD, Solaris on non-UltraSparc
computers, and minimalist Linux distributions) will need to download the source
code and compile it. This is not as complicated as it sounds, and we walk you
through the process in this chapter.

Downloading Gnome
To download the proper Gnome packages for your computer and operating sys-
tem, fire up your Web browser and go to http://www.gnome.org/start/
installing/. Gnome is a complicated system, and therefore you’ll need to
download quite a few individual packages that will eventually form the com-
plete Gnome program. At the time of this writing, Gnome 1.2 has just been
released, so we base the lists in this section on the 1.2 requirements.

These lists are for the source code download. If you are planning to download
the *.rpm, *.deb, or Solaris packages, just follow the directions on the Gnome Web
page to download and install the proper versions.

WARNING If Gnome 1.2 is not the current release at the time you are reading this book and
installing Gnome, follow the directions on the Gnome Web site to obtain the
proper packages.

Base Library Downloads

These are software libraries that Gnome requires to operate at all. Different
libraries are required for different components of the desktop, so be sure to
download all these packages:

• audiofile-0.1.9.tar.gz

• esound-0.2.18.tar.gz

• glib-1.2.8.tar.gz

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 152

153

• gtk+-1.2.8.tar.gz

• imlib-1.9.8.1.tar.gz

• gtk-engines-0.10.tar.gz

• ORBit-0.5.1.tar.gz

• gnome-libs-1.2.0.tar.gz

• libgtop-1.0.9.tar.gz

• libxml-1.8.7.tar.gz

• libghttp-1.0.6.tar.gz

• libglade-0.13.tar.gz

• gdk-pixbuf-0.8.0.tar.gz

Core Application Downloads

These packages are the core of the Gnome system and are the actual software that
forms Gnome itself. You will need all four of these:

• control-center-1.2.0.tar.gz

• gnome-core-1.2.0.tar.gz

• gnome-applets-1.2.0.tar.gz

• mc-4.5.49.tar.gz

Additional Source Downloads

These packages are optional, but we recommend that you download and install
them. They contain most of the programs that make Gnome fun and useful, includ-
ing audio and multimedia applications, games, and a multitude of utilities:

• bug-buddy-1.0.tar.gz

• glade-0.5.9.tar.gz

• gnome-python-1.0.53.tar.gz

• users-guide-1.2.tar.gz

• gnome-utils-1.2.0.tar.gz

• gnome-pim-1.2.0.tar.gz

Getting and Installing Gnome

2817c10.qxd 11/13/00 12:16 PM Page 153

154

• gnome-media-1.2.0.tar.gz

• gnome-audio-1.0.0.tar.gz

• gnome-print-0.20.tar.gz

• gnome-games-1.2.0.tar.gz

• ee-0.3.9.tar.gz

• gnumeric-0.54.tar.gz

• gtop-1.0.9.tar.gz

• ggv-0.95.tar.gz

• gdm-2.0beta4.tar.gz

• xchat-1.2.1.tar.gz

Unpacking the Source Code
Before you unpack anything, create a directory into which you will put the source
code files. If you have a directory called /usr/src or /src or something like that
(/src is the general shorthand for directories containing source code), create a
subdirectory called /usr/src/gnome or one similarly named. Move all the files
you just downloaded into that directory.

TIP If you’re reading this before you download, download the files directly into the
new subdirectory and save yourself some time.

Each of the files that you downloaded from the Gnome Web site is a com-
pressed archive file, which means that each file contains several files that, taken
together, make up a unique software program. Before you can compile the
packages and make the Gnome program run, you need to unpack the com-
pressed archives. (If you’ve ever used StuffIt! on a Macintosh or WinZip on a
Windows computer, you’ve used archiving programs designed to mimic the
Unix tar program.)

To unpack the packages, move into the subdirectory containing the files you
just downloaded. At the shell prompt, issue the command

tar xvfz <packagename>

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 154

155

where <packagename> is the name of one of the packages you have just down-
loaded (do not include the angle brackets). For example, one of the packages you’ll
need to unpack is gnome-core-1.2.0.tar.gz, so you’d issue the command

tar xvfz gnome-core-1.2.0.tar.gz

As soon as you press the Enter key at the end of the command, you’ll see a bunch
of filenames scroll up the screen as tar unpacks the archive. These filenames repre-
sent the individual files that were compressed into the downloaded file.

When the list stops scrolling, issue the command ls at the command
prompt to see a directory listing. You should see a new subdirectory called
gnome-core-1.2.0. If you change into that subdirectory, you’ll see all the
files that were just unpacked. Continue to unpack all the files you down-
loaded from the Gnome Web site.

TIP If you downloaded all the files into a single directory or moved them into one after
they were downloaded, you can unpack all the files with a single command. Issue
the command tar xvfz *.tar.gz at the command prompt. The * character is a
wild card that refers to any combination of characters, so *.tar.gz will match any
filename ending in .tar.gz.

Compiling and Installing the Source Code
Once all the packages are unpacked and the various subdirectories have been cre-
ated, you can begin to install the code itself. This is a reasonably straightforward
procedure, which will become repetitive after you’ve done the first few packages.

WARNING This section is not meant to be a substitute for reading the documentation that
comes with each package, usually found as a README file in each package subdi-
rectory. Anytime you install software, you should read the documentation for the
program. Any peculiarities that are involved in installing a particular version of a
given package will be explained in these documents.

For each package that you unpacked in the previous step, you will have a cor-
responding subdirectory bearing the name of that package. Move into one of
these subdirectories by issuing the command

cd <directoryname>

Getting and Installing Gnome

2817c10.qxd 11/13/00 12:16 PM Page 155

156

With Gnome, it doesn’t matter what order you use to configure the code,
though other programs require that you configure certain libraries first. In gen-
eral, it’s a good idea to deal with software libraries before you begin working
with programs. That way, if a program requires a particular library to install, the
libraries will already be present.

NOTE Some of these required libraries may be ones that aren’t part of the Gnome distri-
bution, such as the libraries used by the C or C++ programming languages. If your
Gnome compilation fails, it may be that you are missing one or more of the stan-
dard C libraries. Look at the error messages generated by the failure for a clue to
what the problem might have been.

When you have moved into a subdirectory, issue the command

./configure

Some messages will scroll up the screen. If all goes well, the last line of these
messages will read “Created Makefile” or “Makefile successfully created” or
some other message telling you that a Makefile has been built. Once you see that
message, type

make

Again, you’ll see a series of cryptic messages. If none of them were error mes-
sages (you’ll be able to tell error messages from other types of messages), type

make install

After completing these three steps, you have installed that particular package.
Repeat the process for every package you downloaded.

NOTE If you had a problem that resulted in the shut-down of the configuration or instal-
lation process, the odds are overwhelming that you’re missing a library or required
program somewhere. This is why we recommend that you install the libraries first,
then the core packages, then the optional packages. Scroll back through the error
messages and try to determine what’s missing. Find the package containing that
element, install it, and then try to reinstall the failed package again.

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 156

157

Configuring X for Gnome
Now that you’ve unpacked, configured, and installed each downloaded package,
you need to let the operating system know that you want to use Gnome as your
desktop upon start-up. To do this, you’ll have to change the configuration files
used by the X Window System so that X knows Gnome is present. This may seem
intimidating—and we know that we warned you against monkeying around
with X in Chapter 6: “The X Window System: An Overview”—but it’s necessary.
Just follow the directions to get X set to go.

Check your home directory for the files .Xclients, .xsession, or .xinitrc. If
any of these files exists, open it in a text editor to see whether it contains a line
similar to

exec startkde

This line is the automatic key for the KDE desktop. Obviously, you don’t want
your computer to try starting both KDE and Gnome, because you’d have a traffic
jam.

If you find that line in the file, close the text editor. You will need to change the
executable bit on that file so that the KDE line does not start KDE automatically.
Do this by issuing the command

chmod –x <filename>

where <filename> is the name of the file containing the exec startkde line. Then,
restart your X session by pressing Ctrl+Alt+Backspace to kill the current session,
then typing startx to open a new session. You can also do this by logging out of
your current session to the beginning prompt and logging back in again.

If X continues to boot up with a desktop or window manager that isn’t Gnome,
you’ll need to do some configuring. Create the file .xsession in your home
directory by issuing the command

touch .xsession

TIP The touch command is designed to update timestamps carried by each file, which
are used by the kernel to determine various allocations. However, you can use touch
to create new files quickly; simply issue the command touch <newfilename> to
create a new file with the specified name. This is a fast and simple way to add new
files without having to open text editors and save buffers.

Getting and Installing Gnome

2817c10.qxd 11/13/00 12:16 PM Page 157

158

Open the .xsession file in a text editor (see Part V: “Using Text Editors” for
more information on these programs). Enter the following line into the file:

exec gnome-session

Save the file and set the executable bit on it so that your operating system will run
the file automatically. Do this by issuing the command

chmod +x .xsession

Then, restart your X session as described above.

At this point, if everything has gone properly, you should see the Gnome desk-
top, as shown in Figure 10.1. Obviously, with a procedure that involves this many
variables, there are a lot of places where something can go wrong. If you don’t see
the Gnome desktop, the only thing you can do is to track down the problem and
fix it. Use the documentation distributed with each package to guide your search
or look through the Gnome Web site at http://www.gnome.org for some clues
about frequently encountered problems and their solutions. When in deep despair,
the final solution is always to download everything again and reinstall, paying
close attention to each step of the process as you go.

F I G U R E 1 0 . 1 :

The default Gnome desk-
top will appear after boot-
up if you have configured
X correctly.

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 158

159

Using Gnome
Now that you have Gnome installed and working, it’s time to explore. The Gnome
interface centers on the Gnome desktop; we explain its individual components in
detail later in this section. The desktop is comprised of a suite of applications, such
as a menu system, icons, and so on, that all handle regular account administration
tasks with a few simple mouse clicks instead of arcane commands typed at the
prompt. Once you’ve toured the desktop and are familiar with the default appear-
ance of Gnome, you’re ready to begin working with the Gnome Control Center, in
which you can use Gnome’s flexibility to build a unique desktop just for you.

The Gnome Panel
The most important part of the Gnome desktop, from a user’s perspective, is the
panel, shown in Figure 10.2. Think of the panel as the control box for Gnome,
because just about all of Gnome’s major functions are controlled from this ele-
ment. The panel stretches across the bottom of the Gnome screen by default,
though you can move it to the left or right side, or across the top, if you wish.

The panel contains the main menu system, any user-defined menus that you
might create, application launchers, docked applets (small programs that run
entirely within the panel), and special items such as a logout button. As with
everything else in Gnome, the panel is fully configurable. Not only can you
change its location, you can change the buttons and launchers that it contains.
You can change the look, behavior, and placement of the panel itself or of its
elements; add and remove most of the objects docked into it; or even create
multiple panels—each with its own unique look and set of functions.

F I G U R E 1 0 . 2 :

Use the Gnome panel to
streamline your regular
Unix habits.

Using Gnome

2817c10.qxd 11/13/00 12:16 PM Page 159

160

The Main Menu
If you’ve used Windows or Macintosh computers before, you’ll find the menus of
Gnome (and KDE) to be familiar analogues. The Gnome main menu is accessed
from the panel. The button at the furthest left end of the panel has the image of a
footprint, which is the Gnome logo; this button launches the main menu (it’s like
the Windows Start menu).

Click the footprint button to open the main menu. Many of the menu items
have sub-menus, indicated by small arrows at the end of the menu entry. If you
click one of these entries, another menu will open, and you can navigate through
the various sub-menus, as in Figure 10.3, until you find the item you want to
select. Table 10.1 shows the default options of the Gnome main menu. Note that
if you configure the menu yourself, some of these options may disappear or
additional ones may be available.

F I G U R E 1 0 . 3 :

The Gnome main menu is
a quick way to launch pro-
grams and utilities.

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 160

161

NOTE Click a main-menu entry, and the menu will stay open until you make a final selec-
tion. Each final entry—one without an arrow—represents a particular program
that can be launched by selecting that menu item.

TA B L E 1 0 . 1 : Gnome Main-Menu Items

Main Menu Sub-Menu Function

Applications gEdit A text editor (see Chapter 20)

Calendar An electronic appointment book

Address Book An electronic address book

Time Tracking Tool Tracks time spent on an individual project

gnotepad+ A minimal text editor

Gnumeric A basic spreadsheet

Gnu Cash Tracks your bank account balances

GnomePGP A graphical interface to PGP and GNUpg encryp-
tion packages

AbiWord Personal A basic word processor

Dia A diagramming tool that uses vector graphics

Emacs An advanced text editor (see Chapter 18)

Utilities Gdict A searchable dictionary

Simple Calculator A simple calculator

Gnome Character Map Allows you to use special characters not found on
your keyboard

Color Browser Helps you find hex values for a particular color

gfloppy Formats a floppy diskette

Font Selector Organizes installed fonts for easy retrieval

Gnome Search Tool Finds a single file rapidly

Continued on next page

Using Gnome

2817c10.qxd 11/13/00 12:16 PM Page 161

162

TA B L E 1 0 . 1 C O N T I N U E D : Gnome Main-Menu Items

Main Menu Sub-Menu Function

IDE Device Tool Manages installed IDE devices (must be used as root)

Startup Hint Displays a tip when Gnome is started

Development Glade An integrated programming environment

Memprof A tool that locates memory leaks

Games FreeCell Solitaire on steroids (highly addictive)

Gnibbles Battle snakes to the death

GnobotsII Robot attack!

Gnome Stones Find the diamonds and escape the mine

Gnome Mines A logic game

Gnotravex A number puzzle

GTali A dice game

gTuring A Turing machine simulator

Iagno Similar to the board game Othello

Mahjongg Tile-matching game

SameGnome Eliminate colored balls to win points

Aisle Riot A solitaire variant

gataxx A variation of Iagno

Glines A game with colored lines

Gnotski A spatial relations puzzle

Gnome xBill Stop Bill from installing Windows on every
computer in the world

Graphics Electric Eyes A basic graphic-tweaking program

GQview An organizer for graphics files

gPhoto A digital photography program

Continued on next page

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 162

163

TA B L E 1 0 . 1 C O N T I N U E D : Gnome Main-Menu Items

Main Menu Sub-Menu Function

Eye of Gnome A graphics viewer

PostScript File Viewer A PostScript file viewer

The GIMP The GNU Image Manipulation Program (the
Cadillac of Free imaging software)

GNOME Icon Editor A bitmap editor

Internet gFTP A graphical FTP client

GnomeICU An ICQ-compatible messaging client

X-Chat IRC Client An IRC client

Gnome Napster A Napster client

Gaim An AIM-compatible (AOL Instant Messenger) client

Gnapster Another Napster client

Netscape The popular Web browser

Lynx A basic text-mode Web browser

Pan A USENET newsreader

Multimedia Extace Waveform Display A graphical sound analyzer

Audio Mixer An interface for your sound card

CD Player A basic CD player

ESD Volume Meter A graphical volume control and display

Sound Recorder Records files with a microphone plugged into your
sound card

grip Rips *.mp3 files from your CDs

Settings Gnome Control Center Starts the Gnome Control Center (see instructions
later in this chapter)

Desktop Controls desktop appearance

Multimedia Controls sound files

Continued on next page

Using Gnome

2817c10.qxd 11/13/00 12:16 PM Page 163

164

TA B L E 1 0 . 1 C O N T I N U E D : Gnome Main-Menu Items

Main Menu Sub-Menu Function

Peripherals Configures peripheral devices

Session Controls session properties

User Interface Controls various aspects of Gnome’s look and feel

Imlib Configuration Options Controls certain display properties

Menu Editor Customizes menus

Sawfish Window Manager Configures Sawfish

Document Handles Associates file types with installed programs

System GnoRPM A graphical interface to the RPM package manager

Eterm A terminal emulator

Regular Xterm Another terminal emulator

Color Xterm A third terminal emulator

GNOME Terminal Yet another terminal emulator

Gnome DiskFree Shows disk usage

System Info A variety of useful information

User Listing Lists system user accounts

System Log Monitor Shows process, CPU, and memory logs

File Manager A graphical file manager

Help System A help-file browser

Favorites A user-customizable menu

Applets Amusements Fun and games in the panel

Monitors CPU load, memory usage, etc.

Multimedia CD player, etc.

Network Mail monitors and other network tools

Continued on next page

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 164

165

TA B L E 1 0 . 1 C O N T I N U E D : Gnome Main-Menu Items

Main Menu Sub-Menu Function

Utility Miscellaneous applets

Clocks Time-tellers

Run A miniature command-line window

Panel Add to Panel Adds an item to the panel

Create Panel Creates a new panel

Remove This Panel Removes a panel

Properties Panel properties

Global Preferences Controls panel behavior

Panel Manual Basic panel documentation

About the Panel Shortened informational file

About Gnome Gnome documentation

Lock Screen Screensaver that requires a password

Log Out Exits Gnome

Application Launchers
Launchers are panel objects that launch a particular program when clicked. For
example, you might have a panel launcher that bears the Netscape logo. Start
Netscape just by clicking the launcher, rather than using the menu system or
issuing a command from a shell prompt. Launchers are extremely useful for
programs that you use all the time, because saving just a few mouse clicks or
keystrokes each time will add up over the day or month. Add a launcher to the
panel with this process:

1. Click the Gnome logo button to launch the main menu.

2. Find the entry for the desired program in the menu.

3. Click the menu item, but don’t release the mouse button.

4. Drag the item over the panel and release the mouse button.

Using Gnome

2817c10.qxd 11/13/00 12:16 PM Page 165

166

5. A new generic launcher will appear.

6. Right-click the new launcher.

7. Select Launcher Properties from the pop-up menu that appears.

8. In the Launcher Properties window, seen in Figure 10.4, you can set various
properties for this launcher, including the icon that will appear in the panel
and the specific command that Gnome issues to start the program (especially
useful if you want particular flags to be used when the program is started).

9. Set the properties you wish to use.

10. Click OK.

The Launcher Properties window closes, and the new settings are applied to
the new launcher. You can now use the panel icon to start the associated program.

F I G U R E 1 0 . 4 :

Configure a new launcher
button with the Launcher
Properties window.

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 166

167

Applets
Applets are small programs that run entirely inside the panel. For example, you
may have a clock applet that sits in the panel and always displays the current
time. Another popular applet changes to indicate that you’ve received e-mail.
There are even applets that control your CD player or tell you the weather condi-
tions outside. Applets are a convenient source of information, as well as a good
way to handle certain low-level functions. Just be careful—it’s easy to load up
your panel with so many neat applets that there isn’t room for anything else.

Applets can be added to the panel in one of two ways. The first way is to right-
click a blank area of the panel and select Panel ➣ Add to Panel ➣ Applet ➣ <cate-
gory> ➣ <applet>, replacing the last two elements with the actual applet category
and applet name from the sub-menus. The other way is to select Applets ➣ <cate-
gory> ➣ <applet> from the main menu; this option will dock the applet into the
first available space in the panel.

Once you’ve gotten a new applet into the panel, right-click it and select Proper-
ties from the pop-up menu. Most applets can be configured in their Properties
screen, though this is not an option for all applets. To move the applet, right-click
it and select Move from the pop-up menu; you can then slide the applet from
right to left in the panel until you find the proper location. To set the applet’s new
location, click it once.

The File Manager
If you’ve used the Windows Explorer in Windows 95 or 98, or similar programs
in other operating systems, you already have a basic idea of how the Gnome File
Manager works. The File Manager is a graphical representation of the computer’s
filesystem, showing directories as file folders and individual files with an icon
representing their file type. Start the File Manager by selecting its entry from the
main menu.

TIP We suggest that you put a launcher into the panel for the File Manager. It’s a use-
ful tool and one you’ll probably use frequently.

When you start the File Manager, it will open as a two-paned screen, seen in
Figure 10.5. In the left pane, you will see a directory tree. By default, your home

Using Gnome

2817c10.qxd 11/13/00 12:16 PM Page 167

directory is displayed at start-up. In the right pane, you’ll see a list of all subdirec-
tories and files contained in that directory. If a directory folder in either pane con-
tains subdirectories, a small plus (+) sign will be shown to the left of its entry.
Click the plus sign to expand the directory tree, showing the subdirectory folders
and files as well; an expanded view is shown in Figure 10.6. The plus sign will
also change to a minus (–) sign; if the minus sign is clicked, the directory tree will
collapse back to the short view.

You can move files between directories by clicking and dragging them to the
new directory. Further file manipulations can be achieved by right-clicking the
filename and selecting an option from the pop-up menu. Options include Delete,
Copy, Rename, and so on.

F I G U R E 1 0 . 5 :

The Gnome File Manager
uses a two-paned screen
to display the computer’s
directories.

168 Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 168

169Using Gnome

The Gnome Control Center
The Gnome Control Center is a one-stop shopping center for all the Gnome con-
figuration options. The Control Center, seen in Figure 10.7, can be accessed by
selecting Settings ➣ Gnome Control Center from the main menu. Once the Center
is open, you can use it to set your selections for various categories of configura-
tion, which are described in Table 10.2.

F I G U R E 1 0 . 6 :

The File Manager’s
expanded view lets you see
all the files in all directo-
ries on the disk.

2817c10.qxd 11/13/00 12:16 PM Page 169

170

TA B L E 1 0 . 2 : Gnome Control Center Categories

Category Function

Desktop Options to control the look and feel of the desktop

Document Handlers Options to associate various file types with particular programs

Multimedia Options to control system sounds

Peripherals Options to control various peripheral devices such as the CD-ROM drive,
the keyboard, or a portable computer such as a Palm Pilot

Sawfish Window Manager Configuration manager for the window manager

Session Controls options that execute upon login

User Interface Controls the behavior of dialogs and menus

F I G U R E 1 0 . 7 :

Configure Gnome to your
liking with the Control
Center.

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 170

171

The astute reader will have noticed that the categories shown in Table 10.2 are
the same as those under the Settings sub-menu in the main Gnome menu. If you
select an option from the main menu, the control module for that option will run
independently of the Gnome Control Center. These methods have the same end
result, but with the Control Center, you can make multiple changes to the user
environment without having to open multiple modules. (More precisely, when
you open the Control Center, all the modules open at the same time.) As a rule,
the Control Center is best for a full-scale reconfiguration of Gnome, while the
individual modules are best for making a quick tweak to a single aspect of the
integrated desktop.

Themes and the Desktop
One nice feature of the Gnome desktop is the ability to apply themes, collections
of graphical elements that give the various aspects of the desktop a consistent
look. The default theme is shown in the first image of this chapter, Figure 10.1.
The GTK library, which is responsible for drawing the screen widgets, leaves
options open for other programs to alter the look and behavior of those widgets.

Many Gnome users have risen to the challenge and created a multitude of
themes (archived at http://gtk.themes.org) that can be downloaded and
installed. These themes range from the very basic to the beautiful, and include
several that are downright painful to look at. (We think this was intentional, but
with user-created art, we’re just never sure.)

A set of stock themes is included with the basic Gnome distribution. Access these
by using the Gnome Control Center. Open the Control Center by selecting Pro-
grams ➣ Settings ➣ Gnome Control Center from the main menu; under the Desk-
top category, click Theme Selector. The Theme Selector appears, as shown in Figure
10.8. The top pane of the Theme Selector window, labeled Available Themes, con-
tains the names of all the themes that are currently installed on your system.

Using Gnome

2817c10.qxd 11/13/00 12:16 PM Page 171

172

If you want to check out some new themes, scroll through that list and find the
name of one that sounds intriguing to you. Click the name to highlight it, and the
various widgets in the Preview pane will change to show you what that theme
looks like. If that theme is something you’d like to see on your desktop, click the
Try button.

TIP It’s our experience that themes often don’t look as good on your actual desktop as
they might in the Preview window. If you decide that you don’t like the theme you
have just selected, click the button marked Revert, and you will be returned to the
previous theme.

Once you’ve decided on a theme, click OK to close the Theme Selector and
make the desktop change permanent. You can go back and change themes at any
time. If you download themes from various Web archives, make sure to down-
load them into the directory that holds the default Gnome themes. This will make

F I G U R E 1 0 . 8 :

Use the Theme Selector to
change the look of your
Gnome desktop.

Chapter 10 • Gnome

2817c10.qxd 11/13/00 12:16 PM Page 172

173

it possible for Theme Selector to pick up the new themes that you got from the
Web or other users.

TIP The right desktop background goes a long way toward making a theme look right.
If you find a theme that you like, but that doesn’t quite seem to work, click the
Background option in the Gnome Control Center and try out some different colors.
Often, finding the right background color can really pull the desktop together.

Summary
The Gnome integrated desktop environment is a Free Software graphical user
interface that can be installed on a variety of Unices and Unix-derived operat-
ing systems. You can download Gnome packages for some Unix-derived sys-
tems or install the software from source code. Once the code is installed, you
will need to configure the X Window System to recognize Gnome and start it
automatically.

The Gnome interface centers on the desktop. The desktop is comprised of a
background, various icons, a menu system, and a panel containing application
launchers and applets. Every element of Gnome is configurable, so you can tinker
with it until it meets your standards. You can also use a configuration shortcut by
installing one of the many graphical themes available for download; these themes
provide new icons, panel items, and backgrounds centered on a unified concept or
image. No matter how you configure Gnome, you will be able to take advantage
of its full integration and ease of use.

Summary

2817c10.qxd 11/13/00 12:16 PM Page 173

This page intentionally left blank

P A R T I V
Using the Shell

� Chapter 11: Introduction to the Bourne (Again) Shell

� Chapter 12: Manipulating Files and Directories

� Chapter 13: Customizing the Shell Environment

� Chapter 14: Input and Output Redirection

� Chapter 15: Other Shells

2817c11.qxd 11/17/00 3:47 PM Page 175

This page intentionally left blank

C H A P T E R
E L E V E N

Introduction to the Bourne
(Again) Shell

� Why Bourne Shell?

� Some Common Shell Commands

� Summary

11

2817c11.qxd 11/17/00 3:47 PM Page 177

178

This part of the book, Part IV: “Using the Shell,” covers the command shell
that you use to interact with the kernel—and, by default, with the computer itself.
In the chapters that make up Part IV, we focus on the Bourne Shell, because it is
the shell most likely to be installed as the default on any Unix account you might
have. Although we are nominally writing about the Bourne Shell as our standard
for these chapters, almost all of what we say will also apply to the Bourne Again
Shell (bash). As we move into chapters on shell programming, we focus on the
bash shell.

We can’t guarantee, of course, that you’ll have the Bourne Shell as your default
shell. The default is determined by the system administrator, and it is entirely
possible that the administrator has chosen the C Shell, the Korn Shell, or some
other shell to be the default. Type echo $SHELL at a command prompt to see
what shell you’re using. If you are in the Bourne Shell, echo will print sh to the
screen; if you’re in the bash shell, echo will print bash to the screen. If you get
any other answers, you have three choices:

• Ask your administrator to change your default shell.

• Consult Chapter 13: “Customizing the Shell Environment” to change the
default shell yourself.

• Start the preferred shell manually.

TIP To start the Bourne Shell manually, type sh at the shell prompt. This will move you
into the Bourne Shell; you should get some sort of Bourne Shell prompt that looks
different from your default prompt. When you are done using the Bourne Shell,
type exit, and you will be returned to your original shell. You can configure your
user environment to use the Bourne Shell or the bash shell if you prefer; see
Chapter 13 for more information on setting environment variables.

Figure 11.1 shows the difference in prompts between the tcsh shell and the
Bourne Shell, to give you an idea of what to look for.

Chapter 11 • Introduction to the Bourne (Again) Shell

2817c11.qxd 11/17/00 3:47 PM Page 178

179

Why Bourne Shell?
Why have we chosen to go into detail on the Bourne Shell and not some other
shell? We’ve chosen Bourne because it is the de facto standard for shell environ-
ments. In the three Unices we describe in this book, the Bourne Shell is the default
shell for FreeBSD and Solaris; with Linux, the default environment is the bash
shell, which is essentially the same thing for most practical uses. The odds, there-
fore, are greatly stacked in favor of your having the Bourne Shell available on
your system, if not already installed as the default shell environment.

The fact that the Bourne Shell is the general standard shell environment has
other implications, as well. The vast majority of systems programming (that is, the
writing of programs that configure the operation of the system itself) is done with
the Bourne Shell. Thus, to understand the fundamental operations of a Unix sys-
tem, it’s quite important to have a good grasp of Bourne Shell commands and
scripting. Even if you choose to use another shell for your daily environment,
you’ll still need some familiarity with Bourne or bash and their various functions.

F I G U R E 1 1 . 1 :

Different shells produce
subtle differences at the
command prompt.

Why Bourne Shell?

2817c11.qxd 11/17/00 3:47 PM Page 179

180

TIP If you decide that you really dislike Bourne or bash, see Chapter 15: “Other
Shells.” We describe some of the common Unix shells that many people use
instead of Bourne or bash, including ksh, csh, tcsh, and zsh. We also provide
some information on newer shells that haven’t quite become as popular as those
listed above.

Bourne Shell vs. Bourne Again Shell
In the opening paragraphs of this chapter, we mentioned the bash shell and said
that, for most practical purposes, it was much the same as the Bourne Shell. If
that’s true, why are there two different shells? The Bourne Again Shell was writ-
ten as part of the GNU project. It was originally intended to be a Free Software
clone of the Bourne Shell, but the developers added a few twists as they worked
on the new shell.

For most practical purposes, sh (the Bourne Shell) and bash are identical; there
are, however, a few important differences. bash features include the ability to
move the cursor around the command line with key combinations derived from
GNU Emacs; the ability to remember previous commands and browse the com-
mand history; and the ability to recognize file and directory names from a few
characters and then to complete the name by using the Tab key. bash also has a
few features that affect the writing of scripts.

We’ve used a variety of shell environments over the years, but we really like
bash. Because we think it’s a good all-around shell, we use bash for examples
throughout this book. We do, however, attempt to avoid bash-isms, so the exam-
ples that we give should work on the regular Bourne Shell as well. In fact, they’re
probably worth trying in other shells. The only place where we’ve written some-
thing that truly depends on bash is in Part VI: “Shell Programming,” where we
use bash programming conventions. You may also notice some differences with
shell environment variables or the way in which particular shells handle output,
but these differences should be minor.

As with anything Unix-related, there may be differences in your user environ-
ment depending on what version of a particular program or shell you’re running
and how it is configured on your system. Most of the things in this section, as
well as throughout the book, should work regardless of versions or shells (unless
you’re running truly dinosaur Unix); if something doesn’t work the way we indi-

Chapter 11 • Introduction to the Bourne (Again) Shell

2817c11.qxd 11/17/00 3:47 PM Page 180

181

cate that it should, consult with your system administrator to see whether there is
some idiosyncrasy that you need to be aware of.

Some Common Shell Commands
If you read Part II: “Getting Started,” you’ve already learned a few commonly
used shell commands: ls, pwd, passwd, cd, and others. In this section of the chapter,
we review these commands, and a few others, more closely. We show you what
each command does and how to expand the command’s function with various
options and flags. We also provide a few examples of how these commands are
used in practice.

NOTE The term shell command is something of a misnomer. Most of the commands
we’re about to discuss are their own individual programs, and the program file for
each can usually be found in the /bin directory. Most of these are not functions
that are built into the shell. They are called shell commands because they are run
from the shell.

Although these are some of the most basic shell commands, we provide a
plethora of commands in Appendix A: “A Unix Command Reference.” If you’re
interested in what the programmers themselves have to say about their com-
mands and programs, type man command at a shell prompt; that is, for the ls
command, you’d type man ls. This brings up the man page, a document stored
on the system that is the official way to run the program, as written by the devel-
oper. Some man pages are very clear and easy to understand, while others are
quite confusing. However, man pages are the best resource if you’re looking for a
complete listing of command options.

TIP Interested in shell commands beyond what we’ve provided here or in Appendix
A? You might need an encyclopedic command reference. We get a lot of use from
The Unix and X Command Compendium, by Alan Southerton and Edwin C.
Perkins, Jr. (John Wiley & Sons, 1994).

Before you jump into these command descriptions, here is a quick set of vocab-
ulary terms that are used to discuss shell commands:

Some Common Shell Commands

2817c11.qxd 11/17/00 3:47 PM Page 181

182

Syntax: The way in which a command is issued, or typed, at the shell
prompt.

Flags: The various options that can be appended to a command to get
more precise output. Flags are usually preceded by a hyphen, such as –a,
but some commands do not use hyphens for flags.

Output: The result of the command. Most commands will print output to
the monitor, but for some commands, you’ll have to request the output.

Argument: Any additional components issued with the command that
will modify the basic command behavior. For example, a flag is an argu-
ment. Arguments must be given following the command’s syntax.

Arguments and syntax are case sensitive.

ls
ls is the command that generates a list of files. No matter how you plan to use
Unix, ls is one of the commands that you’ll use most frequently. Whether you’re
looking for a file or simply browsing directories, ls is a reliable companion.

If you just type ls at a command prompt with no other options, it lists the con-
tents of the current directory. Here is an example of the ls command being run in
the directory that Joe was using to make the notes for this book:

[joe@fugu Mast-Unix]$ ls
ch01-notes.txt ch03-notes.wpd ch05-notes.wpd ch12-notes.wpd
test.wpd ch02-notes.wpd ch04-notes.wpd ch06-notes.wpd
test.html

Filenames are printed to the screen; usually they print in alphabetical and numer-
ical order. This is the simplest way to list a directory.

NOTE On some systems, the names of subdirectories will have a slash (/) after them, such
as Mail/, and the names of executable programs will have an @ character after
them, such as emacs@. We show you below how to make this happen if it’s not set
by default on your system.

Chapter 11 • Introduction to the Bourne (Again) Shell

2817c11.qxd 11/17/00 3:47 PM Page 182

183

If you want to find out more about the files listed by ls, you can do a long-form
listing by using the -l flag:

[joe@fugu Mast-Unix]$ ls –l
total 156
-rw-rw-r— 1 joe joe 11558 Mar 14 09:59 ch01-notes.txt
-rw-rw-r— 1 joe joe 18419 Mar 24 16:41 ch02-notes.wpd
-rw-rw-r— 1 joe joe 16655 Mar 25 10:14 ch03-notes.wpd
-rw-rw-r— 1 joe joe 20608 Mar 27 13:28 ch04-notes.wpd
-rw-rw-r— 1 joe joe 20468 Mar 27 18:00 ch05-notes.wpd
-rw-rw-r— 1 joe joe 13774 Mar 28 12:10 ch06-notes.wpd
-rw-rw-r— 1 joe joe 8003 Mar 29 11:41 ch12-notes.wpd
-rw-rw-r— 1 joe joe 15078 Mar 17 11:59 test.html
-rw-rw-r— 1 joe joe 18118 Mar 17 11:58 test.wpd

This output may seem a little arcane, but it actually tells you a good deal about
each file.

The first entry for each file looks like this:

-rw-rw-r—

This entry shows that this is a normal file and not a directory. If it were a direc-
tory, the first character would be a d instead of an r. The entry also shows the file
permissions. That is, it explains who is allowed to have access to the file and for
what purpose. We cover file permissions in detail in Chapter 12: “Manipulating
Files and Directories.”

The second entry, the 1, tells you how many files are symbolically linked to the
file; a symbolic link is a way of associating more than one filename with a single
file. Unless you’ve created a link intentionally, most normal files should have
only one filename linked to them. However, it is not uncommon to see higher
numbers on entries for directories, because symbolic linking is also used to asso-
ciate subdirectories with their parents.

The third and fourth entries show you the user and group that own the files. In
this example, each file is owned by user joe and group joe; because user joe is
the only member of group joe, it amounts to the same thing. User and group
ownership are attributes that are used to determine file permissions. As the
owner of the files, Joe will have the right to determine who has access to them
except for the superuser, who has access to everything. We explain user space in
Chapter 29: “Managing Users and Groups.”

Some Common Shell Commands

2817c11.qxd 11/17/00 3:47 PM Page 183

184

The fifth entry tells you the size, in bytes, of each file. This is the amount of
space the file takes up in memory or on a disk. The sixth and seventh entries
show the date and time the file was last accessed. Finally, the eighth entry is the
filename.

There are other flags for ls as well:

• -d lists only directory entries.

• -h lists the file size in human-readable format: e.g., 23M or 15k (works only
in combination with the -l flag described below).

• -a lists all files, including hidden files.

• -F shows a character that indicates the type of file: that is, / for a directory
or @ for an executable program.

TIP You can combine flags to get multiple types of output in the same printing. To do
so, group them together after a single dash, as in ls -lh. This example will issue
the –l flag and the –h flag at the same time.

Besides using it with flags, ls can be used on a different directory, other than
the current one you’re in. To do so, issue the name of the desired directory as an
argument. Thus, the command ls -l /etc/rc.d/init.d will give you a long-
form listing of the /etc/rc.d/init.d directory.

pwd
The pwd command outputs the full path name of the working (current) directory.
It’s a very simple command and has no interesting options.

cd
The cd command allows you to move into a new directory. It takes the name of
the desired directory as an argument. For example, cd /etc/rc.d changes the
current directory to /etc/rc.d.

If no argument is given, cd takes you directly to your home directory. This can
be quite useful if you’ve somehow gotten lost in the filesystem. Arguments can be
given either as absolute (e.g., /usr/local/bin) or as relative paths from the cur-
rent directory (e.g., local/bin if the current directory is /usr). cd has no flags or
other options.

Chapter 11 • Introduction to the Bourne (Again) Shell

2817c11.qxd 11/17/00 3:47 PM Page 184

185

mv
The mv command allows you to move a file or subdirectory from one directory
to another. It takes the name of a source file or directory and a target file or direc-
tory as arguments. For example, the command mv /etc/foo /home/joe moves
the file named foo from the /etc directory to the /home/joe directory. If foo is a
directory rather than a file, all files and subdirectories contained in foo will be
moved as well.

mv can also be used to rename files. If you have a file named foo in the cur-
rent directory and want to change its name to bar, simply issue the command
mv foo bar.

mv has several flags:

• -b makes a backup copy before moving the file.

• -i causes mv to prompt the user before overwriting a file (in case the target
filename already exists).

• -v gives verbose output; that is, the command explains what’s being done as
it does it.

cp
The cp command copies a file from one directory to another. Suppose that you
have a file named /home/harry/foo, and you want to make a copy in the /tmp
directory for someone else to look at. You just have to give the command cp
/home/harry/foo /tmp. Once the command has executed, there will be both the
original /home/harry/foo file and a new file in the /tmp directory called
/tmp/foo.

cp has several flags:

• -b makes backup copies of each file copied.

• -f causes cp to overwrite any files with the same name as the destination
file without prompting the user. Use with caution.

• -i is the opposite of -f. If a file with the same name as the target exists, -i
causes cp to alert the user and prompt for confirmation before taking any
action.

Some Common Shell Commands

2817c11.qxd 11/17/00 3:47 PM Page 185

186

• -v causes cp to operate in verbose mode, meaning that the command will
produce more output than usual. The additional output explains what the
process is doing while it’s working.

cat
The cat command outputs the contents of a file, with the desired file’s name
given as an argument. The syntax of cat is cat filename. Use the -n flag to
cause each line to be numbered. Sample cat output, the first without the –n flag
and the second with –n, is shown in Figure 11.2.

more and less
The more and less commands both do the same thing, only in slightly different
ways. Each command outputs the contents of a file one page at time. The syntax
is the same for both commands: more filename or less filename.

F I G U R E 1 1 . 2 :

See the contents of a file
with the cat command and
add optional line numbers.

Chapter 11 • Introduction to the Bourne (Again) Shell

2817c11.qxd 11/17/00 3:47 PM Page 186

187

Why use this instead of cat? If a file is longer than one screen, reading it with
cat can be impractical. more and less make long files more manageable. Reading
a file with more or less makes the output stop after one page (screenful). To
advance to the next page, press the spacebar. To go back a page, press the b key.

There are many differences between the two programs, but they are identical in
these basic functions, and most people will never use the advanced functions of
either program. Which one you use is a matter of preference. Read the manual
pages (man more and man less) to get a full rundown of each.

echo
The echo command prints out whatever is given to it as an argument. For exam-
ple, if you give the command echo hello, you will see hello print to your screen.
echo is primarily useful for providing output in shell programs and printing out
the values of variables; we’ll discuss these topics in later chapters. You’ve used
echo to determine the shell environment you’re using, by typing echo $SHELL.

grep
grep is a program that searches for a particular pattern of characters in a file and
prints the lines that contain that pattern. The syntax is grep [pattern]
[file(s)].

The pattern can be a simple word or a complex regular expression. A regular
expression is a pattern wherein certain special characters can represent more than
one character. By using groupings of these special characters, it is possible to cre-
ate conditions that will match certain types of character strings, even though cer-
tain characters within the strings may differ.

For example, the ? character can represent any single character, while the *
character can represent any combination of zero or more characters. In other
words, * matches everything. Here are some of the most commonly used special
characters:

• * matches everything (any combination of zero or more characters). An
example is St*; grep would match any string that began with the St charac-
ters, regardless of what followed.

• ? matches any single character.

Some Common Shell Commands

2817c11.qxd 11/17/00 3:47 PM Page 187

188

• ^ matches the beginning of a line. That is, ^more matches the word more
only if it appears at the beginning of a line.

• $ matches the end of a line. That is, more$ matches the word more only if it
appears at the end of a line.

We will talk more about regular expressions in Part VI of this book, because
they can be used quite effectively in shell programming.

Summary
To use the Unix kernel, you need to use a command shell to interpret your com-
mands for the kernel so that it can perform the tasks you want to do. In this book,
we focus on the Bourne Shell, known as sh, and the Bourne Again Shell, known as
bash. There are other shells available, and we describe them later in Chapter 15.

Although there are thousands of shell commands, each executing a different
program or function, most Unix users have a core command vocabulary of far
fewer commands. Some of the most frequently used commands are listed in this
chapter, including mv, cp, ls, grep, and more. Even more commands are contained
in Appendix A. You don’t need to memorize every command you’ll ever see; keep
a few commonly used commands in your mind and use a reference for the rest.

Chapter 11 • Introduction to the Bourne (Again) Shell

2817c11.qxd 11/17/00 3:47 PM Page 188

C H A P T E R
T W E L V E

Manipulating Files
and Directories

� Creating and Editing Files

� Copying Files

� Moving Files

� File Ownership and Permissions

� Deleting Files

� Managing Directories

� Summary

12

2817c12.qxd 11/13/00 12:36 PM Page 189

190

In Chapter 11: “Introduction to the Bourne (Again) Shell,” we talked briefly
about some of the commands that can be used to manipulate files and directories.
We discussed basic tasks, such as changing directories and copying, moving, and
renaming files. In this chapter, we expand on that discussion. We show you how
files are created and edited, and how to deal with file permissions and ownership.

TIP File management is a subject you’ll want to spend some time getting to under-
stand. Manipulating files and directories is at the very heart of using Unix, espe-
cially if you’re planning to use Unix as an administrator. Many, if not most, of the
problems you’ll face will be file-access problems.

If you’re new to Unix, you may find this topic a little overwhelming. The con-
cepts of file ownership and file permissions are not ones found in personal oper-
ating systems, such as Windows or MacOS. Remember, though, that Unix was
designed to be a multiuser system, and these features are essential to the security
of systems that could have dozens, or even hundreds, of users logged in at any
given time.

Creating and Editing Files
As we’ve said repeatedly, everything in Unix is considered to be a file. Files can
represent system hardware components, programs, or data collected by a program.
Files that you create when you use a program, such as word processor or graphic
files, use the same kind of organization as do the other types. It’s likely that you’ll
start creating files almost as soon as you log into your first Unix account.

TIP If you find that you keep referring to the same pages of this book for help, or if
you need to write down a particular sequence of events so that you can execute a
certain process, we recommend that you enter that data into a file in your user
directory. That way, you can call up the file and see the work sequence on the
screen as you type—far easier than trying to remember a complicated sequence.

Files can be created in a number of different ways. They can be created inten-
tionally by using an editor, they can be created as a byproduct of other opera-

Chapter 12 • Manipulating Files and Directories

2817c12.qxd 11/13/00 12:36 PM Page 190

191

tions, they can be downloaded from a network, or they can be created as copies of
other files. For most practical purposes, the most common way of creating a file is
by using an editor.

There is a plethora of text editors available for Unix. The most common are vi
and GNU Emacs, which are text-mode editors. Text-mode editors are those
designed to run in text mode and not under X Windows. There are also graphical
editors, such as NEdit, xedit, and others, that are designed to take advantage of
graphical mode. There is even a version of GNU Emacs that has been altered to
run in graphical mode, though we’re not quite sure whether that’s a benefit or a
drawback. As if that weren’t a broad enough array, there are also noninteractive
editors, such as sed and awk, that can be used in script programming. Figure 12.1
shows a document in progress using the GNU Emacs text-mode editor, and Fig-
ure 12.2 shows a document in progress using the NEdit graphical editor.

We cover some of the most common editors in detail in Part V: “Using Text Edi-
tors.” For now, you can think of these editors as stripped-down word processors.
Although they contain a lot of text-editing functions, they don’t contain any of the

F I G U R E 1 2 . 1 :

For the fastest work pace,
use a text-mode editor for
your text files.

Creating and Editing Files

2817c12.qxd 11/13/00 12:36 PM Page 191

192

advanced formatting or publishing features that you would find in a word proces-
sor such as WordPerfect or FrameMaker. Creating files with the editors we describe
here is a simple matter of running the editor, typing and editing the file, and then
saving it under a particular filename. Once saved, the file will persist until it is
altered (again, by using an editor or as a byproduct of a program) or deleted.

TIP WordPerfect and FrameMaker are now both available for the Linux platform and
may be ported to other Unices by the time you read this. Even though we think
full-featured word processors are indispensable, we use text editors for system
administration tasks and save the processors for letters and other documents that
need to be formatted.

One other way of creating files is to use the touch command. This command is
used to update the timestamp of a file, which shows the date and time that a file
was last accessed. However, touch has the useful side effect of creating a new file

F I G U R E 1 2 . 2 :

If you prefer to use the
mouse while you write,
you might prefer a graphi-
cal editor.

Chapter 12 • Manipulating Files and Directories

2817c12.qxd 11/13/00 12:36 PM Page 192

193

if the file specified in the command doesn’t exist. Thus, the command touch
myfile creates an empty file named myfile. This method of creating files is most
commonly used in programming, but it can be quite useful when you need to
make a file quickly, but don’t feel like firing up a text or graphical editor.

Copying Files
As we explained in Chapter 11, files are copied using the cp command. For exam-
ple, the command

cp original copy

makes a copy of the file named original and names the new file copy.

NOTE You can copy only files that you have permission for. If the file is not yours, it will
need to have either world or group permissions set so that you can access it for
copying purposes.

Use cp to place multiple copies of files in multiple directories, as well. If, for
example, you have a Web page in your home directory’s WWW subdirectory and
want to place a copy of that page into a shared directory so that others can see it,
you might issue the command

cp WWW/recipes/soups.html shared/recipes/SusieSoups.html

With this command, you have placed a copy of the page into the shared direc-
tory’s recipes subdirectory. Note that you have also changed the name of the
copied file, from plain old soups.html to SusieSoups.html. If you don’t want to
change the name of the file, you can simply issue the command

cp WWW/recipes/soups.html shared/recipes/

The file will appear in the shared/recipes directory as soups.html.

Moving Files
Moving files is as simple as copying them; the only difference is that when you
move a file, a copy does not remain in the original directory location. To move a

Moving Files

2817c12.qxd 11/13/00 12:36 PM Page 193

194

file, use the mv command with the syntax mv filename newlocation. For exam-
ple, the command

mv /dir1/snacks /dir2

will move the file named snacks from the /dir1 directory to the /dir2 directory.
You can move files from any directory to any other directory, regardless of the
directory that you’re in at the moment. Simply put the full path names of the file
and the destination into the command, as in

mv WWW/recipes/snacks.txt /tmp/storage/snacks.txt

You can also issue the mv command with a full path name, but no destination, as
in mv /dir1/snacks. This will move the file into the current directory.

If you do not specify directories but use filenames alone, you can use mv to
change the name of a file. Thus, the command

mv soup nuts

will change the file’s name from soup to nuts.

A Note on Naming Files
Unix gives you a lot of freedom in choosing the names of your files. However, there are
certain rules you need to follow for Unix to handle the filenames correctly; not following
these rules may cause trouble when you try to work with the files.

• Filenames can be built from any combination of letters or numbers as well as the
characters - (hyphen), _ (underscore), or . (period). A period is usually called a dot in
Unix parlance.

• As a rule, the first character of a filename should be a letter or a number. A dot at the
start of a filename has special significance to the operating system, and dot files are
usually not displayed with a regular ls command. Other characters should not be
used in the first character position at all, because Unix doesn’t parse them well.

• Try to keep your filenames to 14 characters or less. This rule is not absolute, because
the precise number varies from system to system, but some older systems will not rec-
ognize anything beyond 14 characters. It’s best to keep it on the safe side.

• Make your filenames descriptive. This is not a technical requirement but rather a
suggestion that will keep you happy in the long run. When your home directory
becomes filled with files—and it will—you’ll have a much easier time finding a par-
ticular file if it is named descriptively. JonesLetter is much better than letter1,
letter2, and so on.

Chapter 12 • Manipulating Files and Directories

2817c12.qxd 11/13/00 12:36 PM Page 194

195

File Ownership and Permissions
Because there is potential for a number of users on a single Unix computer, the
operating system has a structured way of handling files so that they can be kept
private or public, as necessary. In the Unix world, each file is owned by someone,
whether it’s the person who created it or someone who was given control of the
file. Each file also has a set of file permissions attached to it; these permissions
determine who can read or edit the file. If the file is a program, the permissions
determine whether a given user can actually run the program.

Who Owns the File?
Every file has an owner. The owner of the file is usually the user who created or
downloaded the file, or otherwise caused the file to be on the system. (There are
exceptions to this, but as a rule, it’s true.) The owner of any particular file can be
seen in the output of the ls -l command:

[joe@fugu Mast-Unix]$ ls -l
total 188
-rw-rw-r— 1 joe joe 11558 Mar 14 09:59 ch01-notes.txt
-rw-rw-r— 1 joe joe 18419 Mar 24 16:41 ch02-notes.wpd
-rw-rw-r— 1 joe joe 16655 Mar 25 10:14 ch03-notes.wpd
-rw-rw-r— 1 joe joe 20608 Mar 27 13:28 ch04-notes.wpd
-rw-rw-r— 1 joe joe 20468 Mar 27 18:00 ch05-notes.wpd
-rw-rw-r— 1 joe joe 13774 Mar 28 12:10 ch06-notes.wpd
-rw-rw-r— 1 joe joe 24816 Mar 30 11:31 ch12-notes.wpd
-rw-rw-r— 1 joe joe 9517 Apr 2 10:48 ch14-notes.wpd
-rw-rw-r— 1 joe joe 15078 Mar 17 11:59 test.html
-rw-rw-r— 1 joe joe 18118 Mar 17 11:58 test.wpd

The third column of this output shows the user ID of each file’s owner. The
fourth column shows the group ID of the file’s owner; we talk more about groups
in Chapter 29: “Managing Users and Groups.” Groups are a way for a system
administrator to organize users into groups who may need particular file-access
privileges or other group-specific settings. For now, you simply need to be aware
that groups exist and that users can be assigned to groups.

Ownership of a file is changed with the chown command. The syntax of chown
is straightforward:

chown user filename

File Ownership and Permissions

2817c12.qxd 11/13/00 12:36 PM Page 195

196

In this command, user is the name of the file’s new owner, and filename is the
name of the file. Only the current owner of a file or the superuser can change a
file’s ownership. Why do you care who owns a particular file? Ownership of files
is important, because it is a file’s owner who has the sole right to set the permis-
sions on a file.

Who Can See the File?
A file’s set of permissions is a symbolic description of the level of access that a
particular class of users can have to that file. This description is shown by the
rather arcane-looking 10-character string in the first column of the ls -l output:

-rw-rw-r—

The first character in this statement indicates the type of file:

-: Ordinary file

b: Block device; disk drives and the like

c: Character device; keyboards, modems, etc.

d: Directory

l: Link; a file that points to another file

p: Named pipe; programming tool

The next nine characters are the permissions proper. They can be broken down
into three groups of three. The first, or leftmost, group represents the owner of the
file. The second class represents the file’s group. Every member of the group that
owns the file (shown in the fourth column of the ls -l output) falls into this
class. The final, rightmost, class is the class of all users on the system.

For each class, you can define three levels of access, denoted by the letters r,
w, and x. These stand for read, write, and execute. A user who has only read per-
mission to a given file may access that file for reading, with a command such as
more or less, but may not alter the file in any way. If the file is a program, a user
with read permission only may not run it.

Look again at the example:

-rw-rw-r—

Chapter 12 • Manipulating Files and Directories

2817c12.qxd 11/13/00 12:36 PM Page 196

197

Now that you have read the material above, you can see that this is an ordinary
file. The file’s owner has read and write permission, as do the members of the
file’s group. All other users have read permission only.

Permissions are set using the chmod command. This is a very unintuitive name
for this command, so the best thing to do is simply commit it to memory. The
chmod command syntax works like this:

chmod [class(es)] [+ or -] [permissions] [filename]

Classes are u for the file’s owner (user), g for the group, and a for all users. Per-
missions are r for read, w for write, and x for execute. Permissions are granted
using the plus sign (+) and revoked using the minus sign (–).

So, if a user wanted to grant read and write access to all users for the file soups,
she would issue the command

chmod a+rw soups

Later, if she wanted to revoke write privileges, she could issue the command

chmod a-w soups

NOTE Permissions can also be set using an octal (base 8) number instead of the symbol
system described above. We find the octal system to be quite cumbersome and
difficult to remember, but some folks really like doing their file permissions in
octal. If you are interested in this system, read the manual page for chmod (type
man chmod at the shell prompt).

Mastery of the chmod command does take a little practice, but file permissions
are an important part of system security, and we recommend that you take the
time to learn to manage them. It will pay off in the long run.

Deleting Files
To keep your filesystem clean and neat, you should junk old files that you don’t
use any more. Files are deleted with the rm (remove) command. The syntax is
simple:

rm filename

Deleting Files

2817c12.qxd 11/13/00 12:36 PM Page 197

198

In this command, filename is the name of the file to be deleted. Only a file’s owner
may delete it.

You can also use wildcard symbols to speed up file deletion if you have a num-
ber of files with the same file type or initial characters. If you type rm *.doc, for
example, all files with the extension .doc will be deleted. Type rm June* to
remove all files with names that begin with June, regardless of the rest of the
name or the file type.

WARNING Use wildcards with rm only with extreme caution. Depending on how your system
is configured, you may or may not get a prompt asking you whether you want to
delete individual files. On many systems, the computer will assume you meant to
delete everything that fits that string and will do so without asking permission.

WARNING Under no circumstances should you ever type rm *.*. That will remove every sin-
gle file in your account, including configuration files. If you are the system admin-
istrator and issue that command, every single file on your entire system will be
wiped. Believe us—you do not want this to happen to you.

Managing Directories
For most practical purposes, directories can be treated just like files. Directories
can be moved with the mv command; ownership of directories works just as it
does with files; and permissions are very similar. The differences are largely a
matter of context.

Creating Directories
Directories are created using the mkdir command. The syntax is very simple:

mkdir dirname

In this command, dirname is the name that you want to give the directory. This
can be either a full path name or a name relative to the current directory. To create

Chapter 12 • Manipulating Files and Directories

2817c12.qxd 11/13/00 12:36 PM Page 198

199

a directory, you must have write permission to the directory in which you wish to
create your new directory.

Directory Ownership and Permissions
Directory ownership works exactly the same way as it does for files. Ownership
of a directory confers the right to set permissions, and ownership can be trans-
ferred with the chown command.

Directory permissions are almost exactly the same, except for a couple of con-
textual differences. Read permission gives a user the right to list the files in a
directory. Write permission gives a user the right to create and alter files in a
directory. Execute permission gives a user the right to access files and subdirecto-
ries contained in that directory. Directory permissions can be changed using the
chmod command, just as file permissions are changed.

Deleting Directories
Directories are commonly deleted with the rmdir (remove directory) command,
as in

rmdir dirname

This requires, however, that the directory be empty of all files and subdirectories.
This can be quite cumbersome when you want to delete a directory containing a
large number of subdirectories, all with files and subdirectories of their own.

In such instances, you’ll want to use

rm -rf dirname

By using the -r and -f flags with rm, you force the deletion of everything con-
tained in that directory. You must use care when doing this, because the com-
mand will not ask you to confirm the removal of any files. This can include
important system files or crucial data. Files and directories deleted in this way
cannot be recovered.

WARNING It is very easy to cripple your system if you use this command when logged in as
the superuser. This command should be thought of as a nuclear weapon.

Managing Directories

2817c12.qxd 11/13/00 12:36 PM Page 199

200

Summary
With a few simple commands, you can create, move, edit, and delete files in your
user directory or systemwide. If you are the superuser, you can do all those
things to any file on the system, even if you aren’t the actual owner; such are the
powers of the superuser. Good file-management habits mean that you’ll always
be able to put your hands on the precise file that you need and that you can take
in the state of your system with a single glance.

One of the biggest changes for those new to Unix is the concept of file permis-
sions and ownership. Every file has a unique set of permissions that determine
whether anyone can read the file, edit it, or run it if it’s a program. System security
is affected by file permissions, so it’s a good idea to keep permissions as restricted
as possible for each file; that is, if it’s a program, figure out who needs to run it. If
only you are going to run the program, don’t make it world-executable. On the
other hand, if you don’t make your Web pages world-readable, nobody will be
able to see them. Make your permissions decisions on a file-by-file basis.

Chapter 12 • Manipulating Files and Directories

2817c12.qxd 11/13/00 12:36 PM Page 200

C H A P T E R
T H I R T E E N

Customizing the Shell
Environment

� Elements of Shell Configuration

� Run Control Files

� Environment Variables

� Summary

13

2817c13.qxd 11/13/00 12:37 PM Page 201

202

As with most other components of the Unix operating system, there are
many options for customization of the shell environment. For most people and
most purposes, the default shell configurations should be fine. However, some
users may have special needs or preferences that they would like to have incorpo-
rated into their shell environment.

What do we mean by shell environment anyway? Think for a moment about
your work environment. If you’re in an office, you have a desk, a chair, some draw-
ers or cabinets to hold your files and supplies, a phone nearby, and so on. You
might have a picture of your partner, a vase of flowers, or your bike tucked
behind the door waiting for your ride home. If you are at home, you probably
have many of the same elements, along with your own personal things such as a
game console or your favorite fluffy slippers next to your computer chair. No
matter where you’re working, you’ve probably customized the environment to
make your time there easier, more comfortable, and more pleasant.

As humans, we change our environments to suit ourselves so naturally and
unconsciously that we usually aren’t even aware of what we’re doing. If you
move your phone so you can answer it without having to get up, that’s a modifi-
cation of your environment. Although this seems logical for a physical space, it’s
not so obvious to look for an analogue in the functions of a computer and its
operating system.

The building blocks of your physical environment are the objects and condi-
tions of the physical space around you; the building blocks of the computer’s
shell environment are the qualities of the shell’s interaction with you. What does
the prompt look like? How are commands handled? What syntax do you use
when writing a script? All these elements can be configured or completely
changed, depending on the shell you’re using. You may want to pound away on
bash until it meets your needs, or you might want to change to another shell that
will give you the same results with less work on your part.

NOTE We describe several different shells in Chapter 15: “Other Shells.” In this chapter
and Chapter 14: “Input and Output Redirection,” we focus on the bash shell.
Most of this material should transfer to other shells, however.

Chapter 13 • Customizing the Shell Environment

2817c13.qxd 11/13/00 12:37 PM Page 202

203

Elements of Shell Configuration
There are four types of shell environment configuration. You can use just one of
these types, or all four, to make your shell environment perfect for your needs.
The various combinations possible within these four categories can result in quite
a wide array of configuration possibilities, so try new combinations until you find
something that works for you.

Run Control Files

Run control files are files that control the behavior of the shell for a particular user.
You have run control files in your personal account, as does every other user on
the machine; however, your files control only your settings and not the settings of
other users. With the bash shell, run control files are .bashrc, .bash_profile,
and .bash_logout. Other shells have analogous files that are used to control the
shell’s behavior. We discuss run control files more in the “Run Control Files” sec-
tion of this chapter.

Environment Variables

As we explain in the “Environment Variables” section later in this chapter and in
Chapter 22: “Variables,” environment variables are particular elements of the shell
environment that can be configured by the user. If a shell element is controlled by
a variable, you can change the value of the variable to change how the shell
reacts. For example, the environment variable $EDITOR determines which text
editor will be used as the default editor. If you don’t like the editor that runs by
default (set with a systemwide variable by the system administrator), you can
change the value of $EDITOR to reflect your favorite text editor instead.

TIP By convention, environment-variable names are always written in full capitals.

Aliases

An alias is a user-defined synonym for a common command. That is, if you have
a long command that you type frequently, such as ls –la /usr/home, you can
create an alias, such as lshome. That way, you have to issue only the alias at the

Elements of Shell Configuration

2817c13.qxd 11/13/00 12:37 PM Page 203

204

command prompt to run the full command. Aliases are an excellent way to cre-
ate shortcuts for particular command configurations that you use routinely.

Options

There are several aspects of the shell’s behavior that don’t need to run all the
time. You can choose whether to run these optional configurations by turning
them on or off. Here are some examples of shell options; note the dash at the
beginning of the option name, which often denotes a command-line option:

-norc: .bashrc will not be read upon login.

-noprofile: .bash_profile will not be read upon login.

-rcfile filename: Another specified file will be read upon login and
used as the substitute for .bashrc.

-nolineediting: Line editing will not be used for this session.

-posix: Features that do not conform to the POSIX standard will not be
implemented during this session.

Run Control Files
A run control file is a file that is executed as soon as the shell begins to operate
when you log in. As soon as you enter your account, the default shell environ-
ment starts up; it could be the default environment created with systemwide set-
tings made by your system administrator, or it could be your personal default
environment configured with your own choices. When the shell starts up, all the
instructions contained in the various run control files are carried out.

NOTE The run control files also kick into operation when you start a new instance of the
shell or run a shell script, a program made up of shell commands. We will talk
much more about shell scripts in Part VI: “Shell Programming.”

The main run control file used in bash is the file /etc/bashrc. This file controls
the default configuration of bash for the entire system and all its users. As a regu-
lar user, you should not try to modify this file in any way, because you will affect
all other users and possibly even important system processes.

Chapter 13 • Customizing the Shell Environment

2817c13.qxd 11/13/00 12:37 PM Page 204

205

WARNING The /etc/bashrc file should have appropriate file permissions set on it so that
you couldn’t modify it if you wanted to. If you are, in fact, able to edit this file
without being the system administrator, alert the sysadmin at once; this is an error
that needs to be fixed. If you are the administrator of this machine, make sure that
you’ve set /etc/bashrc to read-only access for everyone but the root account.
Otherwise, things could get severely messed up.

Instead of using /etc/bashrc to affect your personal shell environment, you
can use the following files, located in your home directory: .bash_profile,
.bashrc, and .bash_logout. If you don’t have these files in your home directory
already, create them; they should work just fine.

TIP You can create files quickly with the touch command; just type touch .bash_pro-
file at the command prompt to create that file. Repeat for the other two if neces-
sary. Remember that these filenames begin with periods—do not omit the dots,
because they are necessary for these files to function properly.

We describe .bash_profile and .bashrc in detail in the following sections.
When you exit from your login shell, bash runs .bash_logout. With this file, you
can automatically execute a few commands just prior to logging out. This is espe-
cially useful if you like to clean out log files or other temporary files as you close
out for the day.

.bash_profile
Of the three files mentioned above, the most important is the .bash_profile file.
Every time you log into your Unix account, this file is read, and the commands in
it are executed before you ever type a letter (assuming you’re using the bash
shell). A typical .bash_profile file may be somewhat confusing if you don’t
know what the various elements stand for. Here’s a sample .bash-profile:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
. ~/.bashrc
fi

Run Control Files

2817c13.qxd 11/13/00 12:37 PM Page 205

206

User specific environment and startup programs

PATH=$PATH:$HOME/bin:/sbin:/usr/sbin
BASH_ENV=$HOME/.bashrc
USERNAME=””
MAIL=”/var/spool/mail/mnt/joe”

export USERNAME BASH_ENV PATH MAIL

These lines set up some important parameters for this account. In this case, the
parameters are set through definitions for a few environment variables; we’ll
explain how to set these definitions in the next section of this chapter. It is not
important at this point that you know exactly how this file works, as long as you
understand how .bash_profile fits into the general scheme of your account. You
should also know that if you need to add additional configuration options later,
you can just add them onto the end of this file. Finally, you should be aware that rc
files, such as .bashrc, environment variables, and aliases, are all interrelated; as
with most other parts of the Unix operating system, you can choose from several
options to perform a single configuration.

You might have noticed that this sample .bash_profile makes several refer-
ences to the .bashrc file. There’s a good reason for that: These two files are
closely related. .bash_profile is executed only when you log into your account,
but .bashrc is executed every single time you start a subshell process. A subshell
is a second (or third or fourth) instance of the bash shell and is started from the
original shell. You could start a subshell by hand, by typing bash at the command
prompt, or by executing a script that issues the bash command. Certain processes
spawn subshells as they work, as well.

All these subshells use the .bashrc file, and not .bash_profile, to set their
operating environments. This method is used because it makes it possible to sep-
arate any commands or parameters necessary at login from those you might want
to use only in a subshell. In the example above, .bashrc is run as part of
.bash_profile; thus, .bash_profile includes everything configured in
.bashrc as well as a few extras needed only at login.

NOTE If you don’t normally run bash as your login shell, but you call it by executing the
bash command, it is possible that you won’t have a .bash_profile file in your
home directory. As a fail-safe mechanism, bash allows two other files to substitute

Chapter 13 • Customizing the Shell Environment

2817c13.qxd 11/13/00 12:37 PM Page 206

207

for .bash_profile or act as synonyms for it. If bash doesn’t locate .bash_pro-
file, it looks for a file called .profile. This is the run control file for the plain
Bourne Shell and the Korn Shell. If you defined operating parameters for either of
those shells in .profile, bash will use those settings. If neither .bash_profile
nor .profile is found, bash will look for .bash_login, which is derived from
the C Shell’s .login file. (That covers most of the shells in wide use.)

Environment Variables
Now that you have an idea of how run control files are constructed, it’s time to
take a look at what’s contained in the file. At this point, it’s time to introduce a
programming concept that we’ll use throughout the remainder of the book: the
environment variable. A variable, as you learned in math class many eons ago, is
a name to which a value can be attached. The variable is an abstraction that
allows us to use a piece of information without actually knowing what that piece of
information is. As long as that variable has been defined somewhere prior to its
being used, that definition (or value) is substituted for the name of the variable
when it’s used. Some variable values are static, while others can be changed and
updated routinely.

Here’s an example, taken out of the .bash_profile context to show you how
environment variables work:

DINNER=steak

In this example, the name of the variable is DINNER, and the value of the vari-
able is steak. If you were to write a script that included a sentence making refer-
ence to the variable name, such as

echo At 7:00, I will eat $DINNER.

the computer would parse that as

At 7:00, I will eat steak.

Granted, it’s a silly example (and the sentence alone would not function as a
valid program), but you can see the principle at work. The existence of the vari-
able DINNER lets you talk about a food, without knowing what specific food is
being discussed. Say that you wanted to change the value of DINNER to falafel.

Environment Variables

2817c13.qxd 11/13/00 12:37 PM Page 207

208

You need to change only the value, and the computer will parse the original sen-
tence as

At 7:00, I will eat falafel.

So, how do you change the value of a variable? In the shell environment, there
are two ways to note the value of a variable. When you’re assigning a value, you
simply use the name of the variable, as in

BIKE=diamondback

In this case, the name of the variable is BIKE, and the value is diamondback.

When you want to use the value of an already defined variable, you need to
prefix the variable’s name with a dollar sign ($). So, if you want to use the BIKE
variable in an expression but have the actual value of the variable appear in the
sentence, you might do it like this:

echo I want to ride my $BIKE.

The value of the expression then becomes

I want to ride my diamondback.

Take another look at the run control file shown in the previous section. You’ll
see several environment variables defined in that file. Each of those variables
tells the shell something specific about your user environment. For example, the
$MAIL variable tells the shell which directory holds your incoming mail. When
you use a shell mail program, such as Pine or Elm, to read your e-mail, the pro-
gram will use the $MAIL variable to locate the new mail.

By now, you might be wondering what the difference is between an environ-
ment variable and a regular variable. Good question. Most shell variables exist
only within the script that defines them. Programs external to those scripts usu-
ally don’t have access to the variables defined within the scripts, so certain vari-
ables might have to be defined and redefined several times.

If you look in the run control files, though, you’ll see that the definitions of
environment variables are followed by an export command, like this:

PATH=$PATH:$HOME/bin:/sbin:/usr/sbin
BASH_ENV=$HOME/.bashrc
USERNAME=””
MAIL=”/var/spool/mail/mnt/joe”

export USERNAME BASH_ENV PATH MAIL

Chapter 13 • Customizing the Shell Environment

2817c13.qxd 11/13/00 12:37 PM Page 208

209

When you export a variable, you make it available for use outside of the script
that defines it. There are two ways to do this:

NAME = “value”
export NAME

or

export NAME = “value”

Both syntaxes do the same thing. The first is generally better if you want to
define a number of variables all at once and export them all, while the second is
easier if you want to make sure that you’re exporting only particular variables.

TIP Want to see a full list of all environment variables currently defined for your user
account? Type set at the command prompt. If you have a lot of variables defined,
you might want to pipe the output of set into a text file or pipe the output to the
more command, so you can look at the output more closely. See Chapter 14:
“Input and Output Redirection” for the way to do this.

Common Environment Variables and What They’re for
Once you have a basic understanding of the environment-variable concept, you
can start to review some of the more common environment variables and learn
their function in your shell environment. In this section, we review a few of the
most basic environment variables and explain their purpose, as well as some pos-
sible configurations.

$USER

The $USER variable contains your login ID. That is, if your username is moun-
tainbiker, the following entry will be in your .bash_profile:

$USER = “mountainbiker”

The $USER variable is particularly useful for system administrators, who might
want to use programs that will function differently for different users. The $USER
variable is also helpful for defining variables that may differ for different users.

Environment Variables

2817c13.qxd 11/13/00 12:37 PM Page 209

210

$USER brings up an important point about environment variables. You can
define variables in terms of other variables, not just with unique and specific val-
ues. For example, you might define the variable $MAIL as

export $MAIL = “/var/spool/mail/$USER”

With this definition, each user gets his or her own individual mail path based on
the value of $USER.

$MAIL

As shown in the previous section, the $MAIL variable contains the directory that
holds incoming electronic mail. This variable is usually defined by the system
administrator with something similar to the example shown under the “$USER”
section. If, for some reason, you want to point your mail reader to a different
directory, you’d do so by changing the value of $MAIL.

$PS1

The $PS1 variable determines the format of the shell prompt, the small bit of infor-
mation to the left of your cursor at the command line. If you define $PS1 as

export PS1 = “bash\$”

the shell prompt would appear as

bash$

NOTE The backslash before the dollar sign is an escape character, which tells bash that
the dollar sign is to be interpreted literally in this case, not as an indicator that the
value of a variable should be used in the expression.

$PS1 is commonly defined in terms of escape sequences. These sequences are
small combinations of characters that are interpreted by the command shell to
mean something specific. For example, on our Red Hat Linux system, $PS1 is
defined as

$PS1 = “[\u@\h \W]$”

This arcane little string translates into the following when Kate logs into her
account on the computer named fugu:

[kate@fugu kate]$

Chapter 13 • Customizing the Shell Environment

2817c13.qxd 11/13/00 12:37 PM Page 210

211

This works because the shell interprets \u as $USER, \h as $HOSTNAME, and \W as
the name of the current directory. So, the prompt says that user kate is logged into
machine fugu in directory /usr/kate. Table 15.1 contains a list of bash escape
sequences so that you can use them to construct your own combinations.

TA B L E 1 5 . 1 : bash Escape Sequences

Sequence Function

\t The current time in HH:MM:SS format

\d The date in Weekday Month Date format (e.g., Tue May 26)

\n New line

\s The name of the shell, the basename of $0 (the portion following the final slash)

\w The current working directory

\W The basename of the current working directory

\u The username of the current user

\h The hostname

\# The command number of this command

\! The history number of this command

\$ If the effective UID is 0, a #; otherwise, a $

\nnn The character corresponding to the octal number nnn

\\ A backslash

\[Begins a sequence of nonprinting characters, which could be used to embed a
terminal control sequence into the prompt

\] Ends a sequence of nonprinting characters

TIP You can also define subordinate prompts by setting definitions for the environ-
ment variables $PS2, $PS3, $PS4, and so on. You won’t see these too often,
however, unless you’re doing interactive shell programming—and if you’re that
advanced, you probably don’t need this book.

Environment Variables

2817c13.qxd 11/13/00 12:37 PM Page 211

212

$HOSTNAME

The $HOSTNAME variable contains the name of your computer. If you’re running
your own Unix system, you can name your computer anything you want. If you
have an account on another person’s machine, or on a corporate or school system,
you won’t be able to edit this variable.

$PATH

The $PATH variable contains a list of directories, separated by the colon character
(:), in which the shell will look automatically for executable programs. These
directories are usually those like /bin, /usr/local/bin, and other directories
that often contain executables. Because of the way in which Unix systems start
up, the path is often defined in several different scripts, each adding directories to
the previous path. For this reason, you’ll often see $PATH defined in terms of
itself, as in

export PATH=”$PATH:/usr/bin:/usr/sbin”

This line says, in effect, that the new value of $PATH is equal to the old value
(however it was defined in a previous script), except that the /usr/bin and
/usr/sbin directories are now appended to its value.

$PATH is the source of some of the most common problems you might
encounter when you’re trying to install and run a new piece of software. If the
directory containing the executable file is not contained in $PATH, your shell
won’t know to look in that directory for executable files. So, when you type the
command that starts the program, your shell will report that no such program
exists. To get the program going, you’d need to type the entire directory path
name of the program, such as /usr/sbin/traceroute, instead of simply typing
traceroute at the prompt. If this happens to you, edit your .bash_profile or
.bashrc files and add the new directory to your $PATH variable’s definition.

We cover other environment variables in Chapter 22: “Variables.”

Chapter 13 • Customizing the Shell Environment

2817c13.qxd 11/13/00 12:37 PM Page 212

213

Summary
Although many users never need to change their shell environment from the
default settings, you can create different configurations to provide the most per-
sonalized experience possible. In Unix shells, configurations are made using one
(or more) of four basic tools: run control files, environment variables, aliases,
and options. Run control files control personal account settings; environment
variables allow you to change the value of particular elements used by the shell;
aliases are shortcuts for common commands; and options can be turned on or off
as necessary.

Although these four tools are different in nature, they rely upon each other
to work properly. Environment variables are used in run control files, while
options affect whether certain run control files are used instead of others, and
aliases may rely on variables or run control files to execute. You can make very
precise changes in the shell’s behavior with these tools, and they are worth
exploring.

Summary

2817c13.qxd 11/13/00 12:37 PM Page 213

This page intentionally left blank

C H A P T E R
F O U R T E E N

Input and Output Redirection

� Standard Input and Output

� Introducing Redirection

� Redirection Operators

� Pipes

� Command Substitution

� Combining Operators

� Summary

14

2817c14.qxd 11/13/00 12:39 PM Page 215

216

In the preceding chapters, we’ve introduced you to several basic shell com-
mands. These commands can be divided between commands that produce out-
put and those that do not. For example, cp and mv do not produce output; they
simply execute the desired action and return you to the shell prompt. ls, how-
ever, does produce output, which can be customized by the particular flags that
you append to the command when you issue it.

There is no general rule about which Unix commands produce output and
which do not. Most of the commands that do not produce output do have a ver-
bose mode that, if invoked by a flag or other argument, will cause the command to
produce output even if it does not normally do so.

TIP You can check to see whether a command has a verbose mode by consulting the
command’s man pages. Although not all man pages are easy to understand, they
usually contain a thorough listing of flags and arguments that control the com-
mand; scan through this listing to see whether a verbose-mode flag exists. Call up
a particular man page by typing man command at the shell prompt, replacing
command with the actual command you’re looking for.

For most commands more complex than cp or mv, though, people tend to
expect output. It helps the user to understand what’s happened or confirms that
the desired process has been completed. Output is tremendously useful.

Standard Input and Output
As useful as output is, though, there are some underlying concepts that you
might not have considered. Why does output print to your screen, anyway? It
seems to be the logical place, sure, and in most cases it is. Likewise, most people
assume that input logically comes from the keyboard in a shell situation (in a
graphical environment, the keyboard and mouse both provide input).

“Duh,” we hear you think. “That’s glaringly obvious.” Keep in mind, though,
that just because the keyboard/screen combination is the most common and
obvious way of dealing with input and output, it is not the only way. In some
cases, that combination is not even the best way to handle input and output.

Chapter 14 • Input and Output Redirection

2817c14.qxd 11/13/00 12:39 PM Page 216

217

Why is this important? We bring this topic up to introduce the concept of stan-
dard input and standard output. Most programs, including shell commands, take
their input from the keyboard by default. Thus, we can say that the keyboard
device is that program or command’s standard input. Likewise, when the program
prints its output to the monitor screen, we can say that the monitor is that pro-
gram’s standard output.

NOTE The keyboard/screen combination is not, of course, standard input or output for
every program. If, for example, you issued a print command such as lp, the
standard output would be the printer. Standard inputs and outputs are fairly
obvious; consider the context of the commands you issue to determine the
input and output devices.

Introducing Redirection
Now that we’ve established the concept of standard input and output, it might
seem that we’ve finished the chapter. Not quite: We now step into one of the fea-
tures that makes Unix so powerful—and, quite frankly, timesaving and fun.
Assume that you’re issuing a command that normally outputs data to the screen
in a big blob of text. However, for some reason, you don’t want the data sent to
the screen—you need it in a text file. What do you do?

Well, you could copy the data by hand; send a screen dump to the printer and
reenter the data; or cut and paste. Any of these options takes nearly forever and
introduces the possibility of error. Instead, why not use Unix to do the work for
you? It’s simple to redirect standard output into a file or use the output as the input
for another command. Similarly, instead of typing a complex command input, you
might pull the input from a file or from the output of another command.

This process of modifying the input and output streams is called redirection. It
is accomplished with several distinct redirection operators, which we describe in
the next section of the chapter. Throughout the remainder of this chapter, we
show you increasingly complex ways to redirect input and output; once you mas-
ter these skills, you will find yourself using them to save time, enhance accuracy,
and let your machine use the power that it has on your behalf.

Introducing Redirection

2817c14.qxd 11/13/00 12:39 PM Page 217

218

Redirection Operators
Unix doesn’t know automatically that you want to redirect output or input. To
alert the system that you’re combining commands or shunting output to another
nonstandard location, you have to use a specialized character set. These charac-
ters are called redirection operators, and when used in a specific way, they are the
keys to getting Unix to do what you want.

Output Redirection Operators
The most common use for output redirection is when a user wants to redirect a
command’s output into a text file so that the data can be saved or edited. This is
especially useful when you want to run complex sets of commands; checking the
output is the best way to confirm that you got the results you wanted. When you
redirect output into a file, you don’t have to deal with screens upon screens of
data scrolling past at a fast pace. All you have to do is check the redirect file when
the operation has finished, and the output will be waiting patiently for you.

To redirect the output of a command, you need to use one of the two output
redirection operators: > or >>. The single angle bracket and the double angle
bracket give much the same result, but they get that result by performing in
slightly different ways. The main difference between the two bracket operators
is that the single bracket may cause data loss if used improperly, while the dou-
ble bracket will not.

To show how the angle brackets work, we can use the output of ls. Assume
that you want to call up the contents of the /etc directory and redirect the output
of ls into a file so that you can edit it later. To do so, issue the command

ls /etc > listing

This command creates a new file called listing in the current directory and then
dumps the output (all the files and directories in /etc) into that new file. You can
edit the listing file, save it, or delete it.

Now, assume that you want to check the contents of the /usr directory. So, you
issue the command

ls /usr > listing

Check the listing file. Ack! What happened? The files from /etc have disap-
peared from the text file. You have just discovered the problem with the single

Chapter 14 • Input and Output Redirection

2817c14.qxd 11/13/00 12:39 PM Page 218

219

angle bracket: When you use the single angle bracket to redirect data into an
already existing file, the command overwrites the data in that file, erasing the data
and replacing it with the new data. This is where the double angle bracket redi-
rector comes in handy.

Keep the listing file intact and issue the command

ls /etc >> listing

Then, check the listing file again. You’ll see the files from /etc shown below
the files from /usr. The double angle bracket appends data to the listed file, tack-
ing the data on at the end of whatever other data is already in the file. The easy
way to remember which redirector to use is this: > always creates a new file, even
if that means erasing the data in an existing file; >> always adds to an existing
file, but does not harm the existing data.

NOTE If you’re using a double angle bracket redirector and the specified file doesn’t
already exist, >> will behave like > and create a new file with that specified name.
If you want to use extreme caution and make sure that data is never destroyed,
always use >>.

Input Redirection Operators
The title of this section is somewhat misleading. Although input redirection works
much like output redirection, there is only one input redirection operator: <. Hav-
ing only one input redirection operator makes sense, because you don’t have to
determine whether to overwrite or append data to a particular command input.

To use the input redirection operator, you simply need to provide the source of
the input, and the command will execute with the data in the input source. Here’s
an example:

sort < names

In this example, names is a file that contains a list of (naturally) names. Assume
that the list is unsorted; maybe you’ve just downloaded the top 10 baby names
for 1998, for both boys and girls. In its unsorted state, the file looks like this:

Kaitlyn
Emily
Sarah

Redirection Operators

2817c14.qxd 11/13/00 12:39 PM Page 219

220

Hannah
Ashley
Alexis
Brianna
Samantha
Madison
Taylor
Michael
Jacob
Matthew
Nicholas
Joshua
Christopher
Brandon
Zachary
Austin
Tyler

The list is usable as it is, but it would be easier to work with if it were alphabet-
ized. (Given the trend toward unisex names, mixing up the boys’ and girls’ names
might not even matter.) Instead of spending precious time figuring out the alpha-
betization yourself, why not use the handy Unix command sort to do the work
for you?

Issue the command we showed at the start of this section:

sort < names

The command uses the data in the names file as its input. When the operation is
finished and you are returned to the shell prompt, check the names file again. You
should see a list that looks like this:

Alexis
Ashley
Austin
Brandon
Brianna
Christopher
Emily
Hannah
Jacob

Chapter 14 • Input and Output Redirection

2817c14.qxd 11/13/00 12:39 PM Page 220

221

Joshua
Kaitlyn
Madison
Matthew
Michael
Nicholas
Samantha
Sarah
Taylor
Tyler
Zachary

Combining Input and Output Redirection Operators
As useful as input and output redirection are as single commands, they are even
more powerful when used together. Continuing with the example from the previ-
ous section, assume that you want to alphabetize that list of baby names, but you
want to keep the original list in its original order as well so that you can keep
track of popularity as well as have the names in alphabetical order. You could do
this by copying the names file before you issued the sort command, but that’s an
extra set of keystrokes and an extra step.

Instead, issue the command

sort < names > names-alpha

Pretty simple! This command causes sort to take the data from the original
names file as its input and then redirect the output of the sort into a new file
called names-alpha. The original order of the names file is preserved, while you
also have the alphabetized list in its own file.

Think about the work that this saves. Without redirection, you would have had
to issue the sort command, type in the list of names to be sorted, and then press
Enter. Then, when you got the output, you’d have had to create a new file and
type the output into the new file. This is not too big of a deal with a list of 20
names, but what if you were dealing with the 100 most popular names for boys
and girls in 1998, or the 100 most popular names for every year in the 20th cen-
tury? Imagine the number of keystrokes that would take. Instead, with redirec-
tion, you can accomplish the task with only 27 keystrokes.

Redirection Operators

2817c14.qxd 11/13/00 12:39 PM Page 221

222

Pipes
The angle brackets are not the only input and output redirection operators. One
of the most frequently used redirection operators is |, called a pipe.

NOTE The pipe’s location is not standardized, because it is not a common touch-typing
key. It’s usually combined with the backslash (\); on some of our keyboards, it’s in
the row above the Enter key, while on others it’s near the apostrophe key or even
on the left side of the keyboard by the 1 key. It’s well worth finding, wherever it
appears on the keyboard.

Think of the pipe as a sort of combined input/output redirection operator. That
is, the pipe channels the output from one command into the input of another
command.

To show you how pipes actually work, here’s an operation that we do all the
time that uses pipes to do its job. Assume that you want to list the contents of a
particular directory with ls. However, this directory has so many files in it that
when you issue the ls command, the filenames just scroll off the top of the screen
before you can see them. You could dump the ls output into a text file, but that
just creates another file in the directory. Wouldn’t it be nice to be able to page
through the file listing just as you would if you were using the more command to
read a text file?

With pipes, you can do that. Issue the command

ls /usr | more

This command takes the output from the ls /usr command and pipes it through
the more command. The result is that you can see the ls output one screen at a
time, tapping the spacebar to move to the next screen, but you don’t have to deal
with an additional file containing temporarily interesting information.

Another convenient use of pipes is with the grep command, which searches a
given input source for a particular text string. Suppose that you are looking for a
particular set of files in that large directory and want only the ones with unix as
part of the filename.

To do this, pipe the output of the ls command through grep, providing the cor-
rect text string to grep. The command is

Chapter 14 • Input and Output Redirection

2817c14.qxd 11/13/00 12:39 PM Page 222

223

ls /usr | grep unix

The output printed to the screen will contain only those files in the /usr directory
with unix in the filenames.

You can also chain several pipes together for even more complex operations. If,
for example, the output of the previous command were more than one screen
long, you could combine the two pipe commands we’ve shown in this section for
a command like this:

ls /usr | grep unix | more

With that command, you can page through the output one screen at a time.

Command Substitution
Although it is not technically input or output redirection, the concept of command
substitution fits well alongside those concepts. As we explained in Chapter 13:
“Customizing the Shell Environment,” the $ character is used by the command
shell to access the value of a shell variable. (We develop this concept further in
Chapter 22: “Variables.”)

Command Substitution Syntax
The $() construction that we use for command substitutions in this section is probably the
most common way of doing these operations, but it is not the only way. There are other
popular ways to do command substitutions, and some of these methods produce slightly
different results and behavior.

If you issue the command ls $(pwd), the pwd command is executed in a subshell. A
subshell is a new shell process that is started specifically for this command and that shuts
itself down after the command is finished. The subshell is spawned by the operation, the
command is executed, the output of the command is piped back to the original shell,
and the subshell exits. You can get the same effect by using the backtick character (`), as
in ls `pwd`.

Continued on next page

Command Substitution

2817c14.qxd 11/13/00 12:39 PM Page 223

224

However, if, instead of parentheses, you use curly braces ({}), the command inside the
curly braces will be executed in the current shell, as in ls ${pwd}. This has some impor-
tant implications.

Remember that, in bash, the .bash_profile file defines the environment for the login
shell, while the .bashrc file defines the environment of the subshells. This means that if
you’re giving a command that depends on an environment parameter defined in
.bash_profile, you need to use the curly braces instead of the smooth parentheses
when you use command substitutions.

The $ character can be used in a similar way to access the output of a command
directly without actually running the command itself. For example, the command

ls $(pwd)

lists the contents of the current directory, regardless of what directory you are in.

NOTE In this construction, the parentheses enclosing the command are necessary to
indicate that it is a command substitution rather than a variable named pwd.

The effect of that command is the same as if you had issued the command

pwd | ls

which would pipe the output of the pwd command through ls. (The command
would print the working directory with pwd and then use that directory name as
the input for ls.)

This concept illustrates one of the fundamental tenets of the Unix philosophy:
There is more than one way to do it. Which construction you use to execute a par-
ticular operation is a matter of personal preference. In this example, we think that
the ls $(pwd) command is a bit more semantically coherent than pwd | ls, but
there is no particular increased value in doing it our way if you prefer the second
construction.

As with chained pipes, it is possible to have multiple substituted commands in
one operation. For example, if you wanted to use the wc command (word count)
to find out the number of words in each file in the current directory, you could
issue the command

wc $(ls $(pwd))

Chapter 14 • Input and Output Redirection

2817c14.qxd 11/13/00 12:39 PM Page 224

225

Combining Operators
By now, you should be getting an idea of the power and flexibility possible with
these operators. Just as you can combine input and output redirection operators
to consolidate multiple commands into one operation, you can also add pipes
and command substitutions to the mix to create operations of almost unlimited
complexity.

TIP There are practical limits to these combinations, of course. You might find that
overly complex commands are confusing, difficult to read or remember, and diffi-
cult to explain to others. In many cases, it’s probably better to break up a complex
operation into several less complex commands just for the sake of clarity. You
don’t have to, but there is a point where a command becomes much less compre-
hensible to humans for the sake of clarity to the computer. If you get flustered by
complex commands, take the time to reduce each operation to a set of com-
mands at the level you’re happy with.

To show you the kind of complex problem that can be solved in a jiffy with
these techniques, we’ve developed an example. Assume that you have a friend
called Nevada who works for the fictional Baby Naming Standards Bureau.
Nevada’s e-mail address is nevada@babyname.gov. Nevada, for some odd rea-
son, has asked you to e-mail her a list of the file sizes of all the files in your /etc
directory that have filenames containing the string name; she doesn’t care
whether you send it in kilobytes or megabytes.

To get Nevada what she wants, you’ll need to use the ls command to get the
list of filenames, the grep command to find the character string, and the du –h
command to get the file size. Then, you’ll need to mail the output to Nevada
using the mail command. To do all this, you simply need to create and use the
complex command

du –h $(ls /etc) | grep name | mail nevada@babyname.gov

Just imagine how much time it would have taken to get that information if
you’d checked each file size and name by hand. Now Nevada has the data she
needs, and we need worry no more about the reasons for her request.

NOTE If you laughed at the Baby Naming Standards Bureau example, you might find it inter-
esting to learn that Norway actually has a governmental list of approved personal
names, and selecting a name not on the list for your baby will result in a stiff fine.

Combining Operators

2817c14.qxd 11/13/00 12:39 PM Page 225

226

These complex commands can get somewhat complicated as you add new ele-
ments. Be sure that you aren’t inadvertently changing the syntax of the command
as you add new components. Note that the syntax of the command

du –h $(ls /etc) | grep config

is not the same as the syntax of the command

grep config $(du –h $(ls /etc))

or the syntax of the command

du –h $(grep config $(ls /etc))

The syntaxes are different because of the way in which the initial commands
operate on their input. That is, in the first case, grep works directly on the output
of the ls command, which is individual filenames; in the second and third cases,
grep works on the contents of the files named by the output of ls, not the file-
names themselves. Pipes and redirection operators are simple things, but they
can trip you up if you’re not paying attention as you build complex operations.

Summary
Any interaction with Unix requires some sort of input (a keyboard or mouse, for
example) and some sort of output (the monitor or a printer). Unix commands use
input consisting of the command itself and perhaps some additional arguments
or data. Commands usually output to the monitor, though some commands do
not provide output unless you specifically request that the command operate in
verbose mode.

Input and output can be redirected, either to make dealing with the output sim-
pler by sending it to a text file or to build complicated sequences of operations
where one command’s output functions as the input for another command. Mod-
ifying the input and output streams is called redirection, and it is done by issuing
commands along with redirection operators, characters that direct the operating
system to handle input and output in a particular way. You can also use the con-
cept of command substitution to pull the value of certain shell variables into your
complex operations. All of these concepts can be combined in different orders to
produce different results.

Chapter 14 • Input and Output Redirection

2817c14.qxd 11/13/00 12:39 PM Page 226

C H A P T E R
F I F T E E N

Other Shells

� The Bourne Shell

� The Korn Shells: ksh and pdksh

� The C Shells: csh and tcsh

� The Z Shell

� Other Shells: scsh, rc, es, psh

� Summary

15

2817c15.qxd 11/13/00 12:40 PM Page 227

228

In this part of the book, we have covered a lot of material about using the
Bourne Again Shell (bash). bash isn’t the only option, though; there are several
other shells in wide use and quite a few more that are either specialized or grow-
ing in popularity. In this chapter, we present some of these shells, and explain
their features and capabilities. We don’t go into exhaustive detail, because we’ve
selected bash as our main shell for this book, but we do show you what else is out
there and how it differs from bash.

TIP If you’re interested in using a shell other than bash, we recommend that you con-
sult one of the many good books available for particular shells and that you find
shell-specific resources on the Web to help you decide which shell to use.

The Bourne Shell
The original Bourne Shell is the default on most commercial versions of Unix
(e.g., Solaris, HP-X, and other closed-source distributions). Some Open Source
versions of Unix also ship with the Bourne Shell to maintain compatibility with
the commercial versions, and users of Open Source Unices may want the Bourne
Shell because they learned Unix with a commercial version.

NOTE If you’re trying to run a machine that is 100-percent Free Software, you may not
want to use the Bourne Shell. Bourne is released under the BSD license, which is
semifree according to the GNU project. However, if you have your heart set on
using the Bourne Shell on a 100-percent Free Software box, you can use the Free
Software replacement, ash. (ash stands for a shell, which is about as generic of a
name as is possible.) ash is almost identical to the Bourne Shell and can be used as
a replacement if you prefer not to use bash. We’ve put ash on the CD for your
convenience.

The Bourne Shell, invoked with the sh command, was the original Unix shell.
It was developed by Steve Bourne at Bell Labs, hence the name. Given the wide
array of shells and features now available to Unix users, the Bourne Shell may
seem a touch old-fashioned to you; it will certainly seem pared-down if you are
familiar with more complex shells such as bash. Bourne does not have some of

Chapter 15 • Other Shells

2817c15.qxd 11/13/00 12:40 PM Page 228

229

the features that many users take for granted, especially the ability to edit
directly on the command line and the ability to move through the history of pre-
vious commands issued in a particular session.

Despite its drawbacks in an age when more-featured shells are standard, the
Bourne Shell serves a distinct purpose. Some users prefer a stripped-down shell
without a great deal of bells and whistles, while others find that script program-
ming in the Bourne Shell is particularly responsive. If you use Solaris or another
commercial Unix, you will have Bourne as your default shell, so it’s good to
know a bit about it to use those systems. However, we recommend that you
upgrade your shell if you plan to do a lot of command-line work. (Those who
plan to use integrated desktops, such as KDE or Gnome, can probably stick with
Bourne, though we still recommend installing bash or another newer shell.)

NOTE bash was written as a revision of the Bourne Shell, which is why bash is called the
Bourne Again Shell. To create bash, its developers pulled components from the
Korn and C Shells and patched them into the standard Bourne program. The
result is a shell with the power of the Bourne Shell, with the increased flexibility of
later shells.

The Korn Shell
The Korn Shell, usually called ksh, is second in user base only to the Bourne
Shell. In fact, if bash hadn’t adapted the Bourne Shell and gotten a bit of a ride
off of Bourne’s popularity, ksh would probably have eclipsed the Bourne Shell’s
user base by now. Like bash, ksh features the ability to edit commands directly
on the command line, and it can be configured to emulate either the vi or the
emacs text editor.

NOTE The Korn Shell is not Free Software; for an Open Source alternative, see the
“pdksh” section of this chapter.

In addition to command-line editing, the Korn Shell features include the abil-
ity to work with a number of processes at the same time. You can even alter the
order in which processes gain access to the kernel. To do so, suspend the current

The Korn Shell

2817c15.qxd 11/13/00 12:40 PM Page 229

230

top process by pressing Ctrl+z; you can then move the suspended process into
the background with the bg command. Then, use fg [jobnumber] to bring the
desired process into the foreground. With this kind of detailed control, ksh
brings a new level of system management to the shell user. (This process is so
useful that it’s found its way into other shells, including bash.)

The Korn Shell also features built-in integer arithmetic. This is a significant
improvement over both the Bourne Shell and the Bourne Again Shell. In sh and
bash, you must use the expr command to evaluate mathematical expressions,
because the shell treats every mathematical value as a string instead of as an inte-
ger. The Korn Shell, however, uses various parenthetical operators (both paren-
theses and square brackets), along with the let command, to provide a good
number of mathematical operations directly on the command line.

Programmers like the Korn Shell because it provides a second type of variable.
Array variables are indexed lists of values that can be quite useful in shell pro-
gramming. Arrays and mathematical functions are good shortcuts for shell
scripts, and save quite a few keystrokes over the methods necessary for accom-
plishing the same tasks in bash or sh.

A final feature of the Korn Shell is the ability to create menus easily. If you are
writing a shell program that will run interactively, you might want to add a menu
so that users will have an easier time running the program. With the Korn Shell,
building these menus of possible responses is a quick and helpful option.

Korn Shell Run Control Files
Like bash and sh, ksh uses several specific run control files:

.profile: This file works the same in ksh as it does in sh and bash. It
controls the login environment.

.kshrc: The .kshrc file controls the basic shell environment and is simi-
lar to .bashrc.

.sh_history: This file stores the most recent commands issued. The
default number of stored commands is 100, but you can change that num-
ber to reflect your habits.

Chapter 15 • Other Shells

2817c15.qxd 11/13/00 12:40 PM Page 230

231

Environment Variables
Like other shells, ksh uses environment variables to control the user environ-
ment. The environment variables used by ksh are shown in Table 15.1.

TA B L E 1 5 . 1 : Korn Shell Environment Variables

Variable Function

CDPATH Sets the search path for the cd command.

COLUMNS Defines the width of the edit window for the shell edit modes.

EDITOR Specifies which editor is used as the default text editor.

ENV If set, parameter substitution is performed on the value of this variable to generate
the path.

ERRNO A value set by the most recently failed subroutine.

FCEDIT The default editor name for the fc command.

FPATH The search path for function definitions.

HISTFILE The path name of the file that stores the history of commands issued (by default,
.sh_history).

HISTSIZE The number of commands stored in the history file.

HOME The subdirectory that becomes current upon login and that is used as a default
for cd.

IFS Characters to be used as internal field separators.

LANG Determines the location to use when LC_ALL does not specify one.

LC_ALL Determines the location to be used to override any previously set values.

LC_COLLATE Defines the collating sequence to use when sorting.

LC_CTYPE Determines the location for the interpretation of a sequence of bytes.

LC_MESSAGES Determines the language in which messages should be written.

LINENO The line number in the current line within the script or function being executed.

Continued on next page

The Korn Shell

2817c15.qxd 11/13/00 12:40 PM Page 231

232

TA B L E 1 5 . 1 C O N T I N U E D : Korn Shell Environment Variables

Variable Function

LINES Determines the column length for printing select lists.

MAIL The path name of the file used by the mail system to detect the arrival of new mail.

MAILCHECK The number of seconds that the shell lets elapse before checking for new mail.

MAILMSG The mail notification message.

MAILPATH A list of programs separated by colons; if new mail arrives while you are using these
programs, the shell will notify you of new mail.

OLDPWD The previous working directory set by the cd command.

OPTARG The value of the last argument processed by the getopts special command.

OPTIND The index of the last option argument processed by the getopts special command.

PATH The search path for commands separated by colons.

PPID The process number of the parent of the shell.

PS1 The string to be used as the primary system prompt.

PS2 The value of the secondary prompt (when the shell finds a new-line character).

PS3 The value of the selection prompt string used within a select loop.

PS4 This value precedes each line of an execution trace.

PWD The present working directory.

RANDOM Generates a random number between 0 and 32767.

REPLY Set by the select and read special commands when no arguments are given.

SECONDS The number of seconds since the shell was invoked.

SHELL The path name of the shell (should be exported by the $HOME/.profile script).

TMEOUT The number of minutes the shell remains inactive before it exits.

Chapter 15 • Other Shells

2817c15.qxd 11/13/00 12:40 PM Page 232

233

pdksh
If you’d like to try the Korn Shell’s features, but you prefer an Open Source ver-
sion of the shell, you might enjoy pdksh, the Public Domain Korn Shell. pdksh is a
clone of the Korn Shell, released under a public-domain license that permits the
user to download, use, redistribute, and alter the shell as needed or desired. There
are no significant differences between pdksh and the regular Korn Shell, ksh.

The C Shells
Although the casual user probably won’t notice it, the C-based shells (csh and
tcsh) are quite a bit different from the Bourne-derived shells such as bash and
ksh. The C Shells are based on the C programming language; although the same
commands work in the C Shells as work in the Bourne-derived shells, the syntax
used for more complicated processes is quite different. One way in which the
casual user will find the C Shells different is in the way environment variables are
set; we explain this difference in the “Environment Variables” section below.

csh and tcsh are appealing to users who are already familiar with C and prefer
to use the C syntax when programming in the shell. Those users who don’t use C
may like these shells as well; you certainly don’t have to be a C expert to use them.
(For example, Kate is certainly not a C wizard, yet she likes to use tcsh.)

C Shell Run Control Files
csh and tcsh use these files for run control:

.login: This file controls the login environment; it is similar to .profile.

.cshrc: This file, used in csh, controls the basic user environment; it is
similar to .bashrc.

The C Shells

2817c15.qxd 11/13/00 12:40 PM Page 233

234

.tcshrc: This file, used in tcsh, controls the basic user environment; it is
similar to .bashrc.

.logout: This file executes the commands included in the file when the
login shell is exited.

Environment Variables
Unlike other shells, the C Shell uses the setenv command to set the value of vari-
ous environment variables. The syntax of setenv is

setenv NAME value

If, for example, you wanted to set your EDITOR variable’s value to emacs, you
would add the line

setenv EDITOR emacs

to the appropriate run control file (either .cshrc or .tcshrc, depending on
which C-based shell you are running).

You can set a variety of environment variables using the setenv command. C
Shell environment variables are shown in Table 15.2.

TA B L E 1 5 . 2 : C Shell Environment Variables

Variable Function

ARGV This variable controls the argument list or list of command-line arguments supplied to the
current shell session.

CDPATH This variable contains a list of directories to be searched by the cd, chdir, and popd
commands. The CDPATH variable is used for directories that are not a subdirectory of the
current directory.

CWD This variable contains the full path name of the current directory.

ECHO This variable causes the shell to print commands to the screen just before executing the
operation.

FIGNORE This variable contains a list of filename suffixes that the shell will ignore when filename
completion is used. The value of FIGNORE is typically the single word .o.

Continued on next page

Chapter 15 • Other Shells

2817c15.qxd 11/13/00 12:40 PM Page 234

235

TA B L E 1 5 . 2 C O N T I N U E D : C Shell Environment Variables

Variable Function

FILEC This variable controls the filename completion feature, which will automatically complete
partial filenames. If filename completion is enabled, typing a partial filename and press-
ing Ctrl+d will print a list of all filenames that begin with that partial character string. If
filename completion is enabled, typing a partial filename and pressing the Esc key will
complete the filename with the longest unambiguous extension that appears in the file
listing of that directory.

HARDPATHS This variable toggles symbolic links. If it is turned on, symbolic links in directory path
names will not work.

HISTCHARS This variable’s value is always a two-character string, and the default is !^. The first char-
acter replaces ! as the history substitution character. The second replaces the carat for
quick substitutions.

HISTORY This variable’s value determines the number of lines saved in the history list. Although
you can set it to any number, large numbers will occupy a big portion of the shell mem-
ory. If this variable has no value, the C Shell will save only the most recent command.

HOME This variable defines the user’s home directory. Note that you can use the shorthand ~ to
represent the value of this variable.

IGNOREEOF This variable toggles the End Of Field sensitivity. If turned on, the shell will ignore all EOF
messages from the terminal, so you won’t accidentally shut down a C Shell process by
pressing the Ctrl+d key combination.

MAIL This variable contains a list of directories where the C Shell will check for incoming elec-
tronic mail. If the first word of the variable’s value is a number, it specifies a mail-checking
interval in seconds. Otherwise, the shell will check for mail every five minutes.

NOBEEP This variable toggles a system beep when filename completion is requested from
the shell.

NOCLOBBER This variable controls output redirection to prevent inadvertent file deletion. See Chapter
14: “Input and Output Redirection.”

NOGLOB This variable limits filename completion to the first match. It is mostly used in shell script-
ing to save time and limit the amount of processor cycles invested in filename searching.

NONOMATCH This variable substitutes an echo of the filename completion request for an error message
if the pattern is not matched by an existing filename.

NOTIFY This variable toggles immediate notification from the shell as soon as a job is completed.
If this variable is not turned on, the shell will wait to notify you until a prompt is returned
to the screen.

Continued on next page

The C Shells

2817c15.qxd 11/13/00 12:40 PM Page 235

236

TA B L E 1 5 . 2 C O N T I N U E D : C Shell Environment Variables

Variable Function

PATH This variable contains a list of directories in which the shell will normally search for com-
mands and programs. It’s a good idea to check the default setting and see whether there
are directories you commonly use that should be added to the path. Commands that exe-
cute programs resident in PATH directories can be issued with just the command; programs
that reside in non-PATH directories must be executed by issuing the full path name of the
program. That is, you would have to type /usr/sbin/traceroute instead of traceroute
if the /usr/sbin directory was not in the PATH variable.

PROMPT This value sets the string that constitutes the shell command prompt. The default prompt
reads the HOSTNAME variable and ends it with a % character for regular users and a #
character for root.

SAVEHIST This variable sets the number of lines in the command history list that are saved in the
.history file at logout. Large values for this variable will slow down the login process.

SHELL This variable defines the file where the C Shell resides. You should not change this loca-
tion; this variable is used for system-level functions.

STATUS This variable contains the status code returned by the most recently completed operation.

TIME This variable controls the automatic timing of commands. It can use either one or two
values: the first is the reporting period defined in CPU seconds, while the second is a
character string that determines the resources to be reported on.

What’s the Difference?
If you’re new to the C-based shells, you may be wondering what makes csh dif-
ferent from tcsh. As with the Bourne Shell and bash, tcsh is usually described as
an enhanced C Shell, meaning that tcsh has a few features that the regular C Shell
doesn’t. These features include the following:

• A command-line editor that can use Emacs or vi-style key bindings

• Interactive word completion and listing

• Spell-checking of filenames, commands, and variables

• Editor commands that can be inserted into complex command operations to
perform certain functions during the operation

• Timestamps for events stored in the history file

Chapter 15 • Other Shells

2817c15.qxd 11/13/00 12:40 PM Page 236

237

• Enhanced directory parsing and directory stack-handling commands

• Improved file-inquiry operators and a new file-test function that uses these
operators

• An increased number of automatic, periodic, and timed events that save
administrative work; these events include scheduled events, automatic
logout and terminal locking, command timing, and tracking of logins and
logouts

• Expanded terminal management tools

• More commands built into the shell

• New variables that provide useful information to the shell

• A new prompt-string syntax

• Read-only variables that cannot be altered and therefore cannot harm the
system by being inadvertently changed

The Z Shell
We round out this discussion of the popular Unix shells with the Z Shell (zsh). Of
these shells, zsh is the new kid on the block, as the most recently developed of the
five. Like the Korn Shell, the Z Shell is a derivative of the Bourne Shell with some
new enhancements. The Z Shell also borrows features from the Korn Shell and the
C Shell; so, as you can imagine, it is a complex and fully featured environment.

The Z Shell has an enormous number of configuration options, contained in no
fewer than five run control files: .zprofile, .zlogin, .zshrc, .zlogout, and
.zshenv. The man page for the Z Shell is so long, it had to be split into eight
parts. (As a comparison, we can’t think of more than one or two other man pages
that are even split into two parts.)

Obviously, a shell this complex is far too elaborate to be dealt with in this small
space, whether just for description or for actual skill-building. If you are interested
in learning more about the Z Shell—and we recommend that you take a look, once
you’re familiar with Unix shell environments in general—we suggest you read
one of the many Web pages or books devoted to the shell. A good place to start is
at http://www.zsh.org, the home page of the Z Shell development project.

The Z Shell

2817c15.qxd 11/13/00 12:40 PM Page 237

238

Other Shells
Although the shells already reviewed in this chapter are the most popular shell
environments for Unix, there are other shells with small but devoted followings.
Four of them are described in the remainder of this chapter; if you’re interested in
using a unique shell, you might try out one of these.

scsh
scsh is a shell based on the Scheme programming language. Scheme is a very ele-
gant programming language with a devoted following. As with the C shells, the
main advantage to using a shell like scsh is that script programming follows the
same syntax and argument requirements that the Scheme language uses. If you’re
a Scheme devotee, scsh might be the appropriate shell for you.

rc and es
rc and es are attempts to bring more modern programming techniques to the
shell environment; the programming techniques in the Bourne derivatives and
the C-based shells are based on program languages that are 30 years old or older.
There have been many advances in programming-language development since
Ritchie and Thompson developed C, and the rc and es shells try to incorporate
some of those new features. The es shell, for example, represents command sub-
stitution, pipes, and input/output redirection as function calls. Although function
calls exist in all programming languages, rc and es are unique in what they repre-
sent with function calls.

The Perl Shell
Over the past few years, the Perl programming language has become very popu-
lar. It was originally created as a Unix “glue” language that could make common
system administration tasks easier, but Perl has also found homes in Web design,
database administration, and other types of programming. Perl’s adherents can
be somewhat fanatical (there are programmers who write poetry in Perl), so it
was probably only a matter of time before someone tried to make a Unix shell
with a Perl-like syntax. Currently, the Perl Shell (yes, psh) is in a very early stage
of development.

Chapter 15 • Other Shells

2817c15.qxd 11/13/00 12:40 PM Page 238

239

Summary
There are many shell alternatives to bash. The most popular are the original
Bourne Shell, the Korn Shell, and the C Shell variants. There are also several
shells with less, but growing, popularity. The main differences lie in the way that
the shell environment handles scripting and environment variables. There are
also some minor differences in the user interface itself, but these differences are
merely issues of personal preference and not of substantive significance to the
general user.

Summary

2817c15.qxd 11/13/00 12:40 PM Page 239

This page intentionally left blank

P A R T V
Using Text Editors

� Chapter 16: The ed Editor

� Chapter 17: The vi Editor

� Chapter 18: GNU Emacs

� Chapter 19: pico, joe, and jed

� Chapter 20: Graphical Text Editors

2817c16.qxd 11/17/00 3:47 PM Page 241

This page intentionally left blank

C H A P T E R
S I X T E E N

The ed Editor

� What Is ed?

� Starting ed

� Reading a File

� Editing a File

� Saving and Quitting

� Editing by Content

� Summary

16

2817c16.qxd 11/17/00 3:47 PM Page 243

244

It is unlikely that you will ever use the ed text editor to any great extent. We
(Joe and Kate) have over 20 years of combined Unix experience, and neither of us
have ever used ed for any practical purpose. Furthermore, we don’t know anyone
who uses it regularly and know only a few who have ever used it at all. So, if ed
is so unpopular, why are we bothering to include an entire chapter about it?

We decided to cover ed because—though we are not Scouts—we agree with the
motto “Be Prepared.” You never know when you might find yourself in front of a
Unix computer that doesn’t have any of your favorite programs: no graphical
interface, no fancy text editors with convenient keystroke shortcuts, nothing but
the pure basics. Even if the system is completely bare-bones, the chances are
pretty good that you’ll have ed available.

NOTE We know that a lot of people find more advanced editors, such as vi and emacs,
to be unintuitive and complicated. (We cover vi in Chapter 17: “The vi Editor”
and emacs in Chapter 18: “GNU Emacs.”) Learning how to use ed will give you a
greater appreciation for these editors and will give you a glimpse into the techni-
cal innovations that both vi and emacs represented when they were released.

What Is ed?
ed is a line editor. There are two major types of text editors in the Unix world: line
editors and full-screen editors. (We discuss full-screen editors in Chapter 17: “The
vi Editor.”) When you edit a file with a line editor like ed, you must do so one
line at a time. In contrast, when you use a full-screen editor, you can work on
multiple lines at once. Although line editors are extremely cumbersome, they are
better than nothing. There is enough functionality in a line editor to get your
work done; it’s simply not as easy as it would be with more advanced tools. You
can see the simplicity of ed’s commands in Table 16.1.

Chapter 16 • The ed Editor

2817c16.qxd 11/17/00 3:47 PM Page 244

245

TA B L E 1 6 . 1 : Basic ed Commands

Command Function

ed Invokes the ed line editor

r filename Reads the named file into the buffer

p Prints the named line’s contents to the screen

a Switches ed into input mode and adds new text at a specified line location

d Deletes specified lines from the buffer

m Moves text from one specified line to another

j Joins specified lines on one line

w Writes (saves) the current buffer to a file on the disk

q Quits ed (will fail if the current buffer has not been written to the disk)

Q Quits ed without saving the current buffer

ed operates in two modes: input mode and edit mode. (ed also has a command
mode, which is used to manipulate the program until you are ready to work
with text.) As their names imply, input mode is used to insert text into a file, and
edit mode is used to alter the entered text. In later chapters of this part of the
book, you’ll see other editors that use the input and edit mode concepts, even
though they are not line editors.

Starting ed
To start ed, simply type ed at a command prompt. If you want to start ed to work
on a particular file that’s already been saved, you can issue the command ed
filename, where filename is the actual file’s name. If you choose to open ed
with a particular file, you will see a number print to the screen. This number is

Starting ed

2817c16.qxd 11/17/00 3:47 PM Page 245

246

the total number of characters in the file. Regardless of the method you use to
open ed, you will then see the cursor at the beginning of the first line, doing noth-
ing, as in Figure 16.1. This indicates that ed is now ready for input.

When you start ed, you are in command mode by default. Anything you type at
this point will be interpreted by the program as a command. If you didn’t open a
file when you started ed, type r filename and press Enter (substitute an actual
name for filename). This command reads a new file into ed’s buffer. A buffer is a
temporary workspace in the computer’s memory. The file on the disk will not be
created or altered until you give ed the command to save your work.

NOTE You will not see a prompt when you use ed. You’ll only see the cursor sitting at the
beginning of a line. Considering that most interactive programs, including text
editors, have a prompt of some kind, this can be a bit unnerving. It’s normal for
ed, though.

F I G U R E 1 6 . 1 :

The text editor ed works on
each line individually,
rather than on the entire
document.

Chapter 16 • The ed Editor

2817c16.qxd 11/17/00 3:47 PM Page 246

247

Reading a File
Now that you have a particular file open in ed, it’s time to take a look at the con-
tents of the file to see what you’re working with.

TIP We recommend that you work with an existing file in this chapter so that you have
some text to play with. Don’t use a file that’s quite important, but do use one with
10 or 20 lines of data.

The p command will print the file’s contents to the screen. However, first you
must tell ed precisely what it is that you want to print to the screen. Do this by
specifying the line numbers you want to print. Thus, the command 1,3p will
print lines one through three to the screen, while the command 2,4p will print
lines two through four.

We assume that you don’t know how many lines your file has, so you can use
the wildcard symbol $ to represent the last line of the file. That is, the command
1,$p will cause ed to print the entire file to the screen, no matter how many lines
the file has. Issuing a single number before the p will cause that single line to
print, while using the p command by itself will print the current line to the screen.

The current line concept is a bit slippery in ed. If, immediately after opening a
file, you issue the command 1,$p, there is no current line. To set a current line
with ed, just type the line’s number. Typing 2 will set the current line to the sec-
ond line of the document. If, after setting a current line, you then type p, the
second line will be printed to the screen.

TIP The current line can also be represented by the dot (.) character. The dot character
has some other special uses. For example, assume that you have a buffer open
with a file in it that you’ve named crocodile1. If you set the current line to five in
that file and then issue the command .r alligator1, the contents of the alli-
gator1 file will be inserted into the crocodile1 file after that file’s fifth line.

Reading a File

2817c16.qxd 11/17/00 3:47 PM Page 247

248

Editing a File
Once you have a handle on opening and reading files with ed, you’re ready to
move on to creating and editing text. There are four main categories of activity in
ed: inputting text, deleting text, moving text, and saving the file. To add text, you’ll
need to be in input mode, while to edit text, you’ll need to be in edit mode.

Inputting Text
At this point, you are still in command mode. Enter input mode by issuing the
command a. (Think of a for add.) After you type a and press the Enter key, any-
thing you type will be interpreted by ed as text to be inserted into the buffer. ed
will stay in input mode until you type a period on a line by itself, which will
cause ed to switch back to command mode.

In this section of the chapter, we show you how to start a new blank file and
insert some text into it. Take a look at the example given below:

bash$ ed
a
Now is the time for all good men
to come to the aid of the party.
.
1,$p
Now is the time for all good men
to come to the aid of the party.
1p
Now is the time for all good men

Given what you’ve learned already in this chapter, this example should be easy to
understand. The first line shows the shell prompt, bash$, and the command that
invokes the ed editor. The a command switches ed into input mode, and the next
two lines are the text we entered into the file.

The period, or dot, on a line by itself signifies that the input has ended. It sig-
nals ed to switch back into command mode. At that point, the command 1,$p is
issued, which causes ed to print the entire file to the screen. The 1p command
causes ed to print the first line of the file only.

At this point, the buffer contains the two lines of text only. Anything typed after
the period on a line by itself was not added to the buffer. Assume that you want

Chapter 16 • The ed Editor

2817c16.qxd 11/17/00 3:47 PM Page 248

249

to add a new line to the file, following the existing text. Remember that the $
character represents the last line of the file (no matter what that line’s actual num-
ber might be). So, to input text after the last line, you would need to issue the
command $a. Thus, the next part of the session might look like this:

$a
This is a patriotic sentiment indeed.
.

Now that you’ve added the text and returned to command mode, you can look
at the whole file:

1,$p
Now is the time for all good men
to come to the aid of the party.
This is a patriotic sentiment indeed.

True, it’s a fine sentiment. But doesn’t it need some updating for modern sensi-
bilities? Suppose that you want to insert a line between the first and second lines
of the buffer file. Do this with a command that forces new lines at the end of a
named line, as in this example:

1a
and women
.

Issue the 1,$p command to get this output:

Now is the time for all good men
and women
to come to the aid of the party.
This is a patriotic sentiment indeed.

NOTE The inserted text can be more than one line. ed will continue to read and add
input until it reaches a line that contains only the dot character. The new material
will be inserted after the line named in the initial command.

TIP Just as $ represents the last line of the file and . represents the current line, you
can use 0 (zero) to represent the beginning of the file. Issuing the command 0a
will cause your new text to be inserted at the very start of the buffer file.

Editing a File

2817c16.qxd 11/17/00 3:47 PM Page 249

250

Deleting Text
Although it’s useful to know how to add text to the buffer, it’s equally important
to know how to delete text. ed has a very simple delete mechanism that uses the d
command. The d command follows the same rules as the other commands we’ve
explained.

Use line numbers to delete specific lines, or use the various wildcard charac-
ters to delete sequences of lines. For example, issuing the command 3d will
delete the third line from the file, while 2,4d will delete the second through
fourth lines of the buffer, and 3,$d will delete everything from the third line to
the end of the file.

NOTE Once you have issued a delete command, ed will renumber the remaining lines to
reflect the disappearance of the now-deleted lines. You cannot get back text that
you’ve deleted with the d command.

Moving Text
Although it is certainly possible to move text by deleting it from one location and
retyping it in another, this can get tedious quite quickly. A more convenient way
to move text is to use ed’s m command. The m command’s syntax is a bit different
from the other commands you’ve seen so far in this chapter. m takes the syntax

line number(s)mnew line number(s)

So, the command 1m3 will move the complete first line of the buffer to the third
line. The old second line will become the new first line, and the old third line will
become the new fourth line.

You can also move ranges of lines. Thus, the command 1,25m$ will move the
first 25 lines of the file to the very end of the buffer.

Joining Lines
Lines can be joined together with the j command. This is especially useful if you
have several short lines that would all fit nicely onto one line. The j command

Chapter 16 • The ed Editor

2817c16.qxd 11/17/00 3:47 PM Page 250

251

uses the standard ed syntax described for all other commands but m in this chap-
ter. Thus, the command

1,2j

would join the first and second lines together into one line. The old line three
would then become the new second line.

Return for a moment to the example we used at the start of the chapter, where
the inserted second line was quite a bit shorter than the other lines. As we left it,
the buffer read

Now is the time for all good men
and women
to come to the aid of their party.
This is a patriotic sentiment indeed.

To join lines one and two, issue the command 1,2j. The result is this:

Now is the time for all good men and women
to come to the aid of their party.
This is a patriotic sentiment indeed.

The appearance of the text is much more pleasant without the short second line.

You can use the j command to join larger ranges of lines, as well. For example,
the command 1,10j would join the first 10 lines together into one long line. This is
not usually a good idea, though there might be times (as when coding in HTML)
where having a single long line is preferable to several short lines.

NOTE When you use the j command, no spaces are inserted between the joins. If you
want spaces, you’ll have to insert them manually.

Saving and Quitting
All this time, you’ve been working in the buffer and not with a file that’s actu-
ally saved to the disk. As everyone knows, working on an unsaved file is an invi-
tation to disaster. (Just ask us—we recently worked on a book about some

Saving and Quitting

2817c16.qxd 11/17/00 3:47 PM Page 251

252

word-processing software that was in the beta stage at the time. It routinely ate
Joe’s notes as he worked. The ironic thing is that issuing the Save command usu-
ally triggered the program crash.)

To save your buffer to an actual file on the hard drive, use the w command
(think w for write). If you haven’t named the buffer yet, add the new filename
after the w. For example, if you want to save the buffer we’ve been working on to
a file called patriot, you’d issue the command

w patriot

To quit ed, simply type q. If you haven’t saved your work yet, or if you’ve
changed the file since the last time it was saved, ed will not let you quit. Instead,
it will print the ? character to the screen. To quit without saving your work, type
Q instead, and ed will let you quit anyway. (We don’t particularly recommend
this, but there are certainly times when you just want to get rid of a file without
committing it to the disk.) If you do want the file to be saved, use the w command
to write the revised version to the disk and then issue the q command again.

Editing by Content
ed is most useful with short files. With a large file, or one that you’ve already
done a number of edits on, you will probably find it difficult to remember actual
line numbers. Listing the entire file to find a single line can be unwieldy, espe-
cially if the file is longer than your screen can hold. There are several ways to edit
by using the content of each line, including matching and substitution.

Matching
The programmers who developed ed knew that there had to be a way to work
with a file that relied on each line’s content instead of its line number. Therefore,
they included a tool that matches strings of characters to locate a particular line
when the line number is unknown.

To find the next line containing a particular character string, enclose the desired
string between slashes, as in

/string/

Chapter 16 • The ed Editor

2817c16.qxd 11/17/00 3:47 PM Page 252

253

Press Enter, and ed will locate the next line containing that string. Note that the
search starts with the line immediately following the current line. If you are
looking for matches prior to the current line, substitute question marks for the
slashes, as in

?string?

It is possible to use certain wildcard characters in these strings so that you get
more than one possible match. For example, the * (asterisk) character will match
zero or more occurrences of any character. Basically, * will match any character or
set of characters in that space. If you wanted to search for the next occurrence of
any word ending in the suffix -ing, you’d issue the command

/*ing/

Where the asterisk can represent any number of characters, the dot character
represents any single character. Issuing the command

/.ing/

would result in ed finding words such as bing, ming, or ping; to find thing,
string, or bring, you’d need to use the asterisk.

If you are actually looking for an asterisk or a dot character, you need to sup-
press their wildcard functions. Do this by preceding the special character with a
backslash (\), as in

/*ing/

Substitution
In addition to simple matching as described in the previous section, the slash
characters can be used to perform substitutions as well. For example, assume that
you have a file that describes Linux behavior for a particular program. Because
the program operates the same way in all Unix-derived operating systems, you
want to change every occurrence of Linux to Unix so that you can use the file with
a broader audience.

To make this change, use the slash characters in combination with the s com-
mand, as in

s/Linux/Unix

Editing by Content

2817c16.qxd 11/17/00 3:47 PM Page 253

254

This command operates in a fairly specific manner. The command shown above
will substitute the string Unix for the first occurrence of the string Linux on the
current line. If you want to replace all occurrences on the current line, you need to
add the g (global) suffix to the end of the command, as in

s/Linux/Unix/g

If this is not enough and you want to apply these changes to more than one line
at once, prefix the command with a range of line numbers. Thus,

1,10s/Linux/Unix/g

will replace all occurrences of the word Linux with the word Unix in the first 10
lines of the document. Of course, as described earlier in this chapter, you can
apply the substitution to the entire document with the command

1,$s/Linux/Unix/g

WARNING If you decide that you’ve just made a mistake with a substitution, you can undo it
by simply typing u. If this was a substitution that affected more than one line, only
the last line in which the substitution was made can be restored. You will have to
redo the substitution for all other lines.

Summary
Because ed is a line editor rather than a full-screen editor, its utility for most
users is limited. However, it is important to understand how ed works, if only as
an emergency backup to your regular text editor. Almost all Unix systems will
have ed installed, regardless of any other editors that may or may not be found
on that computer.

ed uses a simple set of commands to control the insertion and editing of text.
With ed’s commands, you can move through the file and join or delete lines;
search for strings of characters; or substitute certain strings for other character sets.
We don’t think you’ll use ed as your full-time editor, but many of the commands
and concepts found in more advanced editors can trace their beginnings to ed.

Chapter 16 • The ed Editor

2817c16.qxd 11/17/00 3:47 PM Page 254

C H A P T E R
S E V E N T E E N

The vi Editor

� The One True Editor

� vi’s Modes

� Basic Editing in Command Mode

� Using the Shell within vi

� Abbreviations

� Macros

� The set Command

� The .exrc File

� Saving and Exiting

� Summary

17

2817c17.qxd 11/13/00 1:30 PM Page 255

256

In Chapter 16: “The ed Editor,” we described a line editor. With the advent of
more advanced text editors, line editors have become relegated to emergency use
and are interesting primarily for historical reasons. If you find yourself on an
archaic Unix machine, ed may be your only option for editing files; however, after
reading Chapter 16, you may have come to the conclusion that using ed is a very
cumbersome way to edit a file—you’d get no argument from us on that point.

Almost all modern Unix systems ship with at least one full-screen text editor. A
full-screen editor is one that, unlike line editors such as ed, operates on entire files
at once, using the full area of the screen (or of the terminal window if you’re work-
ing in an X Window System environment). Full-screen editors allow you to move
around within a file and make changes in various locations during the same ses-
sion. To a generation of computer users raised with word processors, which basi-
cally means anyone under 35 or anyone who learned to use a computer after 1980,
using the full-screen text editor is a much more intuitive way to handle your files.

The One True Editor
As you enter into the world of Unix text editors, you get a bonus—your very first
“holy war.” (And believe us, there are quite a few more to await.) Unix enthusiasts
can be quite vocal in the advocacy of their favorite things, including text editors.
Debates on the relative merits of a wide variety of editors rage almost nonstop on
USENET newsgroups, mailing lists, and Web sites, and even during in-person
social events and meetings.

NOTE You need not participate in these debates if you don’t care to, nor should you feel
compelled to defend your choice of editor. Just be aware that these debates exist,
and they can sometimes get kind of heated. Don’t take it personally if someone
calls you a weenie because you favor a particular editor; just ignore it, or toss the
insult back and get on with your life.

Our choice for the One True Editor is vi. (That’s pronounced vee-eye, not vye.)
This is not an arbitrary choice on our part. We are not vi partisans at all—in fact,
neither of us use vi very much, preferring pico or one of the newer graphical text
editors such as KEdit. Rather, our choice of vi is based on a single fact: It is pretty

Chapter 17 • The vi Editor

2817c17.qxd 11/13/00 1:30 PM Page 256

257

darn hard to find a Unix machine that isn’t running vi. This cannot be said about
any other text editor, except perhaps ed. If you’re trying to fix a crashed Unix sys-
tem, many rescue kits (diskettes with a few critical Unix utilities) contain vi and
no other text editor.

WARNING Even if you decide not to use vi for your day-to-day file editing, it is crucial that
you know at least the basics of the editor. There’s nothing worse than being in a
situation where vi is your only editor and having no idea how to use it.

vi also has history on its side; it was the very first full-screen editor. In fact, vi is
short for visual editor. In this advanced day, with so many editor choices available, it
may seem trivial to use a visual editor, but if you took a look at ed during the last
chapter, you’ll have some idea of the advances in computing that vi represents.

NOTE When you start vi by issuing the vi command, you might notice that the name of
the program that actually starts is not called vi. It might be vim or vile. These
programs are clones of vi that have improved features. Whatever the actual flavor
of vi you use, the techniques in this chapter should work.

vi’s Modes
Before you start working with vi, you need to understand one very critical con-
cept. vi has two modes of operation: command mode and insert mode. When you
first start vi (by issuing the command vi at the prompt), vi will be in command
mode; in this mode, everything you type is interpreted by the editor as a com-
mand. This can get really confusing, because people generally expect that they’ll
be able to begin typing once they enter the editor. With vi opening in command
mode, there is no text available for the commands to act on, so you may see a
stream of error messages. Do not become discouraged.

To get out of command mode and into insert mode, type the letter i. Once you
type i, you should see a cursor appear at the beginning of the screen’s first line.
Now, you can begin typing. For now, type anything—type this paragraph if
you’re stuck for text. To move the cursor around in your block of text, use the
arrow keys. The Backspace key will erase the character to the left of the cursor

vi’s Modes

2817c17.qxd 11/13/00 1:30 PM Page 257

258

position, while the Delete key will erase the character directly underneath the
cursor. Type for a while, until you have a few lines of text.

When you’re done typing, it’s time to return to command mode. You do this by
pressing the Esc (escape) key. At this point, you can use vi’s built-in commands
to edit your file, as described in the next section of this chapter.

TIP If you don’t know whether you’re in command or insert mode, hit Esc a few times.
This won’t harm anything, and you’ll know for sure that you’re in command mode.

Basic Editing in Command Mode
Insert mode is straightforward and self-explanatory; there just isn’t a lot to say
about insert mode other than “type your text.” vi’s real power becomes clear in
command mode, where you have a number of options and commands to deal
with the text you entered in insert mode. The biggest problem with vi is that
some of the commands seem arcane and hard to remember. Therefore, in this sec-
tion, we’ve provided a series of tables that contain the most commonly used vi
commands. Don’t worry too much about memorizing these commands; it will
happen naturally as you use vi more and more. If you’ve memorized a few Ctrl
key combinations for use in other word processors (Ctrl+s for save, Ctrl+o for
open, and so on), you’ll be fine with vi’s commands as well.

NOTE If you really get into the vi experience, or you need more information than we’ve
provided in this chapter, we suggest that you locate a copy of Learning the vi Edi-
tor, by Linda Lamb and Arnold Robbins (O’Reilly & Associates, 1998). This book
will teach you vi like none other; when you’ve worked your way through this
book, you will know vi tricks that few other people know. Who knows, vi may
even become your favorite editor.

Moving the Cursor
As with word processors or other full-screen text editors, the easiest way to move
the cursor around the vi screen is to use the arrow keys on your keyboard. How-

Chapter 17 • The vi Editor

2817c17.qxd 11/13/00 1:30 PM Page 258

259

ever, this isn’t the only way to move around vi. In the 1970s, when vi was devel-
oped, keyboards often had no arrow keys, so an alternative cursor movement
strategy was implemented. Even today, some vi users prefer these alternate keys,
because they don’t have to move one hand off the main keys to press the arrows
and thus lose momentum in their writing or editing.

As Table 17.1 shows, you can move the vi cursor around the document by press-
ing the appropriate key for the direction in which you want the cursor to move.

TA B L E 1 7 . 1 : vi Cursor Movement Keys

Command Action

h Left

j Down

k Up

l Right

NOTE This works only in command mode. If you are in insert mode, you will simply type
the letters h, j, k, or l into your document. To get into command mode, press the
Esc key a few times.

Although using the keys is a rapid way to move through the document, you
can make the cursor move even more precisely by adding a number to the
instruction. For example, if you issue the command 3h, the cursor will move
three spaces directly to the left.

NOTE If you are issuing precise space commands to the left or right with the h or l keys,
you won’t be able to go beyond the left or right end of the current line. To go up
or down to a different line, use the j or k keys.

Table 17.2 shows two similar commands that allow you to move up or down
through the document with precision (replace the character n with the actual
number of lines you want to move).

Basic Editing in Command Mode

2817c17.qxd 11/13/00 1:30 PM Page 259

260

TA B L E 1 7 . 2 : vi Line Movement Commands

Command Action

n+ Moves the cursor down n lines

n- Moves the cursor up n lines

In addition, it is possible to move the cursor to specific locations within the
text with the commands shown in Table 17.3, replacing any n characters with a
specific number.

TA B L E 1 7 . 3 : vi Cursor Movement Commands

Command Action

0 Moves to the beginning of the current line

$ Moves to the end of the current line

n$ Moves the cursor to the end of the line, n lines below the current line

w Moves to the beginning of the next word

nw Moves the beginning of the word n words from the current word

nG Moves to the beginning of line n

n| Moves to the beginning of column n

G Moves to the last line of the file

^B (Ctrl+b) Scrolls back one page

^D (Ctrl+d) Scrolls forward one-half page

^F (Ctrl+f) Scrolls forward one full page

^U (Ctrl+u) Scrolls back one-half page

Deleting Text
One of the most important components of editing is deleting, sad to say. It would
be a lousy editor indeed that did not allow the writer to delete characters, lines,

Chapter 17 • The vi Editor

2817c17.qxd 11/13/00 1:30 PM Page 260

261

or entire sections of text that are wrong or unnecessary for the document at hand.
vi has a set of deletion commands that will speed your removal of unwanted
text; although you can just use the Backspace or Delete keys to get rid of individ-
ual characters, the vi commands can take out more characters at once to move
the process along. Table 17.4 shows the basic deletion commands; note that some
commands have identical results. You can use whichever command is more com-
fortable for your typing habits.

TA B L E 1 7 . 4 : vi Text Deletion Commands

Command Action

x Deletes the character under the cursor

dd Deletes the current line

D Deletes everything from the cursor to the end of the line

:D Deletes the current line (same as dd)

:D$ Deletes to the end of the line (same as D)

esc u Undoes the last command

:U Undoes the last deletion

Pattern Matching and Replacing
One of the features that really distinguishes vi from line editors such as ed is vi’s
ability to search for a given pattern in a document and replace that pattern with
another text string if desired. Suppose that you’re writing a letter about your run-
ning plans for the year, and you’ve inadvertently typed 10K instead of 5K for all
the shorter races you want to run. One way to solve the problem would be to
page through the document, manually correcting each race distance, but that
would take some time (and you might not catch them all).

A better solution is to use the vi match and replace tools. Simply issue the
command

:s/10K/5K

Basic Editing in Command Mode

2817c17.qxd 11/13/00 1:30 PM Page 261

262

within vi, and the editor will locate the first occurrence of 10K and replace it with
5K. If you want to replace all the 10Ks with 5Ks, you could issue the command

:s/10K/5K/g

WARNING This pattern matching can be extremely helpful, but it can also cause problems if
you don’t want to replace every single occurrence of the string—even if it occurs
in the middle of another word. To be safe, use the command syntax without the
/g component at the end. Use the /g only if you are certain that you want to
replace that string everywhere it occurs, and be sure to do a thorough proofread-
ing when the process is done.

Table 17.5 contains the vi pattern matching and replacement commands.

TA B L E 1 7 . 5 : vi Pattern Matching and Replacement Commands

Command Action

/pattern Searches forward for pattern

?pattern Searches backward for pattern

:s/pattern1/pattern2 Replaces first instance of pattern1 with pattern2

:s/pattern1/pattern2/g Replaces all instances of pattern1 with pattern2

Using the Shell within vi
Although we assume that most people will work with vi inside a terminal win-
dow while running X Windows, there are times (and preferences) that call for
working in plain text mode. In text mode, the current operation takes up the
entire screen, and you can’t switch between your vi session and another com-
mand prompt to run operations while you’re editing in vi.

This can be kind of a hassle, especially if you’re working on a lengthy docu-
ment at the same time as you’re performing system administration tasks. Many
people probably save the vi document, exit vi, do their shell business, restart vi,
and work some more on the document until another command needs to be run,

Chapter 17 • The vi Editor

2817c17.qxd 11/13/00 1:30 PM Page 262

263

and the whole process starts over again. However, you don’t have to do this. vi
allows you to run shell commands from within vi itself, which is an incredibly
helpful feature.

To run a shell command from within vi, issue the command

:!unix command

(replacing unix command with the actual command, of course) and press the Enter
key. The command will run outside vi, and you can continue your vi session.

You can use some shorthand for shell commands within vi as well. The % char-
acter stands for the file currently being edited; # stands for the last file that was
edited; and ! stands for the previous command. Thus the command

:!cp % edit.txt

will copy the file currently being edited to the file edit.txt. The command

:!!

will rerun the last command you gave.

NOTE The first ! character (called a bang in Unix terminology) is required. If you want to
issue a second bang to call the previous command, you need to type two bangs.

If you need to perform shell operations that are interactive and require your
input while they’re running, you’ll need to suspend your vi session and exit to
the shell. You can do this with the :sh command. When you issue the :sh com-
mand, your vi session will disappear, and you will see the shell as you left it,
along with the message [No write since last change]. This is a reminder that
your text file has changed since the last time you saved it. Do what you need to
do in the shell, and when you’re ready to return to your vi session, press the
Ctrl+d key combination. Your vi session will reappear just as you left it.

Abbreviations
There are many kinds of documents where a certain phrase or word is repeated
multiple times. It can become boring or tedious to type the repeating characters
over and over, especially if it’s a long phrase or uses a mix of characters and num-

Abbreviations

2817c17.qxd 11/13/00 1:30 PM Page 263

264

bers. Luckily, you can use the abbreviations feature of vi to save yourself some
keystrokes.

With the abbreviations tool, you can create a shorthand string of characters that
will automatically call up the full word or phrase as you type it. For example, if
you’re writing an article about Sun computers, you probably don’t want to type
Sun Microsystems every time you mention the company. Simply set an abbrevia-
tion by issuing the command

:abbr sunx Sun Microsystems

Now, every time you type sunx while you are in insert mode, vi will automati-
cally substitute the phrase Sun Microsystems.

WARNING Do not use a real word as a vi abbreviation, such as using sun as your abbreviation
in the example above. If you do, you might find your document containing sen-
tences like “During a solar eclipse, you should never look directly into the Sun
Microsystems.” Instead, use character combinations that you know you won’t type
in the document, and clean out old abbreviations after you’re finished.

TIP To remove an abbreviation, use the unab command: :unab sunx (substituting
your abbreviation for sunx, of course).

Macros
Abbreviations aren’t the only shorthand you can use in vi. A macro is a type of
shorthand that substitutes for a command string, instead of a text string. To create
a macro in vi, use the map command.

For example, assume that you want to use the mail command while you’re in
vi to see whether anyone has sent you e-mail while you’ve been editing. You
could use the shell command sequence described above, or you could create a
macro that maps the mail command to a key combination. One possible macro
command would be

:map <Ctrl>+q :!mail

Chapter 17 • The vi Editor

2817c17.qxd 11/13/00 1:30 PM Page 264

265

This command maps the Ctrl+q keystroke combination to the mail command.
Now, when in vi, you have to press only Ctrl+q, and the mail command will
be issued.

NOTE Obviously, this is a very short example. Macros work most effectively when they
are used to map sequences of commands to a single keystroke or keystroke
combination.

The set Command
Although set’s configurations are not as extensive as those of a word processor,
you can set vi to meet your personal likes with the set command. This command
determines various environment settings while you’re in vi: how the editor han-
dles indentations, letter case, tab width, and so on. Indicate these settings with
the set command, which uses the syntax

:set argument=value

where argument is the name of the parameter, and value is the setting. Table 17.6
contains some common vi parameters that you can set to configure your vi
environment.

TA B L E 1 7 . 6 : Common vi Parameters

Parameter Action

autoindent Each line is indented to match previous line.

autowrite Automatically saves the file after certain commands.

directory Specifies the directory of the edit buffer.

ignorecase Ignores upper- and lowercase in pattern matching.

list Displays tabs as ^I and end-of-lines as $.

mesg Toggles e-mail write permission.

Continued on next page

The set Command

2817c17.qxd 11/13/00 1:30 PM Page 265

266

TA B L E 1 7 . 6 C O N T I N U E D : Common vi Parameters

Parameter Action

number Shows line numbers.

shell Specifies shell that is escaped to during :! commands.

shiftwidth Sets tab width.

wrapmargin Sets the maximum line length.

There is an alternative format for options that are toggled on or off, rather than
having a specific value. For example, if you want to turn on auto-indenting, you
can simply use the syntax

set autoindent

If you want to turn it off, use

set noautoindent

The .exrc File
Like the various shells described in Part IV: “Using The Shell,” vi also has a run
control file that the program uses to determine settings and user configurations.
The vi run control file is called .exrc, and it lives in your home directory.

NOTE If your system has the vim program (a clone of vi) instead of regular vi, your run
control file is called .vimrc instead of .exrc. .vimrc should look much the same
as the .exrc file that we describe here.

TIP Remember that the dot files (those whose names begin with a period, or dot)
won’t show when you do a plain ls command. To see your dot files, add a few
flags to the command, such as ls –la. That will show your dot files, as well as
their size and file permissions.

Chapter 17 • The vi Editor

2817c17.qxd 11/13/00 1:30 PM Page 266

267

The .exrc file will contain any parameter settings that you made with the set
command, as well as macros made with map and abbreviations made with abbr.
If you want to create a whole slew of set, map, or abbr functions at once, you can
edit .exrc directly (with a text editor such as vi). A sample .exrc file might look
like this one, which contains some of the settings we’ve shown in this chapter:

set list
set noautoindent
set wrapmargin=80
abbr sunx Sun Microsystems
map ^z :!mail

NOTE Reviewing your .exrc file regularly is a good habit. You can locate old abbrevia-
tions or macros that you don’t use any more and clean them out of the file.
Because vi runs the .exrc file every time vi starts up, a slim and trimmed-down
.exrc will make vi boot more rapidly.

Saving and Exiting
We suspect that there are several readers who have turned directly to this section
of the chapter because they can’t figure out how to get out of vi. We share your
pain. In her early days with vi, Kate was known to suspend the process and kill
vi with the job number (this is not a very good idea), because she couldn’t remem-
ber how to quit the program. We hope to save you this indignity; however, if you
don’t know how to exit vi, you could find yourself just as stuck as she was.

The simplest way to exit vi is to get into command mode (tap Esc a few times)
and type the command :q. Note the colon; simply typing q will not get you out of
vi. However, there is a bit of danger in using the :q command, because vi is capa-
ble of quitting without saving your file—thus losing all your work from the last
save. To save the file, issue the command :w in command mode.

TIP To do both at the same time, develop the habit of issuing the command :wq. This
command will both save your file and exit vi. Remember this with the phrase w
for write, q for quit; thus, :wq both writes and quits.

Saving and Exiting

2817c17.qxd 11/13/00 1:30 PM Page 267

268

Table 17.7 shows some other options for saving and quitting.

TA B L E 1 7 . 7 : vi Saving and Quitting Commands

Command Action

:w Saves (writes) file

:q Quits vi

:wq Saves file and quits vi

:q! Forces a quit (allows you to quit on an unsaved file)

ZZ Saves and quits (same as :wq)

Summary
Many Unix adherents argue that vi is the most useful and powerful text editor
available. Although there are other candidates for the position, it is certainly true
that vi holds a large share of the text-editor market and that it is the editor you
are most likely to find on the widest variety of Unix computers. Even if you do
not choose to use vi as your permanent text editor, it’s wise to familiarize your-
self with it.

vi has two modes of operation: command mode and insert mode. Text must be
entered in insert mode, while command mode is used for editing and other tasks
performed after text has been added to the file. vi’s commands are all keyboard-
based, so it can be quite fast once you learn the basic keystroke combinations. It is
also an effective editor for matching patterns, constructing macros, and executing
shell commands from within the editor.

Chapter 17 • The vi Editor

2817c17.qxd 11/13/00 1:30 PM Page 268

C H A P T E R
E I G H T E E N

GNU Emacs

� What Is GNU Emacs?

� Running emacs

� emacs Peculiarities

� Getting Started with emacs

� Dealing with Buffers

� Dealing with Windows

� The GNU Emacs Window

� Getting Help

� Backups and Auto-Save

� Killing and Yanking Text

� Searching and Replacing

� Saving and Editing

� Doctor

� Summary

18

2817c18.qxd 11/13/00 1:34 PM Page 269

270

In Chapter 17: “The vi Editor,” we declared that vi is the One True Editor. In
this chapter, we proclaim GNU Emacs to be the Other One True Editor. Although
it is not as essential to know emacs as it is to know vi, emacs is nearly as popular
and has more features than vi. emacs also inspires a level of devotion (some say
fanaticism) among its adherents that is rivaled only by that of some religious sects.

NOTE We refer to this program both as GNU Emacs, its proper name, and as emacs, the
command used to invoke the program. If you are going to use the proper name
when discussing the editor, be sure to keep the GNU component in the name. See
Chapter 2: “Which Unix?” for more information on the GNU project.

What Is GNU Emacs?
In addition to having a host of standard editing tools, GNU Emacs has several
unique features. With this editor, you can work on more than one file at a time, as
well as use the built-in newsreader and mailreader. emacs also has a built-in
macro scripting language and even its own psychiatric help.

emacs has many adherents among programmers, who like the elegant way that
the editor interacts with gcc (the GNU C Compiler) and gdb (the GNU Debugger)
to form a full software development environment. GNU Emacs is such a feature-
rich program that it is possible to use it as your entire operating environment. We
actually know a couple of people who do this, and, although we would never do
it ourselves, it’s kind of cool to think about an editor having that much power.

All of these features come with a price. GNU Emacs is a very large program,
both in terms of the hard-disk space it occupies and the amount of memory it
requires to run effectively. This isn’t too much of a problem if you’re running
emacs on a powerful workstation, but if you’re using an old 386 running Linux,
or if you have multiple users on multiple workstations pulling emacs from a cen-
tral server, you might notice some serious system lag, because all those emacs
processes start adding up.

GNU Emacs also has a pretty hefty learning curve. We tell you this up front so
that you won’t be discouraged when you run into a wall, and you probably will.

Chapter 18 • GNU Emacs

2817c18.qxd 11/13/00 1:34 PM Page 270

271

Although we can give you the basics in this chapter, it is the sort of program that
warrants entire books, and it takes some practice before you can use it effectively
without referring to cheat-sheets every time you need to do something. emacs
isn’t very intuitive (unless, we suppose, you’re Richard Stallman), but once some
basic emacs habits have become ingrained, the editor really does make many
common editing tasks an absolute breeze.

NOTE Many Unix systems do not include emacs in their basic distributions. If you need to
get it, check the CD-ROM included with this book. You can also get a copy of the
latest version (recommended) from the Free Software Foundation at http://
www.fsf.org. For this chapter, we assume that you have obtained a copy of GNU
Emacs and have installed it successfully.

Running emacs
Start GNU Emacs simply by issuing the command emacs at a command prompt.
Alternatively, you can issue the command emacs filename to start the editor
with the named file already loaded and ready for work.

Once you have the editor open, as seen in Figure 18.1, you’re ready for work.
However, we suggest that you read through the rest of this chapter before begin-
ning to learn more about the many peculiarities of the emacs editor and pick up
some tips that may make your emacs session less confusing and annoying.

emacs Peculiarities
One of the reasons why GNU Emacs seems so hard to learn is that it approaches
common editing tasks in an unusual way. The two main peculiarities unique to
emacs are the way in which it structures data and the way in which it interprets
keyboard input. Although these functions are found in other editors, emacs is
unique in that it forces the user to confront these mechanisms while working on a
file; other editors often camouflage this material behind a friendlier user interface.

emacs Peculiarities

2817c18.qxd 11/13/00 1:34 PM Page 271

272

Data Structures
It is crucial to note that when you work on a file in emacs, you are not actually
working on the file itself. As with ed (see Chapter 16: “The ed Editor”), you are
working in a buffer, a copy of the file held in system memory. Any changes you
make to the file in emacs will not be permanent until you save them back to the
real file. This is true of many other editors, not just ed and emacs, but emacs
makes this process explicit.

emacs contains a number of functions reserved specifically for working with
buffers, so you need to be aware of this when working in the editor. During an
emacs session, it is possible to have multiple buffers open with different files—or
different views of the same file—in each. Most of the time, this level of complex-
ity is not necessary, but should the need arise, the capability is there.

In addition to offering files and buffers, emacs also offers windows as a feature.
These are not windows in the Microsoft or X Window System sense, but are

F I G U R E 1 8 . 1 :

The GNU Emacs editor
runs in single-window
mode by default.

Chapter 18 • GNU Emacs

2817c18.qxd 11/13/00 1:34 PM Page 272

273

rather individual views of a given buffer. It is possible to split the screen verti-
cally or horizontally into multiple windows, as shown in Figure 18.2, and have
separate buffers (or separate views of the same buffer) in each window. This
allows you to view and edit multiple buffers simultaneously.

Key Bindings
Because of the way emacs was written, each keystroke you type is actually a com-
mand to the editor. For example, if you type the letter A, you are issuing a command
for emacs to insert the A character into the buffer. For the letters and numbers that
appear on your keyboard, this has no interesting practical applications, but there are
a couple of keys for which this concept becomes very important.

When you want to use the native command functions in GNU Emacs, you will
usually do so with the Ctrl key and the metakey.

F I G U R E 1 8 . 2 :

GNU Emacs lets you view
multiple buffers within win-
dows on the desktop.

emacs Peculiarities

2817c18.qxd 11/13/00 1:34 PM Page 273

274

NOTE If you are running emacs on a PC, the metakey is the Alt key. However, if you are
using a terminal or a terminal emulator program over a network, the Alt key may
not work for this. In that case, you’ll have to use the Escape key instead.

The Ctrl and metakeys are an integral part of using emacs properly. GNU Emacs
documentation, and most other documents about emacs, makes use of a particular
notation to describe emacs command sequences. To maintain consistency, we also
use the same notation in this chapter (as opposed to the notation used throughout
the rest of the book). Here’s how it works:

C-x: For any character x, C-x means hold down the Ctrl key and type the char-
acter. So, if we say C-d, you would hold down Ctrl and type d.

M-x: For any character x, M-x means hold down the metakey and type the char-
acter. So, if you see M-d, you would press the metakey (probably Alt) and
type d.

C-M-x: For any character x, hold down both the Ctrl key and the metakey,
and type the character.

Note that you should not think of these key combinations as modifying that par-
ticular character, but rather as issuing a command with a keystroke combination.

Getting Started with emacs
For this section of the chapter, we assume that you have already started emacs by
issuing the emacs command, but that you have not loaded any buffers yet. To
read a file into the buffer, use the command C-x C-f. The C-x combination is a
prefix indicating that a command intended to manipulate a file, buffer, or window
will be typed next.

After you type C-x C-f, you will see Find file: ~/ appear on the bottom-
most line of the screen. The ~/ indicates your home directory. Anything you type
at this point will be entered in a path relative to your home directory; if you want
to use a file in your home directory, you simply need to type the filename. If you
want to specify a file above the home directory, just backspace over the ~/ and
type the full path name of the desired file. When you’ve entered the correct file-
name, press Enter. The text of the file will appear in the main window (remember
that this is an emacs window and can be moved or divided).

Chapter 18 • GNU Emacs

2817c18.qxd 11/13/00 1:34 PM Page 274

275

At this point, you can begin to edit the file. You can use regular editing tech-
niques, such as using the arrow keys to move the cursor around the file and
using the Backspace or Delete keys to get rid of characters. In addition to the
basic techniques common to almost every editor (Unix or not), the C-a com-
mand will move the cursor to the beginning of the current line, and the C-e
command will move the cursor to the end of the current line. Other cursor
movement commands are shown in Table 18.1.

TA B L E 1 8 . 1 : Other GNU Emacs Movement Commands

Command Function

C-b Moves cursor back one character

C-f Moves cursor forward one character

M-b Moves cursor back one word

M-f Moves cursor forward one word

M-a Moves cursor to beginning of current sentence

M-e Moves cursor to end of current sentence

M— Moves cursor to beginning of current paragraph

M-“ Moves cursor to end of current paragraph

C-v Scrolls to next screen of document

M-v Scrolls to previous screen of document

M-< Moves cursor to beginning of buffer

M-> Moves cursor to end of buffer

Dealing with Buffers
As we said in the previous section, the command C-x C-f reads a file into the
buffer. It is possible to have more than one buffer open if you want; just use the
C-x C-f command again to create a second buffer, and read another file into it.
You can then use the C-x b command to switch between buffers.

Dealing with Buffers

2817c18.qxd 11/13/00 1:34 PM Page 275

276

The name of the second buffer will already be given as the default value for the
C-x b command, so all you need to do is press Enter. If you have more than two
buffers open and don’t know the names of all of the buffers, use the C-x C-b
command to see a list of all available buffers.

To close a buffer, issue the C-x k command. You will be prompted for the name
of the buffer to be closed. If that buffer contains unsaved changes, you will be
asked whether you want to save the changes before closing the buffer. Remember
that changes will not be saved automatically to the file on the disk.

Dealing with Windows
If you want to have more than one window, or buffer view, open at the same
time, you have a couple of options. The command C-x 2 will split the current
window in half horizontally, while C-x 3 will split it in half vertically. Figures
18.3 and 18.4 show both options. When you have opened a second window, you
can move the cursor into the new window with the C-x o command. Other win-
dow commands are shown in Table 18.2.

F I G U R E 1 8 . 3 :

Split the emacs window
horizontally to view two
buffers at once.

Chapter 18 • GNU Emacs

2817c18.qxd 11/13/00 1:34 PM Page 276

277

TA B L E 1 8 . 2 : Other GNU Emacs Window Commands

Command Function

C-x 0 Closes the current window

C-x 1 Closes all windows but the current window

C-M-v Scrolls the other window to the next screen of the buffer

M-x shrink-window Shrinks the current window vertically

C-x ^ Makes the current window grow vertically

C-x - Shrinks the current window horizontally

C-x “ Makes the current window grow horizontally

C-x 4 b Selects the buffer in the other window

C-x 4 C-o Displays the buffer in the other window

C-x 4 f Finds a file in the other window

F I G U R E 1 8 . 4 :

If you prefer, you can
split the emacs window
vertically.

Dealing with Windows

2817c18.qxd 11/13/00 1:34 PM Page 277

278

When you first create a new window, the current buffer will appear in both win-
dows. You can switch to another buffer using the method described in the previ-
ous section, or you can open a new buffer in the new window. If you prefer, you
can even work on the same buffer in both windows. This is often useful if you’re
editing a large file and want to check out two parts of the file simultaneously.

Remember that there is nothing in particular that ties a given window to a
given buffer. If you close a window, you do not close the buffer that is displayed
in that window. To close the buffer, you must issue a separate command.

The GNU Emacs Window
Now that you have an understanding of emacs windows, buffers, and commands,
there are only two elements of the emacs window that you need to know about
before you can begin to work. These elements are found at the bottom of the screen
and are called the mode line and the mini buffer. They are labeled in Figure 18.5.
Use these tools to manage your document and issue the commands that let you
control emacs and its behavior.

Mode Line
Mini Buffer

F I G U R E 1 8 . 5 :

The mode line and mini
buffer let you control GNU
Emacs in command mode.

Chapter 18 • GNU Emacs

2817c18.qxd 11/13/00 1:34 PM Page 278

279

The Mode Line
When you edit a buffer in emacs, the entire area of the screen is given over to the
text of your file, with the exception of two lines at the very bottom of the screen.
The upper of these two lines is the mode line. The mode line is the line that is high-
lighted in reverse color (white on black instead of black on white, if you use a
black/white display).

The mode line contains various bits of information about your buffer, such as
its name and what part of the file you’re currently viewing on the screen. You
cannot directly edit the information that appears in the mode line, but it will
change as the attributes of your buffer change.

The Mini Buffer
The line at the very bottom of the screen is called the mini buffer. The mini buffer
is where messages from emacs are displayed, where you enter your commands,
and where the command keystrokes are echoed. You can watch what you’re
doing in the mini buffer, which can be quite helpful if you find yourself mistyp-
ing command sequences.

Getting Help
If you find yourself flustered by GNU Emacs, you can consult the extensive online
help. Table 18.3 shows the five commands that access the help files. We especially
recommend the tutorial, which is excellent for emacs beginners and also may
teach a tip or two to those who’ve been around emacs for a while, but have never
run the tutorial. emacs help is accessible in a variety of ways, so you can get
context-specific help or more generalized help indices.

Getting Help

2817c18.qxd 11/13/00 1:34 PM Page 279

280

TA B L E 1 8 . 3 : GNU Emacs Help Commands

Command Result

C-h a Prompts for a keyword and then lists all commands containing that word

C-h k Prompts for a keystroke and then describes the command bound to that key

C-h i Enters the hypertext documentation reader

C-h p Opens a browser, in which you can search the help files by subject

C-h t Runs the tutorial program

Backups and Auto-Save
If you’ve ever lost a lot of work because you closed a file without saving it, or
realized after you saved a file that you made a mistake that’s deleted a lot of your
hard work, you’ll appreciate the backup and auto-save features of GNU Emacs.
These features are part of the reason that emacs is so favored, because it is hard to
lose a file when your editor is quietly keeping copies as you work.

Every time you save a file, emacs creates a second backup file that is a copy of
the previous version. That is, the backup file is one version older than the current
file version, which is very helpful indeed if something happens to the current file.
The backup file is named with a trailing tilde (~). That is, if the filename is wal-
laby, the backup file will be called wallaby~.

If GNU Emacs, or your entire system, crashes before you can save your changes,
an auto-saved file should be available for you when the system comes back up. If
you are looking for the auto-saved copy of the wallaby file, check for a file called
#wallaby#. This is the auto-saved new version of your files. Auto-saving occurs
every 300 characters or so, or when a system error is encountered.

WARNING Do not let auto-saves and backups replace frequent saving by hand. These are
meant as emergency measures, not as regular habits.

Chapter 18 • GNU Emacs

2817c18.qxd 11/13/00 1:34 PM Page 280

281

Killing and Yanking Text
In the unique language of emacs, killing text and yanking text are roughly analo-
gous to the terms cutting text and pasting text in other programs. To cut a line of
text, use the C-k command. This kills all the text from the cursor position to the
end of the line. If you want to cut the full line, you’ll need to position the cursor at
the beginning of the line; refer back to Table 18.1 for cursor movement commands.
Note that the C-k command will not kill the invisible new-line character at the end
of the line. You must issue the C-k command a second time if you want to delete
the new-line character and close up the whitespace in the document.

Once you’ve killed a chunk of text, you can yank it back into the buffer by issu-
ing the C-y command. If you killed several lines of text in one go, without any
nonkill commands in between, all of those lines will be treated as one object and
will all be pasted back into the buffer.

You can also use the M-y command to scroll back through previous killed text.
To scroll, issue the C-y command first, and then M-y. The previous kills will
appear at the cursor position. When you see the kill you want, simply leave it
there and continue editing.

You can move text by killing it, moving the cursor to a new position, and yank-
ing the kill back in. To copy text, kill it, immediately yank it back in, move the
cursor to a new position, and yank it in again. This may seem a bit complicated,
but it will quickly become second nature.

Searching and Replacing
To search for a given character string in the text, issue the C-s command and then
type your search string when prompted. As you type, emacs searches incremen-
tally for the next character, which speeds up the search process quite a bit. This
means that emacs will often locate the string you’re looking for before you even
finish typing it. Find the next match of the same string by typing C-s again. You
can search backward from the cursor position by typing C-r.

To search for a pattern and replace it with another string, use the M-% com-
mand. This is an interactive function that will prompt you for the string to be
found and the string with which it will be replaced. When a match is found, you

Searching and Replacing

2817c18.qxd 11/13/00 1:34 PM Page 281

282

will have six options, described in Table 18.4. You will need to begin replacement
searches from the start of the document.

TA B L E 1 8 . 4 : GNU Emacs Search and Replace Options

Option Result

Spacebar Performs the replacement

Delete Doesn’t perform the replacement

Enter Terminates the search-and-replace without having performed this replacement

Esc Same as Enter

. Terminates the search-and-replace after having performed the replacement

! Performs the replacement for all matches in the current buffer

Saving and Exiting
As with vi, exiting emacs is not the most intuitive process in the world. The com-
mand to exit is C-x C-c. If you have unsaved buffers open when you issue this
command, emacs will prompt you to save them before quitting. To save a file
without exiting emacs, use the command C-x C-s. If you have multiple buffers
that need to be saved, use the command C-x s to save them all at one time.

Doctor
One of the more amusing features of GNU Emacs is the Doctor program. Based
on the pioneering interactive psychological program Eliza, the emacs Doctor will
respond to your statements in a nondirective and calm manner based on the ther-
apy ideals of Rogerian analysis.

Start the Doctor by issuing the command M-x doctor. Explain your problem in
a single sentence and press Enter twice. The Doctor will respond and will con-
tinue to respond as long as you enter more statements. Let the conversation flow

Chapter 18 • GNU Emacs

2817c18.qxd 11/13/00 1:34 PM Page 282

283

naturally. You might become extremely frustrated, highly amused, or actually
aided by the Doctor’s responses. A sample session is shown in Figure 18.6.

Summary
Although it is complicated and somewhat hard to learn, GNU Emacs is a text edi-
tor that offers a great deal of flexibility and power to its users. emacs has a wide
variety of functions, including tight integration for programmers and an effective
multiple-window interface. The editor is controlled through a series of Ctrl and
Alt (meta) key sequences.

With emacs, you can work on multiple files at one time. You can also take
advantage of strong backup and auto-saving features, as well as a quick and
accurate cut-and-paste system. emacs performs strongly in searching and replac-
ing text strings, as well. If you are willing to put in a bit of time to learn how to
use the editor, GNU Emacs will reward you with a powerful editing toolkit and a
well-built interface.

F I G U R E 1 8 . 6 :

GNU Emacs even provides
built-in psychological help.

Summary

2817c18.qxd 11/13/00 1:34 PM Page 283

This page intentionally left blank

C H A P T E R
N I N E T E E N

pico, joe, and jed

� pico

� joe

� jed

� Summary

19

2817c19.qxd 11/13/00 1:52 PM Page 285

286

Although vi and emacs are certainly the “Big Two” of Unix text editors,
they are not the only choices you have. Thank heavens! Other alternatives
might be the proper selection for you and the way you like to work with text.
Each of these editors has its own features and its own way of doing things;
some are quite simple, while others are much less so—though none are as com-
plex as emacs. Some of these editors run in text mode, while others require a
graphical X Windows interface.

In this chapter, we provide a brief introduction to three of the more popular
text-mode editors: pico, joe, and jed. Of these three, pico is the most widely
used, but joe and jed have a general feel similar to that provided by other edi-
tors such as emacs. As with almost everything else in the Unix environment, your
decision about a text editor can be made based on what feels right for you.

pico
Let’s get this out of the way up front: We love pico. It’s our preferred editor, and
we make sure it’s available on all the machines we run or use. However, this affec-
tion causes some consternation among our most geekish friends, who think that
pico is not a particularly serious text editor (there is a suspicious overlap in this
group with the folks who think everyone should use emacs as an operating sys-
tem). Luckily, we’ve never really felt that seriousness was a criterion for text edi-
tors, so we happily use pico to generate tons of data.

We’ll admit that pico is not the best choice for serious programmers. It does
lack some of the features of the more powerful editors, such as emacs, but in
return, it’s small, lightweight, and a snap to use. It’s also perfect for folks who are
generating text files (like us), rather than programs. We assume that serious pro-
grammers probably don’t need this book, though, so you might want to give
pico a try.

TIP pico was developed at the University of Washington as part of the Pine e-mail
client, but the editor can be installed and run as a separate text editor for those
who don’t want to use Pine.

Chapter 19 • pico, joe, and jed

2817c19.qxd 11/13/00 1:52 PM Page 286

287

Starting pico
To start pico, just type pico at a command prompt. If you want to open pico
with a particular file already available for editing, type pico filename (where
filename is the name of the particular file you want to work on). You can begin
entering text as soon as the pico screen appears, as shown in Figure 19.1.

Editing Text in pico
Unlike either vi or emacs, pico has only one mode of operation. By default,
anything that you type on the keyboard will be interpreted by pico as text to be
inserted into the open file. The exception is any keystroke combination that
uses the Ctrl key, because Ctrl key sequences are pico’s command language.

F I G U R E 1 9 . 1 :

The basic pico screen con-
tains a text-entry area and
a brief command reference.

pico

2817c19.qxd 11/13/00 1:52 PM Page 287

288

While working in a pico file, you can use the arrow keys to move around the
document. Deleting text is done with the Backspace key. More complicated edit-
ing functions can be done with the Ctrl key sequences described in Table 19.1.
The most frequently used combinations are always visible along the bottom of
the pico screen in a two-line bar; cycle through the context-sensitive commands
with the Ctrl+o key combination.

TA B L E 1 9 . 1 : pico Ctrl Key Sequences

Command Function

Ctrl+a Moves to the beginning of the current line

Ctrl+e Moves to the end of the current line

Ctrl+f Moves forward one character

Ctrl+b Moves backward one character

Ctrl+n Moves to the next line

Ctrl+p Moves to the previous line

Ctrl+v Scrolls forward one page

Ctrl+y Scrolls backward one page

Ctrl+k Deletes (kills) the current line of text

Ctrl+u Undoes the last deletion

Ctrl+j Justifies (reformats paragraph)

Ctrl+w Searches for a text string

Ctrl+r Inserts the contents of another file at the current cursor position

Ctrl+o Outputs the current buffer to a file (effectively saving the file to the disk)

Ctrl+x Exits pico—you will be prompted to save the buffer

Ctrl+g Gets help

Ctrl+t Spell-checks the document (this function requires that you have ispell, a Unix
spell-checking program, installed and operating)

Although pico lacks some of the features that make vi and emacs appealing to
programmers, pico’s consistent and intuitive interface makes it a natural for
tasks such as e-mail (in the Pine e-mail program) and other tasks that require

Chapter 19 • pico, joe, and jed

2817c19.qxd 11/13/00 1:52 PM Page 288

289

dealing with big text files. pico is quite easy to learn, and we find it simple to
teach new Unix users how to handle the program.

Setting a Default Editor
Many Unix programs, such as e-mail readers, newsreaders, and the like, will call on the
default editor to handle any text-editing needs. The default editor is not a particular edi-
tor; rather, it’s whatever the system administrator has set as the systemwide setting. The
default editor is usually—though not always—vi.

If you want to set a different default editor, such as pico or emacs, you can do this by
changing the value of the $EDITOR environment variable (assuming you’re using the bash
shell). Put the following line in your .bashrc file:

export $EDITOR=”pico”

If you want to use something other than pico, of course, substitute its name. If you’re
using a shell other than bash, use that shell’s procedure for setting environment variables.
See Chapter 22: “Variables” and Chapter 13: “Customizing the Shell Environment” for
more details.

joe
The joe editor is sort of a cross between emacs and pico. Like pico, joe has
only one mode. As with emacs, joe’s commands and procedures are controlled
with various combinations of Ctrl key sequences and regular keystrokes. Also,
as with emacs, you can split the joe screen into multiple windows. Figure 19.2
shows joe in single-window mode, while Figure 19.3 shows joe split into two
windows, each showing a different buffer.

To begin working with joe, just type joe at a shell prompt. Enter text as you
would with pico. Because joe is a single-mode editor, you don’t have to worry
about getting into the correct mode before you enter text. As with pico, you can
use the arrow keys to move around the document, and you can backspace over
text to delete unwanted characters. Unlike pico, though, joe has more Ctrl key
sequences, giving you more flexibility and precision in your editing tasks. Tables
19.2 to 19.7 display the various Ctrl key combinations used in joe.

joe

2817c19.qxd 11/13/00 1:52 PM Page 289

F I G U R E 1 9 . 3 :

Like emacs, joe can run
multiple windows within
one session.

F I G U R E 1 9 . 2 :

The joe editor runs in a
single-window mode by
default.

290 Chapter 19 • pico, joe, and jed

2817c19.qxd 11/13/00 1:52 PM Page 290

291joe

TA B L E 1 9 . 2 : joe Cursor Movement Commands

Command Function

Ctrl+b Moves cursor one space left

Ctrl+f Moves cursor one space right

Ctrl+p Moves cursor up one line

Ctrl+n Moves cursor down one line

Ctrl+z Moves cursor to the previous word

Ctrl+x Moves cursor to the next word

Ctrl+a Moves to the beginning of the current line

Ctrl+e Moves to the end of the current line

TA B L E 1 9 . 3 : joe Page Movement Commands

Command Function

Ctrl+u Scrolls back one screen

Ctrl+v Scrolls forward one screen

Ctrl+k,u Goes to the beginning of the file

Ctrl+k,v Goes to the end of the file

TA B L E 1 9 . 4 : joe Deletion Commands

Command Function

Ctrl+d Deletes character at current cursor position

Ctrl+y Deletes the current line

Ctrl+w Deletes word to the right of cursor

Ctrl+o Deletes word to the left of cursor

Continued on next page

2817c19.qxd 11/13/00 1:52 PM Page 291

292 Chapter 19 • pico, joe, and jed

TA B L E 1 9 . 4 C O N T I N U E D : joe Deletion Commands

Command Function

Ctrl+j Deletes from cursor position to the end of the line

Ctrl+_ Undoes last deletion (this sequence is Ctrl+Shift+dash/underscore key)

Ctrl+^ Redeletes last undone deletion (this sequence is Ctrl+Shift+6/caret key)

TA B L E 1 9 . 5 : joe Search Commands

Command Function

Ctrl+k,f Finds a text string (you will be prompted for the string)

Ctrl+l Finds next occurrence of previously searched text string

TA B L E 1 9 . 6 : joeWindow Operation Commands

Command Function

Ctrl+k,o Splits the window in half

Ctrl+k,g Makes the current window bigger

Ctrl+k,t Makes the current window smaller

Ctrl+k,n Goes to the window below the current window

Ctrl+k,p Goes to the window above the current window

Ctrl+c Kills current window

Ctrl+k,e Loads a specified file into the current window

Ctrl+k,I If multiple windows are open, shows only one window; otherwise, shows all windows

2817c19.qxd 11/13/00 1:52 PM Page 292

293

TA B L E 1 9 . 7 : joe Miscellaneous Commands

Command Function

Esc+y Yanks previously deleted text back into buffer at current cursor position

Ctrl+k,’ Escapes to shell prompt

Ctrl+k,! Executes shell command

Ctrl+k,j Reformats paragraph

Ctrl+k,r Inserts contents of a named file at the cursor position

Ctrl+k,h Displays help file

Ctrl+k,x Saves file

Ctrl+c Exits joe

jed
jed is an interesting text editor with a small but loyal following. The program is
named with the initials of its developer, John E. Davis. The most interesting thing
about jed is that it can be made to emulate other editors. By default, it is config-
ured to emulate GNU Emacs, as shown in Figure 19.4, but it can also emulate EDT,
one of the first Unix editors, and WordStar. (Those readers who, like us, remember
early DOS word processors, will probably feel a twinge of nostalgia at that.) One
advantage of using jed over other text editors is that there are versions of jed for
both Unix and MS-DOS, which is handy if you work in a mixed operating-system
environment.

jed’s Run Control Files
jed’s emulation modes are controlled from the program’s various run control
files. The systemwide run control file for jed is usually located at /usr/lib/jed/
lib/jed.rc. If you run jed without any personal environment customization,
this file will be loaded automatically. However, if you want to customize your

jed

2817c19.qxd 11/13/00 1:52 PM Page 293

294

own jed environment, you must create a file named .jedrc in your home direc-
tory and place your personal configurations in that file. Any options you put in
the .jedrc file will override options selected in the global file (/usr/lib/jed/
lib/jed.rc).

The easiest way to accomplish personal customization of jed is just to copy the
systemwide file into your home directory and save it as .jedrc. You can do this
with the command

cp /usr/lib/jed/lib/jed.rc .jedrc

Once the file has been copied, you can make the changes you want for your
personal jed use. For example, if you want to switch jed from emacs emulation
to WordStar emulation, you would locate the line

() = evalfile(“emacs”); % Emacs-like bindings

and put a percent symbol in front of it, so that it looks like this:

%() = evalfile(“emacs”); % Emacs-like bindings

F I G U R E 1 9 . 4 :

By default, jed emulates
the GNU Emacs text editor.

Chapter 19 • pico, joe, and jed

2817c19.qxd 11/13/00 1:52 PM Page 294

295

jed treats the percent symbol as a comment marker and ignores anything on a
line that begins with the percent symbol.

Then, locate the line

% () = evalfile(“wordstar”); % Wordstar

and delete the first percent symbol. Now, when you start jed, it will start in
WordStar mode, as seen in Figure 19.5.

There are many other configuration options in this file, and the comments in
the file explain the options fairly well. We encourage you to browse through this
file to learn what you can do with jed.

Running jed
jed is started just like any other editor, by typing jed or jed filename at a shell
prompt. Once in jed, type Esc+?,? to see a menu of functions across the top of the
screen. These functions can be activated by typing their assigned number. There
are functions for windows, buffers, shell commands, spell-checking, and so on,
which should all be familiar if you have worked in other editors, especially emacs.

F I G U R E 1 9 . 5 :

jed can also emulate the
MS-DOS editor WordStar.

jed

2817c19.qxd 11/13/00 1:52 PM Page 295

296

Move around the jed screen with the arrow keys, and the Page Up and Page
Down keys. Further keyboard functions will depend on the emulation mode that
you choose. To exit jed, use the exit option in the menu or use the exit command
for the editor that jed is emulating.

Summary
There are several choices for a text editor, beyond vi and emacs. Whether you are
looking for an editor that is easy and fast to learn, or for one that operates like
another editor without its size or complexity, you can find a program that will
work for you. Three of the most popular text editors are pico, joe, and jed.

pico is a small but powerful text editor that relies on a small number of easily
remembered keystroke combinations to do its work. joe is also small but powerful,
and uses keystroke combinations similar to those in emacs. Finally, jed has the abil-
ity to emulate several different editors, using the key bindings and screen layout of
those programs.

Chapter 19 • pico, joe, and jed

2817c19.qxd 11/13/00 1:52 PM Page 296

C H A P T E R
T W E N T Y

Graphical Text Editors

� Why Graphical Editors?

� NEdit

� KEdit

� gEdit

� Summary

20

2817c20.qxd 11/13/00 2:18 PM Page 297

298

With the growing availability of attractive graphical user interfaces for Unix
systems, such as the integrated desktop environments described in Part III of
this book, it is becoming more common to use graphical editors for text manipu-
lation instead of the text-mode editors described in the other chapters of this
part of the book.

As their name implies, graphical editors are designed to be used with a window
manager or desktop environment running under the X Window System. They
constitute a sort of middle ground between the ultra-spare text-mode editors
such as vi and a full-blown word processor such as Corel’s WordPerfect 9. If
you’ve ever used the Notepad in Windows or Simpletext on a Macintosh, you
have a general idea of what graphical text editors are like.

Why Graphical Editors?
Whether you view graphical editors as stripped-down word processors or fancied-
up text-mode editors has more to do with your computing experience than it
does with the editors themselves. Those who come to Unix and graphical editors
from a word-processing environment will tend to regard graphical editors as
word processors lacking certain features, while people who come to graphical
editors from a pure command-line Unix environment tend to regard them as
unnecessary overkill.

Personally, we like graphical editors. In fact, the preliminary notes for this book
were mostly written in NEdit, a graphical editor we’ll describe in the next section
of this chapter. Graphical editors offer most of the features of text-mode editors,
while adding the convenience of being able to use the mouse, cut and paste easily,
control the appearance of the document on-screen, and use drop-down menus
instead of memorizing keystroke combinations. These may seem like trivial con-
siderations, but unless you’ve ingrained a text-mode editor’s commands so thor-
oughly into your mind that you don’t even need to think about them, these
“trivialities” can make your work go a lot faster.

There is, of course, a downside to all this convenience. Most graphical editors
use more system memory than most text-mode editors (GNU Emacs being the
exception). If you need to allocate your precious memory carefully, vi or pico
might be a better choice from a performance standpoint. Also, you can’t use

Chapter 20 • Graphical Text Editors

2817c20.qxd 11/13/00 2:18 PM Page 298

299

graphical editors over a network unless you’ve set up the X Windows display for-
warding function, which seems like an awful lot of work just to edit a file.

The general rule of thumb we use is that for quick and dirty file editing such as
tweaking a configuration file, text-mode editors are easier and faster. For extended
composition, such as correspondence or the notes for a book, a graphical editor is
probably a better tool.

NOTE Remember that graphical editors are still text editors. That is, graphical editors are
designed to edit text in a file, not words on a page. Although it is possible to con-
figure the look of a graphical editor in any number of ways, the page you see on
the screen may not bear any resemblance to what you see if you print the docu-
ment. If you want to do advanced formatting such as layout, fonts, line spacing,
and the like, you’ll need to use an actual word processor such as WordPerfect,
Abiword, StarOffice, or something similar, or a typesetting program such as LaTeX
or FrameMaker.

NEdit
NEdit is a solid graphical text editor with a clean, spare look and a lot of useful
features. It happens to be Joe’s favorite graphical text editor, because it doesn’t
clutter up its screen with a lot of graphical elements such as buttons, and because
it’s fast and solid. NEdit has a very small memory footprint; for regular text edit-
ing, NEdit’s drain on resident memory clocks in at just under 3MB.

As seen in Figure 20.1, NEdit has a large composition window with a single
menu bar at the top. Each menu-bar item activates a drop-down menu with a
number of functions, some with sub-menus. This is similar to how regular word
processors work, but is a feature that text-mode editors don’t have.

To begin working with NEdit, simply open it by typing nedit at a command
prompt. If you’re working in a desktop environment, such as that of KDE or
Gnome, you will probably be able to launch NEdit from the application starter or
by clicking an icon in the panel if you’ve created one. Type your data into the
main text-entry screen. To save the file, select File ➣ Save from the menu bar or
press Ctrl+s, and name the file at the prompt.

NEdit

2817c20.qxd 11/13/00 2:18 PM Page 299

300

Tables 20.1 to 20.7 show the various menu functions of NEdit. We cover menu
options thoroughly in this chapter because, as we mentioned above, having menu
alternatives is something relatively new for Unix text editors. Menu commands
also offer the ability to integrate more features and functions into the editor, so
that a program such as NEdit offers more flexible editing tools than most text-
mode editors can.

TA B L E 2 0 . 1 : NEdit File Menu Commands

Command Function

New Creates a new buffer

Open Opens a file in the current buffer

Open Selected Allows a programmer to open an #include file when working in C

Open Previous Allows you to open a recently worked-on file

Continued on next page

F I G U R E 2 0 . 1 :

NEdit is a clean, unclut-
tered graphical text editor.

Chapter 20 • Graphical Text Editors

2817c20.qxd 11/13/00 2:18 PM Page 300

301

TA B L E 2 0 . 1 C O N T I N U E D : NEdit File Menu Commands

Command Function

Close Closes current buffer

Save Saves buffer to file

Save As Saves buffer under new name

Revert to Saved Discards all changes since last save

Include File Inserts a specified file at the current cursor position

Load Macro File Loads a macro (predefined sequence of actions) file

Load Tags File Loads an index file of tags (a programming feature)

Unload Tags File Unloads the tags file

Print Prints the current document

Print Selection Prints only the selected text

Exit Closes NEdit

TA B L E 2 0 . 2 : NEdit Edit Menu Commands

Command Function

Undo Discards previous edit

Redo Repeats previous edit

Cut Cuts the selected text and stores it in the cut-buffer

Copy Copies the selected text to the cut-buffer

Paste Inserts text in cut-buffer at the current cursor position

Paste Column Allows you to paste a vertical selection

Delete Deletes the selected text

Select All Selects all text

Shift Left Shifts line one space to the left

Continued on next page

NEdit

2817c20.qxd 11/13/00 2:18 PM Page 301

302

TA B L E 2 0 . 2 C O N T I N U E D : NEdit Edit Menu Commands

Command Function

Shift Right Shifts line one space to the right

Lower Case Makes all selected characters lowercase

Upper Case Makes all selected characters uppercase

Fill Paragraph Removes all new-lines within a paragraph

Insert Form Feed Inserts a form-feed character at current cursor position (acts as a page break for
printing)

Insert Control Code Inserts a specified ASCII character

TA B L E 2 0 . 3 : NEdit Search Menu Commands

Command Function

Find Finds a regular expression

Find Again Repeats previous find operation

Find Selection Finds next instance of selected text

Find Incremental Every character typed triggers a new search (Incremental searching is generally the
quickest way to find something in a file, because it gives you the immediate feed-
back of seeing how your search is progressing.)

Replace Replaces one text string with another

Replace Again Repeats the last replacement

Goto Line Number Moves cursor to a specified line number

Goto Selected Moves cursor to the selected text

Mark Sets a marker in the text

Goto Mark Moves the cursor to a previously set mark

Goto Matching () Moves the cursor to the start or end of an expression in parentheses

Find Definition Works with a tags file to find the definition of a function

Chapter 20 • Graphical Text Editors

2817c20.qxd 11/13/00 2:18 PM Page 302

303

TA B L E 2 0 . 4 : NEdit Preferences Menu Commands

Command Function

Default Settings Allows you to set defaults for various features

Save Defaults Saves current settings as the default

Statistics Line Shows a line containing the filename, line number, column number, and
size of the file (in bytes)

Show Line Numbers Prints a sequential number before each line

Language Mode Highlights the syntax in a file in an appropriate manner for a number of dif-
ferent programming languages—e.g., may show comments, functions, etc.

Auto-indent Sets the way in which text is indented

Wrap Sets the way in which lines wrap

Tabs Sets the style and width of tabs

Text Font Specifies the font to be used when displaying the text

Highlight Syntax Attempts to guess the programming language you’re using and highlight
the syntax accordingly; similar to language mode, but automatic

Make Backup Copy (.bck) Automatically makes a copy of the file in its state previous to the current
Save operation and appends the .bck suffix to the filename

Incremental Backup Makes automatic backups of buffer at scheduled intervals

Show Matching (..) Whenever the cursor is at a parenthesis character, its mate will be shown
with a red background if this option is selected

Overtype Switches NEdit from insert mode to overtype mode

Read Only Does not allow you to save changes to buffer

NEdit

2817c20.qxd 11/13/00 2:18 PM Page 303

304

TA B L E 2 0 . 5 : NEdit Shell Menu Commands

Command Function

Execute Command Executes a particular shell command

Execute Command Line Same as above, but lets you give options

Filter Selection Prompts you for a Unix command to use to process the currently selected
text—the output from this command replaces the contents of the selection

Cancel Shell Command Self-explanatory

TA B L E 2 0 . 6 : NEdit Macro Menu Commands

Command Function

Learn Keystrokes Keystrokes and menu commands are recorded, to be played back later, using
the Replay Keystrokes command, or pasted into a macro in the Macro Com-
mands dialog of the Default Settings menu in Preferences

Finish Learn Stops recording

Cancel Learn Cancels the recording

Replay Keystrokes Replays learned keystrokes

Repeat Repeats last replay

Complete Word Attempts to deduce the word you’re typing and complete it

Fill Sel. w/char Fills the selected area with a character that you specify

Quote Mail Reply Precedes each line of selected text with a > character

Unquote Mail Reply Removes > characters

TA B L E 2 0 . 7 : NEdit Windows Menu Commands

Command Function

Split Window Splits window in two allowing you to see different parts of the buffer simultaneously

Close Pane Closes the selected pane’s open buffer(s) (In this menu, you will see the names of
files being worked on in various buffers. By clicking the name of the file, you will
bring that window to the foreground.)

Chapter 20 • Graphical Text Editors

2817c20.qxd 11/13/00 2:18 PM Page 304

305

KEdit
KEdit is the graphical text editor included with the KDE integrated desktop
environment. Although it is not as full-featured as NEdit, KEdit is more than
adequate for most basic editing tasks. In addition to editing text, KEdit has a
simple interface that works with your computer’s mail program, so that you
can edit and send e-mail directly from KEdit.

Although KEdit is distributed as part of the KDE package, you don’t necessarily
have to run KDE to use it. You do, however, need to have the Qt library installed on
your computer. Qt is the widget set (a set of instructions that define the basic build-
ing blocks of a graphical program) upon which KDE is built. As long as you have
Qt installed, KEdit should work. In fact, when making the notes for this chapter, Joe
was running KEdit under Gnome, KDE’s main competitor.

The default KEdit screen, shown in Figure 20.2, has a menu bar; a toolbar con-
taining various icons; a status bar showing the mode (either insert or typeover),
and line and column position of the cursor; and a main text area. As with NEdit,

F I G U R E 2 0 . 2 :

The KEdit screen is straight-
forward and easy to use.

KEdit

2817c20.qxd 11/13/00 2:18 PM Page 305

306

all you need to do when you start KEdit is to simply click in the text area and
begin typing. Your text will appear in the window as you type. Use the mouse or
the arrow keys to move the cursor to various locations within the text.

The KEdit Toolbar
The toolbar contains various icons that are linked to frequently used functions.
From left to right, they are as follows:

• New Document

• Open Document

• Save Document

• Copy

• Paste

• Cut

• Print Document

• Mail Document

• Help

The Menu Bar
The menu bar is similar to that used in many other graphical programs, such as
NEdit. Since the commands are so similar, we suggest that you consult the tables
in the “NEdit” section of this chapter to see what the basic command functions
are. The menus available in KEdit are as follows:

• File

• Edit

• Options

• Help

Chapter 20 • Graphical Text Editors

2817c20.qxd 11/13/00 2:18 PM Page 306

307

gEdit
Just as KEdit is the graphical editor that ships with the KDE desktop, gEdit is the
editor that ships with the Gnome desktop. It is not as full-featured as NEdit, but
gEdit has more features than KEdit. gEdit does, however, have one feature not
found in either KEdit or NEdit: a bar along the left side of the screen, as shown in
Figure 20.3, that allows you to manage a number of open documents simultane-
ously. This is similar to NEdit’s windows feature, but the bar is always on-screen,
and creates an attractive and intuitive way to manage multiple documents.

F I G U R E 2 0 . 3 :

gEdit is the Gnome graphi-
cal text editor, which is sim-
ilar to NEdit and KEdit.

gEdit

2817c20.qxd 11/13/00 2:18 PM Page 307

308

Like KEdit, gEdit has a toolbar with icons linked to commonly used functions.
The gEdit toolbar icons are listed below:

• New

• Open

• Save

• Close

• Print

• Undo

• Redo

• Cut

• Copy

• Paste

• Find

• Line

• Exit

Chapter 20 • Graphical Text Editors

2817c20.qxd 11/13/00 2:18 PM Page 308

309

The menu options in gEdit are much the same as those in KEdit and NEdit, so
we will not repeat that information here. We will, however, note that gEdit has a
number of plug-ins that are found, usefully enough, in the Plugins menu. These
are fairly simple utility programs, most of which are primarily helpful to pro-
grammers. These programs include utilities that convert numbers from decimal
to hexadecimal, octal, or binary notation; open Unix manual pages; encrypt or
decrypt documents; and so on. It is easy to add new plug-ins when they are cre-
ated. If you’re interested, keep an eye on http://www.gnome.org for announce-
ments of new utilities.

Summary
Graphical text editors function much like the text-mode editors described in other
chapters in this part of the book. Unlike those text-mode editors, however, graph-
ical editors have some added functions, such as the ability to use the mouse,
drop-down menus, and a more pleasing appearance on the screen. There are sev-
eral popular graphical editors, both those that are shipped as part of an inte-
grated desktop package and those that are standalone programs.

NEdit, KEdit, and gEdit are three of the best graphical text editors. NEdit is a
standalone program, while KEdit and gEdit are part of the KDE and Gnome inte-
grated desktop environments, respectively. All three have more functions and
features than most of the text-mode editors, with NEdit being the most-featured
and KEdit the simplest. Although graphical editors place some additional mem-
ory load on your computer, the intuitive surroundings and the ability to use your
mouse make graphical editors a useful addition to the text-editing arsenal.

Summary

2817c20.qxd 11/13/00 2:18 PM Page 309

This page intentionally left blank

P A R T V I
Shell Programming

� Chapter 21: An Introduction to Shell Programming

� Chapter 22: Variables

� Chapter 23: Flow Control, Part I: Conditional Flow Control

� Chapter 24: Flow Control, Part II: Iterative Flow Control

� Chapter 25: Regular Expressions

� Chapter 26: Signals and Status

2817c21.qxd 11/20/00 2:43 PM Page 311

This page intentionally left blank

C H A P T E R
T W E N T Y - O N E

An Introduction to Shell
Programming

� Why Program the Shell?

� What Is a Script and What Is a Program?

� Parts of a Program

� Summary

21

2817c21.qxd 11/20/00 2:43 PM Page 313

314

In the preceding chapters, we have shown you the various tools that make up
the complete Unix environment. Windowing systems, shells, and text editors
form the basic toolbox from which you can draw to make Unix work for you.
Many users need not go any farther than these programs, because they can be
configured and used in a multiplicity of ways to meet your unique needs; with
the combination of graphical programs and shell commands, a casual user can
easily accomplish any number of common tasks. However, if that was all there
was to Unix, the operating system would never have acquired the popularity and
loyal following that it has today.

Starting with this part of the book, we begin to exploit the real power of Unix.
In earlier chapters, we alluded to the near-infinite configurability of Unix. In this
chapter, and those that follow, we begin to show you how this configuration
actually happens. Shell programming forms the basis of the Unix operating sys-
tem. When a Unix system boots up, it executes a series of shell scripts that initi-
ate various services. It is these shell scripts that determine how a particular
computer functions, whether it is a workstation, a Web server, a mail server, or
any of the multitude of roles that a Unix computer can play.

NOTE Some of the examples in this part of the book require the use of bash version 2 or
later. Not all Unix systems have this version installed as the default bash. If your sys-
tem does not, install the bash version included on this book’s CD-ROM. It is capa-
ble of handling all the examples constructed in the shell programming chapters.

Why Program the Shell?
At its most basic, a shell program is simply a series of shell commands executed
sequentially and automatically. At first glance, this may seem like a pedestrian
sort of thing: Couldn’t you just do that by hand? Consider the implications,
though. Any program can be run from the shell, and input and output for those
programs can be redirected by the shell. This means that a sufficiently skilled
shell programmer can automate an enormous range of tasks, simply by creat-
ing shell scripts.

Chapter 21 • An Introduction to Shell Programming

2817c21.qxd 11/20/00 2:43 PM Page 314

315

By happy coincidence (or maybe not), the tasks that are most amenable to
automation are usually the most tedious and repetitive tasks to be found in Unix
system administration. Properly applied, shell programming can turn any Unix
computer into a true labor-saving device. In this part of the book, we give you
the tools you will need to begin shell programming, show you how to use them,
and turn you loose to figure out how shell scripts will best fit your system
administration needs.

The scripts we develop in these chapters, though, will probably seem trivial
and useless at first. Certainly, they’re not related to system administration in any
clear or obvious manner. In some ways, that’s an accurate impression; what these
scripts do is not system administration, and quite often they’re just silly. How-
ever, we designed these scripts to illustrate the techniques involved in shell pro-
gramming. If we gave you a bunch of scripts that did everything you needed,
you could run them and be fairly happy. However, if we show you how to come
up with your own scripts, you’ll be able to build shell programs that do exactly
what you need without adaptation. We think it’s a worthwhile trade-off.

NOTE If you’re really searching for practical scripting solutions, go ahead and turn to Part
VII: “Basic System Administration.” The chapters in that part of the book, espe-
cially Chapter 28: “System Programming,” explain how these techniques can be
applied to the practical tasks of running a Unix system.

So, the answer to the question “Why program the shell?” is this: Programming
the shell can save you a lot of time and tedium, and it can also teach you a lot
about the inner workings of your Unix system. We think that learning the basics
of shell scripting is one of the bridges between beginner and intermediate Unix
proficiency, and that doing it well puts you well into advanced territory.

What Is a Script and What Is a Program?
We use the terms shell script and shell program interchangeably. The distinction
between the two—to the extent that there is a distinction at all—varies depending
on whom you ask. This is one of those small issues that is very important to some
people and completely beside the point for others; we don’t think there’s much to

What Is a Script and What Is a Program?

2817c21.qxd 11/20/00 2:43 PM Page 315

316

be gained by insisting on one term over the other, but be aware that some people
do care quite a bit.

Some Unix folk like to distinguish between programs and scripts on the basis
of the programming language used. In Chapter 1: “History and Background of
Unix,” we described the C programming language and how programs in C need
to be compiled before they can be run. For people who adhere to a strict defini-
tion, programs are written in compiled languages such as C, whereas scripts are
written in interpreted languages such as bash’s native scripting language or Perl.

NOTE An interpreted language is one where the program’s instructions are converted to
machine code language on the fly as the program is being executed. A compiled
language is one where the entire program is converted before it is run.

For other people, the distinction between program and script comes in the size
and/or scope of the file. The term program is reserved for large, multifunction
pieces of software such as Netscape or The GIMP, while scripts tend to be short
and single-function, and are often called one-offs because they do only one thing.
Still other people reserve script for something that the user or system administra-
tor writes for use on her own machine, while a program would be something writ-
ten by someone else.

In any case, we think the distinction is based on semantics and not on any eas-
ily definable factual basis. Both scripts and programs are sets of instructions that
the machine must execute to perform a particular task or set of tasks. Scripts can
have all the functions of programs, and vice versa. We think they’re pretty much
the same. That said, we tend to use the phrase shell script more than we say shell
program. This is largely a matter of habit and nothing more. Do not be confused
into thinking that we are talking about two different things.

Parts of a Program
In this section of the chapter, we introduce the various parts of a shell program. In
the remaining chapters of this part of the book, we go into far greater detail about
each of these components. For now, we simply want to familiarize you with the
terms so that you’ll be able to follow the remainder of this part of the book, in
which we build upon these concepts.

Chapter 21 • An Introduction to Shell Programming

2817c21.qxd 11/20/00 2:43 PM Page 316

317

Statements
The basic unit of programming is the statement. A statement, in the bash context,
can be any valid shell command. Thus,

ls /etc

can be a statement, as can any of the other commands that we showed you in ear-
lier chapters.

There are also some types of statements that we haven’t introduced yet. These
statements are not generally used as interactive commands; rather, they are state-
ments that serve almost entirely as programming constructs. These constructs help
the finished program make decisions about how to execute itself when necessary.

In general, statements fall into one of three major categories:

Directive: Directive statements instruct the computer to perform a particu-
lar action. The ls /etc example shown above is an example of a directive
statement.

Declarative: A declarative statement is one that, in human language terms,
makes a statement of fact. For example, the instruction A=1 is a declaration
of the fact that the value 1 has been assigned to the variable A.

Conditional: Conditional statements are those that mark sections of the pro-
gram to be executed only if a particular circumstance is true. For example,
you might include a section of code that runs only if the user enters the
answer Yes to a particular question.

NOTE The example used for the declarative statement, A=1, is directive in the sense that
it instructs the computer to equate the two elements, but because the statement
sets a condition rather than performing an action (from the user’s point of view), it
is easier to think of it as a declarative statement.

Operators
Operators are special characters that indicate to the program that a particular
action is to be taken or that a particular condition is to be set. Most people are
familiar with a certain set of operators called arithmetic operators. The symbols

Parts of a Program

2817c21.qxd 11/20/00 2:43 PM Page 317

318

+, –, *, and / stand for addition, subtraction, multiplication, and division,
respectively. In addition to these basic arithmetic operators, there is the assign-
ment operator (=), comparison operators such as < and >, and several others.

In the shell scripting context, operators are used as a consistent way to alert
the computer of particular actions. Because scripting syntax is quite precise, the
use of operators means that different script authors will be able to get the same
results, because they don’t have to figure out how to tell the machine to perform
a particular task. Rather, they can simply use the appropriate operator and move
on to the next line of the script.

Regular Expressions
Regular expressions are a text-matching mechanism. With regular expressions, it is
possible to construct a set of conditions within which one or more text strings will
be matched as part of the action of the script. Once the strings have been identi-
fied, the script can then search a stream of text for matches to those strings. That
text stream can be either a preexisting file or the output from another operation
that produces a certain amount of text. We discuss regular expressions in great
detail in Chapter 25: “Regular Expressions.”

Variables
If you recall your earliest algebra classes, you’ll remember that a variable is a
name to which an arbitrary value can be assigned. For example, using the assign-
ment operator (=), we can make the statement

NAME = “Joe”

This statement assigns the value Joe to the variable NAME. Later, if we need to
change the value for whatever reason, we simply need to make another statement
that reassigns the value:

NAME = “Kate”

In shell scripts, variables are most often used to designate bits of information
whose exact value is unknown or whose value changes based on circumstances.
With the use of variables, you don’t have to rewrite the script every time a vari-
able’s value is altered. You just need to reassign the variable value and proceed.
We discuss variables in detail in Chapter 22: “Variables.”

Chapter 21 • An Introduction to Shell Programming

2817c21.qxd 11/20/00 2:43 PM Page 318

319

Comments
Last, but not least, there are comments. A comment is a statement that does not
serve a specific programming purpose. Rather, comments are included in pro-
grams to help human beings understand what a particular section of code is
designed to do.

In bash scripts, comments are designated with the hashmark operator (#). Any-
thing from the right of the hashmark to the end of the line is ignored by the com-
mand interpreter. Here is a sample comment:

This is a comment.

Comments that span multiple lines must have a hashmark at the beginning of
each line.

This script alphabetizes the contents of a named file
It was written in July 1987.
E-mail me if you have any questions about it.

You can also insert a hashmark in the middle of a line, causing the command
interpreter to execute the operations at the beginning of the line and ignore
everything after the hashmark.

ls /etc # This is a really basic statement.

It may seem that comments are unimportant, because they don’t contribute to
the program’s function. Nothing could be further from the truth. Programming
instructions are written for the computer to execute and are sometimes hard to
understand from a human language perspective. If you intend to share your work
with others, or you plan to use this script for some time, comments are invaluable
in explaining what you were trying to do with a particular section of code.

TIP Because you never know when you might want to revisit a given script, you
should include comments even if you think it’s a one-off. It is amazing how quickly
one can forget how a given section of code was supposed to work. We urge you
to get into the commenting habit and place explanatory comments liberally
through your scripts. Trust us—you’ll be glad you did.

Parts of a Program

2817c21.qxd 11/20/00 2:43 PM Page 319

320

Summary
Shell scripts are programs written to automate certain system activities. They
are written in a language native to the shell environment preferred by the user;
although we use the bash shell language in this book, scripts can be written for
any available Unix shell. Shell scripts can be used to run any shell commands,
even those that require the output of other commands as their input. Although
a shell program can be very simple, it can also be a lengthy and complex file
that takes many minutes to run.

Shell scripts are created from some basic programming elements. The basic unit
is a statement, which can be any valid shell command. Statements can be extended
with operators, special characters that define a particular action. Variables allow
the script writer to use a name with an arbitrary value. Because the value is set
outside the script, the value can be changed without affecting the script. Regular
expressions allow the script to incorporate text-matching elements. Finally, good
scripts include comments, which provide some extra information to future users
about blocks of code, without interfering in the script’s execution.

Chapter 21 • An Introduction to Shell Programming

2817c21.qxd 11/20/00 2:43 PM Page 320

C H A P T E R
T W E N T Y - T W O

Variables

� What Is a Variable?

� Assigning Values to Variables

� Special Variables

� Summary

22

2817c22.qxd 11/13/00 2:27 PM Page 321

322

As we explained in Chapter 21: “Introduction to Shell Programming,” one of
the major components of a shell script is the use of variables. Variables are an essen-
tial part of shell programming. Without their use, it would be quite difficult to cre-
ate a program with any kind of flexibility. If this were the case, shell programs
really would be scripts—they would perform the same actions in the same manner
every single time they were run, rather than adapting to the current situation.

Variables allow programmers to build a certain level of uncertainty into a
script or program. When programmers use variables, they direct the computer to
make decisions about information that the programmers don’t currently have.
That is, the programmer writes the program knowing what type of information is
to be used, but without knowing the exact value of that information. The advan-
tage of this should be obvious: The value of the information described by a vari-
able can be supplied by a user, a calculation, another program, or another part of
the same program. This flexibility allows the script to behave differently under
different circumstances, which, when you get right down to it, is what modern
computing is all about.

So, are variables inevitably abstract and high-concept? Not really. Once you
understand that the use of variables means that scripts really do save system
administrators time because they don’t have to write separate scripts for each
possible value of a given piece of information, you have the basic concept. For the
remainder of this chapter, we’ll step back and provide some practical terms and
framework around this central concept.

NOTE It is difficult to discuss a single element of programming, such as the variable,
without making references to other elements, such as operators. As we describe
these concepts, we will explain the concept and give some idea of what that ele-
ment does in the programming environment. However, we also cover most of the
elements more fully in other chapters of this part of the book. If you see some-
thing you don’t understand, chances are that you’ll be able to figure it out by
looking elsewhere in this book.

What Is a Variable?
Simply put, a variable is a name. If you read Chapter 13: “Customizing the Shell
Environment,” you might recall the discussion of shell variables. Shell variables

Chapter 22 • Variables

2817c22.qxd 11/13/00 2:27 PM Page 322

323

are used to associate a general setting, such as EDITOR, with a specific value, such
as “pico”. In the bash shell, variables are set with a command such as

export EDITOR=”pico”

For now, ignore the export command, because it has a specific shell function.

NOTE The export command makes the variable available to programs outside the one
in which the variable is defined. This is important for shells, because the shell itself
is a program. If you don’t export the variable’s value, it won’t be reflected any-
where but in bash itself; you wouldn’t get your preferred text editor when you run
your newsreader, for example.

Without export, then, the core of the statement is

EDITOR=”pico”

The variable here is simply the word EDITOR. The value of EDITOR could be any-
thing: vi, emacs, or even something completely senseless like flibnert. The vari-
able is just a tag or handle, something that the actual value will be attached to.
The variable itself has no intrinsic meaning except as an association for the value;
just be sure your variables are named clearly so that you remember them.

NOTE flibnert, of course, would be meaningless from a functional point of view.
There is no text editor called flibnert currently in existence (though if someone
were to write one, this section suddenly becomes moot). Even though it’s mean-
ingless, there is nothing prohibiting you from using it as a value. You just wouldn’t
have access to a default text editor whenever the value EDITOR is consulted by
another program. This isn’t so terrible for text editors, but imagine the problems if
you were trying to use a nonsensical value in a crucial system administration script.

Variable Names
You can name a variable anything you want, as long as you stick to letters for the
name. Numeric characters and other symbols often have special meanings in the
shell programming context. You can use numbers if it’s really necessary, but keep
them to the end of the variable name; VARIABLE3 would be okay, but 3VARIABLE
might cause problems in unforeseen ways.

What is a Variable?

2817c22.qxd 11/13/00 2:27 PM Page 323

324

WARNING Naming a variable 0, $, or _ will almost certainly cause the failure of scripts using
that variable. Stay away from nonalphanumeric characters in general.

By convention, environment-variable names are written in capital letters. Vari-
ables that are used only within a particular script can be written in lowercase,
but it’s a good idea to get into the habit of using uppercase for variable names.
Why? It distinguishes the variable name from the variable value. Remember the
earlier example?

EDITOR=”pico”

With the capitalization, it’s clear that EDITOR is a different beast than “pico”,
even if you don’t know what EDITOR or “pico” actually mean. This means that if
you start to read a script where the variables are unfamiliar to you (perhaps they
were named poorly), you can still pick out the variables and their values.

Name your variables with terms that mean something. USERNAME is a better
variable name than UN, because you are more likely to remember the purpose of
the USERNAME value when you revisit the script later. The best variable names are
the ones that describe the function of the variable.

Variable Types
By default, variables in bash are strings. That is, they are sequences of characters.
Thus, if you were to assign the value of “1” to the variable VAR, the shell would
interpret the value as the text character 1 and not the mathematical value of 1.
This can cause some confusion for beginning shell programmers, if they expect to
do mathematical calculations without understanding the difference between text
characters and mathematical values. (The value of var+1 turns out to be the
string 1+1, not the mathematical value 2.)

In the regular Bourne Shell, sh, you are limited to variable values as text
strings. To do mathematical computations, you will need to use the expr com-
mand or one of the several command-line calculator programs that are available
for this purpose. It’s not simple, but it’s a good solution for situations that require
the use of sh instead of another, more fully featured, shell environment.

Chapter 22 • Variables

2817c22.qxd 11/13/00 2:27 PM Page 324

325

TIP If you’re writing scripts that might be moved to another system that doesn’t use
bash, you will probably want to stick to the limitations of the regular Bourne Shell.
Because sh is so stripped down, scripts that work under sh will work better with
other shells than will scripts written to take advantage of bash functions.

bash, however, gives you the ability to assign a variable type to each individual
variable. The variable type lets the shell know what the purpose of that variable
is before it’s executed. Assign variable types with the declare command, along
with one of its flags. For example, if you wanted to use the variable VAR to work a
mathematical calculation, as we tried to do in the first paragraph of this section,
you could declare that the value of VAR should always be parsed as an integer.

NOTE If declare doesn’t seem to work on your computer, check the version of bash
that you’re using. declare is not available in bash versions earlier than bash 2.
(See the book’s CD for a version of bash that supports declare.)

Do so with this command:

declare -i VAR=1

The -i flag tells bash that VAR is an integer. Now, the value of VAR will be parsed
as the mathematical value 1, not as the text character 1. Table 22.1 contains the
flags for declare in bash.

TA B L E 2 2 . 1 : Variable Types Defined with declare

Flag Variable Definition

-a Variable is an array (a list of multiple values).

-f Variable is limited to function names only.

-i Variable is an integer.

-r Variable is read-only (value cannot be changed).

-x Variable is exported (same result as that of the export command).

What is a Variable?

2817c22.qxd 11/13/00 2:27 PM Page 325

326

Typing declare on a line by itself displays the value of all variables in the
shell environment, as shown in Figure 22.1. If you use the –f flag with this com-
mand, the output will be limited to function names and definitions, as shown in
Figure 22.2.

Arrays

An array is a special type of variable that holds more than one value. An array
actually holds a list of values that can be accessed by using an index number that
corresponds to the position of the value in the list. Here’s an example of an array
declaration:

cars=(ford,gm,chrysler)

F I G U R E 2 2 . 1 :

Use the declare com-
mand to list the values
of all defined variables in
the shell.

Chapter 22 • Variables

2817c22.qxd 11/13/00 2:27 PM Page 326

327

When you want to access a particular value from that array, simply use an
index number that is placed in square brackets immediately to the right of the
variable name, as in

cars[0]=ford
cars[1]=gm
cars[2]=chrysler

NOTE Remember that in the Unix world, we always start counting from zero and not one.

Integers

An integer is any positive or negative number that doesn’t have a fractional com-
ponent. Zero is also an integer. The numbers 1, 5, –42, 42, 0, and –1052 are all
integers, but 1.1, 0.5, and –3.75 are not. Declaring values as integers (using the -i

F I G U R E 2 2 . 2 :

Limit declare ’s output to
function names and defini-
tions with the –f flag.

What is a Variable?

2817c22.qxd 11/13/00 2:27 PM Page 327

328

flag for the declare command, as shown above) makes it possible to do simple
arithmetic in shell scripts. However, more complicated calculations, such as
floating-point-oriented arithmetic, cannot be done via the shell. You’d need to
install a separate calculator program to handle more complex equations.

The $ Operator
As you start to read more and more shell scripts (trust us, you will), you will start
to notice that some variable names are preceded by a dollar-sign character ($).
This is an operator that permits you to access the value of a variable, rather than
the variable’s name. Why is this important? Think of it this way: Suppose that
you have a variable named CLOWN. The word CLOWN is just the name of the vari-
able, but the expression $CLOWN represents the actual value of the variable.

To see how this works, run through this example. At a command-line prompt,
type

CLOWN=”bozo”

When you press the Enter key, you’ll see the shell prompt again. Now, type

echo $CLOWN

The word bozo will print to the screen. However, if you were to type

echo CLOWN

instead, the word CLOWN would print to the screen, and you would get no infor-
mation about the actual value of the CLOWN variable. This exercise is shown in Fig-
ure 22.3.

NOTE You can combine literal character strings and variables in the same statement. For
example, in the example above, you could have issued the command echo “I am
usually scared of clowns, but I don’t mind $CLOWN.”. When the com-
mand is executed, you’d see I am usually scared of clowns, but I don’t
mind bozo. printed to the screen. (Variable values are context-sensitive.) This
blend of actual text and variables is called variable substitution.

Chapter 22 • Variables

2817c22.qxd 11/13/00 2:27 PM Page 328

329

Assigning Values to Variables
Variables wouldn’t be much use if you couldn’t assign values to them. In fact, in
the previous sections of this chapter (and in Chapter 13), you’ve seen several
examples of variable-value definition. Value assignment is done with the assign-
ment operator (=). (The = character can also be a comparison operator in some con-
texts, but it’s usually obvious when it’s being used in that manner.)

Here’s an example of a simple value assignment:

VAR=”hello”

When the shell sees the = character, the shell interprets whatever is to the left of the
character as the variable name and whatever is to the right as the value assigned to

F I G U R E 2 2 . 3 :

The $ operator allows you
to distinguish between the
variable’s name and its
value.

Assigning Values to Variables

2817c22.qxd 11/13/00 2:27 PM Page 329

330

that variable name. You can change the value of the variable at any time, just by
reassigning the value:

VAR=”goodbye”

Taking Input from the Keyboard
In many scripts, you’ll want to let a user define the value of a variable while the
script is running. This is done with the read command, as in

read var

When the bash interpreter sees a read statement, the interpreter pauses the exe-
cution of the script and waits for input from the keyboard. The user must enter
something and then press the Enter key. When the computer receives the signal
from the Enter key, the interpreter resumes the script, entering whatever was
typed as the variable’s value.

For example, suppose that you had this script:

echo “What is your name?”
read NAME
echo “Hello, $NAME”.

When executed, this script prints the question What is your name? to the screen.
The script then takes the keyboard input and uses it as the value of the variable
NAME, and inserts that value into the next line of the script after the word Hello.

NOTE The shell makes no judgment about whether the input from the keyboard makes
any sense. If a user were to input the character string qwertyuiop123 at the request
for a name, the script would echo the line Hello, qwertyuiop123 to the screen.
However, you can limit scripts to respond only to certain answers, and we show
you how in Chapter 23: “Flow Control, Part I: Conditional Flow Control.”

Special Variables
Earlier, we cautioned you about using certain numbers and symbols in variable
names. Some symbols shouldn’t be used, because they are reserved for use as

Chapter 22 • Variables

2817c22.qxd 11/13/00 2:27 PM Page 330

331

operators. These include the mathematical operators +, -, *, and /; as well as < and
>, which are used as comparison operators; !, which is used as a negation operator;
and, of course, =, which is used both as an assignment operator and as a compari-
son operator.

However, there are some characters that shouldn’t be used, because they com-
prise a set of variables that have predefined meanings. For example, the ? char-
acter, when used as a variable, reports the success or failure of the previous
command in the script. This is referred to as the previous command’s exit status.
If you were interested in knowing whether a particular command in your script
had executed successfully each time, you could just make the next line of the
script read like this:

echo $?

If the previous command exited successfully, the output of the echo statement
will be 0. An output of any other value, usually 1, means that the previous com-
mand failed.

NOTE The meaning of a particular exit status can be defined by the programmer. Some-
times programmers use exit status to report certain information about the com-
mand that was executed. In that case, the value might be something other than 1
or 0. To find out exactly what a particular exit status means, you’ll need to read
the documentation for that command.

The value of the ? variable changes after each command in the script to reflect
the exit status of the most recently executed command. This is a built-in function
of the bash shell programming environment, and there is no need for you—the
scriptwriter—to define the ? variable. In fact, most of the special variables are
already defined as read-only by default, so that you wouldn’t be able to redefine
them even if you wanted to. Table 22.2 shows a partial set of bash’s special vari-
ables; you cannot use these as names for your own variables, but you will proba-
bly want to use their functions in your own scripts as you learn to build more
complex programs.

Special Variables

2817c22.qxd 11/13/00 2:27 PM Page 331

332

TA B L E 2 2 . 2 : Special Variables in bash Shell Programs

Variable Function

? Exit status of the previous command

$ Process ID of the current shell

! Process ID of the last background command

- Options given to the shell on start-up

0 Name of the current script

1–9 First through ninth command-line arguments to the current script (that is, $1 is the
value of the first command-line argument, and so on)

_ Last argument to previous command

Summary
There’s a lot to absorb with the concept of variables. However, you need to
understand the main concepts before you can use variables in your own shell
scripts. Variables are names that you create that can be associated with particular
values. The value contained by a variable can change, so the variable name is
used as a placeholder for the actual value in scripts. The value of a variable is
accessed by prefixing the variable name with the $ character.

Some variables are predefined by the shell environment. You can use the pre-
defined values of these variables in your scripts without any additional work.
For variables that are not predefined, the value can be set either by using the
assignment operator (=) or by using the read command to take the value from
the keyboard. Variables are always considered to be character strings, unless
you specify otherwise by using the declare command. If you plan to use your
scripts in a shell environment that is not the one in which you’re writing them,
we suggest that you limit yourself to commands and variables that are exe-
cutable in the Bourne Shell (sh) so that your script will run in as many shell
environments as possible.

Chapter 22 • Variables

2817c22.qxd 11/13/00 2:27 PM Page 332

C H A P T E R
T W E N T Y - T H R E E

Flow Control, Part I:
Conditional Flow Control

� The if-then Statement

� Evaluating Variables

� Evaluating Non-Variables

� Evaluating Multiple Conditions

� Building an Example

� Extending the if-then Statement with else

� The elif Statement

� The case Statement

� Summary

23

2817c23.qxd 11/13/00 2:32 PM Page 333

334

In Chapter 22: “Variables,” we explained how variables work in a program-
ming context and how values are assigned to variables outside a script or pro-
gram. Although variables are a mildly interesting topic in themselves, the
previous chapter probably prompted you to think, “So what? Okay, so I get
variables. What am I supposed to do with them?”

One of the main uses of variables in programming is to give your programs the
ability to determine how to execute themselves. That is, you can use variables to
mark certain sections of code, so that those sections will execute—or not execute—
depending on certain conditions. This ability is called flow control, because it is
used to control how the program flows from one instruction to the next.

There are two types of flow control: conditional flow control and iterative flow con-
trol. Conditional flow control involves the creation of code sections that will exe-
cute, or not, depending on whether a given condition is true. Iterative flow control
involves marking certain code sections so that they will execute repeatedly until a
certain condition is met. The distinction between conditional and iterative flow
control is rather subtle, because it can be argued that both types involve setting
and meeting conditions. In practice, however, the difference is fairly clear, because
the two types use distinct commands to obtain the desired results.

NOTE We discuss conditional flow control in this chapter and iterative flow control in
Chapter 24: “Flow Control, Part II: Iterative Flow Control.”

How do variables fit into this picture? Remember that a variable is composed of
two parts: a name, which is static (it doesn’t change), and a value, which is
dynamic (it does change). Using the static component—the name—we can define
a condition against which we can test the dynamic value. As the program exe-
cutes, the value of the variable may be changed. Depending on how it changes,
the variable’s value may or may not meet the test conditions, and the program
may either succeed or fail.

In this chapter, we cover the main components of conditional flow control.
These components are called statements and are the building blocks of shell scripts.
As we show you each statement, we provide examples that show how the state-
ment works. At the end of this part of the book, we’ll construct a new script that
uses all the components introduced in this chapter, and in Chapters 24 and 25.

Chapter 23 • Flow Control, Part I: Conditional Flow Control

2817c23.qxd 11/13/00 2:32 PM Page 334

335

The if-then Statement
The heart of conditional flow control is the if-then statement. The general form
of this statement is

if <condition>
then

<something happens>
fi

The <condition> in the first line is a statement. This statement can return a value
of either true or false. (Actually, the statement can return a value of 0 or 1, where 0
equals true and 1 equals false.) If the condition evaluates as true, the <something
happens> part of the program executes. If the condition evaluates as false, the
<something happens> part is skipped, and the program’s execution continues at
the line immediately following the fi statement.

TIP fi is just if spelled backward. It is a convention used to mark the end of a condi-
tional section.

The 0 and 1 values that represent true and false are the exit status of the expres-
sion. Remember that, in Chapter 22, we discussed exit status in reference to the
special variable ?. The same concept applies here: If an evaluative expression is
successful—that is, if the variable being evaluated meets the condition—the
expression is said to have evaluated successfully, and thus it exits with a status of
0. If the condition is not met, the evaluation fails, and a status of 1 is produced.
This may seem like an overly complicated way of looking at success or failure,
but if you comprehend that success/failure, 0/1, and true/false all represent the
same thing, you have reached a significant point in your understanding of shell
programming.

NOTE The expression being evaluated by an if statement doesn’t have to be a variable
comparison. Any expression that returns an exit status of 0 or 1 will work. In fact,
it’s fair to say that exit status is the only thing that if actually tests. Variable evalu-
ations are the easiest way to see this at work, however, so that’s how we’ve cho-
sen to introduce the concept.

The if-then Statement

2817c23.qxd 11/13/00 2:32 PM Page 335

336

Indentation
You’ll notice that the code sections of this chapter, and throughout the book, are
indented on certain lines. Indentation is used for the sake of readability; it’s not technically
necessary, because programs will run if not indented, but it is required as a matter of pro-
gramming style. Indentation makes the program much easier to read for human eyes, and
easier to read means easier to debug. It is far easier to find the beginning or end of a par-
ticular block of code if it is indented correctly. Plus, when programs become complex (like
the scripts you’ll see in Chapter 26), they commonly embed entire blocks of code into
other blocks of code, in a practice called nesting.

When you begin to write your own scripts, please use indentations. If you don’t indent
your code, you will have a hard time understanding it the next time you read the scripts.
Plus, indenting your code will make your programs much more readable to others if you
share your scripts at a later time or need to ask for help. Professional programmers indent
their code, and if they do, so should amateurs.

Evaluating Variables
So, if if-then statements evaluate variables, how is the evaluation done? Evaluat-
ing variables is done using comparison operators. Comparison operators are divided
into two general categories: string comparison operators and arithmetic compari-
son operators. Tables 23.1 and 23.2 show some common operators in each category
and their functions.

TA B L E 2 3 . 1 : String Comparison Operators

String Function

string a = string b String a is the same as string b.

string a != string b String a is not the same as string b.

string a > string b String a is greater than string b.

string a < string b String a is lesser than string b.

Chapter 23 • Flow Control, Part I: Conditional Flow Control

2817c23.qxd 11/13/00 2:32 PM Page 336

337

TA B L E 2 3 . 2 : Arithmetic Comparison Operators

String Function

a –eq b a is equal to b.

a –ne b a is not equal to b.

a –gt b a is greater than b.

a –ge b a is greater than or equal to b.

a –lt b a is less than b.

a –le b a is less than or equal to b.

Here’s an example using comparison operators. Suppose that you had a script
with a code block like this:

MY_VARIABLE=”walnut”
if [$MY_VARIABLE=”walnut”]
then

echo “Success!”
fi

In the first line of this block, the = functions as an assignment operator, assigning
the value “walnut” to the variable MY_VARIABLE. In the second line, the context
provided by the if statement changes the function of the = character to that of a
comparison operator. The square brackets around the $MY_VARIABLE=“walnut”
expression identify it as the expression to be tested.

Because, in this case, the value of the variable does match the condition set in
the second line of the block, the result of 0, or true, is returned to the if com-
mand. Because the test was true, the line between the then and fi statements
will be executed. If you were to run this script, the word Success! would be
printed to the screen.

Now, assume that you have a similar block of code that looks like this:

MY_VARIABLE=”pecan”
if [$MY_VARIABLE=”walnut”]
then

echo “Success!”
fi

Evaluating Variables

2817c23.qxd 11/13/00 2:32 PM Page 337

338

Because the value of MY_VARIABLE is now “pecan” and not “walnut”, the test
expression in the second line will not evaluate successfully. Because the test returns
an exit status of 1, or false, the script will skip to the line immediately following the
fi statement, whatever that line may be. In this case, there is no line after fi, so the
script would simply end without printing anything to the screen.

The test Command and Square Brackets
The square brackets used in our if-then examples are actually commands themselves. The
bash shell regards the [<expression>] construct as a synonym for the test command.
Thus, the statement

if [MY_VARIABLE=”walnut”]

is exactly the same as

if (test $MY_VARIABLE=”walnut”)

Earlier in this chapter, we noted that the expression used in conjunction with an if-then
statement need not be a variable evaluation, but could be any statement that returns an
exit value of 1 or 0. This is exactly what the test command does. If the variable matches
the condition, test exits successfully and returns a value of 0. If not, it returns a value of 1.

Be aware that the square brackets and the test command are synonyms only in the bash
shell. You can’t use the square brackets in this manner with the regular Bourne Shell—or
with any other shell environment—because this is one of bash’s features. You’ll have to
use the test command explicitly if you wish to test expressions while programming for
other shells.

Evaluating Non-Variables
If your script requires evaluation of items that are not variables, there are several
ways to handle this need. You can use the test command to check components of
the computer’s filesystem, and you can use the if-then statement to determine
whether a given command has executed successfully. Both of these functions pro-

Chapter 23 • Flow Control, Part I: Conditional Flow Control

2817c23.qxd 11/13/00 2:32 PM Page 338

339

vide additional flexibility in shell scripts, which makes scripting an even more
useful skill to learn.

The test Command
In addition to evaluating variables, the test command has other functions.
(Because we are working with the bash shell in this book, the test command is
synonymous with square brackets, [], as explained in the sidebar “The test Com-
mand and Square Brackets.” If you are programming in another shell, you will
need to use test alone.) Through the use of various flags, it is possible to use
test to determine the existence and status of files and directories.

For example, suppose that you want to write a script that will take a certain
action only if a particular file exists. You might write a code block like this:

if (test –e <filename>)
then

<something happens>
fi

The –e flag causes test to exit successfully only if the file in question exists.

You can also use these flags with the [] construct in the bash shell. An equiva-
lent to the previous code block would be

if [-e <filename>]
then

<something happens>
fi

Table 23.3 shows the various flags used by test when working with files and
directories.

TA B L E 2 3 . 3 : test Flags

Flag Function

-e The named file exists.

-d The named file exists and is a directory.

-f The named file exists and is a regular file (i.e., it is not a directory or any other kind
of special file).

Continued on next page

Evaluating Non-Variables

2817c23.qxd 11/13/00 2:32 PM Page 339

340

TA B L E 2 3 . 3 C O N T I N U E D : test Flags

Flag Function

-s The named file exists and is not empty.

-r The user has read permission on the file.

-w The user has write permission on the file.

-x The user has execute permission on the file.

-O The user is the file’s owner.

-G The owner’s group ID matches the file’s ID.

-nt The file is newer than another file (usage:
<file1> -nt <file2>).

-ot The file is older than another file (usage:
<file1> -ot <file2>).

NOTE The –nt and –ot flags compare the timestamp on the named files, which is
updated any time the file is accessed or modified. Thus, file1 could have been cre-
ated a month earlier than file2, but if file1 were modified or accessed more
recently, the –nt and –ot flags would report file1 as being a newer file than file2.

Commands
The if-then statement can also be used to create conditional code, based on
whether a given command has been executed successfully. For example, suppose
that your script’s action needs to operate within a particular directory. You need
to move into that directory before the script executes, and you don’t want the
script to execute if—for some reason—you can’t move into that directory. In that
event, you might write conditional code that looks like this:

if (cd <directory>)
then

<something happens>
fi

Chapter 23 • Flow Control, Part I: Conditional Flow Control

2817c23.qxd 11/13/00 2:32 PM Page 340

341

In this case, the conditional code will execute only if the cd command was
successful.

NOTE In this example, there is no test. Thus, the square brackets do not appear. In fact,
the parentheses are not strictly necessary, but they improve the readability of the
code. See the sidebar “Indentation” for more about code readability.

Evaluating Multiple Conditions
Although single-condition statements are extremely common in shell scripts, it is
often the case that two or more conditions must be met simultaneously before a
code block will execute. There are two ways to build a multiple-condition evalua-
tion into a script: using multiple if-then statements and using logical operators.

If you choose to use multiple if-then statements for the evaluation of multiple
conditions, your code might look like this:

if <condition1>
then

if <condition2>
then

<something happens>
fi

fi

This is understandable, but it’s also kind of bulky. If you were to impose a third or
fourth condition in this block, the indentations alone would be difficult to follow.

The easier method is to use a logical operator. The logical operators are &&,
which stands for and, and ||, which stands for or. Table 23.4 shows the function
of these operators.

TA B L E 2 3 . 4 : Logical Operator Functions

Statement Function

<condition1> && <condition2> <condition1> AND <condition2> are both true.

<condition1> || <condition2> Either <condition1> OR <condition2> is true.

Evaluating Multiple Conditions

2817c23.qxd 11/13/00 2:32 PM Page 341

342

So, the example used at the beginning of this section could be rewritten more
simply as

if (if <condition1> && <condition2>)
then

<something happens>
fi

There may be times when the first construction, with multiple if-then state-
ments, is preferable. As a rule, good programming style dictates that you should-
n’t use nested conditional expressions (one conditional expression embedded
inside another) unless it’s absolutely necessary. The logical operators create more
elegant and streamlined code, which is generally the goal.

Building an Example
Now that we’ve explained the concepts of conditional flow control, it’s time to
begin building an example that will show you how this material works in prac-
tice. The first example is a very simple program that asks a user to guess a secret
word. Fire up your favorite text editor (see Part V: “Using Text Editors” if you
don’t have a favorite yet) and enter the following code into an empty file:

#!/bin/bash

SECRET WORD version 1
#
This program invites the user to guess a secret word
from a list of choices.

SECRET_WORD=”telephone”

echo “What is your name?”
read NAME
echo
echo “Hello, $NAME. Please guess the secret word. Your”
echo “choices are iguana, telephone, or slurp.”
read GUESS

if [$GUESS=$SECRET_WORD]
then

Chapter 23 • Flow Control, Part I: Conditional Flow Control

2817c23.qxd 11/13/00 2:32 PM Page 342

343

echo “Congratulations, you are correct!”
fi

Save this file with the name secword. Exit the editor and change the new file’s
permissions so that it is executable by issuing the command

chmod u+x secword

at the command prompt. Once it is saved and executable, run the program by
typing ./secword at the prompt. You will be prompted to guess the secret word
from the list; because this is the first time you have run the script, type telephone
and press Enter. You should be congratulated.

Hash Bang Slash Bin Slash Bash
The first line of the sample program given above reads #!/bin/bash. The hashmark char-
acter (#) might lead you to believe that this line is a comment (i.e., a line that is not exe-
cuted as code), but it isn’t. A hashmark followed immediately by an exclamation point
(called a bang in Unixese) tells the computer that this program is to be executed using the
named shell: in this case, the bash shell.

If you’re already running the program from within bash, the line is redundant, but it
doesn’t hurt anything. If you’re using another shell, though, the line ensures that a
bash session will be opened to handle the script, which is necessary if you’re using
bash-specific shortcuts such as the square brackets described earlier. If the line is not
included and someone tries to run the script in a shell other than bash, the script will
not run. We encourage the use of the #!/bin/bash line as the first line in all your
scripts if you’re using the skills learned in this book, because we are working explicitly
with bash mechanisms and shortcuts.

As you can see in the script, we’ve defined the value of the variable SECRET_
WORD to be “telephone”. The user’s input is assigned to the variable GUESS. If the
two match, the user has guessed the secret word, so the congratulatory message
will print to the screen. If the user guesses incorrectly, the program exits. Run the
program again, but guess slurp or iguana this time. You should see just the com-
mand prompt appear, instead of a message.

Building an Example

2817c23.qxd 11/13/00 2:32 PM Page 343

344

Extending the if-then Statement with else
By itself, the if-then statement is somewhat limited. It can define only single
sections of code that are conditionally executed. If you wanted to allow choices
with multiple alternatives and wanted to use if-then statements to do that,
you’d need to construct entire chains of if-then statements. Needless to say,
that would become cumbersome and confusing. Fortunately, bash provides
some extensions to the if-then construct that make setting up multiple condi-
tions much more elegant and readable.

The first of these extensions is the else statement. else works like this:

if <condition>
then

<something happens>
else

<something else happens>
fi

Using else is roughly equivalent to a second if-then statement where the con-
dition is equal to everything that isn’t the first condition.

Now that you know about else, reopen the secword file. It’s time to edit that
program and see how you can improve it with an else statement. Edit the file so
that it looks like this (the changes are in the final code block):

#!/bin/bash

SECRET WORD version 1
#
This program invites the user to guess a secret word
from a list of choices.

SECRET_WORD=”telephone”

echo “What is your name?”
read NAME
echo
echo “Hello, $NAME. Please guess the secret word. Your”
echo “choices are iguana, telephone, or slurp.”
read GUESS

if [$GUESS=$SECRET_WORD]

Chapter 23 • Flow Control, Part I: Conditional Flow Control

2817c23.qxd 11/13/00 2:32 PM Page 344

345

then
echo “Congratulations, you are correct!”

else
echo “Sorry, $GUESS is not correct.”

fi

Save and exit. You can run the program again by typing ./secword at the shell
prompt. In this new program, if the user guesses incorrectly, an informative mes-
sage will print to the screen before the program exits. Note that the two blocks
making up the if-then-else construct are exclusive of one another; that is, if
one executes, the other does not.

The elif Statement
Using the else statement is not the only way to extend the if-then statement.
Another bash extension is the elif statement. elif is sort of a cross between if
and else. It allows the programmer to add further conditions to a basic if state-
ment, as in this example:

if <first condition>
then

<something happens>
elif <second condition>
then

<something happens>
elif <third condition>
then

<something happens>
else

<something else happens>
fi

Each elif statement acts as a separate if statement, and the block that is
defined under each elif is a separate alternative. You could achieve the same
effect by chaining multiple if statements, like this:

if <first condition>
then

<something happens>
fi

The elif Statement

2817c23.qxd 11/13/00 2:32 PM Page 345

346

if <second condition>
then

<something happens>
fi

if <third condition>
then

<something happens>
fi

However, using elif is far more elegant. Also, using elif lets you use an else
statement to provide an alternative outcome, which will execute if none of the
conditions are met.

Open secword once again, to revise the program and take advantage of the
elif construct. The edits are at the end.

#!/bin/bash

SECRET WORD version 1
#
This program invites the user to guess a secret word
from a list of choices.

SECRET_WORD=”telephone”

echo “What is your name?”
read NAME
echo
echo “Hello, $NAME. Please guess the secret word. Your”
echo “choices are iguana, telephone, or slurp.”
read GUESS

if [$GUESS=$SECRET_WORD]
then

echo “Congratulations, you are correct!”
elif [$GUESS=”iguana”]
then

echo “Why would the secret word be iguana?”
elif [$GUESS=”slurp”]
then

echo “No, it’s not slurp.”
else

Chapter 23 • Flow Control, Part I: Conditional Flow Control

2817c23.qxd 11/13/00 2:32 PM Page 346

347

echo “$GUESS is not even in the list.”
fi

Save the file and exit the editor. You can run the edited program by typing
./secword at the prompt. In this new version, there is a special message for each
option in the given list of choices. If the user guesses something that isn’t on the
list, there is a message for that choice after the else statement.

The case Statement
In some cases, using if-then-elif-else statements can be a bit cumbersome.
bash provides yet another way of setting up multiple conditionals with the case
statement. The case statement uses this syntax:

case <expression> in
<pattern 1>)

<something happens>
;;
<pattern 2>)

<something happens>
;;
<pattern 3>)

<something happens>
;;

esac

TIP Like fi is just if spelled backwards, esac is just case spelled backwards. It indi-
cates the end of that particular case code block.

As you have done with the other bash extensions, open the secword file to edit
it by incorporating the case statement:

#!/bin/bash

SECRET WORD version 1
#
This program invites the user to guess a secret word
from a list of choices.

The case Statement

2817c23.qxd 11/13/00 2:32 PM Page 347

348

SECRET_WORD=”telephone”

echo “What is your name?”
read NAME
echo
echo “Hello, $NAME. Please guess the secret word. Your”
echo “choices are iguana, telephone, or slurp.”
read GUESS

case $GUESS in
$SECRET_WORD)

echo “$SECRET_WORD is correct!”
;;
“iguana”)

echo “Iguana is incorrect.”
;;
“slurp”)

echo “Slurp is incorrect.”
;;
*)

echo “$GUESS wasn’t even a choice.”
;;

esac

As before, save the file, exit the editor, and run the script. In this version of the
program, the final option * serves the same function as the else clause in an if-
then statement. The asterisk character, in this context, means anything else.

Taking Arguments from the Command Line
One task that the case statement is especially helpful for is the processing of
command-line arguments. Command-line arguments are options that you give to
the script at the command line. Flags to a command, as in ls –la, are an exam-
ple of command-line arguments. Using case statements, you can define various
behaviors in response to certain command-line arguments.

How do you get your program to realize that the arguments are even there?
This is done with special variables, $0 to $9. Each of these variables corresponds
to an element on the command line, moving from left to right. So, for example, $0
would be the name of the program itself (or whatever abbreviation is used as the
command), because $0 is the first thing typed at the prompt. The first argument
to the program is $1, the second is $2, and so on.

Chapter 23 • Flow Control, Part I: Conditional Flow Control

2817c23.qxd 11/13/00 2:32 PM Page 348

349

TIP This is one of the few instances in the Unix environment where counting from one
is actually a better way to visualize enumerated objects than the traditional count
from zero.

To illustrate this final element of conditional flow control, open the secword file
yet once again and make the following edits:

#!/bin/bash

SECRET WORD version 1
#
This program invites the user to guess a secret word
from a list of choices.

SECRET_WORD=”telephone”

case $1 in
$SECRET_WORD)

echo “$SECRET_WORD is correct!”
;;
“iguana”)

echo “Iguana is incorrect.”
;;
“slurp”)

echo “Slurp is incorrect.”
;;
*)

echo “$1 wasn’t even a choice.”
;;

esac

Once again, save the file, exit the editor, and run the script. In this case, the user
needs to know something about how the program works before she can use it.
This is required because, to make a guess at the secret word, she will have to
specify her guess on the command line by issuing a response like this:

prompt% ./secword iguana

As you can see, her choice is the second item on the command line, which is
parsed by the script as $1.

The case Statement

2817c23.qxd 11/13/00 2:32 PM Page 349

350

A command-line argument probably isn’t the best selection for an interactive
game script such as the one you’ve worked with in this chapter. However,
command-line arguments have many uses in the Unix programming world.
Perhaps your script is a utility intended to be run noninteractively. In such a
case, command-line arguments might be a good way to specify a given behav-
ior or pass the value of certain variables on to other code blocks in the script.
System administration has lots of situations where scripts with command-line
arguments may be the best solution.

Summary
Flow control is the mechanism that is used to control how scripts move from one
instruction to the next. There are two types of flow control, conditional and itera-
tive. Conditional flow control, the subject of this chapter, works by determining
whether given conditions are true. If the conditions are true, one set of instruc-
tions executes; if they are false, another set of instructions executes.

There are several types of conditional flow control statements. The basic state-
ment is an if-then statement, which determines that if a given condition is true,
then a specified action will happen. if-then statements can be used to evaluate
variables and their values, or can be used to evaluate non-variables. Conditional
flow control can also be used to evaluate multiple conditions at one time, though
if-then statements are an inelegant solution to that task. In the case of multiple
conditions, the else, elif, or case statements are better suited to the job.

Chapter 23 • Flow Control, Part I: Conditional Flow Control

2817c23.qxd 11/13/00 2:32 PM Page 350

C H A P T E R
T W E N T Y - F O U R

Flow Control, Part II:
Iterative Flow Control

� The for Statement

� The select Statement

� The while Loop

� The until Loop

� Nesting Loops

� Summary

24

2817c24.qxd 11/13/00 2:35 PM Page 351

352

In the previous chapter, we discussed the concept of conditional flow con-
trol. That is, we described how to set aside sections of code that are executed
only if a particular condition is true. In this chapter, we describe a second kind
of flow control. Iterative flow control means marking sections of text that will be
executed repeatedly until—or unless—a certain condition is true.

TIP Although the two concepts might be easily confused because they both rely on
the existence of a particular true condition, the important thing to remember is
that iterative flow control causes a code section to repeat (iterate).

Three different statements are used in iterative flow control: the for statement,
the until statement, and the while statement. These statements are also called
loops, and we use the terms interchangeably. In this chapter, we explain each type
and then build examples using the various statements.

The for Statement
The for statement causes a given section of code to repeat one time for each value
in a list of values specified by the programmer. The list of values is most com-
monly an array. The general form of the for statement is

for <name> [in <list>]
do

<something>
done

Consider the following block of code:

#!/bin/bash

declare –a NAMES
NAMES=(tom dick harry)

for name in “${NAMES[@]}”
do

echo $name
done

Chapter 24 • Flow Control, Part II: Iterative Flow Control

2817c24.qxd 11/13/00 2:36 PM Page 352

353

This script simply takes and prints the value of each element in the array NAMES
(i.e., tom, dick, and harry).

As you can see, this script declares the variable NAMES to be an array, using the
–a flag to the declare command. (The flag is not technically necessary, because
the way in which the variable was assigned makes it clear to the bash shell that
the variable is an array, but we use the flag to be explicit.) We have assigned
the values tom, dick, and harry to be the elements of the array. Individually,
these values would be referred to as $NAMES[0]=tom, $NAMES[1]=dick, and
$NAMES[2]=harry.

Once the for loop begins, it creates a new variable; in this case, the new variable
is named name. This new variable is called a loop variable, and it can be used within
the loop to access the value of that particular element of the array. Note that the
loop variable is created and assigned a value implicitly by the for statement.
There is no need to declare or assign this value manually.

Each time the script executes this loop, the value of the loop variable is assigned
to be whatever the value of the next element in the array is. So, the first time that
this loop executes, the value of $name is $NAMES[0] (tom). The second time
through the loop, the value of $name is $NAMES[1] (dick), and so on.

When you make reference to the array that contains the individual values as you
work on scripts like this, you need to use the construct “${<arrayname>[@]}”.
Because of the way in which bash handles arrays, the quotes and curly braces are
required to access the value of a particular element. The [@] component is the posi-
tional parameter, in which the @ character is used to track which element is cur-
rently being referred to. It starts at zero, in traditional Unix counting style, and
increases incrementally by one each time the loop repeats.

Command-Line Processing
One of the great strengths of the for construct is with command-line processing.
Recall that, in Chapter 23, we used the special variables $0, $1, and so on to access
the various elements of the command line. You can do much the same thing with
the special variable $@. $@ is a variable containing all of the command-line argu-
ments, which can then be iterated by the for statement.

For example, you might change the previous code block to look like this:

#!/bin/bash

The for Statement

2817c24.qxd 11/13/00 2:36 PM Page 353

354

for name in $@
do

echo $name
done

and invoke the script using this command at the shell prompt:

prompt% ./names tom dick harry

You will get this output:

tom
dick
harry

Indeed, the $@ variable is so integral to the idea behind the for construct that it
can be omitted entirely. As long as nothing else is specified, for will assume that
$@ is intended to be the list. The following block of code will do exactly the same
thing as the block above:

#!/bin/bash

for name
do

echo $name
done

Building an Example with for
Now that you have some exposure to the for construct, you can create a script
that will take a list of files at the command line and return output that defines the
file type and what the file’s permissions are in regard to the user running the
script. Here’s an example of such a script:

#!/bin/bash

Checkfile. Checks type, ownership, and permissions of
a file or list of files.

for file in $@
do

Test file type
if [-d $file]
then

Chapter 24 • Flow Control, Part II: Iterative Flow Control

2817c24.qxd 11/13/00 2:36 PM Page 354

355

echo “$file is a directory”
elif [-f $file]
then

echo “$file is a regular file”

if [-s $file]
then

echo “$file is not empty”
else

echo “$file is empty”
fi

else
echo “$file not found”

fi

check ownership

if [-0 $file]
then

echo “You are the owner of $file”
else

echo “You are not the owner of $file”
fi

check permissions

if [-r $file]
then

echo “You have read permission for $file”
fi

if [-w $file]
then

echo “You have write permission for $file”
fi

if [-x $file]
then

echo “You have execute permission for $file”
fi

done

The for Statement

2817c24.qxd 11/13/00 2:36 PM Page 355

356

The meat of this script is a series of if statements that use the file-attribute test-
ing functions of the test command to test various attributes of a given file. If
these statements are not clear to you, review Chapter 23: “Flow Control, Part I:
Conditional Flow Control.” If you look past all the if statements, however, you
can see that all the script really uses is a simple for loop. If you execute this script
with the names of multiple files on the command line, information will be pro-
duced for each file in the order in which the file appears on the command line.

It should be clear from this example that the for loop is a powerful construct.
Whether used for command-line processing or in combination with an array, a for
loop allows you to iterate over a range of values and process each value in turn.

The select Statement
The select statement is similar to the for statement, but select has a special
use. Syntactically, it is identical to for:

select <name> [in <list>]
do

<something>
done

The difference between select and for is that, instead of iterating a list of val-
ues and processing each one in turn, select generates a menu based on the list,
with numbers for each item. The user is then prompted to select one item from
the list. For example, assume that you were to rewrite the Checkfile program
given in the previous section to use a select statement:

#!/bin/bash

Checkfile. Checks type, ownership, and permissions of
a file or list of files.

select file in $@
do

Test file type
if [-d $file]
then

echo “$file is a directory”

Chapter 24 • Flow Control, Part II: Iterative Flow Control

2817c24.qxd 11/13/00 2:36 PM Page 356

357

elif [-f $file]
then

echo “$file is a regular file”

if [-s $file]
then

echo “$file is not empty”
else

echo “$file is empty”
fi

else
echo “$file not found”

fi

check ownership

if [-0 $file]
then

echo “You are the owner of $file”
else

echo “You are not the owner of $file”
fi

check permissions

if [-r $file]
then

echo “You have read permission for $file”
fi

if [-w $file]
then

echo “You have write permission for $file”
fi

if [-x $file]
then

echo “You have execute permission for $file”
fi

done

The select Statement

2817c24.qxd 11/13/00 2:36 PM Page 357

358

The initial output of this program, if invoked on the command line with the
names of two files as arguments, would look like this:

$ checkfile file1 file2

1) file1
2) file2
#?

The #? prompt is the user’s cue to enter one of the listed choices: 1 or 2. The pro-
gram then runs the loop for the file that corresponds to the user’s numerical
choice. When the loop is finished, the program presents the menu and prompt
again, letting the user choose another option.

This will continue forever, unless either the user presses Ctrl+d or Ctrl+c to
stop the script, or you add a break statement to your select loop to stop the infi-
nite repeat. A break statement would edit the first code block like this:

select <name> [in <list>]
do

<something>
break

done

When the program reaches the break statement in its execution, it will exit the
select loop.

Most people find the default value for the prompt, #?, to be unattractive—let
alone less than helpful. You can remedy this problem by using the special vari-
able PS3. You may recall from our discussion of bash environment variables in
Chapter 13: “Customizing the Shell Environment” that the value of PS3 is the
third-level bash prompt. It is also the value of the select statement’s prompt. So,
you can rewrite the Checkfile program to take advantage of that variable:

#!/bin/bash

Checkfile. Checks type, ownership, and permissions of
a file or list of files.

PS3=”Select a file to check: “
select file in $@
do

Test file type
if [-d $file]

Chapter 24 • Flow Control, Part II: Iterative Flow Control

2817c24.qxd 11/13/00 2:36 PM Page 358

359

then
echo “$file is a directory”

elif [-f $file]
then

echo “$file is a regular file”

if [-s $file]
then

echo “$file is not empty”
else

echo “$file is empty”
fi

else
echo “$file not found”

fi

check ownership

if [-0 $file]
then

echo “You are the owner of $file”
else

echo “You are not the owner of $file”
fi

check permissions

if [-r $file]
then

echo “You have read permission for $file”
fi

if [-w $file]
then

echo “You have write permission for $file”
fi

if [-x $file]
then

echo “You have execute permission for $file”

The select Statement

2817c24.qxd 11/13/00 2:36 PM Page 359

360

fi
done

When the script is run, the output will now show the amended prompt:

prompt% Checkfile file1 file2

1) file1
2) file2
Select a file to check:

Much better, don’t you think?

The while Loop
Another type of iterative flow control uses the while command. The while com-
mand causes a section of code to repeat as long as a certain condition holds true.
The general form of this statement is

while <condition>
do

<something>
done

As with the if statement, the <condition> can be any statement that evaluates as
true (0). For example, consider the following code block:

#!/bin/bash

echo “Guess the secret word: telephone, iguana, gallon”
read GUESS

while [$GUESS != “iguana”]
do

echo “Incorrect – guess again”
read GUESS

done

echo “Correct.”

As long as the value of $GUESS is not equal to iguana, the program will con-
tinue to loop, prompting the user for input.

Chapter 24 • Flow Control, Part II: Iterative Flow Control

2817c24.qxd 11/13/00 2:36 PM Page 360

361

NOTE Remember that the exclamation-point character is a negation operator. It reverses
the value of whatever comes immediately after it. So, != means not equal to.

As soon as the user enters the word iguana, however, the condition will fail,
generating the exit status of 1, and the script’s execution skips to the next line fol-
lowing the done statement.

A common use for the while statement is to cause a section of code to iterate a
specific number of times. Consider this code block:

#!/bin/bash

declare –i i
i=0

while [$i –lt 5]
do

echo $i
i=$i+1

done

echo “done”

In this example, the variable i has been declared to be an integer. The script’s
programmer then assigns the value of 0 to the variable $i. In the while state-
ment, the programmer has defined the condition to be true if $i is less than 5.
(Remember that the –lt operator is the less than comparison for integers.)
Because 0 is less than 5, the loop will iterate.

In the course of executing the conditional block, the integer 1 will be added to
the value of $i. Now, the value of $i is 1. Because 1 is less than 5, the loop iterates
again, and again adds the integer 1 to the value of $i, which now has the value of
2. The process continues until $i is equal to 5. At that point, $i is no longer less
than 5, and the conditional block is skipped. If you were to run this script, the
output would look like this:

0
1
2
3
4
done

The while Loop

2817c24.qxd 11/13/00 2:36 PM Page 361

362

The until Loop
Remember the word-guessing game script that we used earlier in this chapter?

#!/bin/bash

echo “Guess the secret word: telephone, iguana, gallon”
read GUESS

while [$GUESS != “iguana”]
do

echo “Incorrect – guess again”
read GUESS

done

echo “Correct.”

The negative comparison in the while statement, while [$GUESS !=
“iguana”], seems inelegant and counterintuitive to many. Is there a way to
reconstruct that statement so that it is a positive comparison?

You can use the until loop to recast that statement. The until statement does
almost exactly the same thing as the while statement, except that until addresses
the equation from the opposite direction. That is, the until loop iterates a section
of code as long as a given condition is not true. The general syntax of this state-
ment is the same as that used for the while construct:

until <condition>
do

<something>
done

So, if you wanted to rewrite the word-guessing script with a positive condition,
you might come up with something like this:

#!/bin/bash

echo “Guess the secret word: telephone, iguana, gallon”
read GUESS

until [$GUESS = “iguana”]
do

echo “Incorrect – guess again”

Chapter 24 • Flow Control, Part II: Iterative Flow Control

2817c24.qxd 11/13/00 2:36 PM Page 362

363

read GUESS
done

echo “Correct.”

This version of the script functions in exactly the same way as the other version
using while, but the code is easier to understand because the condition is posi-
tive. Negative comparisons, although sometimes necessary, are much more likely
to cause confusion in the reader, whether that reader is someone else or is you
reading the script at a later time.

Nesting Loops
A common programming technique, nesting loops can yield fairly powerful
results. Nesting loops is the practice of inserting one loop into another loop. This
requires the inner loop to execute all of its iterations before the outer loop can
execute once.

NOTE In the previous chapter, we suggested that you avoid nesting if-then statements
wherever possible. To a certain extent, the same admonition holds true here. If
you can accomplish a task more simply and elegantly without nesting loops, then
by all means do not nest them. However, nesting iterative loops can often yield
such robust benefits that it has become a standard technique of programming.

The general form of a nested loop looks like this:

while <condition>
do

while <condition>
do

<something>
done

done

The loops need not be while loops; until, for, or select statements will work
as well. Also, the loops need not be of the same type. There is no reason that you
couldn’t embed a for loop inside a while loop, or vice versa. The permutations
are limited only by the programmer’s imagination.

Nesting Loops

2817c24.qxd 11/13/00 2:36 PM Page 363

364

To show nested loops in a practical setting, we can return to the Checkfile pro-
gram used earlier in the chapter:

#!/bin/bash

Checkfile. Checks type, ownership, and permissions of
a file or list of files.

PS3=”Select a file to check: “
select file in $@
do

Test file type
if [-d $file]
then

echo “$file is a directory”
elif [-f $file]
then

echo “$file is a regular file”

if [-s $file]
then

echo “$file is not empty”
else

echo “$file is empty”
fi

else
echo “$file not found”

fi

check ownership

if [-0 $file]
then

echo “You are the owner of $file”
else

echo “You are not the owner of $file”
fi

check permissions

Chapter 24 • Flow Control, Part II: Iterative Flow Control

2817c24.qxd 11/13/00 2:36 PM Page 364

365

if [-r $file]
then

echo “You have read permission for $file”
fi

if [-w $file]
then

echo “You have write permission for $file”
fi

if [-x $file]
then

echo “You have execute permission for $file”
fi

done

Before you make any amendments to this script, note that you already have
some nested conditional constructs. In this case, there are if statements inside
other if statements, and all of them are inside a select statement. Suppose,
however, that instead of wanting to report on a single file, you wanted to gener-
ate a report for every file in a specified directory.

NOTE The following example uses the construct $(<command>). This construct uses the
output of <command> as the expression upon which the rest of the statement
operates. Thus, in this case, LIST=$(ls $dir) assigns the output of the ls com-
mand to the value of the LIST variable.

You can rewrite the script to incorporate further nesting, as in this example:

#!/bin/bash

Checkfile. Checks type, ownership, and permissions of a
file or list of files.

PS3=”Select a directory to check: “
select dir in $@
do

Test file type

if [! –d “$dir”]

Nesting Loops

2817c24.qxd 11/13/00 2:36 PM Page 365

366

then
echo “$dir is not a directory”

else
declare –a LIST
LIST=$(ls $dir)

for file in ${LIST[@]}
do

Check Ownership

if [-0 $file]
then

echo “You are the owner of $file”
else

echo “You are not the owner of $file”
fi

Check permissions

if [-r $file]
then
echo “Read permission for $file”

else
echo “No read permission for $file”

fi

if [-w $file]
then

echo “Write permission for $file”
else

echo “No write permission for $file”
fi

if [-x $file]
then

echo “Execute permission for $file”
else

echo “No execute permission for $file”
fi

done

Chapter 24 • Flow Control, Part II: Iterative Flow Control

2817c24.qxd 11/13/00 2:36 PM Page 366

367

fi

done

With this script, you can see that there are a number of if statements nested
inside a for statement, inside another if statement, inside a select statement. In
skeletal form, the script would look like this:

select <name> in <list>
do

if <condition>
then

for <name> in <list>
do

if <condition>
then

<something>
fi

done
fi

done

This type of nesting is typical of more complex programs. This does not imply
that complexity cannot be achieved without four levels of nesting, only that these
levels are sometimes necessary to perform a complex task. In fact, once we write a
script like this, our first impulse is always to go over the finished script and see
whether there is another way to get the desired result without nesting so deeply.

By this time, you should have a good idea of the sorts of things it is possible to
accomplish with bash shell programming. The kicker here is that bash is a lan-
guage designed to do simple things. Imagine what is possible—both in accomplish-
ment and in headache—with a “real” programming language such as C++ or Java.

Summary
As described in the previous chapter, flow control is the mechanism that is used to
control how scripts move from one instruction to the next. Iterative flow control,
the type covered in this chapter, marks certain code blocks in a given script so that
those blocks will be repeated until—or unless—a particular condition is true.

Summary

2817c24.qxd 11/13/00 2:36 PM Page 367

368

There are several types of iterative flow control statements, including the for
statement, the select statement, the while loop, and the until loop. These state-
ments can be issued independently of each other, or they can be nested within
each other (or combined with conditional flow control statements). The combina-
tion of conditional and iterative flow statements makes it possible for the pro-
grammer to build shell scripts of some complexity, even though the bash
scripting language is intended for relatively simple processes.

Chapter 24 • Flow Control, Part II: Iterative Flow Control

2817c24.qxd 11/13/00 2:36 PM Page 368

C H A P T E R
T W E N T Y - F I V E

Regular Expressions

� How Regular Expressions Work

� sed

� awk

� Summary

25

2817c25.qxd 11/13/00 2:38 PM Page 369

370

Frequently in shell programming, many programmers find there is a small
piece of text they want to identify and use. This is not a problem if the piece of
text is a literal one: that is, if it is always the same text and always appears in the
same way regardless of situation or context. Sometimes, though, the text you
need to find is not a literal sequence of characters, but rather a type of text. You
might know, for example, that the text will have certain qualities or that it will
appear in a particular place in a particular file, but you don’t know what the text
will say until it appears.

Many Unix tools let you work with vague pieces of text like this, using a mech-
anism called regular expressions. Regular expressions are constructions that may
match any number of literal text strings, but will match those strings only if they
conform to certain characteristics. Unfortunately, many of these tools differ in the
specifics of how their regular-expression-matching mechanisms work. It is there-
fore important for the shell programmer to be aware of the individual tool that
you’re using for any particular situation and how that tool handles regular
expressions.

Regular Expressions: grep/sed/awk or Perl?
If, after reading this chapter, you decide that regular expressions are the greatest tech-
nique you’ve ever encountered, we suggest that you take a look at the Perl programming
language. Like the shell environment, Perl is an interpreted language; thus, Perl programs
don’t need to be compiled before they are run.

Perl has a comprehensive and powerful way of handling regular expressions, as well as
some programming features that make manipulating those expressions very easy. Perl is
especially good for writing short programs that perform operations on strings of text. For
example, there are Perl programs that will download a page from a Web news site—say,
http://www.cnn.com—and then extract a certain subset of the headlines for quick read-
ing. This kind of task is quite simple in Perl, and such a program would be no more than
20 or 30 lines.

Learn more about Perl at http://www.perl.org for a start. If you do find yourself inter-
ested in Perl, you must have the requisite Perl “Bibles”: Learning Perl, by Larry Wall and
Randall Schwartz (second edition, O’Reilly & Associates, 1997), and Programming Perl, by
Larry Wall (third edition, O’Reilly & Associates, 2000). Anyone you talk to about Perl will
assume that you have these books and have read them.

Chapter 25 • Regular Expressions

2817c25.qxd 11/13/00 2:38 PM Page 370

371

How Regular Expressions Work
So, you are probably wondering, how can you identify a piece of text if you don’t
know what it is or what it’s likely to be? This particular conundrum is solved by
the use of metacharacters. Metacharacters are characters that can match more than
one other character, depending on how they’re implemented. You’ve seen exam-
ples of metacharacters elsewhere in the book in places where we’ve talked about
wildcard characters.

For example, if you issue the command

ls *.txt

at the shell prompt, the ls command would print out only those filenames that
contain the suffix .txt. The * metacharacter in this context—and indeed in most
others—means any combination of zero or more characters. In other words, * matches
everything. When you combine that metacharacter with the literal string .txt,
the operating system understands the combination as match any combination of
zero or more characters that ends in .txt. Similarly, the . character is usually used to
represent any single character.

In addition to these wildcard characters, there are other types of metacharacters
that match certain types of non-characters. For example, the ^ character (called a
circumflex) matches the beginning of a line. Thus, the regular expression ^Joe
would locate and match the word Joe only if it appeared at the beginning of a
line. Joe anywhere else in a line would go unnoticed. Similarly, the $ metacharac-
ter matches the end of the line. If you were to append that to the previous expres-
sion, as in ^Joe$, you’d get matches only if the word Joe were the only text on
any given line because the word would have to be at both the beginning and the
end of the line.

There is a final metacharacter that doesn’t fit into either of these categories; this
metacharacter is the backslash character (\). This character is also known as the
escape character because it is used to “escape” the normal pattern-matching behav-
ior of regular expressions. For example, if you wanted to match a literal dollar-
sign character, you’d need to use the combination \$. This pairing tells the
interpreter that you’re really looking for a dollar sign, not for something at the
end of a line.

TIP To match a literal backslash, you’d use the construction \\.

How Regular Expressions Work

2817c25.qxd 11/13/00 2:38 PM Page 371

372

Table 25.1 contains a summary of the most common metacharacters. However,
it is important to note, as we mentioned above, that not all metacharacters are
used in the same way by all programs. Thus, this summary should serve only as a
guide and not as a definitive reference. Check the documentation for the program
or language in which you’re using metacharacters to search for text strings.

TA B L E 2 5 . 1 : Pattern-Matching Metacharacters

Character Function

* Matches any combination of zero or more characters.

. Matches any single character.

[. . .] Matches any of the characters enclosed between the brackets. For example, [aeiou]
will match any vowel, [a-z] will match any lowercase letter, and [a-zA-Z] will match
any upper- or lowercase letter.

^ Matches given string if it appears at the beginning of a line.

$ Matches given string if it appears at the end of a line.

\ Escapes pattern-matching behavior of the following character.

Using Metacharacters
Now that you’ve seen some common metacharacters, how do you use them to
identify strings of text? Suppose that you’re dealing with a document that con-
tains the prices of various items. You know that, in the document, the prices take
the form $XX.XX; that is, a literal dollar-sign character followed by two digits, a
literal decimal point, and then two more digits. You want to find text strings that
contain this construction and every occurrence of this sequence in the document.

To do this, you need the grep command.

TIP grep is an acronym for Get Regular Expression Print, but it’s usually used as a
verb, as in “I grepped the log to find times when Steve sent print jobs to the
laser printer.”

Chapter 25 • Regular Expressions

2817c25.qxd 11/13/00 2:38 PM Page 372

373

The syntax for grep is

grep <expression> <file>

Thus, if the file you’re searching is called prices.txt, you could construct your
grep request like this:

grep \$[0-9][0-9]\.[0-9][0-9] prices.txt

Notice that we’ve used the backslash to indicate that the dollar-sign and decimal
characters are to be treated as literal characters and not as metacharacters. Also,
we have defined the allowable range of each digit as anything from zero to nine.

Alternative grep Syntax

Although the way we’ve used grep above is perfectly permissible, we often find
it easier to think of grep as a type of filter. Another way of writing the command
above, under the filter concept, would be

cat prices.txt | grep \$[0-9][0-9]\.[0-9][0-9]

If no filename is given to grep on the command line, it will use the standard
input.

This alternative method causes the operating system to print the file prices.txt,
piping it through the grep command. There isn’t a real advantage to doing it this
way, but if you find it to be more comprehensible, it’s certainly another way to use
this flexible and powerful command to find the data you need. We find that this
method fits our conception of Unix logic a bit better, but—as with all things Unix—
whatever works best for you is the way to go.

More about grep
There are two characteristics that make the regular expression in the previous
section less than ideal for its purpose. First, it is possible for a price higher than
$99.99 to be contained in the prices.txt document. Second, the expression
[0-9] is repeated four times. Although the second concern is more aesthetic than
practical, the two characteristics are structurally related. Wouldn’t it be helpful if
you could specify the number of times a particular expression, or a component of
an expression, would be repeated?

How Regular Expressions Work

2817c25.qxd 11/13/00 2:38 PM Page 373

374

You can do this by using the grep syntax called \{n,m\}. This syntax works
under the following rules:

1. The expression \{n\} will match n occurrences of the designated character.

2. The expression \{n,\} will match n or more occurrences of the designated
character. (Note the inclusion of the comma.)

3. The expression \{n,m\} will match at least n, but not more than m, occur-
rences of the designated character.

NOTE The reason that the curly braces have backslashes in front of them is to prevent
the curly braces from being interpreted as literal curly braces. This is the reverse of
using a backslash to invoke the literal meaning of a metacharacter. Instead, in this
case, you’re using a backslash to turn a regular character into a metacharacter.

The \{n,m\} construct is placed immediately after the expression it is to mod-
ify. Thus, you could rewrite the grep expression used in the previous section as

\$[0-9]\{2,\}\.[0-9]\{2\}

Note that, to the left of the decimal point, you’re seeking at least two numerical
characters, while to the right of the decimal point, you’re requiring exactly two
numerical characters.

Now, suppose that there are prices in the prices.txt document that are less
than $10. To pick up those prices, you need to tweak the grep command a bit
more:

\$[0-9]\{1,\}\.[0-9]\{2\}

This method makes it possible to match only one character to the left of the deci-
mal point. So, the final grep command looks like this:

grep \$[0-9]\{1,\}\.[0-9]\{2\} prices.txt

NOTE Complicated regular expressions can often look like a forest of backslashes. You
need to be careful when reading and writing these expressions, because every
character matters, and a misplaced backslash can wreak havoc—while being
extremely difficult to notice. The thing to remember is that a backslash always
modifies the character immediately to its right.

Chapter 25 • Regular Expressions

2817c25.qxd 11/13/00 2:38 PM Page 374

375

sed
sed is a close relative of the line editor ed, which we introduced in Chapter 16:
“The ed Editor.” The difference lies in the fact that, whereas ed is a line editor that
makes its changes one line at a time, sed is a stream editor. This means that sed
operates on an entire file in one pass or on a stream piped to it through the stan-
dard input (usually the keyboard, unless you’ve defined standard input differ-
ently for some reason). This stream editing is quite handy for making
standardized changes in a file or a group of files.

A simple way of using sed is to make a simple substitution in a given file. Sup-
pose that you have a file that makes multiple use of the abbreviation etc., and
you want to replace that abbreviation with the full term et cetera throughout the
document. You can do such a thing very simply with sed, by issuing the command

sed ‘s/etc\./et cetera/g’ filename.txt

This example uses sed’s s// substitution construct. Very simply, this construct
works like this:

s/<target>/<replacement>/

where <target> is the expression you want to replace, and <replacement> is the
string with which you want to replace the first expression. In addition, in the pre-
vious command, we appended the g option to the end. g is the global flag that
tells sed to replace all occurrences of <target> with <replacement> without ask-
ing your permission first. In the example, the <target> is the expression etc\..

NOTE Note that we need to use the backslash to escape the period character so that it
will be interpreted as a literal period and not as a metacharacter.

The <replacement> is the string et cetera.

The s// construct is only one of several commands that can be used with sed.
Moreover, you can arrange for multiple commands to be run on any one given
page or document by writing a sed script. If, for example, you have several sub-
stitutions that you want to make to a particular file, you could write a quick script
called sedscript that might contain the following entries:

s/etc\./et cetera/g
s/i\.e\./that is/g
s/e\.g\./for example/g

sed

2817c25.qxd 11/13/00 2:38 PM Page 375

376

You would then invoke sed with the following command:

sed –f sedscript filename.txt > outputfile.txt

The –f flag tells sed that its commands will be coming from the file named next
on the command line. Here, filename.txt is the name of the input file, and
outputfile.txt is the name of the file that will collect the output after editing.

WARNING Although it is possible to direct the output back to the original file, it is not recom-
mended that you do so. If you made a mistake in your sed script, it would be easy
to mess up the original file to the point where you might not be able to retrieve
the original data. Saving the output to a new file ensures that you can always
tweak your sed script and run it again without damaging the original data.

Writing sed Scripts
Before you begin to write sed scripts of your own, it’s wise to learn a bit more
about the general command syntax used with sed, and then learn some of the
individual commands used with sed. The basic concepts used in other kinds
of scripts are found in sed as well, such as comments and markers used by the
scripts to define particular locations. With the proper syntax, sed can be quite
useful, but if you try to use sed without knowing how it works, you may cause
changes that were not what you intended (and that could even be detrimental
depending on what you were trying to do). Despite the cautionary tone of this
paragraph, if you’ve read the other chapters in this part of the book, you’ll do
fine with sed scripts.

Comments

As with other types of scripts in the shell environment, you can add comments to
your sed scripts. A hashmark (#) at the beginning of a line denotes a comment.

TIP Remember to comment your scripts thoroughly and liberally so that you will
remember what the script does and how it does it. Whether you revisit your own
scripts at a later date or you share them with others, good comments make the
difference between a usable script and a pointless curiosity.

Chapter 25 • Regular Expressions

2817c25.qxd 11/13/00 2:38 PM Page 376

377

Line Addresses

Any command can take, as a prefix, a line number or range of line numbers.
These numbers are simply added to the beginning of the command. For example,
if you want to change etc. to et cetera in only one place in your file, on line 42,
you can use the command

42s/etc\./et cetera/g

If you wanted to do the same substitution on the 42nd through 58th lines, the
appropriate command would be

42,58s/etc\./et cetera/g

It is also possible to prepend a line address to a group of commands. This is
done by grouping the commands inside curly braces, like this:

42,58 {
s/etc\./et cetera/g
s/i\.e\./that is/g
s/e\.g\./for example/g

}

Note that ranges of lines don’t work for all commands. Some commands will gen-
erally be useful only on a single line, and, as a rule, those commands can take
only a single line as an address.

sed Commands
As with other types of editors, sed uses standard commands for text substitution,
deletion, and other tasks. These commands use the same slash-based syntax that
we’ve already shown you for the substitution operator, s///. In this section of the
chapter, we introduce commands that you can use to delete text, append or insert
new text, or change existing text.

Substitution Commands

You have already seen the substitution operator, s///, earlier in this chapter. The
general format of this operator is

[address]s/<target>/<replacement>/[flags]

We’ve used one of the possible flags already, the g flag, which is used to indicate
that the substitution is to be applied to every instance of the match throughout the

sed

2817c25.qxd 11/13/00 2:38 PM Page 377

378

entire file. A few other flags are shown in Table 25.2, and you can learn even more
by consulting the sed manual page, by issuing the command man sed at a com-
mand prompt.

TA B L E 2 5 . 2 : sed Flags

Flag Function

n n is a number between 1 and 512. This flag indicates that you want to match the nth
occurrence of the string.

p When the pattern is matched, the matched string will print to the standard output
(usually the monitor).

w <file> When the pattern is matched, the matched string will be written to the named file.

Deletion Commands

Instead of substituting one string for another, you might want to delete a
matched pattern once it is found. For example, assume that you want to delete
all strings beginning with the string CAN from the document you’re working
with, because those prices would be in Canadian dollars and not relevant to a
US audience. The general format for the delete function is

/<pattern>/d

Thus, you’d use the command

/CAN/d

Commands for Appending, Inserting, and Changing

You can also use various sed commands to handle how text is appended to a line,
inserted into a line, or changed altogether. These commands use much the same
syntax as other sed commands already introduced in this section.

Append

The append command is used to place text after a designated line. Its syntax
looks like this:

[address]/<pattern>/a\
<new text>

Chapter 25 • Regular Expressions

2817c25.qxd 11/13/00 2:38 PM Page 378

379

Note the backslash at the end of the first line. This indicates that the line is to be
continued. You must put a backslash at the end of each line of new text as well,
except for the last line. For example, assume that we wanted to add a line of text
immediately after the section header for this section. We could do it with the
command

/-Append*/a\
This is the new text. It may\
span several lines.

Insert

The insert command places the new text on the line above the matched line. It
uses the syntax

[address]/<pattern>/i\
<new text>

Change

The change command replaces the matched line with the new text specified. Its
syntax is

[address]/<pattern>/c\
<new text>

A sed Script Example
Now that you know some of the basics of sed scripting, it’s time to build a sam-
ple script. Assume that you have a document that contains basic information
about a company and some of its senior managers. The name of the company is
MassiveCo, and the officers are Ms. Smith, Dr. Jones, and Mr. Green. However,
between the time the document was written and the time it was published to the
Internet, the company was bought out by another company. The company’s name
was changed to Massive & Associates, Inc. In addition, Mr. Green quit, and Mr.
Rose was hired to replace him. Ms. Smith was fired, Dr. Jones was promoted to
her position, and nobody has been hired to replace Dr. Jones. It’s your job to
update the document to reflect the current status of the company and its officers.

You could use the following script to make all the required changes quickly:

s/MassiveCo/Massive & Associates, Inc./g
s/Mr. Green/Mr. Rose/g

sed

2817c25.qxd 11/13/00 2:38 PM Page 379

380

/Dr. Jones/d
s/Ms. Smith/Dr. Jones

You can then run the script by issuing the following command at a shell
prompt:

sed –f <scriptname> <document> > <newdocument>

The file <newdocument> will contain the text of the original document, but with
all the correct edits made. You can now save the original file as document.old
and save the new document under the old document’s name if you like.

Using sed on the Command Line
Although we have shown you some ways in the previous sections to use sed from
the command line, these methods don’t really capture the essence of sed as a
stream editor. The greatest thing about sed is the way that you can use it as a filter
to edit things on the fly. If no input file is specified, sed will take its input from the
standard input as defined in your environment variables. This means that you can
pipe the output of other commands through sed for on-the-fly processing.

Let’s take an example. Suppose that you want to capture the output of a partic-
ular server program’s log, but you want to work certain substitutions on that out-
put. In our example built below, the process logs the IP number of everyone who
connects to the mail server on your network. However, you hate reading straight
IP numbers, so you want to convert the IP numbers to the machine names before
you read the log. You know that the IP numbers on your network correspond to
the following machine names:

192.168.0.1 alaska
192.168.0.2 arizona
192.168.0.3 california
192.168.0.4 connecticut

So, you can set up your sed script like this:

s/192.168.0.1/alaska/g
s/192.168.0.2/arizona/g
s/192.168.0.3/california/g
s/192.168.0.4/connecticut/g

Then, you can run the logfile watcher script with the following command:

tail –f /var/log/ourserver | sed –f sedscript >➥

/var/log/ourserver.edited

Chapter 25 • Regular Expressions

2817c25.qxd 11/13/00 2:38 PM Page 380

381

Here, you’ve piped the output of the tail –f command through the sed script
filter.

TIP The tail command shows the last few lines of a file, and the –f flag means that
tail will print the new lines as they are created.

Once the output is piped through the filter, it is placed into a new file with the
name ourserver.edited. When you look at the new file, you’ll see the same log
that the server generated, but it will show the machine names instead of the IP
numbers.

Using sed in Shell Scripts
In shell scripts, you can use sed in much the same way as you use it at the com-
mand line. However, you can also use all your previously learned scripting tech-
niques to tweak sed’s behavior when you use it in a shell script.

Consider the following script:

#!/bin/bash

case $1 in
-a)

SCRIPT=”sedscript1”
;;

-b)
SCRIPT=”sedscript2”
;;

-c)
SCRIPT=”sedscript3”
;;

esac

sed –f $SCRIPT $2

This script takes a flag of either –a, -b, or –c and the name of a file as the com-
mand-line arguments. Depending on what the flag is, the script will cause sed
to use a different script as a source of commands.

Another way to use sed in a script might resemble the following excerpt from a
longer script.

sed

2817c25.qxd 11/13/00 2:38 PM Page 381

382

#!/bin/bash

for file in “$@”
do

sed –f sedscript $file

done

This segment would apply the set of commands in sedscript to multiple files, as
indicated by the array $@, appearing on the command line.

Tips for Using sed Effectively
There are a few guidelines that will make using sed in your shell scripts more effective.
Although you can use sed without following these tips, you’ll probably find it easier to
use as long as you keep these things in mind (in fact, these tips are applicable to more
kinds of scripts than just sed scripts).

1. Know your input. Understanding the pattern that you’re looking for, and how it
might appear in the input stream, makes it a lot easier to devise the regular expres-
sions that will catch those patterns.

2. Make sure to identify any metacharacters appearing in your input file, and escape
them using the backslash character. Characters that need to be interpreted literally
will mess up your programming if they are interpreted as metacharacters instead.

3. Test. Before you put your script to work, test it out. Make sure that it’s catching
everything that it should be, and—perhaps more importantly—make sure that your
script isn’t catching anything that shouldn’t be caught in the regular-expression net
you’ve woven.

awk
Like sed, the awk program can take input either from a file or from the standard.
awk can also use commands given either on the command line or in a file. awk
also works its operations on each line as it works its way through the input
stream. With all these similarities, it’s reasonable to wonder what the difference

Chapter 25 • Regular Expressions

2817c25.qxd 11/13/00 2:38 PM Page 382

383

is between sed and awk, especially because the programs are often named in the
same breath as sed-and-awk.

The difference between sed and awk lies in the types of commands that are han-
dled by each program. Where sed is concerned with pattern matching and edit-
ing, awk is more useful for formatting output into a particularly desired pattern.
awk handles these formatting tasks through the use of fields.

In awk, a field is any subsection of a line that is delimited by a particular charac-
ter. The default field delimiter is whitespace (i.e., a space or a tab character), so that
each word on a line is a separate field. However, the field delimiter can be
changed with the –F flag.

WARNING Do not confuse the –F flag with the –f flag, which—as in sed—specifies the
script file to be used in a particular command.

The fields in an awk command are identified by the dollar-sign character ($) and
the field number. Thus, if the input line reads

This is a line of input

the fields are identified like this:

$1 = This
$2 = is
$3 = a
$4 = line
$5 = of
$6 = input

NOTE You’ll need to exercise some caution while working with awk so that you don’t
confuse these $-delimited fields with shell command-line variables, which also use
$ as a delimiter.

If the above line were contained in a file called input.txt, you could use awk to
determine the fields in a particular line of the file. Assume that you want to see
only the third field in that line (because it’s the only line in the document, you
don’t have to supply a line number). Issue the following command:

awk ‘{print $3}’ input.txt

awk

2817c25.qxd 11/13/00 2:38 PM Page 383

384

Note that the command is enclosed in curly braces, which are themselves
enclosed in single quotes. The curly braces are part of the awk command syntax,
and the single quotes are there to protect the curly braces from being interpreted
by the shell instead of by awk. If you give this command at the shell prompt,
you’ll get the following output:

a

Not very complex, is it?

Let’s look at a more complicated example. Suppose that the file input.txt con-
tains the output of the ps command and looks like this:

1 ? 00:00:30 init
2 ? 00:00:10 kflushd
3 ? 00:00:49 kupdate
4 ? 00:00:00 kpiod
5 ? 00:00:08 kswapd
6 ? 00:00:00 mdrecoveryd
49 ? 00:00:00 khubd
348 ? 00:00:29 syslogd
358 ? 00:00:00 klogd
373 ? 00:00:00 portmap
389 ? 00:00:00 lockd
390 ? 00:00:00 rpciod
400 ? 00:00:00 rpc.statd
454 ? 00:00:00 identd
455 ? 00:00:37 identd
457 ? 00:00:00 identd
458 ? 00:00:00 identd
459 ? 00:00:00 identd
473 ? 00:00:00 atd
504 ? 00:00:00 xinetd
539 ? 00:00:00 lpd
583 ? 00:00:09 sendmail
599 ? 00:04:59 gpm
631 ? 00:00:03 crond
636 ? 00:00:00 safe_mysqld
657 ? 00:00:00 mysqld
667 ? 00:00:39 mysqld
668 ? 00:00:00 mysqld
690 ? 00:00:16 xfs
721 ? 00:00:00 rhnsd

Chapter 25 • Regular Expressions

2817c25.qxd 11/13/00 2:38 PM Page 384

385

733 ? 00:19:48 _upsd
758 tty1 00:00:00 mingetty
759 tty2 00:00:00 mingetty
760 tty3 00:00:00 mingetty
761 tty4 00:00:00 mingetty
762 tty5 00:00:00 mingetty
763 tty6 00:00:00 mingetty
764 ? 00:00:00 gdm
10380 ? 00:00:28 fetchmail
10892 ? 00:00:04 sshd
30321 ? 00:03:58 X
30322 ? 00:00:00 gdm
30692 ? 00:00:01 gnome-session
30725 ? 00:00:00 gnome-smproxy
30725 ? 00:00:00 gnome-smproxy
30737 ? 00:01:09 magicdev
30745 ? 00:00:00 gnome-name-serv
30747 ? 00:00:04 sawfish
30821 ? 00:00:00 gmc
30823 ? 00:00:01 panel
30827 ? 00:00:00 gpilotd
30829 ? 00:00:14 cdplayer_applet
30831 ? 00:00:00 quicklaunch_app
30833 ? 00:00:01 deskguide_apple
30835 ? 00:00:05 mixer_applet
30838 ? 00:00:00 tasklist_applet
30841 ? 00:00:04 clockmail_apple
30847 ? 00:05:01 multiload_apple
30850 ? 00:00:04 gnome-terminal
30851 ? 00:00:00 gnome-pty-helpe
30852 pts/0 00:00:00 bash
30884 ? 00:03:11 netscape-commun
30897 ? 00:00:00 netscape <defunct>
30898 ? 00:00:00 netscape-commun
31011 ? 00:00:11 nedit
31063 pts/0 00:00:00 ps

This is a long and thorough list of processes. However, you’re probably not inter-
ested in all of them. If you want to view only the process ID numbers of the cur-
rently running processes, you can issue the command

awk ‘{print $1}’ input.txt

awk

2817c25.qxd 11/13/00 2:38 PM Page 385

386

You can also use pattern-matching operations in awk. Suppose that you want to
view the process ID numbers of only those processes that have an associated tty.
Issue the command

awk ‘/tty/ {print $1}’ input.txt

to get the following output:

758
759
760
761
762
763

Here, you have matched any line that contains the string tty and printed the
first field of that line. Of course, you can eliminate the need to have a separate
input.txt file by simply piping the output of the ps command directly into awk,
as with the following command:

ps –a | awk ‘/tty/ {print #1}’

awk Metacharacters
In addition to the metacharacters introduced earlier in this chapter, awk uses
some extended metacharacters of its own. Table 25.3 shows the most useful of
these characters.

TA B L E 2 5 . 3 : awk Metacharacters

Metacharacter Function

\b Backspace

\n New-line

\t Tab

To use these metacharacters, assume that you have a file full of lines delimited
by tab characters. You could use awk to split the fields based on the tabs, simply by
using the –F flag and the t metacharacter, as in the command

awk –F\t ‘<commands>’ <input>

Chapter 25 • Regular Expressions

2817c25.qxd 11/13/00 2:38 PM Page 386

387

This command will prevent awk from splitting the fields based on spaces, as is
awk’s default behavior.

Printing in awk
When using the print command under awk, you are not limited to printing the
values of individual fields. Assume that, with the above example, you want to
note any instance where a process is running with a tty, but you don’t need the
process ID number. You could issue the command

ps –a | awk ‘/tty/ {print “Found one! \n”}’

to get a report whenever an active tty is found.

NOTE The trailing new-line character (\n) is used so that each Found one! will appear
on a separate line.

Summary
When you are writing shell programs, you may need to know the value of a par-
ticular text string to accomplish the task you want to perform. However, the value
of the given text string may vary from time to time, especially if it is part of the
output of another command. If you can’t know the value of the text string before
you write the script, you cannot include that specific value in the script. The solu-
tion is to use regular expressions, which enable you to use pattern-matching tech-
niques to identify the value of a text string that follows a particular pattern.

The major programs that are used for pattern matching are sed and awk. Perl, a
popular programming language, also uses pattern matching and may be a more
elegant solution to some scripting needs. sed and awk are stream editors, meaning
that they can perform pattern-matching actions on a streaming set of data or an
inanimate file. Both sed and awk use metacharacters to handle the patterns for
which the script will search, and both can report individual strings or a full set of
matched patterns. The main difference between sed and awk is that awk works in a
field-delimited manner, whereas sed is less concerned with formatting. Although
you will probably not use either sed or awk on a frequent basis, pattern-matching
tools such as the popular utility grep are fast and highly useful tools for the sys-
tem administrator.

Summary

2817c25.qxd 11/13/00 2:38 PM Page 387

This page intentionally left blank

C H A P T E R
T W E N T Y - S I X

Signals and Status

� Exit Status

� Managing Status

� Signals

� Unique Identifiers

� Managing Signals

� Summary

26

2817c26.qxd 11/13/00 2:39 PM Page 389

390

In the previous chapters of this part of the book, we introduced basic concepts
of shell programming. Although you can write some complex scripts and accom-
plish some wonderful feats with those tools, there are elements of shell program-
ming that open whole new worlds of potential script-managed automation. In
this chapter and the one that preceded it, we expand on the basic shell program-
ming structure and show you how to harness the power of your Unix computer
at a level higher than that usually attained by the average Unix user.

This chapter addresses the concepts of exit status and signals. These terms are
used to describe the means by which a particular process can know what is hap-
pening with another process, without human intervention. These mechanisms
also allow individual processes to tell other processes how to behave, to generate
a desired result. Such techniques are part of the general practice of interprocess
communication and form a valuable part of the programmer’s toolbox.

NOTE In Chapter 25, we introduced regular expressions, tools used to match text pat-
terns without having to type each affected item’s name individually. Both regular
expressions and the concepts covered in this chapter are commonly used shell pro-
gramming techniques, but they fall into the category of intermediate rather than
basic techniques. Adding regular expressions, exit status determination, and signal
processing to your shell scripts will make it possible for you to attack increasingly
larger and more complex system administration tasks with your programs.

Although most shell scripts are not complex enough to warrant huge amounts
of interprocess communication handling, it’s well worth knowing about these
techniques. If you download scripts or receive them from other sources, you may
find sections containing these mechanisms. In addition, though you may be writ-
ing small, straightforward scripts right now, in the future you might need to write
lengthy and complicated scripts that can function only with the help of such tech-
niques. In either case—and even if neither case holds true—knowing a bit about
exit status and signals will expand your capability as a script programmer.

Exit Status
In various places throughout Part VI: “Shell Programming,” we have made refer-
ences to exit status. The exit status of a command or program is a numerical value

Chapter 26 • Signals and Status

2817c26.qxd 11/13/00 2:39 PM Page 390

391

that represents whether the command or program exited successfully. By default,
an exit status of 0 represents the successful completion of a command or pro-
gram, and an exit status of anything else represents failure.

Interpreting Exit Status
Some programs define success and failure in ways that might seem to be counterintuitive.
For example, the diff command (which compares two files and reports the differences
between them) returns an exit status of 0 if it doesn’t find any differences. Because the
program is designed to find differences between the files, it may seem strange that actu-
ally finding those differences constitutes a failure. However, it does make sense in a con-
voluted way. If two files are identical, and you run a diff on them, you get no output. If
there are differences, you will probably need to do something to evaluate those differ-
ences and possibly process them somehow. So in a sense, having no differences is success
because that’s all you need to know. This may seem counterintuitive at first, but if you
think about it from a usefulness standpoint, it makes perfect sense.

When using exit status in a script, you need to be aware of those idiosyncrasies. Not every
Unix program handles exit status in the same way. Luckily, the manual page for any given
command usually details the various exit status possibilities so that you can configure your
script properly.

Though 0 and 1 are the standard exit status values, they can be customized.
Although we don’t recommend that you mess around with the 0 exit status (it’s
far too useful as it is), you might want to assign particular values of 1 or greater to
the myriad ways in which a program can fail. These individual values can tell
you a lot more about the failures than can the standard value of 1; if different val-
ues are assigned to different outcomes in the script, you’ll be able to tell exactly
what went wrong when the script failed.

For example, consider the case of a program that sends its output to a log file. If
you’ve assigned the exit status of 1 to the case where the program fails to produce
output and the exit status of 2 to the case where the program fails to open the log
file for writing, you can then write a script that monitors the exit status of that
particular program. Your script can take appropriate action based on the exit sta-
tus of that program, whether it is to halt some other process or continue based on
the nonexistence of any output.

Exit Status

2817c26.qxd 11/13/00 2:39 PM Page 391

392

TIP Exit status is sometimes referred to as return value. It is common to hear, for
example, the statement that command X returns 0 for success and 1 for failure.

Managing Status
To use the exit status of a particular program, your script must be able to tell what
that status is. There are several ways to do this. You can use the exit command to
cause the script or program to report a particular exit status based on parameters
that you define. You can also use one of two methods to determine the exit status
of a particular program and then have another action performed, based on what-
ever the exit status is reported to be. Each method has its place, but you’ll proba-
bly find one to be more useful than the others depending on the circumstances of
the particular situation.

Reporting Status
Exit status is reported through the exit command, which takes the number of its
status as an argument. That is, to report an exit status of 1, you would use the
command

exit 1

The exit command is a somewhat unusual command. By itself, it really doesn’t
do all that much, and it doesn’t do much good at the command prompt. The key
to using this command effectively is to place it in a strategic location within a
script or in a block of code and then write other code that takes advantage of the
information that exit provides.

For example, consider this small program (which is written more for the exam-
ple than for any particular function):

if <first type of failure>
then

exit 1
elif <second type of failure>

exit 2

Chapter 26 • Signals and Status

2817c26.qxd 11/13/00 2:39 PM Page 392

393

elif <third type of failure>
exit 3

else
exit 0

fi

Aside from terminating the execution of the program, all that the exit command
needs to do here is to report a particular piece of information. An exit status of 1, 2,
or 3 indicates the particular kind of failure that you have defined here; of course,
the status of 0 indicates success. The effect of this information, however, lies only
in how you choose to use it later in the script.

Accessing Status
There are two different ways to find out the exit status of a given process. The first
method is the explicit method, which involves using the ? variable; the second is
the implicit method, which involves using the command itself as the expression in
the conditional statement. Both methods are described below, with examples of
code blocks that might appear in shell scripts.

The Explicit Method

The explicit method of determining exit status uses common variables. As the
script runs, the exit status of the most recently executed program is assigned to a
variable, which can then be used later in the script. A skeleton example of this
method might look like this:

<execute some command>
if [$? –eq 0]
then

<normal processing>
else

<error processing>
fi

The ? variable contains the exit status of the most recently executed command.
Because this variable’s value changes every time a command is executed, the pro-
grammer needs to exercise some caution about how it is used. For example, if you
want to preserve the exit status of a command so that it can be used even after

Managing Status

2817c26.qxd 11/13/00 2:39 PM Page 393

394

other commands are executed, you need to assign its value to a more permanent
variable. Thus, you might amend the basic example shown above into a script
component like this:

<execute some command>
status = $?
<execute some other command>
if [$status –eq 0]
then

<normal processing>
else

<error processing>
fi

The Implicit Method

The implicit method uses the command itself as an expression, rather than resort-
ing to the use of variables, as in the explicit method. Because the command itself
is used in the conditional statement, the code block can be a bit shorter. A skele-
ton example of the implicit method might be

if <some command>
then

<normal processing>
else

<error processing>
fi

Remember that the if statement considers a value of 0 to represent true. By
putting the command directly into the if statement, you can use the command’s
exit status as the value that the if statement will evaluate. If the command exe-
cutes successfully, the if statement will interpret that value as a true expression.

NOTE In this situation, the reason for the alternate term return value becomes more
clear. The if statement evaluates the value, not the status.

If that explanation seems a bit abstract, that’s because it is. The implicit method is
a bit more difficult to understand because it is based on evaluation of a value that
you don’t actually call in the script; instead, the if statement evaluates a value that

Chapter 26 • Signals and Status

2817c26.qxd 11/13/00 2:39 PM Page 394

395

is the by-product of an action explicitly called. Here’s a code block that will help
clarify the action of the implicit method of evaluating exit status:

if cd $1
then

<do something>
else

<echo “Directory not found.”>
fi

In this example, we assume that the name of a directory is passed from the com-
mand line as the value of the variable $1. If the directory exists, the cd command
works; if the directory doesn’t exist, the cd command fails, and the if statement
then directs the program to the code in the else clause. The message “Directory not
found.” will print to the screen and inform the user that a mistake has been made.

NOTE In the process of evaluating the cd command’s success or failure, the command is
executed. Thus, you can kill two birds with one stone and make subsequent com-
mands based on the assumption that the working directory has been changed
with cd. This kind of sequential chain can be a bit confusing if you’re not used to
it, but it is a very common programming practice and can be quite useful once
you’ve mastered it.

Building an Example
Now that you have some familiarity with the function of exit status, and the dif-
ferent ways to evaluate and use it, it’s time to build an example that shows how
exit status can be used effectively in your own shell scripts. In this example,
we’ve constructed a basic script that takes the name of a directory as an argu-
ment at the command prompt. If the directory exists, the script lists the contents
of the directory to the screen. If the directory does not exist, the script prints a
warning message instead. (Yes, this is an expanded version of the skeleton code
block shown above in the discussion of implicit exit status evaluation.)

#!/bin/bash

Define a function that checks for the existence
of a specified directory

Managing Status

2817c26.qxd 11/13/00 2:39 PM Page 395

396

checkdir () {

Using the explicit exit status of ‘test’,
assign an appropriate exit status to the
function

test –d $1

if [$? –eq 0]
then

exit 0
else

exit 1
fi

}

Set the variable $dir to the value passed on
the command line

dir=$1

Using the implicit exit status of the ‘checkdir’
command, list the directory or report an error

if checkdir($dir)
then

ls –l $dir
exit 0

else
echo “Directory not found.”
exit 1

fi

This sample script does essentially the same thing as the ls command, except
the sample script requires the explicit checking for the directory’s existence. (Of
course, ls does it much better and faster than this script does.) The point here is
not to duplicate the function of ls, but to show that the exit status of the check-
dir() function is used to determine implicitly whether the named directory
exists before the program attempts to list it. In addition, the checkdir() func-
tion itself uses a redundant and explicit exit status test to determine how to set
its own exit status.

Chapter 26 • Signals and Status

2817c26.qxd 11/13/00 2:39 PM Page 396

397

NOTE The astute reader has, no doubt, noticed the staggering amount of redundancy in
the script shown above. Without a doubt, this is one of the most unnecessary and
inefficient scripts ever written, and we’re willing to acknowledge that. However, it
does make the uses of exit status quite clear, with both the explicit and implicit
methods.

Signals
Another species of interprocess communication is the signal. Signals are a func-
tion of the operating-system kernel, though they are uniform across all Unix
variants. Signals tell a particular process, or program that is running, that the
operating system wants it to do something. That something is usually to stop run-
ning, though it can be other functions as well (there are even multiple ways in
which stopping a process can be handled).

To use a signal, three unique items must be present:

• A unique identification for the process that is to receive the signal

• A way of sending the signal

• A signal trap, which is a bit of code in the recipient process that describes
what should happen when a particular signal is received

Unique Identifiers
To send a signal to a given process, there needs to be a way to identify that process
with a unique label. In most cases, you’ll use the process identification number (PID).
Each process that runs on your system is given one of these numbers, and each
number is unique and incremental.

To see the process identification numbers of the processes currently running on
your system, issue the command ps at the command prompt. ps will return a list
of all running processes that belong to your user ID, which usually means pro-
grams that you’ve started (including the shell you’re using).

Unique Identifiers

2817c26.qxd 11/13/00 2:39 PM Page 397

398

TIP To see a list of all running processes, regardless of who’s running them, use the –a
flag. Thus, the command would be ps –a. Other useful flags and options can be
found in the ps manual page, invoked with the command man ps.

When Joe issues the ps –a command on his machine, he usually gets a list that
looks like this:

[joe@fugu joe]$ ps –a
PID TTY TIME CMD
7644 tty1 00:00:00 bash
7862 tty1 00:00:00 su
7683 tty1 00:00:00 bash
2951 pts/0 00:00:00 ps

In this list, there are four processes. The process identification number is listed in
the first column, and that PID will serve as that process’s identifier as long as the
process is running. The program that is using the PID is listed in the final column.

The PID of any given shell process can also be accessed with the shell variable
$. If you issue the command

echo $$

at a shell prompt, you’ll see that shell’s identification number. This can then be
used to kill the shell or used in other scripts; you might find that command to be
a useful component of a shell program that requires a shell to start, run a process,
and then kill itself after the task has been completed. Because the shell process’s
identification number will change each time the shell is spawned, the script needs
to determine the shell process’s PID before it can be killed. This command makes
it easy to do so.

One way in which the $ variable is used frequently is to echo its value into a
file. You’d do so by adding a line into a script that looks like this:

echo $$ > /var/run/myprogram.PID

Why would you do this? Well, if you need to kill off the shell later by using the
kill command, you can simply issue a command like

kill -9 `cat /var/run/myprogram.PID`

(This is the entire raison d’etre for the /var/run directory.)

Chapter 26 • Signals and Status

2817c26.qxd 11/13/00 2:39 PM Page 398

399

Why would you do something like this? Well, this method offers the benefit of
not needing to know the exact process identification number of the shell to kill it.
Because the process identification number is different every time you start a new
shell, you can’t set an absolute value as the PID. Similarly, you could set an envi-
ronment variable containing the PID with a command like this:

export MYPROGRAM-PID=$$

However, we are not aware of this method being used. It’s probably more effi-
cient memory-wise to use a file instead of an environment variable, and it’s cer-
tainly more congruent with actual scripting and administrative habits.

Managing Signals
To use signals most effectively, you need to know two things: the type of signal
you want to send and the unique process identification number of the process you
wish to affect. The second part is easier to determine than the first. Simply use the
ps command to obtain the listing of all processes currently operating on your sys-
tem, find the correct one, and use that number when you issue the signal. The first
part is more complex in theory than in reality because—though many signals are
available, and the list varies depending on your Unix variant—most people use
just a few signals over and over again.

Using signals for hand-performed tasks is a straightforward and basic opera-
tion. When you begin to use signals and signal management in your scripts,
things become a bit more complex. You may find yourself using more esoteric
signals in scripts than you would in a hand-issued command, because you can
create a complicated series of events and what-if statements that vary depending
on the criteria you select. When using signals in your scripts, you can rely on sig-
nal traps to perform the desired functions automatically. These traps can save you
a lot of coding time and provide an extra level of function to your programs.

Sending Signals
Signals are sent using the kill command. Because signals are most often used to
terminate a process, the kill name is appropriate and easy to remember. Assume

Managing Signals

2817c26.qxd 11/13/00 2:39 PM Page 399

400

that you have issued the ps –a command as shown earlier in this chapter and
that you’ve received the following output:

[joe@fugu joe]$ ps –a
PID TTY TIME CMD
7644 tty1 00:00:00 bash
7862 tty1 00:00:00 su
7683 tty1 00:00:00 bash
2951 pts/0 00:00:00 ps

If you then issue the command

kill 7644

you would end the first process in that list, an open bash process.

Because you didn’t specify the particular kind of signal to be sent, the default
signal was used. The default signal is called signal 15 or the SIGTERM signal.
SIGTERM is the termination signal, and it causes the process to exit in an orderly
way, closing down any tendrils it may have sent into other programs or other
processes that may depend on the process being closed.

If something is going wrong, however, SIGTERM may not be able to exit cleanly,
and the kill command will fail. In that case, you’ll have to use a stronger signal:
signal 9, called the SIGKILL signal. SIGKILL causes the process to exit immediately
without any attempt or time to clean up after itself.

WARNING When you use SIGKILL, you may experience some trouble with other processes still
running, if the process being killed does not shut down cleanly. Although using
signal 9 usually doesn’t cause trouble, if you sense instability in the system after
using it, you may need to shut down all processes and log in again. In rare cases,
you may even need to reboot.

To specify the signal that kill will use, simply place the signal number on the
command line. You can use either the signal’s name or its identification number,
though the numbers are far more commonly used. For example, you might issue
the command

kill –9 7644

or

kill –KILL 7644

Chapter 26 • Signals and Status

2817c26.qxd 11/13/00 2:39 PM Page 400

401

You don’t have to use the SIG segment of the signal’s name, because that segment
is implied when you use the suffix.

To see the various signals that are available to you with your particular Unix
variant, use the –l flag with the kill command. When we issue this command
on one of our machines, we get the following output:

[joe@fugu joe]$ kill –l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGIOT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS

Note that all the signal names begin with the prefix SIG to indicate that they are
signals. You can use whatever is easiest for you to remember and type, and you’ll
hear these signals referred to by both their full names and just their suffixes.

TIP As we mentioned above, the kill command is configured so that you can omit
the SIG prefix if you want to issue a signal by its name; kill –TERM is the same
as kill –15.

The most commonly used signals are SIGHUP (1), SIGINT (2), SIGKILL (9),
SIGSEGV (11), and SIGTERM (15). These signals work in slightly different ways,
but how they behave is determined largely by the kinds of signal traps that are
used to handle and invoke them.

NOTE The exception is signal 9, SIGKILL, which always kills the specified process.

If you want to find out how the signals differ from each other by learning each
signal’s technical specifications, you’ll have to read the section of the kernel code
that defines them. Under Linux, signals are defined in the file /usr/include/
linux/signal.h, but the comments are very sparse—if you don’t know the C pro-
gramming language already, you probably won’t get much enlightenment from
reading the kernel. Those who use Unices that don’t make kernel code accessible to
users may not be able to learn the technical specifications of their signals directly.

Managing Signals

2817c26.qxd 11/13/00 2:39 PM Page 401

402

However, don’t fret: You don’t need to know how they work to use them. You’ll be
using kill –9 for the vast majority of your kill commands anyway.

Signal Traps
As we mentioned earlier in this chapter, a signal trap is a way of defining how a
particular program will behave when it receives a particular signal as it operates.
When writing a script, you can include a signal trap by using the trap command.
trap uses this syntax:

trap <command> <signal> [<signal> <signal> …]

You can stack up as many signals as you need within the square brackets, though
for the sake of simplicity, you shouldn’t try to cover every signal operation in a
single signal trap. Thus, if you want to trap the SIGINT signal and cause the script
to print out a message when the signal is received, you might place a line in the
script that looks like this:

trap “echo ‘caught a SIGINT’” INT

To understand more about signal traps, let’s take a look at a more complex script
that uses them to perform actions automatically. Consider this small script:

#!/bin/bash
while true
do

sleep 60
done

This script doesn’t do much. true is an expression that will always return an exit
status value of 0; thus, the loop will always execute. If you decide to run this
script, it will loop indefinitely until you stop it with a signal or kill it with kill
–9 processnumber at another shell prompt.

NOTE You can send a signal to stop this script by pressing Ctrl+c, which is defined as the
key combination that sends the SIGINT signal. This should work regardless of Unix
variant, because it is a very common expectation on the part of programmers.

The script as it stands now does not have a signal trap. So, amend the script
and add a trap at the start of the program:

#!/bin/bash
trap “echo ‘caught a SIGINT’” INT

Chapter 26 • Signals and Status

2817c26.qxd 11/13/00 2:39 PM Page 402

403

while true
do

sleep 60
done

If you run the script now, it will loop infinitely just like the first one. However,
if you press Ctrl+c while the script is running, you’ll now see a message printed
to the screen that reads “caught a SIGINT.” (The program will continue to run
after the message is printed.)

TIP To kill a running process when you have only one shell session available to you (for
example, if you’re not running X and you can run only a single terminal session),
press Ctrl+z to put the running process into the background. Then, issue the ps
command to get a list of process identification numbers, and use the kill –9
command to kill the running process.

At this point, you have a script that runs indefinitely, though it will alert you
if an interrupt signal has been received. That’s helpful, but the purpose of SIG-
INT is usually to stop the process and not just to alert you that something has
happened. To make this script work a bit more usefully, amend the signal trap
so that the script will exit when it notices the Ctrl+c key combination producing
a SIGINT:

#!/bin/bash
trap “echo ‘caught a SIGINT’; exit 1” INT
while true
do

sleep 60
done

In this version, you have added an exit statement as part of the signal trap. The exit
statement sets the condition under which the program will shut itself down. Now,
when you hit Ctrl+c while the script is running, you’ll see the message, and the
program will shut down. It will also return an exit status of 1, letting you know
that something untoward has happened; remember, an exit status of 1 indicates
that the program ended because of an error or other incorrect situation.

TIP The semicolon in the signal trap signals the end of a line to the shell. Thus, the
trap line appears as two separate lines to the shell interpreter. Programmers use
the semicolon to keep several short commands on the same line for easier reading
and to keep the various components of a complex command together.

Managing Signals

2817c26.qxd 11/13/00 2:39 PM Page 403

404

If you want to add more complex behavior than can fit into a single trap line,
even with semicolons, you can pull that behavior out into its own function, as in
this variation on our example script:

#!/bin/bash
croak () {

echo “Ugh! I’m ….. dying…..”
sleep 3
echo “klunk”
exit 1

}

trap “croak” INT

while true
do

sleep 60
done

With the croak function added, the script will now produce a little soliloquy
while it shuts down. You can probably think of more useful ways in which to use
a function in a shell script than to turn your computer into a bad imitator of
Shakespeare, but the process is illuminated here.

WARNING Some readers may think that signal handling and functions are the answer to their
prayers, permitting incredibly complex behavior in a simple construction. Don’t go
overboard. If you’re just writing shell scripts, most of the tasks you’ll write scripts
for are not complex enough to warrant a huge amount of signal handling. You’ll
eat up valuable processor resources to execute the various responses, taking that
time away from the actual tasks you’re trying to complete.

Ignoring Signals
Although it’s not all that common, there may be times when you want your pro-
gram to ignore certain kinds of signals. For example, you may be a system admin-
istrator who needs to run particular scripts in your users’ directories to clean out
dead files or programs that aren’t permitted by your Acceptable Use Policy, such
as files over a stated size. However, you might have a user who Ctrl+c’s any

Chapter 26 • Signals and Status

2817c26.qxd 11/13/00 2:39 PM Page 404

405

process he doesn’t recognize, so your scripts keep dying before they have a
chance to work.

TIP You’ll find some ignore traps in the most system-critical scripts, though. It would
be disastrous if these programs were ended abruptly before they finished their
work, so programmers embedded ignore traps so that the scripts wouldn’t shut
off without authorization.

Luckily, it’s easy to ignore particular signals. (You should never set a program
to ignore SIGKILL, though. You’d have to reboot to stop a runaway process that
ignores –9.) To ignore a particular signal, just add an empty command line in
your signal trap, as in this example:

trap “” INT

This line makes the script trap the SIGINT signal, but specifies that nothing is to
be done about it and that the program should continue as normal.

Summary
Exit status and signals are two useful identifiers that can be used to expand the
functionality and precision of your shell scripts. Exit status is the value returned
by a particular process as it finishes; the status is either 0, in which case the process
has finished cleanly, or another number (usually 1), which indicates failure or
some other nonideal conclusion. You can use the exit status number in an if-then
construction to cause subsequent action based on the value of the exit status.

Signals are used to manage active processes (those that have not yet produced
an exit status value). Signals are used with the unique process identification num-
ber assigned to each ongoing process on the system; for example, the kill com-
mand can be issued only with a specific process identification number passed as
the argument. Signals are generally used from the command line only to end run-
ning processes. However, in scripts and programs, a wider variety of signals can
be used to affect running processes and then perform particular tasks based on
the outcome.

Summary

2817c26.qxd 11/13/00 2:39 PM Page 405

This page intentionally left blank

P A R T V I I
Basic System
Administration

� Chapter 27: What Is System Administration?

� Chapter 28: System Programming

� Chapter 29: Managing Users and Groups

� Chapter 30: Disks and Filesystem Management

� Chapter 31: Installing and Managing Software

� Chapter 32: Getting to Know the Kernel

� Chapter 33: Managing Print Services

2817c27.qxd 11/17/00 3:45 PM Page 407

This page intentionally left blank

C H A P T E R
T W E N T Y - S E V E N

What Is System
Administration?

� The Administrator’s Job

� Administering a Small System

� Professional System Administration

� Basic System Administration Tasks

� Summary

27

2817c27.qxd 11/17/00 3:45 PM Page 409

410

The first parts of this book dealt with subjects relevant to all Unix users,
whether administrators or simply account-holders; the remainder of the book
focuses on tasks unique to the system administrator.

• Part VII: “Basic System Administration” introduces the concept of adminis-
tration and explains the basic tasks that are required of every administrator,
whether on a network or a standalone machine.

• Part VIII: “Network Administration” introduces networks and covers the
physical devices that make up networks of computers, both the machines
themselves and the cabling and cards that connect them.

• Part IX: “Administering Services” deals with the various programs that han-
dle external requests to the local network, such as Internet services like e-
mail or Web.

The subjects covered in the remaining chapters are those that truly distinguish
Unix computers from computers running other operating systems. Readers who
run their own Unix machines will find help here both for the basic tasks of
administration and for the more advanced concepts involved in working with
multicomputer networks and providing services to external networks. Any Unix
computer can perform these tasks; you do not have to purchase a special version
of Unix to handle networking and administrative functions. The only barrier is
hardware power, especially RAM and hard-disk space.

In this chapter, we introduce the chapters that complete this part of the book.
We also spend some time discussing the concept of system administration itself:
Who is a sysadmin? Who is not? Are you? Even if you are not sure whether you
will ever run your own Unix machine, we encourage you to read Part VII. At the
least, it will give you a fuller understanding of the tasks your own system admin-
istrator performs; at the most, it will give you the information you need to run
your own system if you decide to do so. Readers who are already root on some
system can use Part VII as a refresher, before tackling the networking and services
topics in Parts VIII and IX.

The Administrator’s Job
At its most basic, the term system administrator is self-explanatory. A system admin-
istrator (sysadmin) is a person who administers systems, usually computer sys-

Chapter 27 • What Is System Administration?

2817c27.qxd 11/17/00 3:45 PM Page 410

411

tems. System administration involves maintaining hardware, installing and
updating software, and dealing with users. It requires specific knowledge in a
variety of disparate areas, from programming to dispute resolution, and the ability
to learn quickly and on the run.

In the term’s more habitual use, a system administrator is a person who is in
control of one or more computer networks, usually for an organization, whether
corporate or nonprofit. System administration requires long and irregular work-
ing hours, often at the beck and call of a pager. The system administrator is
responsible for dealing with a plethora of requests and demands that often are
contradictory, enforcing network policies and standards, and managing a budget.
It is an unenviable job.

Luckily, in most situations, system administration is a shared job. Larger orga-
nizations will have several sysadmins to handle general network operation, while
other employees will handle specific tasks such as Web administration or mail
management. There may be 100 or more people at a particular organization who
are, in the whole, responsible for system administration, while their individual
tasks are small slices of the complete job.

Although there is no semantic difference between the system administrator of a
large network and the system administrator of a single home machine, there is a
practical difference between the professional and the amateur. If you run a single
Unix machine, you are a very different kind of system administrator from some-
one who’s responsible for 100 machines. Don’t insist on being called a sysadmin,
especially by people who are professionals; there’s a pecking order in the Unix
world, and upward movement is based on demonstrated skill and ability.

That said, in this book we use the term to cover all sorts of people. If you have
root on a Unix machine, we consider you to be a system administrator and refer
to you as such. The skills you’ll learn in the remaining chapters are those used by
professional sysadmins, and they are crucial tasks that need to be performed by
anyone in charge of Unix computers, whether beginners or wizards.

Administering a Small System
We assume that most readers will be administrators of single computers or of net-
works containing fewer than five computers. If you are in this category, you have

Administering a Small System

2817c27.qxd 11/17/00 3:45 PM Page 411

412

a lot to learn because you will be responsible for every aspect of your system.
You’ll have to handle maintenance, upgrades, services, and users.

The advantage of a small system is that it’s possible to familiarize yourself with
everything that’s going on within the network. (We use the network example in
this chapter because it’s the larger of the two options; if you are a single-computer
administrator, just reduce all the examples to concern only one computer.) You
probably know all your users personally, and are familiar with the kind of traffic
and system load they tend to generate. It’s easier to know when something’s
wrong, intuitively, because you know your system so well.

WARNING As a small-system administrator, you need to be very conscious of security.
Because you’re in charge of everything, you don’t have the luxury of a person
whose sole job is to keep your system intact. Keep up with security news and help
yourself out by installing software that will monitor your system even when you’re
not there.

Even though you’re running just a few computers—or even just one—it’s a good
idea to set up basic policies if you have users other than yourself. Your policies can
be as simple as “Don’t do anything illegal” or as detailed as “Uploads and down-
loads larger than 3Mb are permitted only between 8:00 P.M. and 6:00 A.M.” Inform
your users of your policies, and enforce them. It’s probably your name on the Inter-
net connection, and you don’t want to lose access because one of your users decided
to join a pyramid scheme that’s distributed by unsolicited e-mail.

Your job will be simplified if you review Part VI: “Shell Programming” and
learn at least the basics. Shell scripts will automate a lot of your daily tasks and
can keep you from giving up the Unix enterprise because of the busywork. You’ll
learn more about shell programs in Chapter 28: “System Programming.”

Finally, don’t be afraid to experiment. If you have a small network or single
computer, you don’t have a lot of responsibilities to other people who rely on you
for all their computing needs. You can try out shell scripts, install and test new
services, or learn about kernel management on your own system. (Back every-
thing up first, though.) The Unix world is filled with people who taught them-
selves from scratch, so you’re upholding a long tradition of autodidactery.

Chapter 27 • What Is System Administration?

2817c27.qxd 11/17/00 3:45 PM Page 412

413

Professional System Administration
To those readers who are professional system administrators, welcome. Because
this book covers a spectrum of abilities, you’ll find much of the material in these
remaining chapters to be information you already know. However, in the grand
tradition of Unix, there are probably things here that are new to you, especially if
you are a specialist.

As with the small-system administrators, we recommend that professional
sysadmins maintain a high level of security awareness. Security risks and suc-
cessful exploits are constantly in the news, and the cracking isn’t just for fun any-
more (if it ever truly was, despite the romantic myths). Especially if you work for
a major corporation, your data is vulnerable to loss or compromise, which can
lead to legal trouble or profit losses. You probably have a commercial security
package installed on your networks; even if it isn’t your direct responsibility, take
some time to familiarize yourself with it. At the least, you’ll have a new skill for
your next job search.

We encourage you to skim through this part of the book to check your basic
system administration skills, though you probably perform many of these tasks
in your daily work. Some of the material covered in these chapters may not be
part of your job, especially print services or kernel management, or you may not
be familiar with the Unix variants we describe here.

Basic System Administration Tasks
In this part of the book, we review the tasks common to system administration at
all levels. No matter how many computers there are in your network or how
many users you manage, you will find these tasks to be the basic components of
your system’s work. Whether you become proficient in all of the tasks or you
choose to specialize, it’s a good idea to become familiar with all these skills. It is
likely that you’ll be called upon to use them all at some point in your time as a
Unix system administrator.

Basic System Administration Tasks

2817c27.qxd 11/17/00 3:45 PM Page 413

414

System Programming
Chapter 28: “System Programming” expands on the skills presented in Part VI:
“Shell Programming.” The chapters of Part VI explained the basic theory of pro-
gramming for the shell environment; Chapter 28 shows you how those theories
translate into system administration. You’ll need to understand the concepts
behind shell programming to take advantage of this streamlining technique.

You can use shell scripts to manage almost any system administration activity,
whether it’s user management or routine hard-drive cleaning. If it can be done
with a shell command, it can be done with a shell script. This chapter also pre-
sents the useful commands cron and at. When used in combination with shell
scripts, these commands will relieve you of even the most basic part of shell pro-
gramming: remembering to run the program so it will do its work.

Managing Users
Even if nobody else will ever log into your Unix computer, you’ll need to manage
your user base because you will have a personal user account as well as the root
account. You may want to have multiple user accounts as easy ways to test new
scripts or commands, as well. Chapter 29: “Managing Users and Groups” intro-
duces the various Unix user commands and tasks, and offers some useful tips on
user management.

WARNING Never use the root account to perform personal activity, especially if it’s Internet
activity. Save the root account for root activity and use your personal account for
everything else.

User management encompasses a range of tasks. Creating a new user is only the
first step. Users can be divided into groups, which makes it easier to manage vari-
ous administrative details. Special attention should be paid to the /etc/passwd
file, which contains encrypted passwords for every user on your system. Finally,
when you no longer have a particular user, the user should be fully removed from
your system.

Managing Disks and Filesystems
Unix handles disks differently from other operating systems. In Chapter 30: “Disks
and Filesystem Management,” we introduce this concept and explain how disks

Chapter 27 • What Is System Administration?

2817c27.qxd 11/17/00 3:45 PM Page 414

415

can be partitioned to provide even more flexibility. We also explain the differences
between physical media (the hard drive itself, or CD-ROMs and floppy disks) and
the Unix filesystem itself, though management of both is similar.

Chapter 30 then explains the concept of mounting various filesystems, including
local and remote drives. To use a drive, such as the CD-ROM, it must be mounted
and made available to the filesystem as a whole. With Unix, you can’t just shove a
disk into a drive and have the disk be usable. We show you the subtle differences
between using local filesystems and remote ones, a concept that underlies the
Internet as a whole.

Managing Software
In Chapter 31: “Installing and Managing Software,” we show you how to install
software from source code, the basic packaging you’ll find for Unix software in
every program archive you visit. If you can compile from source code, you can
install every Unix program that’s available, as long as it’s been ported for your
operating system.

We then introduce package management systems, which are interfaces used by
certain Unix variants (most notably the Linuxes offered by Red Hat and Debian)
to simplify the software installation process. Package managers use a specialized
code format, and handle much of the installation and configuration process with-
out requiring your input or constant vigilance. Finally, we discuss how best to
keep on top of your software, find upgrades and patches, and make software
maintenance a routine task.

Managing the Kernel
Chapter 32: “Getting to Know the Kernel” introduces the core of the operating
system. The Unix kernel, far from being a mysterious jewel hidden beneath layers
of code designed to hide it from unqualified eyes, is something that you can man-
age and change with a modicum of knowledge. Although you should be careful
with the kernel (an error can really cause trouble), there’s no reason to avoid
working with it altogether.

We explain the differences between modular and static kernels, showing you
the uses of each type. We then explain how to compile the kernel and how to
recompile it when you want to add a new function or module. Knowing how to
work with the kernel is one of the skills that distinguishes between casual and
skilled Unix users, and it’s not that hard to learn.

Basic System Administration Tasks

2817c27.qxd 11/17/00 3:45 PM Page 415

416

Managing Print Services
The final chapter in this part of the book focuses on a frequently used function
that can be problematic for many. Chapter 33: “Managing Print Services” explains
how Unix handles print requests and printer devices. We show the difference
between local printers (those attached to the machine being used) and network
printers (shared resources for all computers attached to the network).

We then explain the mysteries of the /etc/printcap file, which is the heart of
printer management. Finally, we show you how to set up and maintain a print
queue, the method by which networked printers handle printing requests. The
queue is a simple concept that can cause quite a few problems in administration,
and we offer some tips for smooth queue management.

Summary
No matter how you use your Unix computer, if you have access to the root
account, you are a system administrator. There are as many kinds of system
administrators as there are kinds of computer users, so it is possible to make a
statement about system administrators that applies to no more than 20 percent
of the total pool of sysadmins. However, some general duties are common to all
system administrators: They are responsible for maintaining and upgrading
computer systems, whether hardware or software, and must keep the system
working and available to users. Most readers of this book will administer single
computers or small networks and need not be concerned with the issues that
face the administrator of a massive network, but the jobs each administrator
does are often the same.

System administrators should define a set of policies for their network or com-
puter that will affect all users. These policies should cover security, file manage-
ment, and permissible use of system resources. Users who abide by such policies
make the sysadmin’s life easier. Administrators can streamline much of their
work by learning some basic system programming skills, and by maintaining
open and effective communication with their users. Most other system adminis-
tration tasks will be easy to pick up as necessary, including software mainte-
nance, disk management, and printer administration. The chapters in this part of
the book and in Part IX: “Administering Services” provide much of the basic
information needed to get you started in your system administrator role.

Chapter 27 • What Is System Administration?

2817c27.qxd 11/17/00 3:45 PM Page 416

C H A P T E R
T W E N T Y - E I G H T

System Programming

� Automating Common Tasks with Shell Scripts

� Case Study: A Simple Backup Script

� Executing Scripts with cron and at

� init Scripts

� The Initialization Process

� Summary

28

2817c28.qxd 11/13/00 2:40 PM Page 417

418

In Part VI: “Shell Programming,” we showed you how to create programs
using the bash shell’s built-in programming language. In this chapter, we put
those skills to work and show you how to use shell scripts to your advantage.
You can use shell scripts to handle many of the common tasks that take up a lot of
administrative time, as well as the repetitive chores that you may want to avoid
because they’re boring.

At the same time, we provide some insight into the way Unix works. Many of
the functions that Unix performs, whether at boot-up or at regularly scheduled
intervals, are controlled by shell scripts. An administrator can arrange these
scripts so that any given machine on a network is configured to do only the
tasks assigned to it, or so that all machines on the network perform their regu-
lar actions in a particular sequence to relieve demands on network connections
or system resources.

We also show you how to use Unix’s built-in scheduling functions so that you
can have certain tasks executed automatically. This is an excellent way to deal
with some of the tedious tasks that have to be performed regularly, and it elimi-
nates the chance that a task might be overlooked or ignored. The computer never
forgets, so it’s a good solution to let the computer handle these jobs. However,
automatic scheduling is not a panacea. Some tasks can be performed only by a
human making conscious decisions, but a sufficiently creative system program-
mer can make basic Unix administration much less irritating.

Automating Common Tasks
with Shell Scripts

It’s been said—though not usually in front of the boss—that the best system
administrators are the laziest ones. This doesn’t mean that the best administra-
tors are the folks who show up late and spend most of the day playing Solitaire
or Quake, but rather that the best sysadmins find creative ways to shift some of
their duties to the computer. After all, what is a computer intended to do if not
to automate certain complex tasks? In fact, getting the computer to do more and
more of its own work has been at the heart of computer science since the earli-
est days, and is a big part of the reason that operating systems were invented in
the first place.

Chapter 28 • System Programming

2817c28.qxd 11/13/00 2:40 PM Page 418

419

Here’s a real-life example. One of the most common system administration
chores is to make backups of certain branches of the filesystem. This is usually
done with the tar command, which makes a compressed archive file of a speci-
fied directory and any files stored beneath that directory, whether simply as files
or within a subdirectory.

Assume that you want to back up the /home filesystem so that your users don’t
lose their valuable files, or at least so that you’ll have a copy in case the files are
lost. You probably want to store the archive in another directory called /backup,
which is remotely mounted across the network and resides on another machine.

WARNING It’s never a good idea to leave backup files on the same computer where the
backed-up files live. If the computer goes down, so does the backup file. You can
put backup files on another computer or store them on removable media such as
Zip disks or writable CD-ROMs; just don’t leave the files on the same machine. It
defeats the whole purpose of backups.

To create this archive, you’d issue the command

tar cvfz /backup/may20-mymachine-home.tgz /home/*

This command creates an archive file named may20-mymachine-home.tgz, saved
in the /backup directory. The name indicates the date, machine name, and filesys-
tem being recorded in the backup file; adopt a similar system to name your own
backup files so that you can select the correct one if it’s needed.

Unfortunately, you can’t run this simple command every day and consider your
backups done. The filename changes from day to day as the date changes, and you
may want to back up other directories as well as /home on some days. Also, you
may not have the remote /backup directory mounted on the local machine every
day; if the operating system can’t find the specified directory, the command will
fail, and the backup won’t be made.

Case Study: A Simple Backup Script
This is where shell programming can really help out. Remember that any com-
mand that can be issued at a shell prompt can also be executed from a shell script,
as we explained in Chapter 21: “An Introduction to Shell Programming.” So, in

Case Study: A Simple Backup Script

2817c28.qxd 11/13/00 2:40 PM Page 419

420

this case, you need to write a script that will check whether /backup is mounted
remotely (and alert you if it isn’t available), create the backup archive, and give
the archive a unique name based on your naming system for backup files.

Such a script can be quite simple:

#!/bin/bash
backup – a program to back up a directory

BACKUP_DIR=”home” # directory to be backed up

STORAGE_DIR=”backup” # directory to store the archive

DATE=$(date+%b%d) # today’s date in month/day format

if [-d /$STORAGE_DIR] && [-s /$STORAGE_DIR]
then

tar cfz /$STORAGE_DIR/$DATE-$HOSTNAME-➥

$BACKUP_DIR.tgz /$BACKUP_DIR/*

else

echo “Storage directory may not be mounted.”

fi

As you can see, this script is pretty straightforward. We’ve defined some of the
parameters as variables, used to identify the files and directories affected by the
backup. We then use the variables to construct the naming system for the individ-
ual backup files.

There are two [...] constructs, linked by a logical AND operator (&&), that
ensure the /backup directory exists and is not empty. If the directory were empty,
it would be unmounted; all mounted directories contain at least two files. If the
/backup directory does not exist, or if it’s empty, the script returns the statement
“Storage directory may not be mounted”, and you have the opportunity to
mount the directory by hand before you run the script again.

The DATE variable is defined as the output of the command date +%b%d. The
second component of that command is a group of individual formatting macros:
+ indicates to the operating system that macros are about to follow, while %b indi-
cates the name of the month in a three-letter abbreviation, and %d indicates the

Chapter 28 • System Programming

2817c28.qxd 11/13/00 2:40 PM Page 420

421

day of the month. This data is pulled from system settings, another reason to
ensure that your system date and time are accurately set.

TIP If you want to know more about variables for the date command, check the date
manual page by issuing the command man date at a shell prompt. There are quite
a few options.

By chaining the $DATE, $HOSTNAME, and $BACKUP_DIR variables, we create an
individual name for the archive that unmistakably identifies that file in a list of
backup files. We don’t need to define the $HOSTNAME variable because it’s already
defined in the global environment variables. All other variables need to be defined
within the script for the value needed in performing the script’s commands.

Adapting the Script for Multiple Backups
Although this script is quite useful as it stands, there’s no reason not to expend a
bit more effort. The script can be rewritten so that it’s a bit more flexible, incorpo-
rating more directories. With an adapted script, you won’t have to write a differ-
ent script using the previous model to back up directories other than /home.

The rewritten script might take this form:

#!/bin/bash
backup – a program to back up a directory

STORAGE_DIR=”backup” # directory to store the archive

DATE=$(date+%b%d) # today’s date in month/day format

for BACKUP_DIR in “$@”

do
if [-d /$STORAGE_DIR] && [-s /$STORAGE_DIR]

then

tar cfz /$STORAGE_DIR/$DATE-$HOSTNAME-➥

$BACKUP_DIR.tgz /$BACKUP_DIR/*

else

Case Study: A Simple Backup Script

2817c28.qxd 11/13/00 2:40 PM Page 421

422

echo “Storage directory may not be mounted.”

fi

done

This version of the script will accept a list of directories as arguments and will
make backup archives for each specified directory. For example, you could issue
the command

backup etc home usr

The script will then create backup archives for the /etc, /home, and /usr directo-
ries, naming each archive with a particular identifying name. Note that you don’t
need to give the leading slash as an argument when invoking the script because
the script is written to provide those slashes itself. Using the slash in the invoca-
tion will cause the script to fail.

Adapting the Script for Future Flexibility
This second version of the script is certainly more useful than the preceding ver-
sion, because the second version can be expanded to create multiple directory
backups with one command. However, it’s still a bit clumsy. To make it more ele-
gant (an issue both of style and of making the code easier to process by the oper-
ating system), you might rewrite it once again, like this:

#!/bin/bash
backup – a program to back up a directory

STORAGE_DIR=”backup” # directory to store the archives

DATE=$(date +%b%d) # today’s date in month/day format

dobackup () {

if [-d /$STORAGE_DIR] && [-s /$STORAGE_DIR]

then

tar cfz /$STORAGE_DIR/$DATE-$HOSTNAME-➥

$BACKUP_DIR.tgz /$1/*

Chapter 28 • System Programming

2817c28.qxd 11/13/00 2:40 PM Page 422

423

else

echo “Storage directory may not be mounted.”

exit 1

fi

exit 0

}

for BACKUP_DIR in “$@”
do

dobackup $BACKUP_DIR
done

In this version of the script, we’ve moved the commands that make the backup
file into a new function called dobackup. The main part of the script (the part that
iterates the list of arguments) now calls the function as needed. Granted, this is
more a matter of programming style than anything else, but this version is cer-
tainly more elegant than the previous versions.

Note that, in this version, we had to change $BACKUP_DIR to $1, because the
value of $BACKUP_DIR is passed to the new function as $1, just as if it were a regu-
lar command-line parameter. Although it’s not critical at this point, it’s a good
idea to take care of that change now. In the event that we change the script again
(as we will momentarily), we can add subsequent places where the dobackup
function will get called again.

Adapting the Script to Include Logs
Administrators are often responsible for keeping logs of their activities. It would
be quite helpful if this script could generate a log of its backup activity so that its
work could be recorded and tracked. This is an easy modification, because all we
need to do is add the line

echo “$DATE : Wrote backup archive for $BACKUP_DIR” >>➥

/var/log/backup

Case Study: A Simple Backup Script

2817c28.qxd 11/13/00 2:40 PM Page 423

424

to the main part of the program, like this:

for BACKUP_DIR in “$@”
do

dobackup $BACKUP_DIR

echo “$DATE : Wrote backup archive for $BACKUP_DIR”➥

>> /var/log/backup

done

However, this line will generate the confirmation message whether or not the
backup was successful, which is not very useful if you’re relying on the logs to
tell you what happened.

The dobackup function returns an exit status of 0 if it is successful, so we can
use that as a condition to report success in the log. (We cover exit status in Chap-
ter 26: “Signals and Status.”) Instead of using the previous block of code, we can
use the following block to handle log reporting accurately:

for BACKUP_DIR in “$@”
do

dobackup $BACKUP_DIR

if [$? –eq 0]

then
echo “$DATE : Wrote backup archive for➥

$BACKUP_DIR” >> /var/log/backup

else
echo “$DATE : Unsuccessful backup for➥

$BACKUP_DIR” >> /var/log/backup

fi

done

The script can now handle log report entries whether the backup was successful
or not, and the administrator can tell the difference with a quick scan of the
/var/log/backup file.

Chapter 28 • System Programming

2817c28.qxd 11/13/00 2:40 PM Page 424

425

Once the new block is integrated, we have yet another revision of the script:

#!/bin/bsh
backup – a program to back up a directory

STORAGE_DIR=”backup” # directory to store the archives

DATE=$(date +%b%d) #today’s date in month/day format

dobackup () {

if [-d /$STORAGE_DIR] && [-s /$STORAGE_DIR]
then

tar cfz /$STORAGE_DIR/$DATE-$HOSTNAME-➥

$BACKUP_DIR.tgz /$!/*

else

echo “Storage directory may not be mounted.”

exit 1

fi

exit 0

}

for BACKUP_DIR in “$@”
do

dobackup $BACKUP_DIR

if [$? –eq 0]
then

echo “$DATE : Wrote backup archive for➥

$BACKUP_DIR” >> /var/log/backup

else

Case Study: A Simple Backup Script

2817c28.qxd 11/13/00 2:40 PM Page 425

426

echo “$DATE : Unsuccessful backup for➥

$BACKUP_DIR” >> /var/log/backup

fi

done

As the script has moved through several revisions, it has incorporated new
functions and actions into its operation. Although the initial script was useful, it
was limited. The final version is much more flexible and also provides important
feedback to the administrator. Now, the administrator doesn’t have to look
through the /backup directory to see whether backups were made; instead, all
that’s needed is a quick check through the /var/logs/backup file to see what the
latest entries say.

There is a place for both kinds of scripts. Most system administrators are com-
fortable with whipping up a quick script to solve a particular problem. Whether
that script is ever revisited is another issue. We tend to favor scripts that perform
multiple functions at one time; it saves both disk space and system stress, because
there are fewer scripts on the system and thus fewer calls on system resources to
run the scripts.

That’s not to say that you should try to combine every script you have ever
written into two or three huge scripts. Rather, look through your script library
and see what sorts of tasks you like to automate. Are any of the scripts for similar
tasks? Can they be combined? More importantly, do your scripts have some sort
of outcome reporting entry? A line or two that causes the script to report its suc-
cess or failure to a log file can be invaluable in later use. The final version of the
backup script may still be simple, but it combines several tasks and a reporting
function into one short shell script.

Executing Scripts with cron and at
Once you’ve put a certain amount of work into creating a script, it may seem like a
waste of time if you have to run that script by hand every time you want to per-
form those actions. (We are reminded of the old joke, “What do you mean it’s
automatic? I have to push a button!”) Wouldn’t it be nice if the script could run
automatically so that the only time you have to interact with it is to check the logs?

Chapter 28 • System Programming

2817c28.qxd 11/13/00 2:40 PM Page 426

427

Although saving time is an important reason to consider automation, there is
another significant reason to do so. Many of the processes that are normally exe-
cuted by scripts are disk- and processor-intensive. Running your backup script,
or scripts like it, at a time when many users need to share system resources can be
crippling to everyone’s work because the processor must switch back and forth in
tiny timeslices until all the processes are complete.

Backups, in particular, should be done only when none of the files to be backed
up are in use. Backing up the /home directory while your users are all at work and
actively using their accounts, for example, would result in a faulty backup, if the
process succeeded at all. It’s much better to do things like backups late at night,
when hardly anyone is using the system; you can kick one or two people off the
system before you do backups, but it is much harder with 10, 20, or 100 users.

The cron Command
We aren’t particularly fond of getting up at 2:00 in the morning and doing sysad-
min things, and we suspect you aren’t either. Luckily, Unix has a solution: using
the system utility cron. The magic command is

crontab –e

crontab is the command that lets you schedule processes to be run automati-
cally with the cron utility. When you issue the crontab –e command, the file
crontab will open in whatever editor you’ve defined with the EDITOR environ-
ment variable. Once the file is open, add a line that looks like this:

0 2 * * * /path/to/backup <list of directories>

where /path/to/backup is the full directory path of your script file—in this case,
the backup script—and <list of directories> is the list of directories that you
want backed up each time the backup script is run.

TIP You can omit full directory paths in crontab if the script file is contained in one of
the directories named in your PATH environment variable.

Save the file and exit the editor. You should see a message that says something
like Installing new crontab, though the exact message will differ from Unix
variant to variant. That’s all you need to do. With the entry shown above, the
backup scripts will run every day at 2:00 A.M. and back up the directories listed
in the <list of directories> component.

Executing Scripts with cron and at

2817c28.qxd 11/13/00 2:40 PM Page 427

428

crontab Syntax
To use cron to automate your system tasks, you need to make an entry for each
task in the crontab file. Entries in crontab use a particular syntax:

<minute> <hour> <day> <month> <day of week> command

You don’t have to fill out every field of the entry; you can substitute the * charac-
ter if you want to include every possible value in the field. Thus, the time value 0
2 * * * means “zero minutes after 2 A.M., every day of the month, every month,
every day of the week.” The time value 0 2 * 2 would mean “zero minutes after
2 A.M., every day of the month, in February only.”

Because we wrote the backup script with crontab in mind, we can set up vary-
ing backup schemes just by making different entries in crontab. For example, we
could set up some crontab entries like these:

0 2 * * * backup home root
0 3 * * 0 backup etc usr/local
0 4 1,15 * * backup bin sbin usr

These entries tell cron to back up /home and /root every day; /etc and /usr/
local every Sunday; and /bin, /sbin, and /usr on the 1st and 15th of every
month. This is a reasonable schedule for backups, and they will now be done
automatically.

TIP You can specify multiple values for a given field in a crontab entry by using a
comma-separated list, as in the third entry shown above. There are also other ways
to specify ranges or multiple values, all of which are shown in the manual page for
crontab. Issue the command man crontab at a shell prompt to learn more.

The at Command
You can also set up one-time script executions if you have a script or command
that you want to run automatically, but not repeatedly. For this purpose, you
need to use the at command instead of cron. at is extremely flexible in the way
in which it handles time specifications, more so than cron. For example, the most
basic syntax for at would be

at 14:30 command

Chapter 28 • System Programming

2817c28.qxd 11/13/00 2:40 PM Page 428

429

which would run the specified command at 14:30 (2:30 P.M.) (at uses military
time.) If it’s already past 14:30 when you issue this command, at assumes you
mean 14:30 tomorrow.

at handles less-explicit time statements as well. You can use common time ref-
erences such as noon, midnight, or teatime (16:00, or 4:00 P.M.) with the syntax

at teatime command

You can also specify relative times, as in noon + 4 hours, or give a specific date
and time, as in 02/21/01 + 08:15.

TIP There are quite a few variables for at. See the at manual page for more details
and ideas about using this utility to handle one-time automatic command perfor-
mance.

init Scripts
Understanding system programming can open up a whole new level of under-
standing about how your system works. When you first boot up the computer, a
number of initialization scripts (init scripts) are run automatically. These scripts
are responsible for starting up almost all the basic functions of the operating sys-
tem. Exactly how these scripts are set up varies from Unix variant to variant, but
they are all fairly basic examples of the type of system programming we intro-
duced above by building the backup script.

As an example, consider the syslog file used by Red Hat Linux version 6.2.
This file starts the system logging functions and runs at boot-up so that all subse-
quent system actions are logged.

#!/bin/sh
#
syslog Starts syslogd/klogd.
#
#
chkconfig: 2345 30 99
description: Syslog is the facility by which many
daemons use to log messages to various system log
files. It is a good idea to always run syslog.

init Scripts

2817c28.qxd 11/13/00 2:40 PM Page 429

430

Source function library.
. /etc/rc.d/init.d/functions

[-f /sbin/syslogd] || exit 0

[-f /sbin/klogd] || exit 0

RETVAL=0

See how we were called.
case “$1” in

start)
echo -n “Starting system logger: “
we don’t want the MARK ticks
daemon syslogd -m 0
RETVAL=$?
echo
echo -n “Starting kernel logger: “
daemon klogd
echo
[$RETVAL -eq 0] && touch /var/lock/subsys/syslog
;;

stop)
echo -n “Shutting down kernel logger: “
killproc klogd
echo
echo -n “Shutting down system logger: “
killproc syslogd
RETVAL=$?
echo
[$RETVAL -eq 0] && rm -f /var/lock/subsys/syslog
;;

status)
status syslogd
status klogd
RETVAL=$?
;;

restart|reload)
$0 stop
$0 start
RETVAL=$?
;;

Chapter 28 • System Programming

2817c28.qxd 11/13/00 2:40 PM Page 430

431

*)
echo “Usage: syslog {start|stop|status|restart}”
exit 1

esac

exit $RETVAL

As you can see by reading through it, this is a simple script, little more than a
case statement, as introduced in Part VI: “Shell Programming.” Each case con-
tains a few functions that start or stop the system logger.

As a piece of programming, the syslog script is not particularly fascinating or
innovative, but it does what it needs to do. The important thing to get from this
script is the concept that, by creating rather simple shell scripts and invoking
them in the right places, you can exercise a great deal of control over the configu-
ration of your system.

The Initialization Process
Organizing and invoking system scripts is all part of the initialization process
that occurs at boot-up. There are two main flavors of initialization; as with other
Unix processes, such as printing, System V (AT&T) Unix and BSD Unix have dif-
ferent ways of handling initialization. The System V style is used by Solaris, most
Linux distributions (the Slackware distribution being the notable exception), and
some commercial Unices, while the BSD style is used by all the variants in the
BSD family and the commercial Unices that don’t use System V. In this section of
the chapter, we cover both System V and BSD initialization.

In addition, the “System V Initialization Process” section introduces a new con-
cept: runlevels. Runlevels are collections of functions that define a particular mode
of operation. There are normally seven runlevels, numbered 0 through 6 in the
traditional Unix numbering scheme. Runlevels 0 and 6 are considered special,
because they designate shut-down and reboot respectively. Runlevel 1 is also spe-
cial, because it designates single-user mode, a special mode most often used for
emergency system repairs. Runlevels 2 through 5 are configurable, though the
configuration may be predetermined by the developers of your Unix variant. We
refer to runlevels elsewhere in the book, but they are most commonly used in ini-
tialization scripts, which is why they’re introduced here.

The Initialization Process

2817c28.qxd 11/13/00 2:40 PM Page 431

432

The System V Initialization Process
When you boot up a System V–based Unix system such as a Solaris or Linux
machine, one of the first things that happens is that a program called init is run.
init has a unique responsibility: It starts all the other processes. Therefore, if you
know how to control init, you can force a number of system configurations
immediately upon boot-up, saving work later.

The first thing that init does, once invoked, is to read the file /etc/inittab.
This file uses a special syntax for its entries, which define the various processes
run at each runlevel. A sample /etc/inittab configured for Red Hat Linux (and
with excellent comments from its author) looks like this:

inittab This file describes how the INIT process
should set up the system in a certain run-level.
#
Author: Miquel van Smoorenburg,
<miquels@drinkel.nl.mugnet.org>
Modified for RHS Linux by Marc Ewing and Donnie Barnes

Default runlevel. The runlevels used by RHS are:
0 - halt (Do NOT set initdefault to this)
1 - Single user mode
2 - Multiuser, without NFS (The same as 3, if you do
not have networking)
3 - Full multiuser mode
4 – unused
5 - X11
6 - reboot (Do NOT set initdefault to this)

id:5:initdefault:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4

Chapter 28 • System Programming

2817c28.qxd 11/13/00 2:40 PM Page 432

433

l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Things to run in every runlevel.
ud::once:/sbin/update

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now

When our UPS tells us power has failed, assume we have
a few minutes of power left. Schedule a shutdown for
minutes from now. This does, of course, assume you
have powerd installed and your UPS connected and
working correctly.
pf::powerfail:/sbin/shutdown -f -h +2 “Power Failure;➥

System Shutting Down”

If power was restored before the shutdown kicked in,
cancel it.
pr:12345:powerokwait:/sbin/shutdown -c “Power➥

Restored; Shutdown Cancelled”

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

Run xdm in runlevel 5
xdm is now a separate service
x:5:respawn:/etc/X11/prefdm –nodaemon

Most of this file is made up of basic initialization commands. The script starts
the various getty programs so that users can log in; getty and its variants are the
programs that listen for terminal connections. If a UPS (Uninterruptable Power
Supply) is connected to the system as in this example, power management needs
to be started. In the event of a power failure, the UPS will supply electricity until
the system can shut down cleanly.

The Initialization Process

2817c28.qxd 11/13/00 2:40 PM Page 433

434

However, a few lines in this script are of particular interest. For example, the line

id:5:initdefault

determines the default runlevel. In this case, the default is runlevel 5. On a Red
Hat Linux system, runlevel 5 is a full graphical user mode with full networking
support. Because this is defined as the default, the system will always start at
runlevel 5 when booted up. The default runlevel can be changed, if desired, sim-
ply by changing the value 5 on that line to the value representing the desired
default runlevel.

The other interesting entry in the Red Hat syslog initialization script is the line

si::sysinint:/etc/rc.d/rc.sysinit

This line tells the system to run the script located at /etc/rc.d/rc.sysinit. The
rc.sysinit script does a number of routine tasks, such as mounting filesystems
and loading kernel modules, but it also initializes a particular runlevel by run-
ning all of the scripts located in a specified directory. In this case, that directory is
/etc/rc.d/rc5.d, because the default runlevel is 5.

If you change into that directory and issue the ls command to see a listing of
the files kept there, you’ll see an output like this:

K10xntpd K55routed S10network S25netfs
S45pcmcia S80sendmail S90vmware K20nfs
K83ypbind S11portmap S30syslog S50inet
S85gpm S90xfs K20rstatd K92ipchains
14nfslock S35identd S55sshd S90cdwrite
S99linuxconf K20rusersd S05kudzu S16apmd
S40atd S60lpd S90fonttastic S99local
K20rwhod S09net-setup S20random S40crond
S75keytable S90mysql

Notice that some of these entries begin with an S, while others begin with a K.
Entries that begin with S are services to be initialized, easily remembered with the
mnemonic S for Service. Entries that begin with K are services to be shut down,
easily recalled with the phrase K for Kill. K entries are always performed first, and
then the S entries are started.

NOTE The number that follows the S or K designates the order in which services are
started or stopped. The lower numbers are handled first. If two services have iden-
tical numbers, they are processed in alphabetical order based on the letters follow-
ing the identifying number.

Chapter 28 • System Programming

2817c28.qxd 11/13/00 2:40 PM Page 434

435

A longer-form listing of the files in this directory would show that these entries
are not actual files, but symbolic links to various scripts kept in the directory
/etc/rc.d/init.d. The scripts in that directory are simply initialization scripts
like the one for the system logger that we showed you earlier in this section. In
fact, the entry S30syslog in the file listing above is the symbolic link to that script.

Runlevels can be customized by adding or removing these symbolic links in the
appropriate directory. The directories have names that correspond to their run-
levels. Thus, /etc/rc.d/rc5.d corresponds to runlevel 5, while /etc/rc.d/rc3.d
corresponds to runlevel 3, and so on.

NOTE These directory locations are not standardized. The examples in this section are
correct for Red Hat Linux, in keeping with the use of a Red Hat initialization script
as our example. Other Unix variants—and indeed, other distributions of Linux—
put these directories in different locations. Debian Linux, for example, omits the
rc.d component of the path, so that initialization scripts are kept in
/etc/init.d, and the runlevel directories are in /etc/rcX.d, where X is the
number of the runlevel. If you’re using a Unix variant with System V–style initial-
ization, you’ll need to do a little investigating to find the exact location of the ini-
tialization files. They’ll almost always be somewhere under /etc, though.

By convention, the various runlevels have evolved to take on different func-
tions. Runlevel 3 is usually command-line mode with networking (but no X Win-
dow Server), while runlevel 5 is usually full graphical mode with networking.
However, these conventions aren’t etched in stone. Corel’s version of Linux, for
example, uses runlevel 2 for almost everything. If you look in the /etc/inittab
file, you’ll usually find a comment that defines the runlevels’ default configura-
tion, as in the /etc/inittab file shown earlier in this section:

Default runlevel. The runlevels used by RHS are:
0 - halt (Do NOT set initdefault to this)
1 - Single user mode
2 - Multiuser, without NFS (The same as 3, if you do
not have networking)
3 - Full multiuser mode
4 – unused
5 - X11
6 - reboot (Do NOT set initdefault to this)

The Initialization Process

2817c28.qxd 11/13/00 2:40 PM Page 435

436

You can cause your system to change runlevels by issuing the command init
X, where X is the new runlevel number. Thus, if you’re currently in runlevel 5, but
you want to change to runlevel 3, you can just issue the command

init 3

and the system will shift to runlevel 3 and the functions associated with that
level. This makes it very easy to set up runlevels so that they reflect the various
functions you might need at different times on your computer, and then to use
the init command to shift levels when appropriate.

NOTE Depending on your Unix variant, you may also have a graphical runlevel manage-
ment tool that works by creating and destroying symbolic links in a specified direc-
tory. This can be a handy way to deal with runlevels without working directly with
/etc/inittab.

The BSD Initialization Process
BSD-style initialization is a bit different from the System V method. Instead of
using /etc/inittab and /etc/rc.d/rc.sysinit, BSD uses two main configura-
tion files called /etc/rc and /etc/rc.conf. These serve more or less the same
purpose as /etc/inittab and /etc/rc.d/rc.sysinit in the System V method,
though, so learning about one system does assist you when working with the
other style.

The /etc/rc file contains all of the configuration parameters for the system. If
you’re using a BSD-based system, it’s well worth looking through /etc/rc to see
how your system is configured. The /etc/rc.conf file, meanwhile, contains val-
ues for a number of basic system variables. The commands to start any services
you need should be placed in the file /etc/rc.local, which is run from /etc/rc.

As you can see from this description, BSD initialization does not use the con-
cept of runlevels. There is only one mode of operation; if you need to start or stop
any service, you must do it by hand. This is a much simpler way of handling sys-
tem functions than that used by System V, because the BSD way greatly reduces
the number of files that you have to deal with. However, it achieves this simplic-
ity at the cost of some flexibility.

We won’t go so far as to say that one method of initialization is better than the
other. It’s mostly a question of which tool is more appropriate for the job and for

Chapter 28 • System Programming

2817c28.qxd 11/13/00 2:40 PM Page 436

437

the system administrator. If you prefer to have predetermined collections of func-
tions, a System V Unix variant may be the best solution for you. If you prefer to
make case-by-case decisions about services, a BSD-based variant may be best.

Summary
The bash programming skills introduced in Part VI can be used not only to com-
bine certain tasks or commands into one script, but to streamline system admin-
istration. Shell scripts are at the heart of the Unix initialization process, and
additional shell scripts can be written to encompass many routine administra-
tive jobs. These scripts can be run by hand or started automatically. Running the
scripts automatically ensures that tasks will be carried out at specified intervals
and won’t be forgotten due to human error. The Unix utilities used for command
automation are cron and at. cron is controlled by the file /etc/crontab, while
at is managed with commands given at the shell prompt. With a judicious use of
complex shell scripts and cron, a system administrator can reduce the daily
workload quite a bit and transfer most of that work to the computer itself.

Some of the most crucial shell scripts are those run at initialization (boot-up).
These scripts are often called init scripts because they are run by the init
process. The way in which these scripts work for System V–based Unix variants,
such as Solaris and Linux, is different from how they work for BSD variants,
such as FreeBSD. System V–based Unix has a more complicated initialization
process involving runlevels, which are collections of functions and services that
are started at the same time when the computer is booted into that runlevel.
BSD-based Unix does not use runlevels, preferring to control services and other
system functions individually.

Summary

2817c28.qxd 11/13/00 2:40 PM Page 437

This page intentionally left blank

C H A P T E R
T W E N T Y - N I N E

Managing Users and Groups

� The Root Account

� Adding New Users

� Alternate Password Schemes

� Removing Users

� Groups

� Summary

29

2817c29.qxd 11/13/00 2:41 PM Page 439

440

One of the primary jobs of the system administrator is managing users.
The administrator creates accounts for each person using the system, deletes
accounts for users no longer on the system, and ensures that every user has
access to the files and programs that are appropriate for that user. To streamline
these various processes, some small Unix programs have been developed. How-
ever, knowing how to manage users with shell commands is a critical system
administration skill.

One Unix concept of which you should be aware is the way in which user
space is apportioned on the machine. On a Unix machine, each individual user’s
account exists on a completely separate portion of the hard drive; the size of that
portion is allocated by the system administrator. Because each of these user
accounts has its own space, users can configure their own account appearance
and behavior without affecting the configuration of other users’ accounts. The
only account that can view or affect other users’ accounts is the superuser
(or root) account.

WARNING If you are used to working with MacOS or Windows 95/98, you may have a differ-
ent understanding of user accounts. Though both those operating systems use a
form of user accounts, they are primarily designed to affect desktop appearance
and multiple user passwords for networking. There is no real division of the filesys-
tem as there is under Unix.

In this chapter, we explain the central importance of the superuser account and
how best to manage your system’s users. We show you how to add and remove
users, and how to use user groups to make particular system resources available
to some users but not others. In addition, we provide information about pass-
word schemes and some useful ways to boost password security on your system.

The Root Account
Unix is not a democratic system. Rather, it is best compared to a dictatorship or
other single-leader system. On the Unix machine, the superuser (or root) is the
sole authority. Whatever root wants, root can do. Root can change the filesystem,
add or delete users, install systemwide programs, set system defaults, and per-
form every other administrative task required on the machine. In fact, many of the

Chapter 29 • Managing Users and Groups

2817c29.qxd 11/13/00 2:41 PM Page 440

441

administrative commands and tools that you may use will require that you be
logged in as root to use them. No passwords or file permissions are binding on the
superuser, because the superuser can view any file and run any program on the
system.

The superuser’s power is systemwide precisely because there needs to be
one person who has authority over all activity on the system. If a user is being
destructive, root can revoke their access to the system or to particular programs.
Programs can be modified by root so that only certain options are available to
users or so that they are available only to certain users. For the very reason why
the superuser is so necessary, you should be sure to keep the root password
closely guarded. If someone unauthorized gets access to superuser powers, you
may return to your system and find that you are no longer able to use it. If you
do share the password with someone, make sure it is someone who is reliable
and who will follow the same guidelines and policies that you have established
for your system.

Because the root account has such power, it can be quite destructive if the wrong
person has root access. Those who are inexperienced with Unix should not have
root access on any machines containing critical files; practice your superuser skills
on a single-user machine or a personal network that isn’t used for work or other
important purposes. That way, if you (or your inexperienced friends) make a mis-
take, it won’t damage anything that might cause you distress. For example, if you
issue the command rm –rf / in your user directory, you’ll erase everything in your
user directory irretrievably. If you issue that command as root, however, you’ll
erase every single file on your system, regardless of what it is. Obviously, don’t issue
that command!

WARNING One concept that isn’t always mentioned when the powers of the superuser are
discussed is the idea of ethical root behavior. You have the potential to view all the
files in your users’ directories and trace their behavior on your system. Although
there is a certain level at which you are permitted—and in fact encouraged—to
keep an eye on what your users are doing, don’t go through their files or e-mail
just to see what they’re up to. You can run a secure system without compromising
your users’ privacy or their individual files.

As soon as you install your Unix variant on your system, log into the root
account. (It will have been created automatically at installation.) Change the root
password immediately, and don’t tell anyone what it is. Don’t write it down and

The Root Account

2817c29.qxd 11/13/00 2:41 PM Page 441

442

leave it lying around, and don’t make it so obvious that it’s easily guessed. The
root password is the most important piece of information on your system, so
make it hard to get. Once you’ve logged in and changed the password, you may
never need to log in as root again. There are commands that you can use to access
superuser powers without logging into the root account.

WARNING You don’t have to avoid the root account. If you feel that using the root account
will help you distinguish between actions you take as root and actions you take as
a user, it’s fine to log into the root account and do your administrative work there.
Just don’t get into the habit of doing personal tasks, such as writing e-mail or
working on files, while you’re logged in as root.

Accessing Superuser Powers
As we mentioned above, you can get access to superuser powers without having
to log into the root account. There are several ways to do this: some require
knowing the root password, and others do not. If you choose to use the latter
method, you will need to create a list of users who can have access to superuser
powers; if you use the former method, you will need to provide the root pass-
word to the users whom you want to have superuser powers.

Superuser Powers with the Root Password

If you want to give others access to the root account, one way to do it is to give
them the root password. This is the most basic way to handle the issue, but it’s
also the least secure. You really shouldn’t share the root password unless the per-
son with whom you’re sharing it is completely trustworthy. If someone has the
root password, they can just log in as user root at the regular login prompt.

Some integrated desktop managers, such as KDE and Gnome, have a graphical
administration tool that users can use to gain access to the root account. For
example, if you have KDE installed and you select Start ➣ Applications ➣ Sys-
tem ➣ File Manager, a small window will pop up and prompt you for the root
password. Once you supply that password correctly, you will have access to all
root functions on the machine. Your users can do this, too, if they have the root
password.

Chapter 29 • Managing Users and Groups

2817c29.qxd 11/13/00 2:41 PM Page 442

443

Superuser Powers without the Root Password

The most common way to access superuser powers is through the su command.
With su, a command-line utility, you can move into other user directories across
the system as long as you know the other user’s password. For example, if you
have multiple user accounts called elizabeth and betsy, one for work and one
for personal use, you can switch between them by issuing the command

su accountname

and providing the correct password when prompted.

However, if you don’t provide an account name and simply issue the command
su, the operating system will assume that you want to change into the root account.
The operating system will thus prompt you for the root password. When the pass-
word is supplied, the command prompt changes to show that you are now in the
root account.

If the password is required, how can you use su as a tool that works without
the root password? The answer lies in the su configuration file, which is stored at
/etc/suauth. A sample /etc/suauth file might look like this:

/etc/suauth – secure-su control file. See suauth(5)
for full documentation.

Uncommenting this line will only allow members of
group root to su to root.
root:ALL EXCEPT GROUP root:DENY

root:elizabeth:OWNPASS
root:ALL EXCEPT elizabeth:DENY

Each entry in this file configures the behavior of the su command.

Entries in /etc/suauth use the syntax

to-id:from-id:action

The to-id is the username of the account that the entry is configured to access;
the from-id is the username of the account whose access is being configured; the
action is the way in which su will behave when the from-id account attempts to
access the to-id account. There are three possible actions: DENY, NOPASS, and
OWNPASS.

The Root Account

2817c29.qxd 11/13/00 2:41 PM Page 443

444

• DENY means that the from-id account will not be able to access the to-id
account, even if the password is known.

• NOPASS means that the account in from-id will be able to enter the to-id
account without entering a password.

• OWNPASS means that the account in from-id will be able to enter the to-
id account by supplying the account password for the from-id account.

Therefore, entries that use NOPASS will not be prompted for any password,
while entries that use OWNPASS will require the password of the originating
account.

For security reasons, we recommend that you keep the following two lines in
your /etc/suauth file:

root:yourusername:OWNPASS
root:ALL EXCEPT yourusername:DENY

This will limit access to the root account to just your account, and you will need
to supply your user account password and not the root password when you su
into the root account.

WARNING Even though it may be tempting, never set yourself as NOPASS to the root
account. In fact, don’t use NOPASS at all. It’s a terrible security risk; if someone
gets access to a user account that has NOPASS privileges to another account, you
might end up with an awful mess on your hands. Be safe and use OWNPASS for
those whom you want to permit to use su on your system.

Once you’ve configured your access to the root account using su, you can
change into that account anytime you’d like by issuing the command su at the
command prompt. If you’re set for OWNPASS, just enter your user account pass-
word at the prompt. When you get into the root account, you can do anything
you need to do, including regular everyday functions such as reading e-mail. Just
be aware that you are acting as root, not as yourself. Check root’s e-mail regu-
larly; some processes generate e-mail to root as part of their operation, while
other people may send e-mail with a cc: to root so that someone will be guaran-
teed to see the message. (Of course, this kind of e-mail usually means that some-
one on your system is causing trouble in e-mail or on USENET, so don’t be
overjoyed to see these messages.)

Chapter 29 • Managing Users and Groups

2817c29.qxd 11/13/00 2:41 PM Page 444

445

When you’ve finished doing your superuser tasks, issue the command exit at
the command prompt to leave the root account and return to your own user
account. Get in the habit of entering the root account to perform specific tasks
and leaving as soon as you’re done. You don’t need to spend any more time as
root than absolutely necessary. It may seem like we’re belaboring that point, but
only root has the ability to cause significant system damage without too much
thought. Be careful and use root powers only when you need to.

WARNING If you need to issue only one command as root, you can use a handy shortcut to
get that command executed without even logging into the root account. Simply
issue the command su –c “command” at the shell prompt in your user account.
You’ll be prompted for the password, and when it’s entered correctly, the com-
mand will execute with superuser privileges. You never leave your user accounts;
when the prompt returns, it will be your normal user prompt. This is quite handy
for situations when you just need to do one quick thing; it is far faster to use su
–c “command” than it is to su into root, issue the command, and exit the root
account.

Adding New Users
Though there are easier ways to add new users, it’s important for administrators
to understand the basic way in which Unix handles new accounts. The easier
methods are generally front-ends for this process, though they may incorporate
elements of other commands as well. Not many people use the basic method any
more, because it’s somewhat complex and there are other ways to do it, but we
include it here to show you what actually happens when a new user is added.

When a new user is added to a system, the following tasks must be completed:

1. Create an entry in the /etc/passwd file for the user.

2. Create the user’s home directory.

3. Set an initial password for the account.

4. Create all the start-up files for the user.

5. (Optional) Set disk quotas.

Adding New Users

2817c29.qxd 11/13/00 2:41 PM Page 445

446

6. Create the user’s mail directory.

7. Perform whatever other record-keeping tasks need to be done.

These may not seem like overly complicated tasks, but imagine having to go
through all of this every time you wanted to add a new user, especially if you had
more than 100 accounts to add. Why, you might ask, couldn’t this be automated?

Luckily for all of us, these tasks have been automated. Almost every Unix vari-
ant has a standard utility called either useradd or adduser. Often, you’ll find
both commands on your system, though one of the commands will be a symbolic
link to the other program. useradd and adduser are basically identical, but agree-
ment on the final name for the program hasn’t been reached yet. To simplify
things, we’ll use useradd from this point forward; if you have adduser on your
system instead, just change the terminology you use to invoke the program.

The useradd syntax is simple:

useradd [options] <username>

For example, if you want to add a user named robin and use all the default set-
tings, you could simply issue the command

useradd robin

and Robin’s account would be created. Note that you’ll still have to create the ini-
tial password for the account by hand, because neither useradd nor adduser han-
dle initial passwords. This is a good thing, from a security perspective.

If you want to create accounts with a bit more precision, you can use the various
options offered by useradd. Table 29.1 shows the available options and their func-
tions. Be sure to check documentation on your own Unix variant to see whether
these options will work for you or whether there are additional features that you
can use.

Chapter 29 • Managing Users and Groups

2817c29.qxd 11/13/00 2:41 PM Page 446

447

TA B L E 2 9 . 1 : Options for useradd

Option Function

-d <homedir> Specifies the path for the new user’s home directory.

-e <expire date> Sets a date upon which the account becomes inactive. Date must be in the
format YYYY-MM-DD, as in 1964-12-13.

-g <primary group> Sets the user’s primary group identification (see the section “Groups” later in
this chapter).

-G <group list> Sets the user’s membership in multiple groups. Group numbers must be sepa-
rated by a comma, but with no space between the comma and the next
group number.

-p <password> Sets the user’s initial password.

-s <shell> Sets the user’s default shell environment.

-u Sets the user’s login ID number. Each user has a unique number. As a rule,
lower user IDs are reserved for administration use, while higher numbers are
for regular users.

If you choose to add some of these options when you work with useradd,
you’ll build commands that look quite complex. Consider the command

useradd –g staff –G projA,projB –u 721 –s /bin/bash steve

This command creates a new account for the user steve, which will have the user
ID number 721. Steve’s primary group is the staff group, but he is also a mem-
ber of the projA and projB groups. His default shell environment is bash, called
with the actual path name of bash on the system.

If you don’t like working with useradd or adduser, check your window man-
ager or integrated desktop program. Some of these programs have graphical user
management tools, which act as a front-end to the useradd or adduser programs.
Figure 29.1 shows the KDE user management tool. All you have to do is enter the
username for the new account, fill out the form, and click OK, and the new
account will be created automatically. Solaris has a similar tool.

Adding New Users

2817c29.qxd 11/13/00 2:41 PM Page 447

448

Creating Accounts with Linux and FreeBSD
The Linux system’s main repository for user information is the file found at
/etc/passwd, while the FreeBSD file is located at /etc/master.passwd. We’ll
use /etc/passwd in this section, but if you’re a FreeBSD user, substitute /etc/
master.passwd. Each user has an entry in this file, and the entry contains a
variety of data about the user. Information included in /etc/passwd includes
username, group membership, default shell environment, and password (in
encrypted format).

WARNING Because of the sensitive nature of this data, it is extremely important to keep the
/etc/passwd file secure. Make sure that its file permissions are set so that
nobody but root may write to the file; the file needs to be world-readable so that
it can be used. Yes, the passwords are encrypted, but it’s easy for crackers to run
the file against a de-encryption program and break the code. /etc/passwd does
not use a highly sophisticated encryption method.

F I G U R E 2 9 . 1 :

Simplify the user manage-
ment process with a graph-
ical tool, such as this one
from KDE.

Chapter 29 • Managing Users and Groups

2817c29.qxd 11/13/00 2:41 PM Page 448

449

A typical /etc/passwd entry looks like this:

harry:InloOi908jklk8kjbJjj:503:503:HarryUser:/home/harry:/bin/bash

This entry contains seven separate fields, each separated by a colon. Table 29.2
shows the various fields and their contents.

TA B L E 2 9 . 2 : Components of an /etc/passwd Entry

Component Contents

Username The user’s login name.

Password The user’s password, in an encrypted format.

UID The user’s unique user ID number.

GID The user’s primary group ID number.

GCOS Any particular information you’d like to record about the user. Typically, this
includes the user’s full name. (The finger utility parses the contents of this field
into several comma-separated fields, such as name, address, phone number, and
so on. However, most systems don’t run finger any more because it is a terrible
security risk.) The name of this field is a historical artifact, stemming from the days
when the field’s data was used with a program called GCOS.

Home directory The full path of the user’s home directory.

Shell The user’s default shell environment.

Creating Accounts with Solaris
Rather than use adduser or useradd, Solaris simplifies the user addition process
with a graphical tool called admintool. admintool is available only to root, so you
must log into the superuser account with the su command to access admintool. To
start admintool, issue the command admintool & at the shell prompt.

When the admintool window appears, select Edit ➣ Add from the menu to see
the Add User screen. Fill in the information requested on the screen; at the mini-
mum, you’ll need to provide the username and ID number, and a primary group.
Other fields, such as shell environment and home directory location, are filled
with the default settings, but you can select alternatives from the drop-down
menus. Click OK when you’re finished, and admintool will automatically build
the new account.

Adding New Users

2817c29.qxd 11/13/00 2:41 PM Page 449

450

Alternate Password Schemes
From a security point of view, password information is the most sensitive infor-
mation on the system. An unauthorized person who gets access to a trusted
user’s password has a golden key into the system. Although the passwords are
encrypted in /etc/passwd, the encryption scheme is fairly weak by today’s
robust standards. At the time the /etc/passwd encryption process was devel-
oped, it may have been quite strong, but advances in processor speed and crypto-
graphic technology have made many formerly strong ciphers obsolete.

Because of this danger, a number of Unix administrators use alternate pass-
word schemes. /etc/passwd cannot be done away with; it has become so inte-
grated into various Unix processes that it needs to be there and needs to have
correct entries in proper syntax. However, the password field in the entry—the
second component—can be altered to work in a different way, because the only
legitimate use for that field is user authentication.

One popular password scheme under Linux is the shadow password method. In
this process, the password in an /etc/passwd entry’s second field is replaced with
the character x. The real password is kept in the file /etc/shadow, which has its
permissions set so that it is accessible only by root. Shadow passwords are usually
enabled when you install Linux. If you want to install shadow passwords on a sys-
tem that’s already in operation, you will need to make a number of modifications,
and it may be easier to reinstall. See the Shadow Passwords HOWTO document at
http://www.tscnet.com/sysop/mhjack/SHADOW-HOWTO/SHADOW-HOWTO.html
for a full explanation of how the system works and how to install it.

FreeBSD handles alternative password management a little differently. FreeBSD
supports one-time password generation through a program called S/Key. With
S/Key, which operates independently of the regular login program, you can
require your users to generate a new password each time they log in. They still
have regular Unix passwords, but those passwords are used in conjunction with a
second, secret password to generate a single-use password that will grant entry to
their FreeBSD account. This process is a bit convoluted, but it’s a great way to
thwart /etc/master.passwd crackers who just run de-encryption programs
against the stolen file. Learn more about S/Key in the FreeBSD Handbook, at
http://www.freebsd.org/handbook/skey.html.

Solaris offers PAM (Pluggable Additional Modules). These modules, when inte-
grated into Solaris, strengthen the regular password and login structures of the
operating system. With PAM, administrators can use security programs such as

Chapter 29 • Managing Users and Groups

2817c29.qxd 11/13/00 2:41 PM Page 450

451

Kerberos without changing any of the regular programs (and thus possibly con-
fusing users who are used to the traditional telnet, FTP, login, and so on). PAM
works on the stacking method, requiring a series of authentications from the user
before the user’s identity is verified. Learn more about these modules from Sun,
at http://www.sun.com/solaris/pam/.

NOTE Although FreeBSD and Solaris have their own ways of handling alternative pass-
word schemes, they can both use the /etc/password and /etc/shadow method
described for Linux in this section. FreeBSD and Solaris users have the option to
use either the native method or the /etc/password and /etc/shadow method
to handle their passwords more securely if they want to do so.

Removing Users
Now that you know how to add users, the next thing to learn is how to get rid of
them. There are many reasons to get rid of users: The user no longer has the right
to use your system (graduating, leaving a job, closing an account); the user has
violated a system policy; or the account’s security has been compromised. In the
first type of case, deleting the account is the best solution. The user isn’t going to
come back, so the directory space associated with that account might as well be
reclaimed and the username released.

In the second and third types, though, you may not want to delete the account
right away. If a policy has been violated, for example, you may want to disable
the user’s access temporarily while you inform the user about the infraction and
offer a second chance. Disabling an account is quite simple. Simply open the
/etc/passwd file (or its equivalent in your system) with a text editor and replace
the password section of that user’s entry with an asterisk (*). The asterisk is not
permissible in passwords or in any password encryption scheme and will not be
matched by any password that any person tries to use to gain access to the
account. (This is contrary to the asterisk’s usual function as a wildcard character.)

NOTE Solaris users can disable an account by opening admintool and selecting Edit ➣
Modify. In the Password drop-down menu, select Account Is Locked. You can
restore the account by selecting Normal Password or Cleared Until First Login (the
user will have to change the password while logged in for the first time).

Removing Users

2817c29.qxd 11/13/00 2:41 PM Page 451

452

WARNING Never leave the password field empty. If you do, absolutely anyone can access that
account without providing any attempt at a password. Simply pressing the Enter
key will suffice. You are leaving your metaphoric key ring stuck in the front door’s
outside lock if you leave the password field empty.

Removing Users with Linux and FreeBSD
Removing users is even easier than adding them. If you use a graphical user
administration tool such as those in KDE or Gnome, just open the program, select
the user you want to remove, and press the Delete key. (Various programs behave
in various ways.) Some administrative programs offer the option to remove asso-
ciated files and directories; you’ll have to do that by hand if you’re using other
graphical administrative tools.

If you prefer command-line tools, use the userdel program. As you might
guess, userdel is the opposite of useradd. Unlike useradd, however, userdel
has only one option. You can add the –r flag to userdel if you want the program
to delete the user’s home directory and its contents at the same time as the user
account is removed.

NOTE Most user removal programs, including graphical user administration tools, offer
the option of deleting the user files or keeping them around. If the user had files
that you want to use, such as good configuration files or other information that
might be useful later, you can remove the user while retaining the files. However,
be aware that users’ personal files are their own property. You can’t use someone
else’s documents or e-mail without their explicit permission unless you have previ-
ous permission to do so.

If, for some reason, you don’t have a userdel program available on your sys-
tem, you’ll have to remove the user by hand. This is quite simple; all you need to
do is to remove their entry line in the /etc/passwd file (or its equivalent in your
Unix variant). If you want to delete the user’s home directory, you can do that as
well. You may need to check program scripts or other system records to see
whether that user’s account is referenced anywhere, because the loss of the
account may cause the script to fail.

Chapter 29 • Managing Users and Groups

2817c29.qxd 11/13/00 2:41 PM Page 452

453

Removing Users with Solaris
Deleting users from a Solaris system is very easy. Open admintool and select the
account from the list of users in the User window. Select Edit ➣ Delete from the
menus. A window appears with the account name at the top; click the check box
if you want the user’s home directory and all files to be deleted as well. Click OK,
and admintool takes care of the rest.

Groups
The concept of user groups is one that is original with Unix and can be somewhat
confusing to the Unix newcomer. Groups are a convenient way to make directo-
ries, files, and programs available to some users on a single system and not to
others. A very common use for groups, for example, is to allow some administra-
tive users to have access to various system functions while preventing ordinary
users from running those programs. In this way, specified users can perform cer-
tain tasks without having full root access to the system.

Assume that you run a system in which you have a staff of junior administra-
tive personnel who need to access a variety of administrative tasks, while you are
the head administrator and have full root access. You can use groups to organize
this. Similarly, if some subset of your users consists of programmers who are
working together on a particular program, you might want to give them their
own group so that they can share files, while keeping the files away from regular
users who might cause trouble if they attempt to run half-written software. With
a bit of imagination, it’s easy to come up with a whole list of uses for groups.

The main configuration for groups in Linux and FreeBSD is the /etc/group
file. Each existing group has an entry in this file, which looks like this:

harry:x:503:

These entries are similar to those in /etc/passwd and /etc/master.passwd in
that they are divided into fields separated by colons. The first field is the name of
the group. In this case, the group’s name is harry, corresponding to the user
harry; in many versions of the useradd program, a group is created for each user.
The second field, containing the x, is a historical artifact and isn’t used, but can’t
be deleted lest it cause trouble in other programs. The third field is the group’s

Groups

2817c29.qxd 11/13/00 2:41 PM Page 453

454

unique ID number. In the fourth field, empty in this example, you’ll find a list of
any additional users in the group.

Here’s a more concrete example. Suppose that you have a group of program-
mers working on some files for a development project. Their names are Smith,
Ramirez, and Afiz. As their system administrator, you need to set up a group so
that they can share files easily. Create an entry in /etc/group that looks like this:

programmer:x:1001:smith,ramirez,afiz

With this entry, you’ve assigned the three programmers to the programmer group
and given the group the unique ID number 1001.

Users can get a list of all the groups they are in by typing the command groups
at the shell prompt. For example, if Afiz issues this command, she will get output
like this:

$ groups
afiz programmer

This shows that user afiz is a member of both the afiz group and the program-
mer group. She will be the only member of the afiz group, because it was created
when her user account was built.

Now, suppose that Afiz creates a file as part of the programming project and
names it program.c. (The .c suffix identifies files written in the C programming
language.) She wants the other programmers to be able to use this file, but doesn’t
want any nonprogrammer users to see it because it isn’t finished. The program-
mers have created a directory called /usr/local/programs, where they can put
files that they want to share with each other, so Afiz moves the file there. When
she issues the command

ls –l /usr/local/programs/program.c

she receives the output

-rw———- 1 afiz afiz 26366423 Aug 1 12.22 program.c

There are two interesting features of this output. One is that the file has been
created with only read and write permissions for Afiz. The other is that the file’s
group owner is still the afiz group.

Afiz changes the file’s group ownership with the chgrp (change group) com-
mand:

chgrp programmer /usr/local/programs/program.c

Chapter 29 • Managing Users and Groups

2817c29.qxd 11/13/00 2:41 PM Page 454

455

Now, if she runs the ls –l /usr/local/programs/program.c command again,
she’ll see the following output:

-rw———- 1 afiz programmer 26366423 Aug 1 12.22 program.c

You can see that the file’s group owner has changed, but that the permissions
are still set for Afiz alone. She can change that with the chmod command, issuing
the command

chmod g+rw /usr/local/programs/program.c

Running the ls –l /usr/local/programs/program.c command one more time
generates the output

-rw-rw—— 1 afiz programmer 26366423 Aug 1 12.22 program.c

Now, both Afiz and the programmer group have read and write permission for
the file. At this point, any of the other members of the group (i.e., Smith or
Ramirez) can read and edit the file. Note that Afiz is still the file’s owner. If Smith
or Ramirez decided to make the file available to other users, they would not be
able to. Only Afiz has that power.

Groups with Solaris
As with the other tasks described in this chapter, Solaris uses the admintool util-
ity to handle groups. You can create, modify, and delete groups with admintool,
and you can place users into different groups with the program as well.

Adding a Group

To add a group, open admintool and select Browse ➣ Groups from the menus,
then select Edit ➣ Add. A small window will appear, in which you need to enter
the group name and ID number. If you already know the users who will be
placed in this group, enter their names, separated by commas, in the Members
List field. Click OK to create the group.

Modifying a Group

If you created a group, but did not add members to it at the time of creation, you’ll
need to either add the users individually or modify the group. To add users indi-
vidually, select Browse ➣ Users from the menus, pick the user you want to add
from the list of users, and then choose Edit ➣ Modify. When the user’s informa-

Groups

2817c29.qxd 11/13/00 2:41 PM Page 455

456

tion screen appears, type the new group’s ID number into the Secondary Groups
field and click OK. To add users in batches, select Browse ➣ Groups from the
menus, select the group from the list, and then choose Edit ➣ Modify. Enter the
usernames of the new group members in the Members List field, separated by
commas, and click OK.

Deleting a Group

To delete a group, choose Browse ➣ Users from the menus, select the group from
the list, and then select Edit ➣ Delete. You will be prompted to confirm your dele-
tion of the group; click OK if you really want to delete the group. The window
will close, and the group will be erased. User records will be automatically edited
to remove references to the deleted group’s ID number.

Summary
Although it is a significant part of any system administrator’s duties, user man-
agement does not take up much time. The process has been automated, and sev-
eral programs are available that reduce the steps involved in adding a new user to
a single command or mouse-click. With Linux, FreeBSD, and other Unix variants,
adding a user can be done either with the adduser or useradd programs, or with
a graphical user administration tool such as those found in the integrated desktop
environments Gnome and KDE. Those using Solaris can handle their user man-
agement tasks with the comprehensive admintool utility. Modifying individual
user profiles, or deleting users altogether, can be done with similar tools. How-
ever, in lieu of deleting a user completely, an administrator can choose to block
that user’s access to the system temporarily, simply by editing the password file
usually stored at /etc/passwd (or /etc/master.passwd in BSD variants).

Once user accounts have been created, they can be assigned to various groups.
These groups permit the administrator to control access to system resources, pro-
grams, files, and other shared resources. Resource allocation is streamlined by
granting access to a particular group of users instead of to individual users. Users
can be moved in and out of groups as the groups are created or deleted, but can
always learn which groups they belong to by issuing the groups command at the
system prompt. Group creation and deletion is handled with programs similar to
those used for user administration; Solaris uses the same tool, the admintool util-
ity, to handle both.

Chapter 29 • Managing Users and Groups

2817c29.qxd 11/13/00 2:41 PM Page 456

C H A P T E R
T H I R T Y

Disks and Filesystem
Management

� What Is a Disk?

� Disk Partitions

� Physical Media vs. Filesystems

� Mounting Local Partitions

� Automatic Mounting

� Mounting Remote Partitions

� Summary

30

2817c30.qxd 11/13/00 2:42 PM Page 457

458

No matter what kind of computer you use or what kind of operating system
you’ve selected, you must deal with filesystems. The major operating systems dif-
fer in how they organize their filesystems and in how the filesystems are repre-
sented to the user. However, without some sort of filesystem management—no
matter how rudimentary—the data on a disk or any other kind of storage medium
would not be comprehensible or usable. The data must be organized before it can
be used.

Today, there is hardly a computer in use that doesn’t use some kind of disk
mechanism to store data. True, there are diskless machines, but they tend to be
either dumb terminals that are attached to a disk-using computer or specialized
equipment, such as a router, which is constructed for a particular purpose that
doesn’t involve users. If you use any of the common personal-computer hard-
ware, such as the PC or Macintosh, you are certainly familiar with your com-
puter’s hard disk, diskette drive, and probably a CD-ROM or DVD drive as well.
Not surprisingly, other types of computer hardware, such as mainframes and
servers, also make use of disk drives.

What Is a Disk?
At its most basic, there isn’t much to a disk. A disk is generally a circular piece of
plastic coated with a material that reacts easily to magnetic fields. This coating is
similar to the material used to make magnetic tapes, such as cassette tapes or
video tapes. The substance will record any magnetic field that is close enough to
cause a reaction; a rough analogue can be seen in the way that a steel needle will
take on a magnetic field if you rub the needle with a magnet. When the intensity
of the magnetic field is varied in particular patterns, the coated surface of the disk
can be made to retain information encoded in those patterns.

WARNING The coating’s reaction to magnetic fields is indiscriminate. If you place a magnet
against a video tape, the data encoded on the tape will be degraded or lost. The
same is true for computer disks. Never put magnets anywhere near your CPU or
diskettes, because you risk losing data from your disks. This can be especially
harmful if the data you lose was part of the operating system. We’ve seen people
decorating their CPU cases with magnets, which is a terrible idea. Use stickers or
tape if you want to create an artistic computer, not magnets.

Chapter 30 • Disks and Filesystem Management

2817c30.qxd 11/13/00 2:42 PM Page 458

459

Hard and Floppy Disks
The two most common types of disks used today are fixed disks, also known as
hard disks, and floppy disks or diskettes, which are removable and portable. Like
so much in the computing world, these names are holdovers from an earlier time.
The first hard disks were indeed hard. They were made of a rigid substance
unlike today’s flexible plastics and were quite large. Although these hard disks
could be removed from their drives, the portability factor was very low. (The ear-
liest computers filled entire rooms.)

In response to this problem, hardware manufacturers began to work on a remov-
able disk. The technology used in the removable disk involved a lighter and thin-
ner plastic, which created an object quite different from the hard disks. Thus, the
removable disks began to be called floppy because they were so flexible. Floppy
disks are encased in a more rigid shell to protect the delicate disk itself; as techno-
logical skill has increased, the size of floppy disks has shrunk. Initially, floppies
were as large as 12 inches or 14 inches across. The term diskette arises from the size
difference between the original hard disks and floppy disks, because—even at a
foot across—the removable disk was smaller than the stationary disk.

Today, the physical characteristics of hard and floppy disks have converged.
Both types of disks are made from the same thin, light, and flexible material. The
difference between the two is now solely that hard disks are permanently
attached to their drives, while floppy disks are removable.

Although the disks themselves are physically similar, there is a great deal of dif-
ference in the way that the disks are constructed. This difference reflects the differ-
ent purposes of each type of disk: The hard disk is designed to maximize storage
capacity, while the floppy disk is designed to be portable and stand up to frequent
handling. The common 3.5-inch floppy diskette can hold 1.44MB of information,
while hard disks can hold many times that amount. Indeed, it seems that the stor-
age capacity of hard disks takes a quantum leap every other week. Kate’s first
computer had a 512KB hard drive, and that was quite sufficient, while she’s now
straining a 10GB disk at the seams. Despite its vast capacity, the average hard disk
is only a bit bigger than the average floppy diskette.

Optical Disks
In addition to hard and floppy disks, there are other types of storage media
available to the computer user. CD-ROM and DVD-ROM disks are both a type

What Is a Disk?

2817c30.qxd 11/13/00 2:42 PM Page 459

460

of storage medium called an optical disk. An optical disk uses light, specifically
laser light, to encode data on the disk instead of the magnetic fields used by
hard and floppy disks. A CD or DVD disk contains millions of embedded
prisms so small that the human eye has no chance of seeing them. When the
disk is placed into a drive, a laser shines onto the surface of the disk; the infor-
mation encoded on the disk is read by an optical eye that translates the way in
which the light refracts from the prisms into machine-readable data. Informa-
tion is recorded on an optical disk by another laser, which changes the optical
properties of the prisms as it encodes the data.

Optical disks have the advantage of holding far more data than a portable mag-
netic disk, while being only marginally less portable—and certainly less suscepti-
ble to damage. The drawback is that optical drives are more expensive than
diskette drives; a diskette drive can be had for as little as $15, while a writable
CD-ROM drive can cost upward of $200. Optical-drive cost is directly related to
the speed at which the disk rotates in the drive; the faster the disk rotates, the
faster data can be decoded. Recording or burning a CD is also a more involved
and time-consuming process than recording information to a floppy diskette. It
is, however, a good option for the administrator who wants to make a permanent
backup of certain files. Writing backups to CDs is not the best method for daily or
weekly maintenance, but if you have a set of files that you really want to keep in
a pristine format, consider burning them to a CD.

Other Types of Disks
In addition to the magnetic and optical disks, there are other types of disks being
developed. The most familiar are the disks built by the Iomega Corporation,
including the Zip and Jaz disks. Both the Zip and Jaz are portable high-capacity
storage disks, with the Zip having either 100 or 250MB storage capacities and the
Jaz having a 1GB capacity. These disks combine the floppy’s ease of use with the
hard disk’s volume, and are especially effective with modern files and programs
that can easily exceed a magnetic floppy’s 1.44MB capacity.

Zip disks are especially useful for the system administrator on a small network
or single computer, because they are good storage devices for small backups. You
might back up your personal home directory or certain configuration files to a
Zip disk, which come in a variety of colors for easy organization. Larger backups
can be done to Jaz disks, which may hold an entire backup of a small system. The
advantage of using Jaz or Zip disks is that they’re reusable, unlike a CD-ROM,
and are more durable than an open reel of tape. Jaz drives can also be used as a

Chapter 30 • Disks and Filesystem Management

2817c30.qxd 11/13/00 2:42 PM Page 460

461

second hard drive, because they have enough storage capacity to hold applica-
tions that can then be run directly from the Jaz drive.

Regardless of the format, all of these disk devices do the same thing: store infor-
mation. Not surprisingly, once the details of running the disk-drive hardware are
ironed out, all of the media storage devices are dealt with in a similar manner by
the operating system. It’s good to have a variety of disk types, because the vari-
ous types carry different kinds of information. We recommend a floppy drive and
a CD-ROM drive at the minimum, and suggest that you add a Zip drive and a
writable CD-ROM drive when possible.

Disk Partitions
One of the interesting things that you can do with disks under Unix is to subdi-
vide them into a number of smaller partitions.

NOTE The word partition is Linux terminology. BSD uses the term slice, and Solaris uses
the word volume, but they all mean the same thing. We use the term partition in
this section because it is the clearest explanation of what a disk segment really is.

When you create a partition, you are essentially putting up a metaphorical high
wall between various areas on the disk. The operating system then treats these
areas as separate disks, even though they are physically housed on the same disk.
Although partitioning is possible in most, if not all, operating systems, it’s not a
common practice among Windows and Macintosh users. Creating and managing
multiple partitions in these operating systems is often difficult, and there’s no
compelling reason to do it.

The case is different with Unix. It is very common to partition the hard drive if
you’re using a Unix variant. Perhaps the biggest reason for this is to separate sys-
tem files from user files. For example, assume that you have a user who writes a
new program. That program’s output creates new files. If there’s a bug in the pro-
gram that causes it to go haywire and start creating new files nonstop, sooner or
later the disk will crash because there is no remaining disk space for critical sys-
tem processes.

If the user’s directory is in a separate partition, though, the system will not
crash no matter how many files the program generates. The runaway processes

Disk Partitions

2817c30.qxd 11/13/00 2:42 PM Page 461

462

can’t spill over into the other partitions because the operating system sees the
other partitions as separate disks. It’s a fairly simple task for the administrator to
step in, kill the runaway processes, delete the extra files, and return the system to
normal operation, but that wouldn’t be possible if the rogue program were on the
same partition as the critical administrative functions.

The idea of a user creating such a program may not be terribly realistic, but
running out of disk space is a normal occurrence on many systems. Systems with
a large number of users, or systems that run mail or news servers that generate
unpredictable amounts of information, are especially vulnerable to disk-space
concerns. On a heavy e-mail day, for example, a mail server may run out of space
several times on the partition allotted to the /var/spool filesystem. If the admin-
istrator has not allocated a separate partition for /var/spool, it would be very
easy for the mail flood to take the entire machine down.

How to Create Disk Partitions
In most cases, disk partitions are created when you install the operating system.
The installation process for Unix variants is usually interactive, and you will be
prompted for your decision about partitions so that the installer can set up the
filesystem accordingly. At the minimum, we suggest that you create a partition
called /home in which you’ll store user directories.

Partitioning the disk after the operating system has been installed is a different
matter. It’s useful to know how to do it, though, because it’s not too far-fetched
to think that you might want to add another partition at a later date. You don’t
have to reinstall your operating system to add a new partition. However, if you
do plan to reinstall your operating system or change to a different Unix variant,
you might save your partitioning tasks for that time and do it all at once. We
explain the process of disk partitioning in Linux, FreeBSD, and Solaris in the
remainder of this section.

WARNING Partitioning a disk is not something to be undertaken lightly. In almost all cases,
partitioning a disk destroys all the data on the disk. Some partitioning programs
claim to be nondestructive, but even these will destroy data if you don’t perform
each step perfectly. This is not such a big deal if you are partitioning a new or
blank disk, but if you are partitioning a disk that already has data on it, you are
strongly advised to back up your data before you start. Proceed with the assump-
tion that all data on the disk will be lost and plan accordingly.

Chapter 30 • Disks and Filesystem Management

2817c30.qxd 11/13/00 2:42 PM Page 462

463

Disk Partitions under Linux
Creating disk partitions with Linux is done with the cfdisk program. This pro-
gram allows you to edit the partition table that controls how the disk is divided.
To create a partition, follow these steps, in which we’ve assumed that you’re
adding a second hard drive to the computer:

1. Connect the disk to the machine. In this example, you’ve connected the new
disk to the second slot on your primary IDE controller, so that the new disk
will be known as /dev/hdb (device hard-disk B). You must unplug machines
before adding new components lest you electrocute yourself or cause
irreparable damage to the computer.

2. Reboot the machine. Linux should see the new drive, but won’t do anything
with it because you haven’t identified it in the operating system yet.

3. Log in as root. You must be root to create partitions.

4. Start cfdisk by issuing the command cfdisk /dev/hdb. The cfdisk win-
dow will appear, as shown in Figure 30.1.

F I G U R E 3 0 . 1 :

Configure a disk partition
in Linux with the cfdisk
program.

Disk Partitions

2817c30.qxd 11/13/00 2:42 PM Page 463

464

5. Configure the partition table using the options shown along the bottom of
the cfdisk screen.

6. For each partition you create, select the partition size in MB and the type of
partition. Note that the amount of available free space shrinks as you con-
tinue to create partitions. The type depends on your needs: Linux supports
a variety of filesystem types. Assuming that you need just a regular Linux
partition, select type 83, which is the normal filesystem type, also called ext2
or the second extended filesystem.

7. When you have finished creating all the partitions you need, select the Write
option. This will commit your changes to the partition table.

NOTE Each partition you create will be named by the cfdisk program. The first partition
will generally be called hdb1, the second hdb2, and so on. These names are the
same as the names of the corresponding devices. That is, the first partition will be
known to the operating system as /dev/hdb1, the second as /dev/hdb2, and on
through all the partitions. The use of /dev/hdb* varies from computer to com-
puter, even if they’re running the exact same operating system. Device naming
depends to some extent on the actual hardware configuration of the system. Dif-
ferent motherboards will handle device naming differently depending on how
their CMOS is organized. If you are not sure how your computer handles device
naming, check through the /dev directory to get an idea of how preexisting
devices were named on your system.

After you have finished with cfdisk, you must format each partition for its
corresponding filesystem. For a standard Linux filesystem using the ext2 (type
83) filesystem type, this is done with the mke2fs command. Issue the following
command at the shell prompt:

mke2fs /dev/hdb1

This will format the first partition. Repeat the command for each subsequent par-
tition, substituting its name for /dev/hdb1.

Disk Partitions under FreeBSD
In BSD variants, disk partitions are called slices. The process for creating slices is
very similar to the process for creating partitions in Linux. To create a new slice

Chapter 30 • Disks and Filesystem Management

2817c30.qxd 11/13/00 2:42 PM Page 464

465

on a FreeBSD computer, follow these steps (as in the Linux example, we assume
you are adding a second hard drive to an existing computer):

1. Connect the disk to the machine.

2. Reboot the machine.

3. Log in as root. You must be root to create new slices.

4. To invoke the sysinstall program, shown in Figure 30.2, issue the command

/stand/sysinstall

sysinstall uses the fdisk program to handle disk slices. fdisk is an older
version of cfdisk, the program used to edit the Linux partition table.

5. Select Configuration ➣ Partition from the sysinstall menu. A list of hard
disks installed in your system will appear on the screen. The disk you just
installed should appear, with the name da1 or higher (the highest number is
the newest drive).

F I G U R E 3 0 . 2 :

Create disk partitions
under FreeBSD with the
sysinstall program.

Disk Partitions

2817c30.qxd 11/13/00 2:42 PM Page 465

466

6. (Optional) If your new disk does not appear, check the file /var/run/dmesg.
boot to see whether there is an error message from the boot process. If no
error message appears, turn off the system and check the physical connec-
tion, then restart this process.

7. Select da1 (or the name of the new disk if it is different). The fdisk partition
editor opens.

8. Select A if you want the entire new disk to be used with the FreeBSD operat-
ing system.

9. When the program asks you to decide whether you want the new drive to
remain cooperative with any future possible operating systems, answer Yes.

10. Select W to write the new changes to the disk.

11. Select Q to exit the partition editor.

12. When the program asks whether you wish to make changes to the master
boot record, select None. You are adding a disk to an existing system, so no
changes need to be made to the boot record.

13. Select the Disk Label Editor to create the actual disk partitions. FreeBSD
disks can be divided into eight or fewer partitions, named a–h. The a parti-
tion is always used for the root partition, so only the main disk should have
an a partition. The b partition is a swap partition, and the c partition is used
for dedicated mode. You may use the d, e, f, g, and h partition labels for
whatever purpose you like. sysinstall defaults to the e partition label for
new nonswap partitions.

14. Select C in the Disk Label Editor to create a single filesystem.

15. When the program asks whether this will be a filesystem or swap parti-
tion, select FS and define the filesystem’s mount point. The mount point
you define here doesn’t have to be permanent. sysinstall will modify
the /etc/fstab file for you and define the actual mount point, so don’t
panic if you don’t know it.

16. Select W to write the new label to the disk. Note that sysinstall may return
several error messages. Ignore them.

17. Select Q to exit the Label Editor.

18. Select Exit to leave sysinstall.

Chapter 30 • Disks and Filesystem Management

2817c30.qxd 11/13/00 2:42 PM Page 466

467

Disk Partitions under Solaris
To create new disk volumes under Solaris, you must use the Solaris formatting
utility. As with the other examples, we assume that you are adding a second hard
drive to an existing system.

NOTE When working with disk partitions under Solaris, it’s important to understand the
free hog slice concept. (No, it has nothing to do with sausage pizza.) The free hog
slice is a default disk volume created by the format utility and contains all the disk
space not committed to other volumes. When you add disk space to a new vol-
ume, the free hog slice frees the space from its own capacity; when you make a
partition smaller or delete it, the free hog slice hogs that space into its capacity.
The free hog slice becomes important in step 8 of the process shown below.

Follow this process to create a new volume:

1. Connect the disk to the machine.

2. Reboot the machine.

3. su into the root account. Only root may run the format program.

4. Issue the command format at the shell prompt. You will be dropped into
the format utility’s own shell environment, which has a prompt that looks
like this:

format>

5. Enter partition mode by issuing the command partition at the prompt.
You should see the prompt change to

partition>

6. (Optional) If you want to print the current volume table to the screen, do so
by issuing the command print.

7. Issue the command modify to begin working with new partitions. The
prompt should now look like this:

Choose base (enter number) [0]?

At this point, you will need to notify the free hog slice that it must free up
some disk space for the new partition.

Disk Partitions

2817c30.qxd 11/13/00 2:42 PM Page 467

468

8. Type 1 at the prompt and press Enter. You will see the following confirma-
tion message:

Do you wish to continue creating a new partition table based on
above table[yes]?

9. Answer yes or press Enter. The program now prompts you to create new
partitions. Answer each question as it is presented. As each volume is cre-
ated, you will see the new partition table and the question

Okay to make this the current partition table[no]?

10. Answer no until you have finished creating all the partitions you want to
make.

11. When you have finished creating volumes, answer yes. You will see a new
prompt:

Enter table name (remember quotes):

12. Enter the table’s name, enclosed in quotation marks, as in

“partition-table”

You will see a new prompt:

Ready to label disk, continue?

13. Answer yes.

14. Issue the command q to exit the partition mode. You will be returned to the
format> prompt.

15. Issue the command verify to see the new partition table and check that it is
accurate.

16. If there are no problems, issue the command q to exit the Solaris format
utility. You should now be able to see and use the new volumes.

Physical Media vs. Filesystems
So far in this chapter, we have talked about the particulars of the physical media:
the disks, the drives, and the partitions. We have not talked about how these

Chapter 30 • Disks and Filesystem Management

2817c30.qxd 11/13/00 2:42 PM Page 468

469

items work together as a usable filesystem to manage data in the computer. In
this section, we explain how the Unix filesystem works.

A Unix filesystem includes a top directory, and all the subdirectories and files
contained within that directory. The / directory is a filesystem, as are the /usr
and /usr/bin directories. Each filesystem is subordinate to the filesystems above
it and is included in those filesystems, though they are not included in it. Every-
thing in Unix is a file, whether it is a text file, directory, program, graphic image,
or any other item contained on the system. An average Unix system contains
thousands of individual files; thus, a method for dealing with those files, and for
preventing them from causing trouble for each other, has been developed over
the years through the various permutations of Unix.

As you now know, Unix represents physical drives and partitions as entries in
the /dev directory. Exactly how each drive or device is named varies greatly
among Unix variants. Under Linux, for example, the first partition on the pri-
mary hard drive is represented as /dev/hda1. If there is a second hard drive, it
will be represented as /dev/hdb.

NOTE If you read this book after the 2.4 version of Linux is released, the device naming
structure will be somewhat different.

With FreeBSD, the same first partition would be represented as /dev/rda1;
under Solaris, the partition might be called /dev/c0d0s1. Cryptic as the device
names may seem, there is some logic to them. The documentation for your partic-
ular operating system should help you decipher the correct names.

TIP Device names usually identify the device controller, the disk, and the partition, in
that order.

The inquisitive reader may now be confused. If you know that the files on your
hard drive have names like /home/filename, how do those filenames correlate
with the fact that the files are stored on a device with the name /dev/hda1?
Shouldn’t the proper name be /dev/hda1/home/filename? It’s a reasonable
question. The answer is simple, though. The entries in the /dev directory are
there only to give the operating system access to the hardware. To use the files
stored on these devices, the devices must be mounted (made available for use).

Physical Media vs Filesystems

2817c30.qxd 11/13/00 2:42 PM Page 469

470

Mounting is the process by which a disk partition is “grafted” onto the system’s
overall directory structure. For example, the device file called /dev/hda6 may
house the partition that holds your /home filesystem. You can express this idea by
saying that /dev/hda6 is mounted on /home.

Mounting Local Partitions
Mounting a partition is a fairly easy process. To mount a partition, you must first
create a mount point. A mount point is simply an empty directory that has the
name of the filesystem to be mounted. For example, if your /dev/hda6 filesystem
contains your users’ home directories and you want it on /home, /home would be
considered the mount point.

There is nothing particularly special about a mount point. You can create it in
the same way that you’d create any other directory, by using the mkdir command
with the syntax:

mkdir /mountpoint

For example, to create the mount point discussed in the previous example, you’d
issue the command

mkdir /home

You have now created a directory named home that resides below the / directory.
To mount /dev/hda6 on this new mount point, use the mount command. mount
uses the syntax

mount [options] <device> <mount point>

Options for mount vary from operating system to operating system, so check the
manual page for mount (type man mount at a shell prompt) to learn about the ver-
sion of mount used on your system.

If you were mounting a standard partition on a Linux machine, you might issue
the command

mount /dev/hda6 home

On some systems, you’ll need to specify the filesystem type, as in the command

mount –t ext2 /dev/hda6 /home

where ext2 is the standard filesystem type used by Linux variants. FreeBSD’s use
of mount is similar.

Chapter 30 • Disks and Filesystem Management

2817c30.qxd 11/13/00 2:42 PM Page 470

471

Once you’ve used a particular filesystem, you may want to unmount it so that
you can remove media from the drive (in the case of a floppy or CD-ROM drive),
or simply to reduce the number of available filesystems. Unmount drives with
the umount command, which uses the syntax

umount filesystem

This is less complicated than mounting the drive, because you need not specify
the filesystem type or the location of the filesystem to be mounted. You simply
need to tell the operating system which filesystem to unmount, and the operating
system will take care of the rest.

NOTE There is only one n in umount. If you type unmount, you’ll get an error message. There
is no unmount command in Unix.

WARNING Never remove a disk from a drive that has not been unmounted. You may cause
damage to the drive or the operating system. Make a habit of unmounting drive-
based filesystems when you have finished using them.

Automatic Mounting
You probably have a number of partitions that you want to have mounted as
soon as the computer boots up. It’s a pain to mount a set of partitions by hand
every time you boot the computer. Luckily, you can set up a series of partitions to
be mounted automatically, which saves you some time.

Automatic Mounting under Linux and FreeBSD
Automatic mounting is controlled in FreeBSD and Linux systems by the /etc/
fstab file. The Linux and FreeBSD partition programs will edit /etc/fstab auto-
matically as part of the partition creation process. A typical /etc/fstab file looks
as follows:

/dev/hda1 / ext2 defaults 1 1
/dev/hda6 /home ext2 defaults 1 2
/dev/hda7 /misc ext2 defaults 1 2

Automatic Mounting

2817c30.qxd 11/13/00 2:42 PM Page 471

472

/dev/hda9 /tmp ext2 defaults 1 2
/dev/hda5 /usr ext2 defaults 1 2
/dev/hda8 /var ext2 defaults 1 2
/dev/hda10 swap swap defaults 0 0
/dev/hdb1 /vm1 ext2 defaults 1 2
/dev/hdb2 /vm2 ext2 defaults 1 2
/dev/hdb3 /vm3 ext2 defaults 1 2
/dev/hdb5 /cd-master ext2 defaults 1 2
/dev/hdb6 /stor0 ext2 defaults 1 2
/dev/hdb7 /stor1 ext2 defaults 1 2
none /proc proc defaults 0 0
none /dev/pts devpts gid=5,mode=620 0 0

You can see that the system covered by this file has a large number of parti-
tions: 13. The general form of an /etc/fstab entry is

device mount point type options df pn

The first three elements are obvious. The last three elements introduce new
concepts:

options: Mounting options that complement the options used directly
with the mount command

df: Dump frequency (how often the filesystem specified in that entry
should be backed up using the dump command). 1 means every day, 2
means every two days, and so on.

pn: Pass number (indicating the order in which these filesystems will be
checked with the fsck command, a process that happens when the system
boots up). The root filesystem must have a pass number of 1. If you want
to specify an order for the remaining partitions, use ordinal numbers: 2, 3,
etc. If you don’t care which order the filesystems are checked in, make the
/ partition 1 and the remaining partitions 2. fsck will then check the parti-
tions in alphabetical order.

Automatic Mounting under Solaris
Under Solaris, the relevant file for automatic mounting is /etc/vfstab. Entries in
this file use a slightly different format than that in the FreeBSD and Linux
/etc/fstab file

device device mount FS fsck mount mount
to mount to fsck point type pass at boot options

Chapter 30 • Disks and Filesystem Management

2817c30.qxd 11/13/00 2:42 PM Page 472

473

The individual elements are somewhat similar to those in /etc/fstab, but there
are differences in terminology.

device to mount: The name of the device.

device to fsck: Also the name of the device.

mount point: The name of the mount point.

FS type: The filesystem type.

fsck pass: Same as the pass number (pn) described in the previous section.

mount at boot: The value is yes if the partition should be mounted at
boot, no if it is to be mounted by hand.

mount options: Various options that will be passed to the mount com-
mand as the /etc/vsftab file is run at the time of boot-up.

Thus, a typical entry in /etc/vfstab might look like this:

/dev/dsk/c0t3d0s7 /dev/rdsk/c0t3d0s7 /files1 ufs 2 yes -

These file paths specify the partitions to be mounted at boot-up. You can also
mount all the partitions named in the /etc/vfstab file by using the -a flag with
the mount command, as in mount –a.

Mounting Remote Partitions
True to Unix’s highly networkable nature, a partition does not need to be on a
disk physically attached to a particular computer to be mounted. A local machine
can mount partitions from a remote machine using a service called NFS (Network
File Service), provided the local machine has permission to do so.

TIP Some systems use remote partitions to handle user directories. The user directories
are kept on a central machine; when a user wants access to her directory, she logs
into a local workstation and mounts her home directory from the remote machine.

Mounting Remote Partitions

2817c30.qxd 11/13/00 2:42 PM Page 473

474

Mounting Remote Directories under Linux and FreeBSD
To mount a filesystem from a remote machine, where both machines are using
Linux or FreeBSD, you use the mount command as you would for a local filesys-
tem. However, you must specify the file type in the FS field as nfs, and you must
specify the name of both the remote machine and the filesystem you wish to
mount. A typical networked mount command might thus look like this one:

mount –t nfs fido:/export /import

where fido is the name of the remote machine.

Before you can issue this command, however, you must set up the /export
filesystem on the machine fido so that the filesystem can be exported. There are
two steps to this process: First, ensure that fido’s NFS server is running; second,
place an entry in the /etc/exports file on fido that shows which machines have
permission to mount the /export filesystem remotely.

Your entry in /etc/exports might take this form:

/export bowser

where bowser is the machine that has permission to mount the exported direc-
tory. Generally, entries in /etc/exports use the syntax

directory remotemachine (options)

The options for /etc/exports entries are numerous, and you can learn more
about them by consulting the exports manual page, by typing man exports at a
shell prompt.

Once the /etc/exports file is set up and the NFS server is running success-
fully, issue the command exportfs on the machine fido. Now, you should be
able to go to the local machine, bowser, and mount the exported directory.

Mounting Remote Directories under Solaris
Solaris, of course, has a different way of handling remotely mounted directories.
Under Solaris, you must use the file /etc/dfs/dfstab instead of /etc/exports.
Entries in /etc/dfs/dfstab use a unique syntax:

share –F nfs –o ro /export/ftp

Here, the /export/ftp directory is the directory being shared. The ro option
indicates that the filesystem will be given to the local machine as read-only. The

Chapter 30 • Disks and Filesystem Management

2817c30.qxd 11/13/00 2:42 PM Page 474

475

full list of options for these entries can be found on the manual page for the
share_nfs command (type man share_nfs at a shell prompt).

Once the /etc/dfs/dfstab entries are configured correctly on the remote
machine, you can return to the local machine and mount the remote directory
as you would a local directory.

Summary
Computer disks can be divided into two categories: magnetic and optical. Mag-
netic disks are those that use a thin, flexible base coated with a substance that
records data through impulses from magnetic fields; hard disks are all magnetic
disks, as are floppy diskettes. Optical disks use a laser to read microscopic prisms
etched onto the underside of a plastic disk; CD-ROM and DVD disks are optical
disks. Most computer systems today have both magnetic and optical disk drives.

Unix regards all devices, including hard drives, floppy drives, and optical dri-
ves, as individual filesystems. In fact, hard drives can be partitioned into multiple
filesystems, so that an individual hard drive might be treated by the operating
system like as many as eight different filesystems. These divisions are called par-
titions under Linux, slices under FreeBSD, and volumes under Solaris, but they
all act in much the same way. You may wish to partition your drive so that system
files and user files are in different partitions, or you might want to make some
partitions available to be mounted from remote locations. No matter how you
handle partitions and drive devices, Unix requires you to mount them to empty
local directories before they are usable. Once mounted, the files and data con-
tained in the partition are freely available for use.

Summary

2817c30.qxd 11/13/00 2:42 PM Page 475

This page intentionally left blank

C H A P T E R
T H I R T Y - O N E

Installing and
Managing Software

� Software Formats

� Compiling Software from Source Code

� Software Management for Unix Variants

� Keeping Up with Upgrades

� Summary

31

2817c31.qxd 11/13/00 2:42 PM Page 477

478

Although you could run a Unix computer without ever adding new software
beyond that installed when you built the machine, there isn’t really a point in
doing so. Even the most minimal Unix machines, or those running the most non-
interactive software, need to be upgraded at some point. All machines should
have security software installed or upgraded regularly.

Software management is slightly more complicated under Unix than it is with
other operating systems. Actually, it’s just as complicated in other operating sys-
tems, but attractive and easy-to-use front-ends have been developed to streamline
the process. Unix variants have begun to incorporate these front-ends as well. In
this chapter, we explain the basic software installation process using the most uni-
versal software format, source code. We also introduce other forms of software
and the programs used to install them on each Unix variant covered in this book.

Software Formats
When you visit a Unix software archive on the Internet, you may be amazed by
the variety of programs available. Not only is the scope of programs and their
functions quite broad, but there are also several versions of the same program
available for download. It can be confusing to decide which copy of the program
you want, let alone to figure out why they all exist.

The various versions that you might find in an archive are all copies of the same
program, but they’re configured for different Unix variants. They are ports of the
basic software, configured to make them easier to install on one particular variant;
some ports are even designed to work with one particular distribution of a given
variant. So, how do you pick the correct package to download and install?

NOTE The term package has two related definitions when used in the software context.
At its most basic, a package is a suite of files related to one program: source code,
documentation, and configuration files. These basic packages are usually source
code packages. However, package is also used to describe source code packages
that have been configured for a particular Unix variant or package manager pro-
gram. These specialized packages won’t install on Unix variants other than the
one for which the packages are designed, whereas source code should work on
almost all Unix computers.

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 478

479

No matter which Unix variant you are using, you probably have an alternative
to commercially packaged software. Noncommercial Unix programs are almost
always released in plain source code, and you can install software from source
code on any Unix computer. Commercial programs are sometimes released in
source code, as are shareware or other low-cost programs.

Source code is basically the programmer’s output; the output may be repack-
aged or changed slightly to work better with individual Unix variants, but the
source code is closest to the original work done by the program’s developer. Most
Unix software is written in the C or C++ programming languages. Though these
are very common languages in the computing world, and Unix itself is written in
C, you cannot run software directly from source code.

The files that you download from a CD or an archive must be compiled before
they can be installed and used. Compilation is the process of turning human-
readable code—the source code—into machine-readable binary code. Compiling
software is largely an automatic process, and the same tasks are used regardless
of the type of software being installed.

WARNING Some packages require different installation procedures than the processes
described here. If you happen across one of these programs, make sure you know
the correct procedure before you start. Installing software incorrectly may cause
problems for your entire machine. As always, read the README file or other docu-
mentation included with the package before you begin installing. It’s also a good
idea to check the Web for updates or instruction as well.

The alternative to source code are packages designed for particular Unix vari-
ants. Oddly enough, the variants that seem to get the most individualized pack-
ages are the variants covered in this book: Linux, FreeBSD, and Solaris. These
specialized packages are configured before they are released so that they will
install as easily as possible on the particular variant for which they’re designed.
Solaris packages, for example, are designed to use Solaris’s particular directory
structure, while Linux packages take advantage of certain features in the Linux
kernel or in particular distributions that have their own package formats. FreeBSD
packages are called ports and work with a set of skeleton files that define a particu-
lar port directory architecture.

These variant-based packages are usually installed using a package manage-
ment tool. Package management tools were designed to provide the user with a

Software Formats

2817c31.qxd 11/13/00 2:42 PM Page 479

480

friendlier, easier interface for software installation. They have become more com-
plex as the Unix world has grown, and some package management tools now
have automatic update features, databases of installed software, or extended flags
and functions that make managing software a snap. We explain some of the more
popular package management tools in the “Software Management for Unix Vari-
ants” section of this chapter.

Compiling Software from Source Code
When you find source code packages in a software archive or on a disk, they are
usually packaged in the tarball format. As we’ve noted elsewhere, tarball is a
nickname for compressed archives created by the tar program. You can recog-
nize tarballs because they carry the filename extensions *.tar.gz or *.tgz. The gz
component of the extension indicates a tarred package that has also been com-
pressed with the gzip compression program. The combination of tar and gzip
creates a compact file that can be electronically transferred with a minimum of
delay or trouble. As with software packages in other formats, tarballs usually
contain documentation and configuration files as well as the code for the pro-
gram itself.

NOTE The Zip and StuffIt programs are, respectively, Windows and Macintosh analogues
for tar and gzip. You can usually use the gunzip program to unzip files com-
pressed with the Windows version of Zip, but gunzip doesn’t work very well for
stuffed file archives. If at all possible, deal with compressed archive files using the
same operating system that was used to compress them in the first place.

To begin working with source code, you must first locate a source code pack-
age. There are quite a few packages on the CD-ROM that accompanies this book,
so that might be a good place to start. You can also find source code packages at
any Unix software archive on the Web or purchase them from commercial soft-
ware developers or distributors.

Regardless of the source of your packages, you should pick a consistent place to
put them after download or transfer from a disk. We suggest using the /tmp direc-
tory as the place to start installing source code. Why /tmp? As its name implies, this
directory is temporary. While the package is installing, it will create new directories

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 480

481

in different locations on the hard disk. Once the program has been correctly
installed, you can clean out /tmp without a second thought because no system-
critical files are kept there. This is more difficult in directories used for ongoing
system purposes, such as /etc or /usr/sbin. Therefore, using /tmp is a good
solution, and we encourage you to put uncompiled packages there when you
download or transfer them to your hard drive.

TIP You can also use the /usr/src directory, but you have to be a bit more careful
when you clean it out after an installation. Some files need to stay in /usr/src;
nothing must stay permanently in /tmp.

Once you have put the source code packages in the /tmp directory, you can
begin to install the software. First, unpack the archive by issuing this command at
the shell prompt:

tar xvfz filename

This command decompresses the archive and expands the individual files to
their original sizes. Depending on the number of files in the tarball, you may see
a few filenames printed to the screen, or you may see a whole list of filenames
scrolling past.

When the names stop printing to the screen, issue the command ls. You should
see a new subdirectory under /tmp that has a name resembling the program’s
name. Change to that directory by issuing the command cd directoryname, and
do another listing with the ls command. You should see a file named README or
INSTALL, or something similar. These files are usually named in capitals to make
it clear that they are urgent files.

Read the README file by using the more README command or opening the file
in your favorite text editor. This file contains last-minute updates or messages
from the program’s developer. If there are special steps you need to take during
installation, they will be listed here. Always follow the directions in the README
file, even if they conflict with your normal software installation practices. Some
software may require specific behavior during installation to function properly
once in place.

No matter what special instructions may be contained in the package’s docu-
mentation, the process of installing software from source code can be broken
down into three general steps. These steps are usually enhanced by specialized

Compiling Software from Source Code

2817c31.qxd 11/13/00 2:42 PM Page 481

482

programs or files contained in the software file archive. If you find a tarball
that, for some reason, doesn’t have a README or INSTALL file, try the follow-
ing steps to install the program. Chances are that you’ll install the software suc-
cessfully.

Configuring the Package
Many packages help you configure the program automatically, through a script file
included in the archive that’s called configure, configure.pl, configure.sh, or
some similar name. The README file will alert you to the actual name of the file, if
one exists.

This script will run some tests on your machine to determine your hardware
and software configuration, so that the program can be installed to meet your
exact specifications. If the program requires certain system files, the configure
script will check to see whether they exist.

Once the configure script has finished its work, it generates a new file called
Makefile. A sample Makefile is shown in Figure 31.1. It’s a good idea to read
through any Makefile that’s created on your system, because error messages will
be sent to this file. You can then fix system errors or add required files if neces-
sary, before you actually install the software.

Building the Package
Once the configure script has run successfully and you’ve addressed any prob-
lems reported in Makefile, you can begin to compile the software. In Unix terms,
a program’s compilation is often referred to as its build. In this step, you’ll prepare
the source code for actual installation. The code itself won’t perform the tasks
required of the program, so you need to run the source code through a compiler to
translate the code into machine-readable commands.

To begin building the package, issue the command make at the shell prompt.
make invokes the compiler, the program that converts the code into a machine-
readable binary. Most programs use the basic cc (C Compiler), which is installed
by default with almost all Unix variants. If you are compiling Free Software or
software that has a strong Free Software component, you’ll need to use gcc (the
Gnu C Compiler). gcc is included on the CD-ROM packaged with this book.

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 482

483

NOTE Programs written in other programming languages may require a different com-
piler; you’ll determine that from either the README file, an error statement in
Makefile, or the documentation at the software archive or Web page where you
obtained the tarball.

make uses Makefile as a blueprint for its work. make takes the various source
code files included in the archive and runs them through gcc, linking the output
into a single binary file that is executable by the computer. When make finishes,
you will be returned to the command prompt and can move to the final step of
the process.

Installing the Package
When the package has finished compiling, you can install the executable binary
file as an actual program. Once the file is installed, you’ll be able to invoke the

F I G U R E 3 1 . 1 :

A Makefile is generated
during the source code
installation process.

Compiling Software from Source Code

2817c31.qxd 11/13/00 2:42 PM Page 483

484

program with its single-word command and any flags that the program requires.
You should also be able to call up the program’s manual page, which is installed
as part of the installation process.

To install the binary file, issue the command make install at the shell prompt.
This command moves the binary into the proper directory (outside of /tmp) and
installs any required configuration or documentation files that were included in
the archive. You can go into the /etc directory and look for configuration files, if
used by this program, to adapt the program to your individual needs. If the pro-
gram’s new directory contains a /doc subdirectory, check through the files in that
directory to see what configurations you need to make.

Once the shell prompt returns to your screen, the program is installed in its
new location. You can now use it as you would use any other program already
installed on your computer. You may wish to put the new program’s directory in
your PATH environment variable, if you want to invoke the program without
using its complete directory path.

The last step is to clean up. Return to the /tmp directory and remove any files
left over from the installation process. You can clean /tmp out completely, because
all the required files for the program have been moved or copied to their perma-
nent locations. Don’t leave a lot of junk in /tmp.

TIP You may want to store the original tarball in a source archive on your hard disk,
though this isn’t necessary. By the time you need it again, a new version may have
been released that is better than the version you just installed. The only exception
is with code and programs that are no longer being developed; it might be useful
to hang onto the tarball just in case you can’t find a copy of the software at a later
date. If you do save the tarball, consider keeping it in the /usr/src directory. It’s a
good habit to have a single directory where source code is stored.

Software Management for Unix Variants
Though source code should be usable on every Unix variant, this is not always
the case. The individual variations between Unix versions, and the adaptations
necessary to accommodate those changes, make for source code that is not tai-
lored specifically to any Unix variant and thus may not be 100-percent compati-

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 484

485

ble with your given installation. That is, source code is usable on the majority of
different Unices, but it’s almost never a perfect fit.

To get the best fit between code and operating system, the user needs to find
and install software tailored for a particular operating system. The problem is
that such specific software doesn’t always exist, or it may be available for several
Unix variants, none of which are the one you need. The Unices covered in this
book are those for which you’re most likely to find specific ports, and each of
these operating systems has a unique way of handling software installation.

TIP Of course, you can install source code on Linux, FreeBSD, and Solaris. If you can
find a port for your particular variant, though, use it. It’s more likely to work
straight out of the box, and you’ll probably have to do less configuration than you
would with plain source code.

Linux
Linux users have several choices when it comes to dealing with software installa-
tion and management. Many Linux users prefer to deal directly with source code,
but the majority of Linux users work with package management software for at
least part of their software needs. When software is ported to Linux, it’s usually
ported in the format required by one (or both) of the popular Linux package man-
agement programs, not as source code designed for Linux and meant to be
installed as source code.

The two major package management programs under Linux are tools created for
two of the most popular Linux distributions. The Debian package manager (dpkg)
and the Red Hat package manager (rpm) can be used on any Linux distribution—
not just Debian or Red Hat. In fact, you can run dpkg on a Red Hat machine or rpm
on a Debian machine; there’s nothing mutually exclusive about the formats. In this
section of the chapter, we explain how to install software with both programs.

TIP If you run Linux, regardless of the distribution you choose, we suggest installing
both of the package managers. It may prove useful when you can find packages
in only one Linux-oriented format. However, be aware that a package manager
designed for a different distribution may put files in inappropriate directories for
your distribution. If you choose to run a package manager that isn’t native to your
distribution, you’ll have to check through the filesystem to learn the location of
files installed through the package manager.

Software Management for Unix Variants

2817c31.qxd 11/13/00 2:42 PM Page 485

486

dpkg: Debian Package Manager

There is actually more than one Debian package manager, but dpkg is the easiest of
the Debian tools to learn and use. dpkg is a command-line tool that handles soft-
ware installation, upgrades, and removal. (We introduce dselect, a graphical inter-
face to dpkg, in the next section of this chapter.) Note that you must be logged in as
root to use dpkg.

Debian packages are widely available. If you are looking in a Linux software
archive, you’ll know the Debian packages by their *.deb extension. Debian pack-
ages use a unique package naming convention. The package name is constructed
with the syntax

<name>_<version>-<build>.deb

Thus, the package name flowerpot_2.3-1.deb indicates that this package con-
tains the first build of the flowerpot program’s 2.3 version. The build number
identifies the unique compilation of the source code by the program’s developers.
Most users need to worry about only the version number, not the build number,
unless there is a known problem with a particular build.

Installing with dpkg

To install a package with dpkg, first download the *.deb package to your hard
drive. Change to the directory where the download package is located, and issue
the command

dpkg -i <name>_<version>-<build>.deb

at the shell prompt. You’ll see a number of system messages scroll past on the
screen. When the messages stop, the package will be installed in the correct loca-
tion. You can then delete the original files or store them, as you wish.

Removing with dpkg

You can also use dpkg to remove packages that you no longer wish to keep on
your system. The advantage of using dpkg instead of removing files by hand is
that dpkg will catch all the documentation and configuration files associated with
the program. Removing programs by hand often results in orphan files left on the
hard drive.

To remove a package with dpkg, simply issue the command

dpkg –r <name>

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 486

487

at the shell prompt. You do not need to supply the version number, build, or *.deb
suffix when removing the program, simply the program name. The name will be
the same as the name used for the original package; although this is usually the
same as the program name, sometimes it’s different. Keep a record of package
names that differ from the program name so that you can remove the packages
more easily down the road.

WARNING By default, dpkg does not remove shared files when it deletes a particular program.
Shared files are those that are installed with one package, but are used by multiple
programs. You can delete shared files when removing a package by issuing the
command dpkg –r –purge <name>, but be aware that, if shared files are found
and removed, the other programs that rely on those files might not work properly.

Upgrading with dpkg

You can use dpkg when upgrading software, as well. If you download a newer
version or build of a program that’s already installed on your computer, dpkg
will install only the files that have changed in the newer version. You won’t get
duplicate files if some files in the newer package are identical to the files
already installed.

dselect: A Graphical dpkg Interface

If you prefer to work with graphical interfaces instead of working at the com-
mand line, you might prefer dselect for your package management needs. dse-
lect is not a separate program; it is merely a front-end to dpkg, providing a
graphical framework for people who dislike pure text commands. It is a full-
screen and menu-driven program, which can be easier to use for some people.

NOTE dselect also works as a front-end to the apt-get program, a Debian tool that
can be used to install programs across a network. That is, you can use apt-get to
install a program directly from a software archive without downloading the pro-
gram first.

Invoke dselect at the command prompt by issuing the command dselect.
The program will start. Browse through the menus to find various options for
installing, removing, configuring, and upgrading Debian packages on your

Software Management for Unix Variants

2817c31.qxd 11/13/00 2:42 PM Page 487

488

computer. Make your selections with the arrow keys on the keyboard, or use
the numbers next to each menu item. dselect will work with packages on your
hard drive, on a mounted drive such as a CD-ROM, or across a network. Using
dselect is a convenient way to work with Debian packages.

rpm: Red Hat Package Manager

The other dominant package management tool for Linux is Red Hat’s rpm pro-
gram. As with dpkg, using rpm is a simple way to manage the installation and
removal of specially configured packages. Unlike dpkg, rpm has a set of advanced
tools that check, before installation, whether you already have an earlier version
of this package installed or whether you have other software installed that will
conflict with the proposed package.

TIP Although rpm is a text-based tool, there are various graphical interfaces as well.
Check your Linux window manager or integrated desktop. The Gnome rpm inter-
face, GnoRPM, is shown in Figure 31.2. If you prefer visual interfaces, give one of
these programs a try.

F I G U R E 3 1 . 2 :

GnoRPM is a graphical
interface to rpm found in
the Gnome integrated
desktop.

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 488

489

Red Hat packages are as widely available as Debian packages and, in some
archives, are more easily found than the Debian format. Red Hat packages use a
unique package naming syntax:

<name>-<version number>-<build number>.<architecture>.rpm

Thus, the package name flowerpot-2.3.1-2.i386.rpm is the 1.2 build of the
flowerpot program’s version 2.3, built for the i386 (Intel) architecture. The *.rpm
extension indicates a package configured for use with the rpm tool.

Installing with rpm

To install a package with rpm, log in as root or assume superuser powers. Issue
the command

rpm -i <name>-<version>-<build>-<architecture>.rpm

at the shell prompt. If you’d prefer to run rpm in verbose mode, so that you can see
the various system messages generated by the installation process, issue this
command instead:

rpm -ivh <name>-<version>-<build>-<architecture>.rpm

The –vh flags will show both the system messages and an installation progress
meter, by which the installation’s progress is shown as a row of # characters
printed across the screen. Note that you won’t see many system messages using
the –vh flags unless the installation fails. You will see the progress meter with
every installation, though, as shown in Figure 31.3.

TIP If you want to use rpm to install a program from a remote location on your net-
work (or from a software archive on the Internet), issue the command rpm –ivh
ftp://ftp.archivename.org/directory/path/filename, including the
complete URL for the package you want to install.

Removing with rpm

To remove a package with rpm, issue the command

rpm –e <name>

at the shell prompt. As with dpkg, you don’t need to include the version number,
build, or architecture. Simply use the name associated with the original package.

Software Management for Unix Variants

2817c31.qxd 11/13/00 2:42 PM Page 489

490

Upgrading with rpm

If you download a newer version of a package you already have installed on your
computer, you can use rpm to upgrade the installed package. New files will be
installed, and existing files will be upgraded if there are changes in the newer
version. To upgrade with rpm, issue the command

rpm –U <name>-<version>-<build>-<architecture>.rpm

at the shell prompt. rpm will compare the new package with the installed version
and make changes as required.

Querying with rpm

One of the most powerful rpm features is the ability to query. rpm maintains a
database of all packages installed on the system, and you can query that database

F I G U R E 3 1 . 3 :

The rpm package manager
has an optional progress
meter to track installation.

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 490

491

through rpm to see whether a particular package is installed or to get various
types of information about installed packages. You can also use the query tool to
learn whether you need to install additional packages so that a given program
will function properly.

The basic syntax for rpm queries is

rpm –q <name>

issued at the shell prompt. However, rpm queries are most powerful when used
with the various flags that can be appended to the –q flag. You can combine any
of these flags, as in rpm –qid, to get a complex output with a great deal of infor-
mation about your machine’s software configuration. Sample query output
using the –qid flags is shown in Figure 31.4, and the rpm query flags are shown
in Table 31.1.

F I G U R E 3 1 . 4 :

You can learn a lot about
your software with the rpm
query feature.

Software Management for Unix Variants

2817c31.qxd 11/13/00 2:42 PM Page 491

492

TA B L E 3 1 . 1 : rpm Query Flags

Flag Function

-a Queries all installed packages. The output will contain the full package names for
every package installed on the computer.

-f <filename> Identifies all packages containing the string <filename> and then queries those
packages. This option is especially useful for system libraries and other files that
aren’t technically part of any program package.

-p <packagename> Queries the package named in <packagename> if it is uninstalled and returns
query data on the files contained in that package. You must already know the
package name for this flag (see –a).

-I Returns additional information with the standard query output, including package
name, release number, size, and description.

-l Returns additional information with the standard query output, including a com-
plete list of all files contained within the queried package.

-s Returns additional information with the standard query output, including a report
on the current status of all files within the queried package.

-d Returns additional information with the standard query output, including a list of
all the files within the queried package that are documentation files. This may
include manual pages, README files, or other installation documents.

-c Returns additional information with the standard query output, including a list of
all the files within the queried package that are configuration files.

TIP rpm has many more features than the basic tools described here. If you’re using
Red Hat Linux, you should familiarize yourself with the Red Hat HOWTO document
at http://www.linuxdoc.org or the rpm project page at http://www.rpm.org.

FreeBSD
One of the advantages of using FreeBSD is the Ports Collection, a framework built
into FreeBSD that handles software packages that have been ported to FreeBSD. If
you install a FreeBSD port of a given program, you can take advantage of the vari-
ous files added to the port that make installation under FreeBSD simpler. When
you install pure source code, you have to provide your own tools to replace these
files, and this process is generally more involved than using a port.

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 492

493

FreeBSD distinguishes packages from ports. Ports are the additional material
used when installing a particular package, plus the source code for the program.
Packages contain a preconfigured version of the software, but may not contain
the source code. It’s your decision which to install, but we prefer using ports.
They offer a bit more flexibility in configuration and installation.

NOTE What’s contained in a port? Several files are always part of every port—skeleton
files used to construct the most advantageous environment for software installa-
tion. Ports must contain /files, /patches, and /pkg directories, which contain
information about the data of the source code files and any additional patches for
FreeBSD that are required for the software to run properly, as well as documenta-
tion about the particular package for which the port is designed. The port must
also include a Makefile (a file familiar from the source code installation process),
which determines where the package files will be installed and how the code will
be compiled.

Installing a Port

You may already have a port in mind that you want to install. If you installed
FreeBSD from a CD-ROM, check that CD for a directory called /usr/ports. This
directory should be chock-full of ports for standard Unix programs, and the asso-
ciated packages should be contained in the /usr/ports/distfiles directory.

Once you’ve located the port you want to install, change into that port’s subdi-
rectory. For this example, assume that you want to install a port for the flower-
pot program, which is filed as a miscellaneous port on the CD. Issue the
command

cd /usr/ports/misc/flowerpot

at a shell prompt. Once you are in the port’s directory, you can issue regular com-
pilation commands. They will be interpreted contextually by the operating sys-
tem, so you don’t have to repeat the program’s name.

Issue the command make at the shell prompt. A number of messages will scroll
past; first, FreeBSD determines that this port is not already installed on the sys-
tem, then FreeBSD works through the file dependencies and patches included in
the port. When the system prompt returns, the port will be ready for installation.

Issue the command make install at the shell prompt. You’ll see another series
of messages as FreeBSD locates required software libraries and moves files to

Software Management for Unix Variants

2817c31.qxd 11/13/00 2:42 PM Page 493

494

their permanent locations. When the shell prompt returns, the port will be
installed and ready for the package’s code files.

TIP If you want to install a port that isn’t included on your FreeBSD CD-ROM, create a
directory for that port under /usr/ports/. When you run make or make
install, FreeBSD will attempt to connect to an external FTP site and download
the port and the source files. The rest of the installation should proceed as normal.

Removing a Port

Removing a port is even easier than installing one. To remove a port from your
FreeBSD system, change to the directory associated with that port, as in cd
/usr/ports/misc/flowerpot. When you are in the port’s directory, issue the
command

make deinstall

at the shell prompt. You will see a one-line output from the computer telling you
that the program is being uninstalled, and then the shell prompt will return. Once
you see the shell prompt, the port has been uninstalled, and all related dependen-
cies have been cleaned up.

If, for some reason, you want to reinstall a port that has previously been
installed and uninstalled from your system, don’t repeat the initial installation
process. Instead, change to that port’s directory and issue the command

make reinstall

This will restore the port without duplicating system libraries and dependencies
that may have been retained because they were shared files when the original
installation was removed.

Finding Ports

If you want to get every single port that has been contributed to the FreeBSD
Ports Collection, you can do it with a simple command. Note that this may take
some time, so it might be best to set up as an overnight task or at some time when
your Internet connection is not already saturated with traffic. If you have an ISP
connection that cuts you off after a certain amount of time connected, you may
wish to fetch ports in smaller batches.

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 494

495

To fetch every port in the Ports Collection, issue these commands at a shell
prompt:

cd /usr/ports
make fetch

FreeBSD will connect to a software archive and download everything listed as a
port. You can also download specific subdirectories of ports by appending the
subdirectory’s name to the /usr/ports directory path.

TIP If you are interested in building your own ports for FreeBSD software, consult the
Porters’ Handbook at http://www.freebsd.org/porters-handbook/
index.html. This document contains the standard protocol for port creation, as
well as some tips on building the most workable ports.

Solaris
Solaris package management and software installation are also simple. Many
Unix programs offer Solaris ports, which work better with Solaris than plain
source code. (You can, of course, install source code on Solaris; just expect to
spend extra time configuring the software, especially the directory locations.)

Solaris packages use the naming syntax

name-version-os-processor-directory.gz

Thus, the program flowerpot-2.3-sol7-intel-local.gz would be the 2.3 ver-
sion of the flowerpot program, ported to Solaris 7 for the Intel chip. This pro-
gram will install by default into the /local directory.

Installing with pkgadd

You are probably downloading your Solaris package from the Web or from a soft-
ware FTP archive. Put the downloaded file into the /tmp directory; the installation
procedure will place the new program and its related files into new directories, and
you can clean out /tmp when the installation is finished.

Move to the /tmp directory with the command cd /tmp. Once in the directory,
issue the command

gunzip packagename

Software Management for Unix Variants

2817c31.qxd 11/13/00 2:42 PM Page 495

496

to unpack the files. You’ll see a list of filenames scroll up the screen as the archive
is unpacked.

When the shell prompt returns, issue the command

pkgadd –d packagename

The –d flag identifies the device from which the package will be obtained. It can
be a directory path or a mount point. Note that you must be logged in as root to
use the pkgadd program.

By default, pkgadd installs programs into the /var/spool/pkg directory. If you
have downloaded a package that installs into another directory, you may need to
check the resulting directory paths and add them to your PATH environment vari-
able so that you can access the program and its related files as needed.

You may experience some trouble if your Solaris installation created directo-
ries that are too small. In particular, if too little swap space was defined when
Solaris was installed, the /tmp directory may be too small to handle package
installation. You can change the size of /tmp by changing the swap space alloca-
tion; see your Solaris documentation for the procedure needed by your particu-
lar Solaris version.

You might also experience problems if /var, /opt, or /usr/local are too small.
You can patch this trouble by using symbolic links, but if it’s a consistent prob-
lem, you may simply want to reinstall Solaris and configure the directories with
enough space. Of course, back up before you do this.

NOTE You may run into trouble if you’re installing a program that requires the gcc
libraries to run (most GNU software falls into this category). If you receive a mes-
sage that reads cannot exec ‘as’:No such file or directory, make sure
that the directory /usr/ccs/bin/ is included in your PATH environment variable
so that the as program will be available to pkgadd.

Removing with pkgrm

Deleting unwanted Solaris packages is as easy as installing them. The program
used to remove packages is called, obviously enough, pkgrm. To remove a pack-
age, issue the command

pkgrm filename

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 496

497

The program checks for dependencies and shared files before deleting the package.

If you use the command as shown above, pkgrm will run in interactive mode,
meaning that you must be there to answer any questions from the program. You
can run pkgrm in noninteractive mode by issuing the command

pkgrm –n filename

but you will lose some control over the package removal process.

When pkgrm finishes, it will return an exit value to the screen. pkgrm exit val-
ues are listed in Table 31.2. You may have to reboot the machine after you
remove the specified package; the exit value will alert you to that or to other
warning messages.

TA B L E 3 1 . 2 : pkgrm Exit Status Values

Exit Value Meaning

0 Package successfully removed.

1 Fatal error during package removal; process aborted.

2 Warning. pkgrm should print an explanatory message.

3 Interruption. Process was interrupted during execution; removal may be incomplete.

4 Administration. Process could not locate specified administration file for named package.

10 Reboot after removal of all packages. If multiple packages are to be removed at one
time, do not reboot until all packages are removed.

20 Reboot after removal of this package. You will need to reboot immediately for system
changes to take effect.

Keeping Up with Upgrades
The best way to keep up with software upgrades is to browse the Web regularly.
For notices about upgrades to your operating system, keep an eye on the Web
site maintained by your variant’s distributors. You can find a list of these sites
in Appendix B: “Documentation and Resources.” These sites all have news sec-
tions, in which new releases and updates are noted.

Keeping Up with Upgrades

2817c31.qxd 11/13/00 2:42 PM Page 497

498

If you purchased commercial software, you may be on a mailing list that the
company uses to alert its users of new versions or patches. Similarly, if you’re
involved in the development of a program, you’ll know about new patches and
releases from the mailing lists and newsgroups used by the development team.
You may even be releasing your own patches back to the group.

For Free software and other programs that you’ve downloaded from the Inter-
net, you’ll need to keep up with the sites yourself. Most major programs have
sites devoted to news and software downloads, and you should be able to get the
latest patches or releases there. Some of these sites are listed in Appendix B, while
others will be named in the documentation files that accompany the programs.

You can also learn about new releases if you visit your favorite Unix software
archive on a regular basis. For example, Solaris users might find the Sunfree-
ware.com site a useful regular stop; it’s located at http://smc.vnet.net, and
offers a variety of programs and packages for Solaris installations. Linux users
favor archives like Freshmeat (http://www.freshmeat.net), which places the
newest contributions to the archive on the top page.

If you keep track of your software and its upgrades, you’ll always be running
the most advanced versions with the best set of features, as well as the most sta-
ble releases. (Of course, if you choose to run development releases, some stability
will be lost. That’s the price you pay for working on the “bleeding edge.”) Cer-
tainly, upgrades to your operating system are high priority, as are upgrades to
programs upon which you rely, such as mail servers or other administrative soft-
ware. However, you might think that a patch for your favorite first-person-
shooter video game is just as important, and we won’t argue with you about that.

Summary
Software management is an integral part of system administration. The adminis-
trator must be aware of upgrades and new releases of the operating system, as
well as upgrades for system software and user software programs. Software that
is not regularly upgraded may be more of a security risk, and users may not have
access to new features or functions available in an upgraded version of a particu-
lar program. Different Unix variants handle software installation and manage-
ment in different ways. Many programs are released to the Unix community in

Chapter 31 • Installing and Managing Software

2817c31.qxd 11/13/00 2:42 PM Page 498

499

the source code format, which can be compiled into machine-readable binary files
on any Unix variant.

Many commercial programs are released only as precompiled packages, how-
ever, and those packages must be obtained in a version that works with the spe-
cific Unix variant being used. Once a package has been obtained, it can be installed
with variant-specific programs called package managers. Package managers can
be used to handle package removal and upgrades as well, or to install programs
from remote locations such as Internet software archives. Regardless of the method
used to install and manage software on a given system, the administrator should
set aside some time for regular Web browsing of software sites to see whether
new releases or upgrades are available.

Summary

2817c31.qxd 11/13/00 2:42 PM Page 499

This page intentionally left blank

C H A P T E R
T H I R T Y - T W O

Getting to Know the Kernel

� What the Kernel Does

� Kernel Development

� Modules vs. Static Kernels

� (Re)Compiling the Kernel under Linux and FreeBSD

� Summary

32

2817c32.qxd 11/13/00 2:43 PM Page 501

502

The kernel is the center of the operating system. Although most common com-
puting tasks are handled by utilities such as the shell or other applications and
programs, it is the kernel that provides these programs with the infrastructure
they need to get the job done. In metaphoric terms, you can think of the kernel as
the engine of your car. While the driver interacts with the car by using the pedals,
steering wheel, gear shift, and so on, it’s the engine that provides the capability
for the car to go.

The kernel is responsible for managing the memory space, scheduling tasks for
the processor, and providing access to hardware devices. It determines the priority
of different commands issued by the user or by other programs, and it decides how
much of the system’s resources should be devoted to each of those commands.
Because its work is so critical to the performance of the computer, the kernel is
shielded from direct user access. You need to use shell commands to configure the
kernel or to access its power; the shell environment interprets those commands in
language the kernel understands, passing them to the kernel for execution.

In this chapter, we provide an example of the kernel in action and explain how
kernels are developed. We also show you how to recompile a kernel in Linux and
FreeBSD. Solaris users don’t have the opportunity to recompile their kernels, so
those using Solaris may want to skip over the final sections of the chapter.

What the Kernel Does
It’s an interesting concept, but the kernel can be hard to comprehend. How can
this mystical, untouchable thing sitting at the core of the computer be responsible
for so much? An example of the kernel in action might be helpful.

Consider this scenario: A user starts the Netscape Web browser. How many
times have we all started Netscape? From the user’s point of view, it’s a very sim-
ple task—just click an icon, type a command, or select an item from a menu, and
the browser appears on the screen. Most users see this as the end of the story,
because it happens with every program that’s invoked. The action of clicking the
icon or selecting the menu item, in the user’s mind, is what starts the program.

However, from the operating system’s point of view, the story is not so simple.
When that icon is clicked or that command is issued, a number of tasks have to
be performed before the program can start. First, the mouse click or the key-

Chapter 32 • Getting to Know the Kernel

2817c32.qxd 11/13/00 2:43 PM Page 502

503

strokes need to be acknowledged and interpreted. Then, the program must be
located on the hard drive. A space must be made for the program in the system
memory, and the program must then be read off the hard drive and loaded into
that newly created memory space. Finally, the program functions must be inter-
preted by the processor so that the program will function quickly and smoothly
as the user uses it.

Each of these tasks requires action on the part of the computer’s processor, and
these tasks must be scheduled into a slate of activities that is already full with
regular system processes, the requirements of other programs, and the actions of
other users. It is the kernel’s job to coordinate all of these activities. The kernel
can be thought of as a combination of the computer’s secretary and the com-
puter’s traffic cop.

However, there’s more to it than just scheduling. For example, when input
comes from the keyboard, the input arrives as electrical signals. Part of the ker-
nel’s job is to translate these signals into language that the processor can under-
stand. The same is true for other hardware devices such as video and sound
cards, network interfaces, modems, disk drives, printers, and other peripherals
attached to the system. In this respect, the kernel is like a United Nations transla-
tor, speaking the languages of the various components and translating so that all
the devices and peripherals can understand each other well enough to work in
tandem.

When you think about this flurry of activity that flows through the kernel, it is
quite amazing. The kernel is responsible for a huge portion of the computer’s
activity. Now, consider that a Unix machine’s kernel is handling these processes
for dozens—or even hundreds—of users. A picture begins to emerge of the Unix
kernel as the most efficient secretary/traffic cop/translator ever to exist, and the
user doesn’t even have to be aware of its existence.

Kernel Development
Every version of Unix uses a different kernel. This is one of the main points that
differentiates the Unix variants. As developers think of new features or functions
to add, or ways to deal with existing problems or concerns, the kernel is adapted.
Over time, the code bases of the different kernels diverge, leading to variant-
dependent code and programming. Also, because at least some of the kernel code
needs to be specific to the hardware platform upon which the code is run, there

Kernel Development

2817c32.qxd 11/13/00 2:43 PM Page 503

504

are kernel variants designed for different processor chips that use unique com-
mand sets.

Commercial Unices, such as Solaris, are developed by a particular company.
All the programmers who work on Solaris and contribute to its kernel, for exam-
ple, are employees of Sun Microsystems. Decisions about kernel changes at Sun
are made at a senior level, and the programmers then work to implement those
adaptations.

In the case of the Free Software Unices, such as Linux and FreeBSD, the story is
different. Linux uses a very anarchic method of kernel development. The pro-
grammers who work on the Linux kernel are largely volunteers, though some
are employees of companies that have an interest in the continued development
of the kernel. Anyone who is interested in Linux kernel work can contribute
code to the kernel project, though there is no guarantee that anyone’s code will
be added to the next official release. However, even if your code doesn’t make it
into the official kernel release, nothing is stopping you from releasing your work
as a kernel patch or even as a modified full kernel; it’s just not official.

NOTE The concept of an official Linux kernel is quite basic. In the tradition of the Linux
community, only a kernel released directly by Linus Torvalds, the inventor of Linux,
can be called official. Even though Linus doesn’t work on the kernel very much
anymore, he still makes the official releases to keep things consistent.

FreeBSD occupies a middle ground between Solaris’s control and Linux’s
freewheeling marketplace. The FreeBSD kernel is developed by a central team
of programmers and is released in source code format. If you want to work on
the FreeBSD kernel and make modifications, you’re welcome to do so. How-
ever, your work will be scrutinized intensely before it is included in an official
FreeBSD release, because official development is controlled by the FreeBSD
team. This method gives the kernel a measure of consistency, but it lacks the
spontaneity and group problem-solving benefits of a community effort.

Modules vs. Static Kernels
There are two ways in which a kernel can run. Static kernels have had all the dri-
vers required for all the system’s hardware compiled into a single binary file.

Chapter 32 • Getting to Know the Kernel

2817c32.qxd 11/13/00 2:43 PM Page 504

505

Modular kernels have a central kernel binary, but also have some components that
are compiled separately and are loaded into the kernel only when needed. Linux,
Solaris, and FreeBSD can all use modular kernels, though some Unix variants
require static kernels.

All three of the Unix variants covered in this book install a generic kernel when
the operating system is first installed on the computer. A generic set of modules is
also installed. If you’re running Solaris, you’ll use this generic kernel and module
set, because source code for the kernel is not made available by Sun (and thus the
kernel cannot be modified by non-Sun programmers). Linux and FreeBSD users
can obtain the kernel source code from a variety of sources, as well as user patches
or modified kernels. If Linux or FreeBSD users wish, they can build a customized
kernel or run the generic kernel provided at installation.

If you add a new hardware device to your system, you may need to load a ker-
nel module so that the computer can utilize the new device. The first thing you
need to do is to identify the module that should be loaded. This is not as easy as it
sounds. Sometimes drivers are named after the chips they’re built for, while oth-
ers are named for the device’s brand name. Check your system’s documentation
file to find out which module you need to install; if that doesn’t help, you may
need to consult the device manufacturer’s Web page or see whether there’s a
third-party Web page that offers hints on appropriate drivers.

For example, we use 3Com EtherlinkII network cards for our network. When
we added one of these cards to a Linux machine, we had to do a little research.
We found that, to 3Com, these cards are known as the 3c509. A quick check of the
/lib/modules/net directory, where Linux keeps its kernel modules for network
devices, showed a driver called 3c509. Sure enough, this driver worked perfectly
with the EtherlinkII card.

Once the driver is located, it needs to be loaded. You’ll need to be root to do
this. When you’re logged in as root, issue the command that loads the module;
there are different commands for each operating-system variant, but they all use
the same syntax. For Linux, the command to install the 3c509 driver would be

insmod 3c509

For FreeBSD, it would be

kldload 3c509

And for Solaris, it would be

modload 3c509

Modules vs. Static Kernels

2817c32.qxd 11/13/00 2:43 PM Page 505

506

TIP Manually adding the module is not always necessary. Some systems, especially
recent releases of Linux variants, can often detect new hardware and load the
appropriate modules automatically.

(Re)Compiling the Kernel under Linux
and FreeBSD

FreeBSD and Linux users can recompile the kernel with new modules or kernel
code. Solaris users do not have this ability. Although Linux and FreeBSD users do
not need to recompile the kernel often, there are several reasons why you may
want to do so:

• For whatever reason, you don’t like loadable modules. Instead, you want to
compile all your hardware drivers into a static kernel.

• Compiling a custom kernel allows you to remove kernel features that you
don’t want. Thus, custom kernels tend to take up less space in memory than
generic kernels.

• A new version of the kernel may have been released, and you want to
install it.

NOTE This last scenario is much more likely to be the case under Linux, because FreeBSD
doesn’t release new kernels unless they also release an updated version of the
entire operating system.

For whatever reason, when you’ve decided to recompile your kernel, you
must follow a particular procedure. Luckily, this process is quite simple, which is
unusual given how critical the kernel is to the computer’s functioning. However,
a few of the steps are quite complicated, so some attention is required while you
work on the recompilation.

The basic components of the kernel compilation process are these:

1. Download the source code.

2. Unpack the source code into an appropriate directory.

Chapter 32 • Getting to Know the Kernel

2817c32.qxd 11/13/00 2:43 PM Page 506

507

3. Configure the build.

4. Build the kernel.

5. (Optional) Build the modules.

6. Install the kernel.

7. Reboot.

Steps 3 and 6 are the complicated ones. The process is similar, but not identical,
in Linux and FreeBSD. The specifics for each operating system are addressed in
the next sections.

Recompiling a Linux Kernel
To recompile a kernel under Linux, use the following procedure. Note that you
should know exactly why you are compiling the kernel and should have all the
relevant code on hand before you begin, so that you don’t make a mistake that
could crash your computer permanently.

WARNING Before you install the new kernel, check the files linux/Documentation/Changes
and linux/Changes, which should have been included in the zipped file that you
downloaded (or can be found at a friendly FTP site). These files will tell you what’s
changed in the new kernel—and, more importantly, they will define the minimum
requirements for modules and other system requirements. If your system doesn’t
meet these minimums, do not install the new kernel. It won’t work, and you’ll be
frustrated and will probably have to reinstall from scratch.

Linux Kernel Numbering
You will have some choices when you go to download a new kernel for your Linux
machine. Linux kernel names are series of numbers, as in 2.2.16. The numbers tell you
what kind of kernel this particular download is and whether you want to use it.

• The left number is the major version number. This changes very rarely, and there is
always a lot of hoopla when it happens. If Linux goes to a 3.0 kernel in the next few
years, it will be surprising.

Continued on next page

(Re)Compiling the Kernel under Linux and FreeBSD

2817c32.qxd 11/13/00 2:43 PM Page 507

508

• The second number is the series number. Linux kernels are divided into two groups:
production series and development series. An even number in this position means that
the kernel is a production kernel and that it is stable for general use. An odd number in
the second position means that the kernel is a development kernel and may be buggy
or unstable.

• The third number is the minor version number. This changes quite frequently, some-
times as often as monthly or more frequently.

Unless you are a savvy programmer, pick a production series kernel. The stability and up-
time are a major benefit over the flakiness of the development kernels. Select a kernel
with the highest minor version number you can find, as long as it’s a production kernel.
This will give you the most recent patches to the kernel code within the stable framework
of the production series.

Follow these steps while logged in as root:

1. Download the source code to your hard drive. The most recent kernel
releases for Linux, including patches and kernels that aren’t official
releases, can all be found at http://www.kernel.org, the Linux Kernel
Archive. The source code will download in the form of a tarball, with a
name like linux-2.2.16.tgz. (This filename is for kernel version 2.2.16,
which was the latest stable release as of the writing of this book.)

2. Move the tarball file to the /usr/src directory if you did not download it to
that directory directly.

3. Issue the command

tar xvfz linux-2.2.16.tgz

to untar and decompress the file. As the file untars, a new directory will be
created, called /usr/src/linux-2.2.16.

4. Move into this directory by issuing the command

cd /usr/src/linux-2.2.16

5. Once in the new directory, issue the command

make config

Chapter 32 • Getting to Know the Kernel

2817c32.qxd 11/13/00 2:43 PM Page 508

509

At this point, you will be asked a series of questions about the features
you want to include in your kernel. There are a lot of questions, so settle in
for a while.

NOTE To learn what the major questions will be, consult the Kernel HOWTO document
at http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html. We strongly
encourage you to read this document before you attempt to recompile a kernel
under Linux, because it will explain each step and its consequences in great detail.

TIP For any option that you don’t understand and that isn’t addressed in the Kernel
HOWTO file, you can respond with a question mark (?) character. This will bring
up a help document that explains the question and what sort of information the
kernel compilation is looking for. If you’re running the X Window System server,
try issuing the command make xconfig instead. You’ll get a handy configuration
menu instead of text questions scrolling up the screen.

6. Answer each question as it appears.

7. When you’ve finished answering all the questions, issue the command

make dep

A number of messages will scroll up the screen, none of which you really
need to read. (Depending on the speed of your system, they may scroll too
quickly to read anyway.) This may take some time if you have a slow
processor, so plan to have a book or other entertainment nearby. You
shouldn’t leave the house to see a movie, but you’ll probably want some-
thing to do while this is happening.

8. When the messages stop scrolling, check to see whether any error messages
have printed to the screen. If there aren’t any errors, issue the command

make clean

This command should execute quickly. When it’s done, you’re ready to
build the kernel.

9. To begin building the kernel, issue the command

make bZimage

(Re)Compiling the Kernel under Linux and FreeBSD

2817c32.qxd 11/13/00 2:43 PM Page 509

510

As with the previous commands, this can take a while. On fast machines, it
may be finished in a few minutes; on slower machines, this step may take
several hours.

10. (Optional) Once the process has completed (again, assuming that there are
no errors), you can build the modules if you enabled loadable module sup-
port in the previous configuration questions. To do so, issue the command

make modules

11. (Optional) When the modules are made, install them with the command

make modules install

You’re now ready to install the kernel.

12. Look in the directory /usr/src/linux-2.2.16/arch/i386/boot for a file
called bzImage.

13. Move this file to the /boot directory and change its name to something like
/boot/vmlinuz-new. You can do this all at once with the command

mv /usr/src/linux-2.2.16/arch/i386/boot/bzImage➥

/boot/vmlinuz-new

14. Next, edit the file /etc/lilo.conf. Open this file in a text editor. When you
first open it, the file should look something like this:

image = /vmlinuz
label = Linux
root = /dev/hda1

15. Add this new section to the /etc/lilo.conf file:

image = /boot/vmlinuz-new
label = New
root = /dev/hda1

16. Save the file and quit the text editor.

17. Load the new kernel by issuing the command lilo at the text prompt.

18. When the shell prompt returns, reboot the computer.

19. When you see the LILO prompt during reboot, type New at the prompt and
press Enter. The computer will boot with the new kernel.

Chapter 32 • Getting to Know the Kernel

2817c32.qxd 11/13/00 2:43 PM Page 510

511

Once the new kernel is installed, you may need to do extra configuration if
some things appear not to be working. For help in diagnosing the problems, you
can check the various files in the /proc directory. /proc contains diagnostic
reports on the CPU, IRQ interrupts, and other critical hardware interfaces. Each
of these files can tell you what the exact settings are for your hardware or what
kind of drivers are being used. For example, the interrupts file on one of our
Linux machines looks like this:

[kate@surimi /proc]$ more interrupts
CPU0

0: 41405266 XT-PIC timer
1: 1297 XT-PIC keyboard
2: 0 XT-PIC cascade
5: 590117 XT-PIC eth0
8: 1 XT-PIC rtc
9: 723049 XT-PIC eth1
12: 3666 XT-PIC PS/2 Mouse
13: 1 XT-PIC fpu
14: 1952020 XT-PIC ide0
15: 4 XT-PIC ide1
NMI: 0

These entries show the IRQs that are mapped to specific devices on this machine.
Another file, cpuinfo, shows detailed information about this machine’s hard-
ware configuration:

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 8
model name : Pentium III (Coppermine)
stepping : 3
cpu MHz : 598.196690
cache size : 128 KB
fdiv_bug : no
hlt_bug : no
sep_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2

(Re)Compiling the Kernel under Linux and FreeBSD

2817c32.qxd 11/13/00 2:43 PM Page 511

512

wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 sep mtrr pge mca

cmov pat pse36 mmx fxsr xmm
bogomips : 596.38

Such information may not be necessary all the time, but it’s quite useful to have it
in one place for the times when it is needed.

Recompiling a FreeBSD Kernel
To recompile a kernel under FreeBSD, use the following procedure. Note that you
should know exactly why you are compiling the kernel and should have all the
relevant code on hand before you begin, so that you don’t make a mistake that
could crash your computer permanently.

NOTE Before you begin to work with your kernel, check out the file /var/run/
dmesg.boot. This file will tell you your current hardware configuration, informa-
tion you’ll need when you begin to work on the kernel. Note that you should
check this file soon after a reboot, because it is overwritten with other material as
the machine remains up.

The FreeBSD kernel is generally recompiled to build a more customized kernel,
not to incorporate new patches or nonofficial code as with the Linux kernel.
FreeBSD users will use the code provided with the original FreeBSD installation
packages, whether on a CD-ROM or in downloads from the Internet. When a new
FreeBSD kernel is released, it’s usually as part of a whole new release, and most
users will upgrade the entire operating system at that time.

To recompile the FreeBSD kernel, follow this procedure as root:

1. Check for a /usr/src/sys directory on your system. This directory was
installed at the time the kernel was initially configured, at installation. If
you do not have this directory, the kernel source was never installed on
your computer. Issue the command /stand/sysinstall to run the sysin-
stall program; when the sysinstall window appears, select Configure ➣
Distributions ➣ src ➣ sys to make the kernel code available.

2. Move to the appropriate configuration directory. For those running FreeBSD
on an x86 Intel architecture machine, issue the command

cd /usr/src/sys/i386/conf

Chapter 32 • Getting to Know the Kernel

2817c32.qxd 11/13/00 2:43 PM Page 512

513

3. Copy the GENERIC file, a basic configuration file, to a blank file. We suggest
you use a distinctive name, such as MYMACHINE. It is traditional to name your
configuration file after the machine on which it will run. Use the command

cp GENERIC MYMACHINE

TIP Although we suggest that you use GENERIC in constructing your own kernel con-
figuration file, you can see a kernel configuration that includes all possible options
if you look at the LINT file in the same directory as GENERIC. It will take more
work if you copy LINT instead of GENERIC, but LINT is a useful document to
show you how the various options work together.

4. Open the MYMACHINE file in a text editor.

5. Edit the MYMACHINE file as necessary. This file should be edited to contain all
the information you want in the new kernel. This process is somewhat com-
plicated; certain elements must be included, and syntax rules must be
observed. Make sure to change all references to GENERIC to MYMACHINE.

TIP The comments and structure of the GENERIC file, which you copied into MYCON-
FIG, are somewhat clear, but you can learn more about the general configuration
options from the FreeBSD Handbook’s section on kernel configuration, located at
http://www.freebsd.org/handbook/kernelconfig-config.html. We
strongly encourage you to read this section before you begin working with the
FreeBSD kernel.

6. When you have finished editing the configuration file, save it and exit the
text editor.

You are now ready to compile and install the kernel. There are different meth-
ods for those using a nonupgraded version of FreeBSD and for those who have
used FreeBSD tools to upgrade their source tree to FreeBSD 4 or higher.

Users of a Nonupgraded Version of FreeBSD

Regardless of the version number, if you have never upgraded your source tree
by running the commands CVSup, CTM, or anoncvs, you can use this method.
Those who have used these tools must use the method in the following section.

(Re)Compiling the Kernel under Linux and FreeBSD

2817c32.qxd 11/13/00 2:43 PM Page 513

514

Compile the new kernel and install it with these commands:

/usr/sbin/config MYMACHINE
cd ../../compile/MYMACHINE
make depend
make
make install

When the process has finished, the new kernel will be in the root directory, in the
file /kernel. The old kernel will be renamed to /kernel.old. Reboot; FreeBSD
should start with the new kernel.

If you have problems with the new kernel, you can always return to the previ-
ous version, because it is there on your hard drive. Do not delete /kernel.old.
To use the old kernel (especially if the new one doesn’t boot properly), use the fol-
lowing process:

1. Reboot the machine.

2. As the machine boots, you will see a message reading “booting kernel in
___ seconds” counting down.

3. Press the spacebar while the machine is counting down.

4. At the prompt that appears, issue the command

unload

5. At the prompt, issue the command

load kernel.old

6. At the prompt, issue the command

boot

The old kernel will now boot, and your FreeBSD machine should work just as it did
before you upgraded the kernel. You may need to fix the configuration files for the
newer kernel, or you may need to consult bug documentation and other resources
to check whether there is an intrinsic problem with the kernel you are using.

Chapter 32 • Getting to Know the Kernel

2817c32.qxd 11/13/00 2:43 PM Page 514

515

TIP FreeBSD builds an extra kernel just in case you have a string of bad kernels, in
which case loading /kernel.old won’t do you any good. The extra kernel is
stored at /kernel.GENERIC and uses the plain GENERIC configuration. However,
we know several people who duplicate their desired configuration files and store
an extra kernel at /kernel.BACKUP or some similar name. If you take this precau-
tion, you’ll always have a clean kernel that you know will work, regardless of the
status of the newest or most recently used kernel configuration.

Users Who Have Upgraded Their Source Tree

If you have used the CVSup, CTM, or anoncvs tools to upgrade your FreeBSD
source tree to a FreeBSD version 4 or higher, you must use this process to build
the new kernel.

Compile and install the new kernel with these commands:

cd /usr/src
make buildkernel KERNEL=MYCONFIG
make installkernel KERNEL=MYCONFIG

When the process has finished, the new kernel will be in the root directory, in the
file /kernel. The old kernel will be renamed to /kernel.old. Reboot; FreeBSD
should start with the new kernel.

Summary
The kernel is the core of the Unix operating system. Commands and requests for
system resources are filtered through the kernel, which allocates CPU cycles and
memory to various programs based on its own priorities. Some commercial
Unices have kernels that are changed only when the variant is released with a
new version number, but Free variants such as FreeBSD or Linux allow users to
recompile their kernels with new modules or patches whenever they like.

Summary

2817c32.qxd 11/13/00 2:43 PM Page 515

516

Regardless of the Unix variant being used, kernels are either static or modular.
Static kernels incorporate all device drivers into the kernel itself, while modular
kernels handle device drivers as individual units and load required units only
when necessary. FreeBSD and Linux users will probably find themselves using a
modular kernel and recompiling that kernel each time a new module needs to be
added. Kernel recompilation is a fairly straightforward process, but does require
some attention, especially when working with configuration files. Check your
distribution’s Web site regularly to see whether new kernel patches have been
released or to find more information on kernel compilation techniques specific to
your Unix variant.

Chapter 32 • Getting to Know the Kernel

2817c32.qxd 11/13/00 2:43 PM Page 516

C H A P T E R
T H I R T Y - T H R E E

Managing Print Services

� Unix and Printers

� BSD Printing: Linux and FreeBSD

� System V Printing: Solaris

� Adding Local Printers

� Adding Network Printers

� Removing a Printer

� Maintaining a Print Queue

� Handling PostScript

� The Common Unix Printing System

� Summary

33

2817c33.qxd 11/13/00 2:44 PM Page 517

518

Perhaps the most frustrating aspect of working with Unix is dealing with
printers and print jobs. There are two main ways in which Unix variants handle
printing, one based on BSD and one drawn from System V Unix. In addition,
each Unix variant may have its own printing quirks or tools. The problem is
magnified on a heterogeneous network, where you might have three or four
Unix variants (plus some Windows or Macintosh machines) that require access
to a network printer.

In this chapter, we review the history of printing under Unix and show you
how printing is managed under the Unices covered in this book. Although we
explain Unix printing in terms of command-line tools and configuration files, you
may have a graphical tool as part of your variant’s system administration fea-
tures that makes configuring printers and print services a much simpler task;
Solaris, in particular, handles print administration neatly. We also cover the prac-
tical tasks that a system administrator is likely to face: adding local and network
printers, managing a print queue, dealing with PostScript, and the like. Finally,
we introduce a possible solution to the problems of Unix print management, an
attempt to unify the printer tools of all Unix variants.

TIP If you are not a system administrator and just want to attach a printer to your
standalone Unix computer, we still encourage you to read this chapter. You’ll have
a better understanding of the general theory behind print management, and if
you have problems, you might find the solution here even if it’s in a discussion of
networked printing.

Unix and Printers
In Chapters 1 and 2: “History and Background of Unix” and “Which Unix?” we
described the different branches of the Unix family, which center around the
BSD branch and the System V (AT&T) branch. Though many Unix variants now
incorporate parts of both Unix ancestors in their code, variant developers must
choose one method of printing to implement in their distribution. The combina-
tion of the selected method and whatever individual adaptations were added to

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 518

519

that particular Unix variant adds to the confusion and frustration surrounding
print management with Unix.

No matter which print management method is being used, all print systems are
based on a spool. Spooling is a method that stacks up print requests, sending mul-
tiple requests from multiple users to a printer and organizing those requests
through a particular priority pattern. Spooling can be done with a single printer
attached to a single computer, or across multiple printers attached to a large net-
work. It is simply a way to handle requests that are made more quickly than the
output device can process them. You may also see the term print queue, which is
just a way to describe the waiting print jobs that are queued up (standing in line).

Unix printer management methods all have the same common features: com-
mands to send a file to the printer, a queueing strategy, server processes that
manage file transfer, and a related set of administrative commands that can be
used to fix logjams in the queue, change the priority of certain jobs, or cut certain
printers or users off from printing services. The differences come in how those
features are implemented in each variant.

The main difference between printing under Unix and printing with Windows
is that the focus of your activity under Unix will be on managing your print
spool, while under Windows your main activity would be installing the printer
and getting it to work properly. Unix doesn’t require a great deal of fussing up
front; with some variants, you can just plug any old printer into the parallel or
serial port. It’s up to the individual applications to handle the print jobs and how
they’re transferred to the printer.

NOTE This is not true for all Unix variants. Some printers work better with Unix than oth-
ers, especially Linux, and some printers don’t seem to work very well at all.
Although we don’t want to recommend one brand over the other, especially
because we haven’t tried many of the models out there, we have had very good
luck with Hewlett-Packard inkjet printers and the various Unices that we run. (Per-
haps this has something to do with Hewlett-Packard having their own Unix vari-
ant.) If you decide to buy a new printer, be sure to save the receipt so that if the
printer doesn’t communicate nicely with your system, you can take it back. Linux
users can check compatibility online at the Hardware Compatibility FAQ, located
at http://www.linuxdoc.org/HOWTO/Hardware-HOWTO.html.

Unix and Printers

2817c33.qxd 11/13/00 2:44 PM Page 519

520

BSD Printing: Linux and FreeBSD
Both FreeBSD and Linux use the Berkeley line printer method of print spooling.
BSD handles most printer configuration through the /etc/printcap file, which
is used to define both local and remote printers. In /etc/printcap, you will
place entries for every printer to which you have access, whether it’s local or
remote, and define the default printer.

Under BSD print methods, you will send a print job to the spool with the lp
command, as in

lp filename

The file will be sent to the default printer. To send the file to a printer that is not
the default, issue the command as

lp –P printername filename

If you are permitted to use that printer resource and it is defined in your
/etc/printcap file, the print job will be sent to that printer’s spool.

NOTE Some Unix variants that use BSD-style printing may require an additional step. You
may need to create a directory called /var/spool/PRINTERNAME (replacing PRINT-
ERNAME with your printer’s actual name) and place an empty document named
errs in that file. That will allow the spool to operate correctly. This is not the case in
all BSD-based Unix variants, but if you can’t seem to get printing working correctly
after fiddling with /etc/printcap, try creating this directory and file as an addi-
tional attempt to get the print spool functioning correctly. In general, your operat-
ing system should create this file as the location of the print spool, but if it isn’t
created automatically, you should do it yourself. The print spool needs a physical
location in the filesystem before it can begin to send jobs to the print resource.

System V Printing: Solaris
Solaris, unlike FreeBSD and Linux, uses the AT&T print spooler mechanism to
handle its queue. Although the niceties of print spoolers are far beyond the scope
of this book, all you really need to know is that the AT&T method differs from the
BSD method in how print requests are handled and defined. The commands are

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 520

521

different as well. Luckily, dealing with printer configuration is not that compli-
cated, and as Unix has developed over the last 10 years or so, printing has
become easier to deal with.

As they’ve done with many other administrative tasks, Sun has really stream-
lined the way in which administrators can deal with their printers and print spools.
The key tool for Solaris administrators is the lpadmin utility, which works on all
versions of Solaris. lpadmin is used to add and remove printers from an individual
machine or a network.

NOTE Make sure that you have the proper packages installed to enable printing under
Solaris. For Solaris versions 2.6 and higher, you will need SUNWpcr and SUNWpcu
for remote printing across a network and SUNWpsr and SUNWpsu for local printing.
Solaris versions earlier than 2.6 require SUNWlpr, SUNWlps, and SUNWlpu for both
local and remote printing. These packages should all be on the installation media
you received from Sun and were probably installed by default when you installed
Solaris. However, if you did not install them at that point, you won’t be able to
manage printing or attach a printer until the packages are in place.

Adding Local Printers
Most small-network administrators will deal with individual printers more than
with networked printers. Certainly, if you have a low-end inkjet printer, it won’t be
networkable, and you will have to install it as a local printer. Local printers reduce
the time needed to print a particular job, because the only print jobs placed into the
spool are those generated by the local machine. Local printers are also more afford-
able than networkable models, and in a small network, there may be only one user
machine that requires a printer. Although there are distinct advantages to having
some networked printers, it is likely that almost all networks have a good number
of local printers along with some shared resources.

The technique for adding local printers varies depending on the Unix you’re
using and the specific distribution of your Unix variant. Solaris adds local
printers using its own utilities, while FreeBSD uses basic BSD printing utilities
to configure local printers. Linux deals with local printers much like FreeBSD,
though there is some variation among the Linux distributions. If you’re using

Adding Local Printers

2817c33.qxd 11/13/00 2:44 PM Page 521

522

an integrated desktop environment such as KDE or Gnome, you should be able
to use the desktop’s printer management tools regardless of your Unix variant,
as long as you’re using a distribution of the desktop that’s configured for your
operating system. (Clearly, a Solaris Gnome won’t be able to handle FreeBSD
printers—but then again, a Solaris Gnome wouldn’t even install properly on a
FreeBSD system.)

Adding a Local Printer with FreeBSD and Linux
Both Linux and FreeBSD use the Berkeley-style print spool method, so you can
use the same techniques to add printers on both operating systems. Add local
printers under FreeBSD or Linux by editing the /etc/printcap file and creating
a new entry for the new printer. When you attach the printer to a port on the
computer, note which port you’ve connected the cable to; under FreeBSD, the
first parallel port is /dev/lpt0 and the first serial port is ttyd0.

TIP You may need to configure your kernel to accept the new printer if you haven’t
yet added printer support to the kernel. Consult your FreeBSD documentation to
see whether printer support was added at the time you installed the operating
system; if you need to configure the kernel either for printing or to recognize a
new parallel or printer port, see the FreeBSD handbook for help in doing so. The
printer setup section is located at http://www.freebsd.org/handbook/
printing-intro-setup.html.

Test whether your printer is connected properly by issuing the command
lptest. This will send a short file directly to the printer that contains all regular
keyboard characters. If the file prints correctly, you have established connection
with the printer and can now configure /etc/printcap. If the file doesn’t print,
you may need to work with your kernel some more.

You’ll need to be root to work with lptest. To issue the command, use the syntax

lptest > portname

as in

lptest > /dev/lpt0

This should work for all parallel port printers.

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 522

523

Once you have established communication with the printer, you can edit
/etc/printcap. Here’s a sample /etc/printcap entry:

lp:\
:sd=/var/spool/lpd/lp:\
:mx#0:\
:sh:\
:lp=/dev/lp0:\
:if=/var/spool/lpd/lp/filter:

In this entry:

• lp is the name of the printer. lp is usually used as the name of the default
printer, but if you want the default printer’s name to be something else,
there is no reason not to change the name.

TIP The environment variable PRINTER sets the value of the default printer. If you
want to change the default, just change the value of the variable.

• sd is the spool directory where this printer’s spooled print jobs will be
stored.

• mx#0 is the maximum file size for any given print job; when mx is set to zero,
as it is here, the file size is unlimited.

• sh suppresses headers on the printout, so the jobs will just print as sent with
no extra pages.

• lp sets the name of the printer device, as noted above.

• if sets the input filter. The input filter formats the text so that it will be cor-
rect for the particular printer. This is essentially the printer’s driver.

Many other options can be used in the /etc/printcap file. Learn more by read-
ing the printcap manual page, accessed by issuing the command man printcap.
The printcap manual page is unusually clear, and you can learn a lot from it.

NOTE If you’ve used a graphical printer manager to add and manage your printers (such
as Red Hat’s printtool), it’s probably not a good idea to edit the /etc/printcap
file by hand. These printer management programs tend to be very picky about
how the text is formatted in the file. If you make entries that don’t conform to the
program’s specifications, the printer may not work.

Adding Local Printers

2817c33.qxd 11/13/00 2:44 PM Page 523

524

Adding a Local Printer with Solaris
Add local printers under Solaris with lpadmin. The basic process for adding a
printer works like this:

lpadmin [necessary flags]
enable [printername]
accept [printername]

The first command configures the operating system to accept the printer; the sec-
ond sets the printer to accept print jobs; the third opens the printer queue. If you
forget one of these steps, your queue won’t work properly; it will either line up
print jobs that never get spooled to the printer or refuse to accept new jobs into
the queue.

There are a variety of flags for the lpadmin command, some of which are
shown in Table 33.1. In general, these flags define the name and acceptable con-
tent types for the specified printer, as well as control various other options that
can make managing print jobs a bit easier. The general syntax of lpadmin is

lpadmin –p name –D “description” –I type –o banner –o ➥

rate –v port

Thus, a sample command might be

lpadmin –p bob –D “inkjet” –I simple –o nobanner –o ➥

stty=115200 –v /dev/bpp0

This would define the printer bob as an inkjet that will accept any type of plain text
files (but not PostScript files), will not print a banner page between print jobs, trans-
fers print data at 115,200 baud per second, and is attached to the parallel port.

TA B L E 3 3 . 1 : Flag Options for lpadmin

Flag Function

-p Printer name. Using this flag will create a new subdirectory in /etc/lp/printers for this
printer to hold all configuration information.

-D Printer description. Visible in printer status reports generated with the lpstat command.
We recommend that you use the description to show what kind of printer it is, as in
2ndfloorlaser or colorinkjet.

-l Content type. Options here are –l any, -l simple, and –l postscript. If you plan to
send only plain text, select –l simple; otherwise, select –l any.

Continued on next page

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 524

525

TA B L E 3 3 . 1 C O N T I N U E D : Flag Options for lpadmin

Flag Function

-o The option flag, which can be used to toggle banner pages and the rate at which jobs are
sent to the printer. You can have multiple –o flags in one lpadmin command. If this is set as
–o nobanner, no separating page will print between print jobs. If it is set as –o banner, a
page identifying the job will print before the actual document.
For x86 machines running Solaris, set the transfer rate as –o stty=115200; if you are run-
ning a Sparc as your hardware, you will need to set this rate lower.

-v Defines the port used by the printer. Under Solaris, the parallel port is /dev/bpp0, the first
serial port is /dev/term/a, and the second serial port is /dev/term/b.

Using admintool

You can also use the graphical administration utility admintool to add a new
printer to your Solaris system. Open admintool and select Browse ➣ Serial Ports
to pick the port to which the printer is attached. Select Edit ➣ Modify and set the
baud rate as described in Table 33.1, then set the Template option as Initialize
Only – No Connection. Finally, clear the check box next to Service Enable and
click OK to save your settings.

Next, select Browse ➣ Printers, then Edit ➣ Add. To add a local printer, select
Local Printer. The local printer’s information will be displayed, and you can edit
name and description as necessary. You can also decide whether to make this
printer the default printer. Click OK to save your settings, and exit admintool.

Even though you have used a graphical tool to add this printer, you still need
to issue the enable and accept commands described above at a shell prompt.
Open a terminal window and issue the following commands:

enable [printername]
accept [printername]

Adding Network Printers
Sharing printers is one of the great things about having a network. If you have
the ability to share a printer between several machines, it reduces the number of
individual printers you have to buy or repair. Of course, networkable printers are
more expensive than the low-priced and widely available individual printers, but

Adding Network Printers

2817c33.qxd 11/13/00 2:44 PM Page 525

526

the cost is equal to or less than the cost of buying an individual printer for each
person on your network.

Networkable printers are also usually of better quality than individual printers;
most networkable printers are laser printers, while affordable individual printers
are usually inkjet models. Some networkable printers are specialized or would be
far too expensive to buy as individual printers, such as color laser printers, the
special plotters used by architects and others who do detailed graphics and tech-
nical drawings, or high-quality photographic printers. You can save money by
buying just one of these expensive items and making it available across your net-
work so that your users can print to the fancy machine from their desks or to a
regular laser printer for their everyday printing needs. Regardless of the type of
printers that you have attached to your network, you will use fewer of them and
spend less on maintenance if you make them available across a network.

Each Unix handles networked printers a bit differently, but the basic idea is the
same: Configure the printer so that it works locally, and then make it available to
the network at large. You can limit the machines that have access to any given
printer, or you can define the printer as globally available to the entire network.
Either way, you have quite a lot of control over your printing resources when you
network your printers with Unix.

NOTE You can limit access to certain printers so that only specified machines may send
print jobs to that printer’s spool. However, you can’t limit individual users to partic-
ular printers except by placing their machine names in those printers’ configura-
tion files. Still, the user could walk over to another machine and send the print job
from there. Be aware that you are limiting only machine access when you define
acceptable hosts, not the users themselves.

Adding a Network Printer with FreeBSD
You will need to edit /etc/printcap to add a network printer under FreeBSD.
The entry syntax is basically the same as for local printers, though there are a few
significant differences. The lp capability must be left blank, as in :lp=:, and a
spooling directory must be created and named in the sd entry. Jobs will be kept in
that location until they are sent to the printer. The rm entry should contain the
name of the printer host, and the printer name should be in the rp entry. Once

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 526

527

you’ve done that, you should be able to send jobs to the remote printer with the
lpr command, specifying the remote printer as in

lpr –P remoteprinter –d documentname

Here is a sample /etc/printcap entry for a remote printer:

lp0:\
:sd=/var/spool/lpd/lp0:\
:mx#0:\
:sh:\
:rm=surimi:\
:rp=/var/spool/lpd/lp0:\
:if=/var/spool/lpd/lp0/filter:

Notice the presence of two new parameters (in addition to the parameters
described earlier when we showed you an /etc/printcap entry for a local
printer):

• rm is the remote machine that hosts the printer.

• rp is the remote print queue—that is, the appropriate directory for this
printer’s spool on the remote machine.

Again, see the printcap manual page for additional options.

Adding a Network Printer with Linux
Adding a network printer under Linux is quite straightforward. Assuming that
the remote printer is installed and working properly, you simply need to edit some
files on the local computer to recognize and share the remote printer resources. Be
sure that you can print from the Linux computer attached to the remote printer to
ensure that the printer is truly ready to be shared.

Once your printer is working correctly, open the /etc/hosts.equiv file on the
machine to which the printer is attached in your favorite text editor, or create the file if
it does not yet exist. In that file, place the names of all the Linux machines with
which you want to share the network printer, one to a line. You’ll generally want to
include all the machines on your network unless you plan to limit certain printer
resources to certain network machines; this may be the case if you have a color
laser printer, plotter, or other expensive and complicated printer for which you
must limit access to a tightly defined group of machines.

Adding Network Printers

2817c33.qxd 11/13/00 2:44 PM Page 527

528

Close the file and restart the printer daemon by issuing the command

/etc/init.d/lpd restart

This will reboot the printer spool and make the shared printer available to the
other specified machines on the network. You can then go to each of the machines
for which you’ve enabled access and configure them so that they will recognize
the new printer as one to which they can spool print jobs.

Depending on your Linux distribution, you might have a printer management
tool available that makes configuring remote and local printers a lot easier than
doing it by hand. In this section, we’ll use Red Hat Linux as our example because
their printer management tool is representative of such utilities in general. Con-
sult your documentation to see what kind of tools you have available with your
distribution.

Red Hat’s printtool

The Red Hat printtool is a typical X Window System utility for managing print-
ers. Many Unix variants have a similar tool. If you are running Red Hat Linux,
you can invoke printtool from the Red Hat Control Panel or by issuing the com-
mand /usr/bin/printtool from the root account.

The main printtool screen is shown in Figure 33.1. Click the Add button to
add a new printer; printtool will ask you what kind of printer you want to add.
Most likely, you’ll choose either Local Printer or Remote Unix (lpd) Queue. Make
the appropriate selection and click OK.

When you’ve made your selection, printtool will display a printer editor win-
dow (as seen in Figure 33.2). Fill in the appropriate information in the various
fields of this window; then, click the Select button located under Input Filter.

This brings up the Configure Filter window of printtool, as shown in Figure
33.3. Select the brand and model of your printer in the left pane of this window.
The default options for that printer will appear in the right pane; most of the
time, the defaults are fine, but if they need to be changed, you can do that at this
point. Click OK when you’ve finished, and printtool will automatically edit
/etc/printcap to reflect the new printer.

Once your printer has been added, restart the lpd program. You can do this with
the drop-down menus in printtool by selecting lpd ➣ Restart; you can also test
the printer with the various options in the Test menu. Your printer should now be
functioning normally.

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 528

529

F I G U R E 3 3 . 2 :

Define your new printer’s
parameters in
printtool.

F I G U R E 3 3 . 1 :

The Red Hat printtool
is representative of graphi-
cal printer administration
utilities.

Adding Network Printers

2817c33.qxd 11/13/00 2:44 PM Page 529

530

TIP Whether or not your distribution has its own printer management tool, you may
have one available if you’re running a window manager or integrated desktop
environment. KDE and Gnome, in particular, have good printer management tools
that reduce printer configuration to point-and-click. Because we recommend that
you try one of these desktop environments anyway, you might add dealing with
printers to your list of tasks while you have the desktop installed.

Adding a Network Printer with Solaris
How you add a network printer with Solaris depends on the version of Solaris
that you are running. As of Solaris 2.6, the method used to handle remote printers
has changed quite a bit. Thus, those running older versions of Solaris will have to
use a more complicated command to enable and define a remote printer, while
those using newer versions will be able to do it with some new utilities that
streamline a lot of the earlier method’s quirky flags.

F I G U R E 3 3 . 3 :

printtool supplies a set
of default options for a wide
variety of printer models.

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 530

531

Network Printers with Solaris 2.5 and Earlier

Installing a network printer under earlier versions of Solaris requires the use of
two utilities: lpadmin and lpsystem. These commands use the following syntax:

lpsystem –t s5 [systemname]
lpadmin –p [printername] –s ➥

[systemname]![printername]

The first command notifies the operating system that the remote system named
exists and that it has a printer attached that uses the System V print spooler. The
second command then defines the printer, with the [systemname]![printer-
name] combination used to define the printer as a part of that remote network.
Thus, the commands might look like this:

lpsystem –t s5 solarsystem
lpadmin –p juno solarsystem!juno

NOTE If the remote system is not running Solaris, but you are going to use its printer,
change the s5 in the lpsystem command to bsd. That will cover both FreeBSD
and Linux machines on the remote system, and will tell your Solaris machine to
send print jobs using the BSD print spool format.

Network Printers with Solaris 2.6 and Newer

With the 2.6 revision, Sun streamlined Solaris printer management quite a bit.
Now, you need to use only the lpadmin command to configure a remote printer;
the lpsystem utility is no longer needed. The command takes this syntax:

lpadmin –p [printername] –s [systemname]

Thus, you might issue the command lpadmin –p juno –s solarsystem to con-
figure the remote printer juno. With Solaris 2.6 and newer, you do not need to
issue the enable and accept commands when working at the command line
with lpadmin (though you do need to use them when working with admintool
regardless of the Solaris version you have).

Using admintool

You can also use the graphical administration utility admintool to add a network
printer to your Solaris system. Open admintool and select Browse ➣ Serial Ports
to pick the port to which the printer is attached. Select Edit ➣ Modify and set the

Adding Network Printers

2817c33.qxd 11/13/00 2:44 PM Page 531

532

baud rate as described earlier in Table 33.1, then set the Template option as Initial-
ize Only – No Connection. Finally, clear the check box next to Service Enable and
click OK to save your settings.

Next, select Browse ➣ Printers, then Edit ➣ Add. To add a network printer,
select Access to Printer. The network printer’s information will be displayed next
to Print Client, and you can edit name and description as necessary. The Print
Server box should contain the name of the remote system that hosts the net-
worked printer. You can also decide whether to make this printer the default
printer. Click OK to save your settings, and exit admintool.

Even though you have used a graphical tool to add this printer, you still need
to issue the enable and accept commands described above at a shell prompt.
Open a terminal window and issue the following commands:

enable [printername]
accept [printername]

Removing a Printer
Removing a printer is usually easier than adding one. You should not simply
unplug a printer and consider it removed; you need to configure the operating
system to recognize that the printer is no longer attached. The methods for doing
so are similar under both BSD and System V printing.

Removing a Printer with BSD
To remove a printer under BSD, simply remove its entry from the /etc/printcap
file. Any related files, such as specific spool directories or other files that deal
with only that printer, should also be removed. If you are removing a networked
printer, you’ll also need to edit the /etc/printcap files on any machines that
have remote access to the networked printer so that they do not try to access the
remote printer when it is no longer available.

Removing a Printer with Linux
If you added a printer to your Linux machine using the printer management tools
from either your Linux distribution or your integrated desktop environment, you

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 532

533

can use those same tools to remove the printer. Simply reopen the tools and
remove the specified printer from the list; some tools will have a Delete or
Remove button to click once you’ve selected the appropriate printer. The utility
will then configure all the system files so that the entries relating to that printer
are removed.

If you edited your /etc/printcap by hand to add the print resource (whether
local or remote), simply remove that entry from /etc/printcap. If necessary, you
may also need to remove the /var/spool/PRINTERNAME directory by hand. Be
sure that, if you remove the /var/spool/PRINTERNAME directory, no links remain
to that directory in the /etc/printcap file. If links remain, the spool may crash as
it searches for a directory that no longer exists. Removing the printer’s /etc/
printcap entry should take care of that problem.

Removing a Printer with Solaris
To remove a printer under Solaris, issue the command

lpadmin –x [printername]

This will remove the printer from the active printer list and will no longer allow
print jobs to be sent to that specified printer. Should you wish to use the printer
again, you will need to add it as if it were a new printer.

For those using Solaris versions 2.5 and earlier, you must follow the lpadmin
command with a command to remove any local references to the printer as well.
Issue the command

lpsystem –r [printername]

to do so.

To remove a printer with admintool, open admintool and select Browse ➣
Printers. Select the printer you want to remove, and then select Edit ➣ Delete
from the menus. Click OK to verify the printer’s deletion, and exit admintool.

Maintaining a Print Queue
Once you have the printer functioning, whether a network or local printer, you’ll
need to keep an eye on the print queue. This is generally a low-maintenance task,

Maintaining a Print Queue

2817c33.qxd 11/13/00 2:44 PM Page 533

534

because the print spool should function without much interaction (just make sure
that someone keeps an eye on paper and toner in the printers). To manage the
queue, you simply need to issue commands at the shell prompt to learn the status
of your various printers; depending on your printer setup, you can view the sta-
tus of the entire network, or you can look at individual printers. You can also stop
or purge individual printers’ spools if there is a problem.

Print Queues with FreeBSD and Linux
Managing your print queue with FreeBSD and Linux is straightforward, done
with command-line commands. Some sample commands are shown in Table
33.2, and they are all extensions of the basic lp (line printer) command upon
which BSD printing is based. Some distributions of Linux (and some third-party
FreeBSD tools) offer a graphical interpretation of the output of these commands;
some administrators find the graphical output easier to understand, but it is
truly a matter of personal preference.

TA B L E 3 3 . 2 : BSD-style Print Queue Commands

Command Function

lpq –P printername Displays contents of print queue for named printer

lprm jobnumber Stops specified job (get number from lpq command)

lprm - Removes all jobs that belong to you from queue

lprm user Removes all jobs belonging to the specified user from queue (you must
be root to remove other people’s jobs)

lprm Removes currently active job, whatever it may be

lpc stop printername Stops named printer and does not print whatever is remaining in queue

lpc start printername Starts named printer and prints everything in queue

lpc disable printername Stops new jobs from being placed in queue for named printer (jobs in
queue will be printed)

Print Queues with Solaris
Managing your print queue under Solaris is also quite easy. You just need to
remember some basic commands to get reports on the queue status, and most of

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 534

535

them are variants on the lpstat command, which reports printer status in what-
ever method you require based on the flags with which you issued the command.
Table 33.3 provides the most useful Solaris print queue commands.

TA B L E 3 3 . 3 : Solaris Print Queue Commands

Command Function

lpstat –t Reports status of entire network’s printing system

lpstat –p printername Gets printer status for specified printer

cancel jobnumber printername Cancels specified job (with job number from the lpstat
command)

disable printername Disables every job in specified printer’s queue

lpadmin –d printername Sets default printer

Handling PostScript
PostScript is an additional factor in the complexity of Unix printing. PostScript is
a language that is used to transfer complex documents from a user computer to a
printer. For example, a newsletter that Rick composes on his computer, which
includes fancy fonts and multiple graphics, can be transferred to Maria’s com-
puter for editing, and then to a printer for final production. PostScript encoding
keeps everything in place and identical from creation to finish. Any document
more complicated than system font in straight lines may use PostScript features,
and many high-end printers handle PostScript automatically.

However, Unix doesn’t necessarily recognize PostScript on the fly. Unlike
other print formats, PostScript files don’t start with a simple escape sequence
that defines print features for that particular file. Instead, PostScript files begin
with a lengthy set of instructions that averages nearly 500 lines—before the
actual file to be printed even begins. Needless to say, PostScript files can be very
large. Most word processors can’t handle the format, so you need a specialized
program to work with these files.

You can view PostScript files on a Unix machine with the ghostview and
ghostscript utilities, available at most Unix software archives. Open a

Handling PostScript

2817c33.qxd 11/13/00 2:44 PM Page 535

536

PostScript file in ghostview by issuing the command ghostview &. ghostview
opens to an empty window; press the o key to select a PostScript file for display.
Figure 33.4 shows a PostScript file as displayed in ghostview. Jump around the
document by selecting a page number from the slim window to the right of the
button menu.

Printing a PostScript document under Unix requires either a PostScript-
enabled printer (an expensive affair) or the ghostscript filter. When you send a
document to the printer, the document passes through a series of filters installed
at the print server level. If one of those filters is ghostscript, the file will be
converted to a language that the destination printer can accept. Output of fil-
tered PostScript files still looks pretty good, if not as perfect as the output to a
PostScript-enabled laser printer. Even dot-matrix printers and low-end inkjet or
bubble jet printers can produce a reasonable facsimile of PostScript fonts and
documents with ghostscript’s help, though of course the better the printer
technology, the better the printed document.

F I G U R E 3 3 . 4 :

View PostScript documents
under Unix with the
ghostview utility.

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 536

537

Every printer attached to your network needs to have a driver enabled in
ghostscript if the printer is to receive PostScript print jobs. You can deter-
mine what drivers are enabled by starting ghostscript (issue the command
ghostscript at a shell prompt) and issuing the command devicenames == at
the ghostscript prompt. You’ll get a long block of text showing all the differ-
ent drivers enabled in your version of ghostscript, as shown in Figure 33.5.
You might be able to pick your driver out of the block, but if you can’t, consult
the ghostscript documentation or its Makefile for more information about
drivers. If you’re using a printer manufactured by a major printer corporation—
Hewlett-Packard, Epson, Brother, and so on—you should be fine with the
installed drivers.

Whether or not you handle PostScript documents regularly, it’s a good idea to
install ghostview and ghostscript on your system. Some program documenta-
tion is available only in PostScript format, or you may receive documents that
need to be printed on PostScript-compatible printers. ghostscript doesn’t take
up much system overhead, and it’s a useful print filter to have around.

F I G U R E 3 3 . 5

Check ghostscript’s
drivers to see whether it
can convert PostScript files
for your printer.

Handling Postscript

2817c33.qxd 11/13/00 2:44 PM Page 537

538

The Common Unix Printing System
Printing is one of the areas in which Unix variants most widely differ. This can be
quite annoying, especially if you are managing a heterogeneous network that
requires individual configuration on multiple operating systems. Luckily, there is
a new development that promises to smooth out these differences and make Unix
printing a more sensible and constant issue to manage.

The Common Unix Printing System (CUPS) is a project that aims to create a
unified set of print commands and print configuration that will be usable on
every Unix variant, regardless of System V or BSD heritage. CUPS is developed
by the Easy Software Products corporation, a small company based in Maryland,
but is released under the GPL. CUPS is free for use and distribution.

As the backbone of its methodology, CUPS uses the Internet Printing Protocol
(IPP) instead of relying on the various print protocols used by different Unices.
IPP is based on HTTP (the HyperText Transfer Protocol), which is the protocol
used by Web traffic, and was designed to enable remote printing across the
Internet. CUPS implements all the required elements of the IPP and most of the
optional elements as well. Optional elements not contained in the current release
will probably be incorporated through patches or in future releases.

NOTE Some readers may be wondering, “Whatever happened to POSIX Printing?” The
POSIX printing standard was an earlier attempt to unify Unix print technology and
was promoted by the Institute of Electrical and Electronics Engineers (IEEE). POSIX
Printing was a valiant effort, but did not meet with the approval of print and Unix
industry leaders. It is no longer an active proposal before IEEE, and the focus has
shifted to IPP as a solution for printing under Unix.

CUPS is run as a server, which accepts requests formatted both as System V and
BSD commands. The server translates print requests into a common IPP syntax
and transfers them to a scheduling module, which then sends the requests to the
print queue and, ultimately, to the printer. The CUPS server is configured similarly
to the Apache Web server; because many network administrators are running
Apache already, the learning curve for CUPS is quite shallow. In fact, the CUPS
server can be accessed from the Web to monitor print requests and the queue.
CUPS can handle PostScript, image file format, and text files through various fil-
ters set up by the administrator.

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 538

539

Most importantly to the administrator, though, CUPS takes the hassle out of
working with network printers on a heterogeneous network. Configuration is cen-
tralized and simple, and the CUPS interface lets users pick the printers they want
to use regardless of how that printer is connected to the network. Print load bal-
ancing is also easier because you can divide available printers into classes, so that
a print request sent to a color laser printer will print on the first available color
laser printer, not on a specified printer that may be occupied with a lengthy job.

The only drawback of CUPS is that it is still quite young. The IPP protocol has not
yet been formally accepted by the Internet Engineering Task Force (IETF), though
the standard is moving easily through the approval process. The first workable
release of CUPS was done in October 1999, and a wide variety of patches and bug
fixes have been released as well. CUPS, in its first incarnation, was stable; however,
the CUPS 1.1 release adds a number of features requested by users that make print
management even easier.

We are watching CUPS with great anticipation. The implications for heteroge-
neous networks are amazing. The benefits to network administrators should be
clear: Less time spent fixing print problems means more time to work on other
network issues. In addition, several other features make CUPS a practical and
welcome solution to Unix print frustration:

• CUPS uses a Web-based interface to the server, which bolsters the ability to
monitor print activity from remote locations, while the encrypted password
mechanism protects the server from unauthorized access.

• CUPS supports all types of printers, including USB. (USB support for
Solaris printers is forthcoming, and a patch may have been released by the
time this book is printed.)

• CUPS is supported under Samba (see Chapter 37: “Integrating Unix with
Other Platforms”), and a number of third-party projects take advantage of
CUPS for specific programs, such as a KDE interface called KUPS and a gen-
eralized print tool for X-using computers called XPP (the X Printing Panel).

• CUPS is included as part of the current Debian Linux release, and the pro-
ject developers expect CUPS to be part of many other Unix variant releases
in the near future.

TIP Learn more about CUPS at the project Web site, http://www.cups.org.

The Common Unix Printing System

2817c33.qxd 11/13/00 2:44 PM Page 539

540

Summary
Printing under Unix is probably the one area in which the least progress has been
made toward integrating the ancient Unix strains. Most Unices use either the Sys-
tem V method, as does Solaris, or the Berkeley method, as do FreeBSD and Linux.
The two methods handle print management differently, both in the configuration of
new printers and in the management of the print spool and various printing jobs.

You can add a new printer under BSD or Linux by editing the /etc/printcap
file; under Solaris, you need to use the lpadmin utility. All three Unices also offer
graphical printer administration tools, as do the integrated desktop environments
and some window managers. System V and Berkeley also handle queue manage-
ment differently, so you will need to learn a different set of commands if you use
both types of Unix on a regular basis. Although the differences between the two
methods are significant, there is hope in the development of the Common Unix
Printing System (CUPS). CUPS is HTTP-based and promises to remove many of
these differences by handling print jobs in much the same way as Web transmis-
sions are handled.

Chapter 33 • Managing Print Services

2817c33.qxd 11/13/00 2:44 PM Page 540

P A R T V I I I
Network Administration

� Chapter 34: Introduction to Unix Networking

� Chapter 35: Network Interfaces and Routing

� Chapter 36: The Distributed System

� Chapter 37: Integrating Unix with Other Platforms

� Chapter 38: Network Security

2817c34.qxd 11/17/00 3:44 PM Page 541

This page intentionally left blank

C H A P T E R
T H I R T Y - F O U R

Introduction to Unix
Networking

� Basic Networking Concepts

� Basic TCP/IP

� Networking Hardware and Software

� Common Networking Architectures

� Common Networking Concerns

� Summary

34

2817c34.qxd 11/17/00 3:44 PM Page 543

544

This section of the book contains information on networks. We cover the
physical aspects of networks, including the computers themselves and the
cabling and cards that connect them, as well as the software issues involved in
networking, such as the integration of different operating systems on the same
network and the protection of network data from external intrusion. The subjects
contained in this part of the book range from basic information, such as that cov-
ered in this chapter, to more complex concepts, such as the administration of het-
erogeneous networks and the practical configuration of network devices.

NOTE In this part of the book, we focus on networks that use 10/100BaseT Ethernet
cable. This is the most common type of networking equipment. Although other
networking equipment exists and can be found in large networks, such equip-
ment is quite rare for the beginning Unix administrator or the manager of small or
home networks. We assume that, if you are new to Unix networking, your first
project will be to build a small network in a home or office. For such purposes,
using 10/100BaseT cable is the most economical and easiest way to build the net-
work. If you enjoy networking and plan to scale up to truly large networks, you’ll
need to learn more about networking-specific hardware, such as Cisco routing
equipment, that we don’t cover here.

In this chapter, we present the basic theories that underlie the remaining chap-
ters in this section. We explain the TCP/IP protocols and other networking con-
cepts. We also show you some common network configurations and discuss the
software that powers them. Finally, we conclude by introducing some concerns
shared by every network administrator.

Chapter 35: “Network Interfaces and Routing” introduces the practical aspects
of building a network. We introduce the variety of hardware devices that goes into
building a network, from cards to cables, and show you how to configure them for
your specific needs. We then illustrate the difference between an Ethernet network
and one that offers dial-up access to its users. Finally, we explain the difference
between routers and gateways, and show you how to manage each type of hard-
ware with varying software controls.

Chapter 36: “The Distributed System” is a philosophical chapter. In it, we
explain the general concept of client-server architecture, the method upon which
most Unix networks and programs are built. We show you how to exploit the ben-
efits of client-server architecture on your own networks, regardless of size, by dis-
tributing services across the various computers connected to the network.

Chapter 34 • Introduction to Unix Networking

2817c34.qxd 11/17/00 3:44 PM Page 544

545

Chapter 37: “Integrating Unix with Other Platforms” is a practical chapter writ-
ten in response to the reality of most networks today. Heterogeneous networks
are increasingly common, whether the heterogeneity is found among different
Unix variants or in the use of Unix alongside computers running Windows or
MacOS. We show you how to handle each type of heterogeneity, and introduce
two software packages designed to ease the junctures between Unix and non-
Unix operating systems.

Chapter 38: “Network Security” closes out this part of the book with informa-
tion about the most critical aspect of network administration. If you build a net-
work, you must be concerned about security. If you connect to a network, such as
the Internet, you must be concerned about security. We explain some of the com-
mon security risks and holes found in many networks, and offer some solutions
to keep your data and your users free from harm or malicious use.

Basic Networking Concepts
Before you start working on your own network, it’s important to have a ground-
ing in the basic concepts of networking. At its most basic level, a network is a
group of computers (at least two) connected together. The group can share files
and other resources, such as printers or cable modems, through the network con-
nection, which is usually a cable resembling a telephone cord.

Many networks use a topology, or layout, which requires a main server machine
as well as a number of user machines, as shown in Figure 34.1. The server holds
programs that are used by all the user machines and offers those services upon
request. This is an efficient use of network resources. Without the central server,
copies of each software program would have to be loaded on each user machine.
It is simpler to have one copy at a central location and make that server feed the
program as necessary.

Server machines are often high-powered and heavy-duty machines with mas-
sive amounts of RAM and hard-disk space, but they don’t necessarily have to be
so imposing. If you are running a small network, you can probably get away with
using an older desktop machine as the main server and saving your spending
money for the user machines, where significant RAM, faster video cards, and
larger hard drives will make more of a difference for the network users.

Basic Networking Concepts

2817c34.qxd 11/17/00 3:44 PM Page 545

546

Small networks simply don’t place that much stress on a server. When you con-
nect your network to the Internet full time and start running Web servers, or scale
your network to a point where you have more than 15 or 20 computers and 75 or
100 users checking their e-mail and using system resources constantly, you’ll
need to consider other server solutions. For the kind of networks we explain in
this part of the book, though, a 486 or basic Pentium-class computer ought to be
sufficient.

A network may have a single server or multiple servers. Depending on the kind
of traffic generated by the network, the administrator may decide to split certain
services onto their own machines. Web traffic is a good example; a popular Web
site hosted from a machine on the local network may cause slow traffic through
the network itself as the server machine struggles to keep up with both external
and internal demands. Moving the Web pages onto a separate machine, along
with Web server software such as Apache, divorces the Web requests from the
requests made by internal users to the main server. Thus, internal traffic can

Client

Client

Client

Client

Client Client

Server

F I G U R E 3 4 . 1 :

Unix networks are often
built on a star topology,
with the server at the
center.

Chapter 34 • Introduction to Unix Networking

2817c34.qxd 11/17/00 3:44 PM Page 546

547

move more quickly, while external Web requests are also answered more quickly
because they are fed to a machine handling only Web traffic.

TIP Many of the services covered in Part IX: “Administering Services” may be run on
individual servers within the network if their traffic threatens to overwhelm the
servers with local users’ requests.

Basic TCP/IP
The basic protocol used in Unix networks is the TCP/IP protocol. A protocol is a
standard to which programs must be written; in the case of networking, there are
two main protocols. Dial-up connections, such as those made with a modem to an
ISP over a phone line, use the PPP (Peer-to-Peer Protocol) protocol. This protocol
determines how data is to be sent over a serial connection such as a telephone line.

Networks that don’t use telephone lines, however, rely on the TCP/IP (Transmis-
sion Connection Protocol/Internet Protocol) protocol. This protocol is the lingua
franca of the Internet. Every computer connected to the Internet speaks TCP/IP.
TCP/IP is actually a suite of protocols that manage how information is transmitted
between the various computers on the Internet, a vast pool of computers made up
of all sorts of hardware and software. In the early days of the Internet, all comput-
ers connected to it ran some flavor of Unix, so it’s no surprise that smaller Unix net-
works work with TCP/IP as well.

Regardless of the type of data being transmitted—whether it’s e-mail, graphic
files, sound clips, or system commands—TCP/IP can handle it and get the data to
its destination without much trouble. Problems with network transmissions can
often be traced to a faulty hardware installation or a misconfigured network device,
instead of being the fault of the transmission protocol itself. In fact, TCP/IP trans-
missions are far less susceptible to scrambling or data loss than are PPP transmis-
sions, because the capability of the serial hardware is less than that of the devices
used to transmit TCP/IP protocol data.

In this part of the book, we focus on networks that use TCP/IP over Ethernet
cable, which is one of the most common network configurations. Ethernet connec-
tions are always active. There is no need to use a modem to dial into the server
machine, because the network is always in operation (unless you explicitly disable

Basic TCP/IP

2817c34.qxd 11/17/00 3:44 PM Page 547

548

it for some reason). If you have a 24-hour connection to the Internet, such as a
cable modem or a DSL connection, on one of your network machines, the Internet
is “always on” for everyone on the network. No more do you have to deal with
busy signals or share time with your voice telephone line if you have a network
and a constant connection.

Ethernet connections using TCP/IP are also significantly faster than dial-up con-
nections using PPP. Although you could build a small network with modems and
phone lines, dialing up each machine as needed, it would be a very slow network
and prone to data loss. Ethernet cables, in the popular 10BaseT configuration, can
transfer data at a rate of 10 million bits per second. In comparison, the fastest
modem currently permitted by the U.S. Federal Communications Commission
transfers data at only 56,000 bits per second. Thus, Ethernet can be approximately
178 times faster than the fastest dial-up connection; no wonder it’s the standard
connection for local networks.

Internet Protocol
Every computer that is attached to the Internet network is identified by a particu-
lar and unique set of numbers, called an Internet Protocol (IP) address or number.
These numbers have that name because their existence and use are determined
by the Internet Protocol, the IP part of TCP/IP. Every IP number uses the form

aaa.bbb.ccc.ddd

where aaa, bbb, ccc, and ddd are numbers between 0 and 255.

IP numbers look somewhat arbitrary, with only the format remaining constant.
IP numbers are structured in a specific way, however, which rises from the fact
that each IP address is a 32-bit number. A bit is the basic unit of information for
digital data transfer. Each four-number set in the IP address represents 8 bits,
which equals 1 byte. Reduced to its binary expression, an IP number has the form

xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx

Each x represents either 0 or 1, because it is binary. Because each segment repre-
sents 8 bits, the IP format is sometimes referred to as an octet format; you might
also hear the comment that IP numbers are octals.

Because each of the digits in the octal IP number has two possible values—0 or
1—the full 32-bit number has over four billion possible values. These values can
be expressed with the mathematical statement 2e32. This is a large number to

Chapter 34 • Introduction to Unix Networking

2817c34.qxd 11/17/00 3:44 PM Page 548

549

work with, so it’s separated into four octets for convenience. An octet has 256
possible values, or 2e8.

NOTE Remember that, in Unix, counting begins from zero. Therefore, the possible values
of an IP octet are 0 to 255.

Static and Dynamic IP
As we noted above, every computer connected to the Internet has a unique
address called the IP number. There are two ways to assign an IP number: static
and dynamic assignment. If the IP number is assigned permanently to a particu-
lar computer, that computer has a static IP number. If, however, the computer is
assigned a different IP number every time it connects to the Internet, that com-
puter has a dynamic IP number. Static IPs are ideal because they are easy to work
with, but most people have Internet connections that use dynamic IP assignment.

If you have a dial-up connection to the Internet, chances are overwhelming that
your Internet provider uses dynamic IP allocation. This is the best solution for
ISPs because, though the ISP has control of only a certain set of IP numbers, they
can sell access to many more people than they have IP numbers. Because an ISP
will never have all their customers connected to the Internet at the same time,
they can create multiple accounts for each available IP slot and share the pool of
IP numbers as people log in and out of their accounts.

Every time you log into your ISP account, your computer is assigned an IP
number from the ISP’s pool of available numbers. The number is probably differ-
ent every time you log in unless you just hit a streak of luck and are assigned the
same number twice in a row. The ISP uses a program called DHCP (the Dynamic
Host Configuration Protocol) to assign these IP numbers. (We cover DHCP in
Chapter 35: “Network Interfaces and Routing.”)

NOTE In some areas, especially in Canada, DHCP is dropping by the wayside in favor of
PPPoE (Peer-to-Peer Protocol over Ethernet). This is a new way to handle dynamic
IP number allocation. If your ISP uses PPPoE instead of DHCP, it should not affect
you unless you’re running scripts that are DHCP-specific.

Basic TCP/IP

2817c34.qxd 11/17/00 3:44 PM Page 549

550

Though dynamic IP numbers are prevalent for dial-up connections, constant-
access Internet connections such as cable modems, ISDN, or DSL use static IP
numbers. When you open your account with one of these providers, you will be
given an IP number that identifies your computer. You can leave your computer
connected all the time because you have a “hall pass” to the Internet in your IP
number. (If you do leave your connection on all the time, we strongly encourage
you to read Chapter 38: “Network Security.” Constant Internet connections are an
easy target for crackers and other malicious users.)

Networking Hardware and Software
Once you have decided to build a network, you have some shopping to do. At the
least, you’ll need to purchase a roll of 10/100BaseT Ethernet cable, some jacks to
fit the cable, and a crimping tool to fit the jacks onto the cable. You’ll probably
also need to purchase Ethernet cards for each machine on the network unless
your computers already have cards in them. (Some newer machines, especially
laptops, have built-in Ethernet capability.)

NOTE One piece of hardware that we especially like is the small network hub. Available
for as little as $30 or $40 (US), the network hub has multiple ports for Ethernet
cable plugs. Connect the Ethernet cables from each client and server machine into
the hub, and presto! You have a hub topology network (see the “Common Net-
working Architectures” section of this chapter). There are external hubs and inter-
nal hubs, but we recommend the external variety, especially those made by
Linksys or 3Com. External hubs have blinking lights that can tell you a lot about
the traffic moving across your network; rapid blinks mean that the connection is
transporting data, while a darkened light means that, for some reason, that
machine is off the network.

If you intend to build a large network or one that will use dedicated servers,
you’ll also need to investigate new computers. A small network can use regular
desktop computers as dedicated servers, but larger networks may require
machines built for the server role or specialized routers. These special machines
can cost thousands of dollars, and many network administrators have become
quite talented at duplicating their features with cheap Pentium machines and a
copy of FreeBSD or Linux. We certainly suggest that you start out with a regular

Chapter 34 • Introduction to Unix Networking

2817c34.qxd 11/17/00 3:44 PM Page 550

551

desktop machine as a server; if you find that you need a Cisco router or two
down the road, you’ll have time to save up for them.

When you have connected all the network machines together with the cable
and cards, you’re ready to begin working with the software configurations
required to set up the network. We work through these steps in detail in Chap-
ter 35: “Network Interfaces and Routing.” In brief, you’ll need to build a table
that contains an individual IP address for each computer on the network; the
kind of drivers each machine will require for the Ethernet cards; numbers that
identify the local network to itself and to the external world; and a domain
name and set of system names to use in concert with the numeric addresses.

Network Domain Names and
Internet Domain Names

You may use a domain name that you have registered and paid for, or you may use one
that is not assigned to you. However, if you use a domain name that you do not own, you
won’t be able to use it on the Internet. That is, you might build a network around the
domain name amazon, but you don’t own that domain name. You’ll have to come up with
something else if you want to use your network on the Internet.

We suggest that, if you plan to use your network to handle traffic on the Internet, you pay
the fee and register a domain name. It’s probably cheaper than all those Ethernet cards you
had to buy, and you’ll have the security of knowing that nobody else is using your network
name. We like the service offered by Register.com, one of the authorized domain name
registries that handles .com, .org, and .net as well as more than 20 national top-level
domains. Though we have no association with Register.com other than being satisfied cus-
tomers, we’ve tried some of the other registries and think that Register.com has the best
customer service. In addition, when you purchase a domain name through Register.com,
you actually own the domain name. Other registries, Network Solutions in particular, now
retain the ownership of the domain name and simply lease it to you.

Network configuration is based on working with several different configu-
ration files, as with most other Unix configuration. The files that deal with
TCP/IP configuration are usually collected in the /etc directory; for example,
/etc/hosts contains a list of the hostnames used for machines on your net-
work, while /etc/services contains a list of the services you’ve authorized
to run on the network (for either internal or external use). Many Unix variants

Networking Hardware and Software

2817c34.qxd 11/17/00 3:44 PM Page 551

552

offer a configuration utility that simplifies some of the TCP/IP setup process,
though some variants require that these edits be made with a text editor.

WARNING Be careful if you’re editing network configuration files by hand. It’s quite easy to
delete the wrong line or write down an IP number incorrectly, and you’ll save
yourself hours of detective work if you start out by taking care.

Once you’ve set up the servers, you’ve done the bulk of the work. Now, all that
remains is configuring the client machines. This is simpler because you just need
to give the client machines information about the central server; when configur-
ing the servers, you had to provide information about every single client
machine. When you’ve finished editing the configuration files on the client
machines, you can restart all the computers on the network. If everything has
gone smoothly, you’ll now be a network administrator.

Common Networking Architectures
In the “Basic Networking Concepts” section of this chapter, we introduced the con-
cept of network topology. A topology is simply the layout of the network, comprising
both the computers and the way in which they are connected. For example, the term
World Wide Web makes reference to the weblike topology of the Internet. There is
no central server on the Internet; rather, thousands of computers are interconnected
through various subnetworks to make up the whole Internet.

There are a variety of network topologies. The topology used by a particular net-
work is often determined by the type of network in question. Networks can be local
area networks (LANs), or they can be wide area networks (WANs). LANs are gen-
erally networks that are contained in a particular physical location, whether it be a
room or a building. A WAN is generally composed of multiple LANs.

Assume that you are the network administrator for a company that fills the
office space of one three-story building. If you have a separate network for the
accounting department on the first floor, another network for the legal depart-
ment on the second floor, and a third network for the administrative offices on
the third floor, you have three local area networks. However, you’ll probably

Chapter 34 • Introduction to Unix Networking

2817c34.qxd 11/17/00 3:44 PM Page 552

553

unite all three of those networks before you connect any of them to the Internet,
because computers on all three networks will share the same Internet connection
and domain name. Thus, you have both three LANs and one WAN under your
management.

Local Area Network Topologies
There are several common topologies for local area networks. Choosing a topol-
ogy depends on the function of the network, because some architectures are more
suited for certain purposes than others. There are three dominant architectures
for LANs; because we focus on LANs in this section of the book, it’s likely that
you’ll select one of these topologies when you build your network.

Ring Architecture

From its name, you might expect a ring topology network to be composed of com-
puters and peripheral devices connected by cables, with no clear end. That is, you
might think that Computer A has both the beginning and the end of the connection
plugged into its case. The ring in a ring topology is not a physical ring, though. It is
merely a concept, and the name is based on the way in which the central server is
constructed.

Even though there is no physical ring in a ring topology, it’s a useful concept
because there is no single machine that has supremacy over the other machines.
Figure 34.2 shows the standard depiction of a ring topology network; the circular
line connecting the machines is not a physical cable, but is a depiction of the
ring’s nonhierarchical structure.

TIP Do you remember the Dilbert cartoon in which Dilbert successfully confused his
boss by claiming that the token had fallen out of the network and thus there was
no connectivity? The architecture used at Dilbert’s company was a ring topology,
often referred to as a token ring architecture. There’s no actual token to be lost,
though; it’s just a good way to confuse the Pointy-Haired Bosses.

Common Networking Architectures

2817c34.qxd 11/17/00 3:44 PM Page 553

554

Hub Architecture

Hub topology is popular in large installations. In a hub network, there is a hierar-
chical system of organization. At the heart of the network lies a main cable called
the hub’s backplane. The backplane is a high-speed cable, usually fiber optic, that
can carry a vast amount of data at staggering speeds. From that backplane extend
several cables, usually Ethernet cables, to which various hubs are connected. These
hubs serve smaller clusters of machines and peripherals. Figure 34.3 shows a dia-
gram of a typical hub installation.

Despite its suitability for large networks, the hub topology can be used for
smaller networks as well. It’s especially useful for situations in which the net-
work is initially small, but the administrators know that the network will become
quite large in the future. Hub topologies are easily scaled, because the adminis-
trator simply needs to attach more hubs to the high-speed backplane to serve the
new users.

Workstation

Server PC

PCPrinter

PC

F I G U R E 3 4 . 2 :

The ring topology’s name is
misleading, but it is a use-
ful concept.

Chapter 34 • Introduction to Unix Networking

2817c34.qxd 11/17/00 3:44 PM Page 554

555

In small installations such as the networks we describe in this part of the book,
a hub topology is especially useful. We use the hub in our own network, using a
single server machine as the backplane. In such a situation, the hub topology is
often called a star topology because the network’s diagram is star-shaped. (Figure
34.1 showed a star topology network.) You can buy hubs designed for small net-
works at almost all computer or office supply stores, or you can spend thousands
of dollars on high-speed and high-capacity hubs.

Bus Architecture

The simplest network architecture is the bus topology. The bus is a backbone cable
similar to the backplane used in a hub topology. Individual computers and periph-
erals are connected to the bus, and are given individual identifying numbers simi-
lar to the IP numbers used on the Internet network. Figure 34.4 shows the bus
architecture.

Workstation

Server

PCWorkstation

PC

Backplane

Hub

F I G U R E 3 4 . 3 :

The hub topology is useful
for both large and small
networks.

Common Networking Architectures

2817c34.qxd 11/17/00 3:44 PM Page 555

556

Bus topologies can be constructed so that either individual machines are con-
nected directly to the bus cable or machines are connected to each other in a
daisy chain architecture. (If you’ve ever used SCSI peripherals, you’ve used a
daisy chain.) Figure 34.5 shows a bus topology using the daisy chain. The disad-
vantage to a machine-to-machine chain topology is that the signals along the
cable can be degraded or slowed as they pass through each subsequent com-
puter or peripheral. If speed is important to you, we suggest staying away from
the daisy chain bus topology.

NOTE Consider the type of data you’ll be transferring across the network before you
pick a topology. In some architectures, the failure of one machine can mean
downtime for machines elsewhere on the network. For example, if you are on a
daisy chain network and a machine between you and the gateway fails, you may
not have access to the rest of the network until that machine is fixed.

Server PC

Bus

PC Printer

Bus

Workstation

Router

F I G U R E 3 4 . 4 :

The bus architecture is the
simplest network topology.

Chapter 34 • Introduction to Unix Networking

2817c34.qxd 11/17/00 3:44 PM Page 556

557

Wide Area Network Topologies
Where local area network topologies are simply methods of connecting sets of
computers and peripherals, wide area networks use a different philosophy in
their architectures. Designing a wide area network architecture requires a good
understanding of the amount of traffic flowing through the WAN. If the indi-
vidual LANs that make up the WAN never communicate with each other, or
there is a low level of traffic, the WAN can be set up in a topology that resem-
bles the LAN hub architecture, as shown in Figure 34.6.

In this architecture, the WAN’s backbone (high-speed cable usually providing
Internet access) has a number of routers connected to it: one router for each LAN.
The router is a specialized piece of hardware that does nothing but handle data
transfer between computers, and it is used in situations where the expected amount
of traffic is quite high. Each LAN’s router handles traffic destined for the users of

PC

Workstation

PC

Server

Workstation

F I G U R E 3 4 . 5 :

Another bus topology
option is the daisy chain.

Common Networking Architectures

2817c34.qxd 11/17/00 3:44 PM Page 557

558

that LAN and the traffic that they send back to the backbone. If the data sent by
LAN 1 is destined for LAN 2, the router will sort the data out. If the data is destined
for networks outside the WAN, such as the Internet, the backbone transfers that
data out beyond the WAN.

For WANs in which the individual LANs often transfer a great deal of data to
each other, there is a different topology. The network administrator can build a
connection directly between the individual LANs, with an additional router
placed between each LAN. In this topology, shown in Figure 34.7, each LAN has
the option of transferring data through a router pointed at another LAN in the
network or through a router pointed directly at the backbone. Dividing traffic in
this way eases congestion on the external backbone and may save money if con-
nection fees are based on the amount of traffic passing through the backbone.

Network Backbone

Router

LAN

F I G U R E 3 4 . 6 :

A typical WAN topology
resembles the LAN hub
architecture.

Chapter 34 • Introduction to Unix Networking

2817c34.qxd 11/17/00 3:44 PM Page 558

559

NOTE It’s a truism among network administrators that 80 percent of traffic on a network
is local, and 20 percent is destined for recipients not on the local network. We think
that this rule applies to only very large networks; on the smaller networks with
which we’re familiar, the numbers are sometimes reversed. The rise of the World
Wide Web and the increasing popularity of the Internet have changed the tradi-
tional proportions of network traffic.

Common Networking Concerns
Everyone who runs a network, large or small, will have similar concerns. Of
course, the administrator of a large network is likely to have more to worry
about, but the types of problems encountered are much the same regardless of

Network Backbone

Router

LAN

Router

LAN
Router

F I G U R E 3 4 . 7 :

Internal traffic between
LANs may flow faster if a
separate router is installed.

Common Networking Concerns

2817c34.qxd 11/17/00 3:44 PM Page 559

560

network size. Among these problems are obvious concerns such as security of
data, accessibility, and general up-time. Administrators also worry about less
apparent problems, such as hardware compatibility or the encoding systems
used by the different operating systems on a heterogeneous network.

Security is such an important networking topic that we’ve devoted an entire
chapter to the subject, Chapter 38: “Network Security.” In a capsule version of the
material covered there, we can say that security should be the second concern of
the network administrator—the first being, of course, whether the network is
running. There are several ways in which the network administrator can secure a
network. The administrator can require secure software to be used for access,
such as the ssh (Secure Shell) program instead of the traditional telnet and
rlogin programs. These programs, although widely used, are security risks. The
administrator can also implement programs that monitor network access and
send out alerts if something untoward happens. The best tool for network secu-
rity, however, is the administrator’s familiarity with normal network operation. If
something out of the ordinary happens, a good administrator will notice it almost
as quickly as a monitor program.

Accessibility is another important concern for the network administrator. Here,
we are using accessibility as a term to describe the ability of users to actually use
the network. Issues of physical accessibility for the disabled are part of this, but
are often associated more with the purchases of adaptive software and hardware.
In general, accessibility must be traded off against security issues. A system that
is easy to get into, if you’re an authorized user, is probably a system that’s easy to
get into if you’re unauthorized. The network administrator generally must dis-
count the complaints of users if the trade-off is an insecure system that can be
exploited for malicious use. Yes, it’s more of a hassle to use a secure login shell
such as ssh, but it also cuts down on potential problems.

Finally, the network administrator must always be concerned with the general
function of the network. Are all the machines and peripherals running? If some-
thing is offline, why is it not working? Is the backbone itself connecting outside
the network? The administrator will quickly become experienced in tracing down
problems along the network, whether the problem is a loose cable or net conges-
tion 1000 miles away. Users often complain about network problems when it isn’t
a network problem at all, and the administrator needs a healthy dose of people
skills to handle these situations as well.

Chapter 34 • Introduction to Unix Networking

2817c34.qxd 11/17/00 3:44 PM Page 560

561

Summary
Network administration is a specialized subset of system administration. Net-
work administrators have responsibilities that range from the care of specialized
hardware devices to the education and management of users. Networks are con-
structed using one of two protocols: PPP (Peer-to-Peer Protocol) is used for dial-
up connections such as those made to Internet service providers, while TCP/IP
(Transmission Connection Protocol/Internet Protocol) is used over large net-
works such as the Internet or on local networks connected with Ethernet cable.

TCP/IP networks can be either local area networks (LANs), usually contained
within a particular physical area, or wide area networks (WANs), composed of
several local area networks that share a common connection to external networks
such as the Internet. These networks can be constructed with one of several popu-
lar topologies, or schematics, including hub, ring, and bus architectures. Once the
network is constructed physically, the administrator must configure various files
for the network to be recognized by its component computers and by other net-
works. Then, the administrator must determine various policies and procedures
to handle common concerns such as system up-time and security issues.

Summary

2817c34.qxd 11/17/00 3:44 PM Page 561

This page intentionally left blank

C H A P T E R
T H I R T Y - F I V E

Network Interfaces
and Routing

� Configuring Network Devices

� Dial-Up Networking

� Ethernet Networking

� Routers and Gateways

� Small Networks

� IP Masquerading

� Summary

35

2817c35.qxd 11/13/00 2:46 PM Page 563

564

In the previous chapter: “Introduction to Unix Networking,” we introduced
some of the basic concepts that underlie Unix networks large and small. In this
chapter, we concentrate on the practical aspects of building Unix networks. We
begin by showing you the difference between an Ethernet network and one that
offers dial-up access to its users. You may need to provide access for local users,
or you might have only dial-up access to the Internet and need to integrate that
function into your network’s activity.

Next, we introduce the variety of hardware devices that go into building a net-
work and show you how to configure them for your specific needs. Finally, we
explain the difference between routers and gateways, and show you how to man-
age each type of hardware with varying software controls. We also address vari-
ous networking protocols and show you how to use a single IP number to handle
your entire network’s behavior on the Internet.

This chapter focuses on the nuts and bolts of Unix networking: configuring
network devices and setting up routing. This is not a glamorous topic, but these
tasks are necessary prerequisites to any other networking tasks. If the connec-
tions between devices are not working, there is no way for data to get from one
point to another.

Configuring Network Devices
Before you can set up any network devices, you need to be aware of what kind
of devices you’re using or plan to use in the future. This is a simple task, even if
you’re not a networking expert—or if you’re completely new to the topic alto-
gether. Networks may involve both types of networking device, but most network
administrators will concentrate on one type or the other. For larger networks, dif-
ferent networking device types may be divided into separate LANs or kept on dif-
ferent computers on the network.

For the average user, network devices can be divided into two general types:
dial-up networking and Ethernet networking. Dial-up networking uses the
modem as its network device; Ethernet networking uses the network interface card
(NIC) as its network device. Those readers who plan to build and manage a small
network will probably use both types of devices, especially if you are a home user
and have only dial-up access to your Internet provider, but also operate a small
local network.

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 564

565

NOTE Even if you use a permanent Internet connection, such as DSL or a cable modem,
it’s a good idea to understand how modems work with Unix; you may purchase a
laptop that has both a modem and an Ethernet connection, or you might need to
configure a user’s computer to access your network with a modem. In any event,
don’t ignore the modem. It may not be the newest technology, but it is certainly
not obsolete in the Unix world.

In the next two sections of this chapter: “Dial-Up Networking” and “Ethernet
Networking,” we show you how to configure these devices under Unix. We
explain the basic options for each type and introduce some tools that might help
you with your network configurations.

NOTE Only root can configure network devices. Before you begin any process described
in this chapter, log into the root account or assume superuser powers.

Dial-Up Networking
The majority of home-based Internet connections in the United States are dial-up
connections. That is, the connection is handled over telephone lines, using regular
phone numbers and transmission protocols. If you create an account with a local
Internet service provider, chances are very good that your only point of access to
their network will be through your modem.

The advantage of dial-up networking is that it uses an easily accessible technol-
ogy; almost everyone has a phone. Most ISPs have preconfigured software, so
that all you have to do is dial up once, and the software makes all the necessary
settings. (That’s what is on those CD-ROMs that appear in the mail every day and
fall out of the pages of your favorite magazines.) Once set up, the dial-up connec-
tion is reasonably trouble-free, except for busy signals on the ISP’s end.

However, many of the advantages of dial-up networking are reserved for Win-
dows users and, in a few cases, Macintosh users. The Unix-using customer must
do quite a bit more work to use the same service that is automatically configured
for the Windows user. (See the sidebar “Unix and Your ISP” for more information
on choosing an ISP sympathetic to your needs.) This is not to say that you should

Dial-Up Networking

2817c35.qxd 11/13/00 2:46 PM Page 565

566

dump your ISP, though. The only case in which you must change ISPs is if you
are using a provider that requires a non-Unix interface, as with America Online;
you must use AOL’s software to access their network, and they do not provide a
Unix variant of their program.

Unix and Your ISP
Depending on where you live, finding a Unix-compatible Internet service provider can be
an interesting task. Why should you care? Well, most ISPs are targeted at the Windows
user and secondarily at the Macintosh user. Many ISPs, especially the national ones such as
the Microsoft Network and America Online, use proprietary software that’s available only
for the Windows platform; even Mac software may be hard to get. The ironic thing is that
many of these ISPs use Unix to run their networks; they just don’t make it easy for Unix-
using customers. (However, Mindspring/Earthlink is quite receptive to Linux users and has
documentation on its Web site for Linux configuration. It should be easy to adapt that
information to other variants of Unix.)

There are two main problems here: access and technical support. If the ISP requires that
you use their software to access their network, and there’s no Unix variant of the soft-
ware, you can’t use the ISP. If you do manage to gain access, but you have a question, the
technical support personnel may not know anything about Unix networking. The latter is
easier to deal with than the former; you can always read a book, like this one, or consult
the Web for answers.

So, how can you find a Unix-friendly ISP? Call around and ask a lot of questions. Here are
some of the questions we ask when talking to a new ISP:

• What operating system do you use for your network? (ISPs that run Windows NT are
less likely to be helpful for Unix-using customers because these ISPs don’t run Unix
themselves.)

• Do we have to use proprietary software to connect to our account? Are you sure?
(Some ISPs prefer that you use their software, but you can still connect directly
through a PPP connection.)

• Are the connections you offer true PPP connections? (If so, you’ll be able to connect
without their software.)

• Does your technical support staff receive training on operating systems other than
Windows? (Although an answer that involves Unix may be rare, you can get a sense
of how friendly the ISP is to alternative operating systems.)

Continued on next page

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 566

567

• Do any of your users use Unix? How many? Do you offer technical support or documen-
tation for them? (Some ISPs have internal newsgroups for Unix users; others have no
idea whether they have Unix users at all. If the answer is no, they simply may not know.)

You probably won’t find the perfect Unix ISP, but there’s usually a solution in your local
calling area.

Dial-Up Hardware
The first thing you need to do when configuring your dial-up connection is to
connect your modem. Modems come in two types: external and internal. External
modems, as the name implies, are self-contained units that sit outside of your
computer and are attached to one of the computer’s serial ports with a cable.
Internal modems fit into an ISA or PCI bus slot inside your computer, displaying
a narrow metal band on the outside of the computer case. The band has a tele-
phone jack, to which you can attach a regular phone line.

Both types of modems have advantages: The internal modem takes up no extra
space in your work area; the external modem usually has a series of blinking
lights that give you useful information about the status of your network trans-
missions. You must open your computer case to install an internal modem, which
may be daunting to some people. In addition, if you don’t have an open bus slot
on your motherboard, but you do have an open serial port, you will need to use
an external modem. (Those readers who—like Kate—seem to collect serial
devices will probably have the reverse situation.) Some people maintain that
external modems are more efficient and durable, but we’ve seen no empirical
data that supports this claim. For what it’s worth, we’ve always used internal
modems and have had little trouble.

Software Modems
Beware the WinModem! If you are planning to buy a new modem for your Unix personal
computer, you must be aware of a real problem in the modem section of your favorite com-
puter supply store. Since the advent of Windows 95, a new subspecies of modem has flooded
the market, called the WinModem or software modem. These modems use operating-system
functions to replace some of the work normally performed by the modem’s hardware.`

Continued on next page

Dial-Up Networking

2817c35.qxd 11/13/00 2:46 PM Page 567

568

Software modems are operating-system dependent, and virtually all of them are built with
Windows in mind. Although some research has been done on getting these modems to
work under some flavors of Unix, right now WinModems are basically useless for the Unix
user. This is unfortunate: Software modems occupy the extreme low end of the price spec-
trum, and appropriate Unix-compatible modems may cost nearly twice as much as a com-
parable software modem.

You can recognize a software modem by its size. It is smaller than a regular modem, often
by half. Software modems are about the size of a tin of mints or a pack of unfiltered ciga-
rettes. Software modems can get away with being so small because they don’t use all the
pins in the bus slot to which they’re attached. You can also identify a software modem
while it’s still in the box, because they usually have slogans like “Made for Windows 98!”
printed on the packaging. If you just can’t tell whether the modem you’re looking at is a
software modem, though, get an iron-clad guarantee that you can return the modem if it
doesn’t work.

Once you’ve selected a modem and installed it physically, you need to config-
ure it for operation. If you’re using an integrated desktop such as Gnome or KDE,
you have a graphical tool that will help you get your connection set up. Some
Unix variants have a graphical tool incorporated into the operating system; oth-
ers require you to follow a text-based process. Graphical tools make the job easier,
and they’re especially helpful for working with network connections.

Case Study: Kppp
One of the better graphical tools for configuring dial-up is the KDE tool Kppp. It
is similar to other graphical configuration tools, such as Gnome’s gnome-ppp pro-
gram or the ezPPP tool, and users of those programs will see the resemblance. We
walk you through a Kppp session in this section to highlight the various parts of
dial-up network configuration. If you’re using KDE, you can use this section as a
detailed how-to guide; if you’re using another desktop or graphical configuration
tool, you’ll find that many of the steps are identical in your application.

TIP Linux users should check out their distribution documentation to see whether they
have a graphical network administration tool. Red Hat users, for example, have
the netcfg utility, which works much like Kppp.

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 568

569

Before you begin to configure your dial-up connection, you’ll need to know
some basic information about your ISP account:

• Your login ID and password

• The access phone number for the ISP’s modem banks

• The ISP’s IP allocation method (static or dynamic)

• IP numbers for the ISP’s DNS servers

• The modem’s device name

You’ll also need to know whether your ISP uses a specific gateway machine (and,
if so, what its name and IP number are); whether the ISP uses hardware or soft-
ware flow control; and any authentication methods used by the ISP. Once you
have that information, use the following steps to configure your connection.

1. Open the KDE menu and select Internet ➣ Kppp. The basic Kppp dialog
box appears, as shown in Figure 35.1.

F I G U R E 3 5 . 1 :

Using Kppp is a quick way
to configure your dial-up
connection under KDE.

Dial-Up Networking

2817c35.qxd 11/13/00 2:46 PM Page 569

570

2. Click Setup. The Kppp Configuration screen appears, open to the Accounts
tab, as in Figure 35.2.

3. Click the New button to open the New Account dialog box, open to the
Dial tab.

4. Enter the local ISP’s name, access number, and authentication type (if used).
If your ISP does not use authentication, select Script Based.

5. Select the IP tab, shown in Figure 35.3.

6. Select either the Dynamic IP Address or the Static IP Address option. Unless
you were told otherwise (and paid for a static IP number), select Dynamic
IP Address.

7. (Optional) If you selected Static IP Address, enter your static IP address and
the subnet mask address in the appropriate fields.

8. Select the DNS tab, shown in Figure 35.4.

9. Enter the Domain Name Server information from your ISP in the Domain
Name text-entry box. You should have two numbers; enter one and click
Add, then enter the second and click Add.

F I G U R E 3 5 . 2 :

Set up a new dial-up
account on the Kppp
Accounts tab.

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 570

571

F I G U R E 3 5 . 4 :

Identify the ISP’s Domain
Name Servers on the
DNS tab.

F I G U R E 3 5 . 3 :

Choose your IP settings on
the IP tab.

Dial-Up Networking

2817c35.qxd 11/13/00 2:46 PM Page 571

572

10. (Optional) Select the Gateway tab, shown in Figure 35.5. If your ISP uses a
static gateway machine, they will tell you. The gateway handles all traffic
between the ISP and the Internet; usually, this is handled dynamically. If
there is a static gateway, you will be given its IP number. Enter it here.

11. Click the Login Script tab.

12. Edit the login script, which sets up the way in which Kppp passes your
login name and password to the ISP. If the ISP doesn’t require a text-based
login, leave this blank. You may need to write a quick script; if so, see the
paragraphs following this numbered list for tips on writing a good login
script. A completed script is shown in Figure 35.6.

13. Click OK. The New Account screen closes, and you are returned to the
Kppp Configuration dialog box.

14. Select the Device tab, shown in Figure 35.7.

15. Select your modem device from the drop-down window. The exact identi-
fication will change from Unix variant to variant; you can usually use
/dev/modem, but you may need to use /dev/cua0 for an internal modem,
or /dev/ttyS0 or /dev/ttyS1 for an external modem. If you have trouble
making a connection, check this setting.

F I G U R E 3 5 . 5 :

If your ISP uses a static
gateway to control Internet
traffic, identify it here.

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 572

573

F I G U R E 3 5 . 7 :

Identify your modem config-
uration on the Device tab.

F I G U R E 3 5 . 6 :

Use a login script to pass
your username and pass-
word to the ISP.

Dial-Up Networking

2817c35.qxd 11/13/00 2:46 PM Page 573

574

16. Enter other requested information about your modem on this tab.

17. Select the Modem tab. Set the number of seconds that you want the com-
puter to wait before redialing in the Busy Waits box.

18. (Optional) Click the Modem Commands button to open the Edit Modem
Commands dialog box, shown in Figure 35.8. If you have a modem with an
unusual init string, you will need to change that here. Don’t change any-
thing here unless your modem’s manual instructs you to do so.

19. Click OK. You will be returned to the Kppp Configuration screen.

20. Click OK. The Kppp Configuration screen closes, and you are returned to
the main Kppp dialog box.

21. Click Quit to exit Kppp.

F I G U R E 3 5 . 8 :

If you have an unusual
modem, configure it on this
screen.

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 574

575

Writing a Login Script

If you need to use a login script for your ISP account, here is a quick script that
should get you started. Individual variations with your ISP may require you to edit
this script slightly, but it has worked with a wide variety of ISPs and Unix variants.
If it doesn’t work for you, check with your ISP’s help desk to see what you need to
do. (This is another good reason to choose a Unix-friendly Internet provider.)

The main thing to remember with a login script is that individual ISPs may cap-
italize certain components of the script, while others use lowercase letters. You
won’t know which method your ISP uses, so it’s easiest just to avoid the issue
altogether. Thus, in this script, you’ll see that the initial letters are missing. The
basic login script takes this form:

Expect ogin:
Send <login name>
Expect assword:
Send <password>

To build this script with Kppp, return to the Login Script tab of the Kppp New
Account dialog box and follow these steps:

1. In the upper-right text-entry box, type ogin: and click Add.

2. Select Send from the drop-down menu at the upper left.

3. In the text-entry box, type your username and click Add.

4. Select Expect from the drop-down menu.

5. In the text-entry box, type assword: and click Add.

6. Select Send from the drop-down menu.

7. In the text-entry box, type your password and click Add.

The completed script appears in the lower box, as you saw in Figure 35.6.

Dial-Up and FreeBSD
Although FreeBSD-specific packages for integrated desktop systems such as KDE
and Gnome should handle modem configuration properly, FreeBSD users should
know that dial-up networking has changed quite a bit in the latest versions of the
operating system. In FreeBSD 4 and later, all dial-up configuration is controlled

Dial-Up Networking

2817c35.qxd 11/13/00 2:46 PM Page 575

576

by the /etc/ppp/ppp.conf file. Simply open that file in a text editor and scroll to
the end of the file, where you’ll find a set of lines that look like this:

papchap:

#
edit the next three lines and replace the items in caps with
the values which have been assigned by your ISP:
#

set phone PHONE_NUM
set authname USERNAME
set authkey PASSWORD

Replace the all-capital material with the access phone number and your user-
name and password, adding a line above the block to identify this particular con-
figuration. The result might be

papchap:

#
edit the next three lines and replace the items in caps with
the values which have been assigned by your ISP:
#

LOCALISP:

set phone 555-1212
set authname sallyanne
set authkey m0th3r

Save the file and exit the text editor. At the shell prompt, issue the command

ppp –auto LOCALISP

The next time you issue a network command, such as doing a traceroute or
accessing a Web page, the modem should connect to your ISP and log you into
your account.

NOTE Those using FreeBSD versions earlier than 4 may need to configure their dial-up
networking by hand; consult the relevant FreeBSD handbook chapters at
http://www.freebsd.org/handbook/ to get yourself set up. The Modem and
PPP sections will be the most helpful.

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 576

577

Dial-Up and Solaris
Configuring dial-up access under Solaris is a lot trickier than under either Linux or
FreeBSD. First, check to see that the UUCP and PPP packages have been installed.
(If not, install them with the packageadd utility before beginning to configure a
dial-up.) If you have the correct packages installed, you can begin to configure
Solaris dial-up. Expect to spend a lot of time modifying various configuration and
device files.

We have not found a better description of the Solaris dial-up configuration
process than that offered by Mike Kempston at his extensive Solaris resources site.
His instructions are so clear and useful that we recommend any Solaris user inter-
ested in using a dial-up to use his document instead of Solaris documentation.
You can find Mike’s configuration instructions at http://www.kempston.net/
solaris/connectanyisp.html.

TIP While you’re there, don’t forget to check out Mike’s other Solaris resources at
http://www.kempston.net/solaris/index.html.

Ethernet Networking
If you’re not using dial-up networking, it’s almost certain that you’re using some
sort of Ethernet networking. Although there are other types of networks, such as
Token Ring, Ethernet has become the most common because of the convenient
and inexpensive design of the hardware. New Ethernet network interface cards
(NICs) can be had for as little as $20, and used ones can often be found for less
than that (or for free, depending on your scrounging skills).

The most common type of Ethernet equipment is 10BaseT or 100BaseT, in
which the T stands for twisted pair, the type of cable being used. Twisted-pair
cable is similar to telephone cable and has the same type of modular jack on each
end. The only difference is that the Ethernet modular jack is bigger than the
phone jack. One end of the cable plugs into the computer’s NIC, and the other
end attaches to a hub, a central switchboard.

Hubs come in a variety of sizes. For example, our home network uses a 5-port
hub that we purchased for about $40 at an office supply store. On the other end

Ethernet Networking

2817c35.qxd 11/13/00 2:46 PM Page 577

578

of the price spectrum, you can buy a 24-port hub that might be suitable for
wiring a complete office. Also, hubs can be chained together to provide as many
individual ports as are needed. Once all the computers have been connected to
the hub with the twisted-pair cable, all that remains is simply to configure and
activate the interface to make the network operational. Ironic though it may
seem, given the perceived complexity of Ethernet networking, this is actually
easier than configuring a dial-up connection under Unix.

Configuring and activating an Ethernet network interface are done in one step
with the ifconfig command. ifconfig is a fairly flexible command that can be
used to configure an interface, bring it up or down, or simply report information
about the interface. It uses the basic syntax

ifconfig <interface> [<IP number>] [<options>] [up|down]

where items in angle brackets should be replaced with your specific information,
and items in square brackets are optional.

Before you can bring up a network interface, you need to know your IP num-
ber. If you’re part of a larger network, your system administrator may assign
you a number; if you are connecting to an ISP that uses static IP numbers, you’ll
receive that number as part of the sign-up process. However, if you’re creating a
private network, you can use any numbers you want. Because you may connect
to the Internet at some point, though, you should use IP numbers designated for
private networks.

IP Numbers and Network Designations
The Internet Protocol divides IP numbers into classes. Class A networks use IP numbers
from 0.0.0.0 through 255.255.255.255. Obviously, because this is the entire IP address
space, most Class A networks have only a subset of these numbers available to them. An
example might be the numbers between 22.0.0.0 and 24.255.255.255 being allocated
to a specific network.

In a Class B network, the octet at the farthest left is always the same. An example of a
Class B network’s IP range might be 123.0.0.0 through 123.255.255.255. Class C net-
works, like Class B networks, use a constant left octet, but in the Class C network ranges,
the second octet is also constant. Thus, 123.231.0.0 through 123.231.255.255 would
be an example of a Class C IP range.

Continued on next page

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 578

579

Network classes are distinct from the concept of private address spaces. IANA (the Inter-
net Assigned Numbers Authority) has set aside an address space in each network class for
IP numbers that will not ever be used by computers connected to the Internet. Thus, these
numbers can be used by many different people on many different networks, because
these numbers don’t have to be used as unique Internet identifiers. For the purposes
described in this chapter, you simply need to remember that the IP numbers reserved in
the Class C range are 192.168.0.0 through 192.168.255.255.

The IP numbers reserved for private networks in the Class C IP range are 192.
168.0.0 through 192.168.255.255. This range offers 65,536 unique IP numbers,
which should be more than enough for almost any private network. (If you need
more than 65,000 IP numbers, chances are you’re not running a private network
anymore.) You can use these numbers as part of your internal network freely; even
though other private network administrators are using the same numbers on their
networks, you won’t have a conflict as you would if you were using someone else’s
non–Class C IP numbers.

For the purposes of this section, assume that you have three computers that
you’re networking together for a small private system. Using the Class C range,
you assign them the IP numbers 192.168.0.1, 192.168.0.2, and 192.168.0.3.
Once you have determined the number that will be assigned to each computer,
you can configure them. To illustrate the differences in Ethernet configuration,
the first machine is a Linux machine, the second is a FreeBSD machine, and the
third is a Solaris machine.

NOTE Avoid giving your computers IP numbers that end in 0 or 255, because these num-
bers have special meanings in the TCP/IP protocol. Zero is the network address,
and 255 is the broadcast address.

Linux, FreeBSD, and Solaris all use different naming conventions to designate
network Ethernet interfaces. Linux uses ethX, FreeBSD uses epX, and Solaris uses
leX, where X equals a particular device number. So, to configure the Linux
machine on this small network, you’d issue the following command at the
machine’s shell prompt:

ifconfig eth0 192.168.0.1 up

Ethernet Networking

2817c35.qxd 11/13/00 2:46 PM Page 579

580

On the FreeBSD machine, you’d issue the command

ifconfig ep0 192.168.0.2 up

and on the Solaris machine, you’d issue the command

ifconfig le0 192.168.0.3 up

All machines should now be up and connected to the network. Look at your Eth-
ernet hub; you should see lights representing each cable connection. If all the
lights are showing, it’s time to test the connection.

To test the network, try to reach each of the machines from the other machines
on the network. On the network’s first machine, the Linux computer, issue the
command

ping 192.168.0.2

at the shell prompt. You should receive output that looks like this:

PING 192.168.0.2 (192.168.0.2) from 192.168.0.1 :➥

56(84) bytes of data.
64 bytes from 192.168.0.2:icmp_seq=0 ttl=255 time=0.5 ms
64 bytes from 192.168.0.2:icmp_seq=1 ttl=255 time=0.5 ms
64 bytes from 192.168.0.2:icmp_seq=2 ttl=255 time=0.4 ms
64 bytes from 192.168.0.2:icmp_seq=3 ttl=255 time=0.4 ms
64 bytes from 192.168.0.2:icmp_seq=4 ttl=255 time=0.4 ms
64 bytes from 192.168.0.2:icmp_seq=5 ttl=255 time=0.4 ms
64 bytes from 192.168.0.2:icmp_seq=6 ttl=255 time=0.4 ms
64 bytes from 192.168.0.2:icmp_seq=7 ttl=255 time=0.4 ms

This output will continue until you press Ctrl+c to stop it. The output shows
that network signals are reaching the remote machine and are being sent back to
the originating machine. This is exactly what should be happening, and signifies
that the connection between the Linux and FreeBSD machine is fine. Repeat the
process between every other machine on the network to make sure that messages
can be sent and received. When you can successfully ping every machine from
every other machine, you have built an operational Ethernet network.

Things are still a bit ungainly, though, because you still need to identify each
machine by its IP number. It would be much simpler if each machine had a name,
because names are easier to remember than strings of numbers. You may have
identified each machine with a name when you installed its operating system, but
if you did not, you can still name your machines with the hostname command.

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 580

581

NOTE hostname may operate differently from system to system. Check your specific
variant documentation to learn how hostname will work for you, or consult the
manual page by issuing the command man hostname at the shell prompt.

Assume that you’ve named these machines linux, freebsd, and solaris.
Once the hostnames have been assigned, you need to set up the machines to rec-
ognize each other by name as well as by IP number. Unlike with device configu-
ration, you can control hostname identification by editing the /etc/hosts file on
each computer.

On the first computer in the network, linux, open the /etc/hosts file in a text
editor and edit the file so that it looks like this:

127.0.0.1 linux localhost.localdomain localhost
192.168.0.1 linux localhost
192.168.0.2 freebsd
192.168.0.3 solaris

Save the file and exit. On the second computer, freebsd, open the /etc/hosts
file in a text editor and edit the file so that it looks like this:

127.0.0.1 freebsd localhost.localdomain localhost
192.168.0.1 linux
192.168.0.2 freebsd localhost
192.168.0.3 solaris

Save the file and exit. On the third computer, solaris, open the /etc/hosts file
in a text editor and edit the file so that it looks like this:

127.0.0.1 solaris localhost.localdomain localhost
192.168.0.1 linux
192.168.0.2 freebsd
192.168.0.3 solaris localhost

Save the file and exit.

Now that all the network machines are identified by name and IP number in
the other machines’ /etc/hosts files, you can use the machine names to identify
network computers just as you used IP numbers. This makes the network easier
to manage and enables the use of programs that require the use of remote host-
names instead of IP numbers.

Ethernet Networking

2817c35.qxd 11/13/00 2:46 PM Page 581

582

DHCP and PPPoE
The Dynamic Host Configuration Protocol (DHCP) is the service used by your
ISP to allocate dynamic IP numbers. It’s unlikely that you’ll need to tinker with
your DHCP client settings, because they work automatically with your ISP to
obtain a temporary IP number for any given session. You will probably not be
affected by DHCP trouble at your ISP’s end unless they run out of IP numbers, in
which case you won’t be able to make a connection.

DHCP servers use a priority protocol to assign a random IP number from a given
pool of numbers anytime that a request is made from a client. If you run a DHCP
server, you can set a lease period for each request. The lease period is the period of
time that any given client can use an IP number before the client must break that
connection and reregister with the DHCP server for a new IP number. Lease peri-
ods vary in duration from very short periods, such as 30 minutes or an hour, up to
several billion seconds (which creates a simulated indefinite lease period).

TIP Some regions, especially in Canada, are turning to an alternative method for
assigning dynamic IP numbers. PPPoE (Peer-to-Peer Protocol over Ethernet) is a
new method that controls network connections for high-speed hardware devices
such as cable modems and DSL. If you have a PPPoE connection, you will probably
receive an appropriate client when you install the software provided by your high-
speed access provider.

Routers and Gateways
Once your network is working, you’ll probably want to connect it to the Internet
at some point. Even if you don’t want to connect it directly to the Internet, you
may need to connect your local network to another network for some reason.
Such connections are usually made through a gateway machine or device. A gate-
way is just what its name implies: a machine that connects a network to another
network. In the case of small networks, a gateway machine may be a single com-
puter; large networks probably require the use of a dedicated router.

A router is a specialized piece of equipment that makes decisions about where
to send network traffic, based on a variety of factors. Although ordinary comput-
ers can be made to act as routers, most administrators of large networks prefer to
use machines designed for the particular tasks unique to routing. At the time we

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 582

583

wrote this book—and for many years previously—the most popular routers were
those made by the Cisco corporation.

Although they are not computers in the regular sense of the word, routers can
take IP addresses just as regular computers can. When you want to connect to
the Internet with one of the computers on the network, you can point out a
default route to the Internet: the router’s IP number. This tells the local computer
that any traffic not explicitly destined for another machine within the local net-
work should be sent through the gateway. Once that traffic gets to the gateway,
the gateway machine will determine where to send the traffic so that it reaches
its destination most efficiently. Setting up a default route on each individual net-
worked computer is done with the route command and is a good way to memo-
rize your router’s IP number. The route command is used to update the kernel’s
IP routing table. The command has a somewhat complicated syntax with multi-
ple options.

NOTE To demonstrate the route command, we need to assume a different network
than the one used previously. You can’t use Class C private IP numbers unless you
use a special function called IP masquerading or NAT (Network Address Transla-
tion) for this. We cover IP masquerading below.

Assume that you have a network consisting of several machines with IP num-
bers ranging from 253.232.15.26 to 253.232.15.30. In addition to these user
machines and servers, you also have a dedicated router with the IP address 253.
232.15.20. For data from your user machines and servers to reach the Internet,
and for Internet traffic to reach your network machines, you need to configure
the router as a gateway.

Issue the command

route add default gw 253.232.15.20

at the shell prompt. With this command, you set the dedicated router as the
default gateway for the entire network. Any traffic sent outside the network, or
received from machines not on the network, will pass through the router.

NOTE Because routers handle a lot of traffic, they must be robust machines. They also
can fail in ways unknown to most Unix administrators. This is why there are special
certifications for routing specialists, and those certifications are often linked to
particular hardware platforms such as Cisco routers.

Routers and Gateways

2817c35.qxd 11/13/00 2:46 PM Page 583

584

Small Networks
It may be the case that you have a very small network, perhaps one at home or
one used for a small business, that is connected to the Internet through a cable
modem or a DSL hookup. In this case, the modem itself acts as the router; cable
and DSL modems are external modems with complicated hardware inside.
Because the modem may not be set up to handle multiple machines, you will
need to set up gateway functions on one of your networked computers if you
plan to use the Internet connection throughout the network.

WARNING You may be prohibited by the terms of your agreement from using the cable
modem or DSL modem to handle network traffic. Consult your service agreement
and the provider’s Acceptable Use Policy before you configure any networking ser-
vices to take advantage of your constant connection.

To set up gateway functions on a network computer, you must first decide
which computer to use for that purpose. Assume that you are using the same net-
work as the one for which you created a gateway in the previous example, except
that there is no dedicated router. If you decide that the machine 253.252.15.26
is to be the gateway, you can issue a modified route command at the shell
prompt of that machine, as in

route add default eth0

This command tells the computer that all nonlocal traffic needs to be sent out
through the first Ethernet device (eth0 under Linux, ep0 under FreeBSD, and le0
under Solaris).

In this type of situation, the gateway typically has two NICs: one connected to
the external modem and the other connected to the internal network through the
hub. One IP address will be assigned to each card, and the card connected to the
modem is defined as the default route. Thus, a full setup on this gateway
machine under Linux would be done with the following commands:

ifconfig eth0 <first IP number> up
ifconfig eth1 <second IP number> up
route add default eth0

TIP You can issue the same commands on a FreeBSD or Solaris gateway machine as
long as you use the correct device terminology.

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 584

585

Then, you can configure the other machines in the network to recognize the new
gateway machine. To do this, you need to designate the IP number of the second
network device (eth1 in this example) as the default route, by issuing the command

route add default gw <second IP number>

at the shell prompt of every other computer in the network.

IP Masquerading
One of the most useful tools for small networks is the technique of IP masquerad-
ing. This is the process through which all local network traffic appears to external
machines as if it were coming from a single computer: the gateway machine. The
advantage of using IP masquerading is that you need only one “real” IP number
for your network; all the other numbers that you use for network computers can
be taken from the Class C range for private networks.

NOTE Native masquerading functions are not available on Solaris. We explain how to set
up masquerading under FreeBSD and Linux below.

For example, assume that you have a gateway machine with a static IP number.
You received this IP number when you registered a domain name and arranged
for the domain to be hosted somewhere, or when you signed up for cable or DSL
Internet service. The machine’s IP number, 201.121.42.12, has been assigned to
one interface on the gateway machine. If you have a cable or DSL modem, that
interface carries the IP number. The other interface on the gateway machine car-
ries an IP number from the Class C private network range, such as 192.168.0.1.
All the other machines on the network get Class C IP numbers as well. A diagram
of this situation is shown in Figure 35.9.

Meanwhile, you’ve activated masquerade functions on the gateway machine.
To the outside world, it appears that all the traffic generated from your network is
coming from a single machine: the one identified with the IP number 201.121.
42.12. That machine will keep track of all the traffic sent to the Internet from the
individual network machines. If responses come from external machines, the
gateway will sort those responses out to the correct machines that initiated the
external contact.

IP Masquerading

2817c35.qxd 11/13/00 2:46 PM Page 585

586

WARNING Neither of the methods that follow have any kind of security set up. If you just fol-
low these steps and do not add any security measures, you are wide open and
available for exploit. Before you begin to work with IP masquerading, read Chap-
ter 38: “Network Security” and determine what your security plan will be for your
entire network.

IP Masquerading with FreeBSD
FreeBSD uses the Network Address Translation Daemon (natd) to handle IP mas-
querading. To set up masquerading on a FreeBSD gateway machine, first make
sure you have natd installed. Next, build a custom kernel with the following two
options included:

options IPFIREWALL
options IPDIVERT

192.158.0.3

Local Machines192.168.0.2

Masquerading Gateway

 20.211.153.12

Remote Server
sees all traffic
as coming from
20.211.153.12

Remote Server

192.168.0.4

F I G U R E 3 5 . 9 :

IP masquerading can help
you run an entire network’s
Internet traffic through a
single number.

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 586

587

TIP See Chapter 32: “Getting to Know the Kernel” for more information on building
the FreeBSD kernel.

Open the /etc/services file in your favorite text editor and make sure that
the following line is included:

natd 6668/divert #Network Address Translation socket

Save the file and exit the editor.

Add the following lines to your /etc/rc.firewall script. (If you don’t have
an /etc/rc.firewall script yet, create a new file with that name and add the
following lines to it.)

/sbin/ipfw –f flush
/sbin/ipfw add divert natd all from any to any via eth0
/sbin/ipfs add pass all from any to any

Save the file and exit the editor.

Add the following lines to the /etc/rc.conf file:

natd_enable=”YES”
natd_interface=”eth0”

Save the file and exit the editor.

Once you’ve edited all the requisite files, issue the following commands at a
shell prompt:

firewall=client
/etc/rc.firewall

Bring up your interfaces and set your routes as explained earlier in this chapter.
Your masquerade should be running cleanly, and all outgoing traffic will appear
to come from your single IP number.

IP Masquerading with Linux
Under Linux, the process of IP masquerading is a bit simpler. Compile your ker-
nel with masquerade and IP forwarding support.

IP Masquerading

2817c35.qxd 11/13/00 2:46 PM Page 587

588

TIP If you’re using a stock kernel from one of the major Linux distributions, such as
Red Hat, Slackware, or Debian, masquerading and forwarding are probably
already compiled as modules in your kernel. Don’t worry about recompiling unless
this process doesn’t work.

Bring up your network interfaces, then start the masquerading process by issu-
ing the following commands at the shell prompt:

ipchains –P forward DENY
ipchains –A forward –I eth0 –j MASQ
echo 1 > /proc/sys/net/ipv4/ip_forward

Next, set up your routes as explained earlier in the chapter. Your masquerade
should now be running cleanly.

NOTE By the time this book is printed (late 2000), the 2.4 version of the Linux kernel
may already be available. In 2.4 kernels and later, the ipchains method shown
here will no longer be the supported method of IP masquerading under Linux.
Instead, the Linux kernel will support a new method called netfilter, which
uses a different mechanism. You don’t need to know how netfilter is different
from ipchains to use it, but you do need to know that change is coming, and, if
you obtain a copy of Linux that uses a kernel newer than 2.4.0, you’ll have to find
more recently written documentation to set up IP masquerading properly. The
technical Netfilter Hacking HOWTO can be found at http://netfilter.
kernelnotes.org/unreliable-guides/netfilter-hacking-HOWTO.html.
Once the new kernel is released, more user-friendly guides to netfilter will
likely be available on the Web. Check your favorite Linux news site.

Summary
Whether you have a standalone Unix computer or you administer a network con-
taining dozens of machines, networking issues are important to you. Even the
single-computer user will connect to another network at some point, and the
techniques used on small local networks are the same as those used across the
Internet. Networks are built by connecting computers with hardware, either Eth-
ernet or telephone cable, and with hub devices that split traffic to the various

Chapter 35 • Network Interfaces and Routing

2817c35.qxd 11/13/00 2:46 PM Page 588

589

computers connected to the network. Each computer must be configured to rec-
ognize the other computers on the network, as well as any gateway machines or
routers that monitor traffic in and out of the network.

Configuration differs for dial-up connections to other networks, such as the
Internet, and constant connections such as those found on Ethernet networks.
The basic principles are the same, however, and once the devices are configured
properly, both networks behave in the same manner as they deal with data. One
reason for this similarity is that all networks use the unique identifying addresses
called IP numbers; however, it is possible to “hide” a complete network behind
one IP number so that the small network can handle all its network traffic while
appearing as one machine on the Internet. Regardless of how your network is
configured, or how many IP numbers you have allocated to that network, you
can attach computers running different operating systems to the same network so
that they can share resources.

Summary

2817c35.qxd 11/13/00 2:46 PM Page 589

This page intentionally left blank

C H A P T E R
T H I R T Y - S I X

The Distributed System

� Clients and Servers

� Distributing Services across Multiple Machines

� Backing Up Multiple Machines

� The Security Advantage

� Summary

36

2817c36.qxd 11/13/00 2:47 PM Page 591

592

Although the main purpose for many networks is to attach multiple user
machines so that they can share resources and data, there are other advantages
to network construction. One of the most significant advantages is the ability
to distribute programs or data across several machines. This practice allows
the system administrator to isolate individual services as necessary or inte-
grate those machines fully into the network. No matter how many services you
choose to run, you may find an increase in reliability and speed if you switch
from multiple-service machines to a multiple-machine network.

In this chapter, we cover the client-server architecture of most Unix networks.
We also show you how to build a distributed network, from the earliest planning
stages to full implementation. Then, we explain how best to distribute your vari-
ous services between the networked machines, and how to back up and manage
those machines. Finally, we discuss the security advantages of using a multiple-
machine setup for your servers. Regardless of the reasons for which you choose
to distribute services across multiple machines, you will probably find that your
system as a whole is easier to operate and less prone to successive failures if you
create a system that does not rely on a single machine to provide every function
required by the network and its users.

NOTE As we’ve mentioned elsewhere in this book, you shouldn’t run all the servers that
are available just because. Rather, we encourage you to select the servers that make
the most sense for you and your users, and to implement those servers in a tight and
well-managed way. One benefit of a multiple-machine network is that you can work
on servers individually without the concern that you might inadvertently bring the
whole network down as you are working on one portion of it.

Clients and Servers
In Chapter 6: “The X Window System: An Overview,” we introduced the concept
of client-server architecture. The X Window System may not be the best illustration
of client-server architecture, though it is certainly a popular implementation of
the concept. Client-server mechanisms are integrated into Unix on a variety of
levels. If, for example, you use your Web browser to request the home page at
http://www.cnn.com, your browser acts as a client and makes a request to the

Chapter 36 • The Distributed System

2817c36.qxd 11/13/00 2:47 PM Page 592

593

CNN Web server. The server then provides the requested data to your browser,
which in turn shows you the news. The basic layout of a client-server architecture
network is shown in Figure 36.1.

Though external services such as the Web and electronic mail are certainly the
most well-known services, they are not the only ones that you might run as a
system administrator. The X Window Server is certainly one that you will need
to run if you want any sort of graphical display on your network’s terminals.
You may also want to run a font server to provide access to different fonts to the
users on your network, without having to install the fonts individually on each
of their machines.

However, though you may use local servers such as X or a font server to pro-
vide data and resources to your users, the widely distributed services are the ones
that would benefit most from a distributed network of machines. Especially when
dealing with the servers that handle Internet traffic, these distributed services can

Server

Client Client Client

F I G U R E 3 6 . 1 :

Client-server architecture is
based on requests and
answers, and is the basis of
many popular Unix pro-
grams and services.

Clients and Servers

2817c36.qxd 11/13/00 2:47 PM Page 593

594

generate a large amount of traffic that may be enough to hamper or even bring
down a network. Depending on your Internet connection method and speeds,
even a popular mailing list might generate enough messages to significantly slow
down your connection if a few of your users are subscribed to it or lists like it.

More likely, if you are running a mail server on the same machine that hosts
your filesystem and other services, the load from dealing with the incoming mail
will take a disproportionate amount of processor cycles. All other tasks on the
system will take a back seat to the incoming e-mail, which can cause sluggishness
and other unwanted effects for all users. This is one of the major drawbacks to
using multiple-service machines on your network, especially if those machines
also hold user accounts and data.

Multiple-Service Machines
The multiple-service machine is a standard part of many networks. In fact, many
networks rely on a single server to generate all the responses to multiple client
requests from the various user machines connected to the network. This is a rea-
sonably efficient way to begin with your first network or to manage a very small
network, but it’s not particularly efficient in terms of processor use or security.

The most common multiple-service machine is the one on which the adminis-
trator decided to load as many services as possible, whether because she had the
packages available or because she felt they were all necessary. We have seen
many such machines carrying electronic mail servers, USENET news servers,
Web servers, the various INET services, and other server programs, all on one
machine. Figure 36.2 shows a representation of such a network. Yes, it’s conve-
nient, but at what cost?

A Multiple-Service Case Study

Consider espresso, a machine like the ones described in the previous paragraph.
espresso is a reasonably fast and robust machine with a 5GB hard drive and
64MB of RAM. It is connected to the Internet through an aDSL connection, which
provides high-speed broadband access (though weighted on the side of speedy
downloads, not uploads). espresso’s system administrator has loaded five or six
different servers onto the machine, because it is the only server he has. The other
five machines on the network are all user machines.

Chapter 36 • The Distributed System

2817c36.qxd 11/13/00 2:47 PM Page 594

595

Julia has an account on latte, one of the user machines that is connected to the
espresso server. When she gets to work in the morning, she makes several
simultaneous requests on her computer.

NOTE No, these are not technically simultaneous requests; that is, she does not make
them all at the exact same time. However, they occur very rapidly, within the span
of a minute or two. For single-processor servers, that is often close enough to
simultaneous to have the same effect.

Julia’s regular habit is to log in, and then to check her e-mail, pull up her favorite
Web portal, and open her newsreader at the same time. While she shifts between
reading the data from each of these requests, she wants all the data there on her
desktop immediately.

Each of Julia’s morning tasks generates an individual request to a different ser-
vice hosted on espresso. The e-mail request goes to the sendmail mail server,

Client

Web Server

News Server

Mail Server

Client

Client
Client

4 clients, 3 servers = 12 connections

Web Request
News Request

Mail Request

F I G U R E 3 6 . 2 :

Loading multiple servers
onto one machine can be
convenient, but it may
affect speed and perfor-
mance, and you have one
single point of failure.

Clients and Servers

2817c36.qxd 11/13/00 2:47 PM Page 595

596

the Web request is fed to Apache, and the newsreader requests data from the
INN news server. Because espresso hosts all these services, the requests are all
handled by espresso’s processor in the order that they were received. If one of
these requests generates a particularly complicated process or initiates a fairly
large download—perhaps Julia reads a high-traffic mailing list or a graphics-
intensive Web portal page—the other requests must wait for the completion of
the first request’s timeslice before their turn comes.

NOTE Remember the difference between timeslicing and task-switching. Unix uses a
timeslice method of processor cycle allocation, in which a series of requests is
allocated a particular period of CPU time; other operating systems use a task-
switching method, in which the first request in a series must be completed
before the second request is begun. Even with the more efficient timeslice
method, queued Unix requests must share processor time; if a large or compli-
cated process is in the queue, it will take some time to finish because it can
access the processor for only short, timed periods.

Julia’s morning routine is less efficient simply because her requests must be
queued and acted upon at the same time. Now, let’s complicate the example by
bringing up the topic of network congestion. Julia is not the only employee in her
company; remember, espresso serves five user machines. If each of those other
users makes the same requests to the server at the same time, everyone’s requests
are queued in the same line. Julia’s Web request may not be next to her e-mail
request in the queue; rather, it may be seven or eight requests back because sev-
eral of her co-workers’ requests arrived between the time espresso processed
Julia’s Web request and her e-mail request.

Tolerance for delay is different for each individual user. What may seem suffi-
ciently quick to one user may be intolerable to another. However, the more users
you have issuing requests to a multiple-server machine, the more likely that those
users will all be increasingly frustrated as the single server machine works to ful-
fill all requests.

NOTE The problem is often exacerbated as annoyed users continue to re-request the
same items by clicking Reload or other similar menu items, because the processor
sees each of these requests as new individual processes and not as an encourage-
ment to hurry up.

Chapter 36 • The Distributed System

2817c36.qxd 11/13/00 2:47 PM Page 596

597

This example should not give you the impression that multiple-server machines
are always a bad idea. In fact, for the very small network or the administrator ham-
pered by a lack of money, the multiple-server machine is a good solution. However,
as you increase the number of users on your network, you should trace the kinds of
requests that they send and consider splitting some high-traffic servers onto their
own machines. This will speed up the overall network performance and will make
the growing number of users happier.

Distributing Services across
Multiple Machines

To avoid the sort of problems experienced by the users of the espresso server
described in the previous section, the multiple services housed on one machine
could be distributed to several different machines on the same network. There
are several ways to distribute data and programs across multiple machines;
some networks use individual machines for individual services, while others
move particular parts of the filesystem onto different machines. Regardless of
the method you choose, you need to figure out why you want to distribute ser-
vices or files, and then come up with a plan to make the distribution as seam-
less and effective as possible.

In general, you’ll be able to tell when you’re ready to move to a distributed sys-
tem. When you review your logs or check your system processes, you’ll be able to
tell what kind of requests are generating the most system traffic. You may be
receiving a lot of Web requests, or you might be handling a deluge of incoming
and outgoing e-mail. Any service that generates traffic out of proportion to the
other major services is a likely candidate for a new networked machine of its own.
The most commonly moved services are Web servers and electronic mail servers,
because those two services generate a significant amount of network traffic.

When you begin to design your new multiple-machine server network, you’ll
have to think about hardware. Luckily, servers don’t necessarily have to be flashy
machines. You’ll probably want your Web server machine to have a faster proces-
sor and a large hard drive if you serve a lot of page requests, simply because a
faster machine will fulfill those requests faster and get them off your network. An
e-mail server doesn’t have to be quite as fancy, but you should put a nice big hard
drive on an e-mail machine. That way, if you have users who don’t delete a lot of

Distributing Services across Multiple Machines

2817c36.qxd 11/13/00 2:47 PM Page 597

598

their mail right away (or who save large files in their individual mail spools), you
won’t have to take resources away from other users to serve the hoarders.

TIP If you’re building a firewall or proxy machine (see the next section or Chapter 38:
“Network Security”), you don’t need a fancy machine at all. Go for something
reliable and small; we ran a gateway on a 486 with a small hard drive for several
years without trouble. As long as you can run an operating-system kernel that has
no known security holes, the machine is sufficient for gateway use.

We suggest starting your multiple-machine server network with a separate
machine dedicated to Web service. Web servers are some of the most frequently
cracked servers on the Internet, and Web pages are data that users expect to receive
quickly without trouble. All the advantages of a distributed system come into play
with a Web server machine. So, when you get ready to install Apache because you
are about to begin hosting your own domain’s Web pages, consider doing so on a
separate machine.

After you’ve worked out the bugs with an Apache machine, we suggest that you
next split off your e-mail server. This is especially important if you have a large
number of users or a smaller number who are intensive e-mail users. Putting e-mail
on a separate machine means that you can devote a larger portion of the hard drive
to the incoming mail spool, thus lessening the time you need to spend on harassing
your users to delete mail or move it to their /home directories after it’s read.

WARNING If you want to build a POP server so that your users can all log in remotely with
graphical mail readers such as Eudora, it’s best to place this server on a separate
machine. POP servers pass their passwords in clear text, and that’s a security risk
you don’t need on your main filesystem machine, especially if your users’ mail
passwords are the same as their login passwords.

Other servers don’t generate as much traffic and thus don’t need their own
machines as much as Apache and your e-mail server. However, depending on
the way in which you use your network, you may find that it’s more logical to
put these other servers on their own machines. If you run a small ISP, you’ll
probably want to put USENET news on its own machine. If you serve a lot of
file transfer requests, you might want to put an FTP server on its own machine;
however, because so many people use Web browsers to access FTP sites these

Chapter 36 • The Distributed System

2817c36.qxd 11/13/00 2:47 PM Page 598

599

days, we suggest putting your FTP server on the same machine as the Web
server. That way, users making FTP requests from a browser will experience
less lag as the request is transmitted to the FTP server. A sample reorganization
of espresso’s network is shown in Figure 36.3.

Backing Up Multiple Machines
One task that does become more complicated as you spread services across
multiple machines is the process of backing up your files. We’ve known too
many administrators who start to slack off on their backup duties as the num-
ber of machines to back up increases. Don’t lose track of your backups. The
multiple-machine network is one of the best reasons to use cron and at, the
automatic scheduling tools introduced in Chapter 28: “System Programming.”

Client ClientClientClient

No Server has more than 4 connections

Mail Server News Server Web Server

F I G U R E 3 6 . 3 :

espresso’s administra-
tor might reorganize net-
work services on multiple
machines like this.

Backing Up Multiple Machines

2817c36.qxd 11/13/00 2:47 PM Page 599

600

You can set up an automatic program that will create backup files without any
intervention from you or others on the network, and you will always have a
reasonably current backup of the many machines on your network.

The easiest way to back up multiple machines on a network is described in the
steps below. Make sure that you have sufficient room to store the multiple backup
files; you may even want to set up a separate machine just for storing backups.

WARNING No matter how you handle the backups, never keep a backup file on the same
machine from which it was created. That is, don’t keep your Web backup file on
the machine that holds the Apache Web server. If the machine crashes or is
cracked, you won’t have access to the backup files you need to rebuild the service.

To set up automatic backups for your multiple-machine service network, follow
this process:

1. Set up cron jobs on each machine, using the crontab –e tool, that will gen-
erate backup archives. The easiest way to build the /etc/crontab entry is
to use the tar command when creating the archives. For example, you
could use the following line as an entry in /etc/crontab:

tar cvf /backupdir/$HOSTNAME-`date`.tgz /important-dir

2. Make sure that your entries in /etc/crontab on all the server machines
point the backup archives to a uniform location on each machine. We sug-
gest a directory called /backup to make the location easy to remember.

3. Set up a cron job on your central machine that will use the rsync command.
rsync will synchronize all the /backup directories on all the relevant
machines. A sample entry might be

rsync -e ssh -ar espresso:/backup/ /backup/

In this example, there are several critical flags:

• -e designates the method of network connection; we recommend ssh
for security reasons.

• -a designates archive mode, meaning that everything in /backup is
saved.

• -r designates recursive mode, meaning that subdirectories will also be
synchronized.

Chapter 36 • The Distributed System

2817c36.qxd 11/13/00 2:47 PM Page 600

601

Using the syntax of this example means that all files from the named
machine (espresso) will be copied to the local machine that issues the
rsync command.

4. Repeat this command with crontab –e for every server machine you want
to back up to the local machine.

The Security Advantage
Distributing services across multiple machines has a distinct security advantage. If
you run a service on an individual machine, you can isolate that machine quickly
if a problem occurs. Likewise, you might want to password-protect the individual
server so that even users on the same network need to verify their identities before
the server will permit access.

Assume that you are running Apache on an individual machine to serve the
large number of requests you get for your corporate Web pages. If the Web
server gets cracked, you can shut down the Web machine as soon as you notice
the intrusion. However, even though your Web server is offline and those pages
can’t be accessed by anyone outside or inside your network, all other services
continue to work, and the security risk is relatively small. If you had been run-
ning Apache on a multiple-service machine, however, you might have had to
bring down the entire machine to check the system and see what had been
affected or compromised. Once the cracker had access to the Web server, he also
had access to all the other files on the multiple-server machine because the
filesystem was easily accessible.

It makes sense to isolate the servers that are usually called from outside the
network and place those servers on individual machines connected to the net-
work. In addition to speeding up the response to individual requests, it also
makes those servers easier to seal off against external attacks. You can make the
network even more secure if you limit outgoing and incoming access to the
server machines so that other computers on the network won’t be able to make
random connections to the servers.

The Security Advantage

2817c36.qxd 11/13/00 2:47 PM Page 601

602

Reinforcing Multiple-Server Security
Before you begin to consider distributing your various services across multiple
machines, we strongly encourage you to read Chapter 38: “Network Security.”
If you run servers and have traffic robust enough to consider using multiple
machines, you probably have a need for extra security precautions. In particu-
lar, you should set up firewalls or proxies for your users and your most fre-
quently used services.

If you are using a Unix variant that has the ability to implement firewalls, use
it. You can firewall off the ports you aren’t using, and you can lock down all ports
on a given service machine that aren’t used for that service. For example, if you
are running an electronic mail server on a given machine, you can lock down all
ports not needed by either the server or the connection to the local network. That
limits the number of connections made to the e-mail machine; if you see unusual
activity in the logs, centering on ports not used by the mail server, you know that
something untoward is going on.

We recommend a gateway system, where you place an individual machine at
the front door of your internal network. All traffic will pass through the gateway
to be routed to the appropriate machine. If you have set up internal rules that
define the type of traffic that’s permissible on your system, the gateway machine
will enforce those rules. See Chapter 38 for more information on gateways, and
Figure 36.4 for a diagram of a multiple-server network that uses a gateway (in
this figure, we’ve also shown the effect of locking down the Web server machine
in response to a security breach).

You should also consider using proxies in your security regimen. If you set up a
proxy, your internal users must pass their requests through an internal guard
machine before those requests are sent to the outside world. This helps to shield
your internal network machines from any security risks that might occur while
the requests are being transmitted to the external world.

TIP One of the security programs on the CD-ROM included with this book, Dante, is a
self-contained proxy package. You can find other useful security software in one
of the many Unix file archives on the Web; because security software changes so
rapidly in response to real-world needs, you are best served by finding new and
effective software to serve your proxy and gatewaying needs.

Chapter 36 • The Distributed System

2817c36.qxd 11/13/00 2:47 PM Page 602

603

Summary
Although most beginning network administrators load all the servers they wish
to run onto a single machine, this is not always the best way to handle multiple
servers. The Unix client-server architecture can run successfully whether the
servers and clients are on separate machines or on the same computer, but the
quality of the connection may vary depending on how heavily the various
servers are used and where the requests originate.

In contrast to the single machine running multiple servers, we suggest that any
administrator experiencing significant request load consider building a multiple-
machine server network. By allocating individual services to individual machines,
the administrator can spread out service requests, increase the amount of processor

Client Client

Gateway/Firewall

Client

Web Server News Server Mail Server

F I G U R E 3 6 . 4 :

A gateway machine and
individual server machines
lead to a more secure net-
work that can isolate indi-
vidual servers in case of
trouble.

Summary

2817c36.qxd 11/13/00 2:47 PM Page 603

604

cycles available to an individual service, and organize access to the various ser-
vices on the network. With various Unix tools such as cron, the administrator’s
work load may not increase significantly even if the number of machines on the
network increases by four or five. In addition, multiple machines decrease the
security vulnerability of the network because the individual machines can be
password-protected. If a server machine is cracked, the administrator can remove
it from the network and seal off any potential breaches before the cracker has the
opportunity to break into any other machines.

Chapter 36 • The Distributed System

2817c36.qxd 11/13/00 2:47 PM Page 604

C H A P T E R
T H I R T Y - S E V E N

Integrating Unix with
Other Platforms

� Integrating One Unix with Other Unices

� Integrating Unix and Windows

� Integrating Unix and MacOS

� Summary

37

2817c37.qxd 11/13/00 2:50 PM Page 605

606

It is the rare network that has machines all running the same operating system.
Even on the smallest networks with which we’re familiar, multiple operating sys-
tems are at play. Whether it’s simply a stray Windows machine or a Macintosh or
two, or as complex as a Solaris farm managed by a few Linux servers and a BSD
gateway machine, it is a common situation for Unix administrators to find them-
selves working with heterogeneous networks on a regular basis.

NOTE You might even choose to build a network that uses certain types of machines for
their best purposes and other machines for other uses. That’s what most Unix
administrators do, whether under their own definition of best or under a superior
manager’s definition. Perhaps the most common example is the corporate net-
work that’s filled with Windows 98 or NT machines for average users, but that
uses Linux or BSD for all the critical servers.

Over the years, several tools have been developed to make working with mul-
tiple operating systems a little easier. Certainly, the flexibility and power of the
Unix operating systems mean that integrating different Unix variants is not as
hard as working with other non-Unix operating systems. Still, different Unices
handle identical operations in very different ways; consider the differences
between System V printing and Berkeley print management, differences that
make integrating Solaris and BSD or Linux machines a bit difficult if you need to
share printers across the network. If you need to integrate only different Unix-
based operating systems, though, you have a relatively easy path ahead of you.

Those who are working with integrated networks that have radically different
operating systems, such as Windows or MacOS, have a bit more work ahead of
them. Luckily, the development community has recognized the practical realities
of the business software world, and we now have access to two programs that
make heterogeneous networks a much more reliable and practical reality. With
Samba, you can integrate Windows machines into your Unix-based network (or
Unix machines into your NT-based network), share files and print jobs, and man-
age your network machines on either the Windows or the Unix machines. With
netatalk, you can use the native AppleTalk networking protocol with kernel-
level support on most Unices. Like Samba, netatalk allows you to share files
and print jobs, and to work nearly seamlessly across the network regardless of
the type of machine or operating system being used.

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 606

607

In this chapter, we introduce three major programs that make it easier for you
to work with a heterogeneous network, whether it is based solely on Unix or uses
other operating systems as well. First, we introduce the Network File System
(NFS). NFS acts as a bridge between different Unices, allowing them to mount
each others’ filesystems remotely and share files across the network. There are
some security issues with NFS, but it is far too useful to ignore and is really the
only way in which different Unices can coexist happily. We also spend some time
discussing Samba, from installation to smooth operation, and show you how to
set up Samba so that the network is truly transparent to all your users whether on
Windows or Unix. Finally, we introduce netatalk and show you how to install it
so that you can use Macintoshes on your network without trouble.

Integrating One Unix with Other Unices
Unix machines share resources by sharing files. Remember, everything in Unix is
represented as a file, so by sharing files you are able to share the entire contents
of a machine if you want to do so. File sharing is an effective way to distribute
data to a number of users, regardless of how they are connected to the network.
If you have some specialized machines attached to the network, such as servers
or machines running particular programs like databases, other machines on the
network can access the files on these special machines without having to copy
the files directly to their own hard drives.

The unique thing about file sharing over Unix is that directories can be
mounted across the network, but will appear as if they are on the local machine.
That is, if you are sitting at machine A, you can mount the /public directory on
machine B and use it as if it were local. When you’re finished, just unmount the
directory and go on with your business. This is made possible through NFS, the
Network File System. NFS is the method used to share files among Unix com-
puters, regardless of the Unix variant installed on any individual computer. NFS
is the standard; though it does have some known problems—mostly security-
related—there is no better alternative at this point. We recommend that, if you
have a network with multiple Unix machines, you run NFS. It makes life a lot
simpler.

Integrating One Unix with Other Unices

2817c37.qxd 11/13/00 2:50 PM Page 607

608

TIP You can also use NFS to streamline certain automatic processes. For example, Joe
has NFS-mounted his mailbox file on the e-mail server machine to his local work-
station. When mail arrives on the server, it triggers the notification (biff) program
on his workstation and alerts him to new mail. He has his mailreader set to read
mail directly from the server. This eliminates the step of downloading mail from
the server to the workstation, which might take some time if there are many bulky
attachments or there is a lot of mail. File sharing is an efficient way to conserve
resources regardless of the size of the network.

Obtaining and Installing NFS
NFS is included with nearly all Unix distributions. It is likely that, when you
installed your operating system, NFS was also installed at the same time. If
you haven’t edited your kernel in any way (especially the case for Linux
users), you probably still have NFS available to you. Check the /etc/init.d
directory for a script called nfs-server; the presence of this script means that
an NFS server is active and installed on the system. Should you not have NFS
or have an old version that needs to be upgraded, you can obtain a copy of
NFS at any Unix software archive.

TIP You’ll probably want to install NIS at the same time. NIS is the Network Informa-
tion System, which serves as a centralized database of important administrative
data such as passwords and the /etc/hosts file. Although you can run NFS with-
out NIS, the larger your network, the more likely it is that you will appreciate the
work NIS does.

Install NFS using the process explained in Chapter 31: “Installing and Manag-
ing Software.” Once you have it installed, you will need to configure a variety of
files and start several daemons before you are able to use NFS. Note that you
must install both an NFS server (usually on your main server machine, unless
you want to have a separate fileserver machine) and an NFS client on each
machine that will access the server and share its files.

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 608

609

NOTE NFS requires actual, addressable physical disk space to function. You can pro-
vide NFS its disk space either by dedicating a separate machine to file serving or
by creating a partition devoted to NFS. For security reasons, you probably don’t
want to install the NFS server on the main partition of your sole server; the
security holes in NFS are well-known and easily exploited.

Configuring an NFS Server
If you haven’t configured your boot scripts to start up the NFS programs when
you boot the system, do so. It will save time when you realize you need a
remotely mounted directory and the NFS server isn’t running.

NOTE To mount a remote filesystem, the nfsd daemon must be running on the server
machine, and the mountd daemon must be running on the client machine. Check
this with a simple ps command before you attempt to mount any directories so
that you can start the daemons by hand if necessary.

In Chapter 30: “Disks and Filesystem Management,” we introduced the concept
of filesystem mounting. Under Unix, any external filesystem must be mounted
before it can be used and must be unmounted when you are finished working with
it. This is true for filesystems on floppy disks, or on CD-ROM or DVD-ROM drives,
and for remotely mounted filesystems accessed through NFS. Unlike the case with
CD-ROMs or floppy disks, however, when you mount a directory through NFS,
you must do some work on both the client and the server end before you can have
the directory.

Assume that you have a user machine, belgium, connected via a network to a
server machine, europe. You want to export the /usr/local filesystem from
europe to belgium so that you can use the files contained in that directory. To
gain access to that directory, you must approve it for mounting on europe before
belgium’s NFS client can mount it.

To export the /usr/local directory under Linux and FreeBSD, log into europe
as root (or assume superuser powers in your favorite manner). Open the file
/etc/exports in a text editor, and add the following line:

/usr/local belgium

Integrating One Unix with Other Unices

2817c37.qxd 11/13/00 2:50 PM Page 609

610

In this entry, /usr/local is the filesystem being exported, and belgium is the
machine that has permission to obtain it. Save the file and exit the editor. Still as
root, issue the command

exportfs

at the shell prompt. This command makes all the directories listed in /etc/exports
available for export, whether or not they will be accessed immediately.

NOTE On large networks, the /etc/exports file may be quite long. Each time it is
edited, you must reissue the command exportfs to encompass the new entries
as well as the old.

NOTE As is the case in several other areas, Solaris handles NFS sharing differently. Solaris
uses the /etc/dfs/dfstab file instead of /etc/exports, and entries in that file
take the form share -o rw=belgium -d “Europe Usr Local” /mn/europe/
usr/local. Consult the manual page for share to learn more about the syntax
for this file.

Mounting Networked File Systems
Return to the client machine, belgium, and log into the root account or otherwise
assume superuser powers. You first need to make a mount point for the new
filesystem; you can do this easily just by creating a new, empty directory called
something like /network or /usrlocal. After the empty directory is created,
issue the command

mount –t nfs europe:/usr/local /network

The NFS client goes to the europe NFS server, which checks to see whether bel-
gium is eligible to receive the /usr/local directory. Because belgium is listed in
the /etc/exports file along with this directory, the NFS server releases the direc-
tory. The local client then mounts the remote directory at the new mount point,
and you can use the files there as you would use them on europe.

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 610

611

Automatic Mounting with /etc/fstab
If you find yourself mounting the same remote directories repeatedly, you may
want to use NFS’s automatic mounting capabilities. To mount remote directories
automatically every time you boot your system, you can use the file /etc/fstab
to define those directories. /etc/fstab contains a list of all the directories that
should be mounted at boot; most of them are local, but you can place NFS direc-
tories here as well. A typical /etc/fstab file looks like this:

/dev/hda1 / ext2 defaults 1 1
/dev/hda5 /ftp ext2 defaults 1 2
/dev/hdc1 /home ext2 defaults 1 2
/dev/hdc5 /www ext2 defaults 1 2
/dev/hda7 swap swap defaults 0 0
/dev/fd0 /mnt/floppy ext2 noauto 0 0
/dev/cdrom /mnt/cdrom iso9660 noauto,ro 0 0
none /proc proc defaults 0 0

Use /etc/fstab to make your life easier. It can handle much of the drudgery of
mounting filesystems and will ensure that you never forget to mount a critical
filesystem.

To make an entry in /etc/fstab, you must be root. Open the file in your favorite
text editor and make entries for each directory you wish to mount automatically,
using the syntax

devicename mountpoint directorytype options dump pass

Thus, you need to supply the device that contains the desired directory, the
location where it will be mounted locally, the type of directory it is, any options
such as read-only mode (ro), and its dump and pass numbers, which are used
for system-checking purposes only. Save the file and exit; you will need to
reboot before the settings in this file take effect.

TIP Unlike Windows and MacOS, Unix machines do not automatically mount the CD-
ROM and floppy drives. If you are used to having those drives available all the
time, you should put them into /etc/fstab. Otherwise, you’ll have to mount
them by hand when you want to use removable media. Some Unix variants auto-
mount these devices, which you’ll know is the case if they are already in
/etc/fstab when you check the file.

Integrating One Unix with Other Unices

2817c37.qxd 11/13/00 2:50 PM Page 611

612

NFS Security Issues
There are several known security holes in the Network File System. Because they are so
well-known, it is part of most crackers’ routine to check for NFS holes and exploit them if
found. However, just because these holes exist is no reason to avoid running the very use-
ful NFS altogether; you simply need to take some precautions when you set up your NFS
server and mount your directories.

The easiest thing to do is to avoid setting up an NFS server on your firewall or gateway
machine. In Chapter 36: “The Distributed System,” we showed you how to stagger your
various network services across multiple machines for network speed and security. If you
do this, and implement the firewalls described in Chapter 38: “Network Security,” you will
have a relatively safe network. If you then mount the NFS server on your firewall or gate-
way machine, though, you have reintroduced a security breach. Keep shared files away
from any externally accessed machines, and limit your NFS file sharing to other machines
on the network. That will cut down on your security exposure.

NFS’s main security flaw is that it isn’t very good in dealing with password authentication.
Removing your server from externally accessible machines is a good start, as is locating
and installing all available security patches for your particular Unix variant. Other useful
tips include the following:

• Where possible, export filesystems as read-only to avoid the possibility that someone
will rewrite the filesystems at their origin.

• Edit your /etc/exports file entries so that they export filesystems only to fully quali-
fied domain names, not to single machine names.

• Never place a localhost reference in /etc/exports.

• Check /etc/exports carefully for typing mistakes.

• Don’t make changes to /etc/exports without running exportfs immediately after
closing the /etc/exports file.

Although these may seem like small steps, they make it much more difficult for crackers to
run the common exploits that make NFS vulnerable, such as IP spoofing.

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 612

613

Integrating Unix and Windows
Wouldn’t it be nice to use NFS to transfer files between Unix and Windows com-
puters? Unfortunately, you can’t. One of the major reasons why Unix and Windows
operating systems don’t communicate very well is that they each use a different
protocol to transfer data. The Windows protocol is called SMB (Session Message
Block), and the SMB protocol is not one native to Unix. Although you could spend
long hours writing your own conversion scripts, there’s no reason to do so.

The program that makes working with mixed Unix-Windows networks a sim-
ple job is called Samba. Samba is a suite of programs that allows Unix machines
to make use of the SMB protocol, thus enabling file sharing between both kinds of
machines. In fact, Samba can even help your Unix servers emulate the attributes
of Windows NT servers (with the reliability of Unix) so that Windows client com-
puters can work most efficiently with the servers.

NOTE The definitive resource for Samba is Using Samba, by Robert Eckstein, David Collier-
Brown, and Peter Kelly (O’Reilly & Associates, 1999). Though the authors are not
part of the Samba development team, the book is so comprehensive that the team
has adopted it as the official documentation for the package.

If we didn’t have Samba, it would be very difficult to share files across a multiple-
operating-system network, and it’s likely that Unix (Linux and FreeBSD in particu-
lar) would be much less integrated into the everyday life of many corporate and
academic mega-networks.

TIP Depending on your Unix variant, Samba may have been installed when you
installed the operating system. We know of a few Linux distributions that install
Samba automatically. Check the /etc/init.d directory for the subdirectory
/etc/init.d/samba. If it exists, you already have Samba and probably just need
to configure it.

Obtaining and Installing Samba
There is a copy of Samba on the CD-ROM that accompanies this book. You may
also have a version of Samba on the CD-ROMs that contain your operating system,

Integrating Unix and Windows

2817c37.qxd 11/13/00 2:50 PM Page 613

614

but—depending on when you purchased this book or obtained your operating-
system CD—you’ll probably want to download the most current version to take
advantage of the latest features. You can get Samba from http://www.samba.org,
the home of the Samba team. The current version is 2.0.x, which has been available
for about a year.

TIP If you like Samba, the developer welcomes contributions of hardware, monetary
donations, or pizza. Just remember that Andrew Tridgell (the developer) lives in Aus-
tralia, so you can’t just send him a Domino’s delivery. He’d be happy to discuss pizza
options with you, though, and some ideas are listed at http://us4.samba.org/
samba/docs/FAQ/#19. The pizza concept started as a joke, but several people have
managed to send Andrew some pizza.

Install Samba as you would any other program, using the methods introduced
in Chapter 31: “Installing and Managing Software.” Once you have built the pro-
gram, you’ll need to configure it before it can be used. Samba configuration is
done with the /etc/samba/smb.conf file.

Configuring Samba
Open the /etc/samba/smb.conf file in your favorite text editor. This file is quite
easy to work with, because it is constructed modularly and the individual entries
are laid out clearly. You’ll need to have a [global] entry regardless of how large
your network is and an individual entry for each directory that you want to share
with Windows machines on your network.

NOTE In /etc/samba/smb.conf, comments are denoted differently than in other pro-
grams we’ve shown you throughout the book. Where most other programs use
the hashmark (#) to denote a comment, the smb.conf file uses the semicolon (;).
Any line beginning with a semicolon is a comment and will not be parsed by the
program when it runs.

The global configuration entry defines the network as a whole for your Win-
dows machines. The syntax is quite easy to read, and Samba configuration files
in general use English expressions instead of terse abbreviations or acronyms.

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 614

615

One very minimal global configuration for a heterogeneous network might look
like this:

[global]
workgroup = NETWORK
server string = parrot
encrypt passwords = Yes
update encrypted = Yes
log file = /var/log/samba/log
max log size = 50
socket options = TCP_NODELAY SO_RCVBUF=8192 ➥

SO_SNDUP=8192
dns proxy = No

Using this configuration will set the name of the network as NETWORK when the
Windows machine’s Network Neighborhood folder is opened. You can use any-
thing you want for the network name, though using a descriptive name is better.
The value of server string is the name that will appear under the server’s icon
in the folder. Samba will deliver its logs to /var/log/samba/log (the default),
and the log file will contain only the 50 most recent lines. The socket options
define the way in which data is transferred across the network, and the dns
proxy entry determines whether the server will act as a local DNS proxy server.

Once you have the global entry defined, you need to add an entry for each
directory that you want to share with the Windows machines on your network.
This may seem overwhelming or not particularly useful, but it does make sense;
you may not want to share every directory on the main server with all your user
machines. Instead, you can enable the particular directories that you want to
share and rest comfortably knowing that nonenabled directories will not be visi-
ble to the Windows users on your network.

To enable a particular directory, you need to make an entry in
/etc/init.d/samba/conf that takes this form:

[public]
comment = public workspace

path = /usr/public
guest ok = yes
writable = yes
printable = no
public = yes

Integrating Unix and Windows

2817c37.qxd 11/13/00 2:50 PM Page 615

616

This basic syntax defines the name of the shared directory and some parameters
for how it is available to network users. The name in the brackets will be shown
under the directory’s icon in the Network Neighborhood folder on the Windows
machine. The path entry defines the actual path on the Unix server, while the
guest ok field determines whether a user can access the directory without her
individual username and password. The writable and printable entries set the
permissions on the directory, and the public entry determines whether the direc-
tory will be visible to users.

TIP If you want to share documents or programs, but don’t want to run the risk of
having a user overwrite your data, set the writable field to No. This way, users
will be able to view or copy the data, but they won’t be able to affect the initial
files. You might find this especially useful when dealing with configuration files or
templates.

Repeat similar entries for each directory that you want to share with your users
across the Samba network. If you don’t want to share system directories, just
don’t place an entry into /etc/init.d/samba/conf for that directory. You can
also create new directories on the server that are intended for sharing and place
copies of sharable files into those directories without removing them from their
default locations.

NOTE Consult the manual page for smb.conf if you want to use more complicated
entries for your various directories. Access the page by issuing the command man
smb.conf at the shell prompt, after you’ve installed Samba.

Starting Samba
When you have finished editing /etc/init.d/samba/conf, you can start Samba
and check your network. Restart the Samba server by issuing the command

/etc/init.d/samba restart

at a shell prompt. The Samba server will restart on the Unix machine with the set-
tings you made in the configuration file, and you should be able to see the Win-
dows machines on your network. However, you probably won’t be able to see the
Unix machine from your Windows machine right away.

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 616

617

Go to the Windows machine and open the Control Panel. Select the Network
option, and click on the Properties tab. Check to be sure that you have the correct
gateway and DNS IP numbers entered in those fields; these should be the same IP
numbers that are used by the Unix server. This will enable you to share an Inter-
net connection over the Samba connection. When you have the correct IP num-
bers entered, click the Identification tab.

Enter the Windows machine’s name and the network name in the appropriate
spaces; you should use the same name for the network that you defined in the
global entry of /etc/init.d/samba/conf. Click Apply to set your changes, then
click OK to exit the Network configuration. If the new network does not appear
in Network Neighborhood right away, reboot. The network should appear after
rebooting.

NOTE You may not be used to defining machine names for Windows machines. If you
have a consistent naming scheme for your Unix network machines, try to keep the
same theme with your Windows machines. You will need a machine name here so
that the Unix server can understand your Windows machine as it transfers data
across the Samba connection.

Samba and Windows 98
Those administrators who are trying to network Windows 98 machines with Samba
should be careful. Windows 98, late versions of Windows 95, and Windows ME use a
new password encryption scheme that isn’t covered natively by Samba yet. Not only is this
password mechanism not included by default in Samba, you may have to hack the Win-
dows Registry to get Samba to work properly.

As with anyone who works with the guts of Windows, hacking the Registry is something we
view with caution and not a small amount of dread. We aren’t going to tell you how to
modify the Registry here, because we think that it’s best if you read the documentation
before you try to do anything with the Registry. Regardless of your Unix variant, go read the
Samba HOWTO document at http://www.linuxdoc.org/HOWTO/SMB-HOWTO.html. This
document will give you more information on the password issues and show you some basic
Registry hacks that might fix the problem.

Continued on next page

Integrating Unix and Windows

2817c37.qxd 11/13/00 2:50 PM Page 617

618

You should also read the documentation that was installed along with Samba on your
machine. Read ENCRYPTION.txt, Win95.txt, and WinNT.txt to get a better idea of the
way in which the password encryption method affects Samba and what you can do to
counter its effects.

Don’t think that you can’t use Samba unless you’re running an early version of Windows
95. Samba works just fine with every version of Windows; you just need to hack it a bit if
you’re using a newer version of the operating system.

Print Sharing with Samba
One of the real advantages of running Samba is that you can use a single printer
across the network, whether the print job is coming from a Windows machine or a
Unix machine. It’s easiest to attach the printer to the Unix server, because printer
configuration is a bit easier under Unix. As we mentioned in Chapter 33: “Manag-
ing Print Services,” print sharing is an effective way to share an expensive printer
or printing device between several workstations without having to purchase an
identical unit for each workstation that needs access to that kind of resource.

To share a printer attached to a Unix machine with a Windows machine across a
Samba connection, you’ll need to edit the configuration file again. Open /etc/
init.d/samba/conf in your favorite text editor and locate the global configuration
entry you created when you set up Samba. At the end of the global entry (but still
part of that entry), add the following lines:

printing = bsd
printcap name = /etc/printcap
load printers = yes
log file = /var/log/samba/log
lock directory = /var/lock/samba

These lines define the method of printing (BSD instead of System V), the location
of the /etc/printcap file used by Berkeley-style printing, and the location of the
log and lock files. The third line determines whether printers are loaded onto the
network each time the Samba server is restarted.

Once you have finished editing the global entry, you will need to build a new
section that configures all your systemwide printer options. Use the following
block of code as an example:

[printers]
comment = All Printers

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 618

619

security = server
path = /var/spool/lpd/lp
browseable = No
printable = Yes
public = Yes
writable = No
create mode = 0700

With these lines, you define the overall way in which print jobs are handled on
the network. The values of these entries determine the location of the print spool
(where jobs from the Windows machines will be sent), the permissions for the
print spool, and the printers to which these settings apply.

When you have established the general printer settings, it’s time to create indi-
vidual entries for each networked printer. As with the general Samba configura-
tion, each printer needs its own entry so that it can have individual configuration
options. Although the global printer entry defines the overarching way in which
jobs are handled, the individual entries show the printer name and path, and other
important information that is unique to each printer. To define these entries, use
the following format:

[ljet]
security = server
path = /var/spool/lpd/lp
printer name = laserjet1
writable = Yes
public = Yes
printable = Yes
print command = lpr –r –h –P %p %s

NOTE The individual printer configuration entries will be different depending on the type
of printer being configured. The entry above is suitable for a Hewlett-Packard
LaserJet printer, but might not work with other laser printers. To learn which com-
mand you need to use with your printer, consult the lpd manual page by issuing
the command man lpd at a shell prompt.

When you have finished configuring your printers, save the file and exit. You’ll
need to restart the Samba server so that it recognizes the new printers and can
make them available to all the machines on the network. To restart the server,
issue the command

/etc/init.d/samba restart

at a shell prompt.

Integrating Unix and Windows

2817c37.qxd 11/13/00 2:50 PM Page 619

620

Next, go to the Windows machine and open the Printers folder by selecting
Start ➣ Settings ➣ Printers. Locate the new printer and double-click its icon.
When the configuration screen appears, configure the new printer as a network
printer. You can choose to make it your default or not; if it is not the default, a
printer attached to the local machine is likely the default. Click OK to save and
exit the Printers folder; you should now be able to select the networked printer
from the Print menu of your Windows programs.

TIP Make an inkjet or other nonnetworkable local printer the default if possible. It’s a
lot cheaper to print drafts and Web pages on an inkjet than it is on a laser printer.
Use the laser for final versions, and share it over the network to amortize its cost.

Printing from Unix to a Windows Printer
To use a printer attached to a Windows machine as a networked printer, you have to work
in reverse of the method described above. First, open the Network configuration on your
Windows machine by opening the Control Panel and double-clicking the Network icon.
Select the network component that you use for the network (probably a network card)
from the list, and click the File and Print Sharing button.

In the File and Print Sharing dialog box that appears, click the check box next to I Want to
Be Able to Allow Others to Print to My Printer and click OK. You will be returned to the
main Network configuration window; click OK to save and exit the tool. The Windows
printer is now enabled as a networked printer and will handle external print requests as it
would handle local print requests.

Once Windows is configured properly, return to the Unix machine and open whatever
printer configuration tool you use. (Working with Windows printers is easiest if you’re
using a graphical printer administration tool, such as those found in KDE or Gnome.) For
example, using the KDE tool, you’d open the printer configuration and select the net-
worked printer option, then set the type as Windows. Click the Browse button and locate
the newly networked printer on the network; select it and provide a username and pass-
word if prompted. This is the same username and password you use to log onto network-
ing in Windows, not your Unix account name and password. Click Finish to save your
changes. Other printer administration tools work in much the same manner.

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 620

621

Integrating Unix and MacOS
Although Samba is immensely useful for administrators with both Windows and
Unix machines on the same network, it unfortunately cannot integrate Macin-
toshes into the same network. Those who have Macs that need to be networked
with Unix machines need a different program called netatalk. netatalk does
not use the SMB protocol used by Samba; instead, it uses a kernel-level mecha-
nism that mirrors the native AppleTalk protocol used by MacOS to network
between Macintoshes and other Apple computers and peripherals.

TIP You can obtain the netatalk packages from various file archives, though the
Web site for the project is located at http://www.umich.edu/~rsug/
netatalk/. This site contains downloads, a good HOWTO document, and links to
other sites with helpful tips. The most up-to-date version can always be obtained
here, so it’s a good place to start. The current stable version is 1.3.3, with a 1.4
beta version. We recommend sticking with the stable versions, because file and
print sharing tend to be important enough to require software with a minimal
amount of bugs.

Install netatalk using the methods described in Chapter 31: “Installing and
Managing Software.” The netatalk source code has been installed successfully
on a wide variety of Unix variants, including all the variants covered in this book.
If you find a problem with your particular Unix, check the bug notes and other
messages at the netatalk Web site; it’s possible that a simple configuration
change will make the program work properly for you.

NOTE Before you begin to install netatalk, open Makefile (found in the directory
where you unpacked the code) and set the destination directory with the entry
DESTDIR=/usr/local/atalk. This is the default, but if you want netatalk to
install somewhere else, you will need to set the new location in Makefile.

netatalk versions 1.3.3 and higher support Linux; FreeBSD versions 2.2 and
higher contain netatalk support; and the current beta version of netatalk
(1.4b2) supports Solaris 2.4 and higher. See the “Solaris and netatalk” section
later in this chapter for information on running this beta version with your
Solaris installation.

Integrating Unix and MacOS

2817c37.qxd 11/13/00 2:50 PM Page 621

622

Configuring netatalk
Once netatalk is installed, you will need to configure it. The default configuration
files (and all the other netatalk files) may be found in the /etc/netatalk/conf
directory, but will need to be copied to your /usr/local/atalk/etc directory
before you can use them. You will find several configuration files for netatalk:

• atalkd.conf

• apfd.conf

• AppleVolumes.default

• AppleVolumes.system

• config

atalkd.conf

The atalkd.conf file defines the network interfaces for the Macintoshes so that
they can participate in network traffic. You don’t really need to have anything
in this file, because the atalkd daemon can auto-detect the interface configura-
tion on your network. If you feel more comfortable defining an interface, the
only entry you need to include would be eth0 for a Linux or FreeBSD box, or
le0 for a Solaris machine.

NOTE Solaris administrators must place the le0 entry in this file. atalkd won’t work
properly on Solaris if you leave the atalkd.conf file empty.

The atalkd.conf file is straightforward and quite short. The file is well-
commented, so that you can figure out what you might need to do if you want
to edit the configuration of atalkd on your system. Here is a sample atalkd.
conf file:

#
Format of lines in this file:
#
interface [-seed] [-phase [1 | 2)] ➥

[-addr net.node] [-net first[-last]]
[-zone ZoneName] . . .
#

-seed only works if you have multi-interfaces. Any
missing arguments are automatically configured from

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 622

623

the network. Note: lines can’t actually be split,
tho it’s a good idea.
#
Some examples:
#
The simplest case is no atalkd.conf. This works on
most platforms (notably not Solaris), since atalkd
can discover the local interfaces on the machine.
#
Very slightly more complicated:
#
le0
or
eth0
for Solaris/SunOS or Linux.
#
A much more complicated example:

le0 –phase 1
le1 –seed –phase 2 –addr 66.6 –net 66-67 ➥

-zone “No Parking”
#

This turns on transition routing between the le0 and
le1 interfaces on a Sun. It also causes atalkd to
fail if other routers disagree about its
configuration of le1.
#

apfd.conf

The apfd daemon controls passwords for remote access over a netatalk connec-
tion. As you may recall from Chapter 29: “Managing Users and Groups,” pass-
word management can be a bit of a security risk unless you take some explicit
steps. One of the most common ways to increase the security of your password
files is to enable shadow passwords.

netatalk supports shadow passwords with the apfd daemon. You will need to
alert apfd that you will be using shadow passwords before you build the code; in
the etc/afpd/Makefile file, locate the entry beginning with CFLAGS:. In that
entry, just before the hashmark denoting entries not to be included, add the
phrase –DSHADOWPW. This enables shadow passwords when netatalk is built.

Integrating Unix and MacOS

2817c37.qxd 11/13/00 2:50 PM Page 623

624

apfd uses the apfd.conf configuration file. As with atalkd.conf, the file is
straightforward and well-commented. You should be able to figure out what you
need to do with a minimum of effort. A sample apfd.conf file looks like this:

#
Format of lines in this file:
#
server [-tcp] [-ddp] [-guest] ➥

[-loginmesg message] . . .
#

To specify a line with the default server name, use a
“-“ as the server name.
#
There are a whole plethora of options available. Here
they are for your edification:
#
toggles [-no<option> turns that option off;
-<option> turns it on]:
transports: tcp, ddp, transall
debug: nodebug (can only turn off debug)
auth: cleartxt, afskrb, krbiv, guest, randnum,
rand2num, authall (doesn’t include randnum/
rand2num)
passwd: savepassword, setpassword
user volumes: uservolfirst, nouservol (don’t
look for ~/.AppleVolumes)
#
options w/ arguments (-<option> <argument>):
defaultvol, systemvol, loginmesg, guestname
address (binds a server to a specific address)
port (has to be specified if more than one tcp
server is to be served)
ticklevel (sets the tickle interval in seconds)
uampath, nlspath
#
Order of precedence:
options in afpd.conf > command-line options >
built-in options
#
Some examples:
#
The simplest case is not to have an apfd.conf.
#

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 624

625

4 servers w/ names server1-3 and one w/ the
hostname. servers 1-3 get routed to different ports
with server 3 being bound specifically to address
192.168.1.3
-
server1 –port 12000
server2 –port 12001
server3 –port 12002 –address 192.168.1.3
#
a dedicated guest server, a user server, and a
special ddp-only server:
“Guest Volume” –nocleartxt –loginmsg “Welcome ➥

Guest!”
“User Volume” –noguest –port 12000
“special” –notcp –defaultvol <path> -systemvol ➥

<path>
#

AppleVolumes.default

The AppleVolumes.default file is used by netatalk when a known user logs
into the network. It tells netatalk how this given user will need to deal with the
various volumes and file types on the network. Your users can override the default
system settings by creating their own AppleVolumes or .AppleVolumes file in
their home directories, but most users won’t go to the trouble.

You don’t really need to keep much in AppleVolumes.default, except an entry
that contains a tilde (~). This designates the user’s home directory as the default
directory for any network use. You can configure it further if you like, following
the comprehensive comments in the configuration file. A sample AppleVolumes.
default is shown below:

This file looks empty when viewed with “vi”. In fact,
there is one ‘~’, so users with no AppleVolumes file
in their home directory get their home directory by
default.
#
#volume format:
#path [name] [casefold=x] [codepage=y] [options=z,l,j] ➥

[access=a,@b,c,d] [dbpath=path] [password=p]

#

#

Integrating Unix and MacOS

2817c37.qxd 11/13/00 2:50 PM Page 625

626

casefold options:
tolower -> lowercases names in both directions
toupper -> uppercases names in both directions
xlatelower -> client sees lowercase, server sees upper
xlateupper -> client sees uppercase, server sees lower
#
access format:
user1,@group,user2 -> restricts volume to listed users
and groups
#
miscellaneous options:
prodos -> make compatible with appleII clients
crlf -> enable crlf translation for TEXT files
noadouble -> don’t create .AppleDouble unless a
resource fork needs to be created

codepage=filename -> load filename from nls directory
dbpath=path -> store the database stuff in the # named
path
password=password -> set a volume password (eight
characters max)
#
#
~ Home

The AppleVolumes files map volumes on the Macintosh machines to paths on the
Unix machines. In general, you won’t need to edit the AppleVolume files; the syn-
tax is different for Unix and Macintosh files, so if you get it wrong, you’ll only see
“Unknown Document” messages.

AppleVolumes.system

The longest netatalk configuration file is AppleVolumes.system, a file that
maps volumes to paths so that files can be handled appropriately across the net-
work. This file is quite long by default, and you probably won’t need to edit it.
The syntax in this file is specific, and differs for Unix files and Macintosh files. If
you make an edit and are wrong in the syntax, you’ll see “Unknown Document”
messages when you attempt to open files with that particular format.

Because of the length of the AppleVolumes.system file, we show you only a
portion here. Note that the file is set into columns, with the file extension, file

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 626

627

type, and program that will execute this type of file as the main components of
each entry.

Last Updated July 8, 1999
#
#Use at your own risk. No guarantees express or implied.
#
Try to use MacPerl script ‘ICDumpSuffixMap’ included
in /usr/doc to download file mapping list from your
Internet Config Preference.
#
inoue@ma.ns.musashi-tech.ac.jp
#

.text/plain “TEXT” “ttxt” ASCII Text SimpleText

.mf “TEXT” “*MF” Metafont Metafont

.sty “TEXT” “*TEX” TeX Style TeXtures

.psd “BBPS” “8BIM” PhotoShop Photoshop

.pxr “PXR” “8BIM” Pixar Image Photoshop

.sea “APPL” “????” Self-Extracting Archive

.apd “TEXT” “ALD3” Aldus PageMaker

.pm3 “ALB3” “ALD3” PageMaker 3 PageMaker

.pm4 “ALB4” “ALD4” PageMaker 4 PageMaker

.pt4 “ALT4” “ALD4” PageMaker 4 PageMaker

The file continues in this manner for several pages, defining every possible file
extension that either the Macintosh or the Unix machines are likely to generate.

config

The config file is the general configuration file for netatalk. It is very basic,
serving only to turn on or off the various modules of netatalk. This file is also
used to set the AppleTalk name of the server and define how many clients can be
connected to the server at one time. Here is a sample config file:

Appletalk configuration
Change this to increase the maximum number of clients
that can connect:
AFPD_MAX_CLIENTS=5
Change this to set the machine’s atalk name:
ATALK_NAME=’echo $(HOSTNAME) | cut –d. fl’
ATALK_NAME=mymacserver
Set which daemons to run:

Integrating Unix and MacOS

2817c37.qxd 11/13/00 2:50 PM Page 627

628

PAPD_RUN=no
AFPD_RUN=yes
Control whether the daemons are started in background
ATALK_BGROUND=yes

Starting netatalk
When you have finished with the configuration files, you can start the netatalk
server and begin attaching your Macintoshes to the network. To start netatalk,
issue the command

/etc/init.d/netatalk start

at a shell prompt. The server should start cleanly; if it doesn’t, error messages
will generate to the screen. Any Macintoshes already connected to the network
should now appear as part of the network; if you have not connected your Macs
yet, do so now. (You may need to reboot netatalk if the machines do not show
up right away.)

FreeBSD users should experience almost no problems with netatalk. Because
the program was initially written to a BSD standard, you will probably find that
netatalk integrates itself seamlessly into your operating system and that, once
configured, the Macintoshes on your network will appear and work properly
across the network. Solaris and Linux users may have a bit more trouble, and
both operating systems are addressed in the remainder of this section.

NOTE Because netatalk uses the AppleTalk protocol, you will need to consult Apple
documentation to learn how to use this protocol if you are not an experienced
Macintosh administrator. You will also need to consult Macintosh documentation
to make the proper configurations in the Macintosh networking tools.

Solaris and netatalk
If you want to install netatalk on your Solaris machine or network, you have a bit
more work to do than the FreeBSD and Linux administrators. Solaris support is just
now being implemented into netatalk and is supported only in the current beta
version (though when a full, stable 1.4.x release is made, Solaris will be included).
Earlier versions may have patches that work reasonably well, but the current beta

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 628

629

version is reputed to work much more cleanly. It’s expected that the current beta
code will go into the stable 1.4.x release.

The major problem with netatalk and Solaris involves printing. As we
explained in Chapter 33: “Managing Print Services,” Solaris uses the System
V print spool mechanism. netatalk is based on BSD Unix and thus uses the
Berkeley print spool mechanism as its default. Administrators using netatalk
on Solaris need to configure netatalk so that it doesn’t automatically issue
Berkeley-style print management commands. One of the first steps you’ll need
to take is the installation of LPRng, a module that emulates Berkeley-style print-
ing on the Solaris platform. However, just installing LPRng probably won’t han-
dle the problem completely. You’ll most likely have to edit the papd.conf file to
make sure that individual printers are called with lp instead of lpr. (The 1.4.x
version of netatalk promises to have easier print management.)

If you have trouble with your network interfaces and find that netatalk exits
frequently with the message “atalkd: can’t get interfaces, exiting” you need to
edit the atalkd.conf file to reflect your correct interfaces. This detail is addressed
in the README.SOLARIS file contained with the netatalk packages. Of course,
read this file early in your netatalk career.

netatalk does work on Solaris. You may have to do more work with it than
your non-Solaris admin friends, but it is possible to run a heterogeneous network
with Solaris machines and Macintoshes coexisting nicely. Spend some time tin-
kering up front, and you should be rewarded with a stable and robust network.

Linux and netatalk
Linux and netatalk go together very well. You should be able to install and run
netatalk quite easily on your Linux system. We have tested it on Debian, Red
Hat, and Corel Linux (Debian-based), and haven’t had any trouble. If you use a
package management system such as those described in Chapter 31: “Installing
and Managing Software,” Red Hat- and Debian-style formatted packages of
netatalk are available, and may be of interest to you.

• Get the Red Hat *.rpms at ftp://contrib.redhat.com/pub/contrib
/libc6/SRPMS/. Search the SRPMS directory for netatalk-version+
asunversion.src.rpm files; the package contains both netatalk and asun,
the version of netatalk released and amended by Adrian Sun.

Integrating Unix and MacOS

2817c37.qxd 11/13/00 2:50 PM Page 629

630

• Get the Debian *.deb files at ftp://cgi.debian.org/www-master/debian.
org/Packages/stable/net/netatalk.html.

• If you need source code, visit ftp://terminator.rs.itd.umich.edu/unix/
netatalk/.

TIP If you’re planning to run netatalk on your Linux system, we recommend the
Linux netatalk HOWTO written by Anders Brownworth. You can find this file at
http://www.thehamptons.com/anders/netatalk.

Summary
No matter what kind of machines you have on your network, the likelihood
that they are all running the same Unix variant and no other operating system
is quite small. In fact, the heterogeneous network is a fact of administrative life.
Unfortunately, even variants based on the same original Unix flavor don’t
always work well together, and Unix doesn’t integrate seamlessly with non-
Unix operating systems.

Luckily, solutions to this problem have been devised and developed by many
programmers over the years. For systems with multiple Unix variants, you can
use the Network File System to share files and filesystems transparently across
the network. Administrators who run networks that contain both Unix and
Windows machines can use the Samba program, which translates the Windows
file format SMB (Session Message Block) into a format that Unix can work with.
Those who run networks that comprise MacOS machines as well as Unix can
run the netatalk program, which translates between native Unix file format
and the AppleTalk protocol. With any of these programs, you can share both
files and print jobs, which makes an administrator’s life easier and satisfies
users who have strong operating-system preferences.

Chapter 37 • Integrating Unix with Other Platforms

2817c37.qxd 11/13/00 2:50 PM Page 630

C H A P T E R
T H I R T Y - E I G H T

Network Security

� How Important Is Security to You?

� The Security Mindset

� Internal Security

� External Security

� Intrusion Detection

� Firewalls and Proxies

� Summary

38

2817c38.qxd 11/13/00 2:51 PM Page 631

632

No matter what kind of Unix user you are, you need to be concerned about
security. If you are a network administrator, you should be even more aware of
issues surrounding network security. Today’s Internet is a dangerous place, and
even relatively insignificant domains can find themselves under attack on a much
more frequent basis than might be imagined.

As we’ve said in other chapters throughout the book, if you’re connected to
any external networks—including local Internet service providers, corporate or
academic networks, or noncommercial networks—you must be vigilant about
security. It does no good to think that connecting to a work network is more
secure than connecting to the Internet, because the work network is likely part
of the Internet. After all, the Internet is not a single entity; it is a collection of
computers and networks, all networked together in a massive intertwining. If
you connect to the Internet, you have accepted the security risks in doing so.

In this chapter, we address two sides of the security issue. First, we explain the
mental state required of those concerned about security. You will need to decide
how important security is to you and your network, and how vulnerable you
want to be. Then, we explain the various ways in which you can gird your system
against exploits. We show you basic administrative routines and introduce two
security packages that you can find on the CD-ROM included with this book.

NOTE Please note that we don’t want you to panic. This chapter probably has more doom-
and-gloom than any other chapter in the book, but it’s there for a reason. You can
lose a lot to security violations, both financially and emotionally. However, you
shouldn’t obsess about becoming perfectly secure. This takes time (and effort) that
you probably don’t have; the better solution is to get as secure as you can while bal-
ancing your time investment and actual security needs. Yes, there are people in the
world whose idea of fun is illegally entering into networks or writing malicious pro-
grams. Don’t let your concern about these people override your enjoyment of Unix.

Hackers vs. Crackers
Before we get further into the chapter, we need to define some terms. A persistent thorn
in the side of the Unix community is the use of the word hacker to describe someone
who illegally breaks into computer systems for fun. Within the Unix world, however, a

Continued on next page

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 632

633How Important Is Security to You?

hacker is someone who is simply a clever programmer; the word has been used that way
since the dawning of Unix. For example, people who work on the Linux kernel are often
called kernel hackers.

People who breach security on other networks are called crackers, because they “crack
into” networks they don’t own. Unfortunately, the popular media has this one wrong.
Accounts of hackers breaking into military or commercial systems are a common compo-
nent of media technology coverage, and this annoys people who consider themselves
hackers in the proper sense of the word. Ironically, hackers have come up with some of
the best anticracker solutions.

In this book, we use cracker to refer to someone who is breaking into systems without
permission. We encourage you to adopt the correct terminology. Hackers built almost all
of the software on the CD-ROM included with this book, and neither the Internet nor the
Unix community would exist as we know them today without the (often unpaid) efforts
and dedication of the hacker community.

How Important Is Security to You?
Although connecting to the Internet does carry some intrinsic level of risk, the
risks involved vary greatly. Risk levels depend on the type of connection that
your computer or network has and how you use that connection. To determine
what kind of security measures you should take, you first need to evaluate your
level of vulnerability. Unfortunately, outside of trying to crack your own machine
using some of the many cracker tools available on the Internet, there is no simple
process for learning how vulnerable you are. (Well, you could just let yourself be
cracked, but that’s not the best way to handle it.)

If you have a single Unix computer, or a small local network that accesses the
Internet through a dial-up modem, your IP address is likely assigned dynami-
cally each time you log into your ISP, meaning that you have a different IP
address every time you dial in. Security risks for this kind of situation are fairly
low. You are connected to the Internet for brief sessions, and each time you dial
in, you receive a different IP number. This is analogous to visiting New York
City on business every other week, but staying in a different hotel room each
time. Because it is essentially a moving target, your system presents a level of
difficulty to a cracker that probably outweighs its potential usefulness. This

2817c38.qxd 11/13/00 2:51 PM Page 633

634

does not mean, however, that you should lose interest in security issues, only that
whatever decisions you make about security can take these factors into account.

TIP See Chapter 35: “Network Interfaces and Routing” for more information on
DHCP and PPPoE, the programs used to assign dynamic IP numbers.

However, if you run a Unix computer or network that is connected to the Inter-
net on a full-time basis through a cable modem, DSL line, or direct connection,
you likely have a static IP number, or range of IP numbers, that is assigned
directly to your computer. In this case, your computer or network presents an
attractive target for crackers. Your system is always locatable and accessible; if
a cracker can gain access, your system will be very useful.

Eternal Vigilance
It’s tempting to think that your system is insignificant and that nobody would
ever want to break into your computer or network. After all, you’re just running
a couple of FreeBSD boxes and a cable modem, and you don’t have anything
interesting on your hard drive except Quake—there’s not much that anyone
could want, right? Unfortunately, this isn’t the case. We can tell you from per-
sonal experience that this is a bad way to deal with security issues. We run a
small, six-computer network attached to the Internet through a broadband con-
nection. Although we had some basic security precautions in place, we had
become fairly complacent for reasons similar to those described above. During
the writing of this book, we were cracked.

There’s no obvious reason why we were selected as a target. We don’t handle e-
commerce on our site, so we don’t have any credit card numbers on file. We don’t
do a lot of contracted database or programming work, so there were no valuable
data files to steal (except the notes for this book, of course). In short, we don’t really
have anything that makes us an attractive target for crackers, except for one thing.

We have a 24-hour broadband connection to the Internet. This is a valuable
item. Many crackers aren’t really looking for things to steal from the hard drives
of compromised systems. Rather, they’re looking for open and available sites
from which they can launch attacks on other sites, disguising their true location
and shifting blame to an innocent administrator. The person who cracked our site
was one of these.

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 634

635

Our cracker was using our system as part of a Denial of Service attack, a method
of Internet vandalism that swamps the target site with small electronic messages
in an attempt to tie up the target’s system in responding to the attack instead of
delivering the actual data that the site exists to provide. What’s worse is that our
cracker was trying a Denial of Service attack against one of our favorite Web sites,
run by someone with whom we have both a social and a business relationship!

Imagine our embarrassment when Joe answered the phone and found the sys-
tem administrator of our friend’s site on the other end, asking if we knew any-
thing about the attacks emanating from one of the computers in our house. We
were mortified, and we were also quite worried. We learned about the misuse of
our system because someone took the time to track it down. How many other
systems had been attacked from our domain without our knowledge?

We took down the entire network immediately and set about fixing the prob-
lem. Lest you think that embarrassment was the only cost of this attack, we
should explain the financial cost as well. We spent about four-and-a-half days
repairing damage done by the cracker, obtaining and configuring new hard-
ware, and designing a new security system. All in all, we both lost nearly a
week from our income-producing work, both in writing this book and in our
other contracts. We figure that the attack cost us several thousand dollars in lost
work and expenditure.

The moral of the story is that no matter how insignificant you think you are and
no matter how good you think your current security protocol may be, you need to
stay on top of what’s happening. Complacency is the biggest enemy of security.

The Security Mindset
In many ways, network security is less a practice or set of practices than it is a
mindset. That mindset could be described as rational paranoia. A properly security-
minded administrator is aware of the various threats that exist and takes precau-
tions against them, but also understands the trade-off between security and
usability.

Obviously, the most secure network is one with absolutely no points of access. If
you can’t get into it, you can’t harm it. The flip side, though, is that such a system is
worthless for most practical purposes. Servers require access to the network; users
require access to the network; the administrator requires access to the network.

The Security Mindset

2817c38.qxd 11/13/00 2:51 PM Page 635

636

Each point of access to the network, however, is an increased security risk. A good
administrator must balance security against the needs of the system’s users and
must divide attention among the three main components of a good security policy.

Physical Security
Anyone who has access to the actual computers has access to network functions.
Period. All your server machines should be kept in a secure location; user work-
stations, obviously, cannot be kept apart from their users. In the simplest breach
of physical security, someone can just pick up your computer and walk off with
it, or open the case and steal the hard drive.

If you administer a network for an organization of some type, you will proba-
bly want to keep your servers in a separate, locked room, preferably one with
good climate control. (Computers can generate a lot of heat.) Only trusted admin-
istrators should have access to the server room. Cleaning should be done by the
administrators, not by janitorial staff.

Those who keep their networks at home have different needs. Most houses
don’t have room for a separate, locked server room, unless you happen to be the
Queen of England. Be aware of the people who spend time in your home. Those
who live alone need to worry about only their guests; if you keep your servers in
a spare bedroom or the linen closet, your guests may never see the machines at
all. If you have a family and none of them are interested in Unix, and you have
decent passwords, you can probably leave the network accessible. However, if
you have family members or frequent guests who may find malicious activity
funny or who don’t share your commitment to security, find some way to lock
your servers away.

Internal Security
Know your users. We can’t repeat that often enough. You don’t want users using
a system nefariously when you’re the person in charge. The responsibility for
security ultimately lies in your lap, no matter how much you encourage your
users to be aware of their own security risks and behaviors.

If you have too many users to know personally, as in a large employer’s net-
work, make sure that there are consistent policies in place for computer and net-
work usage. With such policies, you’ll have a way to deal with people acting
inappropriately even if you don’t have the ability to deal with them personally.

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 636

637

You can determine the level of access that each user has to the system by
working with individual user permissions. In Chapter 29: “Managing Users
and Groups,” we explain the concept of user groups. By assigning users to the
appropriate groups, you can limit access to given programs to the groups that
need it, while other groups don’t have the ability to perform those tasks. Limit
all your users to the files and programs that they need, and block them from
those that they don’t.

External Security
When most people think of network security, they think of external security
mechanisms. External security deals with outside access to the network, either
from individuals or from other programs. Developing an effective external secu-
rity plan entails the determination of what services will be made available out-
side the network and then the creation of a plan to handle the security risks
presented by those services.

External security is the most risky of the three elements described here, because
it deals with the actions of unknown people beyond your control. Luckily, this is
also the area that has had the most activity in terms of development and educa-
tion. You can find third-party programs that will handle the trickier aspects of
external security, and it’s easy to find scripts and discussions that will help you
manage your system.

Internal Security
When it comes down to security issues involving your own users, there are two
kinds of misbehavior that you and your users need to avoid. One is caused by
bad habits, and the other is caused by bad users. Both can be addressed, though
the first is easier to deal with than the second.

The first issue is the inadvertent security problem caused by bad habits. Perhaps
your users don’t know about effective passwords, or you haven’t enforced—or
written—policies on network usage. If your users create security problems out of
ignorance or sloppy habits, you need to focus on educating your users and enforc-
ing ground rules. If you don’t have ground rules, create some and make sure your

Internal Security

2817c38.qxd 11/13/00 2:51 PM Page 637

638

users are aware of them. Two of the most critical areas for which you should
develop policies are file permissions and passwords.

The other issue with internal security concerns bad users who will intentionally
use your system for foul purposes. Although you can lock down the system as
tightly as possible, the only real answer to bad users is vigilance. Watch your sys-
tem carefully and be aware of anything unusual. Once you’ve identified the cul-
prit, get that person off your system and change any systemwide passwords the
person may know. The key to this problem is regulation, not education.

File Permissions
When users create files, especially if the files are executable programs, they
should do so with the most restrictive permissions that will allow the user to get
the work done. As a rule, this means that you should restrict read, write, and (if
applicable) execute permission to the user alone. If files need to be shared, they
should be shared only within appropriate user groups. Files should be world-
readable only as a last resort if there is no other appropriate solution.

TIP We discuss how to set up groups, and the concept of file permission, in Chapter
29: “Managing Users and Groups.”

An administrator can set default file permissions by using the umask command.
umask sets the default permission values with which all new files will be created.
The umask command uses an octal, or base 8, number as its argument. The num-
ber determines the permissions to be set. For example, the command

umask 027

would give the user (owner of the file) all permissions, the user’s group read and
execute permissions, and everyone else no permissions at all. Table 38.1 shows
the various arguments for umask and their effects on file permissions created with
particular arguments. Table 38.2 shows the arguments for umask and how they
affect directories created with particular arguments.

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 638

639

TA B L E 3 8 . 1 : umask Arguments for File Permissions

Argument Mode Effect on File Permission

077 -rw------- User may read and write, but nobody else has access to the file.

027 -rw-r----- User may read and write; user’s group may read; no other access.

007 -rw-rw---- User may read and write; group may read and write; no other access.

022 -rw-r--r-- User may read and write; group may read; others may read.

002 -rw-rw-r-- User may read and write; group may read and write; others may read.

TA B L E 3 8 . 2 : umask Arguments for Directory Permissions

Argument Mode Effect on Directory Permission

077 drwx------ User may read and write, list filenames in the directory, and delete files
from the directory; no other access.

027 drwxr-x--- User may read and write, list filenames, and delete files; group may
read and list filenames; no other access.

007 drwxrwx--- User may read and write, list filenames, and delete files; group may
read and write, list filenames, and delete files; no other access.

022 drwxr-xr-x User may read and write, list filenames, and delete files; group may
read and list filenames; all others may read and list filenames.

002 drwxrwxr-x User may read and write, list filenames, and delete files; group may
read and write, list filenames, and delete files; all others may read and
list filenames.

NOTE We alluded to this octal form of notation in Chapter 12: “Manipulating Files and
Directories.” Because we didn’t offer a full explanation in that chapter, we
include one here. The octal modes are slightly different from those used as argu-
ments for the chmod command. If you’re interested in learning the octal method
for chmod, consult the chmod manual page by issuing the command man chmod
at a shell prompt.

Internal Security

2817c38.qxd 11/13/00 2:51 PM Page 639

640

As an administrator, you can put the umask command in the default configura-
tion file for your users’ default shell. For example, if you’re using bash under the
Linux operating system on your network, you can add a line to your user config-
uration file that reads

umask 077

New users created with this line in the configuration file will have, by default,
read and write permission for all files they create, though nobody else will have
access to those files.

WARNING These permissions can be overridden by a user with the chmod command. Users can
also override default permissions by setting their own umask arguments in their per-
sonal .bash_profile files. Odds are, though, that if a user is knowledgeable
enough to do this, the user is also aware of the security implications of doing so.

Passwords
In an ideal system, all your users will use strong passwords. Strong passwords are
those that are not easily guessed and are difficult to decipher using common
methods. Strong passwords have some common characteristics:

• They are mixed-case, containing both uppercase and lowercase letters.

• They contain both letters and numbers.

• They are not words found in any unabridged dictionary.

Obviously, there is some tension here. Users want passwords that are easy to
remember, but passwords that are easy to remember are also easy to crack. How-
ever, if a user has a password that is hard to remember—but is really secure—
odds are quite good that the user will just write the password down and leave it
in a desk drawer or tape it to the monitor. This is even worse than having a weak
password; it’s a plain invitation that says, “Use my account! I don’t care!”

An easy way around this conundrum is to encourage your users to use a regular
word that’s easy to remember, but to change it so that it’s a bit more secure. Thus,
the common word mother might become m0th3R, a change that incorporates both
uppercase and numeric characters. This technique has its own drawbacks, because
some crackers use dictionary programs that include common substitutions like
this, but it’s better than demonstrably weak passwords such as mother.

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 640

641

Unfortunately, password security is only as good as your users’ willingness to
help you maintain a secure system. Although there are utilities that scan for weak
passwords and require users to change their passwords at a predetermined inter-
val, there is little you can do if a user is determined to use the name of his dog as
a password; even if required to change passwords every 30 days, such a user
might start with Fido and go to Fido1, Fido2, Fido3, and so on sequentially.

NOTE If you’re interested in such a utility, consult your system documentation. Individual
Unix variants handle passwords differently, and what works on our system proba-
bly won’t work on yours. If you choose a program like this from a software archive
on the Internet, make sure that you can use updated dictionaries with it. A pass-
word program that runs against a two-year-old crack dictionary is almost useless.

Educating your users on the dangers of weak passwords is the best thing you
can do. Explain why you have certain policies and why you enforce them, and
what the consequences are if the policies are violated. If you have a persistent
problem, as a last resort, you can disable the users’ access to the passwd com-
mand and have your administrators issue new passwords regularly. This is far
more trouble than it’s worth, and users tend to resent it, so it should be regarded
as the atomic bomb of password security.

WARNING If you use this last method as a way of controlling access to shared files or
resources, expect to see a flood of internal e-mail each time the password is
changed. Messages like “Could someone post the new database password?” and
the resulting flurry of messages containing the password in plain text will com-
pletely defeat the purpose of the action. Users are resistant to change, and any
attempt at password security must take that reluctance into account.

Malicious Users
If your security breaches are due to malicious users, there are fewer software tricks
that you can use. The best advice we can give is that you should be vigilant in
scanning your system and reading your system logs. Watch for unusual activity,
such as network connections at odd times or files changing that should be static.

Be aware that there are ethical implications involved in watching your users’
activities. From some perspectives, such oversight might be interpreted as spy-

Internal Security

2817c38.qxd 11/13/00 2:51 PM Page 641

642

ing, especially if you’re reading private documents. Your users may have a per-
fectly innocent explanation for suspicious activity; for example, a user may have
scheduled a massive download for the middle of the night to get a faster trans-
mission rate and save the network bandwidth during the busy day.

The best policy is to have a clear Acceptable Use Policy. If someone violates it,
throw that person off your system. If you want to have the options of reading
e-mail, checking personal files, or other activity that would make you uncomfort-
able or litigious if it happened to you, put those activities in your policy. You
should not read someone’s e-mail if you have never told your users that you
reserve the right to do so. Employers, especially, should have policies in place.
You do not want to invoke inadvertently employment law squabbles with an
attempt to fix a security problem.

External Security
When most people think of network security, they think of external security: that
is, keeping intruders out. Certainly, the threats from external intrusion are prob-
lematic. Someone else may use your system and connection free of charge. Even
if the intruder you catch is doing nothing more than looking around to see what
you have, you may not have caught other intruders who exploited the same
entrance into your system to do wrong. No matter how large or small your net-
work is, there are a few basic principles to keep in mind as you determine your
external security needs.

Shutting Down All Unnecessary Services
Don’t run any services that you don’t need. (See Part IX: “Administering Ser-
vices” for more information on services and determining which services to offer
to your users.) If you have no need to run a particular service, such as Apache,
don’t keep it operational just in case you need it later. Any service that you run
must listen on an external port for incoming connections. Any port that is open
because it’s associated with a service is a security risk.

You can turn the service off without removing it from the system. If you decide
you need it later, just turn it back on. In addition to turning the service off, you
should also check through your configuration files to ensure that the service is

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 642

643

commented out and won’t be automatically started at boot-up. For Linux and
BSD, check the file /etc/inetd.conf and make sure that unwanted services are
commented out. Here’s a sample from a typical /etc/inetd.conf file:

These are standard services.
#
#ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l –a
#telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
#
Shell, login, exec, comsat and talk are BSD protocols.
#
#shell stream tcp nowait root /usr/sbin/tcpd in.rshd
#login stream tcp nowait root /usr/sbin/tcpd in.rlogind
#exec stream tcp nowait root /usr/sbin/tcpd in.rexecd
#comsat dgram udp wait root /usr/sbin/tcpd in.comsat
#talk dgram udp wait nobody.tty /usr/sbin/tcpd in.talkd
#ntalk dgram udp wait nobody.tty /usr/sbin/tcpd in.ntalkd
#dtalk stream tcp wait nobody.tty /usr/sbin/tcpd in.dtalkd
#
Pop and imap mail services et al
#
#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
#pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
#imap stream tcp nowait root /usr/sbin/tcpd imapd

Each line in this file specifies a particular service and a server to handle that
service. Notice that all of these services are commented out, with the initial hash-
mark serving as a notice to the computer that the following instructions are not to
be performed. Because the services are commented out, they won’t operate.

On our network, we have commented out pop-2, pop-3, and imap services.
Because we aren’t running a mail server on the particular machine from which
this sample was taken, we don’t need the services. On the machine that does han-
dle mail, we’ve uncommented pop-3, but left the others commented out.

We have also chosen to comment out the traditional data transfer services: ftp,
telnet, rlogin, and rsh. Instead, we’ve replaced them with the more secure ssh
protocol, which runs on its own. We recommend very strongly that you do this as
well. ssh is becoming the new standard for network connections, because it is
protected by encrypted password verification.

When you’ve edited /etc/inetd.conf to reflect the services you want to oper-
ate and the services you want to comment out, you’ll have to restart the inet dae-

External Security

2817c38.qxd 11/13/00 2:51 PM Page 643

644

mon so that the changes will take effect. inet is handled differently depending
on the Unix variant you’re using, so check your documentation to see what you’ll
need to do. On a Red Hat Linux system, for example, you’d issue the command
/etc/rc.d/init.d/inet restart. More generically, you could use the ps com-
mand to find out the process ID number (PID) of the inet process and then issue
the command kill –HUP <PID>.

Using ssh
In the previous section, we mentioned that we have replaced a number of services
with ssh, the Secure Shell. ssh provides a drop-in replacement for telnet, rlogin,
rsh, and other similar services, meaning that ssh can be used straight out of the
box with little or no configuration required. The difference between ssh and these
other services is that ssh establishes an encrypted connection between your com-
puter and the remote computer before it sends any data over the network.

If someone is snooping on your network connections, an act possible with
a packet sniffer program, ssh will foil them, because they’ll be able to get only
encrypted data. This is especially important if you use a password to log into a
remote system, as most of these programs do. ssh generates a unique crypto-
graphic key for each connection and stores it on your local computer.

NOTE Because of United States export restrictions on cryptographic software, we have
not placed any ssh software on the CD-ROM that accompanies this book. You
can, however, obtain ssh in various places on the Internet. True to our GNU roots,
we advise you to use OpenSSH, which is a Free Software implementation of the
ssh protocol. OpenSSH is available at http://www.openssh.com. Versions are
available for Linux, Solaris, and FreeBSD, as well as for several other Unix variants.
We also advise you to read the document “Getting Started With SSH,” found at
http://www.tac.nyc.ny.us/~kim/ssh/. This, and the documentation linked
from that page, should get you going with ssh without too much trouble.

WARNING Non-US or non-Canadian readers should familiarize themselves with their local cryp-
tography import/export laws before attempting to download any ssh software.

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 644

645

Keeping Your Software Up-to-Date
Very few crackers are computer security experts. Most are simply script kiddies, a
pejorative term used for people (usually male teenagers) who download prewrit-
ten cracking programs from the Internet and use them to exploit vulnerable sys-
tems. These prewritten programs are designed to target known security flaws in
particular operating systems.

Although the people who write these programs know what they’re doing—but
have chosen to use their abilities for evil, not for good—the people who use them
usually don’t. (That’s why they’re using someone else’s program, not their own.)
You can foil their efforts just by keeping your software upgraded, especially your
operating system. Usually, when a security hole in a program or operating system
is discovered, people jump on it right away. Updated versions, or small patches
designed to fix the problem, may be released as soon as 24 hours after the hole is
first reported. Keep an eye on Web sites related to your software and your operat-
ing system so that you can download patches as soon as they are made available.

Intrusion Detection
Next to keeping crackers out of your system entirely, the best thing is to catch
them as soon as possible after they break in. Intrusion detection is an entire area
of network security unto itself. With intrusion detection skills and programs, you
can keep a constant eye on your ports and system activity and, hopefully, detect
intruders before they have a chance to do any harm or misuse your connectivity.

There are a few easy commands that you can use to perform low-level intrusion
detection. The first is the common command w. The w command produces output
that can tell you a few interesting things, such as the usernames of all people
logged into the system, what they’re doing, and the current level of system load.
For example, if Joe issues the w command on his personal workstation, the output
looks like this:

1:04pm up 6 days, 4:22, 1 user, load average: 0.03,0.08, 0.08
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
joe pts/0 :0 11:48am 0.00s 0.10s 0.03s w

This output shows that the user joe is the only user logged into the computer.
Notice that the numbers next to load average are very small. The system load

Intrusion Detection

2817c38.qxd 11/13/00 2:51 PM Page 645

646

will vary from computer to computer, depending on hardware. A load of 1.0
means that there are no idle CPU cycles and that the processor is as busy as it can
be, but no tasks have to wait to be executed. Loads higher than 1.0 mean that
tasks have to wait until they are executed, while loads below 1.0 mean that the
CPU is idle some of the time. Very low loads, such as the ones you see here, indi-
cate that the CPU is idle most of the time. For this machine, that is as it should be.
The workstation is a powerful computer with two CPUs, and using a text editor
doesn’t take up much of the machine’s resources.

Were Joe to run this command again and see a spike in the system load, it might
make him suspicious. It could be caused by something innocuous; perhaps Kate
has logged in from another machine and has started to run a CPU-intensive pro-
gram, or perhaps an automatic system function has started to run. The other pos-
sibility is that the load spike indicates an intruder.

Assume that our intruder (we’ll call him Graham) has broken into the com-
puter, but has somehow managed to conceal his presence. We’ve noticed a spike
in the system load, but we can’t figure out why it happened. Certainly, when we
run w, all we see is ourselves. The next command to try is the top command. top
displays a table of processes as its output. All the programs that are currently run-
ning, and the amount of system resources they’re using, are shown in this table.
In its normal state, top output looks something like this:

1:17pm up 6 days, 4:34, 1 user, load average: 0.10, 0.08, 0.07
60 processes: 59 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: 0.8% user, 3.0% system, 0.0% nice, 96.0% idle
Mem: 257644K av, 226504K used, 31140K free, 60744K shrd, 89180K buff
Swap: 530104K av, 308K used, 529796K free, 84908K cached

PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND
20145 joe 11 0 3576 3576 2724 S 0 3.9 1.3 3:29 mult
20008 root 8 0 16488 16M 2872 S 0 2.3 6.3 4:00 X
20446 joe 6 0 864 864 668 R 0 1.1 0.3 0:00 top
20148 joe 2 0 3880 3880 2988 S 0 0.3 1.5 0:00 gnome-ter
1 root 0 0 352 348 272 S 0 0.0 0.1 0:21 init
2 root 0 0 0 0 0 SW 0 0.0 0.0 0:05 kflushd
3 root 0 0 0 0 0 SW 0 0.0 0.0 0:25 kupdate
4 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 kpiod
5 root 0 0 0 0 0 SW 0 0.0 0.0 0:04 kswapd
6 root -20 -20 0 0 0 SW< 0 0.0 0.0 0:00 mdrecoveryd
6334 bin 0 0 340 324 252 S 0 0.0 0.1 0:00 portmap
6348 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 lockd

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 646

647

6349 root 0 0 0 0 0 SW 0 0.0 0.0 0:00 rpciod
6358 root 0 0 516 512 428 S 0 0.0 0.1 0:00 rpc.statd
6400 root 0 0 504 500 404 S 0 0.0 0.1 0:04 syslogd
6409 root 0 0 724 720 304 S 0 0.0 0.2 2:01 klogd

The table refreshes itself every few seconds, so you can see the programs as
they use system resources in something that approaches real-time transmission.

While top is running, you can give it various one-letter commands. To see an
entire list of commands, type h while you’re running top. For our purposes here,
we just want to use the P command. P will sort the list in order of CPU usage,
so that the process using the most CPU time will be placed at the top of the list.
This should tell us who’s using all those CPU cycles and causing the system load
to spike.

w and top are very common system commands, and most clever crackers (or at
least ones who are copying the methods of the clever crackers) will employ some
method or other to conceal their presence on your system. For example, they may
replace your login program with a new version that doesn’t advertise their illicit
presence to programs like w or top. Still, we mention these tools because they give
you a good way to see what’s happening on your system, and that’s a good habit
to develop.

Logs
Another way to learn what’s happening on your system is to make a habit of
browsing through the various log files on your machine. Many processes, particu-
larly servers, record their activity in one or more system logs. These logs are usu-
ally located in the /var/log directory, but some servers create logs in other places.
For example, the Apache Web server might create a log in /var/apache/log. Most
of the time, you can configure default log locations in the server’s configuration
files. Also, check your system documentation to make sure that you’re looking in
the right place for log files.

Logs are fairly easy to read. Here is part of the /var/log/messages file from
one of our Linux workstations:

Aug 13 08:46:06 localhost gdm[14296]: gdm_auth_user_remove:➥

Ignoring suspicious looking cookie file /home/joe/.Xauthority
Aug 13 08:46:06 localhost gnome-name-server[19677]:➥

input condition is: 0x10, exiting
Aug 13 11:48:07 localhost PAM_pwdb[20009]: (gdm)➥

Intrusion Detection

2817c38.qxd 11/13/00 2:51 PM Page 647

648

session opened for user joe by (uid=0)
Aug 13 11:48:08 localhost gnome-name-server[20113]: starting
Aug 13 11:48:08 localhost gnome-name-server[20113]:➥

name server starting
Aug 13 12:16:45 localhost kernel: parport0: PC-style at 0x378➥

[SPP,PS2]
Aug 13 12:16:47 localhost kernel: parport0: Printer,➥

HEWLETT-PACKARD DESKJET 610C
Aug 13 12:16:47 localhost kernel: lp0: using parport0 (polling).
Aug 13 13:01:15 localhost PAM_pwdb[6676]:➥

(login) session closed for user root
Aug 13 13:44:30 localhost PAM_pwdb[20456]:➥

(su) session opened for user root by joe(uid=501)

The most interesting and useful lines in this segment of the log are the lines that
note new sessions that have been opened:

Aug 13 11:48:07 localhost PAM_pwdb[20009]: (gdm)➥

session opened for user joe by (uid=0)

and

Aug 13 13:01:15 localhost PAM_pwdb[6676]: (login)➥

session closed for user root
Aug 13 13:44:30 localhost PAM_pwdb[20456]: (su)➥

session opened for user root by joe(uid=501)

Because Joe was the person who opened the session for root (a session required
because Joe used the su command so that he could read logs, because only root
may read the logs), he has no need to be suspicious of these entries. If we saw
entries for users we didn’t recognize, or entries with our usernames at times we
know we weren’t using the computer, it would be reason for concern.

TIP Check your logs regularly and accustom yourself to their normal appearance.
You’ll be rewarded with a better understanding of your system as well as an
opportunity to catch intrusion early.

Intrusion Detection Software
Even if you scour your logs frequently, you can still miss a cracker. Most crackers
now run log scrubber programs that edit the log files and eliminate entries that

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 648

649

might draw suspicion. To detect crackers at a more subtle level, you’ll need to
turn to intrusion detection software. We’ve placed one such program on the
book’s CD-ROM, a program called AIDE.

AIDE (the Advanced Intrusion Detection Environment) is a program that creates
a database of information about various files on your system. After the database is
built, you can use it to verify that these files are the same ones used to build the
database. This is very useful. Imagine that a cracker replaces your login program,
usually found in /bin/login, with a login program that’s been hacked to allow
undetected entries. No matter how clever that cracker is, he can’t change certain
things about the new software he installs on the system. He can’t, for example,
duplicate the exact size of the binary file he is replacing. AIDE uses this piece of
information, along with other data points, to create a “fingerprint” for each file.

The normal procedure for using AIDE is to install it on a new machine before
that machine is connected to the network for the first time. The database should
be created at this time and should include files that are not expected to change
over the course of the machine’s life. For example, files that change frequently—
such as log files—should not be included in the database.

Once the database has been created, the administrator can run periodic checks.
AIDE will compare the information in the database to the corresponding files cur-
rently on the computer. If any of these files have been altered, AIDE will alert the
administrator, who can then investigate the discrepancy further.

AIDE is included on the CD-ROM accompanying this book. You can install it
using the process explained in Chapter 31: “Installing and Managing Software.”
Once it’s installed, you’ll need to edit the configuration file located at /etc/aide.
conf. The default /etc/aide.conf file is printed below; the file’s comments
make it quite easy to figure out what you need to do to get AIDE configured
properly for your system.

#AIDE conf

Here are all the things we can check - these are the
default rules
#
#p: permissions
#i: inode
#n: number of links
#u: user
#g: group

Intrusion Detection

2817c38.qxd 11/13/00 2:51 PM Page 649

650

#s: size
#b: block count
#m: mtime
#a: atime
#c: ctime
#S: check for growing size
#md5: md5 checksum
#sha1: sha1 checksum
#rmd160: rmd160 checksum
#tiger: tiger checksum
#R: p+i+n+u+g+s+m+c+md5
#L: p+i+n+u+g
#E: Empty group
#>: Growing logfile p+u+g+i+n+S
You can alse create custom rules - my home made rule
definition goes like this
MyRule = p+i+n+u+g+s+b+m+c+md5+sha1
Next decide what directories/files you want in the
database

/etc p+i+u+g #check only permissions, inode, user and
#group for etc

/bin MyRule #apply the custom rule to the files in bin
/sbin MyRule #apply the same custom rule to the files

#in sbin
/var MyRule !/var/log/.* #ignore the log dir it changes

#too often
!/var/spool/.* #ignore spool dirs they change too often

You should also add a line to specify where the database should be put once it
has been created, as in

database_out = /root/aide.db

Once you’ve set up your configuration the way you want it, create the data-
base by using the command aide — init. This will create the database file as
/root/aide.db. You should then move the database to some place where it
can’t be altered, such as a diskette. If the database is too big for a diskette, con-
sider burning it onto a CD-ROM, or use a Zip disk. If you can’t get the database
onto some sort of removable medium, put a copy on another machine, prefer-
ably not connected to the network. You need a copy that is not going to be tam-
pered with by crackers.

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 650

651

When the file has been moved, you need to reedit /etc/aide.conf and specify
the location where you’ll be reading the database. If you burned the AIDE data-
base to a CD-ROM, you’ll be reading it from the drive mounted at /mnt/cdrom
(or applicable mount point for your Unix variant). Linux users can add the line

database = /mnt/cdrom/aide.db

to the file. You can then check the filesystem against the database by issuing the
command aide — check. Any irregularities should be detected at that time.

TIP There are many more configuration options, and if you choose to run AIDE, we
suggest that you read the manual pages for AIDE and /etc/aide.conf by issuing
the commands man aide and man aide.conf.

PortSentry
When crackers are getting ready to attack a given system, they usually start by
running a port scan. This is a procedure in which a program attempts to connect to
various ports on your system in sequential order. It’s a simple way to see which
ports are open and which might be vulnerable to crack attempts.

PortSentry is a program that detects these scans and will respond to them as
they are happening. We did not put PortSentry on the CD-ROM, but it is avail-
able on the Web at http://www.psionic.com/abacus/portsentry. PortSentry is
free, in the free beer sense, so you don’t have to pay to use it. The PortSentry folks
have some other good security programs as well, so take a look around the site.
We do recommend that you read the Web page and the PortSentry documenta-
tion before you attempt to install and use the program.

Port Scanners
One good way of safeguarding your system is to use the crackers’ own tools
against your own network. A port scanner is a good tool for doing this. There are
a lot of port scanners out there, and they all have different features. Which one
you use is up to you. Do a search on portscan at a good Unix software archive
such as http://www.freshmeat.net, and you should find up-to-date choices.

Ideally, you should run a port scanner from a computer outside your network.
The best way to see your external vulnerabilities is from outside, as they will

Intrusion Detection

2817c38.qxd 11/13/00 2:51 PM Page 651

652

appear to the cracker. Finding an external machine from which to run your scan
may be troublesome. Probably the best solution is to befriend another Unix
administrator and trade services.

Firewalls and Proxies
Most Unix systems have the ability to firewall, or block access to, various service
ports. Linux, for example, can block access to certain ports in response to a port
connection, the originating address of the signal, its destination, or its protocol.
Other systems have their own methods of controlling port access.

Unfortunately, the way in which port access is handled can vary quite a bit
from Unix to Unix. Linux uses a utility called ipchains (though by the time this
book is published, a new kernel release will implement a process called netfil-
ter), FreeBSD uses the ipfw utility, and Solaris uses the Service Access Facility.
We won’t discuss these programs in detail here, because each works differently,
and they are all specific to your particular hardware configuration.

Whatever method your Unix variant uses to handle port access, you will need
to implement that method with a consistent firewall policy in mind. How you set
up your firewall has a lot to do with how you set up your network. The most typ-
ical setup is an internal network that connects to the Internet through a single
gateway machine. All traffic entering or leaving the network must pass through
this gateway. Assuming that this is the machine with the firewall on it, all incom-
ing and outgoing traffic will be subjected to the rules about what kind of packets
may enter or leave the local network.

The exact firewall rules for any particular network will vary quite a bit, depend-
ing on the kinds of services that you need to provide for your users and the types
of connections that you expect to receive from outside the network. In general,
though, here are a few rules of thumb for a good firewall policy:

• For incoming connections, block all ports except the ones that are needed
for legitimate incoming connections. For example, if you expect people to
log into your system from remote machines, you should leave port 22 open
for ssh connections. If you want to allow access to a POP e-mail server so
that your users can get their local mail at a remote location, you should
leave port 110 open. In general, though, using POP servers is not a good
idea because passwords and usernames are transmitted without encryption.

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 652

653

• Allow outgoing connections only from ports with numbers greater than
1024. These are the so-called unprivileged ports. The only exception you
should make here is if you have a server that needs to connect to a remote
peer server; some mail and news servers might need this function. In this
case, allow that outgoing traffic to be directed only to a specific port on a
specific machine. Do not allow general outgoing traffic on these ports.

• Do not allow any X Window System connections outside your network.
Block both outgoing and incoming traffic on ports 6000–6063.

TIP For an excellent and detailed discussion of firewall building, we cannot recom-
mend Linux Firewalls, by Robert Ziegler (New Riders/Macmillan, 1999) highly
enough. Though this book is specific to Linux and the ipchains program, the
principles developed in the book should transfer easily to other systems as well.

OpenBSD
For the ultimate in Unix security, check out OpenBSD. The distribution’s page is at
http://www.openbsd.org. OpenBSD is, as you might suspect from the name, a BSD
variant like FreeBSD. OpenBSD’s focus is security. The OpenBSD developers have per-
formed a line-by-line security audit of the operating system’s source code; although no
operating system is perfect, OpenBSD is about as crack-proof as any OS can be. OpenBSD
is an excellent choice if you need an operating system that will integrate your firewalls
tightly and securely.

Proxies
Proxies are programs that perform port forwarding. That is, a proxy is a machine
that stands between a client and a server. The client connects to the proxy as if it
were a server, and then the proxy connects to the server as if it were a client. The
proxy then relays the information from the server back to the client. The security
advantages of this method should be evident. Clients in your internal network
never need to connect to machines outside the network, because the proxy does
all the connecting for them.

Firewalls and Proxies

2817c38.qxd 11/13/00 2:51 PM Page 653

654

We have included on the CD-ROM a proxy program called Dante. Dante imple-
ments the SOCKS proxy protocol. To use Dante, extract and build the package as
explained in Chapter 31. Once Dante is built, you will need to run the shell script
socksify (included as part of the installation process), which will add SOCKS
support to your system libraries. There are also two system configuration files:
/etc/socks.conf for the client functions and /etc/sockd.conf for the server
functions. Configuration options are included in the documentation provided in
the Dante packages.

WARNING Read all the documentation included in the packages carefully before you attempt
to use Dante. Dante affects your system at a very basic level, and you should
understand what it is doing before you try to use it.

Summary
No matter what kind of network or computer you are running, you should be
aware of the various security risks inherent in computer use. Security risks range
from the most prosaic concerns of physical access to those exploited by sophisti-
cated programming designed to take advantage of hidden flaws. Administrators
should balance their security needs against the needs of their users, because the
most secure systems are those to which nobody has access. As a computer’s con-
nections increase, whether to a local network or a worldwide network such as the
Internet, chances for security breaches also increase.

An administrator who is interested in strengthening the security of a given com-
puter or network must be dedicated to vigilant surveillance of that machine or set
of machines. Physical concerns can be alleviated with locked doors, while internal
security relies more on knowing one’s users and educating them on appropriate
system use. Attacks from outside the network are hardest to control, but can be
minimized through the use of security-oriented programs that scan open ports or
report unusual activity. Fear of security breaches should not keep a person or a
network off the Internet or isolated from any network contact; precautions should
be taken just as one would receive immunizations before traveling to a region with
known diseases, but the travel itself need not be avoided.

Chapter 38 • Network Security

2817c38.qxd 11/13/00 2:51 PM Page 654

P A R T I X
Administering Services

� Chapter 39: Selecting a Suite of Services

� Chapter 40: Electronic Mail

� Chapter 41: USENET News

� Chapter 42: World Wide Web Services

� Chapter 43: Remote Access (inet) Services

2817c39.qxd 11/17/00 3:43 PM Page 655

This page intentionally left blank

C H A P T E R
T H I R T Y - N I N E

Selecting a Suite of Services

� What Is a Service?

� Why Not Run All of Them?

� What Are Your Needs?

� A Word about Security

� Managing Services

� Summary

39

2817c39.qxd 11/17/00 3:43 PM Page 657

658

The final section of this book is Part IX: “Administering Services.” In this sec-
tion, we explain the technical, security, and social aspects of running various
server functions, including servers for e-mail, Web, and other remote access ser-
vices. Whether you run your own network or use these services on someone else’s
network, the chapters in this part of the book can give you a broader understand-
ing of the functions many take for granted when they boot up a computer.

In this chapter, we provide an overview of services in general. We divide the
Unix-using population into several categories and explain how each category
might choose to allocate system resources. Finally, we give you a general idea of
server management, including installation, configuration, and removal.

What Is a Service?
When we talk about services, we refer to functions that utilize the Unix server-
client architecture. That is, a service is a function that is available to one or more
clients, whether those clients are other programs, computers, or human users. For
example, if you pull up Netscape and enter the URL of a Web page you’d like to
view, Netscape contacts the hosting computer’s Web service as a client, request-
ing the given URL. We cover client-server architecture in detail in Chapter 36:
“The Distributed System.”

Services are generally used to distribute or gather information. In this chapter,
we focus on services that are usually used across multiple networks. Although
they are not specifically Internet services, they do provide data for the most com-
mon Internet functions: electronic mail, Web pages, USENET news articles, and
file transfer. However, other services are used extensively within local networks
to handle local issues, such as NFS (the Network File Server), covered in Chapter
30: “Disks and Filesystem Management.” If you’re running the X Window Sys-
tem, you’re running a server; you’re also running its partner, the X Font Server.

Why Not Run All of Them?
Because servers can be run locally or on a broader scale, but have no required
minimum or maximum number of users, it is up to the system administrator to

Chapter 39 • Selecting a Suite of Services

2817c39.qxd 11/17/00 3:43 PM Page 658

659

select the servers that will be run on a given network. In addition, the administra-
tor can determine who will have access to any given service; in theory, you could
run an entire suite of Internet services that were usable only on the interior net-
work. (It’s actually quite common, though the reality is that services are used
both for external access and for internal purposes.)

So, why not run all the services you can? It’s a reasonable question. Running a
lot of services means that you can offer your users many more functions and that
you can handle more of your own Internet traffic rather than relying on a com-
mercial provider. You may have a really magnificent hardware setup, and run-
ning multiple constant processes may not be an issue for you. You could even
decide to run a large number of services just because. All of these are quite com-
mon answers—and they’re not necessarily wrong.

WARNING If you currently have constant Internet access, as with a cable modem, ISDN, or
DSL service, check the terms of your user agreement before you install any services
that will utilize the Internet connection. Some of these services—including the
popular @Home cable modem—prohibit end users from running servers through
their networks. You may be required to switch to a business-oriented plan, even if
you’re not a business, if you want to run services through a consumer connection.

The first thing you must consider when deciding what to run is what you really
need. If you are the only user of your standalone Unix computer, chances are you
won’t need to run servers designed for networks. If you run a small network, but
your users all connect to external POP servers (run by commercial ISPs or by their
employers) for their e-mail, you might not need to run a mail server on your local
machine. If you’re running an e-commerce enterprise out of your garage, you’ll
need a Web server. Only you can determine what are your basic server needs.

NOTE If you’re anything like us, the just because answer really struck a chord with you.
People who are interested in running Unix networks are usually the sort of people
who plug in strange equipment to see what it does and how it works. However,
we can’t recommend installing and running every server you can get your hands
on. Each service you run is constantly operating, placing (sometimes significant)
demands on your system resources. If you run enough servers, you won’t be able
to accomplish anything from a user account because the services have brought
system speed to a near-halt. We recommend running the basics that you really
need; you can always add more services later.

Why Not Run All of Them?

2817c39.qxd 11/17/00 3:43 PM Page 659

660

What Are Your Needs?
The services you need depend on the kind of user or administrator you are. The
person running a single computer that connects to the Internet via a dial-up ser-
vice provider has different needs than the person who administers a 40-machine
distributed network for a popular Web site, or the person who manages a large
multipurpose and heterogeneous corporate network. Once you figure out what
you do with your computer, you’re halfway to deciding what services you need
to run to accomplish your goals.

The Hobbyist
Hobbyist is not a pejorative term. We use this term to describe users who do not
administer networks professionally (see Chapter 27: “What Is System Adminis-
tration?”). Rather, the hobbyist works with Unix for fun. This category ranges
from the single user with one computer running Linux, to the family with multi-
ple accounts on a two-computer network, to the hard-core hobbyist with five or
six dedicated machines.

In general, though, the hobbyist runs a network with three or fewer machines,
sharing access to the Internet through IP masquerading rather than having dedi-
cated IP numbers for each machine. Hobbyists rely on a commercial Internet ser-
vice provider to handle e-mail and news. If you fall into this category, here are
our suggestions:

• Turn off all services that may have been installed by default with your Unix
variant. Some variants automatically install a full suite of services, assuming
that you’ll use them.

• If you run a multiple-computer network, keep NFS. If you have a single
computer and no plans for a network, turn it off.

• If you have a multiple-computer, multiple-OS system, install Samba (if it
isn’t already installed) for the Windows computers and netatalk for the
Macintosh computers.

The Worker
Workers are those who run Unix machines for small-scale business needs. If you
have a home business and run a network for that purpose, you’re a worker. If you

Chapter 39 • Selecting a Suite of Services

2817c39.qxd 11/17/00 3:43 PM Page 660

661

work for someone else, you are probably a worker only if you are in charge of the
entire system and the company itself is fairly small. (System administrators at
larger companies, especially companies where administrative duties are divided
up among a staff, should see the next section.)

Workers’ needs change based on the functions the network provides. In gen-
eral, workers will need to manage file and print sharing, and will probably have
to provide some sort of interface between the intranet and the Internet. Whether
the business uses a commercial ISP, as the hobbyist does, or has a faster connec-
tion with less customer service will affect the services that the worker uses. If you
are a worker, consider these suggestions:

• Make sure to enable Samba or netatalk, depending on your network’s het-
erogeneity.

• You probably won’t need a business news server, so you can turn off INN or
C News.

• Enable Apache if your business’s Web presence is hosted in-house. If your
pages are housed by a Web hosting company, you can turn off Apache.

• An electronic mail server is a good idea, especially if your company’s
employees are using their personal addresses (or Web freebies such as Hot-
Mail) to do company business.

NOTE It is never a good idea to use your work e-mail address to handle personal corre-
spondence. Although it may seem logical to think that your e-mail belongs to you,
if you’re using a computer or connection from work, your e-mail probably is the
legal property of your employer. There have been several cases where courts have
issued subpoenas for employer-owned computers that employees were using at
home, and many more cases where people have been fired for using corporate
Internet resources for personal use. Keep your personal and work lives completely
separate, even by buying an additional computer if you have to.

The Specialist
If you’re a specialist, you already know what you need. Specialists are people
who need specific tools to complete specific tasks. Usually, specialists are those
whose work responsibilities are particular segments of system administration,
such as e-mail or Web services. Other specialists are those who do a lot of pro-
gramming, whether at work or on their own time.

What Are Your Needs?

2817c39.qxd 11/17/00 3:43 PM Page 661

662

No matter what kind of specialist you are, you demand a lot from your com-
puter and know how to get it. You don’t need us to tell you what services to run
or how to configure them most appropriately. Just keep an eye on security and
consider broadening your skills a bit by learning a new service if you find one
that’s appealing.

A Word about Security
As we noted in Chapter 38: “Network Security,” you should be aware of the secu-
rity risks involved any time you install a program that allows external access to
your computer. Almost by definition, the services described in this part of the
book are based on external access for various functions. Therefore, if you plan to
run servers, you need to be vigilant about your security program.

WARNING Any service that you run represents a security risk. Although this sounds scary,
don’t let it stop you from running services. Just make a commitment to security
and to keeping on top of the latest security news. Use the material presented in
Chapter 38 to help you build a security program, and keep abreast of the news
reported on the security sites listed in Appendix B: “Documentation and
Resources.”

The services covered in these chapters each operate on traditional ports. One of
the most common cracker programs is a port scanner, which will check all the
ports on the target machine. If a weakness is found, the cracker can utilize that
weak port to make an entry and use your computer as a base for illicit activity.
Running services leaves those ports open because the services require them. Do
not run services if you are not willing to be on the constant lookout for security
risks, intrusions, and new patches that will help you maintain a secure system.

That said, we don’t think you should avoid running services altogether. They’re
useful, and they are some of the major features for which people use Unix in the
first place. Just be careful: Install only the services you need, be aware of their
normal activity, and investigate anything suspicious at once.

Chapter 39 • Selecting a Suite of Services

2817c39.qxd 11/17/00 3:43 PM Page 662

663

WARNING Those who run 24-hour constant connections, such as cable modems or DSL,
should be particularly vigilant about their security and unauthorized activity on
their systems. We cannot stress highly enough that you should read Chapter 38
and use its information to help you construct an effective security program for
your particular system.

Managing Services
In general, services work like any other program that you’d run on your Unix
machine. The process of installation is the same: Install the packages, configure
the software, and then configure your system to recognize and work with the
new program.

NOTE Some versions of server software will automatically install initialization scripts dur-
ing installation. Check the /etc/init.d file before you start configuring the
system yourself, just to see whether a script has already been placed in the direc-
tory. It’s annoying to learn, after you’ve spent some time writing a script by hand,
that the installation program already handled it for you.

Removal of services is almost like removal of any other kind of program, with
one exception. With services, you need to decide whether you are going to delete
the service or just turn it off. In most cases, we recommend that you leave the ser-
vice installed. Circumstances change, and you may find yourself wanting to run a
Web server even though you’d never envisioned such a thing a few months pre-
viously. (Upgrading your Internet connection type often has this effect.)

The next two sections of the chapter explain the methods you’ll need to use to
deactivate services, based on your operating system. Once you’ve made the
appropriate edits, you can delete the service if you want. If you don’t want to
delete it, just leave it exactly as it is. The next time you want to activate that ser-
vice, all its initialization and configuration scripts will be intact—you simply need
to reenter the service into the appropriate start-up file to make it active again.

Managing Services

2817c39.qxd 11/17/00 3:43 PM Page 663

664

Turning Off Services: FreeBSD and Linux
With FreeBSD and Linux, there are two ways a service can be started. (Solaris uses
a different method.) In FreeBSD and Linux, services can be started either from
inetd or from init, and each has a different method for turning off services.

• To remove service references for services started from inetd, you will need
to remove entries from the /etc/services and /etc/inetd.conf files. We
cover inetd in Chapter 43: “Remote Access (inet) Services,” and you can
learn how to configure those files in that chapter.

• To remove service references for services started from init, as with some
versions of Linux, you’ll need to decide whether you want to keep the ser-
vice. If you plan to delete the service, remove its initialization script file from
the /etc/init.d directory. If you just want to turn off the service, delete its
symbolic link in the /etc/rcX.d directory, where X is the number of the run-
level directory containing the symbolic links.

• If you are using FreeBSD or some Linux variants (most notably Slackware),
you will find a set of scripts in /etc with names like rc.web, rc.mail, and
so on. Those scripts are run at init, and to turn off the service, you will
need to remove the script or copy it to a different location. We recommend
moving the script out of /etc, but keeping it around in case you want to run
the service at a later date.

Turning Off Services: Solaris
Solaris uses a different set of tools to control access to network functions, accessed
with the Service Access Facility (SAF) tool. The SAF controls Solaris’s port moni-
tors, small programs that watch over each port and detect requests for connection.
The monitors make real-time decisions about whether the request meets the
requirements for entry on that port; if requirements are met, the monitor hands
the request to the appropriate service.

The two SAF commands you’ll use to turn off Solaris services on the operating-
system level are sacadm and pmadm. Use sacadm to add and remove the monitors
on ports associated with services, and use pmadm to associate or disassociate a
monitor with a given service. You can also use pmadm to add or remove services
themselves. The syntax for sacadm and pmadm is somewhat arcane and complex
enough that newcomers to Solaris shouldn’t mess around with it. If you’re run-
ning Solaris and you want to turn off services, check the documentation for each

Chapter 39 • Selecting a Suite of Services

2817c39.qxd 11/17/00 3:43 PM Page 664

665

individual service. If you downloaded Solaris packages for the service, the docu-
mentation contained within those packages will probably tell you how to handle
turning the service off; you can leave the port monitors active if you like.

WARNING Because of the enormously complicated and system-dependent nature of this pro-
cedure, we don’t recommend that casual Solaris users experiment with it. If you’re
more experienced with Solaris, Sun recommends that you learn about the Service
Access Facility by reading the second edition of the Solaris Advanced System
Administrator’s Guide, by Janet Winsor (Macmillan Technical Publishing).

Summary
For Unix users to use particular network functions, a service for the function must
be installed. Such servers make use of the Unix client-server architecture, answer-
ing requests from clients and managing data. The most familiar servers are those
used for Internet activity, such as e-mail or Web browsing, but servers are used for
a variety of other functions, such as print and file sharing or remote login access.

Deciding which services to run can be confusing. The best way to choose ser-
vices is to determine what functions you need and then install services to meet
those needs. Running more services than necessary will drain your system
resources and slow down your computer. If you don’t want to run certain ser-
vices, you can turn them off, but you don’t need to delete the service from your
computer. You may decide to run the service at a later date, and if you’ve retained
old initialization scripts and packages, it will save some time at that point.

Summary

2817c39.qxd 11/17/00 3:43 PM Page 665

This page intentionally left blank

C H A P T E R
F O R T Y

Electronic Mail

� How Electronic Mail Works

� An Overview of Mail Services

� sendmail

� Postfix

� Exim

� qmail

� smail

� Setting Up POP and IMAP Services

� Summary

40

2817c40.qxd 11/13/00 2:58 PM Page 667

668

If you decide to set up a network and provide services that transfer data to and
from the Internet, the first server you’ll install will probably be an electronic mail
server. E-mail is the core function of many Internet-connected networks, and is
rapidly becoming the business and personal communication method of choice. A
network that doesn’t offer electronic mail to its users may not have those users
very long.

Electronic mail is transferred in a more complicated manner than most people
think. It relies on a series of servers and directory searches, all of which take place
in the blink of an eye. These servers exist on the sending machine, the receiving
machine, and many machines between the originator and the ultimate destina-
tion. Although many users think that e-mail is sent directly between the sender’s
mail client and the recipient’s mail client, that is not the case.

Much of the work of electronic mail transfer is done by the mail server, also
called the mail transfer agent (MTA). A variety of MTAs are available for you to
run, ranging from the small and relatively insecure to the large, impenetrable,
and multifeatured. There are quite a few other server options along that spectrum
as well. You can try out a few different MTAs until you find a transfer agent that
works for you, but they are complicated enough to install and configure that
many administrators just live with the one they picked first. That doesn’t have to
be the case, though, because moving to a more streamlined mail server may be
easier than continuing to maintain and upgrade the complicated one.

In this chapter, we show you how electronic mail is transferred across the Inter-
net. Tracing the progress of one e-mail message, we introduce the various compo-
nents of electronic mail transfer and show you how more domains are involved
in a single message’s route than most people understand. Next, we introduce a
variety of mail transfer agents and explain their features, installation methods,
and configuration. Although you may choose to use a mail transfer agent that is
not listed in this chapter, the servers described here are a good representation of
the kinds of servers you’re likely to find elsewhere.

Finally, we explain how to set up a POP or IMAP mail server. If your users
prefer to work from a graphical environment—whether a Unix environment or
a Windows or MacOS environment—they will probably need to use a POP or
IMAP protocol mail client. These clients connect to your mail server using a
particular protocol and download the user’s mail to the local machine. This is
an increasingly popular way to handle electronic mail, and it may be right for
your network as well.

Chapter 40 • Electronic Mail

2817c40.qxd 11/13/00 2:58 PM Page 668

669

How Electronic Mail Works
Electronic mail is one of the most frequently used applications on the Internet and
within local networks. With electronic mail, you can send messages nearly instanta-
neously, whether to the office next door or to a friend on the other side of the world.
However, even though most people with an Internet connection send and receive
electronic mail every day, very few of them know how e-mail actually works.

The Software Components
Electronic mail transfer is handled by a suite of programs. First, there is the user
agent, sometimes called a mail user agent (MUA). This is what most people think of
when they think about electronic mail software, because it’s the client program. A
wide array of e-mail clients is available, with a multitude of choices, regardless of
the operating system you are using. Unix users tend to cluster around the shell-
based electronic mail readers Pine, elm, and emacs, because these programs offer
extra features such as individualized mail sorting and various composition features.

TIP Pine uses the pico text editor, covered in Chapter 19: “pico, joe, and jed.” elm
uses the vi editor by default, but can be configured to use whatever editor you
prefer. vi is introduced in Chapter 17: “The vi Editor.”

Those Unix users who prefer to use a graphical environment such as the inte-
grated desktops KDE or Gnome may use the graphical mail clients that are pack-
aged with those desktops, or may find other graphical mail clients that suit their
needs. If you run a heterogeneous network, your Windows users might like Eudora
or Simeon as a graphical mail client—or even Microsoft Outlook, though we can’t
recommend Outlook.

WARNING We aren’t bashing Outlook simply because it’s a Microsoft product. Rather, it’s a
security choice. Most of the e-mail viruses that make the evening news are Outlook-
based viruses, written to exploit the Outlook program alone. People who receive
these viruses but don’t use Outlook to read their mail are less affected; people who
read their mail with a shell-based text mail client don’t have any issues with Win-
dows-based viruses. If you run a network that includes Windows machines, consider
banning Outlook and enforcing the use of a POP or IMAP mail client such as Eudora
or Simeon.

How Electronic Mail Works

2817c40.qxd 11/13/00 2:58 PM Page 669

670

The second component of electronic mail delivery is the mail transfer agent
(MTA). An MTA runs behind the scenes and is a server program, like the other
programs described in this section of the book. If an MTA runs properly, most
users will never even know that it exists. We describe some common MTAs in
this chapter, including sendmail, Postfix, and qmail. The transfer agent receives
outgoing messages from local mail clients and transmits them to the local net-
work or Internet, while simultaneously receiving incoming mail from the net-
work or Internet and sorting it into individual mail spools for each recipient.
MTAs are responsible for getting the mail where it needs to be; they function like
the postal service, where the mail client is like a local post office.

The third component of electronic mail delivery is the delivery agent itself.
Delivery agents are part of the operating system, and there is not a wide range of
choices as with mail clients and transfer agents. Delivery agents receive incom-
ing mail from the transfer agent and deliver the message to its final destination,
the user’s personal mail spool. You don’t need to worry much about delivery
agents, because they work automatically and don’t have much configurability
on the administrative end.

The Process
To understand how these elements of mail transfer software work together to get
your e-mail to its destination, here is an example. Assume that you have written
an e-mail to your friend Page, who has an e-mail account at HushMail.

TIP HushMail, http://www.hushmail.com, is a free Web-based electronic mail ser-
vice that offers encrypted e-mail. This service became quite popular after a well-
publicized series of cracks into the Hotmail system in 1999. If you need to use a
Web-based e-mail service, we recommend HushMail.

First, you must compose your message. Open your favorite e-mail client—
perhaps Pine—and start a new message, placing Page’s e-mail address in the
To: field. Write your note to Page; when you’re finished, select the Send option.
(In Pine, it’s Ctrl+x.) Your mail client takes the finished message and delivers it
to the local network’s mail transfer agent.

On this network, the local transfer agent is qmail. qmail receives the message
from your client and notes that it is to be delivered outside the local network.

Chapter 40 • Electronic Mail

2817c40.qxd 11/13/00 2:58 PM Page 670

671

Were it a local message, sent to someone with the same domain name as you,
qmail would simple shuttle the message to that person’s incoming mail spool.
However, because Page has an account at another domain, qmail must send the
message across the Internet.

NOTE If you have an Internet connection that is not always on, your network’s mail
agent will queue up all outgoing mail and send it when the connection is active.
Likewise, the mail agent will download all incoming mail when the connection is
alive. If your message passes through a machine whose connection is down, it will
be delayed.

Once qmail determines that the message is destined for another domain, it
checks the To: header to get that domain’s name from the recipient’s e-mail
address. In this case, it takes the @hushmail.com segment of Page’s e-mail
address as the intended receiving domain. qmail then looks up the MX record
for hushmail.com.

An MX (Mail eXchanger) record is part of the domain’s entry on a Domain Name
Server machine, and it indicates where messages for that domain should be sent.
Electronic mail messages are never sent directly from the originating domain to
the recipient domain; instead, they are sent through intermediate hops. The MX
record tells the sending transfer agent which intermediate site should receive the
message first on its way to its ultimate destination.

Once the MX record has been consulted and the first intermediate site is
known, the transfer agent on your network sends the message to that site. The
MTA at that site looks up the MX record for the ultimate recipient domain and
sends the message to the next intermediate hop, and so on. Eventually, the mes-
sage arrives at its intended destination, hushmail.com. Depending on how far
away geographically the destination is from the originating site, the message may
travel through as many as 15 or 20 hops, or as few as 3 or 4. When hushmail.com
receives the message, its transfer agent recognizes the address as its own.

The HushMail transfer agent then checks to see whether the e-mail address you
specified for Page actually exists on their system. If it does, the message is placed
in Page’s incoming mail directory: usually /var/spool/mail/$USER or, in this
case, /var/spool/mail/page. The message remains in that spool until Page
checks for new mail and reads, downloads, or deletes the message. Should Page
respond to you, the message will follow the same path in reverse.

How Electronic Mail Works

2817c40.qxd 11/13/00 2:58 PM Page 671

672

An Overview of Mail Services
Mail services are a bit more complicated than some of the other servers that we
discuss in this part of the book. The reason for this complication is that, when we
talk about mail servers, we are talking about two separate types of programs:

• The mail server that accepts incoming electronic mail from the Internet

• The mail server to which your system’s users connect to obtain their elec-
tronic mail

Although these two types of programs are very tightly related, they are distinctly
different kinds of servers and should not be confused.

Electronic mail that travels over the Internet is handled by the Simple Mail
Transport Protocol (SMTP). When your system receives electronic mail from the
Internet, the sending site makes an SMTP connection to your site. Your SMTP
server will verify that the intended recipient actually exists on your system and
then will accept the mail message.

NOTE Some older Unix systems might be configured to use the Unix-to-Unix Copy Proto-
col (UUCP), but recent advances in security and other considerations have made
this protocol largely obsolete.

Once the SMTP server on your site accepts the message, it is deposited into a
spool directory designated for that user. The standard location is /var/spool/
mail/$USER, where $USER is the user ID of the person on the system to whom the
mail was addressed. The message then sits in that spool directory until it is either
read, using a local mail client that is configured to read mail directly from the
spool, or downloaded, using a POP or IMAP server.

TIP Encourage your users to download or delete their mail frequently. The incoming
mail directory, /var/spool/mail, contains mail for everyone on the system in the
same directory, simply divided into $USER subdirectories at the lowest level. If
readers do not save or delete their mail when it’s read, the messages remain in
/var/spool/mail. Enough readers leaving enough undeleted messages in that
spool will fill it, and no new incoming mail will be received. If your readers read
mail directly from the spool, as with the shell-based mail readers Pine or elm, this
is especially important. When users save messages with these readers, they are
saved to the user’s home directory and removed from /var/spool/mail.

Chapter 40 • Electronic Mail

2817c40.qxd 11/13/00 2:58 PM Page 672

673

POP (the Post Office Protocol) and IMAP (the Internet Message Access Protocol)
are two slightly different protocols that accomplish essentially the same thing. That
is, a user using a POP or IMAP mail client connects to the mail server and down-
loads his mail to his local machine (the IMAP protocol usually leaves a copy of the
message on the server). Most modern graphic electronic mail programs, whether
designed for Unix, Windows, or Macintosh machines, can download mail using
one of these protocols. Popular POP and IMAP mail readers include Eudora,
Microsoft Outlook, and Simeon.

The advantage of using a POP or IMAP server to distribute your users’ elec-
tronic mail is that the user never needs to log directly into the mail server. This is
a good thing from a security standpoint. However, each user who receives mail
on your system still needs to have an account on the mail server, even if it’s never
accessed directly. This is because each user needs to have a separate spool direc-
tory, each user needs to be a valid user so that the SMTP server can authenticate
mail for that person, and the POP or IMAP server will require the user to provide
the password to her mail server account before downloading mail.

NOTE Assuming that you don’t want your users to log into shell accounts on the mail
server, you should configure your adduser program to set each user’s default shell
on the mail server machine to either /bin/false (which will completely disallow
logins) or /usr/bin/passwd (which will allow logins only for the purpose of
changing passwords).

So, if you wish to set up mail services for your system, you must first install
and configure an SMTP server. Then, you need to install a POP or IMAP server
for users who want to download their mail remotely. Because POP and IMAP
are controlled from the inet daemon, you must configure these services in the
/etc/inetd.conf file. (This generally involves only uncommenting the rele-
vant lines.) Learn more about the inet daemon in Chapter 43: “Remote Access
(inet) Services.”

Finally, you must ensure that every user on your system has an individual
account on the mail server and make whatever security arrangements you think
are necessary to protect the mail server machine from unauthorized entry. In par-
ticular, turn off any features that permit electronic mail to be relayed through your
mail server. If you permit relaying, whether intentionally or not, your server is a
valuable resource to those who send unsolicited commercial e-mail, which is a
waste of everyone’s time and money.

An Overview of Mail Services

2817c40.qxd 11/13/00 2:58 PM Page 673

674

NOTE The mail servers described in this section of the chapter should all work as drop-in
replacements for sendmail. You will need to configure your system to recognize
the replacement server instead of sendmail if your Unix variant expects send-
mail to be used as the local transfer agent. Do so by making the file
/usr/lib/sendmail a symbolic link to the executable binary of your chosen
replacement, then restarting the mailer daemon.

sendmail
The sendmail mail server is the granddaddy of mail transport agents. Now in
version 8, sendmail has been around for years. It is comprehensive, will meet any
mail transfer need you or your users have, has relatively few bugs because it’s
been under development for so long, and is the heavyweight option for mail soft-
ware. The downside is that it is a very, very complicated program. Configuring
sendmail—before you can even begin to run it—requires a 28-page FAQ. send-
mail is not for the faint of heart or the newbie; it really is an advanced server and
is best suited for large-scale networks that require the most bulletproof mail
server possible.

NOTE Even then, large-scale networks often opt for mail servers other than sendmail
because of the complicated way in which sendmail must be managed. See the
“qmail” section later in this chapter.

We treat sendmail with a great deal of respect, but choose not to run it on our
own systems. Instead, we run Postfix and are considering a switch to qmail. send-
mail is overkill for small systems like ours, which don’t receive a great deal of e-
mail. Were we running an ISP, or managing networks for a major company or
academic institution, sendmail might be a more appropriate answer. We include
it here to introduce you to the most commonly used mail transport agent on the
Internet, but we do not recommend that you use sendmail as your first MTA. Start
with one of the mail servers listed in subsequent sections; if you find that one of
those MTAs is not appropriate for your needs, consider sendmail—but only after
doing your homework and learning how this complicated program works.

Chapter 40 • Electronic Mail

2817c40.qxd 11/13/00 2:58 PM Page 674

675

Installing and Configuring sendmail
Get the latest version of sendmail directly from the sendmail project at
http://www.sendmail.org. The current release is 8.11.1, which includes bug
fixes for the 8.11.0 version. Be sure you get the version with patches so that you
are running the most secure version of sendmail possible. Install the software
using the methods explained in Chapter 31: “Installing and Managing Software.”

WARNING Before you install and compile sendmail, read the “Compiling Sendmail” docu-
ment at http://www.sendmail.org/compiling.html. This lengthy document
describes the various ways in which you can install sendmail and configure it during
compilation. There is an extensive listing of known quirks with almost every Unix
variant, as well as a set of manual pages and other data. Reading this file will help
you to avoid problems that may make it impossible for you to send or receive mail.

TIP The easiest way to compile sendmail is to use the script Build, which you invoke
by issuing the command sh Build in the directory where you’ve placed send-
mail. This script auto-probes your hardware and determines the configuration so
that the Makefile is generated appropriately.

When sendmail is installed, you can begin to configure it. Configuring send-
mail is a lengthy and involved process that may seem quite intimidating: It is.
The configuration files are contained in the directory /etc/mail/cf. The configu-
ration files all use the suffix .cf, and they must be parsed through the m4 program
to be edited properly. Thus, you’ll need to install m4 and learn how to work with
it before you can configure sendmail. Those readers interested in learning to con-
figure sendmail should consult the sendmail configuration README file
located at http://www.sendmail.org/m4/cf-readme.txt.

Postfix
Postfix is a newer mail server that is rapidly gaining adherents. Postfix is easier to
configure than sendmail or Qmail, but is still quite efficient, secure, and stable
under high loads. You can run Postfix on almost any kind of network configura-
tion without a great deal of fuss. Several basic sample configurations are even

Postfix

2817c40.qxd 11/13/00 2:58 PM Page 675

676

provided in the Postfix FAQ, so you can get your mail server running without a
lot of homework to figure out the appropriate configuration.

Installing and Configuring Postfix
Obtain Postfix at almost any Unix software archive or directly from the Postfix
development team at http://www.postfix.org. Install it with the methods
described in Chapter 31: “Installing and Managing Software.” When you have
finished with the installation, you can begin to configure the server for your par-
ticular network.

Postfix configuration is done with the file /etc/postfix/main.cf. Although
this is a lengthy file, few edits need to be made for the vast majority of sites running
Postfix. Typical configurations can accept most of the defaults. The /etc/postfix/
main.cf file is extensively commented, and you should not have much trouble
understanding what each section of code is intended to do.

There are, however, some specific configurations that you’ll need to make to get
Postfix working. The first edit you’ll need to make is to define your domain name
so that Postfix knows what mail it should accept. Open the configuration file in a
text editor and locate the line

myhostname = <your server’s name here>

Change the <your server’s name here> entry to your mail server’s fully quali-
fied domain name, such as mail.mydomain.com. If you’ve given the mail server
another name, such as george, you’d need to enter george.mydomain.com.
Check to be sure that the angle brackets are deleted.

WARNING This entry is used as a basic parameter for many other configuration options and
for Postfix operation in general, so be sure you enter the correct machine name
and that you include the entire domain name. If you don’t, Postfix won’t work.

Next, look for the /etc/postfix/main.cf entry that defines the domain name
that will be attached to outgoing mail. This entry is

mydomain = <your domain name here>

Replace the placeholder text and the brackets with your domain name. Do not
include any machine names; just use the domain and the top-level extension, as
in mydomain.com.

Chapter 40 • Electronic Mail

2817c40.qxd 11/13/00 2:58 PM Page 676

677

To configure the outgoing domain name further, locate the entry that reads

myorigin = <either $myhostname or $mydomain>

If you choose the variable $myhostname, mail sent from your domain will carry a
return address that specifies the machine from which the mail was sent. That is,
if user ellen sends mail from the machine topaz on your network, her return
address will be shown as ellen@topaz.yourdomain.com. If you choose the vari-
able $mydomain instead, her return address will be shown as ellen@yourdomain.
com. The $mydomain option is more common, though the choice is yours.

The last configuration that you must make for Postfix to run is to define the
various names by which your mail server is known, so that Postfix will accept
mail intended for your network regardless of how the server name is configured.
Locate the line

mydestination = <list of destinations here>

and edit the placeholder text so that it contains any aliases that your mail server
machine might have. A typical list would look something like this:

mydestination = $myhostname, localhost.$mydomain,➥

$mydomain, mail.$mydomain

Of course, replace these placeholders with the actual machine names on your sys-
tem and add any others that might be required due to your configuration. Editing
this line properly means that any of these address configurations will be accepted
as valid on incoming mail and that those messages will not be returned to the
sender as invalid.

The remainder of /etc/postfix/main.cf deals with virtual domains, junk
filtering, and address rewriting. These are somewhat advanced topics and prob-
ably won’t be of interest to a majority of administrators. With the basic setup
outlined above, you should be able to use the default values in these other
entries without worry.

Starting Postfix
Once you have finished configuring /etc/postfix/main.cf, save the file and
exit the text editor. Now you can start Postfix, which is usually done by issuing
the command

/usr/bin/postfix

Postfix

2817c40.qxd 11/13/00 2:58 PM Page 677

678

as root. (If you happen to have a System V init script for Postfix, run that instead.)
Make sure that port 25, the default SMTP port, is open to incoming connections.
You should now be able to receive mail for your system, and it should be delivered
to the appropriate /var/spool/mail/$USER directory for each user.

TIP Postfix documentation, such as the comments in /etc/postfix/main.cf, is
exhaustive and useful. The Postfix FAQ is a lengthy document that contains several
sample Postfix configurations—standalone machine, networked machines, Postfix
on a firewall or inside an intranet, and so on—as well as a good list of troubleshoot-
ing solutions. You can find the FAQ at http://postfix.sparks.net/faq.html.

Exim
The Exim mail server is an English program, developed at Cambridge as a
replacement for smail (described below). Like smail, Exim is released under
the GNU Public License and is freely available. However, Exim incorporates
some features that were never part of the smail distribution, including address
verification and some spam filtering tools. Exim is small, takes up a limited
footprint on a machine, and has low CPU overhead. It’s a good alternative for
small networks that don’t deliver a huge amount of mail, though it’s been
tested in production environments as well.

Exim is becoming increasingly popular. Many administrators who once used
smail and liked having a GPL mail server on their system replaced smail with
Exim because of its increased security and its ease of administration. Exim even
comes as the default mail transfer agent on some Unix variant distributions, and
it has been picked up by some major sites that transfer thousands of messages per
day over Exim.

Obtaining and Installing Exim
You can get the latest version of Exim from the Exim project site, http://www.
exim.org. The latest version is 3.16. The Exim team recommends that you stay

Chapter 40 • Electronic Mail

2817c40.qxd 11/13/00 2:58 PM Page 678

679

away from versions 2.0.x and earlier, because they were essentially beta versions;
the 3.0 and higher versions have much improved security and other tools.

Install Exim as you would install any other Unix software package, using the
methods introduced in Chapter 31: “Installing and Managing Software.” Be sure
to read any text files included in the Exim package, especially the README file.
This file will contain any last-minute changes to the package, as well as offer
helpful guidance in getting Exim compiled and configured on your system.

WARNING Before you begin to install Exim, create a new local configuration file with the
name Local/Makefile. When you unzip the packed Exim file after downloading,
you’ll find a template in the /src/EDITME file; you can just copy the /src/
EDITME file to the correct location. Read through this Makefile before you build
the package, because you may need to make some edits before installation.

Exim is configured through a single file that runs at boot, which uses both regu-
lar entries and macros to handle its settings. The syntax for Exim configuration is
tricky, and we suggest that, should you want to install Exim and configure it to
run on your system, you consult the Exim FAQ at the Exim project Web site. The
FAQ explains each configuration option and shows you the correct syntax for
enabling or disabling the options.

NOTE The default configuration file for Exim is located at /src/configure.default.
This file is copied into the actual configuration file location (which changes,
depending on the Unix variant being used) at the time of installation. You can
review this file if you want to know a default configuration that has since
changed, or you can copy it from the /src location into the current configuration
file location if you’ve edited the file and you don’t like your changes.

Testing and Monitoring Exim
When you have finished working with the configuration and building the server,
you can test your installation by issuing the command

exim –bV

Exim

2817c40.qxd 11/13/00 2:58 PM Page 679

680

at the shell prompt. If you’ve made mistakes, Exim will return error messages
specifying what the problem was. If there were no problems, you’ll see output
containing the version number and build date.

Next, test to see whether Exim can recognize your local users and remote
domains. First, issue the command

exim –v –bt <username>

placing your local user ID in the username field. Exim should return a message
showing that it found the local user’s mailbox. Test for remote identification by
issuing the command

exim –v –bt <remote address>

using a remote e-mail address of your own, if possible. Exim should return a mes-
sage confirming that it found the remote address. Once both of these tests return
positive results, try opening your mail client and sending messages to yourself,
both locally and remotely.

For ongoing diagnostics, you’ll find Exim logs in several locations, each serving
a different function. The main log works as the logs in other mail servers do, by
recording each message received and sent. There is also a reject log, a panic log,
and a process log. The most critical of these is probably the panic log, because it
records instances when Exim crashed and what was happening at that time. By
keeping an eye on the panic log, you’ll have a better understanding of any flaws
on your system that may contribute to mail server failure.

qmail
The qmail mail server is a young program that has, despite its relatively recent
creation, been adopted by many high-volume sites as well as small networks.
qmail is a secure and reliable mail server that is easy to administer and offers a
lot of features that users can manipulate without involving the mail administra-
tor. qmail is compatible with many of the sendmail standard habits, so it’s easy
to migrate a mail system from sendmail to qmail.

Chapter 40 • Electronic Mail

2817c40.qxd 11/13/00 2:58 PM Page 680

681

NOTE qmail is so robust that it’s the mail server of choice for sites that run unbelievable
amounts of data through the server on a constant basis. eGroups
(http://www.egroups.com) is a Web-based mailing list site that transmits mil-
lions of messages each day; it runs qmail. Hotmail (http://www.hotmail.com),
a Web-based free e-mail service owned by Microsoft, runs qmail. Microsoft has
tried to migrate Hotmail to Microsoft Exchange, their own mail server, but
Exchange hasn’t yet been able to handle the volume of mail generated by more
than 32 million users. Many major universities and large ISPs also use qmail.

Installing and Configuring qmail
qmail can be installed on any Unix variant, including all the variants covered in
this book. We’ve placed a copy of qmail on the CD-ROM included with this book,
or you can download the most recent version from the qmail site at http://cr.
yp.to/qmail.html. The current version is 1.03.

Before you install qmail, consult the file INSTALL in the qmail package. Though
installation of qmail follows most of the rules explained in Chapter 31: “Installing
and Managing Software,” there are some changes you must make and options
you must select to install qmail properly. Follow the instructions in INSTALL to
get your qmail server up and running.

You’ll find good documentation included with the qmail package. Manual pages
are installed in the /var/qmail/man directory, and there are quite a few HOWTO
pages in /var/qmail/doc. There is a good FAQ at the qmail site (http://cr.yp.
to/qmail/faq.html) and other valuable information at that site, including a set of
graphics that show you exactly how qmail transfers particular kinds of messages.
For those readers who are visual learners, these graphics are highly useful.

The INSTALL file will show you how to configure qmail so that it will work on
your system. You can move on to more advanced topics, such as working with
virtual domains, receiving mail for another valid host, and managing a very large
network’s incoming mail, with the tips in the FAQ. The FAQ also contains good
information on mail monitoring and network administration.

qmail

2817c40.qxd 11/13/00 2:58 PM Page 681

682

Mailing Lists and qmail
One of the most useful features of qmail is the ability for individual users to set up and
manage their own mailing lists. This takes some burden from you as an administrator
because you won’t have to add or delete lists, or list members, from central files. Instead,
your users can decide the name of their lists, the people who will be on the list, and how
the list will be managed.

To set up a user-managed mailing list under qmail, log into your user account. Create a
file called .qmail-listname in your home directory, replacing listname with a simple
name for your list that does not include spaces or special characters. In that file, enter all
the e-mail addresses of the people who will be on this mailing list, one address to each
line. Save the file and exit the text editor. Now, when mail is sent to the e-mail address
youruserid-listname@yourdomain.com, qmail will automatically send a copy to
everyone listed in the .qmail-listname file in your home directory.

To make sure that you receive bounces and other administrative messages at your e-mail
address (and that bounces are not sent to the mail administrator), issue the command
touch .qmail-listname-owner to create an empty file called .qmail-listname-
owner in your directory, which identifies you as the list owner.

There is no limit to the number of mailing lists that can be managed by an individual user
on your system. However, because the subscription and deletion of users must be done by
hand, there is an effective limit on the amount of time any user will probably want to
spend maintaining mailing lists. The qmail developer, Dan Bernstein, suggests the ezmlm
package as an alternative; ezmlm supports automatic subscriptions, archives, and other
useful features. It is installed globally, but is used by individual users in much the same way
as the regular qmail mailing lists described above. You can learn more about ezmlm at
http://cr.yp.to/ezmlm.html.

smail
The smail mail server is the GNU Foundation’s mail server program. It hasn’t
been upgraded in a very long time and has significant security holes because it
permits mail relays without authorization. We cannot recommend that you run
smail, even though we support most GNU software; it just isn’t secure enough to
place on a machine connected to the Internet.

Chapter 40 • Electronic Mail

2817c40.qxd 11/13/00 2:58 PM Page 682

683

Most sites that have run smail in the past are now running exim, qmail, or
some other small and robust mail server program. Relatively few have switched
to sendmail, because smail was initially intended as a smaller replacement for
sendmail. If you’re interested in a Free mail server, you’ll have to look some-
where other than the GNU Foundation. It’s unfortunate that smail is not cur-
rently being developed, because it served a useful purpose.

Setting Up POP and IMAP Services
POP and IMAP services are very simple to set up on Unix. In general, one need
only install the IMAP package. The IMAP package, often included with your Unix
distribution or available from a Unix software archive, usually includes support
for both the IMAP and POP protocols. Once the package is installed, using the reg-
ular Unix software installation methods described in Chapter 31: “Installing and
Managing Software,” granting access to the POP or IMAP service is simply a mat-
ter of uncommenting the relevant lines in /etc/inetd.conf to make the service
operational.

In the /etc/inetd.conf file, as introduced in Chapter 43: “Remote Access
(inet) Services,” you should see a section of code that looks like this:

Pop and imap mail services et al
#
#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
#pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
#imap stream tcp nowait root /usr/sbin/tcpd imapd

Simply uncomment the line corresponding to the service you wish to use by
opening the file in a text editor and deleting the hashmark at the start of the
appropriate line.

NOTE POP2 is an older version of the POP protocol. Most recent mail programs support
the newer POP3 version. We suggest that, if possible, you use POP3 in preference
to POP2. Use POP2 only if you have some very compelling reason why you should
support an older mail client program.

Setting Up POP and IMAP Services

2817c40.qxd 11/13/00 2:58 PM Page 683

684

If you choose to use the POP3 service, for example, the code would look the
same as above, but the second line would not have a hashmark:

Pop and imap mail services et al
#
#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
#imap stream tcp nowait root /usr/sbin/tcpd imapd

At this point, you can restart inetd, and your users should have access to their
mail through any POP or IMAP client that they wish to use.

POP or IMAP?
Are you better off using a POP or an IMAP server? It is largely a question of preference.
IMAP is the more flexible of the two: It allows you to set up shared mailboxes, for exam-
ple, and IMAP mail clients can perform more operations on messages. However, the flexi-
bility comes at the price of complexity.

POP3 is the simpler of the protocols and is supported by almost all common mail software.
The conventional wisdom in the Unix mail world at this time is that most people should
use POP3 servers, because the mail clients are slightly easier to use and support. However,
administrators who use POP3 servers should plan to migrate to IMAP servers in the not-
too-distant future. Considering the nature of the software world, though, the conven-
tional wisdom can change abruptly. You shouldn’t have too much trouble supporting and
upgrading whatever protocol you choose to implement for your mail server.

Summary
Installing an electronic mail transfer agent, or server, is probably one of the first activ-
ities of a new network administrator. Users rely on electronic mail for both personal
and business communication, and a network that does not offer e-mail may lose
users in favor of a network that does. Electronic mail is transferred between networks
through the combined work of several software programs: a mail user agent (MUA)
or mail client, a mail transfer agent (MTA) or server, and a delivery agent. The first

Chapter 40 • Electronic Mail

2817c40.qxd 11/13/00 2:58 PM Page 684

685

two may be chosen from a wide array of user clients and servers, while the third is
usually a function of your Unix operating-system variant.

Once a message is composed and sent by a user agent, the transfer agent deter-
mines whether the message has a local or remote destination. Local messages are
promptly placed in the recipient’s personal mail spool, while remote message
destinations are checked using an MX record, part of the Domain Name Service.
The message is then sent to the first of a series of intermediate servers between
the originating and receiving machines. When the recipient domain’s transfer
agent receives the mail, the message is placed in the recipient’s mail spool.

There are several mail transfer agents, from which the network administrator
can choose the one best suited for her use. The most widely used mail transfer
agent is sendmail, though it is large and difficult to configure. Many network
administrators have chosen to switch to smaller, more easily managed servers
such as qmail, Exim, or Postfix. Regardless of the agent you choose, you may
want to install a server that will provide electronic mail for download using the
POP or IMAP protocols if your users prefer graphical environments that require
a POP or IMAP mail client.

Summary

2817c40.qxd 11/13/00 2:58 PM Page 685

This page intentionally left blank

C H A P T E R
F O R T Y - O N E

USENET News

� How USENET Works

� Administering a Sound USENET Site

� INN

� Summary

41

2817c41.qxd 11/13/00 3:00 PM Page 687

688

Although it may not be the first priority of many Unix system administra-
tors, running a USENET feed is one distinguishing mark of a full-service system.
Though the Web has taken over much of the incidental information-seeking that
characterized USENET’s early years, USENET is still a valuable part of the Inter-
net, and users who cannot obtain news service from their Internet provider are
often willing to pay a third party to obtain reliable USENET access.

Administering a news server can be as simple or as complicated as you’d like.
At the easy end, you simply need to set up a couple of servers, define a default
set of newsgroups, and obtain an upstream newsfeed provider. At the more com-
plicated end, you need to set up the same servers, define a more complex set of
newsgroups, run programs that will obtain updated lists of newsgroups on a reg-
ular basis, obtain at least one—though usually three or four—upstream feeds,
and define filters that will delete spam before it hits your news spool.

NOTE Most administrators fall into the middle ground between these two. We happen
to know a lot of people who operate on the complicated end of the equation, but
they’re professional news administrators who happen to care deeply about
USENET administration. Because we also care about USENET, we tend toward rec-
ommending more involvement with your news server than toward recommending
a laissez-faire method of running news.

Regardless of how you decide to run your news service, when you choose to
provide USENET access to your users, you are participating in one of the old-
est Internet protocols. News has been around for many years, and protocols
haven’t changed much from the early days. There is a more hierarchical nam-
ing structure now, and there is far more traffic across the multitude of news-
groups than the early Internet carried as a whole, but the simple mechanism of
posts and responses remains familiar to those—like us—who have been on
USENET far longer than we like to think.

How USENET Works
If you’ve never used USENET, you might think that news works in the same way
that the Web does, where a file exists in a central location and is accessed by mul-
tiple clients, or in the way that e-mail works, where an individual file is sent

Chapter 41 • USENET News

2817c41.qxd 11/13/00 3:00 PM Page 688

689

directly across the Internet to its recipient. This, however, is not the case. News
uses a distributed dispersal mechanism, codified in the NNTP protocol.

USENET is a giant conglomeration of newsgroups, which are divided into hierar-
chies. A hierarchy is a group of newsgroups that fall—loosely—under the cate-
gory defined by the hierarchy name. Therefore, groups in the us.* hierarchy are
groups related to the United States, while groups in the staroffice.* hierarchy
are groups related to the StarOffice integrated office suite released by Sun.

Table 41.1 shows some of the dominant hierarchies. Note that the first eight
hierarchies are collectively known as the Big Eight, because they are internation-
ally available and are generally considered the core USENET groups. Within
each of these hierarchies, there are various subhierarchies, often going down two
or three levels until the actual groups are named. Table 41.2 shows some of the
many national hierarchies; many of these hierarchies carry groups that duplicate
Big Eight and alt.* groups, but are used in the local language instead of in Eng-
lish, the USENET lingua franca.

TA B L E 4 1 . 1 : Selected USENET Hierarchies

Hierarchy Purpose

comp Computer-related groups, both hardware and software

humanities Groups covering topics in the humanities, such as literature and music

misc Groups that don’t fit elsewhere in the Big Eight

news Groups about USENET

rec Groups focused on recreational topics, such as sports, television, and crafts

sci Scientific groups, often intended for professionals instead of enthusiasts

soc Groups about society, such as individual cultures and lifestyles

talk Mostly unmoderated groups about hot-button issues, such as gun control and abortion

alt Groups on a variety of topics, created using a less restrictive process than that in the
Big Eight

biz Business-related groups

christnet Groups on Christian topics

Continued on next page

How USENET Works

2817c41.qxd 11/13/00 3:00 PM Page 689

690

TA B L E 4 1 . 1 C O N T I N U E D : Selected USENET Hierarchies

Hierarchy Purpose

clarinet Moderated groups available by subscription only, which contain syndicated material
from the Associated Press, Reuters, and other press agencies

free A completely open hierarchy where anyone may create a group on any desired topic

k12 Groups targeted at United States students and teachers at the kindergarten, primary,
and secondary levels

TA B L E 4 1 . 2 : Selected Regional and National USENET Hierarchies

Hierarchy Region or Nation

ar Argentina

at Austria

aus Australia

be Belgium

bermuda Bermuda

ch Switzerland

chile Chile

chinese China (and Chinese language)

cym Wales (and Welsh language)

cz Czech Republic

de German language

dk Denmark

es Spain

esp Spanish language

finet Finland (and Finnish language)

fj Japan (and Japanese language)

Continued on next page

Chapter 41 • USENET News

2817c41.qxd 11/13/00 3:00 PM Page 690

691

TA B L E 4 1 . 2 C O N T I N U E D : Selected Regional and National USENET Hierarchies

Hierarchy Region or Nation

fr French language

han Korean (and Hangul language)

hk Hong Kong

hun Hungary

ie Ireland

is Iceland

il Israel

israel Israel

it Italy (and Italian language)

japan Japan

malta Malta

nigeria Nigeria

no Norway (and Norwegian language)

nz New Zealand

pl Poland (and Polish language)

pt Portugal (and Portuguese language)

relcom Commonwealth of Independent States (and Russian language)

se Sweden

si Slovenia

sk Slovakia

tw Taiwan (and Chinese language)

ukr Ukraine

wales Wales (and English and Welsh languages)

za South Africa

How USENET Works

2817c41.qxd 11/13/00 3:00 PM Page 691

692

A typical newsgroup name is something like

rec.arts.tv.mst3k.misc

The first component is the top-level hierarchy, and the remaining components are
used to narrow the focus of the group’s name until the particular topic of the group
is reached. In this case, the group is contained in the general rec.* hierarchy, and
the rest of the name indicates that it is part of a lower-level television hierarchy
devoted to the Mystery Science Theatre 3000 television show. This particular group is
the miscellaneous discussion group devoted to the show; it happens to have a part-
ner group, rec.arts.tv.mst3k.announce, which is moderated and carries only
important announcements about the show.

NOTE A moderated newsgroup does not permit direct posts from readers to the
group. Instead, posts are e-mailed to the group’s moderator(s), who then decide
whether the post is permissible on the moderated group. Most moderated
groups have well-stated descriptions of what is permissible and what is not;
other groups, such as those with the *.announce.* component in their names,
are moderated so that only announcements (no discussion) will be posted.
Groups are moderated for different reasons, whether from a desire to focus dis-
cussion narrowly on a topic or to remove completely unrelated posts from the
spool, and can use different methods to moderate, whether it is a majority-rules
voting panel or a robomoderator (a software program that parses incoming
posts according to a defined protocol). Moderated groups are neither better nor
worse than unmoderated groups; they simply present a different kind of
USENET experience.

The Process
Assume that you have found a group that you’re interested in reading or that you
want to participate in. Because you’ve merely found a reference to this group on a
Web page or in a book, you want to see whether the group is as exciting as the
name promises. To see what’s in the group, you’ll need to use a newsreader, a
client program that connects to the local news server and obtains the messages
for that particular group.

Chapter 41 • USENET News

2817c41.qxd 11/13/00 3:00 PM Page 692

693

TIP A variety of newsreaders are available for Unix users, both the traditional shell-
based programs, such as nn, trn, and tin, and the graphical programs included
with integrated desktop environments or window managers. We find that the
shell-based programs are far more powerful and allow you to manage your
groups more effectively, but there are many adherents to graphical news clients.
We’re particularly fond of the threaded newsreader trn.

As you read the posts in the group, you are looking at documents that are
stored locally on your news server. News articles are transported across the
Internet in a way different from much other data transfer. When you make a
USENET post, it is stored in the outgoing spool on your local news server. At a
predetermined interval, your news server uploads all the outgoing messages to
its upstream feed, another news server at a different location. That server then
distributes the messages across the Internet. Eventually, every news server that
receives articles for this particular newsgroup will have a copy of your message.

NOTE The protocol that underlies transfer of news messages is NNTP (the Net News
Transfer Protocol). The NNTP protocol is defined as a TCP, or stream, process that
runs on port 119. NNTP itself is not a news server or a news client, but the
method by which data is transferred between servers and servers, or between
servers and clients.

Figure 41.1 shows a graphical representation of this mechanism.

There is no central server somewhere on the Internet that holds all the
USENET messages. Messages are distributed and downloaded from various
servers, depending on the subscription list for that server. That is, if your server
receives messages for three hierarchies from your upstream provider, you can-
not pass on messages for any other hierarchies to your downstream peers. To
get messages for those hierarchies, your downstream peers will need to arrange
a feed from some other source. In Figure 41.2, you can see the complicated nets
that are required to get full newsfeeds on a local server.

How USENET Works

2817c41.qxd 11/13/00 3:00 PM Page 693

694

News articles are identified with a long string of alphanumeric characters and
the originating news server’s name. Each article carries a unique Message-ID
number, which looks like this:

finding_970997403@qucis.QueensU.CA

This particular Message-ID identifies a posting called “FAQ: How to find peo-
ple’s E-mail addresses,” which is regularly posted to the news.announce.
newusers newsgroup. You can use the Message-ID of any given post to locate it
on the news spool or to search in a Web archive such as that maintained by Deja
at http://www.deja.com.

ServerClient Server

Server

Client

Client Client

Client

Client

Client

ClientClient
F I G U R E 4 1 . 1 :

USENET articles are distrib-
uted in a diffuse manner.

Chapter 41 • USENET News

2817c41.qxd 11/13/00 3:00 PM Page 694

695

NOTE Deja used to be a much more useful resource than it is now. It offered reasonably
complete archives of postings to the Big Eight, alt.*, and several other hierar-
chies, going back well into the mid-1990s. Unfortunately, Deja chose to take
down the older archives in late 1999, and now you can use the Deja archives to
search for only USENET posts that have been made since early 1999. Although
Deja is still helpful, it is nowhere near the resource it used to be. Most USENET reg-
ulars hope that Deja will reconsider removing the archives or that they’ll make the
data available to another provider.

Retaining Posts
Once any given post has been received by a local news server, the post remains
available to readers on that system for a length of time determined by the news
administrator. When the time period has ended, the message expires and is

Server

Server

Server

Server

Server

F I G U R E 4 1 . 2 :

It is likely that a given news
server obtains newsfeeds
from a variety of upstream
sources.

How USENET Works

2817c41.qxd 11/13/00 3:00 PM Page 695

696

deleted from the system. Depending on the number of groups carried locally and
the type of those groups, expire times range from one day to a month or more.

It is generally recommended that announce groups and groups dealing with
USENET administration, such as news.announce.newgroups, expire monthly.
High-traffic hierarchies such as rec.* or soc.* may need to expire weekly, and
some hierarchies may require a daily expire period. The misc.jobs.* groups are
particularly large, and you may not want to carry them; most people offering
jobs also post their offerings in the big Web-based services such as http://www.
monster.com and http://www.dice.com.

These fast-expire groups are usually found in the alt.binaries.* hierarchy.
We don’t think that any news administrator should carry these groups, because
they will overwhelm your news spool with huge amounts of binary data. In addi-
tion, the data posted in these groups is usually posted illegally; the groups are
simply cesspools of copyright violation. For example, a quick scan of alt.bina-
ries.* shows pirated copies of Microsoft Office, hundreds of scanned pictures
from Penthouse and Hustler, and other copyrighted data that is being released
over the Internet without the copyright holder benefiting from the transmission.
Although it’s a remote possibility, if you knowingly permit posts containing ille-
gally transmitted data to pass through your server, you might be liable for copy-
right violation yourself.

NOTE If the copyright violation issue doesn’t move you, consider this: A full USENET feed
(all Big Eight and alt.* groups) will contain about a gigabyte of data a day.
Assuming that you don’t expire everything daily, you’ll need a multiple-gigabyte
drive just to handle news—a decidedly low priority compared to regular network
needs and e-mail transfer. If you’re on any sort of metered-bandwidth connection,
it’s ridiculous to pay for software and porn that you won’t use.

Creating Newsgroups
The process for creating a newsgroup differs depending on the hierarchy in
which you want the group to exist. For the Big Eight hierarchies (rec, org, soc,
bio, misc, humanities, talk, and sci), there is a strict procedure involving a for-
mal Request for Discussion, a minimum discussion period, and a formal auto-
mated vote controlled by an impartial volunteer. The entire process takes about

Chapter 41 • USENET News

2817c41.qxd 11/13/00 3:00 PM Page 696

697

three or four months, but is the best alternative for topics with significant existing
traffic that should be available worldwide. The relevant newsgroups for Big Eight
newsgroup creation are news.announce.newgroups and news.groups.

Starting a group in the alt.* hierarchy is quite different. New alt.* groups
are proposed and discussed in alt.config, though discussion in alt.config is
not necessarily required. Anyone can send out a newgroup message for an alt.*
group, though it may be negated because anyone can send out an rmgroup com-
mand to remove the group. Good news administrators do not accept newgroup or
rmgroup commands for alt.* automatically.

To start a group in a local or national hierarchy, locate the individual hierar-
chy’s configuration group and find out what the procedure is for that hierarchy.
In the uk.* (United Kingdom) and it.* (Italy) hierarchies, for example, a voting
process similar to that used in the Big Eight is used. In other local and national
hierarchies, there is no formal process.

Administering a Sound USENET Site
The biggest factor in maintaining a sound USENET site is whether you prevent
your users, and others, from using your site to act against the best interest of the
network. That is, if your site is a haven for spammers and people who consis-
tently flood unrelated newsgroups with commercial e-mail or junk posts, or if
you have an open port that lets unauthorized users inject USENET posts at your
site without your knowledge, you won’t be a good citizen.

It’s easy to fix these problems, though. You can set up a strict set of user policies
and abide by them, which will fix most of your problems with user behavior. If
users don’t follow the rules, you can pull their access. You can also lock down
your ports so that people can’t hook onto your network and use your access to
post junk, which will carry your own IP address as the originating location.
Unfortunately, though it’s reasonably simple to address these concerns, many
news administrators don’t. Many sites simply don’t seem to care, and their users
make USENET a more difficult place to exchange ideas.

Administering a Sound USENET Site

2817c41.qxd 11/13/00 3:00 PM Page 697

698

Arranging a Newsfeed
There are several ways to obtain a newsfeed for your local news server. The easi-
est way is to ask a friend, if your friends happen to be news administrators who
run a clean server and are willing to share their data with you. (Not all your
friends will be able to do so; many commercial or academic sites prohibit their
employees from providing downstream feeds without formal permission or a
paid contract.)

If you don’t have pals who are news administrators with friendly dispositions,
you can always purchase a feed. How much this service will cost depends on
what kind of groups you want in this feed. If you’re looking for a full feed with
thousands of groups, you’ll require quite a bit of bandwidth from your upstream
provider, and they’ll probably charge you accordingly. Feeds of single hierarchies
are usually much more affordable.

TIP Check with your upstream Internet access provider. If you have a local ISP, they
may feed you both local and international groups. Larger ISPs or connection
providers may be able to offer you a feed of hierarchies you didn’t even know you
wanted, or they might be limited to the Big Eight and a few regional hierarchies.

Most news servers accept multiple newsfeeds, whether to increase redun-
dancy—and thus limit the number of articles that might be lost in transit—or to
obtain hierarchies that aren’t available through their main feed. It’s worth search-
ing around for feeds of hierarchies that you really want. Just remember that, in
newsfeeds more than in almost any other form of data transfer on the Internet,
location counts. If you have the ability to get a feed from someone geographically
close to you, choose that feed over a distant feed if possible. You’ll get articles
faster with less degradation.

Keeping Your Newsgroups Updated
To offer your users the most accurate list of groups possible, you need to keep your
active file updated. The active file is a list of all current valid groups in all hierarchies.
Even if you don’t carry all these groups, you should have an accurate list of what is valid.
This will help your users find and post to the most appropriate groups instead of to
groups that either are inappropriate or were created incorrectly and thus are not carried
on well-formed sites.

Continued on next page

Chapter 41 • USENET News

2817c41.qxd 11/13/00 3:00 PM Page 698

699

If you are using INN (see the section on INN below), you can use the utility actsync and
the server actsyncd to set up an automated synchronization with a trusted upstream site.
This utility will obtain the active file from that site on a regular basis (defined by you) and
replace your current active file with the newer one.

It is quite difficult to maintain an active file by hand, especially if you’re not a full-time
news administrator. There are over 35,000 active newsgroups; even if you carry only a tiny
fraction of that number, there will still be 35,000 groups in your active file. You won’t be
able to process every newgroup and rmgroup command that appears at your site, and you
may be tempted to put newgroups and rmgroups on automatic approval. Don’t do this;
instead, get a copy of the active file from a trusted site.

User Policies
When you offer news access to your users, you should make it clear that on
USENET, unlike most other areas of the Internet, the old rules of netiquette still
apply. Point your users to established USENET FAQs and other documentation,
and let them know that you do not permit the posting of off-topic messages,
unsolicited commercial material, or massive crosspostings to unrelated groups.
Newsgroups generally have charters and other documents that define the kinds
of posts that are on topic and those that are not; most newsgroups do not permit
commercial postings or binary material.

If you receive messages saying that your users have posted inappropriately,
research the situation before you rush to a decision. Usually, a complaint to the
news administrator means that your user posted something inappropriate or is
posting without complying with the charter of a particular group. However,
some people fly off the trigger very quickly where USENET is concerned and
will complain about posts that aren’t really a problem at all. Warn your user for
borderline cases, and reserve pulling their access to USENET (or to your entire
system) for instances where a truly blatant transgression has happened.

Administering a Sound USENET Site

2817c41.qxd 11/13/00 3:00 PM Page 699

700

INN
If you are going to offer USENET news to your users, you need to run a news
server. One of the most popular and reliable news servers is called INN, the Inter-
NetNews program. INN is an NNTP news server that is capable of handling mul-
tiple input streams, thus processing incoming and outgoing news articles at a rate
much higher than that reached by other news servers. INN manages all aspects of
article traffic, including forwarding, receiving, organizing, and expiring.

INN is highly configurable and is reasonably easy to administer and main-
tain. In addition, the documentation for INN is easy to understand and is
extremely detailed. You shouldn’t run across any problems that aren’t covered
in the exhaustive documentation, whether in the FAQ or in the documentation
included with the INN package.

Obtaining and Installing INN
You can get INN at many Unix software archives. You can always find the latest
official release at ftp://ftp.vix.com/pub/inn. The current release is 1.7.2.

WARNING If you are looking in a software archive and you find INN version 1.5.1, pass it by. It
has a security hole that can be patched, but why bother with patching if you can
obtain a secure version in 1.7.2?

Any patches that are released for INN will be located at ftp://ftp.isc.org/
isc/inn/unoff-patches. You can also find some neat add-ons at ftp://ftp/isc/
org/isc/inn/unoff-contrib if you’re interested in expanding the functions in
your installation of INN.

INN will run on most popular Unix variants, including the Unices covered in
this book. If you have the functions socket() and select(), INN will work with
little reconfiguration. You will need to have a significant amount of RAM on the
machine where you run INN, because INN is explicitly designed to eat up mem-
ory as it runs. After a few days of operation, an INN process may require several
megabytes of memory all to itself. The faster processor you have, the better.

To install INN, first unpack the compressed archive package you downloaded
from the Internet. In that package, you’ll find a file called Install.ms. Read this

Chapter 41 • USENET News

2817c41.qxd 11/13/00 3:00 PM Page 700

701

file first and follow its instructions explicitly. This file is extremely well-written
and will walk you through INN configuration and installation without much
trouble. The “First Time Installation” section is particularly helpful.

TIP Once you have INN installed, consult Part 6 of the INN FAQ to debug your installa-
tion and set up your initial configuration. You can find this section of the FAQ at
http://blank.org/innfaq/part6.html.

Installing INN on Linux

Linux administrators should obtain the Linux-specific INN package from ftp://
sunsite.unc.edu/pub/Linux/system/News; look for the most recent version.
This package will have the regular Install.ms file as well as some Linux-specific
installation tips. The package also includes a preconfigured config.data file that
should work out of the box.

Installing INN on Solaris

Although Solaris administrators can install INN without trouble, you should be
sure that you are running all the current TCP patches if necessary. Solaris 2.x and
higher have known trouble with TCP, and patches are available from Sun. Solaris
7 is reputed to have incorporated many of these patches into the operating sys-
tem, but if you find trouble with INN on a Solaris 7 system, you might need to
check your TCP/IP throughput and see whether it is lower than it should be.

Installing INN on FreeBSD

FreeBSD administrators can install and run INN as described in the regular
Install.ms file. However, there is an alternative. Vincent Archer, an INN admin-
istrator, has written an autoconfiguration package specifically for FreeBSD sys-
tems. You can get it at ftp://ftp.frmug.org/pub/news/autoconf-inn.1.5.
1.tar.gz.

To install this package, download and untar the autoconfiguration package in
your INN 1.5 source directory. You’ll see new subdirectories for configure and
config. Use the regular source code installation method outlined in Chapter 31:
“Installing and Maintaining Software,” using configure, make, and make
install to install the autoconfiguration package.

INN

2817c41.qxd 11/13/00 3:00 PM Page 701

702

Configuring and Running INN
Once you have installed INN properly, you really don’t have that much work to
do. First, you’ll need to run the rc.news script to start the innd daemon. The
daemon will monitor incoming articles and sort them to the correct directories,
expire articles that have reached their end on your system, and perform all the
other basic administrative tasks of maintaining a news spool.

Managing Newsfeeds

For innd to handle your incoming newsfeed correctly, you’ll need to set up the
newsfeeds configuration file. This file tells innd what groups you carry; what
articles are already on your system; and other important information that will
determine what is kept from the feed or sent on to your downstream feeds, and
what is discarded. A sample entry in newsfeeds looks like this:

feed1/newsfeed.myisp.com\

:*,!alt.*/!alt\
:Tf,Wnm:

In the first line, feed1 is an alias for the feed that comes from newsfeed.myisp.
com. You need to specify the full domain name of the upstream feed provider,
because INN will not send an article back to a site where it has already been. The
domain name will be in the Path: header of the article, so INN will compare that
header to the various entries in newsfeeds to see whether an article should be
sent upstream.

In the second line, we’ve defined the feed so that you will receive all articles
from newsfeed.myisp.com except for articles posted or crossposted to the alt.*
hierarchy. To do this, we’ve used the negation operator (!) instead of listing all the
hierarchies that will be accepted. This is much shorter and saves space in the file.

The final feed defines how the posts will be configured when you get them. The
Tf component means that you’re receiving a file feed, which is the method used
for almost every newsfeed on the Internet. You will probably never have a feed
that isn’t a file feed. The Wnm component means that the Message-ID and name of
every article sent to the upstream site will be logged in a particular file, usually
/var/spool/news/out.going/feed1.

Chapter 41 • USENET News

2817c41.qxd 11/13/00 3:00 PM Page 702

703

NOTE Why would you send articles to an upstream site that provides your newsfeed?
Well, if anyone on your site ever posts articles to USENET, you’ll need to send
those posts upstream so that they’ll be distributed to all the other news servers
that make up USENET. In addition, if you receive multiple feeds, you may be able
to provide articles to one upstream provider, which that provider doesn’t already
receive from its own feed sources. USENET traffic works in both directions; you
need to configure the transmission so that it meets your requirements regardless
of which way the articles are flowing.

Setting Expirations

In the expire.ctl file, you’ll decide how long each group’s posts will be retained
on your system. As we explained above, you’ll probably need to set different
expires for different kinds of groups. Administrative and local groups can be
retained for quite a while, but high-traffic groups will need to be expired much
more quickly to keep their posts from overwhelming your hard disk. A sample
expire.ctl entry looks like this:

/remember/:21
*:A:1:7:21
akr.*:A:1:14:28

The first line tells innd that, no matter when the article expires, history data about
the article should be kept for 21 days. This will allow you to look back and see
whether an article was received and expired.

The second line is the core of your expire.ctl file. It says that, no matter what
other configuration you have, every article is retained for at least 1 day (24 hours
from receipt). The default expiration time is 7 days, which will apply to any arti-
cle that doesn’t have an Expires: header that self-defines a different expiration.
Finally, regardless of any Expires: header, no article on your system will be kept
for longer than 21 days. This line covers articles in every hierarchy on your sys-
tem that doesn’t have its own specific entry in the expire.ctl file.

The third line is an example of one of these specific entries. This particular line
controls how articles in the akr.* hierarchy are handled on this site.

INN

2817c41.qxd 11/13/00 3:00 PM Page 703

704

TIP akr.* is the local hierarchy for Akron, Ohio (US). We just picked it out of the
canonical hierarchy list, but we’re sure it’s a great hierarchy. Many local hierarchies
have a wonderful sense of community.

According to this entry, posts in the akr.* groups are set to expire after 14 days
unless they have a different Expires: header and after 28 days regardless of any
Expires: header that may exist.

You can cover your entire newsfeed through a single entry like the second
line in this example, or you can set different rules for different hierarchies. It all
depends on what hierarchies and groups you decide to carry. Note that you can
set rules for subhierarchies by including the relevant components of the hierar-
chy name in the entry, as in misc.jobs.*

Managing Groups

Each group that you carry will have its own subdirectory in your News directory.
One question that most new news administrators ask is, “Do I need to manually
build a new directory each time I decide to carry a new group?” The answer is
No; each time your server receives an article for a newsgroup you don’t carry yet,
innd will create a new directory for that group. If you want to edit your active
file by hand, you can use some specific INN commands: newgroup, rmgroup,
and changegroup. These commands will add or remove groups to or from your
active file, or will change the status of a particular group from moderated to
unmoderated.

NOTE Don’t use these commands to get groups “right” for your system. The configura-
tion in the active file must match the configuration of the group as it is canonically
set; that is, if you define a group as moderated on your system, but it is unmoder-
ated, your users won’t be able to post to the group. Refer to the sidebar “Keeping
Your Newsgroups Updated” earlier in this chapter.

You should clean up your news spool once every four to six weeks by issuing
the command

makehistory –buv

Chapter 41 • USENET News

2817c41.qxd 11/13/00 3:00 PM Page 704

705

This command will check for articles that should have been deleted upon expira-
tion, but that for some reason got lost in the spool and are still available.

You’ll find that INN cleans up after itself pretty well if you have appropriate
expires set in your configuration. As long as you keep an accurate active file,
you won’t experience a work overload from INN. It’s likely that dealing with
the human side of news will take more of your time than dealing with the soft-
ware in INN.

Summary
One of the Internet services frequently offered by network administrators is
USENET access. USENET is the segment of the Internet that carries news, a con-
glomeration of articles sorted into a hierarchical arrangement of newsgroups.
There are a multitude of newsgroup hierarchies, ranging from the canonical and
internationally available Big Eight to the smallest of local or language-based hier-
archies. You can choose to offer all the hierarchies you can get or just a small sub-
set that meets your users’ interests.

When you decide to offer USENET access, you’ll need to install a news server
that runs according to the NNTP protocol. One of the best news servers is INN
(InterNetNews). Once you have INN installed, you need to configure your news-
feeds, which are streams of articles that are fed to you from an upstream provider.
You may have multiple newsfeeds, and you may offer newsfeeds to sites down-
stream of you. After you set up your feeds, you should decide how often articles
will expire on your site. Some hierarchies should be retained for a lengthy period
of time, such as one month; other hierarchies will need to be expired frequently,
perhaps as often as daily or twice a day. Regardless of how you set up your news-
feeds and expirations, you will need to monitor your users to be sure they are
posting in appropriate groups and are adhering to each individual group’s rules
of conduct.

Summary

2817c41.qxd 11/13/00 3:00 PM Page 705

This page intentionally left blank

C H A P T E R
F O R T Y - T W O

World Wide Web Services

� Getting and Installing Apache

� Configuring Apache

� Other Web Servers

� Summary

42

2817c42.qxd 11/13/00 3:00 PM Page 707

708

If you want to serve Web pages from your network, you must run a Web
server. The Web server, as with the other services described in this section of the
book, is software designed to respond to client requests for data formatted in a
particular manner. For Web pages, the format is HTML (HyperText Markup Lan-
guage), and the protocol used to transfer those pages is HTTP (HyperText Trans-
fer Protocol).

TIP Both the HTML and HTTP standards are developed and administered by the W3C
(the World Wide Web Consortium). The W3C is based simultaneously in France
and at MIT, and is the professional home of Tim Berners-Lee. Berners-Lee has the
best answer to “What do you do?” of anyone we can think of, because he can
say, “I invented the World Wide Web. What do you do?”

The most popular Web server is the Apache server. Apache is used by more Web
sites (six million at last count) than any other server software throughout the world.
Its closest competitor, Microsoft’s Internet Information Server (IIS), serves less than
half the number of sites served by Apache. In fact, Apache is often touted as the
biggest success story of the Free Software community, because Apache is released
under the GNU Public License and is free to download as well as Free in the pro-
gramming sense.

In this chapter, we introduce the Apache server, and show you how to install
and configure it for a typical small Web site. If you run a very large network,
chances are that you have a dedicated Web administrator whose entire job is
working with Apache (or another server) and whose scope of knowledge far
outpaces what we can cover in this chapter. Still, if you run a network—whether
you’re the sole administrator or not—your users will probably want Web space
to serve their own pages. These days, it’s almost as important to know how to
run a Web server as it is to know how to run an e-mail server. At the end of the
chapter, we introduce you to some other Web server alternatives. Although
Apache is certainly the 10-ton gorilla of the Web server world, there are robust
alternatives that might suit your needs better.

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 708

709

Getting and Installing Apache
Getting Apache is easy. We’ve included it on the CD-ROM that accompanies this
book; if you’re reading this book more than a few months after its publication date,
we suggest that you also check the Apache Web site at http://www.apache.org/
httpd.html to see whether a more updated version is available. As of the writing
of this chapter, the current stable version (the one on the CD) is 1.3.12. If you have
an earlier version available to you, we suggest that you upgrade. New features in
the 1.3.12 version make a significant difference in this version compared to earlier
versions of Apache.

Apache makes available packaged versions of the server software that are
designed for individual Unix variants. Many of these variant-specific packages
are available at http://www.apache.org/dist/binaries/, including binary
packages for the three Unix variants covered in this book as well as for many
other Unix variants, both commercial and Free. Make sure you download a pack-
age appropriate for your operating system if one is available, because it will be
much simpler to install, configure, and run a version of Apache that works seam-
lessly with the unique directory structure of your chosen Unix.

Once you have the Apache package, install it as you would install any other
source code package, using the method explained in Chapter 31: “Installing and
Managing Software.” As with most server software, you must be root—or have
assumed superuser powers in some other manner—to install the software.

TIP Linux users may be able to find packages formatted for the Red Hat or Debian
package managers at their favorite Linux software archives. However, these for-
matted packages are primarily useful for casual users. If you plan to run a serious
Web server, you need to locate and compile Apache from source code. Although
this is a judgment call, many of the modules don’t install particularly well from for-
matted packages, and you won’t save any time.

The package will install into the /etc/apache directory in most cases. Some
Unix variants will use the term httpd instead of apache, so if you can’t find
Apache files on your system, check for an httpd directory and see whether the
files are there.

Getting and Installing Apache

2817c42.qxd 11/13/00 3:00 PM Page 709

710

Once the software is installed, we strongly encourage you to take a moment
before you begin to configure the server. The documentation contained with the
Apache packages, located at /usr/doc/apache after installation, is some of the
best software documentation that we’ve found. The files are clear and easy to
understand, even if you’ve never run a Web server. In addition to the documenta-
tion, the configuration files themselves are well-commented and helpful. Of
course, you won’t learn enough about Apache just by reading the comments in
the configuration files, but you’ll learn a lot.

TIP We also suggest that you read Chapter 25: “Regular Expressions,” because Apache
administration is far easier if you understand how regular expressions work.

The Apache Software Foundation
If you’re wondering who invented Apache, the answer is somewhat complex. The original
team was the Apache Group, who wanted to build a Web server that was completely Free
Software and would be released under the GNU Public License. However, by 1999,
Apache had become so wildly popular that the loose organization of the typical Free Soft-
ware project was no longer sufficient for the Apache team.

Thus, at the end of 1999, the Apache Software Foundation was established as a full not-
for-profit organization under United States law. The Foundation has the ability to receive
donations and disburse them to benefit Apache, as well as the right to act as a legal entity
when entering into contracts or other legal action in the US legal system. Apache is cer-
tainly not the first development project to construct a nonprofit foundation—the GNU
folks have their own foundation, as well—but it is notable because Apache’s success was
the impetus for the more structured aspects of a formal corporation.

The Apache Software Foundation’s Web site is http://www.apache.org, from which
you can reach sites for each of the programs that the Foundation supports: the Apache
Web server, projects designed to incorporate Java and XML into Apache programs, efforts
to include Perl-based modules in Apache (a mechanism known as mod_perl), and other
standards-based development efforts. Additional documentation and news alerts are
available at the Apache site, as well.

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 710

711

Configuring Apache
Apache is configured through the /etc/apache/httpd.conf file, which is a well-
commented file. You can learn a lot about Apache configuration from reading the
comments, though—as the comments themselves point out—you won’t learn
everything you need just from reading httpd.conf. However, when you’re in the
middle of configuring your Web server, a well-commented configuration file is a
wonderful thing to have.

TIP Remember that, on some Unix variants, you will find this file at /etc/httpd/
conf/httpd.conf instead of in the /etc/apache directory.

We show you the complete Apache configuration file below, with comments
interspersed throughout at especially important points. You’ll see the various
comments included by the Apache team; this is the Linux version of the file, but
the FreeBSD and Solaris versions are almost identical, so you will be able to work
with one of those flavors of Apache without too much conversion from this file.

httpd.conf — Apache HTTP server configuration file
##
#
Based upon the NCSA server configuration files
originally by Rob McCool.
#
This is the main Apache server configuration file. It
contains the configuration directives that give the
server its instructions. See
<URL:http://www.apache.org/docs/> for detailed
information about the directives.
#
Do NOT simply read the instructions in here without
understanding what they do. They’re here only as
hints or reminders. If you are unsure consult the
online docs. You have been warned.
#
After this file is processed, the server will look for
and process /usr/conf/srm.conf and then
/usr/conf/access.conf unless you have overridden these
with ResourceConfig &/or AccessConfig directives here.

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 711

712

#
The configuration directives are grouped into three
basic sections:
1. Directives that control the operation of the
Apache server process as a whole (the ‘global
environment’).
2. Directives that define the parameters of the
‘main’ or ‘default’ server, which responds to requests
that aren’t handled by a virtual host. These
directives also provide default values for the
settings of all virtual hosts.
3. Settings for virtual hosts, which allow Web
requests to be sent to different IP addresses or
hostnames and have them handled by the same Apache
server process.
#
Configuration and logfile names: If the filenames you
specify for many of the server’s control files begin
with “/” (or “drive:/” for Win32), the server will use
that explicit path. If the filenames do *not* begin
with “/”, the value of ServerRoot is prepended — so
“logs/foo.log” with ServerRoot set to
“/usr/local/apache” will be interpreted by the server
as “/usr/local/apache/logs/foo.log”.
#
Section 1: Global Environment
#
The directives in this section affect the overall
operation of Apache, such as the number of concurrent
requests it can handle or where it can find its
configuration files.
#
ServerType is either inetd, or standalone. Inetd mode
is only supported on Unix platforms.
ServerType standalone

ServerRoot: The top of the directory tree under which
the server’s configuration, error, and log files are
kept.
#
NOTE! If you intend to place this on an NFS (or
otherwise network)mounted filesystem then please read

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 712

713

the LockFile documentation available at
#<URL:http://www.apache.org/docs/mod/core.html#lockfile>
and you will save yourself a lot of trouble.
#
Do NOT add a slash at the end of the directory path.
ServerRoot “/etc/httpd”

The LockFile directive sets the path to the lockfile
used when Apache is compiled with either
USE_FCNTL_SERIALIZED_ACCEPT or
USE_FLOCK_SERIALIZED_ACCEPT. This directive should
normally be left at its default value. The main reason
for changing it is if the logs directory is NFS
mounted, since the lockfile MUST BE STORED ON A LOCAL
DISK. The PID of the main server process is
automatically appended to the filename.
LockFile /var/lock/httpd.lock

Don’t change this entry, but be aware of it. A file existing at this location means
that Apache is active. If the Web server crashes, you’ll need to remove this file
before you can restart Apache; Apache will then create a new lock file when it
begins running again.

PidFile: The file in which the server should record
its process identification number when it starts.
#
PidFile /var/run/httpd.pid

ScoreBoardFile: File used to store internal server
process information. Not all architectures require
this. But if yours does (you’ll know because this
file will be created when you run Apache) then you
must ensure that no two invocations of Apache share
the same scoreboard file.
ScoreBoardFile /var/run/httpd.scoreboard

In the standard configuration, the server will process
this file, srm.conf, and access.conf in that order.
The latter two files are now distributed empty, as it
is recommended that all directives be kept in a single
file for simplicity. The commented-out values below
are the built-in defaults. You can have the server

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 713

714

ignore these files altogether by using “/dev/null”
(for Unix) or “nul” (for Win32) for the arguments to
the directives.
#
#ResourceConfig conf/srm.conf
#AccessConfig conf/access.conf

Timeout: The number of seconds before receives and
sends time out.
Timeout 300

KeepAlive: Whether or not to allow persistent
connections (more than one request per connection).
Set to “Off” to deactivate.
KeepAlive On

MaxKeepAliveRequests: The maximum number of requests
to allow during a persistent connection. Set to 0 to
allow an unlimited amount. We recommend you leave this
number high, for maximum performance.
MaxKeepAliveRequests 100

KeepAliveTimeout: Number of seconds to wait for the
next request from the same client on the same
connection.
KeepAliveTimeout 15

Server-pool size regulation. Rather than making you
guess how many server processes you need, Apache
dynamically adapts to the load it sees —- that is, it
tries to maintain enough server processes to handle
the current load, plus a few spare servers to handle
transient load spikes (e.g., multiple simultaneous
requests from a single Netscape browser).
#
It does this by periodically checking how many servers
are waiting for a request. If there are fewer than
MinSpareServers, it creates a new spare. If there are
more than MaxSpareServers, some of the spares die off.
The default values are probably OK for most sites.
MinSpareServers 5
MaxSpareServers 20

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 714

715

Number of servers to start initially —- should be a
reasonable ballpark figure.
StartServers 8

Limit on total number of servers running, i.e., limit
on the number of clients who can simultaneously
connect —- if this limit is ever reached, clients
will be LOCKED OUT, so it should NOT BE SET TOO LOW.
It is intended mainly as a brake to keep a runaway
server from taking the system with it as it spirals
down...
MaxClients 150

MaxRequestsPerChild: the number of requests each child
process is allowed to process before the child dies.
The child will exit so as to avoid problems after
prolonged use when Apache (and maybe the libraries it
uses) leak memory or other resources. On most
systems, this isn’t really needed, but a few (such as
Solaris) do have notable leaks in the libraries. For
these platforms, set to something like 10000 or so; a
setting of 0 means unlimited.
#
NOTE: This value does not include keepalive requests
after the initial request per connection. For example,
if a child process handles an initial request and 10
subsequent “keptalive” requests, it would only count
as 1 request towards this limit.
MaxRequestsPerChild 100

Listen: Allows you to bind Apache to specific IP
addresses and/or ports, in addition to the default.
See also the <VirtualHost> directive.
#Listen 3000
#Listen 12.34.56.78:80

BindAddress: You can support virtual hosts with this
option. This directive is used to tell the server
which IP address to listen to. It can either contain
“*”, an IP address, or a fully qualified Internet
domain name. See also the <VirtualHost> and Listen
directives.

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 715

716

#BindAddress *

Dynamic Shared Object (DSO) Support
#
To be able to use the functionality of a module which
was built as a DSO you have to place corresponding
`LoadModule’ lines at this location so the directives
contained in it are actually available _before_ they
are used. Please read the file README.DSO in the
Apache 1.3 distribution for more details about the DSO
mechanism and run `httpd -l’ for the list of already
built-in (statically linked and thus always available)
modules in your httpd binary.
#
Note: The order is which modules are loaded is
important. Don’t change the order below without
expert advice.
#
Example:
LoadModule foo_module modules/mod_foo.so
#LoadModule mmap_static_module modules/mod_mmap_static.so
LoadModule vhost_alias_module modules/mod_vhost_alias.so
LoadModule env_module modules/mod_env.so
LoadModule config_log_module modules/mod_log_config.so
LoadModule agent_log_module modules/mod_log_agent.so
LoadModule referer_log_module modules/mod_log_referer.so
#LoadModule mime_magic_module modules/mod_mime_magic.so
LoadModule mime_module modules/mod_mime.so
LoadModule negotiation_module modules/mod_negotiation.so
LoadModule status_module modules/mod_status.so
LoadModule info_module modules/mod_info.so
LoadModule includes_module modules/mod_include.so
LoadModule autoindex_module modules/mod_autoindex.so
LoadModule dir_module modules/mod_dir.so
LoadModule cgi_module modules/mod_cgi.so
LoadModule asis_module modules/mod_asis.so
LoadModule imap_module modules/mod_imap.so
LoadModule action_module modules/mod_actions.so
#LoadModule speling_module modules/mod_speling.so
LoadModule userdir_module modules/mod_userdir.so
LoadModule alias_module modules/mod_alias.so
LoadModule rewrite_module modules/mod_rewrite.so

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 716

717

LoadModule access_module modules/mod_access.so
LoadModule auth_module modules/mod_auth.so
LoadModule anon_auth_module modules/mod_auth_anon.so
LoadModule db_auth_module modules/mod_auth_db.so
LoadModule digest_module modules/mod_digest.so
LoadModule proxy_module modules/libproxy.so
#LoadModule cern_meta_module modules/mod_cern_meta.so
LoadModule expires_module modules/mod_expires.so
LoadModule headers_module modules/mod_headers.so
LoadModule usertrack_module modules/mod_usertrack.so
#LoadModule example_module modules/mod_example.so
#LoadModule unique_id_module modules/mod_unique_id.so
LoadModule setenvif_module modules/mod_setenvif.so
#LoadModule bandwidth_module modules/mod_bandwidth.so
#LoadModule put_module modules/mod_put.so

Extra Modules
LoadModule perl_module modules/libperl.so
#LoadModule php_module modules/mod_php.so
LoadModule php3_module modules/libphp3.so

Reconstruction of the complete module list from all
available modules (static and shared ones) to achieve
correct module execution order. [WHENEVER YOU CHANGE
THE LOADMODULE SECTION ABOVE UPDATE THIS, TOO]
ClearModuleList
#AddModule mod_mmap_static.c
AddModule mod_vhost_alias.c
AddModule mod_env.c
AddModule mod_log_config.c
AddModule mod_log_agent.c
AddModule mod_log_referer.c
#AddModule mod_mime_magic.c
AddModule mod_mime.c
AddModule mod_negotiation.c
AddModule mod_status.c
AddModule mod_info.c
AddModule mod_include.c
AddModule mod_autoindex.c
AddModule mod_dir.c
AddModule mod_cgi.c
AddModule mod_asis.c

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 717

718

AddModule mod_imap.c
AddModule mod_actions.c
#AddModule mod_speling.c
AddModule mod_userdir.c
AddModule mod_alias.c
AddModule mod_rewrite.c
AddModule mod_access.c
AddModule mod_auth.c
AddModule mod_auth_anon.c
AddModule mod_auth_db.c
AddModule mod_digest.c
AddModule mod_proxy.c
#AddModule mod_cern_meta.c
AddModule mod_expires.c
AddModule mod_headers.c
AddModule mod_usertrack.c
#AddModule mod_example.c
#AddModule mod_unique_id.c
AddModule mod_so.c
AddModule mod_setenvif.c
#AddModule mod_bandwidth.c
#AddModule mod_put.c

Extra Modules
AddModule mod_perl.c
#AddModule mod_php.c
AddModule mod_php3.c

ExtendedStatus: controls whether Apache will generate
“full” status information (ExtendedStatus On) or just
basic information (ExtendedStatus Off) when the
“server-status” handler is called. The default is Off.
#
#ExtendedStatus On

Section 2: ‘Main’ server configuration
#
The directives in this section set up the values used
by the ‘main’ server, which responds to any requests
that aren’t handled by a <VirtualHost> definition.
These values also provide defaults for any
<VirtualHost> containers you may define later in the

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 718

719

file.
#
All of these directives may appear inside
<VirtualHost> containers, in which case these default
settings will be overridden for the virtual host being
defined.

If your ServerType directive (set earlier in the
‘Global Environment’ section) is set to “inetd”, the
next few directives don’t have any effect since their
settings are defined by the inetd configuration. Skip
ahead to the ServerAdmin directive.

Port: The port to which the standalone server listens.
For ports < 1023, you will need httpd to be run as
root initially.
Port 80

If you change the port on which Apache listens for requests, you’ll need to
publicize that port for people to know where your Web pages are. Browsers
make requests to port 80 by default. However, if you want to test a site before
you make it public, set this to something high such as 8080; just be sure to
change it back when you’re done.

If you wish httpd to run as a different user or group,
you must run httpd as root initially and it will
switch.
#
User/Group: The name (or #number) of the user/group to
run httpd as. On SCO (ODT 3) use “User nouser” and
“Group nogroup”. On HPUX you may not be able to use
shared memory as nobody, and the suggested workaround
is to create a user www and use that user. NOTE that
some kernels refuse to setgid(Group) or
semctl(IPC_SET) when the value of (unsigned)Group is
above 60000; don’t use Group nobody on these systems!
User nobody
Group nobody

ServerAdmin: Your address, where problems with the
server should be e-mailed. This address appears on

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 719

720

some server-generated pages, such as error documents.
ServerAdmin root@localhost

Change this entry to reflect the address to which you want the server to send
you critical administrative messages. Many administrators like to get this mail at
root@yourmachine.name, but you may want to have it sent to a particular user
address instead.

ServerName: allows you to set a host name which is
sent back to clients for your server if it’s different
than the one the program would get (i.e., use “www”
instead of the host’s real name).
#
Note: You cannot just invent host names and hope they
work. The name you define here must be a valid DNS
name for your host. If you don’t understand this, ask
your network administrator. If your host doesn’t have
a registered DNS name, enter its IP address here. You
will have to access it by its address (e.g.,
http://123.45.67.89/) anyway, and this will make
redirections work in a sensible way.
#
ServerName localhost

If you make no other changes to this file, you must replace localhost with
your own server’s name. Otherwise, Apache won’t work. You can leave local-
host here for testing purposes, but you’ll be able to answer only requests from
the machine on which Apache is installed—not even requests from within the
same network.

DocumentRoot: The directory out of which you will
serve your documents. By default, all requests are
taken from this directory, but symbolic links and
aliases may be used to point to other locations.
DocumentRoot “/home/httpd/html”

You can leave this as it is, or you can change it to /var/www, which is what we
usually do. Don’t change it to anything other than /var/www, because using a non-
standard directory as the DocumentRoot can lead to a major security risk. This is
an important setting, because it defines how Apache will show files to the external
world. The directory defined in this entry becomes the root directory in Apache’s
eyes, and—at least through Apache—none of the directories above this directory

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 720

721

exist. This is a security technique designed to block off your system files from any-
one trying to hack through Apache into your network.

Each directory to which Apache has access, can be
configured with respect to which services and features
are allowed and/or disabled in that directory (and its
subdirectories).
#
First, we configure the “default” to be a very
restrictive set of permissions.
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>

Note that from this point forward you must
specifically allow particular features to be enabled -
so if something’s not working as you might expect,
make sure that you have specifically enabled it below.
#
This should be changed to whatever you set
DocumentRoot to.
<Directory “/home/httpd/html”>

This may also be “None”, “All”, or any combination of
“Indexes”, “Includes”, “FollowSymLinks”, “ExecCGI”, or
“MultiViews”. Note that “MultiViews” must be named
explicitly —- “Options All” doesn’t give it to you.

Options Indexes Includes FollowSymLinks

This controls which options the .htaccess files in
directories can override. Can also be “All”, or any
combination of “Options”, “FileInfo”, “AuthConfig”,
and “Limit”

AllowOverride None

Controls who can get stuff from this server.
Order allow,deny
Allow from all

</Directory>

UserDir: The name of the directory which is appended

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 721

722

onto a user’s home directory if a ~user request is
received.
UserDir public_html

Control access to UserDir directories. The following
is an example for a site where these directories are
restricted to read-only.
#
#<Directory /home/*/public_html>
AllowOverride FileInfo AuthConfig Limit
Options MultiViews Indexes SymLinksIfOwnerMatch
IncludesNoExec
<Limit GET POST OPTIONS PROPFIND>
Order allow,deny
Allow from all
</Limit>
<Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE
LOCK UNLOCK>
Order deny,allow
Deny from all
</Limit>
#</Directory>

If you want users to be able to maintain their own Web pages, uncomment the
section above. Note the path name for users’ directories: /home/*/public_html.
This means that, for user jane, Apache will look in /home/jane/public_html for
documents. Browser clients will be able to access jane’s file at the URL http://
www.domainname/~jane. (Note also the use of the wildcard character * to cover
all possible values in that field.)

DirectoryIndex: Name of the file or files to use as a
pre-written HTML directory index. Separate multiple
entries with spaces.
DirectoryIndex index.html index.htm index.shtml index.cgi

AccessFileName: The name of the file to look for in
each directory for access control information.
AccessFileName .htaccess

The following lines prevent .htaccess files from being
viewed by Web clients. Since .htaccess files often
contain authorization information, access is

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 722

723

disallowed for security reasons. Comment these lines
out if you want Web visitors to see the contents of
.htaccess files. If you change the AccessFileName
directive above, be sure to make the corresponding
changes here.
#
Also, folks tend to use names such as .htpasswd for
password files, so this will protect those as well.
<Files ~ “^\.ht”>

Order allow,deny
Deny from all

</Files>

CacheNegotiatedDocs: By default, Apache sends “Pragma:
no-cache” with each document that was negotiated on
the basis of content. This asks proxy servers not to
cache the document. Uncommenting the following line
disables this behavior, and proxies will be allowed to
cache the documents.
#CacheNegotiatedDocs
#
UseCanonicalName: (new for 1.3) With this setting
turned on, whenever Apache needs to construct a self-
referencing URL (a URL that refers back to the server
the response is coming from) it will use ServerName
and Port to form a “canonical” name. With this
setting off, Apache will use the hostname:port that
the client supplied, when possible. This also affects
SERVER_NAME and SERVER_PORT in CGI scripts.
UseCanonicalName On

TypesConfig describes where the mime.types file (or
equivalent) is to be found.
TypesConfig /etc/mime.types

DefaultType is the default MIME type the server will
use for a document if it cannot otherwise determine
one, such as from filename extensions. If your server
contains mostly text or HTML documents, “text/plain”
is a good value. If most of your content is binary,
such as applications or images, you may want to use
“application/octet-stream” instead to keep browsers

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 723

724

from trying to display binary files as though they are
text.
DefaultType text/plain

The mod_mime_magic module allows the server to use
various hints from the contents of the file itself to
determine its type. The MIMEMagicFile directive tells
the module where the hint definitions are located.
mod_mime_magic is not part of the default server (you
have to add it yourself with a LoadModule [see the DSO
paragraph in the ‘Global Environment’ section], or
recompile the server and include mod_mime_magic as
part of the configuration), so it’s enclosed in an
<IfModule> container. This means that the
MIMEMagicFile directive will only be processed if the
module is part of the server.
<IfModule mod_mime_magic.c>

MIMEMagicFile share/magic
</IfModule>

HostnameLookups: Log the names of clients or just
their IP addresses e.g., www.apache.org (on) or
204.62.129.132 (off). The default is off because it’d
be overall better for the net if people had to
knowingly turn this feature on, since enabling it
means that each client request will result in AT LEAST
one lookup request to the nameserver.
HostnameLookups Off

ErrorLog: The location of the error log file. If you
do not specify an ErrorLog directive within a
<VirtualHost> container, error messages relating to
that virtual host will be logged here. If you *do*
define an error logfile for a <VirtualHost> container,
that host’s errors will be logged there and not here.
ErrorLog /var/log/httpd/error_log

LogLevel: Control the number of messages logged to the
error_log. Possible values include: debug, info,
notice, warn, error, crit, alert, emerg.
LogLevel warn

The following directives define some format nicknames

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 724

725

for use with a CustomLog directive (see below).

LogFormat “%h %l %u %t \”%r\” %>s %b \”%{Referer}i\”
“%{User-Agent}i\”” combined
LogFormat “%h %l %u %t \”%r\” %>s %b” common
LogFormat “%{Referer}i -> %U” referer
LogFormat “%{User-agent}i” agent

The location and format of the access logfile (Common
Logfile Format). If you do not define any access
logfiles within a <VirtualHost> container, they will
be logged here. Contrariwise, if you *do* define per-
<VirtualHost> access logfiles, transactions will be
logged therein and *not* in this file.
CustomLog /var/log/httpd/access_log common

If you would like to have agent and referer logfiles,
uncomment the following directives.
#
#CustomLog /var/log/httpd/referer_log referer
#CustomLog /var/log/httpd/agent_log agent

If you prefer a single logfile with access, agent, and
referer information (Combined Logfile Format) you can
use the following directive.
#
#CustomLog /var/log/httpd/access_log combined

Optionally add a line containing the server version
and virtual host name to server-generated pages (error
documents, FTP directory listings, mod_status and
mod_info output etc., but not CGI generated
documents). Set to “EMail” to also include a mailto:
link to the ServerAdmin. Set to one of: On | Off |
EMail
ServerSignature On

Aliases: Add here as many aliases as you need (with no
limit). The format is Alias fakename realname
#
Note that if you include a trailing / on fakename then
the server will require it to be present in the URL.

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 725

726

So “/icons” isn’t aliased in this example, only
/icons/”..
Alias /icons/ “/home/httpd/icons/”

<Directory “/home/httpd/icons”>
Options Indexes MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

ScriptAlias: This controls which directories contain
server scripts. ScriptAliases are essentially the same
as Aliases, except that documents in the realname
directory are treated as applications and run by the
server when requested rather than as documents sent to
the client. The same rules about trailing “/” apply to
ScriptAlias directives as to Alias.
ScriptAlias /cgi-bin/ “/home/httpd/cgi-bin/”

“/home/httpd/cgi-bin” should be changed to whatever
your ScriptAliased CGI directory exists, if you have
that configured.
<Directory “/home/httpd/cgi-bin”>

AllowOverride None
Options ExecCGI
Order allow,deny
Allow from all

</Directory>

Redirect allows you to tell clients about documents
which used to exist in your server’s namespace, but do
not anymore. This allows you to tell the clients where
to look for the relocated document. Format: Redirect
old-URL new-URL

Directives controlling the display of server-generated
directory listings.

FancyIndexing: whether you want fancy directory
indexing or standard
IndexOptions FancyIndexing

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 726

727

AddIcon* directives tell the server which icon to show
for different files or filename extensions. These are
only displayed for FancyIndexed directories.
AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip
AddIconByType (TXT,/icons/text.gif) text/*
AddIconByType (IMG,/icons/image2.gif) image/*
AddIconByType (SND,/icons/sound2.gif) audio/*
AddIconByType (VID,/icons/movie.gif) video/*
AddIcon /icons/binary.gif .bin .exe
AddIcon /icons/binhex.gif .hqx
AddIcon /icons/tar.gif .tar
AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv
AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip
AddIcon /icons/a.gif .ps .ai .eps
AddIcon /icons/layout.gif .html .shtml .htm .pdf
AddIcon /icons/text.gif .txt
AddIcon /icons/c.gif .c
AddIcon /icons/p.gif .pl .py
AddIcon /icons/f.gif .for
AddIcon /icons/dvi.gif .dvi
AddIcon /icons/uuencoded.gif .uu
AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl
AddIcon /icons/tex.gif .tex
AddIcon /icons/bomb.gif core
AddIcon /icons/back.gif ..
AddIcon /icons/hand.right.gif README
AddIcon /icons/folder.gif ^^DIRECTORY^^
AddIcon /icons/blank.gif ^^BLANKICON^^

DefaultIcon: which icon to show for files which do not
have an icon explicitly set.
DefaultIcon /icons/unknown.gif

AddDescription: allows you to place a short
description after a file in server-generated indexes.
These are only displayed for FancyIndexed directories.
Format: AddDescription “description” filename
#
#AddDescription “GZIP compressed document” .gz
#AddDescription “tar archive” .tar
#AddDescription “GZIP compressed tar archive” .tgz

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 727

728

ReadmeName: the name of the README file the server
will look for by default, and append to directory
listings.

HeaderName: the name of a file which should be
prepended to directory indexes.
#
The server will first look for name.html and include
it if found. If name.html doesn’t exist, the server
will then look for name.txt and include it as
plaintext if found.
ReadmeName README
HeaderName HEADER

IndexIgnore: a set of filenames which directory
indexing should ignore and not include in the listing.
Shell-style wildcarding is permitted.
IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t

AddEncoding: allows you to have certain browsers
(Mosaic/X 2.1+) uncompress information on the fly.
Note: Not all browsers support this. Despite the name
similarity, the following Add* directives have nothing
to do with the FancyIndexing customization directives
above.
AddEncoding x-compress Z
AddEncoding x-gzip gz tgz

AddLanguage: allows you to specify the language of a
document. You can then use content negotiation to give
a browser a file in a language it can understand.
Note that the suffix does not have to be the same as
the language keyword —- those with documents in
Polish (whose net-standard language code is pl) may
wish to use “AddLanguage pl .po” to avoid the
ambiguity with the common suffix for perl scripts.
AddLanguage en .en
AddLanguage fr .fr
AddLanguage de .de
AddLanguage da .da
AddLanguage el .el
AddLanguage it .it

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 728

729

LanguagePriority: allows you to give precedence to
some languages in case of a tie during content
negotiation. Just list the languages in decreasing
order of preference.
LanguagePriority en fr de

AddType: allows you to tweak mime.types without
actually editing it, or to make certain files to be
certain types. For example, the PHP3 module (not part
of the Apache distribution - see http://www.php.net)
will typically use:
<IfModule mod_php3.c>
AddType application/x-httpd-php3 .php3
AddType application/x-httpd-php3-source .phps

</IfModule>

The following is for PHP/FI (PHP2):
<IfModule mod_php.c>
AddType application/x-httpd-php .phtml

</IfModule>

AddType application/x-tar .tgz

AddHandler: allows you to map certain file extensions
to “handlers”, actions unrelated to filetype. These
can be either built into the server or added with the
Action command (see below)
#
If you want to use server side includes, or CGI
outside ScriptAliased directories, uncomment the
following lines.
#
To use CGI scripts:
#
#AddHandler cgi-script .cgi

To use server-parsed HTML files
#
AddType text/html .shtml
AddHandler server-parsed .shtml

Uncomment the following line to enable Apache’s send-

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 729

730

asis HTTP file feature
#
#AddHandler send-as-is asis

If you wish to use server-parsed imagemap files, use
#AddHandler imap-file map

To enable type maps, you might want to use
#
#AddHandler type-map var

Action: lets you define media types that will execute
a script whenever a matching file is called. This
eliminates the need for repeated URL pathnames for
oft-used CGI file processors.
Format: Action media/type /cgi-script/location
Format: Action handler-name /cgi-script/location

MetaDir: specifies the name of the directory in which
Apache can find meta information files. These files
contain additional HTTP headers to include when
sending the document

#MetaDir .web

MetaSuffix: specifies the file name suffix for the
file containing the meta information.

#MetaSuffix .meta

Customizable error response (Apache style) these come
in three flavors
#
1) plain text
#ErrorDocument 500 “The server made a boo boo.”
n.b. the (“) marks it as text, it does not get output
#
2) local redirects
#ErrorDocument 404 /missing.html
to redirect to local URL /missing.html

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 730

731

#ErrorDocument 404 /cgi-bin/missing_handler.pl
N.B.: You can redirect to a script or a document
using server-side-includes.
#
3) external redirects
#ErrorDocument 402
http://some.other_server.com/subscription_info.html
N.B.: Many of the environment variables associated
with the original request will *not* be available to
such a script.
#
The following directives modify normal HTTP response
behavior. The first directive disables keepalive for
Netscape 2.x and browsers that spoof it. There are
known problems with these browser implementations.
The second directive is for Microsoft Internet
Explorer 4.0b2 which has a broken HTTP/1.1
implementation and does not properly support keepalive
when it is used on 301 or 302 (redirect) responses.
#
BrowserMatch “Mozilla/2” nokeepalive
BrowserMatch “MSIE 4\.0b2;” nokeepalive downgrade-1.0
force-response-1.0

The following directive disables HTTP/1.1 responses to
browsers which are in violation of the HTTP/1.0 spec
by not being able to grok a basic 1.1 response.
#
BrowserMatch “RealPlayer 4\.0” force-response-1.0
BrowserMatch “Java/1\.0” force-response-1.0
BrowserMatch “JDK/1\.0” force-response-1.0

If the perl module is installed, this will be enabled.
<IfModule mod_perl.c>
Alias /perl/ /home/httpd/perl/
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI

</Location>
</IfModule>

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 731

732

mod_perl is a Perl interpreter that runs as part of Apache. This is helpful, espe-
cially if you run a lot of Perl scripts that generate dynamic Web pages. By using
mod_perl, you can avoid having to run the main Perl interpreter every time you
get a request for a Perl-generated dynamic page.

Allow http put (such as Netscape Gold’s publish
feature) Use htpasswd to generate
etc/httpd/conf/passwd. You must unremark these two
lines at the top of this file as well:
#LoadModule put_module modules/mod_put.so
#AddModule mod_put.c
#
#Alias /upload /tmp
#<Location /upload>
EnablePut On
AuthType Basic
AuthName Temporary
AuthUserFile /etc/httpd/conf/passwd
EnableDelete Off
umask 007
<Limit PUT>
require valid-user
</Limit>
#</Location>

Allow server status reports, with the URL of
http://servername/server-status
Change the “.your_domain.com” to match your domain to
enable.
#
#<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from .your_domain.com
#</Location>

Allow remote server configuration reports, with the
URL of http://servername/server-info (requires that
mod_info.c be loaded). Change the “.your_domain.com”
to match your domain to enable.
#

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 732

733

#<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from .your_domain.com
#</Location>

Allow access to local system documentation from
localhost
Alias /doc/ /usr/doc/
<Location /doc>
order deny,allow
deny from all
allow from localhost
Options Indexes FollowSymLinks

</Location>

There have been reports of people trying to abuse an
old bug from pre-1.1 days. This bug involved a CGI
script distributed as a part of Apache. By
uncommenting these lines you can redirect these
attacks to a logging script on phf.apache.org. Or,
you can record them yourself, using the script
support/phf_abuse_log.cgi.
#
#<Location /cgi-bin/phf*>
Deny from all
ErrorDocument 403
http://phf.apache.org/phf_abuse_log.cgi
#</Location>

Proxy Server directives. Uncomment the following lines
to enable the proxy server:
#
#<IfModule mod_proxy.c>
#ProxyRequests On
#
#<Directory proxy:*>
Order deny,allow
Deny from all
Allow from .your_domain.com
#</Directory>

Configuring Apache

2817c42.qxd 11/13/00 3:00 PM Page 733

734

Enable/disable the handling of HTTP/1.1 “Via:”
headers. (“Full” adds the server version; “Block”
removes all outgoing Via: headers) Set to one of: Off
| On | Full | Block
#
#ProxyVia On

To enable the cache as well, edit and uncomment the
following lines:
(no cacheing without CacheRoot)
#
#CacheRoot “/var/cache/httpd”
#CacheSize 5
#CacheGcInterval 4
#CacheMaxExpire 24
#CacheLastModifiedFactor 0.1
#CacheDefaultExpire 1
#NoCache a_domain.com another_domain.edu
joes.garage_sale.com
#</IfModule>
End of proxy directives.

Section 3: Virtual Hosts

A virtual host is a secondary domain name. For example, if your domain is mydo-
main.com, but you want to host the second domain myotherdomain.org, you can
add it in this section. You can use the configurations in this section of the document
to define a second set of Web pages that will be served by the virtual domain.

VirtualHost: If you want to maintain multiple
domains/hostnames on your machine you can setup
VirtualHost containers for them. Please see the
documentation at
<URL:http://www.apache.org/docs/vhosts/> for further
details before you try to setup virtual hosts. You may
use the command line option ‘-S’ to verify your
virtual host configuration.

If you want to use name-based virtual hosts you need
to define at least one IP address (and port number)
for them.
#

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 734

735

#NameVirtualHost 12.34.56.78:80
#NameVirtualHost 12.34.56.78
#
VirtualHost example:
Almost any Apache directive may go into a VirtualHost
container.
#
#<VirtualHost ip.address.of.host.some_domain.com>
ServerAdmin webmaster@host.some_domain.com
DocumentRoot /www/docs/host.some_domain.com
ServerName host.some_domain.com
ErrorLog logs/host.some_domain.com-error_log
CustomLog logs/host.some_domain.com-access_log common
#</VirtualHost>

#<VirtualHost _default_:*>
#</VirtualHost>

Other Web Servers
For many reasons, some administrators choose not to run Apache as their Web
server software. Perhaps they don’t need a multifeatured system like Apache,
which may have too many options for a small network that serves only a lim-
ited number of static pages. Other administrators might prefer a server that is
targeted toward one particular kind of traffic or that is designed for security or
speed instead of for multiple types of requests. Still other administrators might
just want to use a newer server because they enjoy supporting developers in
their work.

Regardless of the reasons for which you might want to run a Web server that isn’t
Apache, you have quite a few choices of Web servers to run. A few of the most pop-
ular non-Apache Web servers are introduced in this section, and most of them are
built to run on multiple Unix platforms. Only one—kHTTPd—is platform-specific,
because it requires the Linux kernel to operate. The others, however, have run suc-
cessfully on a myriad of Unix variants.

Other Web Servers

2817c42.qxd 11/13/00 3:00 PM Page 735

736

boa
The boa Web server is a GNU Public License program that is designed for speed
and security. Unlike many other Web servers, boa runs without forking processes
to handle traffic requests; instead, multiple requests are handled internally. This
mechanism allows boa to withstand a barrage of requests and still provide pages
within a quick response time. Unofficial benchmarking has shown that boa can
handle thousands of hits per second on a Pentium and several dozen hits per sec-
ond on a 386, according to the boa development team.

Although boa is being developed on the Linux platform, it has run successfully
on other Unix variants, including FreeBSD and Solaris. It installs like any other
source code package and should not present a problem for those using non-Linux
Unices. boa has been under development since 1991, though it languished for some
years until a new development team took it over. The current release is 0.94.8.3, and
the current team says that development will renew with the 0.95 version.

NOTE Learn more about boa at the project Web site, http://www.boa.org. The site
offers downloads and complete documentation, including an installation guide.
The boa.conf file, boa’s main configuration file, is well-commented and should
be easy to configure to your system’s needs.

dhttpd
The second in this array of less well-known Web servers is called dhttpd. This
server is written for several Unix variants, mostly the ones covered in this book. It
is very small and designed only for personal Web use; that is, if you plan to offer
pages that will be popular places to visit, you probably don’t want to use dhttpd.
However, if you just want to run something so that you can offer a personal Web
page or two, but you don’t think that the world will be clicking its mouse to your
door, dhttpd might be the right option. It certainly requires less space and fewer
CPU cycles than Apache.

One advantage of dhttpd is that the developer has made it possible for this
server to be run from user space. You don’t have to be root to run this Web server,
which may be of use if you have a user account on a machine that doesn’t supply
Web space to its users. Instead, you can compile and run dhttpd in your user

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 736

737

account, allocating it to a very high port number unlikely to be used by any “offi-
cial” processes on the system.

You can use this user-account Web server to publicize pages from your account;
be sure, though, that only your files intended for the public have their permissions
set for that purpose. Running a Web server from your user account means all your
files are vulnerable to public view, especially if you haven’t established appropriate
file permissions. Be sure you have a file called index.html in your Web directory; if
no index.html file exists, most Web servers will serve a file listing of the directory
in which the server is running. If that’s your personal directory, all your personal
files will be named in public and, if the permissions are set incorrectly, available to
the world. Imagine the havoc someone could cause if your mail directory were
publicly available.

WARNING Alert your system administrator before you run a Web server off your personal
account. Web may be disabled on your network for a practical security reason,
and running a personal Web server may violate your agreement with the
provider—whether it is an employment, academic, or commercial account. We do
not encourage the use of stealth servers through user accounts against the terms
of any usage agreement.

dhttpd supports page caching and customized error messages (such as 404
pages that report “Page not found”). It is available both in a stable release version
(the current version is 1.02) and a beta version, which offers more functions, but
also probably has more bugs than the stable version. The current beta version is
1.10; note that this beta version was released in summer 1997. We do not know
whether dhttpd is still being developed, but the stable version is still usable.

NOTE Download dhttpd from one of the several Unix file archives that carry it or directly
from the project Web page at http://uts.cc.utexas.edu/~foxx/dhttpd/.
The site doesn’t carry much other than the download and a handy Web button to
display if you use the server, so you’ll have to puzzle through installation and con-
figuration with the documentation provided in the package itself.

Other Web Servers

2817c42.qxd 11/13/00 3:00 PM Page 737

738

fhttpd
Another small Web server program, released under the GNU Public License, is
called fhttpd, which stands for File/HyperText Transport Protocols Daemon.
fhttpd is designed to be fast and streamlined without as much configuration
as Apache, but to be as robust as possible in transferring both files and HTML
documents.

NOTE Most Web servers are targeted toward HTML documents (though Web servers can
usually handle file transfer as well), while file transfer is reserved for FTP (File Trans-
fer Protocol) clients. fhttpd attempts to bridge that gap.

fhttpd is currently in version 0.4.2, meaning that it is still beta software. How-
ever, the developer claims that it is quite robust and secure, with no major security
holes since version 0.3 or so. It will run on almost any Unix variant, including the
three covered in this book. In a useful touch, the developer has provided an unusu-
ally complete Makefile, in which there are lines for different Unices. Though the
default configuration is designed for Linux, if you are running a different Unix, all
you need to do is comment out the Linux lines by placing a hashmark at the start of
the line and uncomment the lines relating to your particular variant. This is a nice
feature that is, unfortunately, not widespread.

NOTE To learn more about fhttpd—which might be a good solution for the small net-
work that doesn’t serve much Web traffic, but does serve files in about the
same amount as HTML pages—you can consult the project Web site at
http://www.fhttpd.org. The documentation on the site is very well orga-
nized, with a step-by-step installation guide and a complete list of options for
the configuration file fhttpd.conf.

Jigsaw
If you want to run a Web server that is guaranteed to comply with every compo-
nent of the HyperText Transfer Protocol standard, you should run Jigsaw. The Jig-
saw server is developed by the W3C (the World Wide Web Consortium), which
administers the HTTP protocol. Jigsaw was created to act as the production

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 738

739

server for W3C programmers and is designed to implement every aspect of the
protocol as it evolves.

Jigsaw is unique among Web servers in that it’s written in Java, making it
platform-independent. Although it’s designed as an experimental server for the
W3C’s purposes, it’s robust and strong enough to be run as a regular server by
the ordinary Web administrator. The server is intended primarily for program-
mers who are interested in working with various Java servlets as part of a mod-
ular server, instead of being intended for administrators who simply want to
run the thing. If you like working with Java, though, and you’d like to run a
fully compliant Web server, Jigsaw might be the right server for you. We cer-
tainly support software that is fully compliant with established protocols wher-
ever possible.

NOTE Obtain Jigsaw and its detailed documentation at the W3C’s site, http://www.
w3c.org/Jigsaw/. You can read the FAQ, the programmers’ guide, and the code
itself at the site, or you can download the server. The current version of Jigsaw is
2.1.2, which is an unstable release. The 2.0 version is the latest stable release.

Protocol-Compliant Browsers
If you’re going to use Jigsaw because it’s compliant with the HTTP standard, why not use a
compliant browser on the client side? The Opera browser will display only pages written in
HTML compliant with the current version of the HTML protocol. We think Opera is a fantas-
tic browser; the downside is that many, many pages on the Web are not HTML-compliant.

In particular, pages written with Netscape Composer and Microsoft FrontPage generate
noncompliant HTML, and Opera will simply refuse to show those pages. However, if
you’re willing to browse a limited set of pages, Opera might be the right idea for you.
Check out the project’s Web page at http://operasoftware.com. Note that you’ll have
to pay for the browser if you choose to use it.

kHTTPd
Linux users have an unusual Web server option in the kHTTPd program. This server
works in a manner completely different from other Web servers: It is kernel-based.

Other Web Servers

2817c42.qxd 11/13/00 3:00 PM Page 739

740

This means that kHTTPd runs as a kernel module instead of as a regular program,
lending stability and speed to its operation.

kHTTPd, because of its method of operation, can be used to serve only static
Web pages. Such pages—those saved as files in a public directory that remain the
same every time they are pulled up and are generally saved as HTML-formatted
text—form the bulk of personal Web pages on the Internet and are probably still a
significant portion of corporate Web pages. (Not everyone is interested in adopt-
ing the flashy animation-based Web designs, especially those designers interested
in serving those users who must use adaptive Web browsers.) You would need to
run kHTTPd in conjunction with a more fully featured Web server, such as Apache,
if you need to serve dynamic pages as well as static ones. However, if your site is
completely static, using kHTTPd might be the appropriate way to handle those
requests.

NOTE The current version of kHTTPd is 0.1.6b, which integrates into the 2.3.14 Linux
kernel. You can get the kHTTPd kernel module at the project’s Web site,
http://www.fenrus.demon.nl/.

WN
The WN Web server is a robust and feature-loaded server that, while offering
many of the same features as Apache, takes up much less space on the server
machine. One of the main features offered by WN is the ability to serve particu-
lar pages to client requests, based upon whom the client is, with a simple direc-
tion mechanism. WN also has robust navigational tools that make it easier for
the Web administrator to direct clients to the appropriate pages without a great
deal of fuss.

WN supports many of the current trends in Web page design and administra-
tion, such as Server Side Includes (SSI). WN also works with SSL (the Secure
Socket Layer protocol), which underlies secure monetary transactions on the
Web, such as those made with credit cards. You can use WN to do almost any-
thing that Apache can do, but WN has a smaller footprint.

WN installs either in the traditional Unix software way or through a Perl script
that will handle most of the installation tasks automatically. The current stable
version is 2.2.9, and the current beta version is 2.3.11. In keeping with the Linux

Chapter 42 • World Wide Web Services

2817c42.qxd 11/13/00 3:00 PM Page 740

741

kernel numbering tradition, WN versions with an even middle number are sta-
ble, while odd middle numbers denote unstable beta releases. WN should run on
almost any Unix variant with a minimum of variant-specific configuration.

NOTE The WN Web pages are located at http://hopf.math.nwu.edu/. This is one of
the better project development sites available, because it offers both downloads
and an extensive set of documentation.

Summary
To provide Web pages to the Internet community, you must run a Web server. The
server answers requests generated by individual browsers, which act as clients to
the server. The most popular Web server in the world is Apache, a Free Software
program released under the GNU Public License. Apache will run on almost every
known Unix variant, and is easy to install and configure. Most of Apache’s default
configurations reflect the way in which many Web administrators run their sites,
so there is relatively little configuration for you to do. However, should you want
to configure Apache closely, the developers have provided clear comments in the
relevant files.

If you don’t want to run Apache, several other Web servers are available for
Unix administrators. Each of these servers is developed with slightly different
goals in mind; some are targeted at speed, while others are designed for security
or low traffic. Regardless of the kind of Web service you want to offer from your
network, there is a Web server that is right for the job.

Summary

2817c42.qxd 11/13/00 3:00 PM Page 741

This page intentionally left blank

C H A P T E R
F O R T Y - T H R E E

Remote Access (inet) Services

� inetd: The Internet Supervisor

� Configuring inetd

� xinetd: An inet Alternative

� Running Services from inetd

� Connection-Based Services

� Data Transfer Services

� Information Services

� Miscellaneous Services

� Summary

43

2817c43.qxd 11/13/00 3:01 PM Page 743

744

If you’re connected to the Internet, you’re probably running services on your
network. Even if this involves just a couple of services such as an electronic mail
server and a Web server, you are offering some services to remote users or people
on the Internet. Those services respond to external requests with a particular kind
of data stream, whether it’s a Web page or a complete file.

Although you can run some Internet services independently of each other (in
particular, Apache and INN or other Web and USENET news servers), it can be a
tedious procedure to start each service by hand when you boot the computer or
when the service is called by an external request. In fact, if you rely on starting
services by hand, you may not be able to answer every external request because
you may not be aware of those requests arriving.

What’s needed is a process that notices incoming requests, determines the ser-
vice that should answer a particular request, and turns on the appropriate service
in response. Luckily, such a process exists. It’s called inet, and it manages your
various Internet services from one central location. With inet, you can install
your services and then let them run automatically under inet’s guidance without
having to involve yourself with the individual services so that they run properly.

NOTE A variety of services run under the inet umbrella. In this chapter, we introduce
you to the major programs started through inet. Some of these programs are
standard Internet software; other inet programs used to be popular, but have
now been superseded, whether because of security risks or just because some-
thing better has been developed. However, even if a program is listed here that
you shouldn’t run, you should still know what it is and how it works. As with a lot
of software, some programs out there rely on these older inet-based programs or
at least on your knowledge of how these programs worked. In the interest of
backward compatibility—both technological and intellectual—we cover those
programs here.

inetd: The Internet Supervisor
The inet program acts as a bridge between external client requests and your net-
work’s servers. If a request is made for a Web page or a file held on your network,
inet determines which server receives the request. Configuring inet beyond the

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 744

745

default settings allows you to set up your network so that servers run only upon
demand, instead of running constantly. This will save your network some over-
head, because you don’t lose CPU cycles to services that run even when they’re
not being called by clients.

Quite a few services are controlled by inet; in fact, any server that receives
external requests can be run through inet. The inet daemon, inetd, runs at boot
like many other daemons. It is configured to listen for incoming requests on a
wide range of ports—unlike servers, which are usually configured to listen on
only one or two specific ports—that are defined in the file /etc/services. When
inet receives a client request, inet invokes the appropriate server and turns the
request over to the server when it is fully started.

NOTE inetd does not answer any of the client requests itself; it is a one-way port of
entry into the system. Instead, inetd manages traffic and lets the individual
servers handle responses.

You don’t have to put every externally directed server program under the con-
trol of inetd. However, it’s a convenient place to put servers that may not repre-
sent the bulk of your incoming data requests. You probably don’t want to put
your mail server or news server into inetd, because those programs must run
constantly and check their upstream providers on a timed and regular basis.

TIP You might not want to put your Web server under inetd’s control, though it could
be useful if you rarely serve Web pages, but still want to have a Web server running.
If you place your Web server under inetd, people requesting your pages will experi-
ence a slower response than if you were running the server constantly; however, you
will have faster network speeds internally, because the server won’t run unless
prompted. It’s a trade-off that depends on your priorities. Note that Apache specifi-
cally suggests that you not do this, but it shouldn’t break httpd should you try it.

Configuring inetd
inetd requires two separate configuration files. Actually, there is one configura-
tion file and one file that associates ports and services. The /etc/inetd.conf file

Configuring inetd

2817c43.qxd 11/13/00 3:01 PM Page 745

746

contains information about servers, their protocols, and what to do when a
request is detected for that particular server, while the /etc/services file con-
tains a table of active ports and the servers associated with them. You need to set
up both files to use inetd.

/etc/inetd.conf
The inet daemon, inetd, is configured with the /etc/inetd.conf file. We
have shown you several configuration files throughout this book, and the
/etc/inetd.conf file is similar to those files. It contains a variety of entries
that may or may not be commented out and some active entries that define the
work of the daemon controlled by the file. Like the Apache configuration file,
/etc/inetd.conf is heavily commented. There are far more options that are
commented out than there are active options, which is not a bad thing. There
are relatively few active entries in /etc/inetd.conf.

Below, we show you a sample /etc/inetd.conf file for a Debian or Red Hat
Linux system. Note the comments that explain what each service is, and note how
the services are grouped into sections of similar kinds of programs. Although you
can edit this file to reflect your actual inet needs, don’t remove any of the com-
mented lines. You may need them later in a different network configuration. If you
want to remove a service from inetd’s control, just comment out its entry.

inetd.conf This file describes the services that will be
available through the INETD TCP/IP super server. To
re-configure the running INETD process, edit this file,
then send the INETD process a SIGHUP signal.
#
Version: @(#)/etc/inetd.conf 3.10 05/27/93
#
Authors: Original taken from BSD UNIX 4.3/TAHOE.
Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
#
Modified for Debian Linux by Ian A. Murdock
<imurdock@shell.portal.com>
#
Modified for RHS Linux by Marc Ewing <marc@redhat.com>
#
<service_name> <sock_type> <proto> <flags> <user>
<server_path> <args>
#

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 746

747

Echo, discard, daytime, and chargen are used primarily
for testing.
#
To re-read this file after changes, just do a ‘killall
-HUP inetd’
#
#echo stream tcp nowait root internal
#echo dgram udp wait root internal
#discard stream tcp nowait root internal
#discard dgram udp wait root internal
#daytime stream tcp nowait root internal
#daytime dgram udp wait root internal
#chargen stream tcp nowait root internal
#chargen dgram udp wait root internal
#time stream tcp nowait root internal
#time dgram udp wait root internal
#
These are standard services.
#
#ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l –a
#telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
#
Shell, login, exec, comsat and talk are BSD protocols.
#
#shell stream tcp nowait root /usr/sbin/tcpd in.rshd
login stream tcp nowait root /usr/sbin/tcpd in.rlogind
#exec stream tcp nowait root /usr/sbin/tcpd in.rexecd
#comsat dgram udp wait root /usr/sbin/tcpd in.comsat
#talk dgram udp wait nobody.tty /usr/sbin/tcpd in.talkd
#ntalk dgram udp wait nobody.tty /usr/sbin/tcpd in.ntalkd
#dtalk stream tcp wait nobody.tty /usr/sbin/tcpd ➥

in.dtalkd
#
Pop and imap mail services et al
#
#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
#imap stream tcp nowait root /usr/sbin/tcpd imapd
#
The Internet UUCP service.
#
#uucp stream tcp nowait uucp /usr/sbin/tcpd ➥

Configuring inetd

2817c43.qxd 11/13/00 3:01 PM Page 747

748

/usr/lib/uucp/uucico -l
#
Tftp service is provided primarily for booting. Most
sites run this only on machines acting as “boot
servers.” Do not uncomment this unless you *need* it.
#tftp dgram udp wait root /usr/sbin/tcpd in.tftpd
#bootps dgram udp wait root /usr/sbin/tcpd bootpd
#
Finger, systat and netstat give out user information
which may be valuable to potential “system crackers.”
Many sites choose to disable some or all of these
services to improve security.
#
#finger stream tcp nowait nobody /usr/sbin/tcpd ➥

in.fingerd
#cfinger stream tcp nowait root /usr/sbin/tcpd ➥

in.cfinger
#systat stream tcp nowait guest /usr/sbin/tcpd ➥

/bin/ps –auwwx
#netstat stream tcp nowait guest /usr/sbin/tcpd ➥

/bin/netstat –f inet
#
Authentication
#
identd is run standalone now
#
#auth stream tcp wait root /usr/sbin/in.identd ➥

in.identd -e –o
End of inetd.conf

The file gets longer as more services are added, but it can be quite short if you
don’t start a lot of services through inet. Entries in /etc/inetd.conf take a par-
ticular syntax:

service socket protocol flags user path filename

These components vary from entry to entry, but most entries use all of them. If
there is an error in one of the fields, the entry will be invalid, and the service
won’t start as needed. The various fields are shown in Table 43.1.

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 748

749

TA B L E 4 3 . 1 : /etc/inetd.conf Entry Syntax

Field Purpose

service Defines the service being configured in this entry.

socket Defines the socket type used for this service. Socket types correspond with the TCP and
UDP protocols, with stream being associated with TCP entries and dgram (datagram)
being associated with UDP entries. Stream sockets handle continuous data flow, while
datagram sockets deal with discrete data packets.

protocol Defines the protocol being used. /etc/inetd.conf requires an explicit statement of
protocol even though the socket type usually indicates the protocol in use. May be TCP
or UDP.

flags Defines the manner in which datagram sockets handle incoming connections. May be
wait or nowait.

user Defines the user under whose control the server operates. If the server runs as root, it
will use the root privileges and environment. Some servers run as individual users, such
as Apache, which usually runs as nobody.

path Defines the directory path for the actual server program location.

filename Defines the actual filename of the program, which is used by inetd to invoke the server.

Whenever you edit the /etc/inetd.conf file, you must restart the inet dae-
mon for it to function properly. Do this by issuing the command

/etc/init.d/netbase restart

at a shell prompt. The netbase script restarts several daemons devoted to net-
working, including inetd.

/etc/services
The /etc/services file lists all servers running on the network and the port
upon which each server listens for incoming connections. The file is quite long,
and we include only a small portion here (though it’s long, it is a short segment of
the full file). The part we’ve selected contains entries for the various Internet-
related services, including those that we cover at the end of this chapter.

Network services, Internet style
#
Note that it is presently the policy of IANA to assign

Configuring inetd

2817c43.qxd 11/13/00 3:01 PM Page 749

750

a single well-known port number for both TCP and UDP;
hence, most entries here have two entries even if the
protocol doesn’t support UDP operations.
Updated from RFC 1700, ``Assigned Numbers’’ (October
1994). Not all ports are included, only the more
common ones.

tcpmux 1/tcp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
msp 18/tcp # message send protocol
msp 18/udp # message send protocol
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp 21/tcp
fsp 21/udp fspd
ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp # SSH Remote Login Protocol
telnet 23/tcp
24 – private
smtp 25/tcp mail
26 – unassigned
time 37/tcp timserver
time 37/udp timserver
rlp 39/udp resource # resource location
nameserver 42/tcp name # IEN 116
whois 43/tcp nicname
re-mail-ck 50/tcp # Remote Mail Checking Protocol
re-mail-ck 50/udp # Remote Mail Checking Protocol
domain 53/tcp nameserver # name-domain server
domain 53/udp nameserver
mtp 57/tcp # deprecated
bootps 67/tcp # BOOTP server
bootps 67/udp

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 750

751

bootpc 68/tcp # BOOTP client
bootpc 68/udp
tftp 69/udp
gopher 70/tcp # Internet Gopher
gopher 70/udp
rje 77/tcp netrjs
finger 79/tcp
www 80/tcp http # WorldWideWeb HTTP
www 80/udp # HyperText Transfer Protocol
link 87/tcp ttylink
kerberos 88/tcp kerberos5 krb5 # Kerberos v5
kerberos 88/udp kerberos5 krb5 # Kerberos v5
supdup 95/tcp
100 – reserved
hostnames 101/tcp hostname # usually from sri-nic
iso-tsap 102/tcp tsap # part of ISODE.
csnet-ns 105/tcp cso-ns # also used by CSO name server
csnet-ns 105/udp cso-ns
unfortunately the poppassd (Eudora) uses a port which
has already been assigned to a different service. We
list the poppassd as an alias here. This should work
for programs asking for this service.
(due to a bug in inetd the 3com-tsmux line is
disabled)
#3com-tsmux 106/tcp poppassd
#3com-tsmux 106/udp poppassd
rtelnet 107/tcp # Remote Telnet
rtelnet 107/udp
pop2 109/tcp pop-2 postoffice # POP version 2
pop2 109/udp pop-2
pop3 110/tcp pop-3 # POP version 3
pop3 110/udp pop-3
sunrpc 111/tcp portmapper # RPC 4.0 portmapper TCP
sunrpc 111/udp portmapper # RPC 4.0 portmapper UDP
auth 113/tcp authentication tap ident
sftp 115/tcp
uucp-path 117/tcp
nntp 119/tcp readnews untp # NewsTransferProtocol
ntp 123/tcp
ntp 123/udp # Network Time Protocol
netbios-ns 137/tcp # NETBIOS Name Service
netbios-ns 137/udp

Configuring inetd

2817c43.qxd 11/13/00 3:01 PM Page 751

752

netbios-dgm 138/tcp # NETBIOS Datagram Service
netbios-dgm 138/udp
netbios-ssn 139/tcp # NETBIOS session service
netbios-ssn 139/udp
imap2 143/tcp imap # Interim Mail Access Proto v2
imap2 143/udp imap
snmp 161/udp # Simple Net Mgmt Proto
snmp-trap 162/udp snmptrap # Traps for SNMP
cmip-man 163/tcp # ISO mgmt over IP (CMOT)
cmip-man 163/udp
cmip-agent 164/tcp
cmip-agent 164/udp
xdmcp 177/tcp # X Display Mgr. Control Proto
xdmcp 177/udp
nextstep 178/tcp NeXTStep NextStep # NeXTStep window
nextstep 178/udp NeXTStep NextStep # server
bgp 179/tcp # Border Gateway Proto.
bgp 179/udp
prospero 191/tcp # Cliff Neuman’s Prospero
prospero 191/udp
irc 194/tcp # Internet Relay Chat
irc 194/udp
smux 199/tcp # SNMP Unix Multiplexer
smux 199/udp
at-rtmp 201/tcp # AppleTalk routing
at-rtmp 201/udp
at-nbp 202/tcp # AppleTalk name binding
at-nbp 202/udp
at-echo 204/tcp # AppleTalk echo
at-echo 204/udp
at-zis 206/tcp # AppleTalk zone information
at-zis 206/udp
qmtp 209/tcp # The Quick Mail Transfer Protocol
qmtp 209/udp # The Quick Mail Transfer Protocol
z3950 210/tcp wais # NISO Z39.50 database
z3950 210/udp wais
ipx 213/tcp # IPX
ipx 213/udp
imap3 220/tcp # Interactive Mail Access
imap3 220/udp # Protocol v3
rpc2portmap 369/tcp
rpc2portmap 369/udp # Coda portmapper

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 752

753

codaauth2 370/tcp
codaauth2 370/udp # Coda authentication server
ulistserv 372/tcp # UNIX Listserv
ulistserv 372/udp
ldap 389/tcp # Lightweight Dir. Access Protocol
ldap 389/udp # Lightweight Dir. Access Protocol
https 443/tcp # MCom
https 443/udp # MCom
snpp 444/tcp # Simple Network Paging Protocol
snpp 444/udp # Simple Network Paging Protocol
saft 487/tcp # Simple Asynchronous File Transfer
saft 487/udp # Simple Asynchronous File Transfer
npmp-local 610/tcp dqs313_qmaster # npmp-local / DQS
npmp-local 610/udp dqs313_qmaster # npmp-local / DQS
npmp-gui 611/tcp dqs313_execd # npmp-gui / DQS
npmp-gui 611/udp dqs313_execd # npmp-gui / DQS
hmmp-ind 612/tcp dqs313_intercell # HMMP Indication
hmmp-ind 612/udp dqs313_intercell # HMMP Indication
#
UNIX specific services
#
exec 512/tcp
biff 512/udp comsat
login 513/tcp
who 513/udp whod
shell 514/tcp cmd # no passwords used
syslog 514/udp
printer 515/tcp spooler # line printer spooler
talk 517/udp
ntalk 518/udp
route 520/udp router routed # RIP
timed 525/udp timeserver
tempo 526/tcp newdate
courier 530/tcp rpc
conference 531/tcp chat
netnews 532/tcp readnews
netwall 533/udp # -for emergency broadcasts
uucp 540/tcp uucpd # uucp daemon
afpovertcp 548/tcp # AFP over TCP
afpovertcp 548/udp # AFP over TCP
remotefs 556/tcp rfs_server rfs # remote filesystem
klogin 543/tcp # Kerberized `rlogin’ (v5)

Configuring inetd

2817c43.qxd 11/13/00 3:01 PM Page 753

754

kshell 544/tcp krcmd # Kerberized `rsh’ (v5)
kerberos-adm 749/tcp # Kerberos `kadmin’ (v5)
#
webster 765/tcp # Network dictionary
webster 765/udp
swat 901/tcp # Samba Web Administration Tool

As you can see in this segment of the /etc/services file, the file is divided
into columns. Each entry uses the following syntax:

servicename port:protocol other information

The port number is usually the standard port for that particular server, though
you can assign a different port; however, if you don’t publicize that port, external
clients won’t be able to access the service. The protocol entry identifies the partic-
ular protocol needed to start the service: TCP (Transmission Control Protocol) or
UDP (Unix Datagram Protocol). Note that many services have entries for both
protocols. The final segment of the entry is for other information, which might
include a comment or an alias for the service.

You don’t need to make many manual entries into /etc/services. When you
install a new server, chances are that its configuration and installation will make
an /etc/services entry automatically. However, if you use nonstandard ports or
want to make sure that there is a reference for a particular server, you’ll need to
edit this file by hand.

xinetd: An inet Alternative
Recent distributions of Linux, such as Red Hat 7, have begun to use the program
xinetd (the extended Internet daemon) as a replacement for inetd. Use of xinetd
is similar to that of inetd, but the configuration system is different.

NOTE Although we haven’t seen xinetd running on any non–Red Hat systems, there is
no reason why it couldn’t be used on other Unix variants.

The main xinetd configuration file is /etc/xinetd.conf. In this file, you can
define sections that configure each service, just as the entries in /etc/inetd.conf

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 754

755

do. The main difference, apart from format, is that xinetd has more options.
Here’s a sample /etc/xinetd.conf file:

Simple configuration file for xinetd
#
Some defaults, and include /etc/xinetd.d/

defaults
{

instances = 60
log_type = SYSLOG authpriv
log_on_success = HOST PID
log_on_failure = HOST RECORD

}

includedir /etc/xinetd.d

The last line tells xinetd to include all the files in the /etc/xinetd.d directory. If
you issue an ls command for that directory, you’ll get the following output:

finger imaps ipop3 ntalk rexec rsh talk tftp
imap ipop2 linuxconf-web pop3s rlogin rsync telnet

As you can see, each service covered by inet has a file in this directory. It is
not necessary to split the files out like that; you can put the configuration blocks
directly into /etc/xinetd.conf, but many administrators prefer to have the
various services represented by separate files because it makes maintenance
easier. These files show the various settings for that particular service. Here’s
the telnet file, as an example:

default: on
description: The telnet server serves telnet sessions;
it uses unencrypted username/password pairs for
authentication.
service telnet
{

flags = REUSE
socket_type = stream
wait = no
user = root
server = /usr/sbin/in.telnetd
log_on_failure += USERID

}

xinetd: An inet Alternative

2817c43.qxd 11/13/00 3:01 PM Page 755

756

The imap program has a similar file:

default: off
description: The IMAP service allows remote users to
access their mail using an IMAP client such as Mutt,
Pine, fetchmail, or Netscape Communicator.
service imap
{

socket_type = stream
wait = no
user = root
server = /usr/sbin/imapd
log_on_success += DURATION USERID
log_on_failure += USERID
disable = yes

}

Note the disable = yes option. This shows that the imap service is disabled by
default. You can add this line to any configuration file in the /etc/xinetd.d
directory to disable a service or change the option to disable = no to enable it.

There are many other options that you can use if you choose to replace inetd on
your Linux system with xinetd. For example, you can use these configuration files
to control access to the various services controlled by xinetd. If you have xinetd
installed on your system, read the manual pages associated with xinetd.conf
(type man xinetd.conf at a shell prompt) for a complete list of features.

Running Services from inetd
Although you can run almost any service from inetd, a few services are tradi-
tionally called “inet services.” These include programs that manage remote
access to your network, programs that transfer data, and programs that provide
information about your network and its users. Many of these programs are famil-
iar because they have been an integral part of the Unix (and thus the Internet)
community for many years.

Unfortunately, many of these popular programs also carry significant security
risks. Because they are so old—and because they were developed in the days
before constant vigilance and patching were necessary to defeat a determined
cracker—their faults are well-known and thus easily exploited to gain illegal

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 756

757

access to a network. Although we cover some of these programs in this chapter,
there are often more secure ways to handle the same kind of activity; you may wish
to limit the use of a particular program such as rlogin or telnet to machines
within your network, or you might replace all remote access programs with the
secure SSH protocol.

Connection-Based Services
The most well-known services traditionally run through the inet daemon are
those that provide remote access to the network. These programs can be invoked
on one machine to open the login process on another machine, whether the two
machines are on the same local network or connected through the Internet,
though they are thousands of miles apart.

For many years, the telnet and rlogin programs were the standard remote
access programs, and both are still used widely today. However, telnet and
rlogin are not particularly secure programs, and they are quite easy to use in an
unauthorized access attempt. We recommend that you keep your use of telnet
and rlogin to machines within your local network, if you use these programs at
all. Instead, you should use SSH for remote access to your network, which uses a
randomly generated seed for an encrypted access key. With SSH, you can make it
very difficult to break into your network without an authorized password and key.

TIP Learn more about SSH’s security aspects in Chapter 38: “Network Security.”

telnet
The telnet protocol relies on the TCP/IP protocol, which defines how data is
dispersed over the Internet. TCP/IP is one of the most widely used protocols in
all networking and has been dominant for years. As part of the TCP/IP imple-
mentation, telnet was developed to handle remote logins in a way consonant
with the TCP/IP protocol. Once established, a telnet connection maintains an
open channel through which TCP/IP-compliant data can flow in both directions,
allowing you to work on a remote Unix machine and issue commands as if you
were logged directly into that computer.

Connection-Based Services

2817c43.qxd 11/13/00 3:01 PM Page 757

758

NOTE telnet is quite useful both locally and across larger networks such as the Inter-
net, because you can do a great deal of work without needing to be physically
present at the computers on which you’re working. Many other programs rely on
telnet to establish a protocol-compliant channel for data; if you use programs
like this, check to see whether a more secure version has been developed or
whether you can change a configuration to use SSH instead. Data, including user-
names and passwords, sent over a telnet connection is sent in plain text and is
not secure at all.

Like all the programs described in this chapter, telnet requires both a client and
a server to establish a connection. The telnet client is installed by default with
almost every Unix variant we know of; if you type telnet at the shell prompt and
don’t get a response, either you (or your system administrator) have turned off
telnet or it was never installed, which is generally a deliberate choice.

The telnet server is managed by the inet daemon and runs only when an
incoming telnet connection is noticed on the relevant port, usually port 23. The
telnet server is not necessarily part of the default installation of most Unix vari-
ants, but you can obtain a copy at almost any Unix file archive and install it using
the process explained in Chapter 31: “Installing and Managing Software.”

The server will run under the process in.telnetd, with the TCP protocol and a
stream socket. You do not need to configure a telnet server beyond installing it,
because it doesn’t check the incoming request against any parameters. (This is
part of the reason why telnet is an insecure answer to remote access.)

rlogin
Like telnet, rlogin is used to start a terminal session on a remote machine. The
command is issued with the syntax

rlogin user@remote.host.name

or

rlogin –1 user remote.host.name

If no username is specified, you will be logged into the remote machine under the
username you’re currently using on the local machine. (Obviously, if no such user-
name exists on the remote machine, the attempt will fail.)

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 758

759

The server that responds to rlogin requests is called rlogind, and it runs
under the inet daemon. rlogind uses two kinds of authentication, based either
on privileged port numbers or on the Kerberos protocol, and the choice between
the two is made by the administrator when rlogind is installed.

TIP Users can specify the Kerberos-based secure session when making the remote
connection, by using the klogin command instead of rlogin.

It is fairly easy to overpower the privileged port authentication of rlogind, so
we recommend that—if you must run rlogin—you choose to require the klogin
version, which is more secure. However, running SSH is probably still a better bet.

You may find that rlogin and rlogind are available with the Unix distribution
you’re using. They are standard tools, and many programs still suggest their use.
If you don’t have an rlogin/rlogind package, you can obtain one at any Unix
file archive. Just be aware that passwords are passed as plain text instead of in an
encrypted manner when rlogind accepts an rlogin connection. It’s a security
issue you might not be comfortable with.

rsh
The rsh program executes a specified command on a remote machine. You can
use rsh, for example, to start a script or process on another machine without
logging into that machine. To gain access to the remote machine, your current
machine and account must be permitted through an entry in the hosts.equiv
file on the remote machine.

rsh requests are answered by the daemon rshd, which runs under inet and
starts when an rsh request is received by the remote inet daemon. rshd listens
for incoming requests on port 514 and uses a privileged-ports method of authen-
tication: If the incoming request does not originate from a port in the range of 512
to 1023, the request is denied, and the connection is aborted.

WARNING Although rsh can be useful, it is not secure. You should disable rsh in your
/etc/inetd.conf file and in /etc/services. If someone needs to run Unix
commands remotely, you should require a secure login using an encrypted
scheme, such as the connections made with SSH. However, if you’re using SSH, be
sure to disable rsh in the /etc/sshd file as well.

Connection-Based Services

2817c43.qxd 11/13/00 3:01 PM Page 759

760

Data Transfer Services
Perhaps the most used service that traditionally runs under the inet daemon is
FTP, the File Transfer Protocol program. FTP is used to send and receive files over
the Internet or smaller networks, using a specialized protocol that ensures the files
arrive complete and without damage. Using FTP is faster than transferring files by
download from the Web and more reliable than sending files through e-mail. A
number of FTP clients are available, both for Unix and for other operating systems
such as Windows and MacOS. FTP is one of the protocols that has aged best from
the early days of the Internet to the complicated computing world of today; regard-
less of other advances in networking technology, file transfer has remained rela-
tively stable.

Although you and your users can run any sort of FTP client that will work
with the particular operating system that you’re using, all FTP clients send their
requests to the FTP daemon, ftpd. To serve FTP requests from your network,
you need to run one of the several ftpd programs that are available for Unix.
Once you have downloaded and installed the FTP daemon, it will begin to listen
for FTP connections on port 21.

FTP verifies users against the regular user configuration and password files.
If a user has an account on your system, he may use the same account name and
password to access his files via FTP; however, he will have the same access he
would have if he logged into his regular user account. To place a certain set of
files in a separate directory so that anyone may access them, you’ll need to
enable anonymous FTP on your system.

When someone logs in using anonymous FTP, she is asked to send her regular
e-mail address as the password. If this request is answered honestly, this can be a
good way to monitor usage of your anonymous FTP service. However, anything
will satisfy the daemon, so you might not get valid e-mails from any of your visi-
tors. Anonymous FTP utilizes a wholly separate filesystem, from which visitors
cannot access your regular filesystems or data. Anonymous FTP is configured dif-
ferently in each FTP server variant, so you’ll need to consult your daemon’s docu-
mentation to learn what to do.

TIP Two of the most popular FTP servers for Unix are WU-FTPD and ProFTPD. Learn
more about the WU server at http://www.wu-ftpd.org and about ProFTPD at
http://www.proftpd.org. There is little practical difference between the two,
so try both and see which you like best.

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 760

761

Information Services
Several information-related services run under inet. These services may report
on individual users or provide information about the network as a whole. The
two services described in this section, finger and netstat, are two of the most
popular inet-based information services. finger lets you know whom individ-
ual users are, how they’re connected to the system, how long they’ve been con-
nected, and what they’re doing. netstat provides minute-by-minute information
about each of your network interfaces, how they are handling packets, and what
kind of information they are transmitting.

WARNING Although these services may seem innocuous, they can be used to get information
about your system as a whole, which could be a useful item for someone attempt-
ing to break into your system illegally. If you want the kind of information pro-
vided by these services, consider limiting them to your network alone and not
permitting external requests.

finger
The finger program used to be a popular way to learn more about a particular
user on a network, whether or not the network was local. To use finger, you
issue the command

finger user@machine.domain

at a shell prompt. finger then produces output containing information from the
initial configuration of the user account, as well as the content of the user’s individ-
ual .project and .plan files if those files exist. The output also shows whether the
user is logged in and how long that particular login session has lasted.

Useful as this information might be, finger is a very insecure program. Not
only does it display information about open and idle connections, as well as
personal contact information for the fingered user, finger is vulnerable to
worms, cracker programs that slip into a system at a soft point and make their
way throughout the local network. Though versions of finger are available
that have closed off the most egregious security risks, no reliable system we
know uses finger anymore.

Information Services

2817c43.qxd 11/13/00 3:01 PM Page 761

762

WARNING If you administer a system that permits finger requests, especially from outside
the network, turn finger off. Even if you think it’s not such a big deal to provide
personal information about your users, note that finger also shows what
machines your users use to log into the network and what machines they connect
to once logged in. This can be very useful information to a cracker, because those
other machines may not have very rigid security procedures in place and could
serve as comfortable hosts for illegal activity.

netstat
The netstat program is used to display output showing the status of various
network devices. You can use netstat to learn the size of various queues, see
what state particular processes are in, or see how packets are being transferred
through individual servers. It’s a useful program if you’re interested in how your
network interfaces are working at any given moment.

Issuing the command netstat without any arguments will produce a lengthy
output of data, one line for each individual network interface. The output does
not end, but will pause until a new set of packet traffic is piped through a defined
interface and then print a new line. The netstat output is much more useful if
you use some of the myriad options available with the program, which produce a
limited output tailored to your actual needs. Table 43.2 contains some of the most
popular netstat options.

NOTE netstat is implemented slightly differently on different Unix variants. The options
available to BSD users are not all the same as the options available to Solaris users,
which aren’t quite the same as the Linux options, and so on. However, most of the
options in Table 43.2 should work regardless of the Unix variant on which you’re
using netstat.

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 762

763

TA B L E 4 3 . 2 : netstat Options

Flag Function

-e Displays the user under which the specified service is running

-a Prints all sockets, both listening and answering sockets

-v Causes output to print in verbose mode, including “complaints” about active sockets
that are not configured

-o Displays information on timers set on various sockets

-i Shows all networking interfaces in a table using the same format as the ifconfig –e
command

-n Shows interfaces as numerical addresses instead of resolving machine names

-c Prints output continuously until you interrupt or kill the process

-M Includes output about masqueraded sessions (servers using unofficial network
addresses, as explained in Chapter 38: “Network Security”)

Miscellaneous Services
Many other services run under inet and may or may not be active on your par-
ticular system. If you page through /etc/services or /etc/inetd.conf and see
a comment that refers to a service you find intriguing, you should be able to find
more information on that service’s manual page.

TIP If you don’t have the relevant man page installed on your system, try searching
Google (http://www.google.com) or some other metacrawler Web search engine
with the search terms “command manual page.” This usually gives good results.

One inet program that many people keep on their systems just because it’s fun
and easy to use is talk or one of talk’s variants.

Miscellaneous Services

2817c43.qxd 11/13/00 3:01 PM Page 763

764

NOTE On many systems, the program that’s invoked with the talk command is actu-
ally ntalk or (new talk). ntalk fixed some annoying bugs with the original
talk program.

talk is a Stone-Age chat program that’s limited to two people. When you issue
the command

talk user@domain.name

a split screen appears, with a horizontal line running directly through the middle
of the screen. The person who was named in the invocation will receive a mes-
sage alerting him that you want to talk, and he must issue the command

talk you@your.domain.name

to enable the connection.

Once the connection is established, you type your comments in the top half,
and the comments of your talk partner show up in the bottom half. It’s some-
what confusing at first, but it begins to make sense after a while. We admit that
we have a soft spot for talk, because when we were both first on the Internet
years and years ago, talk was the only chat option, and we’ve both logged many
hours in this basic, but functional, program.

Summary
No matter how many services you run, it’s likely that you’ll appreciate the conve-
nience and reliability of an automated manager. On Unix systems, the inet pro-
gram and its daemon, inetd, act as a gateway between incoming client requests
and the servers that run on your network. When inetd senses an incoming request,
it determines which service should answer and directs the request to that service. If
the service is not currently running, inetd invokes the service and brings it up
before the request is sent. Thus, requests to servers handled through inetd may be
processed more slowly than requests to servers that are constantly running, but
there is a savings on network CPU cycle usage because you do not have a wide
variety of infrequently used services constantly available.

Chapter 43 • Remote Access (inet) Services

2817c43.qxd 11/13/00 3:01 PM Page 764

765

You can run almost any service that answers external requests through inet.
inet is configured with two files: /etc/services, which associates particular
ports with individual servers, and /etc/inetd.conf, which defines how each
server will respond to a request when it arrives. Some of the more popular services
run through inet include connection-based services such as telnet, rlogin, rsh,
and sometimes SSH; data transfer services such as the FTP daemon ftpd; informa-
tion services such as finger or netstat; and miscellaneous services, including
talk and its variants. Some of these services are quite old in Unix terms and may
not incorporate current security standards. You are advised to check out the secu-
rity risks of any particular service before you run it.

Summary

2817c43.qxd 11/13/00 3:01 PM Page 765

This page intentionally left blank

A P P E N D I X
A

Common Unix Commands

A

2817ca.qxd 11/14/00 11:00 AM Page 767

768

We use the following conventions for the entries in this appendix:

• Items in square brackets, such as [option], are optional.

• Items in angle brackets, such as <filename>, must be replaced with an actual
file or program name, deleting the angle brackets.

• Items separated by a pipe, |, are mutually exclusive.

• If the pipe is placed within square brackets, it denotes an optional choice; for
example, if the entry shows syntax with the component [x|y], you can select
x, y, or none.

• If the pipe is placed within curly braces, such as {x|y}, you are required to
choose either x or y.

NOTE We provide the most common uses of these commands. Many of these com-
mands have a more extended syntax that permits other constructions. When in
doubt, consult the relevant manual page for the appropriate options.

adduser

adduser is used to create a new user account. It uses the syntax

adduser [options] username

Options for adduser include

• -c (Includes a comment when creating the account)

• -d (Specifies the user’s home directory)

• -e (Specifies an expiration date for this account)

• -M (Use if you do not want to create a home directory for this user)

• -p (Specifies the initial password for the account)

WARNING You should require your users to change their passwords immediately.

• -s (Specifies the user’s default shell environment if they do not want to use
the default shell)

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 768

769

apropos

Use apropos to search for a specified file on the computer (not just in your user
account), using a keyword. It is usually used for help in finding a man page.
apropos uses the syntax

apropos <keyword>

at

at is used to schedule a one-time command execution for a later time. It uses the
syntax

at [options] <time>

One of at’s most useful options is the –f flag, which directs at to take input from
a file rather than from the standard input.

NOTE at normally takes its input from standard input. If you simply give the command
at <time> you will be presented with an at> prompt at which you can enter shell
commands to be executed at the time you’ve specified.

You can also use at with a redirection operator, as in

at <time> < <command>

If your job is more complex, you can put the commands in a file and invoke the
file using the –f flag, as in

at -f <command file> <time>

bash

Use the bash command to invoke the GNU Bourne Again Shell environment.
bash takes the syntax

bash [<command>]

The bash command starts a Bourne Again Shell interpreter. If a command is
given as an argument, the command (usually the name of a script) is run in the
Bourne Again Shell environment.

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 769

770

cat

cat is used to print the contents of a specified file to the screen. It uses the syntax

cat [options] <file(s)>

There are several options for cat, including

• -n (cat will number the lines of output)

• -s (cat collapses consecutive blank lines into one single blank line)

TIP One useful cat application is to concatenate several files into one new file, using
the command cat <file 1> <file 2> <file 3> >> <new file>. This will
combine a variety of shorter files into one long file, which is easier to work with.

cd

Use cd to change directories in the Unix filesystem. It uses the syntax

cd [directory]

If no directory is specified when you issue the command, cd changes to your
home directory.

cfdisk

This command is used to partition a hard disk. It is similar to fdisk, but with a
slightly friendlier interface.

chmod

Use chmod to change file permissions. This command can be issued only by root
or by the file’s owner. chmod takes the syntax

chmod [u|g|a] {+|-} {r and/or w and/or x} <filename>

NOTE chmod assumes that you want to assign global permission if you do not specify
any other level of permission. Therefore, if the u, g, or a options are not included
when you issue the command, chmod will use a by default.

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 770

771

chmod options include

• u (Grants permissions only to the owner of the file)

• g (Grants permissions to the user’s groups)

• a (Grants global permissions, including access permissions for those outside
the local network)

• + (Notifies chmod that you are going to change the permissions on the speci-
fied file)

• - (Notifies chmod that you are going to remove an existing permission from
the specified file)

• r (Assigns the read file permission, giving read-only access)

• w (Assigns the write file permission, giving both read and edit permissions)

• x (Assigns the execute file permission, granting the ability to run the file if it
is an executable binary, as well as read and edit permissions)

chmod can be difficult to comprehend the first few times you use it. Here are the
most commonly used chmod commands:

chmod a+r <filename>

This command gives read permission on the specified file to all users.

chmod g+rw <filename>

This command gives read and write permission on the specified file to the user’s
group.

chmod a-x <filename>

This command removes execute permission from all users. If you issue this com-
mand, follow it up with another command that grants execute permission to
those people who should be able to execute the file (such as the user).

chown

Use chown to change the ownership of a given file. chown uses the syntax

chown <user> <filename>

You must use chown as root; otherwise, it can be executed only by the owner of
the specified file.

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 771

772

cp

cp is used to copy a specified file to a new location. It uses the syntax

cp <file 1> <file 2>

file 1 is the file to be copied, and file 2 is the name of the new file.

WARNING Be careful with cp. If you use an existing file’s name for file 2, the contents of
that file will be replaced with the contents of file 1.

crontab

The crontab command is used to maintain cron files for automated system
administration, by editing the /etc/crontab file. crontab takes the syntax

crontab [-u <user>] {-l|-r|-e}

crontab options include

• -u (Specifies a particular user to issue the command. The default, if no other
user is specified, is the user issuing the command. If you edit /etc/crontab
as root, this will be set to the root account.)

• -l (Prints the /etc/crontab file to the screen)

• -r (Clears the entire existing /etc/crontab file)

• -e (Edits the /etc/crontab file with the current entry)

date

date sets, or prints to the screen, the current time and date. date takes the syntax

date [options]

Issuing the date command with no argument will cause the current date and
time to be printed to the screen.

To set the date, you must be root. Issue the date command with the –s option,
and set the time using two-digit numbers for the day, month, and year. Set the
time using the 24-hour clock. Thus, to set the date to 10 seconds past 1:20 A.M.,
November 27, 1933, you would issue the command

date –s 2711330120.10

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 772

773

dd

Use dd to copy a specified file to another location. dd is usually used to make a
copy of a file on a removable disk, because it streams the data directly to the new
location without formatting it in any way. dd takes the syntax

dd if=<input file> of=<output file>

The output file component is usually the device name of the floppy disk drive or
the drive to which you are transferring the file.

declare

declare is used to declare and assign a particular type to a variable. declare
takes the syntax

declare [options] VAR[=<value>]

declare’s options are

• -i (Declares the variable is an integer)

• -r (Declares the variable is read-only)

• -a (Declares the variable is an array)

NOTE You can declare a variable type only if you are using the bash shell in version 2
or later.

diff

Use diff to compare the contents of two specified files. Any differences found
will be printed to the screen. It uses the syntax

diff <file 1> <file 2>

diff compares the files by checking each character in file 1 against each char-
acter in file 2. If there are a lot of differences, as in a case where the two files are
not versions of the same document or script, the diff output will be lengthy, and
it is best to pipe it to another file.

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 773

774

du

The du command’s output shows the amount of disk space used by a particular
user, or used by a specified file or directory. du takes the syntax

du [options] <file or directory name>

Options for du include

• -b (Prints the size in bytes)

• -c (Prints a full listing of each directory and its size, ending with a grand
total of space taken on the disk)

• -h (Reports in familiar sizes, such as kilobytes or megabytes)

• -k (Prints the size in kilobytes, even if the directory or file occupies more
than a megabyte of space)

• -m (Prints the size in megabytes, even if the directory or file occupies less
than a megabyte of space)

• -S (Ignores the size of subdirectories and counts only the size of top-level
directories)

• -s (Displays the total size only of the directory [and subdirectories] in
which the command is issued)

echo

echo prints a requested string to the screen. echo uses the syntax

echo [options] <string>

To have echo print a trailing new (blank) line, issue the command without
options. To get output without a new line, issue the command as

echo –n <string>

exit

The exit command is used to end a shell process. exit takes the syntax

exit [<value>]

In script programming, <value> is a number used to denote the status of the
process upon ending. Normally, 0 (zero) represents success, and anything else
represents failure.

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 774

775

export

The export command makes a specified variable available to the shell environ-
ment. export takes the syntax

export <variable>[=<value>]

For example, if you wish to set the value of the EDITOR variable to pico and make
that variable’s new value available to the shell environment, you would issue the
command

export EDITOR=”pico”

exportfs

Use the exportfs command to export a network filesystem with NFS. exportfs
takes the syntax

exportfs [options]

Options for exportfs include

• -a (Exports all filesystems named in /etc/exports)

• -r (Reexports all previously exported filesystems)

• -u (Unexports one or more named filesystems)

expr

The expr command provides numerical evaluation of a given expression. expr
uses the syntax

expr <expression>

TIP If you have not declared your variables to take a certain type (see declare), the
expr command is needed so that, for example, “1+1” is interpreted as the arith-
metic value “2”, rather than as the string “1+1”. If you are using typed variables
and have declared your variables as integers, the expr command is unnecessary.

fdisk

The fdisk command invokes an interactive disk partitioning program. fdisk
takes the syntax

fdisk <device>

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 775

776

WARNING fdisk is an interactive program. It is also a potentially destructive one. See its doc-
umentation before attempting to use it.

fsck

The fsck command is used to check the integrity of a filesystem. fsck uses the
syntax

fsck [options] <filesystem>

fsck has several options, including

• -t (Specifies filesystem type)

• -A (Checks all filesystems; uses the /etc/fstab file as a guide)

• -N (Dry run: shows only what would be checked, but doesn’t actually
check it)

• -R (When checking all filesystems using the -A option, skips the root filesys-
tem [see note below for the reason behind this option])

• -V (Verbose mode)

• -a (Automatically makes all necessary repairs in the filesystem being
checked)

• -r (Converse of –a; makes repairs interactively, prompting for approval of
each repair)

NOTE Filesystems must not be mounted, or must be mounted read-only, before they
can benefit from the fsck command. The -R option exists so that the root
filesystem can remain mounted read-write while all other filesystems are checked
using fsck -A.

grep

The grep command searches a specified input source for characters or numbers
matching a specified pattern. grep uses the syntax

grep [options] <pattern> [filename]

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 776

777

There are a wide variety of options for grep, and it is best to consult the manual
page to see what options are enabled on your system.

TIP grep is pronounced “grep,” not “gee-rep.”

grep can use the output of another process as its input. To do so, construct a
command using the | character. For example, if you wanted to grep the output of
an ls command for the character string mail, you would issue the command

ls -x | grep -e mail

The pipe causes the output of the ls command to be run through grep before
reporting to the screen.

groups

The groups command is used to display the names of all groups to which a user
belongs. groups takes the syntax

groups [<username>]

If you provide another user’s name in the <username> field, groups will report
the group memberships of that user. Without that argument, groups will report
your group memberships.

gzip and gunzip

The gzip command is used to compress a specified file or set of files. The gunzip
command is used to expand a file compressed with gzip. They both take a simi-
lar syntax:

gzip <filename>
gunzip <filename>

head and tail

Use the head command to see the first few lines of a specified file, and use the tail
command to see the last few lines of the specified file. They use the same syntax:

head <filename>
tail <filename>

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 777

778

ifconfig

The ifconfig command is used to configure network devices under Linux.
ifconfig uses the syntax

ifconfig [<device>] [options] [up|down]

If no options are given in the command, ifconfig displays all active devices. The
<device> component is the path name of any network device, such as ppp0 or
eth0. Options for ifconfig include

• -a (Causes ifconfig to display all devices, regardless of status)

• netmask <address> (Allows the specified IP number to be entered as a
netmask)

• <address> (Assigns <address> as the device’s IP number)

init

The init command invokes the init daemon, initd. initd is usually used to
change the runlevel under Linux. init uses the syntax

init <runlevel>

where <runlevel> is one of the following: 0, 1, 2, 3, 4, 5, 6, or s.

• 0 (shut-down)

• 1 (single user mode)

• 2–5 (locally defined)

• 6 (reboot)

• s (single user mode)

insmod

The insmod command is used to insert a kernel module for a modular kernel.
insmod may be issued only as root. It takes the syntax

insmod <module name>

For example, the command

insmod 3c509

loads the driver module for the 3Com 3c509 network card into the kernel.

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 778

779

kill

The kill command is used to send a signal to an active process. kill takes the
syntax

kill [-s <signal>] <process ID>

kill can take a number of signal numbers as arguments to the -s flag. If no sig-
nal is specified, SIGTERM (signal 15) is used.

A complete list of valid kill signals can be seen by issuing the command

kill -l

less

Use the less command to view a specified file in page-sized chunks. less takes
the syntax

less <filename>

Use the spacebar to advance to the next page, and the b key to view the previous
page.

ln

The ln command creates a link to a specified file; the link can be either a hard link
or a symbolic link. ln takes the syntax

ln [options] <linked-to file> <name of link>

Options for ln include

• -s (Creates a symbolic link)

• -b (Makes a backup file of the linked file in addition to creating the link)

• -v (Produces verbose output, listing the name of the file before making
the link)

locate

The locate command is used to find the path to a specified program on the hard
drive. locate uses the syntax

locate [filename]

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 779

780

logout

The logout command is used to end a user’s session. logout is simply issued as
a single command at the shell prompt:

logout

lpc

The lpc command is a line printer control program. lpc takes the syntax

lpc [command [arguments]]

Two important lpc commands are

• help (Prints a short description of each command)

• abort (Terminates an active spooling daemon)

lpc accepts various arguments, including

• all (Terminates all spools)

• printer (Terminates a particular spool)

• clean (Removes temporary files and data from spool directories)

• disable (Turns a spool off)

• down (Turns a spool off and prints a message saying that the spool is off)

• message (Message to be printed)

• enable (Turns a spool on)

• exit (Quits lpc)

• quit (Same as exit)

• start (Starts a print queue and spooling daemon for the designated printer)

• restart (Turns the designated queue off and on again)

lpq

The lpq command is used to view queued jobs in a print spool. lpq takes the
syntax

lpq [-l] [-P<printer>] [<job number>] [<user>]

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 780

781

The main lpq option is the –l flag, which generates an extended format display
for output.

For example, the command

lpq -l –Plp

will generate a long format view of information for all jobs in the queue for
printer lp. The command

lpq pete

will display one-line information for all queued print jobs owned by user pete.

lpr

The lpr command is used to send a job to a print spool. lpr takes the syntax

lpr [options] [<file>]

Two common lpr options are

• -P<printer> (Specifies a printer name)

• -#<number> (Prints a specified number of copies)

For example, to send the file foo.txt to the print spool for printer lp, you
would issue the command

lpr -Plp foo.txt

To send the same file to the same print spool, but to print three copies, you would
issue the command

lpr -Plp -#3 foo.txt

lprm

The lprm command removes a job from a line printer’s spool. lprm takes the syntax

lprm [-P<printer>] [-] [<job number>] [<user>]

For example, to remove all jobs owned by user harry from the printer lp’s spool,
you would issue the command

lprm -Plp – harry

To remove job number 13 from the spool for printer lp, you would issue the
command

lprm -Plp 13

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 781

782

TIP Job numbers for specific jobs can be obtained from the output of the lpq
command.

ls

The ls command produces output that lists the contents of a directory. ls takes
the syntax

ls [options] [directory]

If no directory is specified, ls lists the contents of the current directory. Options
for ls include

• -l (Lists directory contents in long format, giving additional information
about file size and other file characteristics)

• -a (Lists all files in the directory, including those that begin with a
leading dot)

• -i (Lists files showing their inode, or disk index, numbers)

• -R (Lists all subdirectories of the current directory and all files within those
subdirectories)

• -t (Lists directory contents sorted by the time of the last modification to
the file)

make

The make command is used in installing new software. It is a front end to the C
compiler and linker. make takes the syntax

make [options]

The various options available for make are defined in the Makefile. Common
options include dep, which causes dependencies to be configured, and install,
which causes the binary file(s) to be placed in the appropriate directory.

man

The man command displays the manual page for a specified command or pro-
gram. man uses the syntax

man [options] <name of command or program>

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 782

783

Options for man include

• -p (Specifies the pager to use with the manual page; the default is less)

• -a (Finds all manual pages that match the string <name>)

• -h (Prints a one-line help message and exits man)

• -K (Searches for <name> in the text of all manual pages, as well as in the title)

mkdir

The mkdir command creates a new directory with the specified name, using the
syntax

mkdir <directory name>

mke2fs

The mke2fs command is a Linux utility that creates an ext2 (Linux native format)
filesystem and formats a specified filesystem or partition. mke2fs takes the syntax

mke2fs [options] <device>

Options for mke2fs include

• -b (Specifies block size in bytes; valid block sizes are 1024, 2048, and 4096
bytes per block)

• -c (Checks for bad blocks while formatting)

• -n (Dry run: doesn’t actually create the filesystem, but reports what it
would have done if it did)

• -v (Runs in verbose mode)

more

more shows the specified file in page-size chunks, using the syntax

more <filename>

Use the spacebar to move forward one page in the file.

mount

The mount command is used to mount a filesystem and make the data on that
device available for use. mount uses the syntax

mount -t <fs type> <device> <mount point>

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 783

784

The arguments to mount are

• <fs type> (The type of filesystem to be mounted; e.g., ext2, msdos, iso9660)

• <device> (The path name of the filesystem to be mounted; e.g., /dev/hda3
in the case of a physical drive or remote:/usr/local in the case of a net-
work filesystem)

• <mount point> (The name of an existing but empty local directory; e.g.,
/mnt/floppy)

mv

The mv command is used to move a specified file to a new location and uses the
syntax

mv <old> <new>

The entry <old> is the filename of the file that will be moved to the location spec-
ified in <new>. If <new> is a filename, the file is renamed. If <new> is a directory
name, the file is moved to the new directory with the same filename.

netstat

The netstat command displays the status of various network functions. netstat
uses the syntax

netstat [options]

If the command is issued without an option, netstat displays all open network
sockets. Other options for netstat include

• -e (Reports the user ID of each socket user)

• -r (Displays the complete routing table)

passwd

The passwd command is used to change the login password for a given account.
passwd uses the syntax

passwd [<user>]

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 784

785

If issued as root, passwd can be used to change any user’s password or user infor-
mation. If not logged in as root, you can use passwd to change only your own
password or user information.

ping

The ping command tests network connections; it sends small packets of data to a
specified remote machine and reports the time taken for the packets to return.
ping uses the syntax

ping [options] <remote machine>

Options for ping include

• -c (Specifies the number of data packets to be sent. If you do not use this,
ping continues to send packets until you press Ctrl+c to stop.)

• -i (Specifies the number of seconds to wait between each packet; the
default is 10 seconds.)

ps

The ps command produces output showing a list of all current processes, the
amount of time they have been running, and the amount of CPU time they con-
sume. ps uses the syntax

ps [options]

Options for ps include

• -a (Shows all processes running on the computer, including those of other
users)

• -x (Includes processes without a controlling terminal: that is, background
processes that were not manually started by you or another user)

• -u (Displays all processes sorted by user ID)

pwd

The pwd command prints the full path of the current directory. Issue the command

pwd

at a shell prompt to learn where you are in the filesystem.

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 785

786

read

The read command instructs the computer to take input from the standard input
(usually the keyboard). read uses the syntax

read $VAR

NOTE This command is used in script programming. The construction read $VAR will
take a line from the standard input and assign it to variable $VAR.

rm

The rm command is used to delete a specified file. rm takes the syntax

rm [options] <filename>

Options for rm include

• -i (Interactive mode, requesting confirmation for each file to be deleted)

WARNING Use the -i flag with rm. It prevents files from being deleted inadvertently, espe-
cially if you use the wildcard *. For example, the command rm conf* will remove
all files beginning with the characters conf, whether you intended to remove all
those files or not. Using -i forces you to approve each file’s deletion, and you can
stop the deletion process before you lose critical files.

• -r (Recursive mode, deleting all subdirectories of the current directory as
well as the files they contain)

• -f (Force mode, ignoring all warnings that rm issues to itself)

WARNING The -r and -f flags are often combined, as in the command rm -rf <file-
name>, as a shortcut to remove entire filesystems. This should be done only with
extreme caution, however, especially when root. The command rm -rf *.* will
remove every single file from your filesystem. Do not do this.

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 786

787

rmdir

The rmdir command deletes the specified directory. rmdir uses the syntax

rmdir <directory name>

If you issue an rmdir command for a directory that is not empty, rmdir prints an
error message and exits.

route

The route command is used to view or manipulate the IP routing table. route
takes the syntax

route [options] <target>

Options for route include

• -v (Verbose mode)

• -n (Shows numerical addresses instead of host names [useful if you can’t
get to your DNS server])

• add (Adds a route)

• del (Deletes a route)

• -net (Specifies target is a network)

• -host (Specifies target is a host)

• netmask (Specifies netmask to be used if target is a network)

• default (Makes this route the default, to be used if no other route matches)

• gw (Routes packets through a gateway. The gateway can be an interface or a
host. If the interface is a host, this option is normally used in conjunction
with the default option. [See examples below.])

For example, if you wish to add a static route to the host designated by the IP
number 192.168.0.1, you would issue the command

route add -host 192.168.0.1

To send all traffic to the network that uses the addresses 192.168.0.1 through
192.168.0.255 through the eth1 interface, you would issue the command

route add -net 192.168.0.0 dev eth1

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 787

788

If you wish all network traffic not matching other routes to be sent through the
eth0 interface, issue the command

route add default eth0

To send all network traffic, not matching other routes, through the gateway
machine numbered 192.168.0.1, issue the command

route add default gw 192.168.0.1

rsync

The rsync command is used to synchronize files or directories across a network.
rsync uses the syntax

rsync [options] <source> <destination>

There are several options for the rsync command:

• -e (Used to choose method of transport [rsh or ssh]; the default is rsh)

• -a (Archive mode; preserves all file attributes)

• -r (Recursive mode; copies files in all subdirectories)

• -u (Update mode; copies over files only if the source file’s timestamp is
more recent than the destination’s)

• -R (Specifies the use of relative path names)

• -v (Verbose mode)

• -b (Backup mode; makes backups of old files before overwriting)

• -n (Dry run; shows what would have been transferred, but doesn’t actually
do the transferring)

• -z (Compresses data for transfer [good for slow connections])

• ——delete (Deletes files on the receiving side that don’t exist on the sending
side)

• ——exclude (Excludes a subdirectory from the recursive transfer)

For example, if you want to transfer the file /foo/bar from the local machine to
a remote machine using the rsh protocol, you would issue the command

rsync /foo/bar remote:/foo/bar

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 788

789

To perform the same action, but use the SSH protocol instead, you’d use the
command

rsync -e ssh /foo/bar remote:/foo/bar

To copy the contents of the local directory /foo, and all of its subdirectories, to
the remote directory /foo, you would issue this command:

rsync -e ssh -ruv /foo/ remote:/foo/

Note that, if a file on the receiving machine is newer than the corresponding file
on the sending machine, the file is not copied. rsync will use verbose mode.

To perform the same action without copying the subdirectory /foo/bar, use
this command:

rsync -e ssh -ruv /foo/ remote:/foo/ ——exclude bar/

set

The set command displays a list of environment variables with their current
values. Issue the command

set

at a shell prompt to see the output.

setenv

The setenv command is used to change an environment variable under the C
Shell. setenv uses the syntax

setenv(VAR=<value>)

sh

The sh command invokes the Bourne Shell. sh takes the syntax

sh [<command>]

The sh command starts a Bourne Shell interpreter. If a command is given as an
argument, the command (usually the name of a script) is run in the Bourne Shell
environment.

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 789

790

shutdown

The shutdown command halts all processes and shuts down the computer.
shutdown uses the syntax

shutdown [options] <time> [<warning message>]

There are several components to the shutdown command:

• <time> (The time until the machine shuts down. It has three options: now;
+<m>, where <m> is the number of minutes to wait before shutting down;
and <hh>:<mm>, which is the time at which shut-down will commence in
hours and minutes.)

• <warning message> (A message to be sent to all users alerting them of
impending shut-down)

shutdown options include

• -h (Causes shutdown to halt or stop the system)

• -r (Causes the computer to reboot, instead of turning off)

The most common shutdown command is

shutdown -h now

sort

The sort command is used to sort items in a file, either numerically or alphabeti-
cally. It then prints the sorted output to the screen. sort uses the syntax

sort <filename>

ssh

The ssh command invokes a secure shell, which is a secure replacement for rsh,
rcp, rlogin, and other remote-shell commands. ssh takes the syntax

ssh [-l <login name>] [hostname] [command]

NOTE ssh provides encrypted data connections either for interactive logins or for run-
ning commands on a remote system. At its most basic, ssh can be used as a
replacement for telnet. ssh can, however, be made to perform extremely com-
plex behaviors such as port forwarding and virtual private networking. Excellent
documentation is available on the World Wide Web. You might also want to
investigate the scp program, which is a secure replacement for the FTP protocol.

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 790

791

startx

The startx command is used to start the X Window System. startx is simply
invoked at the command line as

startx

Although command-line arguments to startx do exist, these parameters are bet-
ter configured using the .xinitrc file.

su

The su command is used to change user identities. It is primarily used by admin-
istrators to access superuser powers or maintain a particular user account. su
takes the syntax

su [-] [<username>]

If the - character is used, the new user identity’s environment variables will be
used. If the – character is not used, you will be in the new user’s account, but
using your own environment variables.

Use su to issue root commands with the syntax

su -c <command>

This construction allows you to issue a command as root without having to leave
your user account.

tar

The tar command creates or extracts an archive file, often referred to as a tarball.
tar is issued with the syntax

tar [options] <file 1> <file 2>... <file N>

or

tar [options] <directory 1> <directory 2>... <dir. N>

Options for tar do not use the hyphen, as most other flags do. Options include

• c (Creates an archive from the specified files)

• x (Extracts the files from the specified archive)

• f (Compresses the specified file)

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 791

792

• z (Decompresses the specified file, using the gunzip protocol)

• v (Verbose output)

test

The test command is used to evaluate a specified condition. test uses the syntax

test <condition>

or

[<condition>] (Square brackets interpreted literally here)

or

test [options] <target>

Options for test include

• -e (File exists.)

• -f (File exists and is a regular file.)

• -d (Target exists and is a directory.)

• -s (File exists and is not empty.)

The test command will return “true” (0) if the expression being tested is
true. Expressions may be of the following forms:

• test ($VAR = “hello”), in which the variable $VAR is equal to the string
“hello”

• test ($VAR -eq 3), in which the variable $VAR is equal to integer 3

• [$VAR -eq 3], in which the variable $VAR is equal to integer 3

• test -e /var/run/myPID, in which the file /var/run/myPID exists

• [-e /var/run.myPID], in which the file /var/run/myPID exists

top

The top command is used to display the table of processes. top takes the syntax

top [options]

Options for top include

• d (Specifies the interval between updates)

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 792

793

• p (Displays only the process with this PID. This option can be given up to 20
times to create abridged process tables.)

• q (Causes top to refresh without any delay. Be careful with this option,
because this can really eat up CPU time.)

• i (Ignores idle or zombie processes)

TIP top can also use a number of interactive commands. A description of those com-
mands can be seen by typing h while top is running.

touch

The touch command updates the timestamp on a specified file. touch uses the
syntax

touch <filename>

If the filename given does not match an existing file, touch creates an empty
file with that filename.

traceroute

The traceroute command locates the route that packets travel from one host to
another. traceroute uses the syntax

traceroute [options] <remote machine>

Options for traceroute include

• -n (Displays IP numbers of only machines, not hostnames)

• -w (Sets the time [in seconds] that traceroute will wait for a response
before timing out)

ulimit

The ulimit command controls the resources available to processes started by the
shell environment. ulimit uses the syntax

ulimit [options [limit]]

Options for ulimit include

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 793

794

• -S (Sets and uses the soft resource limit, which sends a warning if a process
goes over the specified limit)

• -H (Sets and uses the hard resource limit, which will not permit a process to
go over the specified limit)

• -a (Reports all current limits to the screen)

• -c (Sets the maximum size of core files)

• -d (Sets the maximum size of a process’s data segment)

• -t (Sets the maximum amount of CPU time, in seconds, that a process
can use)

• -f (Sets the maximum size of files created by the shell)

• -p (Sets the pipe buffer size)

• -n (Sets the maximum number of open file descriptors)

• -u (Sets the maximum number of user processes)

• -v (Sets the size of virtual memory)

umask

The umask command is used to set default permissions for any newly created file.
umask takes the syntax

umask [-S] [<mode>]

If you use the –S option, the command will show the current file creation mask.

NOTE The mode can be either an octal number or a symbolic string like that used for the
chmod command.

umount

The umount command is used to unmount a filesystem. umount uses the syntax

umount [options] <filesystem>

The <filesystem> component can be a device name, such as /dev/hda1, or a
directory name, such as /usr/local.

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 794

795

umount can also be used to unmount every filesystem listed in /etc/mtab at the
same time with the -a flag, as in

umount -a

useradd

The useradd command (may be called adduser on some systems) is used to cre-
ate a new user account. useradd takes the syntax

useradd [options] <username>

Options for useradd include

• -c (Adds a comment)

• -d (Specifies the user’s home directory)

• -e (Specifies the date the account expires)

• -p (Specifies the user’s initial password)

• -s (Specifies the user’s default shell)

• -u (Specifies the user’s user ID)

For example, if you wish to create an account for the user harry, using the
default values listed in the file /etc/default/useradd, you would issue the
command

useradd harry

To create an account for harry where his user ID number will be 501, issue the
command

useradd -u 501 harry

To create an account for harry where his user ID number will be 501 and his
default shell will be the tcsh shell, issue the command

useradd -u 501 -s /bin/tcsh harry

userdel

The userdel command (called deluser on some systems) is used to delete a user
account. userdel takes the syntax

userdel [-r] <username>

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 795

796

The most common option for userdel is the –r flag, which deletes the user’s
account and all files in the user’s home directory.

w

The w command shows a list of users currently logged into system. w takes the
syntax

w [options]

Options for w include

• -h (Specifies to not print header information)

• -s (Short format)

• <user> (Shows information about the specified user only)

wc

The wc command counts the number of words in a specified file. wc uses the syntax

wc [options] <filename>

Options for wc include

• -c (Counts the characters [bytes] of the file instead of the words)

• -l (Counts lines in the file instead of words)

• -L (Prints the length of the longest line)

whereis

The whereis command finds a file or program on the hard disk. whereis uses the
syntax

whereis [options] <filename>

Options for whereis include

• -b (Searches only for binaries with the given filename)

• -m (Searches only for manual pages with the given filename)

• -s (Searches only for source code packages with the given filename)

Appendix A • Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 796

797

which

The which command finds a given program on the hard disk. which uses the
syntax

which [options] <programname>

If you issue the command with the –a flag, which will find all matching exe-
cutables in the list of directories specified in the PATH environment variable.

Common Unix Commands

2817ca.qxd 11/14/00 11:00 AM Page 797

This page intentionally left blank

A P P E N D I X

B

Documentation and Resources

� Introducing Unix

� Getting Started

� Unix Desktop Environments

� Using the Shell

� Using Text Editors

� Shell Programming

� Basic System Administration

� Network Administration

� Administering Services

� On the CD

B

2817cb.qxd 11/14/00 11:21 AM Page 799

800

This appendix contains a selective set of Web resources that expand on infor-
mation presented in this book. Although we did not set out to create an exhaus-
tive reference to Unix Web sites, we did choose some sites that had a similar goal,
so you’ll find a few listings in here that are essentially link collections. Other list-
ings are targeted to a specific issue or problem, while many others are official
pages for individual programs or projects.

NOTE As with any Internet resource, these sites may be under construction, down, or no
longer maintained. We do not verify the accuracy of the information presented,
though we’ve picked sites we feel to be reputable.

We have covered only Web resources; there are many mailing lists and news-
groups that cover much of the same material, often with a faster turnaround.
However, it’s easier to locate specific material on the Web, and Web information
is thus more reliable when printed in an actual paper book. We are voracious
readers of mailing lists and newsgroups, however, and encourage you to seek
out those resources as well.

Introducing Unix
In Part I: “Introducing Unix,” we offered a brief history of the Unix operating sys-
tem, introduced a number of Unix variants, and explained the concepts of Free
Software and Open Source. We also provided a basic tutorial for beginning Unix
users. In this section of the appendix, we list some Web resources that will give
you more in-depth explanations of these concepts.

History of Unix
As we explained in Chapters 1 and 2: “History and Background of Unix” and
“Which Unix?” we think it’s important for Unix users to understand the history
behind the operating system. Here are a few links that offer different perspectives
on Unix’s development.

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 800

801

http://www.uwsg.iu.edu/usail/library/history.html

This site offers links to a small selection of Unix history documents. Most of the
Unix history information on the Web is found in repeated copies of the docu-
ments linked here; we provide this URL because it gathers all of these frequently
found pages at one location.

http://www.cs.bgu.ac.il/~omri/Humor/unix-history.html

Okay, maybe it didn’t happen exactly like this. This page is a humorous retelling
of the Unix saga, which is quite amusing if you know what really happened. Just
don’t rely on this as the Official Story.

http://www.rs6000.ibm.com/resource/unix_history.html

This is IBM’s interpretation of the early Unix years. Because IBM was intimately
involved in the development of Unix, it’s interesting to see their take on the project.

Unix Variants
We covered three major Unix variants in this book, all of which run on the x86
personal-computer processor chip and are available at no cost (or a low charge
for nondownloaded versions). Other commercial variants are covered in Appen-
dix C: “Other Types Of Unix.” Here are links to the most major sites for the
Unices covered in this book.

http://www.linux.org

Linux Online is an excellent place to start learning about Linux. Although there is
an immense amount of documentation and information available on this site,
there are also well-managed sets of links and download information. The site also
offers its own editorial content.

http://www.freebsd.org

The home site for the FreeBSD project offers downloads and documentation, of
course, but also has a great set of external links and a robust bug inventory. You
can find information here on user groups, mailing lists, and other FreeBSD com-
munity initiatives, as well.

Introducing Unix

2817cb.qxd 11/14/00 11:21 AM Page 801

802

http://www.sun.com/solaris/index.html

Because it’s a commercial venture, Sun Solaris’s Web page is clearly different
from the Linux and FreeBSD sites listed above. However, you’ll find much of the
same material available here: documentation, external links, and media refer-
ences. Source code is free to download, but (as with Linux and FreeBSD) if you
want Solaris on CD-ROM, you’ll have to pay. You can also purchase a service con-
tract directly from Sun if you like.

Free Software and Open Source
Probably the most significant philosophical issue in the Unix world today is that
of Free and Open Source software. We explained some of the reasoning behind
this movement in Chapter 2: “Which Unix?” Here are some Web sites that contain
the original documents sparking the discussion, as well as up-to-date news and
information.

http://www.gnu.org

Home of both the Free Software Foundation and the GNU project, this site han-
dles the ideological and philosophical side of Free Software as well as the soft-
ware itself. Here you’ll find documentation and downloads for all GNU software,
as well as a bit of humor and some other interesting stuff. At the Free Software
Foundation page (http://www.fsf.org/fsf/fsf.html), you’ll find information
on how to support the group if you so desire.

http://www.opensource.org/

This site is more information-oriented than the GNU site. You can find a series
of articles designed to encourage the use of Open Source software, as well as a
plethora of information to help the media report on Open Source issues more
accurately. The site also offers a FAQ and a set of links to other Open Source/
Free Software sites.

http://www.tuxedo.org/~esr/writings/

This site contains links to all of Eric Raymond’s writings. The reason we’ve listed
the site is that this is where you’ll find the highly influential triad of articles that
kicked off the Open Source movement: “The Cathedral and the Bazaar,” “Home-
steading the Noosphere,” and “The Magic Cauldron.”

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 802

803

http://www.salon.com/tech/fsp/index.html

Andrew Leonard is writing a book about Free Software, and it’s being serialized
at Salon. Leonard is interested in people and culture as well as in technology, and
he has a good grasp of what makes Unix/Linux/BSD folks tick. We encourage
you to check this site often, because all of Salon’s Open Source coverage is linked
here in addition to Leonard’s book.

Getting Started
In Chapter 3: “Some Basic Unix Concepts” and Part II: “Getting Started,” we cov-
ered the ground-level information necessary to use a Unix system. If you need
more review at the basic level, here are some links that might help.

http://www.linuxnewbie.org

Despite its name, this site isn’t solely for Linux newbies. Much of the information
here can be translated to other Unix variants. One of the most useful things on the
site is the “newbie-ized” help files; for those who find man pages and HOWTO
documents a bit too confusing because they assume too much prior knowledge,
these files might be the perfect answer.

http://lithos.gat.com/docview/unix-5.html

New to shell commands? Do you have users who need a really basic primer on
shell use? Check out Unix Tips for Your Mom. It’s not rocket science, but it is a useful
thing to print out and leave near the keyboard of any new Unix user. (Disclaimer:
We know moms—and dads—who could kick our butts at anything Unix-y.)

Unix Desktop Environments
In Part III: “Unix Desktop Environments,” we addressed the concept of the X Win-
dow System and the various programs developed to take advantage of X and bring
a windowed, graphic interface to the Unix computer. These links will provide addi-
tional information about X itself, and about the window managers and integrated
desktops that rely on X to run.

Unix Desktop Environments

2817cb.qxd 11/14/00 11:21 AM Page 803

804

X Window System
The X Window System is mind-bogglingly complex, and you won’t learn every-
thing you need to know from Chapters 6 and 7: “The X Window System: An
Overview” and “Advanced X Techniques.” You won’t even learn everything
from the Web, despite the vast amount of information out there. Still, there are
some good resources for X information, and we’ve listed a few of them here.

http://www.x.org

This is the home site for the X Consortium, the group that develops and maintains
the standard for the X Window System. There’s not a lot of basic help-oriented
information here, but you will certainly get a better understanding of what the X
Consortium does and how large the project really is, as well as an understanding
of the future of graphics on Unix and Unix-derived platforms.

http://www.xfree86.org

Throughout the book, we stressed the Unix variants that run on personal-computer
chips as well as on larger architectures. If you’re running an x86 processor, you’re
probably using the XFree86 implementation of the X Window System. At this site,
you’ll find a useful FAQ and detailed information on how XFree86 works with spe-
cific chip architectures.

http://www.rahul.net/kenton/xsites.framed.html

As we said at the beginning of this section, there is a lot of X information on the
Web. Thank goodness for Kenton Lee, who has compiled a definitive list of X Web
resources from the most basic FAQ to specification documents for developers.

http://www.apl.jhu.edu/~larry/unix/unixdocs/xwindows/customx.html

When you’re ready to start customizing your X Window System installation, this
is the place to start. (Warning: You really need to know what you’re doing before
you tackle X configuration.) The document provides specific information on edit-
ing X configuration files, as well as hints on recovering from a failed customiza-
tion. (Those of you running the twm window manager may find the “Customizing
twm” section to be of interest.)

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 804

805

Window Managers
As we explained in Chapter 8: “Window Managers,” X offers the ability to run
multiple sessions in a graphic environment. There are a variety of Unix window
managers available; here are some resources for the managers we described in
Chapter 8.

http://www.uwo.ca/its/doc/hdi/x11/x4-twm.html

Although designed for staff and students at the University of Western Ontario,
this site offers the best tutorial we’ve seen for twm. Learn how to use twm most
effectively, configure its appearance, and perform useful tasks.

http://www.fvwm.org/

The home of the FVWM project, this site offers documentation and downloads, as
well as new buttons not included in the current release, icons, and sounds. You
can report a bug or look through the bug archive, or subscribe to an fvwm mailing
list.

http://icewm.sourceforge.net/

IceWM’s page offers downloads and documentation, as well as links to other
sites that offer Ice-friendly items. Note that IceWM will run KDE and Gnome
themes, even though IceWM is not an integrated desktop. The site also provides
tips on configuring IceWM to resemble other window managers or the KDE
desktop.

http://blackbox.alug.org/

As with other project home sites, the BlackBox site offers downloads and docu-
mentation. It also offers new tools and themes, as well as information on integrat-
ing KDE and BlackBox to work together smoothly. There are archives for
mailing-list posts, previous releases, and screenshots from those releases.

http://www.windowmaker.org/

Unix Desktop Environments

2817cb.qxd 11/14/00 11:21 AM Page 805

806

The WindowMaker site offers updates, downloads, news items, and documenta-
tion. Now that WindowMaker is part of the GNU project, you can expect the
same level of detail in its documents as other GNU pages provide.

http://www.afterstep.org/

The AfterStep home is a sophisticated site with a great amount of information. Of
course, there are downloads and documentation, as well as bug fixes, source
code, and themes.

http://www.enlightenment.org/

The Enlightenment site offers downloads, patches, documentation, screenshots,
and all the other features of a good project site. Enlightenment’s news reports are
updated less frequently than other window manager sites, but work does con-
tinue on the window manager itself.

KDE
We covered KDE, the K Desktop Environment, in Chapter 9: “KDE.” Two major
resources for KDE information are listed here. You should be able to find links
to updated and useful information from the main KDE project page, because it
is updated frequently.

http://www.kde.org

This is the home site for the KDE project. As with other project sites, it contains
downloads and documentation. It also has a well-maintained news section and a
wide variety of KDE programs that were contributed by volunteers. One of the
best features about the site is that it’s translated into many languages, and not just
the standard French and German translations one usually sees. Check here first
for new releases and information.

http://kde.themes.org

This is the KDE-specific section of themes.org, which houses themes for a wide
variety of Unix desktop and window manager programs. At the time we wrote
this chapter, there were nearly 225 KDE themes available, as well as instructions
for creating your own KDE themes (which you can upload to themes.org if you
want to share them).

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 806

807

Gnome
We covered Gnome in Chapter 10: “Gnome.” As with KDE, the main Gnome site
is a good way to find updated links and information.

http://www.gnome.org

The home site for Gnome offers downloads and documentation. It also has a fre-
quently updated news section, and places the most recent stories and newest soft-
ware offerings on the front page of the site. You can download programs that
aren’t part of the official Gnome release, as well as obtain patches and upgrades.

http://gtk.themes.org/

As with KDE, themes.org has a special section for Gnome desktop themes. At
the time we wrote this, there were 261 themes available for Gnome. Note that
KDE 2 and higher should be able to use these themes as well, because the new
release has support for The Gimp ToolKit widgets.

Using the Shell
As we explained in Part IV: “Using the Shell,” we’ve focused on the bash shell in
this book. However, other shells are available that may suit your needs more eas-
ily. The link below offers a good comparison between various Unix shells, and the
remainder of this section contains links both for bash and for the shells covered in
Chapter 15: “Other Shells.”

http://pluto.phys.nwu.edu/~zhaoyj/learn/Unix-system/ch13.htm

This page offers to help you decide “Which Unix Shell Is Best for You?” by com-
paring the features and drawbacks of seven popular shells. If you’re completely
confused by the plethora of choices available to you for shell environments, we
suggest that you read through this article and take some of its comments to heart.
(Then, of course, we recommend that you choose bash until you’re comfortable
with shells in general, but the author of this article makes some good points in
favor of other shells.)

Using the Shell

2817cb.qxd 11/14/00 11:21 AM Page 807

808

bash
Although there’s quite a bit about bash on the Web, you really need only two
documents to start with. The bash manual and the bash FAQ are excellent com-
plements that should give you a good start on any solution.

http://www.gnu.org/manual/bash-2.02/html_chapter/bashref_toc.html

This is the bash manual, direct from the GNU project. If you have a question
about bash, it’s probably answered here. Some people find this document to be a
bit on the technical and dry side, but it’s pretty easy to figure out once you get
used to the style.

http://www.faqs.org/faqs/unix-faq/shell/bash/

If you couldn’t find answers to your questions in the bash manual, try the bash
FAQ. It’s thorough, and used in conjunction with the bash manual, it ought to
help you solve almost any bash problem you have.

http://cnswww.cns.cwru.edu/~chet/bash/bashtop.html

An additional bash resource, the Bash Home Page contains links to the FAQ and
manual listed above, as well as various other documents relating to the effective
use of bash.

Other Shells
If you don’t want to use bash, or you are interested in the other shells and their
individual features, try these resources to learn more about the shells covered in
Chapter 15. These links are mostly to the shell’s manual pages; luckily, they’re all
written rather well and are thus comprehensible.

http://cres.anu.edu.au/manuals/korn.html

This is the basic Korn Shell manual. ksh is quite popular, but works just differ-
ently enough from bash that a good reference is necessary.

http://terra.rice.edu/unix.web/geo.csh.html

The manual for the C Shell. If you’re familiar with the C programming language,
you’ll probably find this familiar.

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 808

809

http://www.frognet.net/help/manpages/docs/tcsh.html

Another manual page, this is for the tcsh shell. This page has the same layout as
the other manual pages, which makes comparison between shells simpler.

http://www.zsh.org/

The Z Shell project has its own site, but it’s limited to a list of mirror sites. Once
you select the mirror closest to you, you’ll be sent to an FTP archive. The archive
contains downloads and FAQs, but in the regular FTP format. Use your Web
browser if you want to view the files with the least amount of hassle.

http://www.focusresearch.com/gregor/psh/

The Perl Shell’s page offers downloads and change logs, as well as a link to the
psh mailing lists. Because psh is so new, there is relatively little here. We don’t
recommend psh as a primary shell yet, but it’s fun to have around for a change
of pace.

Using Text Editors
In Part V: “Using Text Editors,” we reviewed some of the most popular text edi-
tors available for Unix. In this section of the appendix, you’ll find links to
resources for ed, vi, and GNU Emacs, as well as links for additional text and
graphical editors covered in Part V.

ed
Chapter 16: “The ed Editor,” addressed the simple line editor ed. There are rela-
tively few Web resources for this editor, but the following two links ought to
answer most of your ed questions.

http://www.sao.nrc.ca/imsb/rcsg/documents/basic/node119.html

This document, part of a more comprehensive treatment of Unix, provides some
basic ed commands and offers hints on performing routine tasks with the editor.

Using Text Editors

2817cb.qxd 11/14/00 11:21 AM Page 809

810

http://www.neosoft.com/neosoft/man/ed.1.html

The official ed manual pages are a bit more comprehensive than the previous
source, though not by much—ed itself isn’t that complicated. Use the manual to
learn all the things that ed can do, because everything it’s capable of is included
in the manual.

vi
In Chapter 17: “The vi Editor,” we introduced the vi text editor and showed you
how to create and edit text with its arcane commands. Here are a few links to
expand your knowledge of this popular, though often challenging, text editor.

http://www.smu.edu/smunet/docs/vi/vi_faq1.html

This document is the vi FAQ, which offers help for vi beginners and advanced
users. It also explains some shortcuts and tricks, and offers some fun activities as
well as noting known bugs.

http://www.thomer.com/thomer/vi/vi.html

Thomer Gil has created the vi Lovers’ Home Page, which is a paean to all things
vi. He has documentation, a comprehensive set of vi links, macros, and tutorials.
If you’re wondering about whether you should use vi, Thomer may convince
you to do so.

GNU Emacs
Chapter 18: “GNU Emacs” was an introduction to this complicated and polariz-
ing text editor: You’ll either love it or hate it. Here are some resources that will
provide additional information and assistance.

http://www.gnu.org/software/emacs/emacs.html

The official GNU site for GNU Emacs, this document contains basic help informa-
tion, installation help, and references to other sources of assistance. It also pro-
vides a bit of historical background for the package.

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 810

811

http://www.emacs.org/

This site in progress is basically a fan site for GNU Emacs. Currently, the site con-
tains downloadable packages, but there are plans to provide much more informa-
tion about the editor. Look in on this site from time to time; it has the potential to
be a useful part of Web emacs resources.

Other Text Editors
In Chapter 19: “pico, joe, and jed,” we covered three additional text editors that
have their own fan bases, despite having less popularity than the three editors
mentioned in the previous sections. Below are some additional resources for
these editors.

http://www.indiana.edu/~uitspubs/b103/

Although the frames seem like a bit of overkill for the amount of information con-
tained here, this is a useful site for basic pico information. The site explains com-
mon tasks, and offers some tips for more streamlined and effective use of the
pico editor. Ignore references to Indiana’s own machine networks.

http://www.rochester.edu/ATS/Documentation/joeeditor.html

Designed for employees and students in the University of Rochester library, this
is the most comprehensive introduction to joe that we’ve found on the Web. Use-
ful and straightforward explanations make using joe a piece of cake.

http://www.cs.cmu.edu/~jeliza/work/jed-intro.html

This site offers a quick reference card for jed commands, as well as a few tips on
configuring the editor. There’s not a lot of in-depth documentation here, but the
reference would be a useful thing to print and tape up somewhere near your
monitor if you use jed a lot.

Graphical Editors
The editors described so far in this section of the appendix have all been text
based. The next three links are for the graphical text editors covered in Chapter
20: “Graphical Text Editors.” These editors have most of the features of a text edi-
tor, but have the graphical interface familiar to users of word processors.

Using Text Editors

2817cb.qxd 11/14/00 11:21 AM Page 811

812

http://www.mit.edu/afs/sipb/project/gnome/doc/GXedit/manual.txt

This is the user’s guide for GXedit, the graphical text editor that is part of the
Gnome development project. It is a straightforward guide to GXedit’s features,
and pays special attention to encryption and scripting.

http://www.trylinuxsd.com/KDEtour/Applications/kedit/

If you’ve chosen KDE as your desktop, you’ll have KEdit as your default graphi-
cal text editor. This is the user’s guide for KEdit, which covers installation, the
menu system, and basic editor functions.

http://nedit.org/

If you read Chapter 20, you know that we really like NEdit. This is the NEdit pro-
ject’s home site, which contains downloads and documentation, as well as screen-
shots and troubleshooting assistance.

Shell Programming
Part VI: “Shell Programming” focused on this important skill. We explained shell
programming in the bash shell, though you can write shell scripts for any shell
environment. These resources will help you move into writing increasingly com-
plex scripts.

http://www.washington.edu/computing/unix/shell.html

This page is a simple introduction to the shell environment concept, with some
emphasis on how scripts operate within shells.

http://www.oase-shareware.org/shell/

Ah, SHELLdorado! Heiner has organized a marvelous resource for shell scripters,
including an archive of sample scripts, articles about scripts and shells, and a
variety of documentation. It’s easy to find what you need, and the information
presented here is all useful.

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 812

813

http://www.uwsg.iu.edu/edcert/session3/shell/

If you want to see what you’d learn about shell scripts in an actual university
Unix course, consult this page. The scripting sequence is part of a course devel-
oped to support the Unix System Administration Educational Certification, so
you know you’re getting information that you really need.

Basic System Administration
We covered basic system administration in Part VII: “Basic System Administra-
tion.” The resources listed here deal with much the same information, but pre-
sented slightly differently. We’ve found that, with system administration, repeated
bashing on the head is the best way to get the information ingrained in the brain.

http://www.uwsg.indiana.edu/usail/

Do you learn best following a self-paced course? Try this site from Indiana Uni-
versity, which is a comprehensive Unix system administration course. It covers
installation, routine tasks, dealing with services and peripherals, and other use-
ful topics.

http://www.washington.edu/R870/

Here’s another course site, this one from the University of Washington. These
notes are from an actual course taught by Dave Dittrich and contain sample prob-
lems for you to work through. The beauty of this course is that it’s based on real-
life system administration issues, not on some mythical system where nothing
ever goes wrong.

http://www.linuxdoc.org/LDP/lame/LAME/linux-admin-made-easy/
book1.html

If you’re running a Linux system, you shouldn’t be without Linux System
Administration Made Easy. This is a guide written for those who are contemplat-
ing becoming a Linux systems administrator or who find themselves in that
position. Although this guide is Linux specific, those running other Unix vari-
ants may find it helpful as well.

Basic System Administration

2817cb.qxd 11/14/00 11:21 AM Page 813

814

Network Administration
Once you internalized the information needed for basic system administration,
it was time to move to Part VIII: “Network Administration” to learn how to
handle multiple computers on one network. These resources are good places to
learn more.

http://www.ee.siue.edu/~bnoble/classes/anet/links.html

This is a great place to start. Brad Noble has pulled together a strong set of net-
work administration links, divided neatly into sections covering LAN adminis-
tration, security, scripting, and various online references.

http://www.dhcp-handbook.com/dhcp_faq.html

If you’re running DHCP, you’ll find this FAQ to be useful. It covers multiple
access topics, subnets, laptops, and other questions common to the new user of
DHCP.

http://www.linuxdoc.org/LDP/nag/nag.html

Although some of the information is out of date (it was last edited in 1996), the
Network Administrator’s Guide is an excellent resource for those interested in net-
working with Linux computers. The content is released under an Open Source
license; though you can purchase this book at almost any bookstore, the entire
book is also available online.

Heterogeneous Networks
A growing proportion of Unix networks include non-Unix machines. We covered
heterogeneous networks in Chapter 37: “Integrating Unix with Other Platforms.”
Whether you want to attach a Windows computer or a Macintosh to your net-
work, these resources can help.

http://www.samba.org

The main site for Samba information contains documentation, news stories,
archives of past announcements, and software downloads. If you’re interested
in networking between Unix and Windows machines, you need Samba.

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 814

815

http://www.umich.edu/~rsug/netatalk/

For those who want to integrate Macintoshes into a heterogeneous network,
there is netatalk, a Samba equivalent for MacOS that uses the Appletalk proto-
col to manage file and print sharing. This page offers a FAQ, a set of links, and
downloads.

http://www.rit.edu/~pcm6519/linux.html

If you have (or are planning to get) a cable modem and want to use it as a router
and print server for a heterogeneous network consisting of Linux and Windows
machines, check this site. It is written for Red Hat Linux users, but the general
philosophy should be applicable to other Unix variants.

Security
If you think it won’t happen to you, you might be right. However, if you think it
can’t happen to you, you’re wrong. We covered Unix security in Chapter 38: “Net-
work Security,” but things change so rapidly in this field that we encourage you to
make a regular habit of reading security-oriented Web pages.

http://www.alw.nih.gov/Security/Docs/network-security.html

This is a wonderful overview of Unix networks and how they should be pro-
tected against invasion or attack. The author concentrates on firewalls and gate-
ways, with some reference to other methods of control.

http://www.softpanorama.org/Security/sos.shtml

If you’re running Solaris, you need to check this site. The author links Solaris
security articles from across the Web and provides his own tips. His focus tends
to be on e-commerce, but it’s a useful site for anyone running Solaris.

http://securityportal.com/lasg/

Like the Network Administrator’s Guide described above, the Linux Administrator’s
Security Guide is an Open Source document that will help you install and run
Linux securely. It is routinely updated and includes information on a wide vari-
ety of Linux security topics.

Network Administration

2817cb.qxd 11/14/00 11:21 AM Page 815

816

http://www.cert.org/

Keep on top of what’s happening by reading the CERT page. CERT is the organi-
zation responsible for identifying security risks, such as e-mail viruses, known
exploitable software bugs, and other critical information. (You can also use the
CERT page to check out suspicious rumors that often end up to be hoaxes.)

Administering Services
In Part IX: “Administering Services,” we covered the basics of the common Unix
servers: electronic mail, World Wide Web, USENET, and remote access. This sec-
tion of the appendix contains links to official sites and other helpful Web pages
for the various servers and topics covered in Part IX.

Electronic Mail
The most basic server package is an electronic mail server. In Chapter 40: “Elec-
tronic Mail,” we provided an overview of several popular mail servers and
explained how e-mail works from a system administrator’s point of view. Here
you’ll find links to sites covering the mail servers we addressed in that chapter.

http://www.sendmail.org/

Maintained by the Sendmail Consortium, this site contains documentation and
downloads. You’ll find a lot of information on security here as well, in addition to
FAQs and installation/troubleshooting guides. Those of you running Sun Solaris
should read http://www.sendmail.org/sun-specific/ to see the latest infor-
mation on porting sendmail to the Solaris platform.

http://www.linuxdoc.org/LDP/nag/node198.html

This chapter of the Linux Network Administrator’s Guide (see above) focuses on the
installation and operation of smail. Configuration is covered as well. Although
smail is certainly not as popular as other mail servers, you can use the Network
Administrator’s Guide as a good resource should you choose to run smail.

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 816

817

http://cr.yp.to/qmail.html

This is the main site for the Qmail project. Here you’ll find links to site mirrors,
downloads, and documentation. There is also information on mailing lists and
other important resources for effective Qmail administration.

http://www.postfix.cs.uu.nl/start.html

The home site for Postfix contains links to documentation and downloads, as well
as information on Postfix-related mailing lists and mentions in the press. It also
offers links to general e-mail administration guides.

USENET News
It’s not uncommon for people to begin running their own Unix systems to run a
customized USENET newsfeed. We covered USENET administration in Chapter
41: “USENET News.” Here are links for INN information, as well as information
about USENET in general.

http://www.isc.org/products/INN/

This is the home site for the INN project, the robust news server described in
Chapter 41. Here you’ll find documentation and downloads, as well as a series of
links and update reports.

http://www.landfield.com/usenet/usenet.html

If you’re new to USENET, please read the FAQs and documents linked through
this site before you decide whether to run a news server (or even whether to par-
ticipate in USENET at all). USENET is an independent culture with its own his-
tory, and there are many pitfalls—as well as benefits—for those who choose to
run their own USENET servers instead of reading news from someone else’s
server.

World Wide Web
When it comes to solid Web server administration, the low-cost and secure solu-
tion is Apache. We covered Apache in detail in Chapter 42: “World Wide Web Ser-
vices.” Here are some sites that provide further information and assistance.

Administering Services

2817cb.qxd 11/14/00 11:21 AM Page 817

818

http://www.apache.org

This site is the best place to start, because it is the home of the Apache Software
Foundation. Here you’ll find downloads, documentation, a well-defined set of
external links, and updated news about Apache. You won’t find a great deal of
practical information for your individual problems, but this is a good site to
keep in mind for updates and new features.

http://www.irt.org/articles/js180/index.htm

Once you’ve installed Apache and familiarized yourself with its default appear-
ance, you may want to customize your server. This article offers some tricks and
more detailed information on Apache customization, taking the server’s modu-
larity as the jumping-off point for modification.

http://www.apache-ssl.org/

Interested in secure Web server technology? Check out the work of the Apache-
SSL project, which seeks to combine the flexibility of Apache with the Secure
Socket Layer technology that ensures private transfer of critical information.

Remote Access Services
In Chapter 43: “Remote Access (inet) Services,” we covered a variety of services
that you’d use to control remote access to your Unix computer. Below are several
links to sites that expand upon that chapter or provide additional information.

http://www.securityfocus.com/focus/sun/articles/inetd1.html

This is the first in a series of articles focusing on Sun Solaris’s implementation of
the inetd file. Recommended reading for Solaris users, and moderately interest-
ing for non-Solaris folks.

http://www.uwsg.iu.edu/security/inetd.html

This site offers tips on configuring inetd as securely as possible. The inetd file
can be the source of unexpected security breaches, so it’s wise to adopt the strat-
egy given here and use TCP wrappers as an additional layer of defense.

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 818

819

http://hoth.stsci.edu/man/man1/telnet.html

This page contains the man page for telnet. It’s primarily written for users, not
for system administrators, but it’s a good way to find obscure flags that will
streamline your telnet time. (Because telnet is a security risk, the less time
spent in a telnet session the better.)

http://www.employees.org/~satch/ssh/faq/ssh-faq.html

Here you’ll find the detailed and comprehensive FAQ for ssh, the Secure Shell
technology. The FAQ includes information on specifications, installation, trou-
bleshooting, and other common questions. As we noted in several places in the
book, we think ssh is the common-sense security solution for remote access and
recommend this FAQ as a good place to start learning about the concept.

http://www.ssh.org/

This page contains the latest details about the development of ssh. You can also
download the latest versions of the client and server software, and keep up with
the latest ssh news.

On the CD
Reference sites for most of the programs included on the CD can be found in pre-
vious sections of this appendix. This section contains documentation references
for programs on the CD that are not listed elsewhere.

http://gcc.gnu.org

This is the main site for the GNU gcc libraries. There are several documents
available here, including an installation FAQ. You can also download new ver-
sions or link back to the main GNU pages.

http://www.perl.org/

This site is the home of the Perl Mongers, a nonprofit advocacy group devoted
to the support and spread of the perl programming language. The site contains
links to documentation and downloads, mentions of perl in the media, and
other useful tools. You can also purchase perl-oriented clothing and other mer-
chandise to support the Perl Mongers’ goals.

On the CD

2817cb.qxd 11/14/00 11:21 AM Page 819

820

http://www.gimp.org/

At this site, home of The GIMP (GNU Image Manipulation Program), you can
find downloads, documentation, and a collection of images created in The GIMP.
There are also handy tutorials and a good set of external links.

Appendix B • Documentation and Resources

2817cb.qxd 11/14/00 11:21 AM Page 820

A P P E N D I X

C

Other Types of Unix

� AIX

� BSD

� HP-UX

� IRIX

� OSF/1

� SCO Unix

� SunOS

� System V

� Xenix

C

2817cc.qxd 11/14/00 11:21 AM Page 821

822

In this book, we focused on Unix variants that run on personal computers
using the x86 chip architecture. Even though these Unices have made some
inroads into the corporate and academic computing environments, they are still
not the norm. Many companies and academic institutions invested heavily in
mainframe Unix systems in the 1970s and 1980s, and continue to use those sys-
tems today. Given the immense financial investment in hardware and software
contracts, plus the cost of training employees on a new system, it is unlikely that
the mainframe Unices will disappear any time soon.

In this appendix, we introduce some of the other flavors of Unix. They are all
commercial Unices, meaning that you cannot download them or purchase them
cheaply (at a cost nearly equal to the cost of producing the disks). They are
designed for large installations, not for personal use. If you’re interested in run-
ning your own Unix computer, you probably won’t use one of these variants; if
you use Unix at work or at school, chances are pretty good that you’ll encounter
a Unix listed here at one time or another. Regardless of how you encounter
these Unices, however, you’ll find that most of the commands and concepts
introduced in this book will carry over to that variant. Unices are more similar
than they are different. Remember that you can always install programs that
you like in your own home directory, if the administrator does not want those
programs installed globally. They should work in the same way regardless of
where they are installed, with the exception of some compilers or servers.

NOTE Most Unices are variants of the two major Unix strains: System V and BSD.

AIX
AIX is IBM’s Unix, written to run on the RS/6000 systems that IBM markets.
(RS/6000 systems have been both mainframes and RISC systems.) AIX is based
on System V, but also uses some BSD components. Although commercial Unices
are somewhat similar (because of their common roots), AIX is considered to be a
bit different from the other Unices, possibly because of the blend of System V and
BSD, but also because of the tight integration between IBM hardware and the AIX
operating system.

Appendix C • Other Types of Unix

2817cc.qxd 11/14/00 11:21 AM Page 822

823

The current release of AIX is 4.3.3. IBM continues to develop and market AIX,
with a particular emphasis on e-commerce solutions. Due to IBM’s current empha-
sis on Linux-based solutions, AIX developers are beginning to integrate the Linux
system interface into AIX so that the same programs and processes can be run on
both platforms. In fact, the next generation of AIX will be called AIX 5L, with the L
signifying the close relationship between Linux and AIX.

Those using AIX will soon realize that it does not, by preference, use the reg-
ular sort of system programming that is common to other Unix variants (and
the sort described in this book). Rather, it uses a utility called SMIT (System
Management Interface Tool). SMIT provides a menu interface to the superuser.
From these menus, the superuser can select any administrative commands that
need to be given. SMIT builds up a series of commands as a script and then
runs the script, which is stored in the smit.script file. The actions are then
recorded in smit.log, which is analogous to the various logs kept in the
/var/log directory.

NOTE You can use regular system administration practices on an AIX system. However,
the authors of the AIX FAQ note that, “You can also do things the normal way,
but it is unfortunately difficult to know when the normal way works.”

http://www.ibm.com/servers/aix/

The home site for IBM AIX. Most of the information here is either marketing mate-
rial or links to commercial services, though IBM does link external, noncommer-
cial material such as the AIX FAQ.

http://www.faqs.org/faqs/aix-faq/

The AIX FAQ (Frequently Asked Questions) developed by posters to the comp.
unix.aix newsgroup. It covers installation, compilers, third-party products, and
other points of importance.

http://www.thp.uni-duisburg.de/cuaix/cuaix.html

An archive of posts to comp.unix.aix, covering a variety of topics relevant to
administering AIX systems.

AIX

2817cc.qxd 11/14/00 11:21 AM Page 823

824

BSD
BSD is one of the earliest forms of Unix, as we explained in Chapter 1: “History
and Background of Unix.” Originally developed by the University of California at
Berkeley, BSD is now controlled by a private company, BSDI (Berkeley Software
Design, Inc.). Though it was once a single effort, BSD is now divided into four
variants: BSD/OS, a commercial BSD sold by BSDI; FreeBSD, used in this book,
which focuses on simple installation and use; NetBSD, another free variant, which
supports almost all known hardware platforms; and OpenBSD, also free, which
concentrates on security.

BSD/OS
BSD/OS is currently being marketed as part of the BSDi Internet Server package,
which includes specific software targeted at Internet solutions such as NAT (an IP
number pool management program), various network administration tools, and
traffic analysis utilities. The Internet Server package also includes a utility that
makes it possible to run Linux programs on the BSD platform, a useful tool for
some system administrators. The current release is 4.1.

BSD/OS 4.1 has been developed with an eye toward Internet server use, so the
features it provides tend to be slanted toward the enterprise system and not the
individual user. For example, one of the useful tools available in version 4.1 is a
packet management tool, which controls the rate at which packets enter and leave
the server, based on the IP number of the packet’s destination. This smoothes out
traffic over a limited-bandwidth Internet connection. You can learn more about
BSD/OS at http://www.bsdi.com.

TIP A particularly readable set of documentation pages specifically about BSD/OS 4.1
is available as a PDF file at http://www.BSDI.COM/products/internet/
release-notes/.

NetBSD
NetBSD has been developed to be as portable as possible. This means that many
application programming interfaces (APIs) from other operating systems are incor-
porated into the NetBSD code and that NetBSD is written so that it will work on

Appendix C • Other Types of Unix

2817cc.qxd 11/14/00 11:21 AM Page 824

825

as many different hardware platforms as possible. The reason for this develop-
ment direction is to make Free Software available to as many users as possible,
without the limitations imposed by either hardware or financial requirements.
Though it may seem that incorporating so many diverse requirements would
lead to messy code, the NetBSD developers pride themselves on a clean and com-
pact code base that will be usable years from now without big sections of legacy
code that have never been removed.

NetBSD supports most of the currently popular protocols and hardware. It has
built-in support for wireless and wired networking using at least eight different
protocols. It also supports multiple filesystem types and file-sharing protocols.
NetBSD claims to have the fewest security bugs on file at independent bug track-
ing sites such as http://www.securityfocus.com. NetBSD even offers operating-
system emulation for nine other operating systems (including most of the Unix
variants described in this appendix) so that programs written for those platforms
will run transparently on the NetBSD system.

The current release is NetBSD 1.4.2. Learn more about this variant at http://
www.netbsd.org, where you will find downloads, documentation, and a wide
variety of helpful links and files. The NetBSD community is strong and vocal,
as well, and there are links to community gathering spots at the main site.

OpenBSD
If you are concerned about security, OpenBSD is the Unix variant for you.
OpenBSD was developed in an attempt to build the most secure Unix possible,
and the developers have largely succeeded. They claim that no remote hole has
been found in over three years on the default downloadable install version and
that only one local hole has been found in the past two years. (For those who
don’t follow operating-system security news, this rate of success is phenomenal.)

The OpenBSD developers want to build the most robust and reliable operating
system possible. They make all their development notes available to anyone
who’s interested, and they incorporate only new code that is released under
either the Berkeley license or the GNU Public License. This means that, when
someone installs OpenBSD, every component of the operating system has its
code available to the end user.

However, the main attraction of OpenBSD is its focus on security. More than any
other Unix, OpenBSD has fully integrated support for the latest cryptographic tools

BSD

2817cc.qxd 11/14/00 11:21 AM Page 825

826

including Kerberos, key engines, and the various cryptographic IP tools. OpenBSD
is also available to the world—despite its strong cryptographics—because the pro-
ject is based in Canada, which has no cryptography export restrictions. OpenBSD is
built to run on as many different hardware platforms as possible so that users need
not be restricted by their hardware.

The current release version is 2.7; you can download the source from the Web,
or you can order a double CD version through the mail. The OpenBSD project’s
Web site is located at http://www.OpenBSD.org, where you will find documenta-
tion and patches, as well as a bug reporting system and other useful tools.

HP-UX
HP-UX, as the name implies, is the Hewlett-Packard Unix. It is designed to run
on HP RISC systems and is primarily based on System V, with some BSD fea-
tures. The current version of HP-UX is HP-UX 11. It is a 32- or 64-bit operating
system, an upgrade from previous 32-bit-only versions of the OS.

HP-UX is a commercial Unix designed for large-scale operations. It handles
extremely large files without an excessive amount of disk swapping, and it can
support up to 4TB of RAM and 8TB of shared memory. (A gigabyte is 1024MB of
information, whereas a terabyte is 1024GB of information.) Hewlett-Packard sug-
gests that HP-UX be used for data warehousing or large-scale Web servers, or for
any situation where large volumes of data are handled at the same time. HP-UX is
not really a Unix designed for single users or small networks, especially since it is
written for hardware that is not affordable for the vast majority of people.

You are likely to encounter HP-UX only if you use Unix at work and work at a
large corporation, academic institution, or technology company. HP-UX is seen as
fast and reliable, though—as with most commercial Unices—it is expensive and
proprietary. Still, for the right kinds of systems, HP-UX is a very good choice.

http://www.devresource.hp.com/STK/hpux_faq.html

The official HP-UX FAQ from Hewlett-Packard. The document covers questions
about upgrading from previous versions of HP-UX, and information on new fea-
tures and configuration.

Appendix C • Other Types of Unix

2817cc.qxd 11/14/00 11:21 AM Page 826

827

http://www.faqs.org/faqs/hp/hpux-faq/index.html

The FAQ for the newsgroup comp.sys.hp.hpux. The document addresses config-
uration, software, utilities, the X Window System, and other relevant topics.
Extensive resources for other HP-UX information are also included.

IRIX
IRIX is the Unix that runs on Silicon Graphics MIPS systems, which are high-end
multiple-processor machines. It is especially favored by people doing high-end
graphics work, though it is not so popular as a general Unix variant for multiple-
function purposes. The current release is IRIX 6.5.x.

IRIX has an unusually large base of support in military and aeronautical insti-
tutions. NASA (the United States National Aeronautics and Space Administra-
tion) uses IRIX at the Ames Research Center to support its research in climate
change and computational fluid dynamics, as well as in other highly processor-
intensive models. IRIX is also being used by Boeing and Lockheed Martin as they
develop a new fighter plane for the United States military. Such types of work
rely heavily on accurate representation of technical scale drawings, and IRIX reli-
ably delivers the accuracy needed in those situations.

Like HP-UX, IRIX is not designed for the small network or single-user installa-
tion. You’d need to purchase Silicon Graphics hardware to run IRIX, and those
machines are priced at a corporate and governmental purchase rate, not an indi-
vidually affordable rate. Still, if you enjoy computer graphics and have the oppor-
tunity to try an IRIX system, you will probably be amazed at the clarity and
accuracy of the operating system.

http://www.sgi.com/developers/technology/irix/index.html

The IRIX site at Silicon Graphics. You can get ordering information, documenta-
tion, and some technical support here, though you may need to buy a service
plan if you require detailed support directly from SGI. There is quite a bit of
information in the online Supportfolio.

IRIX

2817cc.qxd 11/14/00 11:21 AM Page 827

828

http://www-viz.tamu.edu/~sgi-faq/

This site offers all the user-created FAQs for SGI equipment and software. The
IRIX FAQ is the SGI-admin FAQ, but if you’re running IRIX, you’ll probably need
to look at the graphics, hardware, and security FAQs as well.

OSF/1
You won’t see OSF/1 running as itself any more. The Open Software Foundation
stopped developing and releasing OSF/1 in 1994, though Digital Unix is based
heavily on the OSF/1 code. When Digital was acquired by Compaq, the Digital
Unix OS began being developed under the Compaq Tru64 Unix name.

Tru64 Unix is a scalable 64-bit operating system that is designed to work with
Compaq’s Alpha series of servers. It is designed to work closely with Windows,
so administrators using an NT network for their users may find Tru64 to be a
good option for servers and other non-end-user installations on the network.
Tru64 features an “out of the box maintenance” array of utilities and applications,
including a graphical system event manager and both a Java and a Web-based
interface for remote system administration. Tru64 has been adopted by a variety
of well-known companies, including Mindspring/Earthlink, one of the United
States’ largest Internet providers.

There are still some legacy installations of Digital Unix and even of OSF/1, even
though it hasn’t been available since 1994. The FAQ listed below, maintained by
users of the comp.unix.osf.osf1 USENET newsgroup, offers some information
about Digital’s Unix and about the original OSF/1 Unix. However, most networks
that ran either OSF/1 or Digital Unix have changed to another Unix or adopted
Tru64, so it is unlikely that you’ll run across one of these older Unices unless you
happen upon a system that hasn’t been upgraded in a few years.

http://www.UNIX.digital.com/unix/index.html

The home site of Compaq’s Tru64 Unix. Compaq offers documentation, news
releases, and some technical support.

Appendix C • Other Types of Unix

2817cc.qxd 11/14/00 11:21 AM Page 828

829

http://www.faqs.org/faqs/dec-faq/Digital-UNIX/index.html

The FAQ for comp.unix.osf.osf1. It addresses installation, software, peripherals,
networking, and other topics. Useful for those who find themselves running Digi-
tal Unix, because there is no longer a great deal of information available on the OS.

SCO Unix
SCO Unix is marketed as UnixWare by the Santa Cruz Operations company (SCO).
UnixWare is an operating system designed for the Intel platform, unlike many of
the other Unices described in this appendix, which are designed for proprietary
(and expensive) hardware. The company has targeted small- and medium-sized
businesses for some time, offering the robust Unix platform to companies that can’t
afford the high-end hardware, but still want a commercial Unix.

SCO Unix uses a variety of unique tools for system administration and man-
agement. Like Solaris, it provides a comprehensive administration utility, called
scoadmin. UnixWare is scalable and quite fast, supporting a wide variety of x86-
based configurations. It is System V based and, in fact, is probably the one Unix
currently available that is closest to the AT&T development tree. The current
release is UnixWare 7.

TIP If you are interested in commercial Unices, we recommend that you give SCO Unix
a try. You can get a free license for noncommercial use of the operating system;
you will need to purchase the CD set from SCO, which will cost you about $50 US.
(Like Solaris, SCO is one of the higher-cost “free” licenses.) Still, if you’re inter-
ested in learning more about the kinds of Unices that run in commercial settings,
you can learn a lot from SCO Unix.

SCO Unix has been in the news lately, because SCO has just been acquired by
Caldera, a leading Linux distribution provider. What this means for Unix users is
that Caldera will now begin to develop an integrated Unix/Linux operating sys-
tem, taking the best from both systems. They hope to build a powerful and robust
operating system that will fit easily into the business computing world. Interesting

SCO Unix

2817cc.qxd 11/14/00 11:21 AM Page 829

830

news should continue to appear on the Caldera/SCO merger, and the result of the
operating-system integration promises to have a significant effect on the Unix
world in general.

http://www.sco.com/unix/

The home page for SCO Unix. You will find a variety of information here, from
product brochures to documentation. You can also order CD sets and books
directly from SCO.

http://www.aplawrence.com

Tony Lawrence has compiled an excellent set of resources for Unix administrators
in general and SCO Unix in particular. You should be able to find almost every
Web and FTP resource for SCO Unix from this page, including documentation
written for those new to SCO and those who have been hacking it for years.

SunOS
Before Sun switched its development emphasis to Solaris, SunOS was the Unix
that shipped with all Sun hardware. SunOS is still being used in places, but most
Sun customers have made the change to Solaris. SunOS was primarily BSD-
based, with some System V enhancements, and was the first Unix to incorporate
such now-standard elements as NFS.

There is still quite a bit of information available about SunOS and its administra-
tion, though a good portion of that information is devoted to integrating SunOS
with the earliest versions of Solaris. There is a small market for those who enjoy
purchasing used Sun hardware, and the earlier hardware runs SunOS (though
some configurations cannot handle Solaris). It is unlikely that you’ll find a SunOS
installation, because Sun’s customers were all upgraded to Solaris several years
ago, and Sun no longer supports SunOS directly.

http://gsbjfb.uchicago.edu/howto/sunos.faq.html

The FAQ for comp.sys.sun.admin. The FAQ is quite dated, having been revised
last in 1995, about the time that SunOS administrators began switching to Solaris.
However, if you need SunOS reference material, this is a good place to start.

Appendix C • Other Types of Unix

2817cc.qxd 11/14/00 11:21 AM Page 830

831

http://www.sun.com

Sun doesn’t offer direct SunOS support any more, though you might be able to
find answers with the site’s search engine.

System V
If BSD is the matriarch of a line of Unix variants, AT&T’s Unix is the grand-
daddy of the rest of the variants. Currently released as System V, AT&T Unix
is part of almost all other Unix variants and is the most frequently ported
Unix. AT&T no longer retains total control of System V, responsibility for the
operating system having first passed to Unix International (UI), a consortium
of companies involved with commercial Unix. Upon the end of UI, control of
AT&T Unix passed to Unix System Laboratories, an entity now owned by
Novell. However, System V is no longer being developed as a unique operat-
ing system. Sun’s Solaris is the most direct descendant of System V and incor-
porates much of the final System V release, SVR4.

We provide no links for SVR4 (Unix System V, release 4) because there is almost
nothing available on the Web for SVR4 users, except for discussions about port-
ing newer Unix programs to machines running SVR4. If you’re working on a true
SVR4 system, we recommend UNIX in a Nutshell, by Arnold Robbins (third edi-
tion, O’Reilly & Associates, 1999) or UNIX Unleashed, by Robin Burk and Salim
Douba (MacMillan, 1999).

Xenix
Oddly enough, in the late 1970s, Microsoft developed its own variant of Unix,
called Xenix. Microsoft eventually licensed Xenix to SCO (Santa Cruz Opera-
tions). It’s unlikely that you’ll run across Xenix unless you run it yourself, though
there are still quite a few Xenix diehards out there who appreciate its streamlined
operation. We include it here mostly because it’s a historical amusement to realize
that Microsoft was once a developer of a PC-based Unix.

Xenix

2817cc.qxd 11/14/00 11:21 AM Page 831

832

http://www.unicom.com/pw/sco-xenix

The FAQ for comp.unix.xenix.sco. It answers general questions as well as
those targeted at peripherals, networking, and interoperability between Xenix
and MS-DOS.

Appendix C • Other Types of Unix

2817cc.qxd 11/14/00 11:21 AM Page 832

Glossary

2817cglos.qxd 11/21/00 3:21 PM Page 833

834

A

Acceptable Use Policy (AUP) Acceptable
Use Policies are used by Internet service
providers (ISPs), employers, schools, and
other third-party entities that provide indi-
vidual users with access to the Internet. An
AUP defines the behavior that is and is not
acceptable, usually banning activities that
are harmful to the Internet as a whole (such
as spam or illegal entry to other computers).

Aliases

1. A parameter in a shell configuration file
such as $HOME/.bash_profile that causes
one command line to be used as a syn-
onym for another.

2. A condition where a machine may have
multiple names (usually denoted in the
/etc/hosts file).

3. A mail configuration file such as /etc/
aliases that defines local users to handle
system mail (i.e., postmaster may be an
alias for user hank).

Anonymous FTP A way to obtain files from
an Internet file server without needing a user
account on that server. To log into an FTP
server anonymously, use the word anonymous
as your user ID and your electronic mail
address as the password. This will identify
you to the administrator.

Applet A small program that may be run,
for example, over the Web or in a Gnome or

KDE panel. Applets are often written for Web
applications in the Java programming lan-
guage, but not all desktop applets are written
in Java.

Archive Files Files that are created as a
method of bundling a number of separate
files. Usually created with the tar command.

Argument In a command, any additional
input given that affects the behavior of the
command. Arguments can be targets, flags,
options, or similar items.

Array Variables Variables that have as their
value a list of elements.

B

Backplane

1. Part of the motherboard that carries the
computer’s processor and other elec-
tronic circuitry.

2. A high-speed cable that carries data to the
various computers connected in a hub
topology network.

Bang An exclamation point character (!).
Used as a negation character, as in !=, an
expression meaning does not equal.

Buffer A space that is designated in system
memory. Many programs use buffers to pro-
vide fast access to program data.

Glossary • Acceptable Use Policy (AUP)

2817cglos.qxd 11/21/00 3:21 PM Page 834

835

Build

1. The process of compiling and linking a
program; e.g., to build a piece of software.

2. A particular binary package, compiled
and linked in a particular way; e.g., the
Solaris build of Apache.

C

Case Sensitive A system is said to be case
sensitive if capital letters are not considered
equal to their lowercase counterparts. Thus
the word hello would not be considered the
same as the words, Hello, HELLO, or HeLlO.
Unix systems are almost always case sensi-
tive, whereas, for example, early DOS systems
are not.

Client-Server Architecture A method of
constructing networks so that resources are
housed on a central server machine and
accessed by remote clients. More specifically,
the server accepts incoming network connec-
tions from the clients.

Command Interpreter A program, such as
the bash shell or the Perl interpreter, that trans-
lates a language’s commands into instructions
that the computer’s processor can understand.

Command Shell The command shell is a
program that acts as a translator between the
operating-system kernel and the user. The
shell provides the command-line interface
common to Unix systems. A variety of com-

mand shells are available for Unix and Unix-
derived operating systems; in this book, we
focus on the bash shell.

Command Syntax The particular format in
which a command must given for it to be
understood by the command interpreter.

Command-Line Interface An interface to
an operating system where input is received
in the form of typed commands.

Comments Elements of a program that are
ignored by the command interpreter or com-
piler. Comments exist for the purpose of mak-
ing programs more comprehensible to human
programmers.

Compilers A compiler is a platform-specific
program that converts code written in the C
programming language to the language under-
stood by that particular platform’s native com-
mand language. The use of compilers permits
programmers to write one non-platform-spe-
cific version of a program that will be usable
on all platforms once compiled.

Configuration Files Text files that contain
operating parameters for a particular pro-
gram. By altering the parameters in a configu-
ration file, it is possible to change the
behavior of that program.

Cookie A small bit of information delivered
by a server when a request is made by a
server. Typically used in the context of Web
pages, a cookie is a piece of identifying infor-
mation placed on your hard drive when you
make a request with a client program. The
cookie will speed access to the server with

Cookie

2817cglos.qxd 11/21/00 3:21 PM Page 835

836

later requests, because its existence notifies
the server that you have already been permit-
ted to have data from that server.

Cracker A security breaker. One who gains
unauthorized access to networks and
machines, often for the purpose of data theft
or as a means of cloaking the source of attacks
on other networks. Crackers are often incor-
rectly called hackers in the popular media.

D

Daemon A program that runs constantly
and that performs commands and other
actions automatically. A daemon may
respond to incoming data or provide data
from another process. Most servers run dae-
mons, and many other programs use a dae-
mon to manage their activity.

The term is not religious in intent. Daemons
are mythological beings that are attendants to
other, greater, personages; in the Unix sense,
they do the work.

Daisy Chain A network arrangement in
which computers are connected to each other
in a chain, instead of each computer being
connected directly to a server or a backplane
cable. SCSI devices also use the daisy chain
topology.

See also Backplane and Topology.

Datagram Usually called a packet, a data-
gram is a small, self-contained unit of data
that is transferred across a network. A data-

gram carries enough identifying data that it
can be passed from originating to recipient
machine without any intervening requests for
address information.

See also User Datagram Protocol (UDP).

Delivery Agent Part of the electronic mail
transfer array of programs. The delivery agent
handles the transmission of an individual
message from the local mail server to the
recipient’s incoming mail spool, usually
located at /var/spool/mail/$USER.

See also Mail Transfer Agent and Mail User
Agent.

Device A piece of hardware, though not
usually the CPU or motherboard. A device
may be internal or external and is run through
a program called a device driver, which tells the
operating system how to handle the hard-
ware. Devices may be disk drives, peripher-
als, cards, or other similar equipment.

See also Peripheral Devices.

Disk A random access storage medium that
consists of a thin plastic center coated with a
magnetic medium. Disks can be fixed (hard
disks) or removable (floppy disks or diskettes).

See also Optical Disk.

Display Manager The component of a
graphical user interface that is responsible
for maintaining data about display servers,
and for handling login and logout functions.

Display Server An alternative term used to
describe the server providing X Window Sys-
tem access to a graphical user interface.

Glossary • Cracker

2817cglos.qxd 11/21/00 3:21 PM Page 836

837

Dot Files Under most Unix command shells,
files that begin with a leading dot character
are not visible in a directory listing (unless the
-a option to ls is used). Such files are usually
used to store configuration parameters or
data for specific programs.

E

Environment Variables Variables that are
available to all programs running on the sys-
tem. Such variables taken together influence
the environment under which all programs
run. Variables are made available to the envi-
ronment by use of the export command.

Escape Character Another term for the
backslash character, \. When using regular
expressions for pattern matching, the escape
character is used to force the regular meaning
of a particular character usually used as a
metacharacter.

See also Metacharacter.

Escape Sequence A character or string of
characters that cause a modification to normal
processing behavior. Escape sequences are
usually seen in the use of regular expressions,
where one desires to treat literally a character
that normally functions as a metacharacter.

Exit Status A number that is returned on the
completion of a process that reports the success
or failure of that process. Normally, an exit sta-
tus of 0 (zero) denotes success, while anything
else denotes failure; however, this behavior can
be customized by the programmer.

F

File Permissions File metadata that controls
the set of users on the system that have access
to the specified file. There are three types of
permission: read, write, and execute; and three
classes of users to whom these permissions can
apply: the file’s owner, the file’s owning group,
and all users. The root user has all permissions
to all files.

File Tree The display used by some graphi-
cal file managers to show the various files
and directories on a given filesystem. In the
file tree, individual directories and their sub-
directories are shown in a nested hierarchical
manner. This is the method used by Windows
Explorer.

Filesystem

1. The format used by an operating system
to manage files and directories (e.g., the
ext2 filesystem).

2. The files and directories on a computer
considered as an organized whole.

3. Any subset of item 2 (e.g., the home/
filesystem).

Firewall A networking construct that pre-
vents unauthorized users from accessing a
local network. Firewalls are usually installed
on gateway machines and serve as a security
precaution. They examine incoming packets
to see whether the packets should be for-
warded to a local machine.

See also Gateway and Proxy Server.

Firewall

2817cglos.qxd 11/21/00 3:21 PM Page 837

838

Flag An option to a command that may
change the behavior of that command. Flags
are usually preceded by a dash character.

Flow Control In programming, those state-
ments that can cause the program to alter the
sequence of its own execution in response to a
given condition. Flow control can be condi-
tional or iterative.

Free Hog Slice Under Solaris, a temporary
disk partition used to hold otherwise unallo-
cated disk space.

Free Software As defined by the Free Soft-
ware Foundation, Free Software is any soft-
ware that is licensed in such a way that it

• Allows the program to be used by anyone
for any reason

• Allows the program to be modified by
anyone

• Allows the program to be redistributed
by anyone

• Requires that derivative work be licensed
under the same conditions

Function Calls In programming, the act of
invoking either a native function of the pro-
gramming language or a user-defined func-
tion is known as calling the function.

G

Gateway A computer that serves as the
connection point between a local network

and a larger network such as the Internet.
Gateways are used as security mechanisms
and may have a variety of security programs
installed, such as proxies or firewalls. A gate-
way machine may be either a traditional
computer or a dedicated piece of specialized
hardware, such as a router.

GPL (GNU Public License) Software
license developed by the Free Software Foun-
dation for the GNU project. The GPL imple-
ments the tenets of the FSF’s definition of Free
Software.

Graphical Text Editor A text editor that
uses graphical functions such as mouse clicks
to perform editing functions.

Graphical User Interface An interface to
an operating system that uses graphical ele-
ments such as windows and buttons, and
takes input from pointing devices such as a
mouse. Distinct from a command-line inter-
face, which takes input only from the key-
board. Unix has both command-line and
graphical user interfaces. In fact, using graph-
ical terminal emulator programs, it is even
possible to use both interfaces simultaneously.

Group A particular subset of a system’s user
base that has a common set of permissions to
files owned by that group. Groups are defined
in the /etc/group file.

H

Hacker A clever, or inspired programmer.
Often one who programs for the love of the

Glossary • Flag

2817cglos.qxd 11/21/00 3:21 PM Page 838

839

art form, rather than one who programs
purely for employment purposes.

Hashmark The # character. Hashmarks are
usually used in programming to identify a
comment, which is intended for human read-
ers and is not a line that should be executed
by the computer.

See also Comments.

Heterogeneous In computer terms, a het-
erogeneous network is one that contains
machines running at least two different oper-
ating systems. A network containing a Linux
machine and three FreeBSD machines is het-
erogeneous, as is a network containing Macin-
toshes, Windows PCs, and a couple of Sparcs
running Sun Solaris. The opposite of hetero-
geneous is homogeneous.

Hexadecimal Notation A method of not-
ing binary numbers that uses base-16 nota-
tion. Hexadecimal notation uses the numbers
0 to 9 and the letters A to F to represent the
numbers 10 to 15. One hexadecimal digit rep-
resents four binary bits of data.

Homogeneous A homogeneous network is
one where all machines connected to the net-
work are running the same operating system.
An all-Debian Linux network would be homo-
geneous. Mixed networks are called heteroge-
neous networks.

Hub

1. A piece of hardware into which individ-
ual computers are plugged to form a net-
work or share a resource.

2. A networking topology in which all net-
worked computers are attached to a cen-
tral server.

I

Integer Any positive, negative, or zero
number that does not include a fractional
component. Thus 1, 0, and –1 are all integers,
whereas 1.1, –1 1⁄2, and 0.3333 are not.

Integrated Desktop Environment Soft-
ware suites such as Gnome and KDE that pro-
vide an overall graphical environment, as
well as a suite of programs that operate under
that environment.

Internet Protocol (IP) The protocol by
which small packets of information are deliv-
ered across the Internet or other networks.
Packet destinations are identified by a unique
number. The Internet Protocol is half of the
standard TCP/IP protocol.

See also IP Number and Transmission Control
Protocol (TCP).

Interprocess Communication The method
through which individual processes communi-
cate with each other and take action on those
communications, without human interaction.
Scripts that provide input to other scripts or
other Unix commands are communicating in
an interprocess manner that does not require
human input to complete the task.

Intrusion Detection The craft of detecting
the presence and activities of crackers despite

Intrusion Detection

2817cglos.qxd 11/21/00 3:21 PM Page 839

840

their efforts to conceal it, using a variety of
techniques including file comparison, log
tracking, and the tracing of individual signa-
tures unique to each cracker.

IP Classes IP numbers are divided into three
separate classes. These classes are used to dis-
tinguish particular kinds of networks from
other types of networks. The classes are
defined in the Internet Protocol.

• Class A networks use 0.0.0.0 to
255.255.255.255. This is the entire
address space, so an individual network
will have only a particular sequence of
numbers allocated to that network.

• Class B networks use a constant leftmost
octet and are assigned individual num-
bers below that top-level network num-
ber, such as 102.1.2.3 and 102.4.5.6.

• Class C networks use constant octets in
the two left positions and are assigned
individual numbers below those top-level
hierarchy numbers, such as 18.25.1.2
and 18.25.3.4.

See also Private Address Space.

IP Masquerading The use of a single valid
IP number to serve as the main interface with
the Internet, while other computers cluster
behind that valid IP number and use private
IP numbers to handle data transfer within the
network. IP masquerading started as a Linux
trick used to place networks on the Internet
without obtaining a multitude of valid (and
expensive) IP numbers. It is now supported
by several other Unix variants.

IP Number The unique identifying number
assigned to a computer that is part of the
Internet. IP numbers are used for a wide vari-
ety of data transfer, in accordance with the
Internet Protocol. Although each individual
computer attached to the Internet is required
to have an individual number, these numbers
may be assigned dynamically by an Internet
service provider or other access point that has
more clients than numbers available.

K

Kerberos An encryption mechanism that
permits the safe transmission of data across a
network. Kerberos creates an encrypted ses-
sion key that your client presents as its proof
of entry before the session is opened. Many
security programs are Kerberos-based; it is
one of the more secure transmission technolo-
gies available.

Kernel The portion of the operating system
that provides functions at the lowest level.
The kernel is responsible for scheduling tasks
for the processor, managing memory, and
coordinating input to and output from the
various hardware devices.

Key Bindings Functions triggered by a sin-
gle keystroke or key combination. Key bind-
ings are most often associated with text
editors such as GNU Emacs, but are also
used in graphical user interfaces and operat-
ing systems in general.

Glossary • IP Classes

2817cglos.qxd 11/21/00 3:21 PM Page 840

841

L

Launcher An icon or button on a desktop
(usually in a panel pertaining to a particular
desktop environment) that causes a particular
program to start.

Lease Period The time that any given
machine may use an IP number assigned
from a pool of available IP numbers. The
lease period is defined in the DHCP server
by the network administrator.

Line Editor A text editor such as ed that
processes text one line at a time. Line editors
have been largely replaced by full-screen edi-
tors such as vi and graphical editors such as
NEdit.

Load A measure of how busy a processor is.
A load of one means that there are no idle
processor cycles, but no tasks need to wait for
a free cycle. A load of less than one means the
processor is idle some of the time. A load of
more than one means that some tasks must
wait for free processor time.

Load Average Shown in output from the w
command, the load average shows the system
load at present, 30 seconds ago, and 60 sec-
onds ago.

Log A file that records the activity of a par-
ticular process or set of processes. Log files
are vital tools for the system administrator.

Log Scrubber A cracker tool that edits log
files to conceal the cracker’s activity.

M

Macro

1. In a text editor, a series of complex opera-
tions performed on a chunk of text with a
single command or key binding.

2. In programming, the substitution of a
short command for a more complex oper-
ation. (For example, in C, one can create a
macro by using the preprocessor com-
mand “#define”.)

Mail Transfer Agent The server compo-
nent of an electronic mail client-server appli-
cation. A mail transfer agent is also called a
mail server. A variety of mail transfer agents
are available, though the most popular (and
most complex) mail server is sendmail.

Mail User Agent The user component of
an electronic mail client-server application. A
mail user agent is also called a mail client, and
there are both text-based and graphical mail
clients. Some of the more popular mail user
agents are Pine and elm, two shell-based mail
clients, and Eudora and KMail, two graphical
mail clients.

Makefile In source code packages, the file
that contains instructions for the make utility,
which in turn provides instructions to the
compiler.

Manual Page The portion of the Unix
online manual that pertains to a single com-
mand or function. (Note that page is something

Manual Page

2817cglos.qxd 11/21/00 3:21 PM Page 841

842

of a misnomer, because these sections can
sometimes be quite lengthy.)

Message of the Day (MOTD) A message
from the system administrator that is dis-
played to all users at login. Usually kept in
the file /etc/motd.

Metacharacter A character that is used to
represent a particular programming construct
instead of being used for its actual meaning.
Metacharacters are found in shell program-
ming and some text editors.

Metakey A key that is pressed in combina-
tion with other keys to execute a particular
command. Found in graphical user interfaces,
the traditional metakeys are Ctrl, Alt, and Esc.
In many graphical interfaces, you can define
your own key combinations using these
metakeys and other keyboard actions.

Modular Kernel A kernel that is compiled
with a variety of modules, each one affecting
a particular system activity or function. The
Linux kernel is a modular kernel. To add new
functions to the operating system, the kernel
is recompiled with one or more additional
modules.

Modularity The condition of having com-
plex functions handled by combinations of
small, simple elements. Many Unix programs
are designed to be small, simple, and multi-
purpose. They can then be used in varying
combinations and configurations to build
complex function chains.

Mount To make a disk partition (either local
or networked) an active part of the filesystem.

Usually accomplished by means of the mount
command or the /etc/fstab file.

Multitasking Being able to perform multi-
ple tasks at the same time. There are two
types of multitasking.

See also Task Switching and Time Slicing.

MX (Mail eXchange) Record Part of the
Domain Name Service (DNS) record for a
particular host or domain. The MX record
defines the actual IP address of the machine
that receives electronic mail for that domain.
If the address changes, but the MX record is
not updated, mail will not be delivered.

N

Nesting In programming, the practice of
containing one block of code inside another,
especially if the blocks are flow control struc-
tures of the same type (often referred to as
nested loops). Nested structures are usually
indicated visually by indenting the internal
block, like this:

outer block {
outer block statement 1
outer block statement 2
outer block statement 3

inner block {
inner block statement 1
inner block statement 2
inner block statement 3

}
}

Glossary • Message of the Day (MOTD)

2817cglos.qxd 11/21/00 3:21 PM Page 842

843

Network A conglomeration of individual
computers: as few as two or as many as a
thousand (or more). Networks are used to
share resources, provide quick transmission
of data, and assist administrators in monitor-
ing and maintaining individual machines.
The Internet is simply a giant network made
up of other networks.

Network Congestion The condition that
occurs when there is too much traffic over a
network’s connections to handle all requests
and responses in a timely fashion. If network
congestion occurs regularly on a local net-
work, it is an indicator that the network might
be better served if particular servers were
placed on their own machines instead of shar-
ing a single machine with a single connection
to the network.

Network File System (NFS) The service
that permits remote directories to be mounted
across a network as if they were local. With
NFS, you can use data from a central server
without even knowing the data is not present
on your local machine. NFS is a convenient
way for administrators to manage large
amounts of data that is needed by users at
various points on the network. There are,
however, security risks inherent in using NFS,
though there is not a better alternative for
local Unix-based networks.

Network Information Service (NIS) A
mechanism that manages the various names
and addresses of machines on a local net-
work. Developed by Sun, the Network Infor-
mation Service is now available for users on
all Unix platforms. It is commonly installed at
the same time as the Network File System.

O

Open Source As defined by the Open Source
Initiative, Open Source software must allow
free redistribution and availability of source
code, but may restrict modifications to the orig-
inal source provided that it allows for the dis-
tribution of patches.

Operating System An operating system
is the software that runs behind the scenes
and allows the user to operate the machine’s
hardware, stop and start programs, and set
the various parameters under which the
computer operates. We discuss the Unix
operating system in this book, along with
other Unix-derived operating systems such
as Linux, FreeBSD, and Sun Solaris. Other
popular operating systems designed for per-
sonal use include Microsoft’s Windows 98
and Apple’s MacOS.

Operator A programming element that may
perform assignment, mathematical operations
(addition, subtraction, etc.), comparison,
negation, etc.

Optical Disk A disk that is made of a hard
plastic and etched by laser with many invisi-
ble facets. The facets contain data and can be
read by the laser contained within a CD-ROM
or DVD-ROM drive. Some systems have dri-
ves that are capable of both reading data from
and writing data to optical disks.

See also Disk.

Optical Disk

2817cglos.qxd 11/21/00 3:21 PM Page 843

844

P

Package Management Tool A program
that allows for easy installation of software
packages. Popular package management tools
include Red Hat’s RPM, and Debian’s apt-
get and dpkg.

Packages A method of software distribu-
tion. Most software is too complex to be dis-
tributed as a single file, so packages of the
multiple files that need to be distributed are
made. These can be in the form of source
code, which may need to be compiled, or in
packages that are designed to be used by a
package management system such as Red
Hat’s RPM or Debian’s dpkg.

Packet
See Datagram.

Packet Sniffer A program that intercepts all
traffic on a network. Packet sniffers are a com-
mon cracker tool, which is why network traffic
should be encrypted whenever possible.

Partition A physical section of a (usually
fixed) disk. FreeBSD uses the term slice, and
Solaris uses the term volume, to refer to the
same concept.

Patch A file that contains modifications to a
source code package. Using the patch utility,
these files can be used to update a source code
package. This is especially useful to people
using slow Internet connections, because
patch files are typically much smaller than the
packages they modify, and thus much faster
and easier to download.

Path A string of directory names that
describes an exact location within the filesys-
tem. Unix paths can be either absolute, in
which case they begin with a leading slash,
or relative to the current directory, in which
case they don’t.

Peripheral Devices Hardware devices such
as printers or keyboards that can be detached
from the machine.

Pipe A method for passing information from
one process to another. Pipes can be used to
send the output from one process to be used
as the input for another process. For example,
you might issue the command

cat /etc/services | more

which would send the output of the cat com-
mand as the input for the more command.
Thus, you could read through the /etc/
services file in page-sized units.

Point-to-Point Protocol (PPP) The proto-
col that governs how data will be transmitted
between two computers using a serial connec-
tion (often a telephone line). PPP is the basis
for many ISP software programs. If you set up
a connection between your Unix machine and
your local Internet provider, it will likely be a
PPP connection.

Port To port a piece of software is to rewrite
it for a different platform. For example, Corel
decided to release WordPerfect Suite 2000, a
popular Windows 95/98 integrated office
suite, for the Linux platform. To do so, they
had to port the program to Linux.

Port Forwarding The process of making a
port on one machine synonymous with a port

Glossary • Package Management Tool

2817cglos.qxd 11/21/00 3:21 PM Page 844

845

on another machine. Programs may then use
the local port as if it were the remote port.
SSH is a good tool for this.

Port Scanner An automated series of indi-
vidual data bursts, called packets, sent from a
remote site to determine whether any ports on
your local network are open and accessible. A
tool routinely used by crackers searching the
Internet for exploitable machines that can be
used as home base for illegal activity such as
Denial of Service attacks or other nefarious
schemes.

Positional Parameter A character, usually
@, used in shell programming. The positional
parameter helps the script track which vari-
able is currently being used in the script.

Print Queue The print jobs waiting to be
sent to the printer. If the printer is net-
worked, the queue may hold jobs from vari-
ous machines on the network and can be
quite long. Jobs in the queue are held in the
print spool.

See also Spool.

Private Address Space IP numbers set
aside for machines that will not be connected
to the Internet. Because they will not be used
to identify particular computers, these num-
bers can be reused by many different people
on a wide range of networks. The IP num-
bers reserved in the Class C range as private
address space are 192.168.0.0 to 192.168.
255.255.

See also IP Classes and IP Masquerading.

Process Running programs. Every program
that is currently active is considered a process
and is given a process ID number (PID) by the
system. You can view the process table (the
list of processes) using the ps command.

Process Identification Number (PID)
The unique number assigned to every run-
ning process on your machine. The PID can be
used to manage individual processes, as with
the kill command. Learn the PIDs of the
active processes on your machine with the ps
or top commands.

Protocol An accepted method for handling
information on a network. The use of protocols
ensures that information will be handled in a
uniform way regardless of the individual pro-
gram being used. Protocols are described on a
series of papers known as RFCs (requests for
comments), which are maintained by the Inter-
net Engineering Task Force (IETF). You can
look up an RFC by going to the IETF’s Web
page at http://www.ietf.org/rfc.html.

Proxy Server A server that acts as interme-
diary between a local network and an external
network such as the Internet. If a proxy is in
use, a request from the local network’s user
will be passed through the proxy on its way to
the destination. The destination machine will
see the request as if it had originated with the
proxy server, not from the actual originating
machine. Proxy servers are part of a complete
security program and are usually housed on
the gateway computer.

Proxy Server

2817cglos.qxd 11/21/00 3:21 PM Page 845

846

Q

Queue A list of commands or other requests
waiting to be processed. There are a variety of
queues on a Unix system, including those for
print jobs and various servers.

R

README File The most important file in
any software package, especially in source
code packages. The README file contains
information on the package, especially with
regard to the package’s installation.

Recursive Acronym An acronym that
contains itself. For example, GNU is an
acronym for GNU’s Not Unix. Likewise
PINE, the name of a popular mail program,
is an acronym for Pine Is Not Elm. Recursive
acronyms are inspired by recursive program-
ming functions, which are functions that
call themselves. For example, a very simple
(and useless) recursive function might look
like this:

function {
function()
}

In other words, a recursive function is one
where the function itself is part of its own
definition.

Redirection Operators Shell operators
that can change the destination of the input or
output stream. For example, if a program nor-

mally sends its output to the terminal screen,
that output can be redirected into a file by
appending > <filename> to the program.
Common redirection operators are

• > , used for output redirection

• < , used for input redirection

• |, used as a pipe

Regular Expression A text expression,
usually involving metacharacters, that can
match one or more literal text strings.

Rescue Kit A very stripped-down version of
an operating system and some tools (such as a
text editor) that can fit onto a diskette. A res-
cue kit allows a system administrator to boot
a broken machine and perform operations on
it so that it may be fixed.

Return Value
See Exit Status.

Root The superuser’s login name. Also used
as shorthand for the person who has ultimate
control over the machine. A popular Unix T-shirt
mimics the American Milk Producers’ adver-
tising campaign, asking “Got Root?”

Router A machine that routes incoming data
to the appropriate destination. A router may
be software on a central or gateway computer,
or it may be an individual piece of hardware.
Packets of data may pass through one or more
routers on their trips across local networks or
larger networks such as the Internet. The
router uses the packet destination’s identify-
ing IP number to determine where the packet
should be sent next.

Glossary • Queue

2817cglos.qxd 11/21/00 3:21 PM Page 846

847

Run Control Files Another name for con-
figuration files or dot files.

Runlevels The System V init procedure
allows the administrator to define several
alternative configurations that can be started
directly from the init program. These alter-
nate configurations are called runlevels, and
they are normally numbered 1 through 6,
with 1 being single user, 6 being reboot, and 2–5
being user-definable.

S

Script Kiddie A particularly irritating form
of cracker, script kiddies are usually young
computer users who don’t understand the
systems they crack, but rather use prewritten
cracking tools downloaded off the Internet.

Scripts Programs that are usually short and
in an interpreted language, such as Perl or
bash.

Service A general term for the server part of
a client-server application. Most frequently,
the term is used for applications that are used
for Internet activity. In Part IX: “Administer-
ing Services,” we introduce some of the most
popular services: electronic mail, World Wide
Web, USENET news, and others.

Shadow Passwords A security precaution
in which user passwords are not stored in the
/etc/passwd file. Instead, the passwords are
encrypted and stored in a different file, usu-
ally /etc/shadow. Originally a practice usable
only on a Linux system, many other Unix

variants now allow the practice, including
Solaris and FreeBSD.

Shell
See Command Shell.

Shell Account An account that allows the
user access to a command shell. It is no longer
common to obtain a shell account from an
Internet service provider, though some ISPs
still offer shell accounts.

Shell Command A command recognized
by the shell’s command interpreter. The term
is used to differentiate commands issued at
the shell prompt from commands issued in a
graphical user environment by the click of a
mouse or other peripheral device.

Shell Environment Those characteristics
of a particular system’s or user’s unique
shell setup. The shell environment can be
altered using run control files and environ-
ment variables.

Shell Prompt The signal that the shell gives
to the user that it is ready to accept input. The
prompt is configurable, but usually shows the
machine name and sometimes the user’s name.

Signal The data sent to or by a given
process that alerts the operating system of a
desired action. A variety of signals are sent
and received in the execution of any given
Unix process.

Slice
See Partition.

Software Modem Also known as a Win-
Modem. A software modem is smaller than a

Software Modem

2817cglos.qxd 11/21/00 3:21 PM Page 847

848

regular modem because it uses software
commands to perform many of the tasks for
which the larger hardware was once needed.
Software modems are Windows-specific and
cannot be used on computers running Unix
variants. Unfortunately, they are often much
less expensive than traditional modems, but
they are useless purchases for the Unix user.

Source Code The raw programming
instructions that make up a particular pro-
gram. The source code must be compiled or
interpreted before it can be understood by the
machine.

Spool The manner in which data is handled
as it waits for further action. Unix computers
produce a number of spools. The most famil-
iar are the mail spool, in which incoming elec-
tronic mail is stored until the recipient reads it
with a mail client program, and the print
spool, in which waiting print jobs are stored
until the printer is free to process them.

Standard A written description to which a
program or a system must conform if it is to
be considered compliant. For example, the X
Window System is a standard. It describes
how such a system would operate. XFree86 is
an implementation of that standard, in that it
is a piece of software that functions in the way
described by the X standard.

Standard Input The particular input
stream that a given program uses under nor-
mal circumstances. Often the keyboard.

Standard Output The particular output
stream that a given program uses under nor-
mal circumstances. Often the terminal screen.

Statement Any command that constitutes a
step in a program. A statement can be impera-
tive, such as echo “hello”, one of assign-
ment, such as x=10, or one of flow control that
usually contains an element of evaluation,
such as if X, then Y.

Static Kernel A kernel that must be recom-
piled if new information is required. Many
commercial Unices use a static kernel, which
cannot be recompiled by the local adminis-
trator.

See also Kernel and Modular Kernel.

Stream Editor A text editor that processes
text as it passes through the editor in a stream
of data. Stream editors are rare, and only the
programs sed and awk are examples of cur-
rently used stream editors. They are primarily
useful in programming contexts.

Strings Combinations of characters, both
alphabetical and numerical. Text processing,
among other things, is done largely by manip-
ulating strings.

Subshell A new shell process spawned by
an existing shell process. Subshells can be
used to perform a single task or run a process
without rendering the initial shell process
immobile.

Superuser The most powerful user on the
system. The superuser has all permissions to
every file on the system. The superuser has
the power to start or stop any process, shut
down the system (or even completely destroy
it), and add or delete users. Every Unix sys-
tem must have a superuser.

Glossary • Source Code

2817cglos.qxd 11/21/00 3:21 PM Page 848

849

Symbolic Link A file that serves as a pointer
to another file. For example, on some systems,
the file /bin/sh is a symbolic link to the file
/bin/bash. This means that any script that is
designated to run under the Bourne Shell will
instead be run under the bash shell.

System Administrator The person respon-
sible for the overall running of the system.
The system administrator may design net-
works, install hardware and software, main-
tain user accounts, maintain statistics about
the system, engineer security, and do just
about anything else you can think of.

System Calls Programming functions that
make a direct request to functions provided
by the operating-system kernel.

T

Tarball Any set of files (usually a software
package) collected together using the Unix
tar utility and often compressed using the
gzip program.

Task Switching Task switching is the ver-
sion of multitasking used by personal operat-
ing systems, such as Windows and MacOS.
With task switching, the operating system
allows each running process to complete a
particular task before the next process is per-
mitted to use system resources. Task switch-
ing is the opposite of time slicing.

TCP/IP The combination of the Transmission
Control Protocol and the Internet Protocol.
Because both protocols are required for the

safe and complete transmission of data across
a network, the two are usually covered in the
single term TCP/IP.

See also Internet Protocol (IP) and Transmis-
sion Control Protocol (TCP).

Text-Mode Editor A text editor that
processes text as a complete file, instead of
one line at a time like a line editor. Text-mode
editors are usually full-screen editors such as
pico or vi, but are not graphical, and require
the use of arrow keys and key combinations
instead of mouse clicks.

Time Slicing Time slicing is the version of
multitasking used by multiple-user operating
systems, such as Unix and its variants. With
time slicing, each running process has access
to the system resources for a certain defined
period of time. When the time is over, the next
process gains access, and so on. Time slicing is
the opposite of task switching.

Timestamp File metadata that identifies the
last time the file was modified. Timestamps are
used both by humans and by other processes
to sort or identify files based on the access or
modification data.

Topology The way in which a network is
constructed. A given network’s topology can
also be called its architecture. There are several
typical network topologies:

Hub or bus: Each networked computer is
attached to a backplane cable that transfers
data throughout the network.

Daisy chain: Each computer is attached to
the next computer, with the main server
merely being one computer on the chain. If

Topology

2817cglos.qxd 11/21/00 3:21 PM Page 849

850

the first and last computers on the chain
are connected, it is a ring topology; if they
are not, it is a daisy chain.

Star: Each networked computer is
attached directly to a central server.

Transmission Control Protocol (TCP)
The protocol that is used to reassemble a
series of packets after they have been deliv-
ered using the Internet Protocol. With the TCP
protocol, it is possible to split up large accre-
tions of data, such as a file, into small individ-
ual packets to transfer the data across the
Internet or other network more quickly.

See also Internet Protocol (IP).

U

Unices The commonly used plural form of
Unix. Although not particularly grammati-
cally pleasing, this is the term used by most
Unix administrators and programmers. For
some reason, the term Linuces has not caught
on for plural versions of Linux.

User Accounts The identification of, and
allocation of resources to, users on the system.
At the very minimum, a user account requires
an entry in the /etc/passwd file. User
accounts are normally created using the
useradd or adduser programs.

User Datagram Protocol (UDP) A proto-
col used for data transfer that manages the
receipt of discrete packets and reassembles
the packets at the receiving end of the connec-

tion. One of the two protocols from which you
may choose when editing /etc/initd.conf.

See also Datagram.

Username (User ID) A word that identifies
a user on the system. Synonymous with login
name and login ID.

V

Variable A name that can serve as a con-
tainer for a value. For example, the variable
$EDITOR will always define the user’s default
text editor, regardless of the value, which is
the name of whatever editor the user prefers.

Verbose Mode Many programs have a
mode that prints out a great deal of informa-
tion about what the program is doing at any
particular time. Such modes are called verbose
and are usually used for debugging network
configurations and the like. Some programs
even support multiple levels of verbosity.

Virtual Desktops A feature of several win-
dow managers and integrated desktop envi-
ronments. A virtual desktop appears as a
completely separate desktop, upon which you
can open various windows and work with pro-
grams as if you were running a separate login
session. Some programs permit you to work
with as many as 256 virtual desktops at one
time, each with a different set of activities.

Virtual Host

1. A configuration of a mail transfer agent
that makes the MTA willing to accept

Glossary • Transmission Control Protocol (TCP)

2817cglos.qxd 11/21/00 3:21 PM Page 850

851

electronic mail destined for a domain
other than the domain on which the server
is installed. This is a way to expand the
range of a particular network’s presence
without having to establish a separate mail
server for the second domain.

2. A way in which a domain can be repre-
sented on the Internet without having a
physical presence. Many companies will
sell virtual hosting packages for a reason-
able price.

Visual Editor In contrast to a line or stream
editor, an editor that allows interactive edit-
ing, usually including such features as direct
interactive cursor movement, direct editing of
the text in place, and the like. Visual editors
include vi, GNU Emacs, pico, and jed. A case
could be made that the visual editors should
also include the graphical editors, but conven-
tionally, the term refers to text-mode editors.

Volume
See Partition.

W

Widgets Elements of graphical program-
ming. Most graphically based programs have
a need for a common set of elements. Items
such as windows, scroll bars, buttons, and
pop-up menus are needed in just about all
graphic programming. Programmers often
create libraries of these elements so that they
need not be recoded every time a new pro-

gram is created. These libraries are referred to
as widget sets.

Wildcard An element of regular expres-
sions. A metacharacter that can stand in for
any other character.

Window Manager The element of the
graphical user interface that is responsible for
the overall look and feel of the screen.

Worms A type of computer virus that enters
the system at a vulnerable point and moves
around inside the computer until it finds the
proper location from which to execute its
intended purpose.

X

X Window System Any graphical user
interface that conforms to the X Windows
standard as described by the X Consortium
(http://www.x.org). The current version of
the standard is X11R6.

x86 Processor An x86 processor is a chip
built by Intel, or to Intel’s specifications, that
falls into the x86 chip family. This family
includes the 386 and 486 chips, now nearing
obsolete status, as well as the various Pentium
chips. All three Unices used in this book have
been ported to the x86 processor platform;
Linux and FreeBSD were written intentionally
for the x86 platform.

x86 Processor

2817cglos.qxd 11/21/00 3:21 PM Page 851

This page intentionally left blank

INDEX

Note to Reader: In this index, boldfaced page numbers refer to primary discussions of the topic;
italics page numbers refer to figures.

SYMBOLS & NUMBERS

! (bang), 263, 834
as variable for process ID of last back-

ground command, 332
:! command (vi), 263
!= (not equal) operator, 361
(hashmark), 839

for comments in bash shell scripts, 319
for comments in sed scripts, 376

#! (hashmark bang), 343
$ (dollar sign)

for environment variables, 208
to match end of line, 188
as operator, 328
as variable for process ID, 332

$(<command>) construct, 365
$@ special variable, 353–354
&& logical operator, 340–341
* (asterisk)

in case statement, 348
in /etc/passwd file, 451
as wildcard character, 155, 187

/ (slash) for directory names, 56
; (semicolon)

for comments in smb.conf file, 614
for end of command, 403

< (input redirection operator), 219–221
> (output redirection operator), 218–219
>> (output redirection operator), 218–219
? (question mark)

as single character wildcard, 187
as variable for exit status, 331, 393–394

[] (square brackets), test command
and, 338

[@] as positional parameter for array, 353
\ (backslash) as escape character, 371

in regular expressions, 374
^ (circumflex), to match beginning of line,

188, 371
| | logical operator, 340–341
| (pipe), 222–223, 844
~ (tilde), for backup files, 280
0 (zero), as network IP address, 579
10/100BaseT Ethernet cable, 544, 577
255, as broadcast IP address, 579
3Com hubs, 550

A

a command (ed), 247
:abbr command (vi), 264
abbreviations in vi, 263–264

.exrc file to store, 267

2817IDX.qxd 12/1/00 12:00 PM Page 853

854

absolute path name, vs. relative, 57
accept command, 524, 525, 532
Acceptable Use Policy (AUP), 43–44,

642, 834
access to Unix, 42–44
AccessFileName option, for Apache, 722
accessibility

of network, 560
for users with disabilities, X and, 95–96

active borders of KDE desktop windows,
138–139

active file, for newsgroup updating,
698–699

active window, 132
actsync utility, 699
actsyncd utility, 699
adapter cards for networking, 550, 564
AddEncoding option, for Apache, 728
AddHandler option, for Apache, 729–730
AddLanguage option, for Apache, 728
AddType option, for Apache, 729
adduser command, 446, 768. See also user-

add command
user default shell on mail server, 673

admintool (Solaris), 449
to add printer, 525
to delete user accounts, 453
to disable account, 451
to install network printer, 531–532
to manage groups, 455–456

Advanced Intrusion Detection Environ-
ment (AIDE), 649–650

AfterStep, 110–112
configuration files, 111–112
Web resources, 806

aide - init command, 650

AIDE (Advanced Intrusion Detection
Environment), 649–650

AIX, 822–823
aliases, 203–204, 834
Aliases option, for Apache, 725–726
alt.* hierarchy, starting newsgroup in, 697
alt.binaries.* hierarchy, 696
America Online, 566
animate file (AfterStep), 111
announce groups, 692, 696
anonymous FTP, 760, 834
Apache server, 708

configuring, 711–735
need for, 661
obtaining and installing, 709–710
from source code, 709

Apache Software Foundation, 710
apfd daemon to control passwords, 623
apfd.conf file, 623–625
APIs (application programming inter-

faces), 824–825
app-defaults subdirectory, 88
append command (sed), 378–379
AppleTalk protocol, 628
applets, 834

in Gnome, 167
AppleVolumes.default file, 625–626
AppleVolumes.system file, 626–627
application launchers in Gnome, 165–166

for File Manager, 167
application programming interfaces

(APIs), 824–825
Application Starter (KDE panel), 130, 131
applications. See software
appres command, 87, 87
apropos command, 769

absolute path name, vs. relative–apropos command

2817IDX.qxd 12/1/00 12:00 PM Page 854

855

apt-get program, 487
Archer, Vincent, 701
architectures for network, 552–559

bus, 555–556, 556
daisy chain, 556, 557
hub, 554–555, 555
ring, 553, 554
wide area network, 557–558, 558

archive files, 834
tar command for, 791–792

archive mode, for rsync command, 600
argument, 182, 834
ARGV environment variable (csh), 234
arithmetic operators, 317–318

comparison, 337
array variables, 326–327, 353, 834

in Korn shell, 230
asetroot file (AfterStep), 111
ash, 228
asmail file (AfterStep), 111
assignment operator, 318, 329
asterisk (*)

in case statement, 348
in /etc/passwd file, 451
as wildcard character, 155, 187

at command, 428–429, 769
atalkd.conf file, 622–623
AT&T, 9

print spool mechanism, 520
AT&T Unix, 14, 831
audio file (AfterStep), 112
AUP (Acceptable Use Policy), 43–44,

642, 834
auto-save, in GNU Emacs, 280
autoexec file (AfterStep), 112

autoindent parameter (vi), 265
automation, 12. See also shell scripts

of backups for multiple-machine
service network, 600

of remote directory mounting, 611
autowrite parameter (vi), 265
awk program, 382–387

metacharacters, 386–387
printing in, 387
vs. sed, 383

B

background of KDE desktop, 138
backplane of hub, 554, 834
backslash(\) as escape character, 371

in regular expressions, 374
backups

in GNU Emacs, 280
of multiple machines, 599–601
shell script for, 419–426

adapting for multiple, 421–422
including logs, 423–426

storage, 600
as system administrator responsibil-

ity, 419
bang (!), 263, 834

as variable for process ID of last back-
ground command, 332

banner pages, lpadmin flag for, 525
base.xxbpp file (AfterStep), 112
bash (Bourne Again shell), 32, 229, 769

comments in shell scripts, 319
run control files, 203

apt-get program–bash (Bourne Again shell)

2817IDX.qxd 12/1/00 12:00 PM Page 855

856

specifying for program execution, 343
Web resources, 808

.bash_login file, 207

.bash_logout file, 205

.bash_profile file, 205–207
umask arguments in, 640

.bashrc file, 51–52, 205
BDF (Binary Distribution Format), for

font distribution, 80
bdftopcf program, 80
beep sound, 143
Bell Labs, 8
Berkeley Software Distribution (BSD)

Unix, 9, 824–826
initialization process, 431, 436–437

Berners-Lee, Tim, 708
Bernstein, Dan, 681
bg command (ksh), 230
/bin directory, 59
Binary Distribution Format (BDF), for

font distribution, 80
BindAddress option, for Apache, 715
bit, 548
BlackBox, 107–108

Web resources, 805
boa Web server, 736
booting system, initialization process, for

System V, 432–436
borders, of KDE desktop windows,

138–139
Bourne Again shell (bash), 32, 229

Bourne shell (sh) vs., 180
specifying for program execution, 343
Web resources, 808

Bourne shell (sh), 32, 228–229

vs. Bourne Again shell (bash), 180
run control file, 207
as standard, 179–181
starting, 178
variables as text strings, 324

break statement, 358
broadband connection, 634
broadcast IP address, 255 as, 579
Broadway project, 79
BSD (Berkeley Software Distribution)

Unix, 9, 824–826
initialization process, 431, 436–437

BSD/OS, 824
BSDi Internet Server package, 824
buffer, 834

for ed, 246
for emacs, 272, 275–276

loading file into, 274
build, 482, 835
Build script for sendmail, 675
burning CDs, 460
bus network architecture, 555–556,

556, 849
byte, 548

C

C programming language, 8–9, 316
C shell (csh), 33, 233–237

environment variables, 234–236
run control files, 233–234
tsch vs., 236–237
Web resources, 808

bash (Bourne Again shell)–C shell (csh)

2817IDX.qxd 12/1/00 12:00 PM Page 856

857

cable
10/100BaseT Ethernet, 544
backplane of hub, 554

cable modem, 548, 584
running servers on, 659
security risk from connection, 634, 663

CacheNegotiatedDocs option, for
Apache, 723

Caldera, 829
cancel command, for Solaris print jobs, 535
“cannot exec ‘as’:No such file or

directory” message, 496
case sensitivity, 46, 182, 835
case statement, 347–350

arguments from command line, 348–350
cat command, 186, 770
“The Cathedral and the Bazaar”

(Raymond), 25
cc, 482
cd command, 57, 184, 770
CD-ROM disks, 459–460
CD-ROM with book, Web resources,

819–820
CDPATH environment variable (csh), 234
CDPATH environment variable (ksh), 231
CERT page, 816
cfdisk command, 463, 463–464, 770
change command (sed), 379
chat program, talk as, 764
chgroup command, 454
Chinese language, character coding, 86
chmod command, 157, 197, 770–771
chown command, 195–196, 771

for directory permissions, 199
circumflex (^), to match beginning of line,

188, 371

Cisco router, 551, 583
class of windows, 143
classes of IP addresses, 578, 840
clean file (AfterStep), 112
client-server architecture, 592–597, 593, 835

backups of multiple machines, 599–601
multiple-service machines, 594–597, 595
services across multiple machines,

597–599
in X Window System, 72–73

clock, configuring from KDE Control
Center, 144–145

clock (KDE panel), 132
closing buffer for emacs, 276
color

of KDE desktop, 139
in X Window System, 86–90

COLUMNS environment variable
(ksh), 231

command interpreter, 835
shell as, 32

command-line interface, 835
command-line processing

case statement to process arguments,
348–350

for statement use in, 353–354
using sed, 380–381

command mode in ed, 246
editing in, 258–262

command mode in vi, 257–258
command shell, 6–7, 835
commands, 6–7, 35–36

aliases for, 203–204
/bin directory for, 59
common shell, 181–188
determining success of execution, 331

cable–commands

2817IDX.qxd 12/1/00 12:00 PM Page 857

858

flag in, 36
general format, 36
if-then to test for execution, 340–341
scheduling for later time, 769
semicolon (;) for end, 403
substitution, 223–224
syntax, 835

comments, 835
in Apache configuration file, 711
in /etc/inetd.conf file, 746
in shell scripts, 319
in smb.conf file, 614

commercial software, vs. Free Software,
25–26

Common Unix Printing System (CUPS),
538–539

Compaq Tru64 Unix, 828
comparing files, 773
comparison operators, 318

arithmetic, 337
for strings, 336

compatibility file (AfterStep), 112
compiled languages, 316
compilers, 9, 482, 835
compiling

kernel (Unix), 506–515
for FreeBSD, 512–515
for Linux, 507–512

software from source code, 479,
480–484

compressed archive files, 154
gzip command for, 777

computers. See also hardware; servers
on network, naming, 580–581

concatenating files, 770

conditional flow control in scripts,
334–350

case statement, 347–350
arguments from command line,

348–350
if-then, 335

elif statement, 345–347
with else, 344–345
example, 342–343
multiple conditions, 341–342
non-variable evaluation, 338–341
test command, 339–340
variable evaluation, 336–338

conditional statements in shell scripts, 317
config file, for netatalk, 627–628
configurability, 11
configuration files, 33, 835

/etc directory for, 59–60
. leading dot for, 51

./configure command, 156
congestion on networks, 596, 843
consistency, 11
control buttons, configuring from KDE

Control Center, 144
Control Center (KDE), 137, 137–145

Date & Time, 144–145
Desktop, 138–140
Information, 140
input devices, 140–141
Keys, 141–142
Network, 143
Password, 144
Sound, 143
Windows, 143–144

Control Panel (Windows), Network, 617

commands–Control Panel (Windows), Network

2817IDX.qxd 12/1/00 12:00 PM Page 858

859

cookie, 835–836
copying files, 185–186, 193, 772
copyright violations, 696
Corel Corporation, 18
Corel Linux, KDE as default desktop, 123
counting words in file, 796
cp command, 185–186, 193, 772
CPU, load statistics, 646
cpuinfo file, 511–512
crackers, 836

expertise of, 645
hackers vs., 632–633
log scrubber programs, 648–649
password testing by, 49
restricting system access by, 601

cron utility, 427
crontab command, 427, 772

for backups, 600
syntax, 428

cryptographic software, U.S. export
restrictions, 644

csh (C shell), 33, 233–237
tsch vs., 236–237
Web resources, 808

.cshrc file (csh), 233
Ctrl key

in GNU Emacs, 273–274
in pico, 287–288

CUPS (Common Unix Printing System),
538–539

current directory, displaying path for, 785
current line in ed, 247
cursor movement

in GNU Emacs, 275
in vi command mode, 258–260

cutting (yanking) text, 281
CWD environment variable (csh), 234

D

d command (ed), 250
daemon, 836

apfd, 623
fhttpd, 738
inet, 673
innd, 702
natd, 586–587
nfsd, 609
rshd, 759

daisy chain architecture, 556, 557, 836, 849
Dante, 602, 654
data structures, in GNU Emacs, 272–273
data transfer services, commenting

out, 643
database file (AfterStep), 112
database file, for AIDE, 650
datagram, 836
date command, 772
date, configuring from KDE Control

Center, 144–145
dd command, 773
/.deb extension, 486
Debian GNU/Linux distribution, 18
Debian Linux, kdesupport package

for, 125
Debian package manager (dpkg), 485,

486–487
declarative statements in shell scripts, 317
declare command, 325–326, 326, 327, 773

cookie–declare command

2817IDX.qxd 12/1/00 12:00 PM Page 859

860

default route, 583
default settings

colors, 86–89
for file permissions, 638
for font, 85
for text editor, 289

DefaultType option, for Apache, 723
Deja, 695
deleting

directories, 199, 787
files, 197–198, 786
groups, in Solaris, 456
job from print spool, 781
packages

with dpkg, 486–487
with rpm, 489
in Solaris, 496–497

in sed, 378
text in ed, 250
text in vi, 260–261
user accounts, 451–453

delivery agent for mail, 670, 836
Denial of Service attack, 635
DENY action, in /etc/suauth file, 443–444
desktop

KDE Control Center for settings,
138–140

virtual, in fvwm, 109
desktop environment, 67, 68, 69–70. See

also GNOME; KDE
Web resources, 803–807
window manager vs., 70–71, 98

/dev directory, 469
development series of Linux kernels, 508
device, 836
device drivers, for hardware, 505

device names, 464, 469
DHCP (Dynamic Host Configuration

Protocol), 549
and PPPoE, 582
Web resources, 814

dhttpd Web server, 736–737
dial-up networking, 565–577

and FreeBSD, 575–576
Kppp tool for configuring, 568–575
modem as network device, 564, 567–568
and Solaris, 577

diff command, 773
exit status, 391

Digital Equipment Corporation (DEC)
PDP-7, 8

Digital Unix, 828
directive statements in shell scripts, 317
directories, 34, 469

for Apache, 709
user page maintenance, 722

for Apache DocumentRoot, 720–721
app-defaults, 88
/bin, 59
changing, 57–58, 184, 770
cp command to copy files between, 193
creating, 198–199, 783
deleting, 199, 787
displaying path name, 184
/etc, 59–60
/etc/mail/cf, 675
File Manager (Gnome) to display,

168, 168
for fonts, 80–81
/home, 60
for initialization scripts, 435
listing contents, 782

default route–directories

2817IDX.qxd 12/1/00 12:00 PM Page 860

861

listing files in, 182–184
ownership and permissions, 199
for packages, 480–481
root, 34
sharing with Windows, 615–616
synchronizing, 788–789
/tmp, 60
/usr, 60
/usr/local, 60–61
/var, 61
/var/spool/mail, 672

directory parameter (vi), 265
directory permissions, chown

command for, 199
directory, /tmp, 480–481, 484
DirectoryIndex option, for Apache, 722
disabilities, users with, 95–96
disable command, for Solaris print

jobs, 535
disk and filesystem management,

414–415, 458–475
Disk Label Editor (FreeBSD), 466
disk space

displaying amount used, 774
filling by programs, 461–462

disks, 836
magnetic, 458–459
optical, 459–460, 843
partitions, 461–468
physical media vs. filesystem, 468–470
what it is, 458–461
Zip and Jaz disks, 460

$DISPLAY environment variable, 79–81
display manager, 67, 99, 836
display server (X), 79, 836

distributed system, 592–604
backups of multiple machines, 599–601
multiple-service machines, 594–597, 595
security advantage, 601–602
services across multiple machines,

597–599
Doctor, 282–283, 283
DocumentRoot option, for Apache, 720
dollar sign ($)

for environment variables, 208
to match end of line, 188
as operator, 328
as variable for process ID, 332

Domain Name Server, MX record
from, 671

domain names
network and Internet, 551
permitting X window server access to

specific, 92
dot files, 51, 837
downloading

Gnome, 152–154
additional packages, 153–154
base library, 152–153
core application, 153

KDE, 124–125
dpkg (Debian package manager), 485,

486–487
dselect, 487–488
DSL connection, 548, 584

running servers on, 659
security risk from, 634, 663

du command, 774
dump frequency, 472
DVD-ROM disks, 459–460

directories–DVD-ROM disks

2817IDX.qxd 12/1/00 12:00 PM Page 861

862

Dynamic Host Configuration Protocol
(DHCP), 549

and PPPoE, 582
Web resources, 814

dynamic IP address, 549–550
security risk from, 633

Dynamic Shared Object support, for
Apache, 716

E

e-mail
how it works, 669–672

process, 670–671
software components, 669–670

KEdit for, 305
personal use of business address, 661
to root, 444

e-mail server
hardware for, 597–598
separate computer for, 597

e-mail services
Exim, 678–680
IMAP server, 683–684
overview, 672–674
POP server, 683–684
Postfix, 675–678
qmail, 680–682

mailing lists and, 682
sendmail server, 674–675
smail, 682–683
Web resources, 816–817

Easy Software Products corporation, 538

echo command, 48, 187, 774
$SHELL, 178
to determine success of command

execution, 331
ECHO environment variable (csh), 234
Eckstein, Robert, Using Samba, 613
ed editor, 244–254, 246

basic commands, 245
deleting text, 250
editing by content, 252–254

matching, 252–253
substitution, 253–254

inputting text, 248–249
joining lines, 250–251
moving text, 250
reading files, 247
saving and quitting, 251–252
starting, 245–246
Web resources, 809–810
what it is, 244–245

Edit menu (NEdit), 301–302
edit mode in ed, 245
editing. See text editors
$EDITOR environment variable, 289
EDITOR environment variable (ksh), 231
eGroups, 681
electric power to computer, 52
electronic mail. See e-mail services
elif statement, 345–347
elm, 669
else statement, if-then statement with,

344–345
emacs. See GNU Emacs
.emacs file, 52
enable command, 524, 525, 532

Dynamic Host Configuration Protocol (DHCP)–enable command

2817IDX.qxd 12/1/00 12:00 PM Page 862

863

end of command, semicolon (;) for, 403
Enlightenment, 116–119, 117, 119

configuration files, 118
Web resources, 806

ENV environment variable (ksh), 231
environment variables, 203, 207–212, 837

in C shell (csh), 234–236
$DISPLAY, 79–81
displaying, 209, 789
$EDITOR, 289
$HOSTNAME, 212
in Korn shell, 231–232
$MAIL, 210
$PATH, 212
PRINTER, 523
$PS1, 210–211
$USER, 209–210

ERRNO environment variable (ksh), 231
error response options, for Apache,

730–731
ErrorLog option, for Apache, 724
es shell, 238
esac statement, 347
escape character, 210, 371, 837
escape sequences, 210–211, 837
/etc/afpd/Makefile file, 623
/etc/apache directory, 709
/etc/apache/httpd.conf file, 711
/etc/bashrc file, 204–205
/etc/crontab file, 600
/etc/dfs/dfstab file, 474–475, 610
/etc directory, 59–60
/etc/exports file, 474, 609

and security, 612
/etc/fstab file, 471–472, 611

/etc/group file, 453–454
/etc/hosts file, 551, 581
/etc/hosts.equiv file, 527
/etc/inetd.conf file, 673, 746–749

commenting out unneeded services, 643
pop and imap mail services, 681–682

/etc/init.d file, 608, 663
/etc/init.d/samba/conf file

entry to enable directory, 615–616
to share printer, 618–619

/etc/inittab file, 432–433
/etc/mail/cf directory, 675
/etc/master.passwd file (FreeBSD), 448
/etc/passwd file, 448–449

* (asterisk) to disable account, 451
empty password field, 452
encryption, 450

/etc/postfix/main.cf file, 676–677
/etc/ppp/ppp.conf file, 576
/etc/printcap file, 520

editing to add network printer, 526–527
editing to add printer, 522
removing printer from, 532–533
sample entry, 523

for remote printer, 527
/etc/rc file, 436
/etc/rc.conf file, 436, 587
/etc/rc.firewall script, 587
/etc/samba/smb.conf file, 614–615
/etc/services file, 551, 587, 745, 749–754
/etc/shadow file, 450
/etc/sockd.conf file, 654
/etc/socks.conf file, 654
/etc/suauth file, 443–444
/etc/vfstab file, 472–473

end of command, semicolon (;) for–/etc/vfstab file

2817IDX.qxd 12/1/00 12:00 PM Page 863

864

/etc/X0.hosts file, 92–93
/etc/xinetd.conf file, 754–755
Ethernet cable, 548
Ethernet networks, 577–582

configuration, 578
Eudora, 669
events, associating sounds with, 143
executable programs, shell search

for, 212
Exim, 678–680
exit command, 52, 392, 774

to leave root account, 445
exit statement, 403
exit status, 331, 390–391, 837

accessing, 393–395
example, 395–397
of if-then statement, 335
managing, 392–397
reporting, 392–393

exiting
GNU Emacs, 282
vi, 267–268

expire.ctl file, 703
expired news messages, 695–696

settings, 703–704
explicit method, of determining exit

status, 393–394
export command, 208–209, 323, 775
exportfs command, 610, 775
expr command, 230, 324, 775
.exrc file, 266–267
ext2 file system, creating, 783
ExtendedStatus option, for Apache, 718
external hubs, 550
external modem, 567

external security, 637, 642–645
shut-down of all unnecessary services,

642–644
extract function (xauth), 94
ezmlm package, 681
ezPPP tool, 568

F

failed login, 46
FCEDIT environment variable (ksh), 231
fdisk command, 775–776
feel.name file (AfterStep), 112
fetchmail program, 25
fg command (ksh), 230
fhttpd Web server (File/HyperText Trans-

fer Protocols Daemon), 738
fi statement, 335
field in awk, 383
FIGNORE environment variable

(csh), 234
File/HyperText Transfer Protocols Dae-

mon (fhttpd), 738
File Manager (Gnome), 167–168, 169
File Manager (KDE), 134, 134–136

starting from KDE panel, 130
File menu (NEdit), 300–301
file names, 194

changing, 185
file permissions, 195–196, 837

chmod to change, 770–771
for /etc/bashrc file, 204–205
ls command to display, 183, 195
user habits as security risk, 638–640

/etc/X0.hosts file–file permissions

2817IDX.qxd 12/1/00 12:00 PM Page 864

865

file size
ls command to display, 184
setting maximum for print job, 523

file tree, 837
FILEC environment variable (csh), 235
files

comparing, 773
concatenating, 770
copying, 185–186, 193, 772
counting words in, 796
creating and editing, 190–193
deleting, 197–198, 786

when removing user account, 452
displaying contents, 186–187
displaying first or last lines, 777
editing. See text editors
finding, 769, 796
group ownership, 454

ls to display, 183
moving, 193–194, 784
moving between directories, 185
ownership, 195–196

changing, 771
printing contents to screen, 770
reading in ed editor, 247
sharing, 607
synchronizing, 788–789

filesystem, 33–34, 59, 837
checking integrity, 776
listing files, 182–184
mounting, 783–784
mounting remote, 609
navigation, 56–61

absolute vs. relative path names, 57
current location, 56–57
directory changes, 57–58

vs. physical media, 468–470
system directories, 58–61

/bin, 59
/etc, 59–60
/home, 60
/tmp, 60
/usr, 60
/usr/local, 60–61
/var, 61

unmounting, 794–795
finding

files
with apropos, 769
with whereis, 796

ports in FreeBSD, 494–495
finger, inetd to run, 761–762
firewall, 602, 652–654, 837

hardware for, 598
NFS and, 612

flags, 36, 182, 838
for test command, 339–340

floppy disks, 459
flow control in scripts, 334, 352–368, 838

case statement, 347–350
arguments from command line,

348–350
conditional, 334–350
if-then, 335

elif statement, 345–347
with else, 344–345
example, 342–343
multiple conditions, 341–342
non-variable evaluation, 338–341
test command, 339–340
variable evaluation, 336–338

nesting loops, 363–367

file size–flow control in scripts

2817IDX.qxd 12/1/00 12:00 PM Page 865

866

select statement, 356–360
for statement, 352–356

command-line processing, 353–354
example, 354–356

until loop, 362–363
while loop, 360–361

folders. See directories
font server, 593
fonts

for KDE desktop, 139
in X Window System

font server, 83–85
installing, 81–83
international fonts, 85–86

for statement, 352–356
command-line processing, 353–354
example, 354–356

format command, 467
forms file (AfterStep), 112
FPATH environment variable (ksh), 231
FrameMaker, 192
free hog slice, 467, 838
Free Software, 838

commercial software vs., 25–26
Free Software Foundation, 19–20, 23

emacs from, 271
projects, 24
Web resources, 802–803

free status of software, 21
FreeBSD, 10, 18–19

automatic mounting under, 471–472
compiling kernel, 512–515

users of nonupgraded version,
513–514

users who have upgraded source
tree, 515

device names, 469
dial-up networking and, 575–576
font installation for, 82
installing INN on, 701
IP maquerading, 586–587
name for network Ethernet interface,

579, 580
and netatalk, 628
partition creation, 464–466
ports, 493–495
printing, 520

adding local printers, 522–523
adding network printers, 526–527
queue management, 534
removing printer, 532

remote partition mounting, 474
software installation, 492–495

installing ports, 493–494
turning off services in, 664
user accounts

creation, 448–449
passwords, 450
removing, 452

Web resources, 801
FrontPage (Microsoft), noncompliant

HTML, 739
fsck command, 472, 776
FTP (File Transfer Protocol), inetd to

run, 760
FTP server, separate computer for,

598–599
full-screen editor, 244, 256. See also vi
function calls, 838
functions, in .twmrc file, 103
fvwm, 108–110
FVWM project, Web resources, 805

flow control in scripts–FVWM project, Web resources

2817IDX.qxd 12/1/00 12:00 PM Page 866

867

G

gateway, 652, 838
for ISP, 572
on network, 582–583
NFS and, 612
as security, 602, 603
set up on network computer, 584

gcc (GNU C Compiler), 482
GNU Emacs and, 270

gdb (GNU Debugger), GNU Emacs and,
270

gEdit, 307, 307–309
GENERIC file, 513
ghostscript utility, 535–536

drivers available, 537, 537
ghostview utility, 535–536, 536
GIMP ToolKit (GTK), 151

Web resources, 820
global keys combinations, defining from

KDE Control Center, 142
GNOME, 69, 70, 98, 150–173

applets, 167
application launchers, 165–166
compiling and installing, 155–156
configuring X for, 157–158
Control Center, 169–171, 170

categories, 170
downloading, 152–154
File Manager, 167–168, 169
gEdit, 307, 307–309
graphical administration tool, 442
main menu, 160, 160–165
themes for desktop, 171–173
unpacking source code, 154–155

Web resources, 807
what it is, 150–151

GNOME panel, 159, 159
applets on, 167

gnome-ppp program, 568
GNU Emacs, 191, 191, 270–283

backups and autosave, 280
buffers, 275–276
configuration file, 52
cursor movement, 275
Doctor, 282–283
getting started, 274–275
help, 279–280
killing and yanking text, 281
peculiarities, 271–274

data structures, 272–273
key bindings, 273–274

running, 271
saving and quitting, 282
searching and replacing, 281–282
Web resources, 810–811
what it is, 270–271
windows, 276, 276–278, 277

commands, 277
mini buffer, 279
mode line, 279

GNU gcc libraries, Web resources, 819
GNU General Public License, 21–22

preamble, 22
GNU project, 19–22

components, 23
WindowMaker, 113

GNU Public License (GPL), 838
Google, 763
graphical text editors, 191, 838

gEdit, 307, 307–309

gateway–graphical text editors

2817IDX.qxd 12/1/00 12:00 PM Page 867

868

KEdit, 305, 305–306
NEdit, 299–306, 300
reasons to use, 298–299
Web resources, 811–812

graphical user interface, 99–100, 838. See
also desktop environment; window
managers; X Window System

vs. command line, 35
grep command, 187–188, 372–374, 776–777

pipe (|) with, 222–223
group ownership of files, 454

ls command to display, 183
groups, 453–456, 838

setting for new user, 447
with Solaris, 455–456

groups command, 454, 777
GTK (GIMP ToolKit), 151
GUI sandwich, 66
gunzip command, 777
GXedit, Web resources, 812
gzip command, 480, 777

H

hackers, 838–839
vs. crackers, 632–633

hard drives, 459
partitioning, 770

HARDPATHS environment variable
(csh), 235

hardware
damage from X misconfiguration, 75
device drivers for, 505
information from KDE Control

Center, 140

for networks, 550–552
security and physical access to, 636
for servers, 597–598

hashmark (#), 839
for comments in bash shell scripts, 319
for comments in sed scripts, 376

head command, 777
HeaderName option, for Apache, 728
headers on printout, suppressing, 523
help in GNU Emacs, 279–280
help (KDE panel), 132
heterogeneous networks, 839

CUPS (Common Unix Printing System)
and, 539

Web resources, 814–815
Hewlett Packard, 9
Hewlett-Packard Unix (HP-UX), 826–827
hex value color naming, 88–89
hexadecimal notation, 839
hidden files, displaying, 51
hierarchies, for USENET newsgroups,

689–691
HISTCHARS environment variable

(csh), 235
HISTFILE environment variable (ksh), 231
HISTORY environment variable (csh), 235
HISTSIZE environment variable (ksh), 231
hobbyist, services needed by, 660
home business, services needed by,

660–661
/home directory, 60
home directory, 56

returning to, 184
setting for new user, 447

HOME environment variable (csh), 235
HOME environment variable (ksh), 231

graphical text editors–HOME environment variable (ksh)

2817IDX.qxd 12/1/00 12:00 PM Page 868

869

homogeneous network, 839
hooks, for screen interpreters, 96
hostname command, 580–581
$HOSTNAME environment

variable, 212
HostnameLookups option, for

Apache, 724
Hotmail, 681
HP-UX, 826–827
HTML (HyperText Markup

Language), 708
Web page compliance, 739

HTTP (HyperText Transfer Protocol),
538, 708

hub, 550, 839
for Ethernet connection, 577–578

hub network topology, 554–555, 555, 849
Hurd, 24
HushMail, 670
HyperText Markup Language

(HTML), 708
Web page compliance, 739

HyperText Transfer Protocol (HTTP),
538, 708

I

IANA (Internet Assigned Numbers
Authority), 579

IBM, 9
AIX, 822–823

IceWM, 103–106, 104
configuring, 104–106
Web resources, 805

icons, on KDE desktop, 139

ident file (AfterStep), 112
IETF (Internet Engineering Task

Force), 539
if-then statement, 335

and command execution, 340–341
for determining exit status, 394–395
elif statement, 345–347
with else, 344–345
multiple conditions, 341–342
non-variable evaluation, 338–341
test command, 339–340

and square brackets, 338
variable evaluation, 336–338

ifconfig command, 578, 778
IFS environment variable (ksh), 231
ignorecase parameter (vi), 265
IGNOREEOF environment variable

(csh), 235
IMAP (Internet Message Access Proto-

col), 673
IMAP server, 683–684

POP server vs., 684
implicit method of determining exit sta-

tus, 394–395
indentation of code, 336
IndexIgnore option, for Apache, 728
inet daemon, for mail services, 673
inetd program, 744–745

configuring, 745–754. See also
/etc/inetd.conf file

/etc/services file, 551, 587, 745,
749–754

connection-based services, 757–759
rlogin, 758–759
rsh, 759
telnet, 757–758

homogeneous network–inetd program

2817IDX.qxd 12/1/00 12:00 PM Page 869

870

FTP (File Transfer Protocol), 760
information services, 761–763

finger, 761–762
netstat command, 762–763

running services from, 756–757
talk, 763–764
Web resources, 818
xinetd program as alternative, 754–756

information, from KDE Control
Center, 140

information services
finger, 761–762
netstat command, 762–763

init command, 778
to change runlevel, 436

init scripts, 429–431
initialization process, 431–437

BSD (Berkeley Software Distribution)
Unix, 431, 436–437

System V, 432–436
inkjet printer, 620
INN (InterNetNews), 700–705

configuring and running, 702–705
obtaining and installing, 700–701
patches, 700

innd daemon, 702
input devices

configuring from KDE Control Center,
140–141

redirection, 217
standard, 217

input filter, for printer, 523
input mode in ed, 245
input redirection operators, 219–221

combining with output, 221
inputting text in ed editor, 247–248

insert command (sed), 379
insert mode in vi, 257–258
insmod command, 778
installing

Exim, 678–679
fonts in X, 81–83
INN (InterNetNews), 700–701
packages, 483–484
Postfix, 676–677
qmail, 681
Samba, 613–614
software, 479

for FreeBSD, 492–495
for Linux, 485–492
for Solaris, 495–497

X Window System, 73
integer arithmetic in Korn shell, 230
integers, 327–328, 839
integrated desktop environments, 68, 839
Intel x86-series processors, popular Unix

versions for, 17
internal modem, 567
internal security, 637–642

user habits as risk
file permissions, 638–640
passwords, 640–641

international fonts, 85–86
international keyboard, configuring from

KDE Control Center, 141
Internet

domain names, 551
gateway for connection, 582–583
security risk from, 632
sending mail on, 671
sites for launching attacks, 634–635
X via, 78–79

inetd program–Internet

2817IDX.qxd 12/1/00 12:00 PM Page 870

871

Internet Assigned Numbers Authority
(IANA), 579

Internet Engineering Task Force (IETF),
539

Internet Information Server (Microsoft),
708

Internet Message Access Protocol
(IMAP), 673

server, 683–684
Internet Printing Protocol (IPP), 538, 539
Internet Protocol (IP), 548–549, 839
Internet Service Provider (ISP)

account information from, 569
login script for account, 575
shell account with, 42
Unix and, 566–567

interpreted languages, 316
interprocess communication, 390, 839

exit status, 392–397
signals, 397
unique identifiers, 397–399

interrupts file, 511
intrusion detection, 839–840
Iomega Corporation, 460
IP (Internet Protocol), 548–549, 839
IP address, 548–549

DHCP for allocating dynamic, 582
for Ethernet configuration, 578
and network designations, 578–579
static or dynamic, 549–550

IP classes, 578, 840
IP maquerading, 585–588, 586, 840

with FreeBSD, 586–587
with Linux, 587–588

IP number, 840
ipchains method, 588, 652

ipfw utility (FreeBSD), 652
IPP (Internet Printing Protocol), 538, 539
IRIX, 827–828
ISDN, running servers on, 659
ISP (Internet Service Provider)

account information from, 569
login script for account, 575
shell account with, 42
Unix and, 566–567

iterative flow control, 334, 352–368
nesting loops, 363–367
select statement, 356–360
for statement, 352–356

command-line processing, 353–354
example, 354–356

until loop, 362–363
while loop, 360–361

J

j command (ed), 250–251
Japanese language, character coding, 86
Java, 79

for Jigsaw, 739
Jaz disks, 460
jed (text editor), 293–296, 294

run control files, 293–295
running, 295–296
Web resources, 811

.jedrc file, 294
Jigsaw Web server, 738–739
joe (text editor), 289–293, 290

cursor movement, 291
deletion commands, 291–292
page movement, 291

Internet Assigned Numbers Authority (IANA)–joe (text editor)

2817IDX.qxd 12/1/00 12:00 PM Page 871

872

search commands, 292
Web resources, 811
window operations, 292

joining lines, in ed editor, 250–251
junk mail, preventing on newsgroups, 697

K

KDE, 69, 98
to configure printer, 620
Control Center, 137–145

Date & Time, 144–145
Desktop, 137, 138–140
Information, 140
input devices, 140–141
Keys, 141–142
Network, 143
Password, 144
Sound, 143
Windows, 143–144

default desktop, 129
Desktop themes, 145, 146
File Manager, 134, 134–136
vs. GNOME, 150
graphical administration tool, 442
installing, 123–128

compiling and installing, 127–128
downloading, 124–125
recommended packages, 125
unpacking source code, 126

Theme Manager, 146
tools to work in shell, 131
user management, 448
virtual desktop, 133, 133
Web resources, 806

what it is, 122–123
X configuration for, 128

KDE panel, 129–133, 130
Application Starter, 130, 131
clock, 132
File Manager, 130
help, 132
Pager, 132
Panel Collapse bar, 130
Taskbar and system tray, 132
Terminal Emulator, 130
text editor, 132

kdebase package, 124
kdelibs package, 124
kdesupport package, 124
kdm (KDE Display Manager), 67
KEdit, 305, 305–306

menu bar, 306
toolbar, 306
Web resources, 812

KeepAlive option, for Apache, 714
KeepAliveTimeout option, for Apache, 714
Kempston, Mike, 577
Kerberos protocol, 759, 840
kernel, 24, 30–31, 415, 501–516, 840

compiling, 506–515, 507–512
for FreeBSD, 512–515

development, 503–504
modules vs. static, 504–506
numbering for Linux, 507–508
official, 504
role of, 31, 502
troubleshooting new, 511
what it does, 502–503

kernel hackers, 633
key bindings, 840

joe (text editor)–key bindings

2817IDX.qxd 12/1/00 12:00 PM Page 872

873

keyboard
configuring from KDE Control Center,

141–142
key bindings in GNU Emacs, 273–274
shortcuts in IceWM preferences file, 105
as standard input, 217
for users with disabilities, 95
variable input from, 330

kHTTPd Web server, 739–740
kill command, 398, 779

to send signals, 399–402
killing text, in GNU Emacs, 281
klogin command, 759
Korean language, character coding, 86
Korn shell (ksh), 32–33, 229–233

environment variables, 231–232
run control files, 207, 230
Web resources, 808

Kppp tool, 568–575, 569
Accounts tab, 570, 570
Device tab, 572, 573
DNS tab, 570, 571
Gateway tab, 572, 572
IP tab, 570, 571
Login Script tab, 572, 573
Modem tab, 574

ksh (Korn shell), 32–33, 229–233
Web resources, 808

.kshrc file, 230
KWM window manager, 123

L

LANG environment variable (ksh), 231
language, for KDE desktop, 139–140

LanguagePriority option, for Apache, 729
laser printer, 620
launcher, 841
Launcher Properties window (Gnome),

166, 166
launching applications in Gnome,

165–166
LC_ALL environment variable (ksh), 231
LC_COLLATE environment variable

(ksh), 231
LC_CTYPE environment variable

(ksh), 231
LC_MESSAGES environment variable

(ksh), 231
lease period, 841

for IP address request, 582
legacy code, 825
Leonard, Andrew, 803
less command, 186–187, 779
let command (ksh), 230
line editor, 256, 841. See also ed editor
line printer control program, 780
LINENO environment variable (ksh), 231
LINES environment variable (ksh), 232
links, creating, 779
Linksys hubs, 550
Linux, 10, 15, 17–18

administration, Web resources, 813
Apache packages, 709
automatic mounting under, 471–472
compiling kernel, 507–512
device names, 469
dial-up networking configuration, 568
font installation for, 82
as Free Software, 24
Hardware Compatibility FAQ, 519

keyboard–Linux

2817IDX.qxd 12/1/00 12:00 PM Page 873

874

installing Gnome for, 151
installing INN on, 701
kHTTPd Web server, 739–740
name for network Ethernet

interface, 579
and netatalk, 629–630
partition creation, 463, 463–464
printing, 520

adding local printers, 522–523
adding network printers, 527–528
queue management, 534
removing printer, 532–533

remote partition mounting, 474
software installation, 485–492

with dpkg, 486
with dselect, 487–488
with rpm, 488–492

testing network connections, 580
turning off services in, 664
user accounts

creation, 448–449
removing, 452

Web resources, 801
window managers, 68
xinetd program in, 754–756

Linux Administrator’s Security Guide, 815
Linux Firewalls (Ziegler), 653
Linux Hardware Compatibility FAQ, 74
list parameter (vi), 265
Listen option, for Apache, 715
ln command, 779
load, 841
load average, 841
load balancing for printers, 539
local area network (LAN), 552

topologies, 553–557

bus, 555–556, 556
hub, 554–555, 555
ring, 553, 554

local printers
adding, 521–525

with FreeBSD and Linux, 522–523
with Solaris, 524–525

locate command, 779
lock file, for Apache, 713
locked rooms, for servers, 636
log files, sed scripts to edit, 380–381
log scrubber programs, 648–649, 841
LogFormat option, for Apache, 725
logging in, first time, 45–48
logging out, 52
logical operators, for multiple if-then

conditions, 340–341
.login file (csh), 233
login ID

$USER environment variable for,
209–210

setting for new user, 447
login screen, 45
login script, for ISP account, 575
LogLevel option, for Apache, 724
logout command, 52, 780
.logout file (csh), 234
logs, 841

for backups, inclusion in shell script,
423–426

for Exim, 680
for intruder detection, 647–648
for Samba, 615

long-form file listing, 183
look.name file (AfterStep), 112
loop variable, 353

Linux–loop variable

2817IDX.qxd 12/1/00 12:00 PM Page 874

875

loops
for, 352–356

command-line processing, 353–354
example, 354–356

nesting, 363–367
until, 362–363
while, 360–361

lp command, 520
lpadmin utility, 521, 524–525

flags, 524–525
to install network printer in Solaris, 531
to remove printer, 533
to set default printer, 535

lpc command, 780
lpd program, 528
lpq command, 780–781
lpr command, 781
lprm command, 781
LPRng module, 629
lpstat command, 535
lpsystem utility, to install network printer

in Solaris, 531
lptest command, 522
ls command, 47, 58, 182–184, 782

-a flag, 50–51, 51, 184
-F flag, 184
redirecting output, 218–219

Lucent Technologies, 8

M

m command (ed), 250
m4 program, 675
MacOS, 5. See also netatalk

user accounts, 440
Macro menu (NEdit), 304

macros, 841
in vi, 264–265

.exrc file to store, 267
magic borders, of KDE desktop

windows, 139
magnets, 458
$MAIL environment variable, 210
MAIL environment variable (csh), 235
MAIL environment variable (ksh), 232
Mail eXchanger (MX) record, 671, 842
mail transfer agent (MTA), 668, 670, 841
mail user agent (MUA), 669, 841
MAILCHECK environment variable

(ksh), 232
mailing lists, and qmail, 682
MAILMSG environment variable

(ksh), 232
MAILPATH environment variable

(ksh), 232
main menu (Gnome), 160, 160–165
mainframe Unices, 822–832

AIX, 822–823
BSD (Berkeley Software Distribution)

Unix, 9, 824–826
initialization process, 431, 436–437

HP-UX, 826–827
IRIX, 827–828
OSF/1, 828–829
SCO Unix, 829–830
SunOS, 830–831
System V, 14, 831

initialization process, 431, 432–436
printing, 520–521

Xenix, 14, 831–832
make command, 127, 156, 482–483, 782

for Linux kernel, 509–510
Makefile, 156, 482, 483, 841

loops–Makefile

2817IDX.qxd 12/1/00 12:00 PM Page 875

876

malicious users, 641–642
man command, 216, 782–783
manual pages, 181, 841–842

exit status information, 391
:map command (vi), 264–265
Massachusetts Institute of Technology,

Artificial Intelligence Laboratory, 20
matching

in ed editor, 252–253
in vi command mode, 261–262

MaxKeepAliveRequests option, for
Apache, 714

MaxRequestsPerChild option, for
Apache, 715

memory
IceWM and, 103
for INN (InterNetNews), 700
text editor use of, 298

menu configuration file (IceWM),
105–106

menus, in Korn shell, 230
merge function (xauth), 94
Message of the Day (MOTD), 46, 47, 842
metacharacters, 371, 842

in awk program, 386–387
MetaDir option, for Apache, 730
metakey, 142, 842

in GNU Emacs, 273–274
MetaSuffix option, for Apache, 730
Microsoft Exchange, 681
Microsoft FrontPage, noncompliant

HTML, 739
Microsoft Internet Information Server, 708
Microsoft Outlook, 669
Microsoft, Xenix, 831–832
MIMEMagicFile directive, for Apache, 724
Mindspring/Earthlink, 566

mini buffer, in GNU Emacs, 278, 279
misc.jobs.* groups, 696
MIT-MAGIC-COOKIE-1, 93
mkdir command, 198–199, 470, 783
mke2fs command, 464, 783
mod_mime_magic module, 724
mod_perl (Perl interpreter), 732
mode line, in GNU Emacs, 278, 279
modem

device selection in Kppp, 572
as network device, 564–565, 567–568

Kppp configuration, 574, 574
moderated newsgroups, 692
modular kernel, 842
modularity, 842

of AfterStep, 110
vs. static kernels, 504–506
of Unix, 30

monitor screen
resolution configuration, 74
as standard ouput, 217

more command, 186–187, 783
pipe (|) with, 222

MOTD (Message of the Day), 46, 47, 842
mount command, 470, 783–784
mount point, 470
mounting, 842

NFS (Network File Service), 610
automatic, 611

remote filesystem, 609
mounting partitions, 469–471

automatic, 471–473
under FreeBSD and Linux, 471–472
under Solaris, 472–473

remote, 473–475
mouse, configuring from KDE Control

Center, 141, 144

malicious users–mouse, configuring from KDE Control Center

2817IDX.qxd 12/1/00 12:00 PM Page 876

877

moving
files, 193–194
text in ed, 250

moving around directories, 57–58
msg parameter (vi), 265
MTA (mail transfer agent), 668, 670, 841
MUA (mail user agent), 669, 841
multitasking, 6, 842
multiuser operating system, Unix as, 6
mv command, 185, 194, 784
MX (Mail eXchanger) record, 671, 842

N

names
for colors, 88
for computers on network, 580–581
for network Ethernet interface, 579
for partitions, 464
for variables, 323–324
for Windows machines, 617

NASA (National Aeronautics and Space
Administration), 827

natd (Network Address Translation
Daemon), 586–587

navigation of directories, 57–58
NEdit, 192, 299–306, 300

Edit menu, 301–302
File menu, 300–301
Macro menu, 304
Preferences menu, 303
Search menu, 302
Shell menu, 304
Web resources, 812
Windows menu, 304

nesting, 842
loops, 363–367

Net News Transfer Protocol (NNTP),
689, 693

netatalk, 606, 621–630
configuration, 622–628

apfd.conf file, 623–625
AppleVolumes.default file, 625–626
AppleVolumes.system file, 626–627
atalkd.conf file, 622–623
config file, 627–628

Linux and, 629–630
need for, 660
Solaris and, 628–629
starting, 628
Web resources, 815

NetBSD, 824–825
netcfg utility, 568
netfilter method, 588, 652
Netscape Composer, noncompliant

HTML, 739
Netscape Navigator, source code

release, 25
netstat command, 784

inetd to run, 762–763
Network Address Translation Daemon

(natd), 586–587
Network Administrator’s Guide, 814
network devices

configuring, 778
netstat for information about, 762–763

Network File System (NFS), 473,
607–611, 843

mounting, 610
automatic, 611

need for, 660

moving–Network File System (NFS)

2817IDX.qxd 12/1/00 12:00 PM Page 877

878

obtaining and installing, 607–611
security issues, 612
server configuration, 609–610

Network Information System (NIS),
608, 843

network interface card, 550, 564
network IP address, zero (0) as, 579
network printers

adding, 525–532
with FreeBSD, 526–527
with Linux, 527–528
with Solaris, 530–532

Network Properties (Windows), 617
Network Solutions, 551
networks, 843. See also dial-up network-

ing; distributed system
administration, Web resources, 814–816
architectures, 552–559

local area network topologies,
553–557

wide area network topologies,
557–558

basic concepts, 545–547
common concerns, 559–560
congestion, 596, 843
default color settings, 88
device configuration, 564–565
displaying status of functions, 784
domain names, 551
Ethernet, 577–582
hardware and software, 550–552
IP maquerading, 585–588, 586

with FreeBSD, 586–587
with Linux, 587–588

local vs. external traffic, 559
multiple platform integration, 606–630

netatalk, 621–630
NFS (Network File Service), 607–612
Samba, 613–620

routers and gateways, 582–583
small, 584–585
TCP/IP, 547–550
testing connections, 785
X applications over, 78–81
X Window System for, 71

newgroup command, 697
news. See USENET news
news server, need for, 661
newsfeed, arranging, 698
newsfeeds configuration file, sample

entry, 702
newsgroups

creating, 696–697
managing, 704–705
moderated, 692

newsreaders, 693
NFS (Network File System), 473, 607–611,

843
mounting, 610

automatic, 611
need for, 660
obtaining and installing, 608–609
security issues, 612
server configuration, 609–610

nfs-server script, 608
nfsd daemon, 609
NIS (Network Information System),

608, 843
NNTP (Net News Transfer Protocol),

689, 693
NOBEEP environment variable (csh), 235
Noble, Brad, 814

Network File System (NFS)–Noble, Brad

2817IDX.qxd 12/1/00 12:00 PM Page 878

879

NOCLOBBER environment variable
(csh), 235

NOGLOB environment variable (csh), 235
non-English character sets, 85–86
nondisclosure agreement, 20
NONOMATCH environment variable

(csh), 235
nonprofit foundation, for Apache, 709
NOPASS action, in /etc/suauth file,

443–444
not equal (!=) operator, 361
NOTIFY environment variable (csh), 235
Novell, 831
ntalk, 764
number parameter (vi), 266
numerical evaluation of expression, 775

O

octal notation, 639
octet format for IP address, 548
official LInux kernel, 504
OLDPWD environment variable

(ksh), 232
Open Software Foundation, 9
Open Source project, 17, 24–26, 843

KDE as, 122
Web resources, 802–803

OpenBSD, 653, 825–826
OpenSSH, 644
Opera browser, 739
operating systems, 5, 843

integrating multiple on network,
606–630

netatalk, 621–630

NFS (Network File Service), 607–612
Samba, 613–620

operators, 843
in shell scripts, 317–318

OPTARG environment variable (ksh), 232
optical disks, 459–460, 843
OPTIND environment variable (ksh), 232
OSF/1, 828–829
Outlook (Microsoft), 669
output from command, 182, 216

redirection, 217
standard, 217

output redirection operators, 218–219
combining with input, 221

ownership of directories, 199
ownership of files, 195–196

changing, 771
ls command to display, 183

OWNPASS action, in /etc/suauth file,
443–444

P

p command (ed), 247
package management systems, 415, 844
package management tools, 479–480
packages, 478, 479, 844

building, 482–483
configuring, 482
in FreeBSD, 493
installing, 483–484
KDE

recommended, 125
required for installing and

running, 124

NOCLOBBER environment variable (csh)–packages

2817IDX.qxd 12/1/00 12:00 PM Page 879

880

for netatalk, 629–630
Red Hat syntax, 489
removing

with dpkg, 486–487
with rpm, 489

updating with rpm, 490
packet sniffer, 644, 844
pager file (AfterStep), 112
Pager (KDE panel), 132
Pager module (AfterStep), 110
PAM (Pluggable Additional Modules), 450
Panel Collapse bar (KDE panel), 130
papd.conf file, 629
partitions, 461–468, 844

creating, 462–468, 770
under FreeBSD, 464–466
under Linux, 463–464

mounting, 469–471
remote, 473–475

under Solaris, 467–468
pass number, 472
passwd command, 50, 784–785
passwords, 44

alternate schemes, 450–451
apfd daemon to control, 623
changing, 49–52, 50
configuring from KDE Control

Center, 144
first use, 46
guidelines, 49
for POP servers, 598
setting for new user, 447
user habits as security risk, 640–641
in Windows 98/ME, 617–618

patches, 645, 844
path, 56, 844

AppleVolumes.system file to map
volumes, 626

displaying for current directory, 785
for font access, 85
for program, finding, 779

$PATH environment variable, 212
PATH environment variable (csh), 236
PATH environment variable (ksh), 232
path names, 57

absolute vs. relative, 57
PC platform, popular Unix versions for, 17
pdksh (Public Domain Korn shell), 233
Peer-to-Peer Protocol (PPP), 547, 844
Peer-to-Peer Protocol over Ethernet

(PPPoE), 549, 582
peripheral devices, 844
Perl Mongers, Web resources, 819
Perl programming language, regular

expressions, 370
Perl shell (psh), 33, 238

Web resources, 809
permissions

for directories, 199
for files, 195–196, 837

chmod to change, 770–771
for /etc/bashrc file, 204–205
ls command to display, 183, 195
user habits as security risk, 638–640

personal operating systems, 5
philosophy of Unix, 11–12
pico, 286–289, 287

editing text in, 287–289
starting, 287
Web resources, 811

PID (process identification number),
397, 845

packages–PID (process identification number)

2817IDX.qxd 12/1/00 12:00 PM Page 880

881

PidFile, for Apache, 713
Pine, 669
ping command, 580, 785
pipe (|), 222–223, 844
pizza, 614
pkgadd command, 495–496
pkgrm command, 496–497
plasticity, visual, 151
plug-ins for gEdit, 309
Pluggable Additional Modules (PAM), 450
pmadm command (Solaris), 664
POP (Post Office Protocol), 673
POP server, 598, 683–684

vs. IMAP server, 684
port forwarding, 653, 844–845
port monitors (Solaris), 664
port scan, 651–652, 662, 845
portability, 16
porting operating system, 16
porting software, 8
ports, 844

for Apache, 719
in FreeBSD, 493

building, 495
finding, 494–495
installing, 493–494
removing, 494

for FTP connection, 760
handling access, 652
locking those not needed by service, 602
security in X, 91–92
as security risk, 642
for telnet, 758
unprivileged, 653

Ports Collection, 492
fetching all, 495

PortSentry, 651
positional parameter for array, 845

[@] as, 353
POSIX printing standard, 538
Post Office Protocol (POP), 673
Postfix mail server, 675–678

installing and configuring, 676–677
starting, 677–678

posts from newsgroups, retaining, 695–696
PostScript, 535–537

lpadmin flag for, 524
PPID environment variable (ksh), 232
PPP (Peer-to-Peer Protocol), 547, 844
PPP package, for Solaris dial-up

networking, 577
PPPoE (Peer-to-Peer Protocol over

Ethernet), 549, 582
Preferences menu (NEdit), 303
print queue, 519, 845
print services, 416, 518–540

adding local printers, 521–525
with FreeBSD and Linux, 522–523
with Solaris, 524–525

adding network printers, 525–532
with FreeBSD, 526–527
with Linux, 527–528
with Solaris, 530–532

Common Unix Printing System,
538–539

PostScript, 535–537
queue, 533–535
removing printer, 532–533

print spool
removing job from, 781
sending job to, 781
viewing jobs in, 780–781

PidFile, for Apache–print spool

2817IDX.qxd 12/1/00 12:00 PM Page 881

882

printable option, for sharing
directories, 616

PRINTER environment variable, 523
printers

configuration to share on Samba,
618–619

configuring from KDE Control
Center, 145

limiting access to, 526
load balancing for, 539
PostScript, 536
restarting daemon, 528
Unix and, 518–519

printing
in awk program, 387
file contents to screen, 770
Linux and FreeBSD, 520
PostScript document, 536
sharing with Samba, 618–620
stopping job, 534
System V, 520–521
from Unix to Windows printer, 620

printtool (Red Hat), 528, 529, 530
privacy of users, 642

ethical root behavior, 441
private address spaces, 579, 845
process identification number (PID),

397, 845
processes, 845

controlling resources available to,
793–794

displaying list of current, 785
in ksh, suspending, 229–230

processors, load from multiple services,
593–594

production series of Linux kernel, 508

professional system administrator, 413
.profile file, 207, 230
ProFTPD, 760
program files, 33
Programmer’s Workbench (PWB), 14
PROMPT environment variable (csh), 236
proprietary X server, 72
protocols, 845

AppleTalk protocol, 628
DHCP (Dynamic Host Configuration

Protocol), 549
and PPPoE, 582
Web resources, 814

FTP (File Transfer Protocol), inetd to
run, 760

HTTP (HyperText Transfer Protocol),
538, 708

IMAP (Internet Message Access
Protocol), 673

IP (Internet Protocol), 839
IPP (Internet Printing Protocol), 538, 539
Kerberos protocol, 759, 840
NNTP (Net News Transfer Protocol),

689, 693
POP (Post Office Protocol), 673
PPP (Peer-to-Peer Protocol), 547, 844
PPPoE (Peer-to-Peer Protocol over

Ethernet), 549, 582
SMB (Session Message Block)

protocol, 613
SMTP (Simple Mail Transport

Protocol), 672
ssh protocol, 643, 644
SSL (Secure Socket Layer Protocol),

WN support, 740
TCP/IP, 547–550

printable option, for sharing directories–protocols

2817IDX.qxd 12/1/00 12:00 PM Page 882

883

TCP (Transmission Control Protocol),
754, 850

UDP (Unix Datagram Protocol),
754, 850

UUCP (Unix-to-Unix Copy
Protocol), 672

proxy server, 602, 652–654, 845
for Apache, 733–734
hardware for, 598

ps command, 397–398, 403, 785
$PS1 environment variable, 210–211
psh (Perl shell), 33, 238

Web resources, 809
PSn environment variable (ksh), 232
Public Domain Korn shell (pdksh), 233
PWB (Programmer’s Workbench), 14
pwd command, 47, 56, 184, 785
PWD environment variable (ksh), 232

Q

q command (ed), 252
:q command (vi), 267
qmail, 670–671, 680–682

mailing lists and, 682
Qt library, for KEdit, 305
Qt license, 122
queries, with rpm (Red Hat package

manager), 490–492, 491
question mark (?)

as single character wildcard, 187
as variable for exit status, 331

queue, 846
print, 519, 845

quitting ed editor, 252

R

r (read) file permission, 196–197
for directories, 199

RAM
IceWM and, 103
for INN (InterNetNews), 700
text editor use of, 298

RANDOM environment variable
(ksh), 232

rational paranoia, 635
Raymond, Eric, 25, 802
rc files, 206
rc shell, 238
rc.news script, 702
rc.sysinit script, 434–435
read command, 330, 786
README file, 846

for packages, 126, 155
ReadmeName option, for Apache, 728
reboot, runlevel for, 431
recording CDs, 460
recursive acronyms, 21, 846
recursive mode, for rsync command, 600
Red Hat Corporation, 18
Red Hat package manager (rpm), 485,

488–492, 490
Red Hat printtool, 528, 529, 530
redirection, 217

combining input and output, 221
redirection operators, 218–221, 846

combining, 225–226
input redirection operators, 219–221
output redirection operators, 218–219
pipe (|), 222–223

protocols–redirection operators

2817IDX.qxd 12/1/00 12:00 PM Page 883

884

Register.com, 551
registration of domain name, 551
Registry (Windows), hacking, 617
regular expressions, 370–387, 846

for grep command, 187
how they work, 371–374

metacharacters, 372–373
in shell scripts, 318

relative path name, vs. absolute, 57
relaying e-mail, 673
remote access, 757

Web resources, 818–819
remote machine, displaying output on

local monitor, 80
remote partitions

mounting, 473–475
under Linux and FreeBSD, 474
under Solaris, 474–475

replacing text
in GNU Emacs, 281–282
with sed substitution, 375
in vi command mode, 261–262

REPLY environment variable (ksh), 232
rescue kits, 257, 846
resolution of screen, configuring, 74
resources, controlling availability to

processes, 793–794
return value. See exit status
RGB value, 88–89
ring network architecture, 553, 554
Ritchie, Dennis, 8
rlogin

inetd to run, 758–759
security risk from, 91
ssh as replacement, 644

rlogind, 759

rm command, 197–198, 441, 786
rmdir command, 787
rmgroup command, 697
robomoderator, 692
root, 846
root account, 6, 35, 440–445

accessing power, 442–445
without root password, 443–445

ethical behavior, 441
exit command to leave, 445

root directory, 34
root password, sharing, 442
route command, 787–788

to set default route, 583
routers, 846

on network, 582–583
in wide area network, 557–558

rpm (Red Hat package manager), 485,
488–492, 490

graphical interface, 488
queries with, 490–492, 491

RS/6000 systems, AIX for, 822–823
rsh

inetd to run, 759
ssh as replacement, 644

rshd (daemon), 759
rsync command, 788–789

to synchronize backup directories, 600
run control files, 203, 204–207, 847

in C shell (csh), 233–234
.exrc for vi, 266–267
for jed, 293–295
in Korn shell (ksh), 230

runlevels, 431, 435, 847
in /etc/inittab file, 434–435

Register.com–runlevels

2817IDX.qxd 12/1/00 12:00 PM Page 884

885

S

s command (ed), 253–254
:s command (vi), 261–262
S/Key program, 450
sacdm command (Solaris), 664
Samba, 606, 613–620

configuring, 614–616
need for, 660
obtaining and installing, 613–614
printer sharing, 618–620
starting, 616–617
Web resources, 814
and Windows 98, 617–618

Santa Cruz Operations company, 829
SAVEHIST environment variable

(csh), 236
saving

in ed editor, 251–252
in GNU Emacs, 282
in vi, 267–268

scheduling command execution, 769
Scheme, 238
SCO Unix, 829–830
scoadmin, 829
ScoreBoardFile option, for Apache, 713
screen readers, 95
screen resolution configuration, 74
screen saver, for KDE desktop, 140
script kiddies, 645, 847
scripts, 32, 847
scroll file (AfterStep), 112
scsh, 238
Search menu (NEdit), 302

searches. See also grep command
for files

with apropos, 769
with whereis, 796

in GNU Emacs, 281–282
for strings in ed editor, 252–253

SECONDS environment variable
(ksh), 232

Secure Shell, 644, 790
Secure Socket Layer Protocol (SSL), WN

support, 740
security, 645–652

directory for Apache DocumentRoot,
720–721

distributed system advantage, 601–602
external, 637, 642–645

shut-down of all unnecessary ser-
vices, 642–644

firewall and proxies, 652–654
importance of, 633–635
internal, 636–642

file permissions, 638–640
passwords, 640–641

intrusion detection, 645–652
logs, 647–648
software, 648–651

mindset, 635–637
physical security, 636

need for vigilance, 634–635
for networks, 560, 632–654
and NFS (Network File Service), 612
OpenBSD focus on, 825–826
services and, 662–663
services as risk, 756–757
system administrator and, 413

s command (ed)–security

2817IDX.qxd 12/1/00 12:00 PM Page 885

886

updating software to improve, 645
Web resources, 815–816
in X Window System, 90–94

/etc/X0.hosts file, 92–93
securing ports, 91–92
using ssh, 91
xauth program, 93–94

sed, 375–382
vs. awk, 383
commands, 377–379
guidelines, 382
use in shell scripts, 381–382
use on command line, 380–381

sed scripts, 375–376
comments, 376
example, 379–380
line addresses, 377
writing, 376–377

select statement, 356–360
semicolon (;)

for comments in smb.conf file, 614
for end of command, 403

sendmail server, 674–675
Server-pool size regulation option, for

Apache, 714
Server Side Includes (SSI), WN

support, 740
ServerAdmin option, for Apache, 719–720
ServerName option, for Apache, 720
ServerRoot option, for Apache, 712
servers

backups of multiple, 599–601
configuration for NFS, 609–610
font, 593
locked rooms for, 636

on network, 545, 546
computer for, 550

X font, 83–85
Service Access Facility, 652, 664
services, 847. See also e-mail services;

USENET news; World Wide Web
services

distributing across multiple machines,
597–599, 599

logs from, 647
managing, 663–665
multiple on one machine, 594–597, 595
need for, 660–662

by hobbyist, 660
by workers, 660–661

reasons not to run all, 658–659
response to external requests, 744. See

also inetd program
running from inetd program, 756–757
and security, 662–663
shut-down of all unnecessary, 642–644
turning off

in FreeBSD and Linux, 664
in Solaris, 664–665

what it is, 658
Session Message Block (SMB) proto-

col, 613
set command, 209, 789

vi configuration with, 265–266
setenv command (csh), 234, 789
sh (Bourne shell), 32, 228–229, 789
.sh_history, 230
shadow passwords (Linux), 450, 623, 847
sharing files, 607

package removal and, 487

security–sharing files

2817IDX.qxd 12/1/00 12:00 PM Page 886

887

sharing printers. See network printers
shell account, 42
shell commands, running within vi,

262–263
shell environment, 202, 847

configuration elements, 203–204
environment variables, 207–212
run control files, 204–207

setting for new user, 447
specifying for program execution, 343
Web resources, 807–809

SHELL environment variable (csh), 236
SHELL environment variable (ksh), 232
Shell menu (NEdit), 304
shell parameter (vi), 266
shell prompt, 46–47, 47, 847

commands to determine printer sta-
tus, 534

format, 210–211
shell scripts, 32

automation with, 418–419
for backups, 419–426

adapting for multiple, 421–422
including logs, 423–426

cron and at to execute, 426–429
exit status, 390–397

accessing, 393–395
example, 395–397
reporting, 392–393

flow control, 334
conditional, 334–350
iterative, 352–368

indentation of code, 336
init, 429–431
parts, 316–319

comments, 319

operators, 317–318
regular expressions, 318. See also reg-

ular expressions
statements, 317
variables, 318, 322–332

reasons for, 314–315
sed use in, 381–382
vs. shell programs, 315–316
variable for name of current, 332
Web resources, 812–813

shell session in KDE, 130, 131
shells, 31–33

command substitution in, 223–224
common commands, 181–188
determining which is used, 178
options, 32–33, 204

shiftwidth parameter (vi), 266
shut-down

procedures, 52
runlevel for, 431

shutdown command, 790
SIGINT signal, key combination for, 402
SIGKILL signal, 400
signal trap, 397, 402–404
signals, 397, 847

ignoring, 404–405
listing, 401
sending, 399–402

SIGTERM signal, 400
Silcon Graphics MIPS systems, IRIX for,

827–828
Simeon, 669
Simple Mail Transport Protocol

(SMTP), 672
simple view, for KDE File Manager,

134, 134

sharing printers–simple view, for KDE File Manager

2817IDX.qxd 12/1/00 12:00 PM Page 887

888

single-user mode, runlevel for, 431
Sixth Edition, 14
slash (/) for directory names, 56
slice (BSD), 461. See also partitions

creating, 464–466
smail, 682–683
small-system administrator, 411–412
SMB (Session Message Block)

protocol, 613
SMIT (System Management Interface

Tool), 823
SMTP (Simple Mail Transport

Protocol), 672
snap zone in KDE desktop, 139
socksify script, 654
software

compiling from source code, 480–484
directory for program files, 60
formats, 478–480
installing, 479

for FreeBSD, 492–495
for Linux, 485–492
for Solaris, 495–497

for intruder detection, 648–651
for networks, 550–552
programmer attitudes, 20
starting from KDE panel, 130, 131
for Unix variants, 484–497
upgrades, 497–498

Software in the Public Interest, 18
software management, 415, 478–499
software modems, 567–568, 847–848
Solaris, 14, 19

automatic mounting under, 472–473
dial-up networking and, 577
font installation for, 83

groups with, 455–456
installing Gnome for, 151–152
installing INN on, 701
name for network Ethernet interface,

579, 580
and netatalk, 628–629
NFS sharing, 610
PAM (Pluggable Additional

Modules), 450
partition creation, 467–468
printing, 520–521

adding local printers, 524–525
adding network printers, 530–532
queue management, 534–535
removing printer, 533

remote partition mounting, 474
removing software, 496–497
security, Web resources, 815
software installation, 495–497
turning off services in, 664–665
user accounts

creation, 449
removing, 453

Web resources, 802
sort command, 220, 790
sound, configuring from KDE Control

Center, 143
source code, 415, 479, 848

compiling software from, 480–484
for Gnome, compiling and installing,

155–156
for KDE

compiling and installing, 127–128
unpacking, 126

space, file system as, 56
Sparc platform, 19

single-user mode, runlevel for–Sparc platform

2817IDX.qxd 12/1/00 12:00 PM Page 888

889

special bash variables
$@, 353
for command-line arguments, 348–349

special variables, 330–332
spool, 848
spool directory

designating in /etc/printcap file, 523
for e-mail, 672

spooling, 519
square brackets ([]), test command

and, 338
/src/configure.default file, 679
/src subdirectory, 154
ssh command, 790

X forwarding, 91
ssh protocol, 643, 644
SSI (Server Side Includes), WN sup-

port, 740
SSL (Secure Socket Layer Protocol), WN

support, 740
stability of X Window System, 73
Stallman, Richard, 19–21
standard, 848
standard input and output, 216–217, 848
Standard Keys combinations, defining

from KDE Control Center, 142
star topology, 546, 850
startx command, 791
statements, 848
statements in shell scripts, 317

for conditional flow control, 334
static IP address, 549–550

in dial-up network configuration, 570
security risk from, 634

static kernels, 848
modularity vs., 504–506

STATUS environment variable (csh), 236

stealth servers, 737
.steprc file, 111
StickyKeys X option, 95
stream editor, 375, 380, 848
strings, 848

comparison operators, 336
finding in ed editor, 252–253
as variables, 324–326

strong passwords, 640
Stuffit program, 480
style, for KDE desktop, 140
su command, 443, 791
subdirectories, 34, 61. See also directories

indicator in KDE File Manager, 136, 136
moving between directories, 185
path for, 56–57

subshell, 206, 223, 848
substitution

in ed editor, 253–254
in sed, 377–378

Sun Microsystems, 9, 19
SunOS, 830–831
superuser, 35, 848. See also root account
symbolic links, 849

creating, 779
indicator in ls command output, 183

synchronizing files, 788–789
syntax of command, 182, 835
sysinstall program, 465, 465–466
system administrator, 43, 849. See also root

account
basic tasks, 413–416

disk and filesystem management,
414–415, 458–475

kernel (Unix) management, 415,
501–516

print services, 416, 518–540

special bash variables–system administrator

2817IDX.qxd 12/1/00 12:00 PM Page 889

890

software management, 415, 478–499
system programming, 414, 418–437
user management, 414, 440–456

professional, 413
responsibilities, 410–411
for small system, 411–412
Web resources, 813

system calls, 849
system programming, 414, 418–437
system sounds, 143
system tray in KDE, 132
System V, 14, 831

initialization process, 431, 432–436
printing, 520–521

systems programming, 179

T

table of processes, 646–647
tail command, 381, 777
tar command, 481, 791–792

for Enlightenment themes, 119
in shell scripts, 420
to unpack Gnome packages, 154–155
to unpack KDE packages, 126

tarball, 480, 849
.tar.gz file extension, 480
task switching, 6, 849

time slicing vs., 596
Taskbar and system tray (KDE panel), 132
TB (terabyte), 826
TCP (Transmission Control Protocol),

754, 850
TCP/IP, 547–550, 849

tcsh (C shell), 33
Web resources, 809

telnet
inetd to run, 757–758
security risk from, 91
ssh as replacement, 644
Web resources, 819

temporary storage, directory for, 60
terabyte (TB), 826
Terminal Emulator (KDE panel), 130
Terms of Service, 43
test command, 339–340, 792

and square brackets, 338
testing connections

on networks, 580, 785
for printer, 522

testing, Exim, 679–680
text editor (KDE panel), 132
text editors, 191

default, 289
ed editor, 244–254
GNU Emacs, 21, 191, 191, 270–283
graphical interface, 298–309

gEdit, 307, 307–309
KEdit, 305, 305–306
NEdit, 299–306, 300
reasons to use, 298–299
word processors vs., 299

jed, 293–296, 294
joe, 289–293, 290
pico, 286–289, 287
Web resources, 809–812

text-mode editors, 191, 849
.tgz file extension, 480
theme_main.cfg file (Enlightenment), 118

system administrator–theme_main.cfg file (Enlightenment)

2817IDX.qxd 12/1/00 12:00 PM Page 890

891

theme_pre.cfg file (Enlightenment), 118
themes, 86, 100

for Gnome, 171–173
installing in Enlightenment, 118–119
for KDE desktop, 145, 146

Thompson,Ken, 8
tilde (~), for backup files, 280
time, configuring from KDE Control Cen-

ter, 144–145
TIME environment variable (csh), 236
time slicing, 6, 849

vs. task switching, 596
TIMEOUT environment variable

(ksh), 232
Timeout option, for Apache, 714
timestamp of file, 849

updating, 192, 793
title bar, configuring from KDE Control

Center, 144
/tmp directory, 60, 480–481, 484
token ring architecture, 553
tonal color displays, 90
tools to work in shell (KDE panel), 131
top command, 646–647, 792–793
topology of network, 545, 552–559,

849–850
bus, 555–556, 556
daisy chain architecture, 556
hub, 554–555, 555
ring, 553, 554
star topology, 546

Torvalds, Linux, 17
touch command, 157, 192–193, 793
traceroute command, 793

Transmission Control Protocol (TCP),
754, 850

trap command, 402
tree view, for KDE File Manager, 134, 135
Tridgell, Andrew, 614
trn newsreader, 693
troubleshooting

“cannot exec ‘as’:No such file or
directory” message, 496

failed package install, 156
Gnome install, 158
netatalk with Solaris, 629
new Linux kernel, 511
printing, 520
X Window System, 74–75

freezing, 74
Tru64 Unix, 828
true multitasking, 6
tsch, vs. csh (C shell), 236–237
.tschrc file (csh), 234
twisted pair, 577
twm, 100–103, 101

configuring, 101–103
tutorial, 805

.twmrc file, 101–103
TypesConfig option, for Apache, 723

U

UDP (Unix Datagram Protocol), 754, 850
ulimit command, 793–794
umask command, 638, 794

arguments for permissions, 639
umount command, 471

theme_pre.cfg file (Enlightenment)–umount command

2817IDX.qxd 12/1/00 12:00 PM Page 891

892

Unices, 850
Unix

creation and history, 8–11
derivations, 9
Web resources, 800–801

Internet and, 9–10
and ISP, 566–567
philosophy, 11–12
and printers, 518–519
structure, 30–33

file system, 33
kernel, 30–31
shell, 31–33

what it is, 5–7
Unix computers, retaining power to, 52
Unix Datagram Protocol (UDP), 754, 850
Unix International, 831
Unix System Laboratories, 831
Unix-to-Unix Copy Protocol (UUCP), 672
UNIX/TS, 14
Unix versions, 14–16, 15, 17–19

commercial Unices, 822–832
AIX, 822–823
BSD (Berkeley Software Distribu-

tion) Unix, 9, 436–437, 824–826
HP-UX, 826–827
IRIX, 827–828
OSF/1, 828–829
SCO Unix, 829–830
SunOS, 830–831
System V, 831. See also System V
Xenix, 14, 831–832

differences between, 7, 16–17
FreeBSD, 18–19. See also FreeBSD
IP maquerading, 588
Linux, 17–18. See also Linux

and printing, 518–519
Solaris, 19. See also Solaris

UnixWare, 829
unmounting, 471
unprivileged ports, 653
until loop, 362–363
upacking archive files, 154
upgrades to software, 497–498

with dpkg, 487
upstream feed, 693
UseCanonicalName option, for

Apache, 723
usekde command, 128
USENET news, 688–705

how it works, 688–697
article distribution, 694
newsgroup creation, 696–697
process, 692–695
retaining posts, 695–696

INN (news server), 700–705
configuring and running, 702–705
obtaining and installing, 700–701

selected hierarchies, 689–690
regional and national, 690–691

separate computer for, 598
site administration, 697–699

arranging newsfeed, 698
keeping newsgroups updated,

698–699
user policies, 699

Web resources, 817
user accounts, 6, 34–35, 440–456, 850. See

also groups; root account
authentication in X, 93–94
creation, 445–449, 768

in Linux and FreeBSD, 448–449

Unices–user accounts

2817IDX.qxd 12/1/00 12:00 PM Page 892

893

required tasks, 445–446
in Solaris, 449

disabling, 451
display group memberships for, 777
for FTP connection, 760
listing those currently logged on,

645, 796
on mail server, 673
removing, 451–453

in Linux and FreeBSD, 452
running Web server from, 737

user agent for mail transfer, 669
$USER environment variable, 209–210
User/Group option, for Apache, 719
user interfaces, 12, 66

command-line, 835
graphical, 99–100, 838. See also desk-

top environment; window man-
agers; X Window System

user management, 414, 440–456
user ownership of files, ls command to

display, 183
user policies, for USENET news-

groups, 699
user_main.cfg file (Enlightenment), 118
useradd command, 446, 795

options, 447
userdel command, 452, 795–796
UserDir option, for Apache, 721–722
username, 44, 850
users

computer use policies for, 636–637
with disabilities, X and, 95–96
finger for information about, 761–762
habits as security risk, 637–-638

file permissions, 638–640
passwords, 640–641

mailing list management, 681
malicious, 641–642
tolerance for delay, 596

Using Samba (Eckstein), 613
/usr/bin/printtool command, 528
/usr directory, 60
/usr/local directory, 60–61
UUCP package, for Solaris dial-up net-

working, 577
UUCP (Unix-to-Unix Copy Protocol), 672

V

/var directory, 61
/var/run/dmesg.boot file, 512
/var/spool/mail directory, 672
variable substitution, 328
variables, 850

$ operator, 328
array variables, 326–327
assigning values to, 329–330

keyboard input, 330
availability to shell environment, 775
declaration, 773
evaluation in if-then statement,

336–338
integers, 327–328
loop, 353
names, 323–324
in shell scripts, 318, 322–332
special bash variables, 330–332
type declaration, 324–326
what it is, 322–328

verbose mode, 216, 850
vi, 191, 256–268

abbreviations, 263–264

user accounts–vi

2817IDX.qxd 12/1/00 12:00 PM Page 893

894

editing in command mode, 258–262
cursor movement, 258–260
deleting text, 260–261
pattern matching and replacing,

261–262
.exrc file, 266–267
macros, 264–265
modes, 257–258
set command to configure, 265–266
using shell within, 262–263
Web resources, 810

video card, X Window System compati-
bility, 73

.vimrc file, 266
virtual desktop, 850

in fvwm, 109
in KDE, 132, 133, 133

virtual hosts, 850–851
for Apache, 734–735

viruses, and Microsoft Outlook, 669
visual disabilities, adaptations for, 95–96
visual editor, 851
visual plasticity, 151
volumes (Solaris), 461. See also partitions

W

w command, 645, 796
w command (ed), 252
:w command (vi), 267
w (write) file permission, 196–197

for directories, 199
W3C (World Wide Web Consortium), 708
wallpaper of KDE desktop, 138
wc command, 224, 796

Web-based X session technology, 79
Web browsers, protocol-compliant, 739
Web pages, hex color settings, 89
Web resources, 800–820

AfterStep, 806
Apache server, 709
BlackBox, 805
boa, 736
Broadway project, 79
CD-ROM with book, 819–820
on color values, 89
commercial Unices

AIX, 823
HP-UX, 826–827
IRIX, 827–828
OSF/1, 828–829
SCO Unix, 830
SunOS, 830–831
Xenix, 832

CUPS (Common Unix Printing System)
and, 539

desktop environment, 803–807
electronic mail, 816–817
Enlightenment, 806
Exim, 678
Free Software Foundation, 802–803
for FTP servers, 760
FVWM project, 805
getting started, 803
Gnome, 152, 807
for GNU Emacs, 271
HushMail, 670
IceWM, 805
INN (InterNetNews) patches, 700
for Jigsaw, 739
job searches, 696

vi–Web resources

2817IDX.qxd 12/1/00 12:00 PM Page 894

895

KDE, 123, 806
KDE themes, 147
Linux Hardware Compatibility FAQ, 74
netatalk HOWTO, 630
for netatalk package, 621
on Netfilter, 588
network administration, 813

heterogeneous networks, 814–815
Open Source project, 802–803
OpenBSD, 653
PortSentry, 651
remote access, 818–819
Samba, 614
search engines, 763
security, 815–816
for sendmail, 675
on shadow passwords, 450
shell environment, 807–809
shell scripts, 812–813
for software upgrades, 498
on Solaris dial-up networking configu-

ration, 577
ssh, 644
system administrator, 813
text editors, 809–812
for themes, 100
Unix history, 800–801
Unix versions, 801–802
USENET news, 817
window managers, 805–806
WN web server, 741
World Wide Web services, 817–818
X Window System, 804

Web server
hardware for, 597–598

need for separate, 546–547
separate computer for, 597

wharf file (AfterStep), 112
Wharf module (AfterStep), 110
whereis command, 796
which command, 797
while loop, 360–361
wide area network (WAN), 552
widgets, 151, 851
wildcard character, 371, 851

? (question mark) as, 187
asterisk (*) as, 155, 187
in rm command, 198

window managers, 67, 68, 69, 851
AfterStep, 110–112
BlackBox, 107–108
choosing, 98
vs. desktop environment, 69, 70–71
Enlightenment, 116–119, 117, 119
fvwm, 108–110
for Gnome, 151
IceWM, 103–106, 104
KWM, 123
twm, 100–103, 101
Web resources, 805–806
WindowMaker, 113, 113–115

WindowMaker, 113, 113–115
configuration files, 114–115

windows, 7
configuring from KDE Control Center,

143–144
in GNU Emacs, 272–273, 273, 276,

276–279
mode line and mini buffer, 278

Windows 98, Samba and, 617–618

Web resources–Windows 98, Samba and

2817IDX.qxd 12/1/00 12:00 PM Page 895

896

Windows menu (NEdit), 304
Windows (Microsoft), 5

Control Panel, Network, 617
integration with Unix. See Samba
printing from Unix to, 620
user accounts, 440

Windows NT, 15–16
winlist file (AfterStep), 112
WinList module (AfterStep), 110
WinModem, 567–568, 847–848
WN Web server, 740–741
word processors, vs. text editor, 299
WordPerfect, 192
words, counting in file, 796
World Wide Web Consortium (W3C), 708
World Wide Web services, 708–741. See

also Apache server
boa, 736
dhttpd, 736–737
fhttpd, 738
Jigsaw, 738–739
kHTTPd, 739–740
Web resources, 817–818
WN, 740–741

worms, 851
finger vulnerability to, 761

Wprefs.app program, 115, 116
wrapmargin parameter (vi), 266
writable option, for sharing directories, 616
WU-FTPD, 760

X

X Consortium, 67, 804
x (execute) file permission, 196–197

for directories, 199

X server, 79
X Terminals, 78

twm (window manager) and, 100
X Web, 79
X Window server, 593
X Window System, 66–76, 851

applications over network, 78–81
client-server architecture, 72–73
color, 86–90
configuration

for Gnome, 157–158
for KDE, 128

configuration file, 52
fonts, 81–85

font server, 83–85
installing, 81–83
international fonts, 85–86

freezing, 74
implementations, 67
installing and configuring, 73–75
preventing outside connections, 653
security, 90–94
starting, 791
structure, 71–73
and users with disabilities, 95–96
Web resources, 804
what it is, 66–67

X11R6, 67
x86 processor, 851
xauth program, 93–94
.Xauthority file, 93
.Xclients file, 157
.Xdefaults file, 52

color settings, 86
xdm (X display manager), 67

MIT-MAGIC-COOKIE-1 generation, 93
Xenix, 14, 831–832

Windows menu (NEdit)–Xenix

2817IDX.qxd 12/1/00 12:00 PM Page 896

897

Xerox Palo Alto Research Center, 66
XFree86, 72, 804

compatibility information, 74
troubleshooting, 75

xfs (X font server), 83–85
xhost client, 93
xinetd program, 754–756
.xinitrc file, 157
.Xresources file

color settings, 88
configuring for non-English fonts, 85

.xsession file, 157–158
xset command, to use font server, 84

Y

yanking text, in GNU Emacs, 281

Z

Z Shell (zsh), 32–33, 237
Web resources, 809

zero (0), as network IP address, 579
zharf file (AfterStep), 112
Ziegler, Robert, Linux Firewalls, 653
Zip disks, 460
Zip program, 480
zsh (Z Shell), 32–33, 237

Web resources, 809
ZZ command (vi), 268

Xerox Palo Alto Research Center–ZZ command (vi)

2817IDX.qxd 12/1/00 12:00 PM Page 897

ash: A Free Software version of the Bourne Shell that works just like sh,
but has no licensing conflicts.

NEdit: A graphical text editor that supports mouse use. Covered in Chap-
ter 20: “Graphical Text Editors.”

GNU Emacs: A text-mode editor with a large array of features. We cover it
in Chapter 18: “GNU Emacs.”

KDE: An integrated desktop covered in Chapter 9: “KDE.”

Gnome: An integrated desktop covered in Chapter 10: “Gnome.”

WindowMaker: A window manager. WindowMaker is covered, along with
other window manager alternatives, in Chapter 8: “Window Managers.”

Apache: A robust and popular Web server that is configurable and easy to
use. We explain Apache in detail in Chapter 42: “World Wide Web Services.”

Qmail: A mail server.

sendmail: A mail server. We cover Qmail and sendmail in Chapter 40:
“Electronic Mail.”

Samba: Provides the connection between Unix and Windows in a hetero-
geneous network. We cover Samba in Chapter 37: “Integrating Unix with
Other Platforms.”

perl: A programming language especially useful for system administra-
tors. Although we don’t provide perl instruction in this book, Appendix B
contains references that should be enough to get you started.

Aide: An intrusion detection program that scans your computer looking
for compromised files.

Dante: A server-level firewall that can be configured in great detail to con-
trol the passage of data into and out of your computer. Both Dante and
Aide are described in Chapter 38: “Network Security.”

The GIMP (GNU Image Manipulation Program): One of the best graph-
ics programs available on the market today. You can use The GIMP to cre-
ate images as complex as those generated in Adobe Photoshop.

NOTE If you have trouble installing the software, check the relevant program’s Web site
for an updated version. If you know that the problem is not with the packages but
with the CD itself, contact Sybex at www.sybex.com.

2817cbic.qxd 11/21/00 1:54 PM Page 1

	Contents
	Introduction
	PART I Introducing Unix
	1 History and Background of Unix
	What Is Unix?
	Creation and History of Unix
	The Unix Philosophy
	Summary

	2 Which Unix?
	The Fragmentation of Unix
	Differences between Unices
	Unix Versions Used in This Book
	We GNU, Do You?
	Getting to Know GNU
	The Free Software Foundation
	If GNU’s Not Unix, What Is It?
	The Free Software Explosion
	The Meteoric Rise of Open Source
	Summary

	3 Some Basic Unix Concepts
	Structure of a Unix System
	Files and Directories
	Users
	Commands
	Summary

	PART II Getting Started
	4 Logging In and Looking Around
	Getting Access to Unix
	Logging In for the First Time
	Changing Your Password
	What Are These Files?
	Logging Out
	Summary

	5 Navigating the Filesystem
	Where Are You?
	Moving Around
	What’s Where?
	Summary

	PART III Unix Desktop Environments
	6 The X Window System: An Overview
	What Is the X Window System?
	Desktops and Window Managers
	The Structure of X
	Installing and Configuring X
	Summary

	7 Advanced X Techniques
	Using X Applications over a Network
	Fonts
	Colors
	Security
	X and Users with Disabilities
	Summary

	8 Window Managers
	Graphic Interfaces
	twm
	IceWM
	BlackBox
	fvwm
	AfterStep
	WindowMaker
	Enlightenment
	Summary

	9 KDE
	What Is KDE?
	Getting and Installing KDE
	The KDE Panel
	The KDE File Manager
	The KDE Control Center
	Desktop Themes
	Summary

	10 Gnome
	What Is Gnome?
	Getting and Installing Gnome
	Using Gnome
	Summary

	PART IV Using the Shell
	11 Introduction to the Bourne (Again) Shell
	Why Bourne Shell?
	Some Common Shell Commands
	Summary

	12 Manipulating Files and Directories
	Creating and Editing Files
	Copying Files
	Moving Files
	File Ownership and Permissions
	Deleting Files
	Managing Directories
	Summary

	13 Customizing the Shell Environment
	Elements of Shell Configuration
	Run Control Files
	Environment Variables
	Summary

	14 Input and Output Redirection
	Standard Input and Output
	Introducing Redirection
	Redirection Operators
	Pipes
	Command Substitution
	Combining Operators
	Summary

	15 Other Shells
	The Bourne Shell
	The Korn Shell
	The C Shells
	The Z Shell
	Other Shells
	Summary

	PART V Using Text Editors
	16 The ed Editor
	What Is ed?
	Starting ed
	Reading a File
	Editing a File
	Saving and Quitting
	Editing by Content
	Summary

	17 The vi Editor
	The One True Editor
	vi’s Modes
	Basic Editing in Command Mode
	Using the Shell within vi
	Abbreviations
	Macros
	The set Command
	The .exrc File
	Saving and Exiting
	Summary

	18 GNU Emacs
	What Is GNU Emacs?
	Running emacs
	emacs Peculiarities
	Getting Started with emacs
	Dealing with Buffers
	Dealing with Windows
	The GNU Emacs Window
	Getting Help
	Backups and Auto-Save
	Killing and Yanking Text
	Searching and Replacing
	Saving and Exiting
	Doctor
	Summary

	19 pico, joe, and jed
	pico
	joe
	jed
	Summary

	20 Graphical Text Editors
	Why Graphical Editors?
	NEdit
	KEdit
	gEdit
	Summary

	PART VI Shell Programming
	21 An Introduction to Shell Programming
	Why Program the Shell?
	What Is a Script and What Is a Program?
	Parts of a Program
	Summary

	22 Variables
	What Is a Variable?
	Assigning Values to Variables
	Special Variables
	Summary

	23 Flow Control, Part I: Conditional Flow Control
	The if-then Statement
	Evaluating Variables
	Evaluating Non-Variables
	Evaluating Multiple Conditions
	Building an Example
	Extending the if-then Statement with else
	The elif Statement
	The case Statement
	Summary

	24 Flow Control, Part II: Iterative Flow Control
	The for Statement
	The select Statement
	The while Loop
	The until Loop
	Nesting Loops
	Summary

	25 Regular Expressions
	How Regular Expressions Work
	sed
	awk
	Summary

	26 Signals and Status
	Exit Status
	Managing Status
	Signals
	Unique Identifiers
	Managing Signals
	Summary

	PART VII Basic System Administration
	27 What Is System Administration?
	The Administrator’s Job
	Administering a Small System
	Professional System Administration
	Basic System Administration Tasks
	Summary

	28 System Programming
	Automating Common Tasks with Shell Scripts
	Case Study: A Simple Backup Script
	Executing Scripts with cron and at
	init Scripts
	The Initialization Process
	Summary

	29 Managing Users and Groups
	The Root Account
	Adding New Users
	Alternate Password Schemes
	Removing Users
	Groups
	Summary

	30 Disks and Filesystem Management
	What Is a Disk?
	Disk Partitions
	Physical Media vs. Filesystems
	Mounting Local Partitions
	Automatic Mounting
	Mounting Remote Partitions
	Summary

	31 Installing and Managing Software
	Software Formats
	Compiling Software from Source Code
	Software Management for Unix Variants
	Keeping Up with Upgrades
	Summary

	32 Getting to Know the Kernel
	What the Kernel Does
	Kernel Development
	Modules vs. Static Kernels
	(Re)Compiling the Kernel under Linux and FreeBSD
	Summary

	33 Managing Print Services
	Unix and Printers
	BSD Printing: Linux and FreeBSD
	System V Printing: Solaris
	Adding Local Printers
	Adding Network Printers
	Removing a Printer
	Maintaining a Print Queue
	Handling PostScript
	The Common Unix Printing System
	Summary

	PART VIII Network Administration
	34 Introduction to Unix Networking
	Basic Networking Concepts
	Basic TCP/IP
	Networking Hardware and Software
	Common Networking Architectures
	Common Networking Concerns
	Summary

	35 Network Interfaces and Routing
	Configuring Network Devices
	Dial-Up Networking
	Ethernet Networking
	Routers and Gateways
	Small Networks
	IP Masquerading
	Summary

	36 The Distributed System
	Clients and Servers
	Distributing Services across Multiple Machines
	Backing Up Multiple Machines
	The Security Advantage
	Summary

	37 Integrating Unix with Other Platforms
	Integrating One Unix with Other Unices
	Integrating Unix and Windows
	Integrating Unix and MacOS
	Summary

	38 Network Security
	How Important Is Security to You?
	The Security Mindset
	Internal Security
	External Security
	Intrusion Detection
	Firewalls and Proxies
	Summary

	PART IX Administering Services
	39 Selecting a Suite of Services
	What Is a Service?
	Why Not Run All of Them?
	What Are Your Needs?
	A Word about Security
	Managing Services
	Summary

	40 Electronic Mail
	How Electronic Mail Works
	An Overview of Mail Services
	sendmail
	Postfix
	Exim
	qmail
	smail
	Setting Up POP and IMAP Services
	Summary

	41 USENET News
	How USENET Works
	Administering a Sound USENET Site
	INN
	Summary

	42 World Wide Web Services
	Getting and Installing Apache
	Configuring Apache
	Other Web Servers
	Summary

	43 Remote Access (inet) Services
	inetd: The Internet Supervisor
	Configuring inetd
	xinetd: An inet Alternative
	Running Services from inetd
	Connection-Based Services
	Data Transfer Services
	Information Services
	Miscellaneous Services
	Summary

	Appendices
	A Common Unix Commands
	adduser
	apropos
	at
	bash
	cat
	cd
	cfdisk
	chmod
	chown
	cp
	crontab
	date
	dd
	declare
	diff
	du
	echo
	exit
	export
	exportfs
	expr
	fdisk
	fsck
	grep
	groups
	gzip and gunzip
	head and tail
	ifconfig
	init
	insmod
	kill
	less
	ln
	locate
	logout
	lpc
	lpq
	lpr
	lprm
	ls
	make
	man
	mkdir
	mke2fs
	more
	mount
	mv
	netstat
	passwd
	ping
	ps
	pwd
	read
	rm
	rmdir
	route
	rsync
	set
	setenv
	sh
	shutdown
	sort
	ssh
	startx
	su
	tar
	test
	top
	touch
	traceroute
	ulimit
	umask
	umount
	useradd
	userdel
	w
	wc
	whereis
	which

	B Documentation and Resources
	Introducing Unix
	Getting Started
	Unix Desktop Environments
	Using the Shell
	Using Text Editors
	Shell Programming
	Basic System Administration
	Network Administration
	Administering Services
	On the CD

	C Other Types of Unix
	AIX
	BSD
	HP-UX
	IRIX
	OSF/1
	SCO Unix
	SunOS
	System V
	Xenix

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Index
	SYMBOLS & NUMBERS
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

